
Macintosh
Graphics in
Modula-2

Macintosh
Graphics in
Modula-2

JOHN R. BING
Integrated Technical Consultants, 8nc.

P.O. Box 547
POOLESVll 1 F:, MARYLAND 20837

Prentice-Hall Personal Computing Series

Lance A. Leventhal, series editor

Busch, Sorry About the Explosion: A Humorous Guide to Computers
Dickey, Kids Travel on Commodore 64
Fabbri, Animation, Games, and Graphics for the Timex-1000
Fabbri, Animation, Games and Sound for the Apple II/lie
Fabbri, Animation, Games, and Sound for the Commodore 64
Fabbri, Animation, Games, and Sound for the IBM PC
Fabbri, Animation, Games, and Sound for the Tl 99/4A
Fabbri, Animation, Games, and Sound for the VIC 20
Glazer, Managing Money with Your Commodore 64
Glazer, Managing Money with Your IBM PC
Glazer, Managing Money with Your VIC 20
Harris & Scofield, IBM PC Conversion Handbook of BASIC
Lima, dBASE II for Beginners
Lima, Mastering dBASE 111 in Less Than a Day
Mclaughlin & Boulding, Financial Management with Lotus® 1-2-3®
Nitz, Business Analysis and Graphics with Lotus® 1-2-3®
Scanlon, EasyWriter II System Made Easy-er
Scanlon, Microsoft Word for the IBM PC
Scanlon, The IBM PC Made Easy
Schnapp, Macintosh Graphics in Modula-2
Schnapp & Stafford, Commodore 64 Computer Graphics Toolbox
Schnapp & Stafford, Computer Graphics for the Timex 1000 and Sinclair ZX-81
Schnapp & Stafford, VIC 20 Computer Graphics Toolbox
Thro, Making Friends with Apple Writer II

Title

Macintosh
Graphics in
Modula-2

Russell L. Schnapp

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Schnapp, Russell L. (date)
Macintosh graphics in Modula-2.

Includes bibliographies and index.
1. Macintosh (Computer)-Programming.

2. Modula-2 (Computer program language)
3. Computer graphics. 1. Title.
QA76.8.M3S36 1986 001.64'2 85-12116
ISBN 0-13-542309-0

Editorial/production supervision and
interior design: Lisa Schulz

Cover design: Russell Schnapp
Manufacturing buyer: Gordon Osbourne

Macintosh'l'M is a trademark licensed to Apple Computer, Inc.
Apple ® is a registered trademark of Apple Computer, Inc.
MacModula-2 is a trademark of Modula Corporation.

© 1986 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

The author and publisher of this book have used their best efforts in preparing this book.
These efforts include the development, research, and testing of the theories and programs
to determine their effectiveness. The author and publisher make no warranty of any kind,
expressed or implied, with regard to these programs or the documentation contained in
this book. The author and publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the furnishing, performance,
or use of these programs.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-542309-0 01

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Bditora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

For Joseph Gittler, my grandfather.

Content;s
PREFACE xi

ABOUT THE AUTHOR xv

ONE: INTRODUCTION TO MODULA-2 1

Fundamental Features of Modula-2 1
MODULEs 2
Separate Compilation 4
Type-Checking 5
Program Control Statements 6
Warnings 7

Why Use Modula-2? 8
Overview of Macintosh Modula-2 8
Using Macintosh Modula-2 9

Creating a Disk for Editing 9
Working with an Internal Drive Only 10
Working with an Internal Plus External Drive 10
The Development Cycle 11

Exercises 17
Bibliography 18

vii

viii

TWO: MACINTOSH GRAPHICS FACILITIES 20

Macintosh Graphics Hardware 20
A Quickdraw Module 21

Module MiniQD 22
Using MiniQD 29

Module Concentric 29
Patterns 33

Module Patterns 33
Using Patterns 36
Module FillConcen 36

Lines and Text 38
Module Draw 38

A Turtle-Graphics Module 44
Module Turtle 44
Using Turtle 47
Module Boxes: Drawing fractals 48

Exercises 53
Bibliography 53

THREE: ANIMATION AND SIMULATION 54

Moving Simple Elements 54
Module Sweep 55

Simulation of Motion 58
Module Timer 59
Simulation 60
Module Motion 61
Module BounceBall 66

Moving Complex Shapes 72
Module ScrollBall 7 4

Exercises 78
Bibliography 78

FOUR: INTERACTIVE GRAPHICS 79

What Is a User Interface? 79
Mouse 80

Module Mouse 80
Direct Manipulation with Mouse 82
Module Drag 82

Events 86
Menus 88

Module Menu 88
Module TestMenu 92

Contents

ix

Windows 96
Module Windows 97
Module TestWindow 105

Interactive Graphics 108
Module MicroDraw 109

Exercises 121
Bibliography 123

FIVE: THE THIRD DIMENSION 124

Basics of Three-Dimensional Graphics 124
Coordinates 124
Projection 124
Scaling 126
Rotation 126
Translation 128
Module ThreeDee 128

Drawing Wire-Frame Objects 131
Module Draw3D 132

Hidden Edges 140
Module SolidCube 140

Shading 144
Module PolyQD 145
Module ShadedCube 147

A More General Hidden-Edge Display Technique 151
Module RegionQD 151
Module Poly3D 154

Exercises 163
Bibliography 164

A: IMPORTANT QUICKDRAW PROCEDURES 166

B: IMPORTANT TOOLBOX PROCEDURES 174

C: GLOSSARY 179

INDEX 185

DISKETTE OFFER 190

Contents

Preface
This book is a about three subjects:

• Computer graphics.
• The Modula-2 language.
• The Apple® Macintosh TM personal computer.

It is intended both as an example of applying Modula-2 to a task and
as an introduction to Macintosh graphics, with a Modula-2 orientation.

You will learn how to edit, compile, and run programs with the
Macintosh Modula-2 package. You will see how to take advantage of unique
aspects of Modula-2, such as modules, abstract data types, and separate
compilation.

You will also find explanations and examples of key built-in Macintosh
tools. This book describes many of the Macintosh's graphics and user inter­
face procedures.

This book assumes you have at least the following equipment:

• Any Macintosh computer (the 128K version will do). A single-drive
machine is adequate, although it requires a lot of disk swapping.

• The Macintosh Modula-2 package, from Modula Corporation. This in­
cludes a program editor, compiler, linker, and some uncompiled and
precompiled modules and interfaces.

• A copy of the book, Programming in Modula-2 (Springer-Verlag, 1982)
by Niklaus Wirth. This is the standard reference for Modula.

xi

xii Preface

You might also want an Image Writer or equivalent printer.
If this is your first encounter with Modula, you should at least be

familiar with Pascal.
Note that you can buy a disk containing the modules and programs

described in this book. It will save you a lot of typing and debugging time.
For ordering information, see page 190.

This book is organized as follows:
Chapter 1 introduces the Modula-2 language. After describing

Modula-2's major features, it discusses the Macintosh implementation and
goes through the development cycle for a sample program.

Chapter 2 introduces Macintosh graphics. This chapter presents a
Modula interface to the Macintosh QuickDraw graphics routines. It develops
and demonstrates a module that provides fill patterns. The chapter then
describes a turtle graphics module and tests it with a program that draws a
fractal curve.

Chapter 3 discusses animation and the simulation of motion. It presents
techniques for calculating the path, velocity, and acceleration of objects. The
chapter contains examples of a moving line and a rubber ball.

Chapter 4 covers interactive graphics. It presents a module that gives
Modula programmers access to some Macintosh user interface software. This
chapter also describes the use of the mouse to control the size and place­
ment of graphic elements, and select from pop-up menus. It also explains
how to use windows in your programs. Finally, it develops a graphic editing
program that allows you to save, load, and edit pictures.

Chapter 5 presents techniques used in representing and displaying three­
dimensional objects. It includes a module that performs rotation, scaling,
translation, and perspective mapping on 3-D coordinates. It then develops
and demonstrates hidden-line and shading techniques.

This book provides you with several "toolbox" modules that you can
use in your own programs. By the time you finish, you should also have
gained a solid understanding of Macintosh's QuickDraw and user interface
software.

ACKNOWLEDGMENTS

First, to my spouse: Thank you, Brig! I really do recognize and appreciate
the value of your patience and suggestions.

Next: I approach the acknowledgment of corporations with trepida­
tion. They tend toward fickleness more than individuals. Still, these
companies went out on a limb to improve the state of the art of the market­
place. The first, as you may guess, is Apple Computer. The Macintosh is a
truly fine piece of software and hardware engineering. Also, my thanks go
to Microsoft Corporation. Their Microsoft Word product is a tremendous
leap forward, and the MS-DOS version helped me greatly in the preparation

Preface xiii

of this manuscript. It is interesting to note that both of these developments
are almost entirely in the user interface area. It is good to see that human­
computer interfaces are catching up to application functionality.

Finally: Two people are most responsible for my reaching print. The
first is my excellent series technical editor, Lance Leventhal. He has
improved my writing skills significantly since my first public attempt, four
books ago. I must also thank Irvin Stafford for suggesting that I collaborate
with him on that first book. Without these two gentlemen, I probably would
never have tried writing professionally.

About the Author
Mr. Schnapp was born in the Bronx, New York. He received a Bachelor's
degree from Queens College, City University of New York, and a Master's
degree in Computer Science from Princeton University. He makes his home
in San Diego, where he works as a systems programmer. Interested in science
fiction, aerospace, and microcomputers, Mr. Schnapp welcomes any
comments or suggestions via the publisher or Compuserve. His Compuserve
address is 74736,2125.

xv

Macintosh
Graphics in
Modula-2

chapter one

Introduction
to Modula-2

FUNDAMENTAL FEATURES OF MODULA-2

Modula-2 (or just Modula, as we will generally refer to it) is a relatively new
computer language that is well suited to writing large programs. Developed
by Niklaus Wirth (the designer of Pascal), it is similar to Pascal in many
respects. That is, it has such features as:

• Typing of variables. You must declare each variable to be of a certain
type, such as REAL, INTEGER, CHARACTER, etc.

• Structured control using IF ... THEN ... ELSE ... END conditional state­
ments, WHILE ... DO ... END and REPEAT ... UNTIL loops, etc.

• Block structure that allows each statement to be replaced by an entire
sequence of statements without any effect on the overall flow of con­
trol.

• Heavy reliance on procedures and functions that are referred to by
name.

"Why, then," you may ask, "do we need still another language?" In prac­
tice, Modula's major advantage over Pascal is its implementation of separately
compilable modules. To comply with the aims of modular programming,
these modules should export (make externally available) logically related
data types, functions, and procedures. In accordance with the information­
hiding principle, all the details of the implementation of a module can be
hidden inside it.

1

2 Introduction to Modula-2 Chap. 1

The reasons for this approach are obvious. Changes, corrections, and up­
dates should apply to a single module. Other modules should not require any
changes. Consider the following examples:

1) Suppose you have a graphics package with a central menu of functions
(e.g., load figure, create figure, save figure, rotate figure). A revision of
the menu module to allow additional functions (e.g., move figure, ex­
pand figure) should have no effect on the existing functions. Similarly,
changes in the order of functions in the menu should have no effect on
the execution of the functions at lower levels.

2) Suppose you have developed a mailing label management program. Now
the Postal Service offers you a discount to sort your mailings using a
new zip code format. You should only have to change the module that
defines the record format, including the zip code, and enter the new
data. Your sorting program need not know the zip code format.

3) Suppose you have a presentation graphics package that creates slides
and transparencies. Changes in the number and type of printers and
plotters allowed should affect only the printing or plotting modules,
not the function menus or drawing modules. Similarly, the addition of
a communication capability for obtaining figures from remote sources
or transmitting output for remote production should have no effect on
existing modules, except for certain menus.

Allowing separate compilation greatly simplifies changes and improve­
ments in large programs. This feature allows you to recompile one module
that has changed, link it to the others in the system, and run the package.
You do not have to recompile everything, a job that generally takes a long
time with programs that have thousands of lines. Separate compilation also
allows you to correct an error without recompiling an entire program.

The author assumes that the reader is familiar with Pascal and data
structuring techniques. This section discusses the significant differences be­
tween Pascal and Modula-2.

Modules

Modula's major improvement on Pascal is the module. Modules can provide
functions that are entirely independent of the programs that use them. For
example, consider a Pascal fragment that implements a simple stack, as in
Listing 1-1.

Fundamental Features of Modula-2

c:onst

var

Stac:kMax = 200;

StackArray: arrayC1 •• Stac:kMaxJ of integer;
Stac:kTop: integer1

procedure Stackinit1
begin

Stac:kTopa=O
end; <procedure St111c:k Ini U

procedure PushOnStac:~: < Value: integer > 1
begin

if StackTop >= Stac:kMaK
then Error< 'Stack overflow' >
else begin

StackTop:=succ< StackTop >1
StackArrayCStackTopl1•Value

end {if StackTop ••• else begin>
end; <procedure PushOnStac:k)

procedure PopFromStilck(var Value: int111ger >1
begin

if StackTop <"' O
then Error< 'Stack underflow' >
else begin

Value1=StackArrayCStackTopl1
StackTop1•pred(StackTop >

end {if StackTop ••• elsa begin}
end1 <procedure PopFromStac:k>

Listing 1-1: Pascal stack implementation.

3

This example permits a program to store integers on the stack with PushOn­
Stack, and retrieve them with PopFromStack. To use these procedures, the
programmer must:

• Call Stacklnit before invoking any other stack operation. This ensures
the proper initialization of StackTop.

• Never manipulate StackArray or StackTop except through these three
procedures. Otherwise, someone may modify the structures incorrectly.
Moreover, you may eventually want to change the implementation of
the stack. For example, you might change it to a linked-list or other im­
plementation, for efficiency reasons.

Note that some may find it tempting to save execution time by using Stack­
Array[StackTop] to read the top of the stack without erasing it.

Who cares? The problem is that a change in the stack implementation

4 Introduction to Modula-2 Chap. 1

could change how StackTop is used. Writing correct programs is difficult
enough without having to remember all the rules for each piece of code.
Ideally, you should be able to derive the largest part of a program from pre­
viously written code.

A Modula implementation of the same data structure might look like
Listing 1-2. The last three lines of the example are SimpleStack's initializa­
tion block. Modula guarantees that this block will be executed upon startup.
That means we can guarantee that the stack will be initialized before anyone
can use it. Furthermore, only PushOnStack and PopFromStack are "visible"
outside module SimpleStack, since they are the only items EXPORTed. Out­
side the module, you cannot reference SimpleStack's internal variables, such
as stack Top.

MODULE SimpleStaclq
IMPORT Error-g
EXPORT PushOnStack, PopFromStack1

CONST
stackMaK "' 200;

VAR
stackArray1 ARRAYCl •• stackMaKJ OF INTEGER;
stackTop: INTEGERJ

PROCEDURE PushOnStadc < value1 INTEGER >;
BEGIN

IF stackTop >• stackMax
THEN Error·< 'Stack ~iv•rfl ciw · >
ELSE

stackTop1~stackTop+11

stackArrayCstackTopJ1•value
END <IF stackTop}

END PushOnStack1

PROCEDURE PopFromStack< VAR valuer INTEGER >1
BEGIN

IF stackTop <= 0
THEN Error< 'Stack underflow' >
ELSE

value1=stackArrayCstackTopJ1
stackTopi=stackTop-1

END <IF stackTop)
END PopFromStack1

BEGIN
stackTop1=0

END SimpleStack

Listing 1-2: Modula-2 stack implementation.

Separate Compilation

An important adjunct to the module concept is the idea of separate compila­
tion. Separate compilation means that you can construct a program from seg­
ments of code that have been compiled at different times. This capability is
not a new development. Languages like FORTRAN and COBOL permit a

Fundamental Features of Modula-2 5

form of separate compilation, as do some Pascal extensions. There is a signi­
ficant difference between these sorts of separate compilation and that pro­
vided by Modula. In other languages, you must precisely declare the types of
any externally defined identifiers you will use. If you err in your definition,
the compiler cannot detect it. This typically results in a kind of error that is
very difficult and time-consuming to diagnose.

Modula, on the other hand, remembers the type of every exported iden­
tifier. It can therefore check for proper usage of such identifiers in other rou­
tines.

Listing 1-3 contains a definition module for a separately compiled stack
implementation. This module permits you to create and use any number of
stacks. It illustrates another unique feature of Modula-2: opaque type export.
NicerStack exports a type called Stack. You may, after importing Stack from
this module, declare variables and parameters, etc., of this type. However,
you cannot directly manipulate the data structure used to implement a Stack.
This structure is invisible because its type was not contained in the definition
module. Stack's type is, of course, declared in NicerStack's implementation
module.

The implementor can change the structure of such a type. As long as the
implementation is correct, and the definition module remains the same, any­
one who imports NicerStack need never be aware of the changes.

Type-Checking

DEFINITION MODULE Nicer9tac:k;
EXPORT QUALIFIED Stack, CreateStac:k, Des tr oySta.u:k,

PushOnStack, PopFromStatkl

TYF'E Staick;

PROCEDURE CreaiteStack(VAR theSt01c:k1 Stac:k >1

PROCEDURE DestroyStac:k< VAR lhe8tac:k1 Stack>;

PROCEDURE PushOnStac:k< VAR theStac:k: Stack;
Value: INTEGER >p

PROCEDURE PopFromStack(VAR theStac:k1 Stack;
VAR Value1 INTEGER >1

END NicerBtack.

Listing 1-3: Separately compiled stack definition module.

Modula is a strongly type-checked (or strongly typed) language. That is, every
identifier has a data type (for example, INTEGER, BOOLEAN, or Stack).
The compiler will not perform any automatic type conversions. Strong typ­
ing allows the compiler to check for improper usage of items, such as arith­
metic operations performed on characters.

Sometimes we need to apply an operator to an object of the "wrong"
data type. For example, suppose you need to convert a numeric character to

6 Introduction to Modula-2 Chap. 1

an integer. To do this, you must be able to perform arithmetic operations on
characters. This requires a type conversion function.

Modula permits any data type to be type transferred into any other.
The name of the type transfer function is the same as that of the destination
type (e.g., INTEGER('9')). A type transfer is a conversion without compu­
tation. When you use a type transfer function you make an assumption about
how the data are represented. Type transfers should therefore be reserved
for use in low-level, machine-dependent code.

Program Control Statements

Modula's program control statements (CASE, IF, FOR, WHILE, and RE­
PEAT) differ somewhat from Pascal's. One change is that you need no longer
use BEGIN and END around groups of statements.

Like BASIC, but unlike Pascal, Modula's FOR statement may include a
step or increment. An example is

FOR i := start TO finish By increment DO

END; (*FOR i*)

The CASE statement now has an ELSE clause. Most Pascal dialects have
already adopted this extension.

A new clause has been added to the IF statement, called ELSIF. This
simply makes a chained set of comparisons easier to read. For example

IF temperature<= 0 THEN WriteString ("Freezing!")

ELSI F temperature< 5 TH EN WriteString ("Frost Alert.")

ELSIF temperature> 40 THEN WriteString ("Too hot!")

ELSE WriteString ("Just right.");

A new structure is LOOP/EXIT. This creates an infinite loop, with an
escape via an EXIT. Service routines in operating systems, such as process
schedulers, often use infinite loops. LOOP can also be used to provide a con­
struct known as a loop and a half. This consists of a LOOP followed by a
statement list, followed by a conditional exit, followed by another statement
list. Listing 1-4 shows an example of a loop and a half. This example prints
commas after all items except the last one.

LOOP (*Present a list of items separated by commas *>

WriteString(listCindeH] >1

IF indeH >= maxindeH THEN EXIT ENDg

indeHa=indeH+1J
WriteString< ·, · >

END1 <* LOOP *l

Listing 1-4: Loop and a half example.

Fundamental Features of Modula-2 7

Warnings

Modula-2 has some problem areas. First, it is case-sensitive. That is, you must
capitalize all identifiers and keywords consistently. The compiler will not
recognize a variable named Stack if you refer to it as STACK or stack. All
keywords and other predefined identifiers are uppercase. Pascal programmers
will undoubtedly make capitalization errors in their first programs.

This book adheres to the following capitalization policy:

• Uppercase letters are used to indicate word boundaries within identifiers
(e.g., pointerToldentifier, PaintOval).

• All variables, constants, and procedure parameters begin with a lower­
case letter (e.g., f, stackArray, inputState).

• All types, procedures, and modules begin with a capital letter (e.g.,
Stack, PushOnStack, SimpleStack).

Another thing to watch: You can either explicitly declare each identifier
you wish to import (e.g., FROM OtherModule IMPORT anldentifier;) or use
qualified references to an imported module (e.g., OtherModule.anldentifier).
This allows you to prevent duplicate identifiers from occurring in the same
scope. Enumerated types are an exception. An imported enumerated type
drags the enumeration identifiers into the scope. For example, consider List­
ing 1-5. The type DeviceStatus contains an identifier named done. Driver's
declaration of the variable named done duplicates DeviceStatus' done. The
compiler will report a "duplicate identifier" error. Yet, it is difficult to spot
the error by inspecting Driver alone.

Here are two suggestions: First, if you encounter a duplicate identifier
error and cannot resolve it, check the constituents of any imported enumer­
ated types. Second, avoid exporting common identifiers, especially in an
enumerated type. For example, you should never export "done" or "error."

DEFINITION MODULE DeviceControl;
EXPORT QUALIFIED DeviceStatus1
TYPE DeviceSt.atus • <done, notDona>

END DevicaControl.

MODULE Oriver1
FROM OeviceControl IMPORT Oevice8tdtus1

VAR done: BOOLEAN; <* Conflict! *>

Listing 1-5: Duplicate identifier done.

8 Introduction to Modula-2 Chap. 1

Pascal was designed to compile in a single pass through the program. Be­
cause of this, Pascal requires you to enter constants, types, variables, and
procedures in that order. It also requires that you define all identifiers before
you reference them. Modula has no such constraint. You may declare any
identifier in any order you like. Don't misuse this ability, though. Your pro­
grams will be easier to read if you define items shortly before you use them.

WHY USE MODULA-2?

Modula is an excellent choice for implementing large projects, for the follow­
ing reasons:

• The definition module allows you to easily specify and partition the
project.

• By specifying types for opaque export, you can conceal the underlying
structures. This restricts module interaction and simplifies debugging.

Modula programs are easier to move to other computers than are those
written in assembly or other languages. In Modula, you can easily restrict
machine-dependent code to a few, well-documented modules.

OVERVIEW OF MACINTOSH MODULA·2

The Macintosh Modula-2 package from Modula Corporation includes the fol­
lowing modules:

• InOut: Contains procedures for reading and writing some basic data
types to the standard input and output devices.

• Terminal: Reads characters from the keyboard and writes characters to
the screen.

• RealinOut: Reads and writes REAL values to the standard input and
output devices.

• Streams: Low-level, character- and word-oriented file input/output.
• Strings: Minimal string manipulation procedures.
• Macinterface: Lowest level, Macintosh-specific input/output procedures.
• Storage: Dynamic memory management procedures. You should not

call these directly. You must, however, import Storage if you perform
dynamic memory allocation with NEW and DISPOSE. This is because
the compiler translates NEW and DISPOSE into Storage procedures.

The above modules come in compiled form only, although the manual con-

Using Macintosh Modula-2 9

tains source listings of their definition modules. You may also access the
Macintosh's built-in graphics (QuickDraw) and user-interface (ToolBox) rou­
tines. Chapter 2 discusses the QuickDraw interface in more detail, and Chap­
ter 4 describes the ToolBox.

The programs included are

• Edit: Lets you view and edit up to eight files at one time. Intended for
program editing, it provides automatic indentation and lets you shift
blocks of test right and left.

• M2 Compiler: Compiles Modula-2 source code into relocatable inter­
mediate code.

• M2 Linker: Gathers compiled modules into an executable program.
• EditDemo.LOD: A sample Modula-2 program implementing a minimal

text editor. It demonstrates techniques for accessing ToolBox routines.
The source code is in EditDemo.MOD.

• GraphicDemo.LOD: Another sample program demonstrating Quick­
Draw routines. The source code is in GraphicDemo.MOD.

USING MACINTOSH MODULA-2

This section describes the mechanics of using Macintosh Modula-2. First, we
will explain how to set up your diskettes for easiest operation. Then we will
go through a sample program development cycle. You will see how to edit,
compile, link, and run a Modula-2 program.

Creating a Disk for Editing

Whether you have one or two drives, you should begin by creating the disk
you will edit with. Proceed as follows.

• Initialize a disk, and name it Modula Edit.
• Copy a standard Macintosh System Folder to Modula Edit. Also make a

copy of Font Mover.
(Shortcut: To copy several icons at once, click the first one, then hold
down a shift key while clicking the rest. Finally, drag a highlighted icon
to the destination diskette. All of the selected icons should move as a
group.)

• Using Font Mover, remove all fonts except Geneva-9 and -12, Monaco-9
and -12, and Chicago-12.

• Remove Font Mover from the disk.
• Open the System Folder. Drag the Note Pad File and Scrapbook File to

the Trash.

10 Introduction to Modula-2 Chap. 1

If you have two floppy drives, skip to the section entitled, "Working
with an Internal plus External Drive." Otherwise, continue with the next sec­
tion.

Working with an Internal Drive Only

Using Modula with only an internal drive can be difficult. You will not be
able to fit everything you need on one disk. Once you have created Modula
Edit, continue as follows.

• Use Disk Copy to duplicate the Modula Edit disk. Change the name of
the copy to Modula Programs.

• Open Modula Programs' System Folder and drag the Imagewriter file to
the Trash. Close System Folder.

• Copy the Edit application from the Modula Master 2 disk to Modula
Edit. Also copy the Code Procs folder (inside the 128K Toolbox folder)
from Modula Master 1 to Modula Edit.

• Copy M2 Compiler, M2 Linker, Compiler Stuff folder, Library folder,
128K SYM & REL folder (inside the 128K Toolbox folder), and Modula
Tools folder from the Modula Master 1 disk to Modula Programs. Use
the shift-click shortcut.

• To gain precious disk space, do the following: Open Modula Programs'
Library folder and then the Lib SYM files folder within. Drag Sound­
Driver .SYM, FileSystem.SYM, Launcher.SYM, Miscellaneous.SYM,
SerialDriver.SYM, and Streams.SYM to the Trash. Close Lib SYM files,
open Lib REL files, and trash the corresponding REL files. We will not
be using these files.

• If you have the Modula Graphics disk that accompanies this book, you
may want to copy some source modules to Modula Edit. You can then
examine and modify them easily. You may also wish to copy some or
all of the files from Modula Graphics SYM & REL.

You now have two bootable disks. Use Modula Edit to edit and store
your source code. It should have approximately 145K bytes available. That is
sufficient for the programs in this book plus some exercises and experiments.
Once you have edited and saved a program on Modula Edit, you must copy
it to the Modula Programs disk. You may then use Modula Programs to com­
pile, link, and run programs. It will have around 90K bytes available.

Working with an Internal Plus External Drive

Operation is much easier with two disk drives. Once you have created the
Modula Edit disk, proceed as follows:

Using Macintosh Modula-2 11

• Copy the Edit application from the Modula Master 2 disk to Modula
Edit. Also copy the Code Procs folder (inside the 128K Toolbox folder)
from Modula Master 1 to Modula Edit.

• Initialize another disk, and name it Modula Programs.
• Copy M2 Compiler, M2 Linker, Compiler Stuff folder, Library folder,

128K SYM & REL folder (inside the 128K Toolbox folder), and Modula
Tools folder from the Modula Master 1 disk to Modula Programs. Use
the shift-click shortcut.

• If you have the Modula Graphics disk that accompanies this book, you
may want to copy some source modules to Modula Edit. You can then
examine and modify them easily. You may also wish to copy some or
all of the files from Modula Graphics SYM & REL.

You will use Modula Edit to boot the Macintosh. You can also edit
Modula-2 source code on this disk. Modula Edit should initially have approxi­
mately 145K bytes available. When you are ready to compile a program, you
will copy it to Modula Programs. Modula Programs should start with around
185K bytes available.

The Development Cycle

Let's now go through a typical Modula-2 program development cycle.

Edit
First, boot your Macintosh with the Modula Edit disk.

Now open the Edit icon. Select New from the File menu. The screen
should look like Figure 1-1. Now enter the program in Listing 1-6. This pro­
gram will simply print a string, wait for you to press a key, print another
string, and then exit.

Note the following about Edit. First, it follows the Macintosh user inter­
face guidelines very closely. It has no special modes, and it allows you to cut,
copy, and paste text from the Edit menu (or by using the standard Command­
X, -C, and -V keys). You can edit text just as with Mac Write. The only miss­
ing function is Undo.

Edit automatically copies the preceding line's indentation to the new
line. You can also shift a selected text block left or right. You do this by
selecting Move Left or Move Right from the Edit menu. You can use the
Align command to shift a selected text block to indent all the lines the same
as the first line. Try these options while entering Sample.

After entering Sample, select Save As ... from the File menu. In the
dialog box, enter Sample.MOD as the file name. The editor should save the
program on the Modula Edit disk.

Now, close the file by clicking its close box or selecting Close Sample.
MOD in the File menu.

12 Introduction to Modula-2

Edit Search Format Font Size Transfer

Untitled

Figure 1-1: The Edit Screen.

MODULE SampleJ

(*

Chapter 1: Demonstrate MacModula development mechanics.
*>

FROM Terminal IMPORT ClearScreen, WriteString,
WriteLn, Read;

VAR
chc CHARI

BEGIN
ClaarScreen1
WriteString("Hello, world. Please press a key." >1
WriteLn!
Read(ch >1
WriteString("Thanks ... Bye, now!">;

END Sample.

Listing 1-6: A sample program.

Chap. 1

Using Macintosh Modula-2 13

Always use a program's module name in its file name. This is especially
important for separately compiled DEFINITION and IMPLEMENTATION
modules. To help you identify source modules, end their file names with
.MOD. That is how we arrive at a file name of Sample.MOD.

Select Open ... in the File menu (see Figure 1-2). Notice that the dialog
boxes only have room for 12or13 characters in file names. You should there­
fore trim your file (and module) names at nine characters or less (not includ­
ing the .MOD extension). You will use the same dialog box to select files to
be compiled and linked. Be sure you can recognize a file name from those
first dozen characters.

Click Cancel in the dialog box, and then select Quit in the File menu.
Macintosh will display the desktop.

Edit Search Format Font Size Transfer

SampleProgram.MOD
MODULE SampleProgram ;

<*

Clear
Write
Write
Read <

GraphicDemo
QuickDrawPro ...
~ I ·1::.i !l!lI'

ToolBoHConsts ...
ToolBoHProcs

~
(Open Modula Edit

Eject

cancel Driue
Q

Wr i te,:=i;;p;;;;:;;:;;;:;;;;r=================~ END Sam~

Figure 1-2 : Edit's Open . . . box.

Compile
Sample.MOD is now ready for compilation. Copy it from the Modula Edit
disk to the Modula Programs disk. Next, on Modula Programs, open the icon
labeled M2 Compiler.

When the compiler has loaded, it begins by displaying a dialog box and
a menu bar with four menus: Apple, File, Options, and Transfer. Close the
dialog box by clicking Cancel.

The Options menu contains two selections-List and Link. List makes

14 Introduction to Modula-2 Chap. 1

the compiler produce a listing file with the extension .LST. Link automati­
cally links your program into an executable file if compilation is successful.

Before starting compilation, select List from the Options menu. If you
open the Options menu again, you will see a check mark next to List. The
check indicates that the option is in effect.

To start compiling, select Open from the File menu. Currently you
should have just one file, Sample.MOD, in the Open dialog box (unless you
copied some programs from the Modula Graphics disk). Click on it, and then
click the Open button. (Shortcut: You can also open Sample.MOD by double­
clicking it.)

The compiler will start doing its job. Since it reads the source program
four times, you can observe its progress by watching it count the passes.

During the first pass, the compiler retrieves files containing an internal
representation of separately compiled, imported modules. It looks for a file
with the name of the imported module, but ending in .SYM (for SYMbols).
The compiler reports having found the symbols of module Terminal in file
Terminal.SYM.

If you typed the program properly, you should see the message ---error
during pass 3. When the compiler finishes, it reactivates the menus. Select
Quit from the File menu and it will exit to the desktop. You should now see
a new file, entitled Sample.LST.

Debugging the Sample Program
So, we have an error. Double click on Sample.LST, and let's figure out what
is wrong. Opening Sample.LST should also invoke Edit. (If you have a single­
drive system, you may have to eject Modula Programs, insert and eject
Modula Edit, and reinsert Modula Programs.) You should see something like
Figure 1-3. Our problem is that we did not declare WriteLn. Since it is ex­
ported from Terminal, the solution is to enter it in the import list on line 7.
Here is how:

• Click Open in the File menu.
• Be sure that the disk you are opening is Modula Programs (it will look

like Modula Pro ... in the dialog box). If not,
Single drive: Click Eject in the dialog box, and insert the Modula Pro­
grams disk. You should now see the correct disk name in the box.
Double drive: Click Drive in the dialog box. This selects the other disk,
and should result in the display of the correct disk name.

• Double-click Sample.MOD.

Note that there are now two windows on the screen. The top one contains
the Sample program, the one beneath contains the program listing. Edit, in
fact, allows you to open up to eight windows simultaneously.

Select the window with the program in it (labeled Sample.MOD). Move

Using Macintosh Modula-2

Search Format Font Size Transfer

Modula Programs:Sample.LST

Modula-2 Compiler for Macintosh R00-00 , Interpreter Version 1.0 .

1 MODULE Sample;
2
3 (>!<

4 Chapter 1: Demons lra le Mac i n tosh Modu I a-2 deve I opmen t me'chan i cs .
5 >!<)

5
7
8
g

10
11
12
13
14
15

FROM Terminal IMPORT ClearScreen, WrileSlring , Read;

VAR
ch: CHAR;

BEGIN
ClearScreen;
WrileSlring< "Hello, wor ld .
Writeln;

A 73

Please press a key . ");

***** <undeclared identifier >

Figure 1-3: Sample compiler listing.

I

15

the cursor to the end of the import line, and click once between Read and
the semicolon. Enter ", WriteLn".

Now click Quit in the File menu. Then Edit asks if you want to save
changes to Sample.MOD. Click Yes. This should return control to the desk­
top. We are ready to compile again.

Compile Again
Double-click M2 Compiler. Then select Open from the File menu. Double
click Sample.MOD again. This time simply select Sample.MOD from the dia­
log box, and compilation should proceed without incident.

When compilation is over, the menu is active once again. Select Quit
from the Files menu.

When control returns to the desktop, you will see a new icon, labeled
Sample.REL. This relocatable code is the fruit of the compiler's labor. The
linker will gather all required REL files into a single executable file.

Notice the appearance of Sample.REL's icon. If you look closely, you
can discern a miniature Modula-2 source module.

Linking
Our Sample program refers to procedures in the module Terminal. Terminal,
in turn, refers to procedures in other modules, etc. The linker collects these
modules and makes all the references point to the right places.

16 Introduction to Modula-2 Chap. 1

Open the icon labeled M2 Linker. When it is ready, you will see a menu
bar similar to the compiler's. Select Open from the File menu. Once again,
we see the Open dialog box. This time, however, it shows several files. Note
that pressing a letter key highlights the first file starting with that letter. For
example, we can select Sample.REL by pressing the s key. We can then open
it by simply pressing the Enter key.

The linker should merrily begin collecting and linking all the modules
Sample requires. It displays the module names as it collects them.

The linker finds the modules it requires by retrieving files named by suf­
fixing the module names with .REL. For example, it looks for compiled
module Terminal in file Terminal.REL.

Final Product--An Executable Program
When the linker finishes, select Quit from the Files menu. Macintosh will put
the desktop back on the screen. There should be yet another icon on the
Modula Programs disk. This one is named Sample.LOO and has the same ap­
pearance as the compiler and linker icons. If you examine it closely, you can
discern that it represents several REL icons packed into one. This is an exe­
cutable program.

To actually execute Sample.LOO, double-click on its icon. You should
briefly see the title Modula-2. This is the name of the interpreter.

The program should print the string we indicated, and wait for you to
press a key. After you press the key, it says goodbye and returns control to
the desktop.

Cleanup
Now that Sample works, it's time to clean up the debris. You should see four
Sample. icons on the Modula Programs disk: Sample.MOD, Sample.LST,
Sample.REL, and Sample.LOO. Copy Sample.MOD (the source code) back
to the Modula Edit disk, and then trash the version on Modula Programs. You
probably won't need Sample.LST (the listing file) again, so throw it in the
Trash. Sample.REL is useful only if you should want to link Sample again.
Trash it, too.

Debugging Run-Time Errors
Some errors that occur while your program is running result in an Alert mes­
sage (e.g., Range violation). Appendix G of the MacModula manual explains
the meaning of the run-time messages. The message also reports the name of
the offending module, and a PC (program counter) offset of the error. You
can use this information to locate the error in the source code: First, note
the name of the module, and the PC offset. Then, generate a compiler listing
file of the named module (by using M2 Compiler's List option). Next, exam­
ine the listing file with Edit. Along the left-hand side of the listing are two
columns of numbers. The leftmost of these is simply a line count. The one
on the right, though, is the PC offset of the first instruction corresponding to

Exercises 17

the source line. The last line with a PC offset less than or equal to the error
offset contains the error.

Shortcuts
Here are a few tips to speed up the development cycle.

You will not often need compiler listing files. When the compiler detects
an error, it automatically displays an abbreviated error listing. It then saves a
copy of the error listing in a .LST file. You can then examine the .LST file
with Edit.

When you compile program (non-DEFINITION or IMPLEMENTATION)
modules, use the automatic link feature: Cancel the initial dialog window
supplied by the compiler. Select Link from the Options menu. Then select
Open from the Files menu and select your program module. After compila­
tion completes successfully, the compiler automatically calls the linker to
produce an executable program.

You can compile or link several modules without returning to the desk­
top. After completing a compilation or link, select M2 Compiler or M2 Linker
from the Transfer menu.

You may also execute Modula programs without first exiting to the
desktop. Simply select Execute from the compiler or linker's Transfer menu.
It will display a dialog box containing the names of executable Modula pro­
grams. Open the program you wish to run.

If you have an external drive, you can avoid much copying by keeping
all your code on the Modula Programs disk. When Modula Programs gets too
full, move some tested source files back to Modula Edit. Alternatively, com­
pile and link source modules from Modula Edit, and copy the desired REL,
SYM, and LOD files to Modula Programs when you are done.

EXERCISES

1-1. Enter, compile, link, and run the program in Listing 1-7.

MODULE auasser1

FROM Terminal IMPORT Clear8craan1
FROM InOut IMPORT Read, Write, Write8tr1ng,

WriteCard, WriteLn1

VAR
guess, guess8ize1 CARDINALI
relatien1 CHAR'

BEGIN
guass1•.!.41
gua111sSiza1-=32;
ClearScrean1
WriteStringC "Cheese a number between 0 and 127." >•
WritaLn1

18

REPEAT
WriteString(

Introduction to Modula-2

"Is your numb•r greater than, l es11 than, or equal to "
>1

WriteCard< guess, 3 >1
WriteString< " <>, <, •>? ">J
Read(relation >1
Write< relation >J
WriteLn1

CASE re la ti on OF
It>"•

"<"•

......

ELSE

INC< guess, guessSiz• lJ
guessSiza1=gue11sSiza DIV 21

DEC< guess, guessBiza)J
guessSize1•guessSize DIV 21

WriteString< "Found it." >t
WriteLnJ
guessSiZllll'"OI

WriteString< 'Pl•a•• enter ">", "<", or "•"· • >1
WriteLn1

END1 <•CASE•>

UNTIL gu•ssSize•01

Wri teLn < "Your number was " >a
WritaCard< guess, 3 >J

END Guass•r.

Listing 1-7: Guess the number.

1-2. Enter, compile, link, and run the greatest common denominator (gcd) program from
Chapter 2 of Wirth's Programming in Modula-2. What do you notice when you try
running it? You can correct the problem with just two extra lines. See Listing 1-6
or 1-7 for a hint.

1-3. The Fibonacci sequence is a list of integers such that each number is equal to the
sum of the previous two numbers. The sequence begins, 1, 1, 2, 3, 5, 8, 13,
Write, run, and test a Modula program that prints the first 20 Fibonacci numbers.

1·4. Sketch out a sample implementation of Listing 1-3. Try one that uses arrays, and
anotb~ that uses linked lists. What difference, if any, will the importer of these im­
plernentiJtjons notice? Think about the capacity of the stack.

BIBLIOGRAPHY

The standard Modula-2 reference work is Programming in Modula-2, by Niklaus Wirth
(Springer-Verlag, 1982).

Some periodicals that follow Modula developments:

Modula-2 News, the quarterly organ of the Modula-2 User's Society (MODUS). Our capi­
talization policy was adapted from an article by Jirka Hoppe in the October 1984
issue. MODUS' address is care of Pacific Systems Group, P.O. Box 51778, Palo Alto,
California 94303. Membership is $20 per year.

Bibliography 19

Journal of Pascal, Ada, and Modula-2. This monthly journal, published by Wiley, costs
$20 per year. Their address is John Wiley and Sons, Subscription Department, 605
Third Avenue, New York, New York 10158.

Structured Language World. Published quarterly by Springer-Verlag, this newsletter costs
$15 per year. Their address is Spring-Verlag, Journal Fulfillment Services, Post Of­
fice Box 2485, Secaucus, New Jersey 07094.

The August 1984 issue of BYTE magazine was devoted to Modula. Two recom­
mended articles are:

History and Goals of Modula-2, by Niklaus Wirth, pages 145-152.
Lilith and Modula-2, by Richard Ohran, pages 181-192.

chapter two

Macintosh Graphics
Facilities

This chapter will acquaint you with the Macintosh's built-in graphics hard­
ware and software. We will also develop some modules of graphics operations
for use in subsequent chapters. You will then use those modules to learn a
few basic graphics techniques.

MACINTOSH GRAPHICS HARDWARE

The Macintosh video display consists of a matrix of 342 rows by 512 columns
of dots (see Figure 2-1). Each dot, or pixel (for picture element), can either
be on (black) or off (white). We call this display a bit-map, since the state of
each pixel (black or white) depends on the state of a corresponding bit in
memory.

Most personal computers have a character-map display consisting of a
matrix of perhaps 24 rows by 80 columns. A memory byte determines what
character is displayed at each matrix coordinate.

A bit-map display provides much higher graphics resolution and flexibil­
ity than does a character-map display. If you can draw something on graph
paper by filling in squares, you can draw it on a bit-mapped display. One dis­
advantage of a bit-map display is that the computer usually must do more
work than with a character-map. For example, using a character-map display,
the processor need change only one byte to print a letter. Using a bit-map
display, the processor must manipulate from tens to hundreds of bits to print
it. Of course, a character-map display cannot produce the wide variety of
forms and shapes that a bit-map display can.

20

A Ouickdraw Module

• I •
I •

Row 341

{Origin (Column 0, Row 0)

Figure 2-1: Macintosh pixel display matrix.

21

Most personal computers allow the user to switch the video display be­
tween bit- and character-map modes. On those computers, bit-map mode is
also called "graphics" mode. That is because you can only display the crudest
sort of graphics on a character-map.

Apple did not include a character-map display on the Macintosh for two
reasons:

• First, the Macintosh's microprocessor, the Motorola 68000, is much
faster and more efficient than previous machines. For example, it can
move 16 bits along its memory path, twice as many as most other com­
puters. Furthermore, the 68000 is, internally, a 32-bit machine-again,
it can process from two to four times as many bits at a time as other
processors.

• Second, Apple's Bill Atkinson wrote a series of routines that rapidly,
flexibly, and efficiently draw characters, lines, and other graphic objects
on a bit-map.

A OUICKDRAW MODULE

Everything you see on the Macintosh display is drawn by QuickDraw. Quick­
Draw consists of a large group of associated procedures. Some of the things
you can do with QuickDraw are:

22 Macintosh Graphics Facilities Chap. 2

• Draw text using any font supplied, in any size, and with any combina­
tion of enhancements (italic, bold, underlined, outlined, or shadowed).

• Draw lines of arbitrary thickness and pattern.
• Draw polygons, rectangles, ovals, segments of ovals (arcs), and round­

cornered rectangles. Each object can be drawn in the following ways:
Border only, with any thickness and pattern.
Filled with a pattern.
We can also erase an object by painting over it with the background
pattern.
Inverted (reversed).

• Record a sequence of drawing operations and execute it upon demand.
• Copy or shift a rectangular section of the display.
• Perform any operation relative to, and restricted to an arbitrary window

boundary.

Macintosh Modula-2 provides access to most QuickDraw functions. Appendix
A summarizes most of the available procedures. We will learn to use many of
them. Of course, this book cannot cover QuickDraw in complete detail. To
learn more about it, read Apple's reference book, Inside Macintosh.

Module Name: MiniOD

Techniques Demonstrated:
Module MiniQD (for Miniature QuickDraw) provides a subset of the Quick­
Draw procedures sufficient for many tasks. It exports procedures for

• Turning the mouse cursor on and off.
• Setting graphic pen size, pattern, and screen interaction mode.
• Drawing with and moving the graphic pen.
• Performing arithmetic with screen coordinates (points) and rectangles.
• Drawing the borders and interiors of ovals, rectangles, or round-cornered

rectangles.
• Reversing the pixels inside these geometric objects.

Procedure for Using:
Use Edit to enter these modules and put them on the Modula Edit diskette.
Save the MiniQD definition module in a file named MiniQD.DEF. Likewise
save the MiniQD implementation module in a file named MiniQD.MOD.
Then, transfer these files to Modula Programs and compile them. Always
compile definition modules first. You might have to correct typing errors.
After eliminating errors, move the corrected files back to Modula Edit before
removing them from Modula Programs. The result of compiling the definition

A Quickdraw Module 23

module is a file named MiniQD.SYM. Move it into the Lib SYM files folder.
Move MiniQD.REL, the compiled implementation module, into the Lib REL
files folder. You should get in the habit of organizing compiled files after
each compilation.

You will be using MiniQD throughout this book. MiniQD.MOD and
MiniQD.DEF are available on the Modula Graphics disk. When we need addi­
tional procedures from QuickDraw, we will define other modules.

Listing of Definition Module:

DEFINITION MODULE MiniQD1

Chapter 21 QuickDraw Subset -- Th• basics

FROM QuickDrawTypes IMPORT Pattern, Point, Reeta

EXPORT QUALIFIED ObscureCursor, HideCursor, ShowCursor,
PenBize, PenMode, PenPat,
MoveTo, Move, LineTo, Line,
AddPt, BubPt, SetPt, EqualPt,
SetRect, PtinRect, Pt2Rect,
FrameRact, InvartRact, PaintRact,
FrameRoundRect, InvertRoundRect,

PaintRoundRect,
FrameOval, lnvartOval, PaintOval1

PROCEDURE HidaCursor1

PROCEDURE ShowCursor1

PROCEDURE ObscureCursor1

PROCEDURE PenSize Cwidth,height1 INTEBER>1

PROCEDURE PenMode <modal INTEGER> I

PROCEDURE PenPat (pat1 Pattern>1

PROCEDURE MovaTo <h,v1 INTEBER>1

PROCEDURE Move <dh,dv1 INTEBER>1

PROCEDURE LineTo <h,v1 INTEGER>1

PROCEDURE Line (dh,dv1 INTEGER> I

PROCEDURE AddPt Csrc1 Point1 VAR dst1 Point>1

PROCEDURE BubPt Csrc1 Points VAR dst1 Point>1

PROCEDURE SatPt CVAR ptl Points h,v1 INTEGER>•

PROCEDURE EqualPt Cpt1,pt21 Point>• BOOLEAN1

PROCEDURE SatRact <VAR r1 Ract1
left,top,right,bottom1 INTEGIR>1

24 Macintosh Graphics Facilities Chap, 2

PROCEDURE PtlnRec:t <pt1 Point1 ri Rec:t> 1 BOOLEAN1

PROCEDURE Pt2Rect <pt1,pt21 Point1 VAR dstRec:t1 Rec:t>1

PROCEDURE FrameRec:t <r1 Rec:t> 1

PROCEDURE InvertRect (r1 Rect> I

PROCEDURE PaintRec:t <r1 Rec:t> 1

PROCEDURE FrameRoundRec:t <r1 Rec:t1 ovWd,ovHt1 INTEl3ER) I

PROCEDURE PaintRcundRec:t <r1 F<ect1 ovWd,cvHt1 INTEl3ER>1

PROCEDURE InvertRoundRec:t <ra F<ec:t; cvWd,ovHt1 INTEl3ER>1

PROCEDURE FrameOval <r1 Rac:t>t

PROCEDURE PaintOval <r1 Rect>1

PROCEDURE InvertOval <r1 Rect>1

END MiniQD,

Listing of Implementation Module:

IMPLEMENTATION MODULE MiniQD1

Chapter 21 QuickDraw Subaet -- The basics

FROM QuickDrawTypes IMPORT Pattern, Point, Rect1

CONST
ex • ::s:15B1
QuickDraw1MadNum • 21<* Module number of Quic:kDrawl *>

PROCEDURE HideCursar1
CODE CX1 QuickDraw1ModNum1 15 END HideCursor1

PROCEDURE ShawCuraar1
CODE CX1 Quic:kDraw1MadNum1 16 END ShawCuraar1

PROCEDURE Obsc:ureCursar1
CODE CX1 QuickDraw1MadNum1 17 IND ObscureCursor1

PROCEDURE PenSize <width,height1 INTEBER>1
CODE CX1 Quic:kDraw1ModNum1 23 END PenSize1

PROCEDURE PenMada <model INTEBER>1
CODE CX1 Quic:kDraw1MadNum1 24 END PenMad•I

PROCEDURE PenPat Cpat1 Pattern>1
CODE CXJ QuickDraw1MadNum1 2:1 END PenPat1

PROCEDURE MaveTa <h,v1 INTEBER>1
CODE CX1 QuickDraw1MadNum1 27 END MaveT01

PROCEDURE Mave Cdh,dv1 INTEBER>1
CODE CX1 Quic:kDraw1ModNum1 28 END Mave1

PROCEDURE Linero <h,v• INTEBER>1
CODE CX1 QuickDraw1ModNum1 29 END LineT01

A Ouickdraw Module

PROCEDURE Line (dh,dv1 INTE9ER>a
CODE CXJ QuiekDraw1ModNumt 30 END Lina1

PROCEDURE AddPt (ere• Point1 VAR d•t• Point> a
CODE CXt QuiekDraw1ModNumt 43 END AddPtt

PROCEDURE SubPt <sre1 Pointa VAR dst1 Point> a
CODE CX1 QuiekDraw1ModNump 44 END SubPt1

PROCEDURE SetPt <VAR pt1 Pointt h,v1 INTEGER>1
CODE CXt QuiekDraw1ModNum1 45 END SetPtt

PROCEDURE EqualPt <pt1,pt21 Point) I BOOLEANt
CODE CX1 QuiekDraw1ModNum1 46 END EqualPt1

PROCEDURE SetReet <VAR r1 Rect1 left,top,
right,bottom1 INTEGER>1

CODE CX1 QuiekDrawlModNum1 51 END SetReet1

PROCEDURE PtinReet <pt1 Point1 r1 Rect>1 SOOLEAN1
CODE CX1 QuickDraw1ModNum1 5• END PtlnRectt

PROCEDURE Pt2Rect <pt1 1 pt21 Pointt VAR d•tRect1 Rect>t
CODE CX1 QuickDrawlModNum1 60 END Pt2Recta

PROCEDURE FrameRect <r1 Rect>1
CODE CXt QuickDrawlModNum1 61 END FrameRect1

PROCEDURE InvertRect <r1 Rect>t
CODE CX1 QuickDrawlModNum1 64 END InvertRect1

PROCEDURE PaintRect <r1 Rect>1
CODE CXt QuickDraw1ModNum1 62 END PaintRect1

PROCEDURE FrameRoundRect <r1 Rect1 ovWd,ovHt1 INTEGER> I
CODE CX1 QuickDraw1ModNum1 66 END FrameRoundRecta

PROCEDURE PaintRoundReet <r1 Rect1 ovWd,ovHt1 INTEGER> I
CODE CXa QuickDrawlModNum1 67 END PaintRoundRect1

PROCEDURE InvertRoundRect <r1 Rect1 ovWd,ovHt1 INTEBER>1
CODE CX1 QuickDraw1ModNum1 6• .END InvertRoundRect1

PROCEDURE FrameOval <r1 Rect>1
CODE CX1 QuickDraw1ModNump 71 END Frameovalt

PROCEDURE PaintOval <r1 Rect>1
CODE CXt QulckDraw1ModNumt 72 END PaintOval1

PROCEDURE InvertOval <r1 Rect>1
CODE CXt QuickDraw1ModNumt 74 END Invertovalt

END MiniQD.

Description:

25

A compiled version of QuickDrawTypes' definition module resides on your
Modula Programs diskette. MiniQD uses the following types from it:

• TYPE Pattern: a design contained in an 8-pixel by 8-pixel square.
• TYPE Point: a location in two-dimensional graphic space defined by

two integer coordinates, one horizontal and the other vertical.

26 Macintosh Graphics Facilities Chap. 2

• TYPE Rect: a rectangular area that can be viewed as a list of four inte­
gers, defining the top, left, bottom, and right bounds. It can also be con­
sidered as two comer Points, the upper left and lower right.

MiniQD exports the following procedures:

• PROCEDURE HideCursor: Makes the mouse cursor invisible. It also
decrements a "cursor level" counter. The Macintosh still keeps track of
the cursor's position and will display the cursor as soon as it is made visi­
ble again.

• PROCEDURE ShowCursor: Increments the "cursor level" counter. If
the counter reaches zero, it makes the cursor visible again. In other
words, QuickDraw keeps track of how many times HideCursor and
ShowCursor have been invoked. This allows nesting of routines that
temporarily tum off the cursor while they work.

• PROCEDURE ObscureCursor: Makes the cursor invisible until the user
moves the mouse.

• PROCEDURE PenSize: Sets the width and height of the graphics pen.
Initially, these are both set to one. Figure 2-2 illustrates how

Quick-Draw interprets the graphic pen's size. Whenyoudrawalineorthe
border of a shape, QuickDraw moves the pen along the prescribed path.

It paints every pixel covered by the pen during its travels. For ex­
ample, a square pen paints lines of equal width, no matter the angle of
its path.

A pen that is more wide than long draws thick vertical lines and
thin horizontal lines.

Figure 2-2: Graphic pen size and shape.

• PROCEDURE PenPat: Sets the pen's drawing pattern. When you draw
with the pen, this pattern is transferred to the pixels the pen touches.

A Quickdraw Module 27

For example, if the pattern is solid black, the pen draws solid black
strokes. If, however, the pattern is a checkerboard, it draws gray strokes
instead.

• PROCEDURE PenMode: Defines a kind of "electronic ink" to use. That
is, the pen mode determines how the pen interacts with pixels in the bit­
map. The allowed values, which may be imported from QuickDraw­
Types, are (see Figure 2-3):

patCopy: The initial pen mode in which overwritten pixels are
completely obscured. Think of it as laying down an opaque adhe­
sive tape, painted with the current pen pattern.
patOr: Makes overwritten pixels that were black show through
white space in the pen pattern. Think of it as laying down a clear
adhesive tape painted with the pen pattern.
patXor: A black pixel in the pattern inverts (reverses) the overwrit­
ten pixel's value. White pixels in the pattern do not change the
previous value.
patBic: Makes black pixels in the pattern change destination pixels
to white.
notPatCopy, notPatOr, notPatXor, and notPatBic: Use an inverted
version of the pattern but are otherwise identical to the correspond­
ing uninverted modes.

• PROCEDURE PenPat: Sets the pattern with which the pen draws. The
initial pattern is solid black.

• PROCEDURE MoveTo: Sets the pen position.
• PROCEDURE Move: Moves the pen relative to its current position. For

example, if the pen is at (3, 5), then Move(-2, 3) moves it left 2 pixels
and down 3, to coordinates (1, 8).

Pen pattern

•
Overwritten pat tern

•
Resulting pattern when using pen mode ...

pat.Copy patXor patOr patBic

• • • • notPatCopy notPatXor notPatOr notPatBic

• • • •
Figure 2-3: Pen modes.

28 Macintosh Graphics Facilities Chap. 2

• PROCEDURE LineTo: Moves the pen to the given coordinates, drawing
a line. LineTo uses the current pen shape, pattern, and mode. Remem­
ber that the pen hangs down and to the right of the pen position. The
line is thus not centered over the path between the two points. Instead,
its upper left border rests on that path.

• PROCEDURE Line: Moves the pen relative to its original coordinates,
drawing a line.

• PROCEDURE SetPt: Returns a Point given a horizontal and a vertical
coordinate.

• PROCEDURE AddPt: Given two points, computes their (vector) sum.
For example, the sum of (2, 3) and (-1, 2) is (1, 5). It replaces the
second point with the result.

• PROCEDURE SubPt: Computes the vector difference of two points and
replaces the second point with the result. For example, the difference
of (2, 3) and (-1, 2) is (3, 1).

• PROCEDURE EqualPt: Compares two points. It returns true if they are
identical.

• PROCEDURE SetRect: Given four boundary coordinates, returns a
value of type Rect, representing a rectangle.

• PROCEDURE Pt2Rect: Given two points, returns a value of type Rect,
representing the smallest rectangle enclosing those points.

• PROCEDURE PtinRect: Returns true only if the supplied point lies in­
side the rectangle.

• PROCEDURE FrameRect: Draws a hollow rectangle, in the current pen
pattern, shape, and mode. The rectangle is drawn just inside the bound­
aries defined by the Rect argument.

• PROCEDURE InvertRect: Reverses all pixels inside a rectangle.
• PROCEDURE PaintRect: Fills the interior of a rectangle with the cur­

rent pen pattern.
• PROCEDURE FrameRoundRect: Like FrameRect, but has two addi­

tional parameters that define the width and height of an oval to be used
in the corners of the rectangle. FrameRoundRect draws the border of
the round-cornered rectangle using the current pen shape, pattern, and
mode.

• PROCEDURE InvertRoundRect: Reverses all pixels inside a round­
cornered rectangle.

• PROCEDURE PaintRoundRect: Fills the interior of a round-cornered
rectangle with the current pen pattern.

• PROCEDURE FrameOval: Draws the boundary of the oval that fits just
inside a rectangle. If the rectangle is a square, the oval will be a circle.
The border is drawn in the current pen shape, pattern, and mode.

• PROCEDURE InvertOval: Reverses all pixels inside an oval.

Using MiniOD 29

• PROCEDURE PaintOval: Fills the interior of an oval with the current
pen pattern.

Notes:
While the definition module looks normal, the implementation module may
seem strange. You may have noticed that the procedure bodies are all identi­
cal, except for a single number. The explanation goes like this:

Since the QuickDraw procedures are implemented in machine code, we
cannot call them directly. Instead, the Modula-2 interpreter must use a
special instruction called CX (Call eXternal procedure). The CODE procedures
invoke CX and tell it which built-in routine to call.

USING MINIOD

To illustrate the use of MiniQD, let us examine module Concentric. This pro­
gram draws a series of concentrically located and progressively smaller squares
and circles.

Module Name: Concentric

Techniques Demonstrated:

• Use of SetRect to define rectangular boundaries.
• Use of FrameRect and FrameOval to draw shape boundaries.

PI ease press a key, , ,

Figure 2-4: Concentric.

30 Macintosh Graphics Facilities Chap. 2

Procedure for Using:
Enter Concentric into a file called Concentric.MOD. Copy it to Modula Pro­
grams. Then compile and link Concentric.

When you run Concentric (by double-clicking the Concentric.LOO icon),
it clears the screen and draws the design (see Figure 2-4). It then waits for
you to press a key before terminating.

Listing of Module:

MODULE Concentric1

Chapter 21 Draw a set of concentric circles
and rectangles

FROM QuickDrawTypes
FROM InOut
FROM Terminal
FROM MiniQD

IMPORT Pattern, Rect1
IMPORT Read, WriteString1
IMPORT ClearScreen1
IMPORT SetRect,

CONST
delta•20J

VAR
ri Rect1

FrameRec~, FrameOval1

topLeft, bottomRight1 INTEBER1
ch1 CHARI

BEGIN
topLeft1•0J
bottomRight1•3001
ClearScreen1

(* Draw a square and a circle *>
WHILE topLef t < bottomRight DO

SetRectCr, topLeft+106, topLeft+21,
bottomRight+l06, bottomRight+21>1

FrameRectCr>1

FrameOvalCr>1

topLeft1=topLeft+delta1
bottomRight1•bottomRight-delta1

END1 <*WHILE*>

WriteString< "Please press a k•Y•••" >i
Read(ch >1 C* Wait for user to pr••• a key*>

END Concentric.

Using MiniOD 31

Description:
• VAR r: Rect used to draw the rectangles and ovals.
• VAR topLeft, bottomRight: topLeft is the coordinate of the rectangle's

upper left-hand comer. For example, if topLeft is 10, the coordinates
of the upper left comer are (10, 10). Similarly, bottomRight contains
the coordinates of the lower right-hand corner.

• VAR ch: Character returned by the Read procedure from InOut.
• MODULE Concentric:

Concentric first initializes the topLeft and bottomRight coordin­
ates to form a large square. Then it clears the screen.
Until the comers of the rectangle meet, the program repeats the
following steps:

1) Calculate the comers of the rectangle from topLeft and bot­
tomRight. We want to center it. Since we are drawing a 300-
by-300-pixel square centered on a 512-by-342-pixel screen,
this involves adding ((512 - 300)/2), or 106, to the horizontal
coordinates. We add ((342 - 300)/2), or 21, to the vertical
coordinates.

2) Use FrameRect to draw the rectangle.
3) Use FrameOval to draw an oval contained in the rectangle.
4) Decrease the size of the rectangle by a fixed amount, delta.

The final lines wait for the user to press a key before terminating.

Modifications:
To see what round comer rectangles look like, add a call to FrameRound­
Rect. The modification should look like

FROM MiniQD IMPORT SetRect, FrameRoundRect,

FrameRect (r);
FrameRoundRect (r, 16, 16);
FrameOval (r);

Decrease the comer diameters from 16 to perhaps 8, to obtain sharper cor­
ners. Increase the diameters for softer comers. Notice how the comers dis­
tort when you use unequal horizontal and vertical diameters.

Use PenSize to change the pen's shape. For example,

FROM MiniQD IMPORT SetRect, PenSize,

bottomRight :=300;
PenSize (4, 2);
ClearScreen;

32 Macintosh Graphics Facilities Chap. 2

Notice that the vertical lines become thicker in comparison to the horizontal
lines. Concentric will slow down as you increase the size of the graphic pen.

Observe how the reversed shapes look by substituting InvertRect, lnvert­
RoundRect, and InvertOval for FrameRect, FrameRoundRect, and Frame­
Oval.

By drawing two offset groups of concentric circles, we can obtain an in­
teresting Moire pattern (see Figure 2-5). Try this modification:

CONST
delta=5;

WHILE topLeft < bottomRight DO
SetRect (r, topLeft+103, topLeft+21,

bottomRight+103, bottomRight+21);
FrameOval (r);

SetRect (r, topLeft+llO, topLeft+21,
bottomRight+llO, bottomRight+21);

FrameOval (r);

topLeft :=topLeft+delta;

Please press a key.,,

Figure 2-5: Moire pattern.

Patterns 33

In this modification, we separated the centers of the circles by 7 pixels hori­
zontally. Experiment with different separation distances and delta values be­
tween 2 and 10.

PATTERNS

Concentric draws shapes outlined in solid black. QuickDraw can also outline
or fill shapes with patterns, like a checkerboard or a crosshatch. Patterns can
thus make a graphics drawing more interesting and attractive. We can also
use patterns to enhance the capabilities of the Macintosh display. For exam­
ple, the Macintosh display can only present pixels in two tones, black and
white. By using appropriate patterns, though, we can draw shades of gray.

We did not use patterns in Concentric, because QuickDraw doesn't sup­
ply any that are ready-to-use. We will now investigate how to create patterns.

Module Name: Patterns

Techniques Demonstrated:

• Construction and export of patterns.

Procedure for Using:
Enter Patterns' definition module into a file, Patterns.DEF. Similarly, enter
Patterns' implementation module into Patterns.MOD. Compile these modules
in the same way as MiniQD. Like MiniQD, Patterns is not a program; instead,
it exports graphics patterns for use in other modules.

Listing of Definition Module:

DEFINITION MODULE Pattern&J

Chapter 21 EKport a few basic patt•rns.

FROM QuickDrawTypas IMPORT Pattern1

EXPORT QUALIFIED pDiag,
pLGray,
pGray,
pDGray,
pBlack,
pWhite1

VAR

<* Diagonal lines *>
<* Light Gray *>
<* Medium Gray *>
<* Dark Gray *>
<* Black *>
<* White *>

pDiag, pLGray, pGray, pDGray, pBlack, pWhit•• Pattern,

END Patterns.

34 Macintosh Graphics Facilities Chap. 2

Listing of Implementation Module:

IMPLEMENTATION MODULE Patterns1

Chapter 21 EKpart a few basic patterns.

FROM QuickDrawTypes IMPORT Pattern1
FROM Macinterface IMPORT whita, black, gray,

ltBray, dkBray1
FROM Patterns IMPORT pDiag, pLBray, pSray, pDSray,

pBlack, pWhite1

<* Initialize the pattern variables. *>
PROCEDURE InitPatterns1
VAR

IndeKI CARDINAL•
BEBIN

pWhite1•Pattern< white >1
pLBray1•Pattern< ltBray >1
pSray1•Pattern< gray >1
pDBray1•Pattern< dkBray >1
pBlack1•Pattern< black >1

pDiagCOl1• CHAR<l>1
FDR IndeK1•1 TD 7 DD

pDiagCindeKl1•CHAR< 2*INTEBER<pDiagCindeK-1l) >1
END1 <*FOR*>

END InitPatterns1

BEBIN
InitPatterns1

END Patterns.

Description:

• VAR pBlack: Solid black pattern.
• VAR pWhite: Solid white pattern.
• VAR pLGray: Open dot pattern that appears light gray.
• VAR pGray: Checkboard pattern that looks gray.
• VAR pDGray: Tight checkerboard that appears dark gray.
• VAR pDiag: Diagonal stripe from the top right to the lower left-hand

comer.
• PROCEDURE InitPattems: Initializes the six pattern variables. Macin­

tosh supplies five of these. We create the last, pDiag.

Notes:
QuickDrawTypes defines a Pattern as an ARRAY[0 .. 7] OF CHAR. That is,
it is an array of eight 8-bit bytes (see Figure 2-6). The first (zero) byte in the
pattern represents the topmost 8 pixels. The most significant bit in each byte
represents the leftmost pixel. For example, the first byte of pDiag, represent-

Patterns 35

Herringbone Pottern Somple

0 ~M=~

1 128+8 = 136

2 128+8 = 136

3 64+4 =68

4 32+2 = 34

5 16+1 = 17

6 16+1 = 17

7 32+2 = 34

Figure 2-6: Patterns.

ing the top row of the pattern, contains the value 1 (setting only the right­
most pixel). The byte representing the next row has value 2, then 4, 8, etc.

You must use the CHAR type transfer function when initializing the
elements of a Pattern variable. The reason is that a Pattern's elements are
binary numbers, whereas CHARs hold character codes.

The Patterns module exports variables. This is not good Modula-2 pro­
gramming form, since there is no way to prevent another module from modi­
fying an imported variable. A better solution would be to provide a function
procedure that returns the value of a variable. Unfortunately, Modula-2 does
not permit function procedures to return structured (array or record) values.

Modifications:
You may add patterns to this module. For example, you can add the pattern
described in Figure 2-6, or the following crosshatch:

pCrosshatch[O] := CHAR(129);
pCrosshatch[l] := CHAR(66);
pCrosshatch[2] := CHAR(36);
pCrosshatch [3] : = CHAR(24);
pCrosshatch[4] := CHAR(24);
pCrosshatch[5] := CHAR(36);
pCrosshatch[6] := CHAR(66);
pCrosshatch[7] := CHAR(129);

Just remember that each one occupies 8 bytes of memory. Also remem­
ber that whenever you recompile a definition module, you must recompile
all modules that import it.

36 Macintosh Graphics Facilities Chap. 2

Using Patterns

Now that we have a module that exports patterns, let's try using them. Fill­
Concen is a modified version of Concentric that uses patterns.

Module Name FillConcen

Techniques Demonstrated:

• Using patterns.
• Using PenPat, PaintRect, and PaintOval to draw filled shapes.

Procedure for Using:
Enter the module into file FillConcen.MOD. Compile, link, and run it. Fill­
Concen draws a design similar to Concentric, filling shapes with two different
patterns (see Figure 2-7).

Please press

Figure 2-7: Display produced by FillConcen.

Patterns

Listing of Module:

MODULE FillConcen1

Chapter 21 Draw a set of filled concentric circle•
and rectcangle•

FROM QuickDrawTypes
FROM Pcatterns

IMPORT Pattern, Rect1
IMPORT pDiag, p0ray, pBlack;
IMPORf Read, WriteStringg
IMPORT ClearScreeni

FROM InOut
FROM Terminal
FROM MiniQD IMPORT SetRact, PenPat,

PaintRect, PaintOval,
FrameRect, FrameOval1

CONST
delta=201

VAR
r1 Rect1
topLeft, bottomRight1 INTEGER1
cha CHARI

BEGIN
topLefta=01
bottomRight1•3001

ClearScraen;
WHILE topLef t < bottomRight DO

SetRect<r, topLeft+100, topLeft+20,
bottomRight+100, bottomRight+20>1

PenPat(pDiag >1
PaintRect<r>1
PenPat(pBlack >1
FrameRect<r>1

PenPat< pGray >1
PaintOval <r>1
PenPat< pBlack >1
FrameOval <r> 1

topLeft1•topLeft+delta1
bottomRight1•bottomRight-delta1

END1 <*WHILE*>

Wr i teStri ng ("Pl ease press a key ••• " > 1
Read< ch > 1

END FillConcen.

Description:

37

FillConcen is like Concentric except that it manipulates the graphics pen's
pattern. Before painting a rectangle, we set the pattern to pDiag. Since Paint­
Rect does not draw a border around the rectangle, FillConcen calls Frame-

38 Macintosh Graphics Facilities Chap. 2

Rect to draw the border. Note that we must change the pen pattern to pBlack
before framing the rectangle. Otherwise, the border would have the same pat­
tern as the interior, and you couldn't see it. FillConcen draws the oval simi­
larly, except that it uses a gray pattern instead of diagonal lines.

Notes:
Note the difference between the hollow shapes in Figure 2-4 and the filled
ones in Figure 2-7. The hollow figures look like lines in a two-dimensional
plane. The patterns in the filled objects result in an optical illusion. Do you
see it? The shapes look like solid objects, stacked on top of each other. The
patterns imply a continuous surface. The illusion is even stronger if you
watch FillConcen create the display.

LINES AND TEXT

Module Name: Draw

Techniques Demonstrated:

• Use of PenSize, ObscureCursor, MoveTo, and LineTo.
• Use of files for data storage and retrieval.
• Positioning and printing text strings.

Procedure for Using:
Enter, compile, and link Draw in the usual way. Draw reads a list of coordin­
ates from a data file, and draws lines connecting each point to the next.

The data file has a simple format. Enter each point with the horizontal
coordinate first. Separate the numbers with spaces or carriage returns. Don't
worry about overrunning lines. Two negative coordinates terminate the list.
Listing 2-1 contains a sample set of data. This file is available on Modula
Graphics as USAMap.DAT. USAMap.DAT draws the border of the contigu­
ous United States (see Figure 2-8). Place your data file on the Modula Pro­
grams disk.

Draw first asks for the data file's name. Enter it and press return. If

24 10 38 11 40 2 144 18 240 27 300 29
284 48 357 49 336 53 326 96 333 104 339 96
337 68 353 51 362 59 372 83 366 98 382 99
403 79 403 71 432 44 463 27 467 4 485 3
497 21 475 53 481 67 455 94 471 80 454 SB
447 134 454 153 414 209 414 234 437 270 432 291
396 268 386 238 335 241 342 2:59 276 257 256 269
257 302 239 300 209 259 199 257 192 267 181 263
1:57 230 140 230 139 230 75 213 48 208 47 196
21 177 3 101 21 46 23 10 -1 -1

Listing 2-1: USAMap.DAT, a sample data file.

Lines and Text

Finished drawing.
Please press a key ...

Figure 2-8: Result of running Draw with USAMap.DAT.

39

Draw cannot locate the file, it will report the problem and prompt you again.
Note that if your data file's name ends in .DAT, you need enter only the part
up to and including the period. Draw will supply the DAT.

Be careful here. Although Modula is case-sensitive, the file system is not.
It regards "Draw", "DRAW", and "draw" as the same name. Note also that
you are not restricted to data files on the Modula Programs disk. To access a
file on a different disk, precede the name with the disk name followed by a
colon (" :"). An example is Modula Edit:Other.DAT. There is a catch,
though. The disk must already be mounted in one of the drives.

Special Cases:
The only easy way to read or write a file in Macintosh Modula is with the In­
Out module. The Openlnput procedure requires you to enter a file name
from the keyboard. It does not permit the program to supply a file name,
nor can it display a file directory, as the Open dialog can. Furthermore,
Openlnput will neither proceed nor abort if you cannot supply a valid file
name. Your only recourse is to interrupt the computer with the programmer's
switch, or turn it off and then back on. The moral here is to be sure you
know the data file's name before starting the program.

You should also enter the data file carefully. If the program should
somehow read past the last data point, it will continue attempting to read
from the end of the file until you stop it. Do not enter extraneous characters

40 Macintosh Graphics Facilities Chap. 2

into the data file, and check to see that the horizontal and vertical coordin­
ates match up. If the program locks up, you will have to interrupt the com­
puter or turn it off.

Listing of Module:

MODULE Draw1

Chapter 21 Draw a sequence cf lines

FROM Terminal IMPORT
FROM InOut IMPORT

FROM MiniQD IMPORT

VAR h, VI INTEGER!
chi CHARI

BEGIN
ClearScreen1
ObscureCurscr1
PenSize< 2, 2 >1

ClaarScreen1
Opaninput, Clcseinput,
WriteString, WriteLn, Readint,
McveTc, LineTc, PenSize,
Ob111cureCurscr1

Open Input< "OAT") 1 <* Open data file *>

ClearScreen1
Read Int< h > 1 <* Read first cccrdinate *>
Raadint< v >1
McveTc< h, v >1 <* ••. and move pen to it*>

REPEAT <* Read and draw remaining *>
Readint< h >1 <* coordinates *>
Readlnt< v >1
IF <h>•O> ANO <v>•O> THEN LineTo< h, v >1 EN01

UNTIL <h<O> OR <v<0>1

Closeinput1 <* Close data file *>
MoveTo< O, 300 >1
WriteString< "Finiehed drawing." >1

WriteLn1
WriteString("Please press a key ••• " >1
Read< ch >;

END Draw.

Description:

• VAR h, v: Contain the most recently read horizontal and vertical coor­
dinate.

• VAR ch: Receives the user's final keystroke.
• MODULE Draw:

The module first clears the screen. Draw calls ObscureCursor sim­
ply so you can see how it works. We thicken the border by setting
the pen size to two pixels square.

Lines and Text 41

Calling Openinput redirects the standard input from the key­
board to the file indicated by the user.
Draw calls ClearScreen again to erase the Openinput conversation.

It then reads the first pair of coordinates, and moves the
graphics pen there.

Until it finds the last data point (indicated by a negative co­
ordinate value), Draw:

Reads the next coordinate pair.
Draws a line from the last position to the new one.

Call Closelnput to set the standard input back to the keyboard.
Position the graphics pen near the lower left-hand corner, and

print a closing message.
Await the user's final keystroke before terminating the program.

Modifications:
You should try creating a few data files. Most public-access bulletin board
systems abound with pictures (usually pin-ups) in a similar format.

We calculated the data points for the map by a manual digitization
process. The steps involved were:

1) Trace the map on a piece of graph paper. Consider the origin (0, 0) to
be in the top left-hand corner. The horizontal coordinate values increase
to the right, and vertical coordinate values increase downward.

2) Mark and note the critical boundary points. You want the connected
lines to look somewhat like the original.

3) Map the graph paper coordinates of each boundary point onto the
screen coordinates:

a. Note the maximum and minimum vertical coordinates. Call them
maxV and minV, respectively. Do the same for the horizontal co­
ordinates, maxH and minH.

b. Find the limiting dimension. That is, if you fit the image on the
Macintosh's screen, which edge will touch first, the sides or the top
and bottom? The aspect ratio (width divided by height) of the
Macintosh screen is 512/342, or 1.497. The image aspect ratio is
calculated by

image aspect ratio= (maxH - minH)/(max V - minV)

If the image has an aspect ratio greather than 1.497, it is horizon­
tally limited. Otherwise, it is vertically limited.

c. Decide how much of the screen you want the digitized image to
occupy. Compute this in terms of pixels in the limiting dimension.
We will call this number screenSpan.

d. Compute the span of the image on the graph paper, in the limited

42 Macintosh Graphics Facilities Chap. 2

dimension (maxH - minH, or maxV - minV). Call this digitized­
Span.

e. Compute the conversion ratio:

convRatio = screenSpan/digitizedSpan

f. Decide where to place the object. That is, decide on the digitized
origin in screen coordinates. Call these values scrOriginH and scr­
Origin V.

g. Finally, compute the mapped version of each point:

screenH = (digitizedH - minH)*convRatio + scrOriginH

screenV = (digitizedV - minV)*convRatio + scrOriginV

4) Enter the mapped points into the data file.

The U.S. map in Figure 2-8 suggests a modification. It is a simple matter
to follow the line-drawing data with text. Listing 2-2 contains this modifica­
tion to Draw.MOD. Listing 2-3 is the extra data to add to the end of USA­
Map.DAT. Figure 2-9 shows the result.

San Francisco, CA

Finished drawing.
Please press a key ...

* Boulder, CO

Figure 2-9: USAMap.DAT with text.

MODULE Draw1

Chapter 21 Draw a seqLtence of lines and text

*'
FROM Terminal IMPORT
FROM lnClut IMPORT

ClearSc:reen;
Openinput, Closeinput, termCH,
WriteStrinq, WriteLn, Write,
ReadString, Readlnt, Readp
MoveTo, Linero, PenSize,
Obsc:unitC1.1rsor 1

FROM Mini lW IMPORT

VAR h, v1 INTEGER!
c:h1 CHAR;
str: ARRAYC0 .. 601 OF CHAR;

BEGIN
Clear Screen;
Ob sc: ur eCur sor ;
PenSize< 2, 2 >;

Open Input< "DAT" > 1 <* Open data file *>

Cl ear Ser een;
Readint< h >;
Readlnt< v >;
MoveTo< h, v >;

<* Read first coordinate *>

<* •.• and move pen to it*>

REPEAT <* Read and draw remaining *>
Readint< h >; <* coordinates*>
Read Int< v > p
IF <h>•Ol AND <v>•O> THEN LineTo< h, v >; END1

UNTIL <h<O> OR <v<Ol;

REPEAT <* Read coordinates *>
<* and print strings *> Readint< h >1

R1uadint < v > 1
IF <h>=O> AND
THEN

<v>=O>

Move To< h, v l 1
REPEAT <* Read strings until non-blank *>

ReadString< str)J <* termination character•>
WriteString(str >1
Write< " " >I

UNTIL termCH <> " "
ENDp

UNTIL <h<O> OR <v<Olg

Closeinput1 <* Close data file *>
MoveTo< o, 300 >1
Write8tring< "Finished drawing.")J

WriteLn1
Writ•String("Pleas• press a key,,," >1
Read< ch) ;

END Draw.

Listing 2-2: Draw with an addition that places text on the screen.

-1
50
11
406
182
-1

-1
208
134
91
130
-1

* San Diego, CA
* San Francisco, CA
N.Y.C.*
* Boulder, CO

Listing 2-3: Additional data for modified Draw.

43

44 Macintosh Graphics Facilities Chap. 2

The modified Draw imports the following new items from lnOut:

• VAR termCH: the character that terminates an item. For example, we
separate integer data points with space characters in our data file. Thus
termCH usually contains a space character.

• PROCEDURE ReadString: Reads a string from the standard input file.
ReadString stops at the first space or Return character.

The new part of Draw contains a doubly nested loop. This loop reads
and prints strings and spaces from the data file until it encounters a delimiter
(termCH) that is not a space. In other words, it continues printing until Read­
String encounters the end of a line.

Notes:
Now we have seen that the graphics pen position affects where WriteString
prints. In fact, the pen position affects nearly all Write ... operations.

A TURTLE-GRAPHICS MODULE

QuickDraw lets us move the pen and draw lines between coordinates. There
is another way to draw lines that we will find useful.

The graphics pen has three attributes: pattern, size, and mode. An ap­
proach called turtle-graphics adds a new attribute, direction. In addition to
the QuickDraw pen commands, you can command the pen to

• TurnTo an absolute angle (say, to face North).
• TurnBy an amount (turn left 90°).
• Move forward a given distance.
• Lower the pen (PenDown) or raise it (PenUp). If the pen is lowered,

moving it leaves a trail.

Turtle-graphics gets its name from a squat drawing device that had a pen
attached near the center. Because of its appearance, this device was colloqui­
ally called a turtle. The Logo language is the best-known use of turtle-graphics.

Module Name: Turtle

Techniques Demonstrated:

• Accessing imported objects via qualified references.
• Use of MathLibl functions sin, cos, entier, and real.

A Turtle-Graphics Module 45

Procedure for Using:
Enter and compile the definition and implementation modules as usual. Place
the .SYM and .REL files on the Modula Programs disk.

This module uses angles specified in degrees rather than in radians. A
direction of 0° is to the right. Positive angles proceed as on a compass (that
is, clockwise). Thus, 90° is straight down, 180° is to the left, and 270° is
straight up. You specify distances in pixels.

After initialization, the turtle pen begins at coordinates (0, 0). The pen
is up and the turtle is facing right (0°).

Listing of Definition Module:

DEFINITION MODULE Turtle;

Chapter 21 Turtle-graphics module

EXPORT QUALIFIED TurnTo, TurnBy, MoveTo, Move,
Penllp, PenDown;

PROCEDURE T1.1r·nTo (angle: INTEGER) .
'

PROCEDURE TurnByC angle: INTEGEf~) ;

PROCEDURE Move T cJ < :~ , v: REAL. > ;

PROCEDURE Move(dist.ance1 REAL>;

PROCEDURE F'enUp;

PROCEDURE PenDown;

END Tl1rtle.

Listing of Implementation Module:

IMPLEMENTATION MODULE Turtle!

Chapter 21 T~trtle-graphics module

IMPORT MiniGID1
FROM MathLibl IMPORT sin, cos, entier, real!
FROM MathConst IMPORT RadConst;

VAR
currentAngle1 INTEGER;
currentX, currentY1 REAL;
penPosition1 (up, down);

PROCEDURE TurnTo< angle1 INTEGER >;
BEGIN

currentAngle1=angle MOD 360 ;
IF currentAngle<O
THEN currentAngle1=360+currentAngle1
END; <*IF*>

END TurnTo;

46 Macintosh Graphics Facilities Chap. 2

PROCEDURE TurnBy(angle: INTEGER>;
BEGIN

TurnTo(c~1rrentAngle+angla) I
END TurnBy1

PROCEDURE MoveTo(K, y1 REAL >1
BEGIN

currentX1•KI
c:urrentY1=y1
IF penPosition = up
THEN MiniQD,MoveTo(entier<K>, entier(y)
ELSE MiniQD.LineTo< entier(x), entier(y)
END1 <*IF*>

END Move'To1

PROCEDURE Move(distance1 REAL >;
VAR

realAngle1 REALI
BEGIN

realAngle1=real<currentAngle>1
MoveTo(c:urrentX+distanc:e*cos<RadCon!St*realAngle),

currentY+distanc:e*sin(RadConst*realAngle) >
END Move1

PROCEDURE F'enUp'
BEGIN

penPosition1=up;
END Pen1Jp1

PROCEDURE F'enDown I
BEGIN

penPosition1•down;
END F'enDown;

BEGIN
PenUp1
Move'To(o.o, O.O > 1 (* Top left-hand corner *)
TurnTo(0 >; <* Fac:e right*>

END Turtle.

Description:

• CONST RadConst: Number of radians in a degree.
• VAR currentAngle: The direction in which the pen is currently facing.
• VAR currentX, currentY: Current pen position, maintained as real

values to minimize the accumulation of roundoff errors.
• VAR penPosition: Indicates whether the pen is down (pen draws a line

as it moves) or up (no drawing).
• PROCEDURE TurnTo: Sets the absolute heading of the pen. Remember

that 0° is to the right, 90° is down, etc.
• PROCEDURE TurnBy: Turns the pen by the supplied angle. Positive

angles turn the pen clockwise.
• PROCEDURE MoveTo: Moves the pen. If the pen is down, draws a line

to the new position.

A Turtle-Graphics Module 47

• PROCEDURE Move: Moves the pen in the current direction for the sup­
plied distance. A line is drawn only if the pen is down.

• PROCEDUREs PenUp and PenDown: Raise or lower the pen, respec­
tively.

Notes:
Turtle exports a procedure named MoveTo. To implement it, we need a pro­
cedure from MiniQD, also named MoveTo. If we used the usual import tech­
nique, these names would conflict. We can avoid this by using qualified im­
port, in which we reference an imported identifier by preceding its name with
its module's name. Thus Turtle refers to MiniQD's MoveTo as "MiniQD.Move­
To".

The Move procedure must calculate the destination position from the
distance to move and the current coordinates and direction. To compute the
new horizontal and vertical position, you must first break the motion vector
(i.e., direction and distance) into its horizontal and vertical components.
Given a vector with angle theta and length d

• The horizontal component is d cos(theta).
• The vertical component is d sin(theta).

Once you calculate the components, you need only add them to the current
coordinates.

TurnTo prevents overflow by restricting the value of currentAngle to
between 0 and 359. It is simple to map values greater than 359 into the de­
sired range. You need only compute the modulus of the excessive value and
360. Modula supplies an operator named MOD for just this purpose. Negative
values create a more difficult problem. The MOD operator actually supplies
the remainder from a division operation. In fact, MOD is defined as

x MOD y = x - (x DIV y)*Y

This means that if xis less than zero, the result of MOD will be also. It turns
out that if MOD is less than zero, we can produce the desired effect by adding
y to the result. Thus, TurnTo adds 360 to the result of the MOD operation, if
that result is less than zero.

Using Turtle

Turtle graphics makes it easy to draw geometric shapes and designs. An inter­
esting class of shape is the fractal.

A common closed curve, like a circle or a pentagon, has a simple, one­
dimensional boundary. That is, if you examine the boundary at sufficiently

48 Macintosh Graphics Facilities Chap. 2

high magnification, it looks like a line. That is not true of most naturally oc­
curring shapes. Consider the coastline of an island, for example. You can
examine the boundary in increasing detail, from a map to an aerial photo­
graph, to the beach, to the grains of sand, to the silica crystals, etc. No matter
what the magnification, a coastline never looks like a simple line. It is a
fractal.

A subset of fractals, known as Koch curves, are easy to draw with our
Turtle module.

Module Name: Boxes

Techniques Demonstrated:

• Use of Turtle module.
• Drawing Koch curves.

Procedure for Using:
Enter, compile, link, and run Boxes as usual.

Boxes draws a figure (see Figure 2-10) and waits for you to press a key.

Square Fractal

Press the Space

Figure 2-10: Fractal curve.

A Turtle-Graphics Module

Listing of Module:

MODULE Boxes;

Chapter 2: Draw a fractal shape, based on squares.

FROM Terminal IMPORT ClearScreen1
FROM In Out IMPORT WriteString, WriteLn, Read;
FROM MiniGID IMPORT PenSi ze1
FROM Turtlet IMPORT F'enUp, PenDown, MoveTo, Move,

TurnTo, Turn8y1

VAR
maxRecursion, index1 CARDINAL;
chi CHAR;

PROCEDURE ZigLine< turnAngle1 INTEGER; dist; REALI
recurseLevel1 CARDINAL >1

BEGIN
IF recurseLevel<1
THEN

TurnBy< turnAngle >1
Move< dist) I

ELSE
di111t1=di111t/3.01
DEC(recurseLevel >;
ZigLine< turnAngle, dist, recurseLevel >1
ZigLine< 90, dist, recurseLevel >;
ZigLine< -90, dist, recurselevel >1
ZigLine< -90, dist, recurseLevel >1
ZigLine(90, dist, recurseLevel >1

END1 <*IF*>
END ZigLine1

BEGIN
ClearScreen1
PenUp1
MoveTo< 215.o, 162.0 >1
WriteString< "Square Fractal" >1 WriteLn1

McveTo< 175.0, 252.0 >1
TurnTo< 90 >1
PenDown1

FOR maxRecursicn1=0 TO 4 DO
PenSize< 5-maxRecursion, 5-maxRecursicn >1

FOR indetx1=0 TO 3 DO
ZigLine< -90, 162.0, maxRecursion >;

END1 <*FDR*> I

END 1 <*FOR*)

PenUpJ
MoveTo< 195.0, 200.0) 1
Wri teStri ng < "Press the Space Bar" > 1
Read< ch >1

END Boxes.

49

50 Macintosh Graphics Facilities Chap. 2

Description:

• VAR maxRecursion: Maximum depth of recursion to be permitted on a
given iteration of drawing.

• PROCEDURE ZigLine: Draws a curve. A recursive routine (i.e., it can
call itself).

If the recursion level has reached zero, simply turn by turnAngle
degrees, and draw a line of the given length (dist).

Otherwise:
Decrement the recursion level by one.
Break the given line into smaller curves and call ZigLine to

draw them. Figure 2-11 illustrates how ZigLine parti­
tions the line.

turnAng(Se ~~~~~~~~~· -··· dist-----

• (o)

turn Angle

(b)

Figure 2-11: Line partitioning technique used by Boxes.

• MODULE Boxes:
First, it clears the screen and prints the program title.
Next. it sets the starting position and heading, and lowers the pen.
Then it progressively increases the maximum recursion permitted

(until it reaches the resolution of the screen):
Boxes sets the size of the pen based on the recursion level.
Then it uses ZigLine to draw the four sides of a square.

Finally, it prints a closing message, and waits for the user to press
a key.

Modifications:
A Koch curve is defined by two shapes: an initiator and a generator. A gener­
ator is a broken line consisting of several equal-length line segments (like Fig­
ure 2-11). An initiator is a simple closed polygon (Boxes uses a square). You

A Turtle-Graphics Module 51

construct the Koch curve by replacing each straight segment of the initiator
with a generator. Then you recursively replace each straight segment of the
generator with a suitably reduced generator.

In the case of Boxes, ZigLine defines the generator's shape. It divides
the line into five segments (see Figure 2-11). Each segment is one-third the
requested distance in length. All the turns made by ZigLine are right angles:
Right 90°, left, left again, and finally right.

We can use the same technique to draw a snowflakelike curve (see Fig­
ure 2-12). Listing 2-4 shows the modified version of Boxes.

Notes:

Snowflake Fractal

Press the Space Bar

Figure 2-12: Snowflake fractal.

Fractal curves have unusual mathematical properties. First, the boundary of a
fractal looks similar at any magnification (a property known as self-similarity).
Second, a fractal's boundary is so complex that its dimensionality is some­
where between one and two. That is, its dimension is somewhere between
being a line and a plane. Fractals derive their name from this property of frac­
tional dimension.

Actually, the curves we have drawn in this section are only approxima­
tions to fractals. We would have to draw them to infinite recursion depth to
achieve true fractional dimension.

We touch on Koch fractals because they make it easy to draw complex

52 Macintosh Graphics Facilities

MODULE Boxes; <* Flake.MOD *)

(*
Chapter 21 Draw a fractal shaped like a snowflake.

FROM Terminal IMPORT ClearScreen1
FROM InOut IMPORT WriteString, WriteLn, Read1
FROM MiniQD IMPORT F•enSize1
FROM Turtle IMPORT PenUp, PenDown, MoveTo, Movar,

Turn To, TurnBy1

VAR
maxRecursion, index1 CARDINALI
chi CHARI

PROCEDURE ZigLineC turnAngle1 INTEGER1 dist1 REALI
recurseLevel1 CARDINAL l;

BEGIN
IF recuraeLevel<:1
THEN

TurnByC turnAngla l;
Mova C di at l ;

ELSE
distamdist/3.0t
DECC recuraeLeval >1
ZigLineC turnAngla, diet, recurseLevel >1
ZigLineC 60, dist, recurseLevel >1
ZigLineC-120, dist, recurseLevel >1
ZigLina< 60, dist, recureeLevel >1

END1 <*IF*l
END ZigLine1

BEGIN
ClearScreen1
PenUpJ
MoveToC 205.0, 210.0 >1
WriteStringC "Snowflake Fractal" >1

MoveToC 121.0, 253.0 >1
Turn To C 120) I
PenDown1

FOR maxRecursion1=0 TO 4 DO
PenSizeC 5-maxRecursion, 5-maxRecursion >1

FOR indax1mO TO 2 DO
ZigL.ineC -120, 270.0, maxRacursion >1

END; C*F'DR*) I

PenLJpg
Moveroc 195.0, 230.0 >1
WriteString< "Preas the Space Bar• >;
Read< ch);

END Boxes.

Listing 2-4: Snowflake curve.

Chap. 2

Bibliography 53

and interesting shapes. Other kinds of fractals, explored in the reference ma­
terial, are useful for modeling natural shapes and processes. For example,
moviemakers have begun to use fractal approximations in computer-generated
scenes, such as imaginary planets.

EXERCISES

2-1. All our programs, so far, use the ClearScreen procedure, imported from Terminal.
Write and test your own version of ClearScreen, using only MiniQD and Patterns.

2-2. Create a new pattern, consisting of a diagonal bar, four pixels thick. Draw a tall,
skinny, rectangle filled with the new pattern.
How might you turn this striped rectangle into an animated barber pole? [Hint:
You can manipulate the pattern. This effect should be reminiscent of selection high­
lighting used in MacPaint.

2-3. The Patterns module exports several variables. As we mentioned, that is not good
practice. Devise a way to use a function procedure to transfer a pattern out of a
module.

Suggest two modifications to the language that would make the export of vari­
ables less dangerous, or would lessen the need to export variables.

2-4. Write a program that allows you to enter a pattern from the keyboard and then dis­
plays a rectangle filled with the pattern. You will need Readlnt or ReadHex from
module InOut. You will also need the built-in CHAR type transfer function.

2-5. Modify Draw to accept an arbitrarily scaled set of digitized points. It should then
map those points onto the Macintosh display, in the manner described, before draw­
ing them.

2-6. The Sierpinski curve, presented in Wirth's Programming in Modula-2, is a kind of
Koch curve. Modify the fractal program to display this curve.

BIBLIOGRAPHY

The definitive volume about all Macintosh built-in software is Inside Macintosh (1984,
Apple Computer Incorporated). Inside Macintosh is intended as a reference work, not a
tutorial.

For more information on LOGO and turtle-graphics, see Learning With LOGO by
D. H. Watt (BYTE/McGraw-Hill, 1983) or Apple LOGO by H. Abelson (BYTE/McGraw­
Hill, 1982).

Benoit Mandelbrot is the authority on fractals. For more information on the subject,
see his book, The Fractal Geometry of Nature (W. H. Freeman and Company, 1982).

"Plants, Fractals, and Formal Languages," by Alvy Ray Smith, in the ACM SIG­
GRAPH 1984 Conference Proceedings, describes an extension of fractal theory for com­
puter graphics.

chapter three

Animation
and Simulation

Animation is a set of techniques for making an object appear to move. It is
frequently used in creating cartoons, video games, educational materials, and
simulations.

Animation is simple, in principle. Consider, for example, how one ani­
mates a pen-and-ink drawing. Take a small pad of paper. Let each sheet repre­
sent a period of time, say between one-tenth and one-sixtieth of a second.
Draw an object such as a box or triangle on the first sheet. Then draw the
same object on the next sheet, but displaced slightly to the right. Now keep
drawing the object on successive sheets, showing its position in each time
frame. Finally, riffle the pad to display the drawings in time order. The ob­
ject appears to move. The idea of showing an object in successive positions is
all there is to animation. Filmmakers use a more sophisticated technique in
commercial work, but the idea is the same.

Animation typically involves a great deal of labor. Film animations, for
example, consist of 15 to 24 drawings (frames) for each second of action.

A computer like the Macintosh can do much of this work with ease. The
method is the same as with paper drawings. You draw the object to be ani­
mated. Then you erase it and draw it again in a new position. This chapter
will discuss several computer animation techniques.

MOVING SIMPLE ELEMENTS

Let's start by animating a simple object. Module Sweep draws a line and
moves it right.

54

Moving Simple Elements 55

Module Name: Sweep

Techniques Demonstrated:

• Use of TickCount procedure to synchronize animation with the video
display.

• Use of internal modules.
• Use of PenMode and patXor mode to draw and erase objects.
• Control of animation speed.

Procedure for Using:
Enter, compile, and link Sweep as usual. When you run it, it will ask you to
enter the velocity of the line in pixels per second. Try a value between 5 and
400. When the line reaches the right edge, the program will ask for a new
velocity value. When you have seen enough, enter a value of 0 to stop the
program.

Listing of Module:

MODULE Sweep;

Chapter 31 Animate a simple object

FROM InOut IMPORT Readint, Read,
Write9tring 1 WriteLn;

FROM Terminal IMPORT ClearScreen1
FROM MiniQD IMPORT PenMode, PanSize,

MoveTo, LineTop
FROM QuickDrawTypes IMPORT patXor1

CONST
startH = 501 endH "' 4501 <* bounds oof line's motion *>
startV = 150; andV = 2501 <* vertical bounds of line •>

VAR
piKPerSecond1 INTE0ERp
pi K9um1 INTEGER;
currentH1 INTEGER;

MODULE Timer; <* Synchronize with video clock *>
EXPORT WaitForTick, ticksPerSecondp

CONST
ex = 355B;
EventManagerModNum = 81
ticksParSacond • 601

PROCEDURE TickCountC>1 REALp (*Long Cardinal *>
CODE CX1 EvantManagerModNum1 11 END TickCount1

VAR
latestTick1 REALI

56

PROCEDURE WaitFcrTick1
VAR

newTick1 REALI
BEGIN

REPEAT
newTick1=TickCcunt<>1

UNTIL newTick<>latestTick1
latestTick1•newTick1
END WaitFcrTick1

BEGIN <* Initialize latestTick *>
latestTick1•TickCcunt<>1

END Timer;

BEGIN
ClearScreen1
PenMcde< patXcr >1
PenSize< 2, 1 >1

LOOP
Clear6creen1

Animation and Simulation

WriteString("Animate a line across the screen" >1
WriteLnp
WriteString< "Hew -fa.st should it move <piK/s•c>? ") 1
Rea.dint< pixPerSeccnd >1

IF pixPerSecond <= 0 THEN EXIT1 END1

pixSum1=0p
currentH1=sta.rtH1
McveTo(currentH, startV >; (* Draw -first line *)
LineTo< currentH, endV >1

REPEAT <* Animation leap *)
WaitFcrTick1
INC< pixSum, pixPerSeccnd >1

IF pixSum >~ ticksPerSecond
THEN <* Move line *>

LineTo< currentH, startV >1 (*Erase old line*>
INC< currentH, pixSum DIV ticksPerSeccnd >1
MoveTo< currentH, sta.rtV >1 <*Draw new line*>
LineTo< currentH, endV >1
pixSum1=pixSum MOD ticksPerSeccnd1

END; <*IF pixSum*I

UNTIL currentH)E andH1
END I <*LOOP* I

Clear6creen1
WriteString< "Program ends." >;

END Sweep.

Chap.3

Description:

• CONST startH, endH: Line's initial and final horizontal coordinates.
• CONST startV, endV: Line's top and bottom vertical coordinates.
• VAR pixPerSecond: Number of pixels the line will move per second.
• VAR pixSum: Number of pixels to move per tick, multiplied by the

number of ticks per second.

Moving Simple Elements 57

• VAR currentH: Horizontal coordinate of the line.
• MODULE Timer: Keeps time using Macintosh's video clock.

CONST ticksPerSecond: Number of times the video clock changes
per second.
PROCEDURE TickCount: Returns the total number of video
clock ticks since you turned the Macintosh on.
VAR latestTick: Previous tick count.
PROCEDURE WaitForTick: Polls (repeatedly reads) the video
clock counter until it changes.

• MODULE Sweep:
Begins by clearing the screen, setting the pen mode to patXor, and

setting the pen size to 2 pixels wide by 1 pixel high.
Next, Sweep begins a loop. Each iteration moves the line. The

tasks involved are:
Clear the screen and ask the user to supply the velocity value.
Exit if the velocity is zero or less.
Initialize the current pixel count and horizontal position.
Draw the starting line, leaving the graphics pen at (start, endv).
Keep moving the line by the amount in pixelSum until it

reaches endH. To move the line, we do the following:
Before drawing anything, the program uses WaitForTick

to wait for the next tick of the video clock.
Next, Sweep adds the line velocity to the pixel motion

counter.
If the counter's value exceeds the number of video ticks

per second, move the line. Otherwise, wait for the
next tick.

Redraw the line in patXor mode to erase it. After calcu­
lating the number of pixels to move, Sweep draws
the new line.

Finally, update the pixel motion counter.

Modifications:
Draw the line longer (for example, startV=lOO and endV=300) or thicker (try
PenSize(4,1)) to see what happens. You should also try drawing the line with
a pattern. For example, import Patterns' pDiag and set the pattern with Pen­
Pat.

Notes:
The patXor pen mode is especially useful in animation. Drawing an object in
this mode makes it appear as usual. Redrawing it makes the original object
disappear, since the patXor mode reverses the pixels. We will use this property
in the next program, too.

Sweep produces smooth animation, especially if you set the velocity to

58 Animation and Simulation Chap. 3

a small multiple or a large factor of 60. For example, velocities of 20, 30, 60,
120, and 180 produce exceptionally smooth motion. Now try numbers that
are just 1 or 2 away from these values. If you watch carefully, the line makes
an occasional jump or pause. This is caused by the screen's finite resolution.

The key to producing smooth animation is to move an object precisely
the same distance in each time period. When you animate objects on paper,
you have nearly infinite resolution. That is, you can move an object by what­
ever amount you want. The position on a computer display is restricted to
integral multiples of the pixel width and height. This means that computer­
animated motion is smooth only if the distance moved during each time
period is an integral multiple of the pixel size. Otherwise, the distances will
vary somewhat, only averaging out at the desired velocity. The resulting mo­
tion is not smooth.

Run Sweep again, setting the velocity to 60. Now, move the cursor
ahead of the line, but in its path. When the line nears the cursor, you should
see some strange effects. First, as the line nears the cursor, the cursor should
begin to flicker or disappear entirely. It reappears when the line passes it.
Why? Before QuickDraw writes on the screen, it checks whether it will be
drawing near the cursor. If so, it turns the cursor off until it has finished
drawing. After all, the cursor is simply a pattern drawn on the display. To
avoid overwriting it, QuickDraw must turn the cursor off whenever there is a
chance of a conflict.

The previous experiment illustrates another artifact. You may notice
that the top edge of the line began to break up or fade. This also happens if
you move the mouse during the animation. Two factors are responsible for
this. First, Macintosh must redraw the cursor every time you move it, up to
60 times each second. Doing this delays your program a little (typically 1 or
2 milliseconds). Second, Macintosh's video circuitry paints the bit-map onto
the screen, from top to bottom, every 16.67 milliseconds.

Normally, the program has erased the old line and redrawn a new one
before Macintosh paints the area of the screen you are using. If your program
is delayed by a few milliseconds, though, the situation changes. At about the
time the circuitry begins painting the top of the line, the program is in­
between erasing and redrawing. By the time the video has progressed past
vertical coordinate 200 (approximately), the program has finished redrawing
the line. That's why the top of the line sometimes disappears.

SIMULATION OF MOTION

Sweep animated a simple object with simple motion. Animating more com­
plex objects requires more sophistication. Note that we have begun to see
some timing problems even while moving the line.

Simulation of Motion 59

The simple Timer module internal to Sweep defined a fixed, 16.67 milli­
second animation interval. If MacModula-2 programs executed directly on the
68000, that interval would be adequate. Since the programs are interpreted,
though, we need more leeway. Let us now create a more flexible animation
timer.

Module Name: Timer

Procedure for Using:
Compile and link the definition and implementation modules as before.
When you import Timer, call SetTicks to indicate how many animation inter­
vals you want per second (we call this the animation frequency). This fre­
quency must be a factor of 60. That is, it must divide 60 evenly; some ac­
ceptable values are 60, 30, 20, 15, 12, and 10. These frequencies correspond
to animation intervals of l, 2, 3, 4, 5, or 6 video timer ticks. The higher the
animation frequency, the smoother the animation. In fact, animations will
appear very jerky if you use a frequency value below 20. Initially, the pro­
gram sets the animation frequency to 60.

Once the frequency has been set, calling WaitForTick will keep checking
the clock until the end of the prescribed interval. How do you choose the
proper frequency? Start with the highest possible value (60). Observe the re­
sult. If the motion appears uneven, the program may be taking too much
time and therefore missing clock ticks. You should then try the next lower
frequency, and continue the process until the motion becomes smooth.

Special Cases:
If you don't follow the guidelines when you choose an animation frequency,
Timer will simply use the next lower one. You may notice, though, that ani­
mation velocities will be incorrect. That is because your program is using a
different frequency than Timer.

Listing of Definition Module:

DEFINITION MODULE Ti mer I

Chapter 3: Synchronize with video clock

EXPORf QUALIFIED WaitForTick, SetTicks;

PROCEDURE WaitForTick;

PROCEDURE Set Ticks (ticksF'erSecond: CARDINAL JI

END Timer.

60 Animation and Simulation Chap. 3

Listing of Implementation Module:

Description:

IMPLEMENTATION MODULE Timer1

Chapter 3: Synchronize with video clock

CONST
ex .. 355Bg
EventManagerModNum • B1

PROCEDURE TickCount<>1 REALI <*Long Cardinal *>
CODE CXg EventManagerModNum1 11 END TickCountg

VAR
latestTick1 REALI
tickinterval1 CARDINALI

PROCEDURE WaitForTick1
VAR

newTick: REALI
tickCount1 CARDINALI

BEGIN
FOR tickCount1=1 TO tickinterval DO

REPEAT
newTick1=TickCount<>1

UNTIL newTick i latestTick1
latestTick1=newTick1

END1 <•FOR•>
END WaitForTickg

PROCEDURE SetTicks< frequency1 CARDINAL >1
BEGIN

IF frequency• o THEN tickinterval1=60
ELSIF frequency > 60 THEN tickinterval1•1
ELSE tickinterval1=60 DIV frequencyg
END1 <•IF•>

END SetTicks1

BEGIN <• Initialize latestTick •>
latastTick1•TickCount<>1
Set Ticks (6011

END Timer,

• PROCEDURE WaitForTick: Polls the timer until it has changed tick­
Interval times.

• PROCEDURE SetTicks: Computes the animation interval from the fre­
quency.

• MODULE Timer: Begins by initializing latestTick and setting the ani­
mation frequency to 60.

Simulation

Simulation techniques go hand-in-hand with animation. We want an animated
object's motion to appear realistic. That means its motion should resemble
that of a real object.

Simulation of Motion 61

For example, consider a ball dropped from a height. Its velocity is not
constant, since gravity accelerates it. That is, it moves faster as it falls.

Modeling an accelerating object is relatively easy. At any given moment,
we can characterize it with three quantities: position, velocity, and accelera­
tion. How do we model these?

We already know how to model position. We store it as a pair of coor­
dinates, the horizontal coordinate positionH and the vertical coordinate posi­
tion V. We also need two variables to use in averaging animated motion: posi­
tionSumH and positionSumV. We will use these as we used pixSum in Sweep.

Next comes velocity. Let us divide it also into horizontal and vertical
components. Call the horizontal velocity velocityH, and the vertical velocity
velocityV. We will store velocities in units of pixels per second.

Finally, we have acceleration. This is the rate of change of velocity.
Gravity affects only vertical velocity, so we need consider only vertical accel­
eration. We will call it accelV and keep it in units of pixels per second per
animation interval. That is, it contains the amount to add to the vertical
velocity following each animation step.

Let's see how these three attributes are related. During each animation
interval, we must compute the object's new coordinates (position) and veloc­
ities. We need not recompute gravitational acceleration, since it is a constant.
The position computation looks like this:

new positionH = positionH + ((positionSumH + velocityH) DIV frequency)

new positionV = positionV + ((positionSumV + velocityV) DIV frequency)

We must not forget to update the accumulators that indicate when the ob­
ject has moved:

new positionSumH = (positionSumH + velocityH) MOD frequency

new positionSumV = (positionSumV + velocityV) MOD frequency

Now we need only calculate the new vertical velocity:

new velocityV = velocityV + accelV

Horizontal velocity, of course, remains constant.
Thus, we now know the equations of free-falling motion. Let's build a

module that performs the computations. We will make it general enough to
include horizontal acceleration, also.

Module Name: Motion

Techniques Demonstrated:

• Applying the equations of motion to an animated object.
• Opaque type export to make objects available to other modules while

restricting access to their implementations.

62 Animation and Simulation Chap. 3

• Use of NEW and DISPOSE to create objects and dispose of them when
they are no longer needed.

Procedure for Using:
Compile the definition and implementation modules. Install their SYM and
REL files on the Modula Programs disk.

The first procedure a program must call is the new version of SetTicks,
since Motion must know the animation frequency. You need no longer call
the Timer version of SetTicks.

Next, allocate movingObject variables for each object you intend to
simulate. NewObject allocates a movingObject variable and makes all its asso­
ciated values zero. When you are finished using it, deallocate it with Dispose­
Object.

Use SetObject to assign each movingObject variable a position (in pixel
coordinates) and a velocity (in pixels per second). Positive horizontal velocity
means objects move right, and positive vertical velocity means they move
down. Use SetAccel to assign the object's acceleration value (in pixels per
second per second). The direction of acceleration is the same as that of
velocity (i.e., positive vertical acceleration in downward).

During each animation interval, call Move to simulate each object's mo­
tion. If objectMoved is TRUE, erase the object's old image, and draw it in its
new position. Obtain the new position by calling GetObject.

Special Cases:
Always allocate your object's variable with NewObject before attempting to
initialize or move it. Motion's version of SetTicks has the same restrictions as
the Timer version. That is, use a factor of 60 for the animation frequency
value.

Be sure to call SetTicks before using any other Motion procedure, espe­
cially SetAccel or Move. These two procedures are sensitive to the animation
frequency.

Listing of Definition Module:

DEFINITION MODULE Motions

Chapter 3: Perform equations of motion

EXPORT QUALIFIED movingObject, Move, SetTicks,
NewObject, DisposeObject,
SetObject, SetAccel,
GetObject, GetAccel•

TYPE movingObJect; <* Note the opaque eHport *>

PROCEDURE Move(object: movingObJect1
VAR obJ1;1ctMoved: BOOLEAN>;

Simulation of Motion

PROCEDURE SetTicks< tick&PerSecond1 CARDINAL >1

PROCEDURE NewObject< VAR object1 movingObject>1

PROCEDURE Dispo&eObject< VAR object1 movingObject >J

PROCEDURE SetObJect< object1 movingObject1
positionH, po&itionV,
velocityH, velocityV: INTEGER >1

PROCEDURE GetObject< obJect1 movingObject1
VAR positionH, positionv,

velocityH, velocityV1 INTEGER >1

PROCEDURE SetAccel< object• movingObJect1
accelH, accelV: INTEGER >1

PROCEDURE GetAccel(object• movingObject1
VAR accelH, accalV1 INTEGER >1

END Motion.

Listing of Implementation Module:

IMPLEMENTATION MODULE Motion1

Chapter 31 Perform equations of Motion

IMPORT Ti mer l
FROM Storage IMPORT ALLOCATE, DEALLOCATE;

TYPE
movingObJectType

= RECORD
posnH, posnV,
posnSumH, posnSumV,
velH, velV,
accH, accV

<* position *>
<* position accumulator *>
<* velocity *>
<* acceleration *>

1 INTEGERt
END1 <* movingObjact *>

movingObject = POINTER TO movingObjectType1

VAR
animationFrequency1 INTEGER;

PROCEDURE Move< object1 movingObJact1
VAR objectMoved1 BOOLEAN >;

BEGIN
WITH object" DO

objectMoved1=FALSE1
posnSumH1=posnSumH+velHJ
IF ABS<po&nSumH> >• animationFrequency
THEN

objectMoved1=TRUE1
po&nH1mposnH+<po&nSumH DIV animationFrequency>1
po&nSumH1=posnSumH MOD animationFrequencyJ

END1 <*IF*)

posnSumV1•posnSumV+velV1
IF ABS<posnSumV> >• animationFrequency

63

64

THEN
objectMoved1=TRUE1

Animation and Simulation

posnV1mposnV+<posnSumV DIV animationFrequency>1
posnSumV1•posnSumV MOD animationFrequancy1

END1 <*IF*>

velH1=velH+ac:c:H;
velV1•velV+accV1

END1 <*WITH*>
END Move1

PROCEDURE SetTic:ks< tic:ksPerSecond1 CARDINAL >;
BEGlN

animationFrequenc:y1=INTEGER< tic:ksPerSec:ond >;
Timer,SetTic:ks(tic:ksPerSec:ond >;

END SetTic:ks1

PROCEDURE NewObjec:t< VAR object1 movingObjec:t>1
BEGIN

NEW< objec:t >;
SetObjec:t(objec:t, o, o, O, 0 >1
SetAc:c:el(objec:t, O, 0 >1

END NewObjec:tp

PROCEDURE Dispos;eClbJec:t < VAR object1 movingObjec:t) ;
BEGIN

DISPOSE< object >1
END Disposll!Object1

PROCEDURE SetObject< objec:t1 movingObjec:t;
positionH, positionV,
velocityH, velocityV1 INTEGER >1

BEGIN
WITH object'' DO

posnH:•positionH; <* Set the position *)
posnSumH1=0;
posnV:=positionV1
posnSumV1=0;
velH1=velocityH1 <* Set the velocity *>
velV1=velocityV1

END1 <*WITH*)
END SetObject1

PROCEDURE 13et0bjact(object1 movingObjec:t;

BEGIN
WITH object" DO

positionH1mposnH1
positionV1=posnV1
velocityH1=velH1
velocityV1=velV1

ENDt <*WITH*>
END GetObJect1

VAR positionH, positionV,
velocityH, velocityV1 INTEGER >1

PROCEDURE SetAccel(object1 movingObJect1
accelH, accelV1 INTEGER >1

BEGIN
WITH objec:t~· DO

accH1=accelH DIV animationFrequency1
accV1maccelV DIV animationFrequency1

END1 (*WITH*>
END SetAcc:el J

Chap.3

Simulation of Motion

PROCEDURE GetAccel< objact1 movingObJect1
VAR accelH, accelV1 INTEGER >1

BEGIN
WITH object" DO

accelH1•accH * animationFrequency;
accelV1=accV * animationFrequencyg

END1 <*WITH*>
END GetAccel I

END Motion.

Description:

65

• PROCEDUREs ALLOCATE and DEALLOCATE are imported from
module Storage to allow use of NEW and DISPOSE. Modula translates
calls to NEW into ALLOCATE and calls to DISPOSE into DEALLO­
CATE.

• TYPE movingObjectType is the heart of every movingObject variable.
It contains the following elements:

posnH and posnV, the object's current pixel coordinates.
posnSumH and posnSumV, the offset accumulators for posnH and

posnV.
velH and velV, the horizontal and vertical velocities in pixels per

second.
accH and ace V, the horizontal and vertical accelerations in pixels

per second per animation interval.
• TYPE movingObject is the exported type of motion simulation objects.
• VAR animationFrequency retains the animation frequency set by Set­

Ticks.
• PROCEDURE Move applies the motion equations to the supplied

movingObject argument. It also indicates whether the object has
changed its pixel position during the interval.

Move begins by increasing the accumulators for the horizontal and
vertical coordinates by their respective velocities.

If an accumulator exceeds the animation frequency, then the ob­
ject has moved. The program must then add the displacement
to its previous position to find the new position and update
the accumulator.

Finally, Move adds the horizontal and vertical accelerations to
their respective velocities, for the next interval.

• PROCEDURE SetTicks records the animation frequency and passes the
value to Timer's version of SetTicks.

• PROCEDURE NewObject allocates a movingObject variable from the
heap, and then initializes it.

• PROCEDURE DisposeObject returns the memory used by a moving­
Object variable to the heap.

66 Animation and Simulation Chap. 3

• PROCEDURE SetObject sets the object's position and velocity.
• PROCEDURE GetObject returns an object's position and velocity.
• PROCEDURE SetAccel sets an object's horizontal and vertical accelera­

tions, in pixels per second per second. It converts these values into units
of pixels per second per animation interval.

• PROCEDURE GetAccel returns an object's acceleration values in pixels
per second per second.

Notes:
Motion uses dynamic memory allocation to create movingObject variables.
Macintosh maintains a block of memory called the heap that is up for grabs
to all procedures. Modula's NEW procedure takes memory from the heap
and returns its location in the pointer argument. NEW allocates only as much
memory as the variable's type requires. Calling DISPOSE makes Modula re­
turn the allocated memory to the heap for use by other procedures.

Dynamic memory management is most valuable when a module's mem­
ory requirements vary widely. A fixed assignment would then have to
reserve the maximum possible amount. In the case of Motion, an example
would be a program that animates a variable number of objects. As the ob­
jects are needed, the program allocates them with NewObject. As they are
retired, it returns them to the heap with DisposeObject. This would be con­
venient, for example, in a video game that has varying numbers of moving
objects (e.g., asteroids or space ships), or in a simulation that has varying
numbers of participants (e.g., bank customers or hospital patients).

Motion's definition module exports movingObject as an opaque type.
This guarantees that only Motion's procedures can ever manipulate moving­
Object variables directly. Of course, this results in a performance penalty. It
would be much faster for an importing module to access a movingObject's
position, velocity, or acceleration directly. Instead, we have localized access
to a movingObject's implementation. Doing so makes Motion easier to debug
and modify.

Example: A Bouncing Ball

Motion provides a solid foundation for simulating and animatng motion. Let
us now use it and Timer to animate a ball as it bounces inside a box.

Module Name: BounceBall

Techniques Demonstrated:

• Use of Motion to simulate a bouncing ball.
• Use of Timer to control animation speed.
• Use of Terminal's BusyRead to detect a keystroke without halting the

program.

Simulation of Motion 67

Procedure for Using:
Compile, link, and run BounceBall. It draws a circle at the left side of the
screen. It then animates the circle as it bounces around under the influence
of gravity (see Figure 3-1). Press any key (except Shift, Command, or
Option) to stop the program.

Fol low the bouncing bal I!

Figure 3-1: Animated ball.

Listing of Module:

MODULE BounceBall1

Chapter 3: Animate a bouncing ball.

FROM Motion IMPORT movingObject, Move, SetTicks,
NewObject, SetObject, SetAccel,
GetObject1

FROM Timer IMPORT WaitFor'T'iclq

FROM MiniQD IMPORT FrameOval, SetRect,
PenMode, MoveT01

FROM Quic:kDrawTypes IMPORT Rec:t, patXoq

FROM Terminal IMPORT Clear-Screen, WriteString, BusyReadp

CONST
ballSize = 15; <* diameter in pixels *)

68

VAR ball1 movingObJect1
ballRect1 Rect1
ballMoved1 BOOLEANJ

Animation and Simulation

F'ROCEDURE SetBallRect < ball 1 movingObJect;
VAR ballRect1 Rect >;

VAR
posH, posV, velH, velV1 INTEGER;

BEGIN
GetObJect(ball, posH, posV, velH, velV >;
SetRect< ballRect, posH, posV,

posH+ballSize, posV+ballSize >1
END BetBallRect:

F'ROCEDURE DrawNewBall< ball: movingDbJect1
VAR ballRect1 Rect >1

BEGIN
FrameOval< ballRect >1 <*Erase old ball*>
SetBallRect< ball, ballRect >;
FrameOval (ball Rect >I <* Draw new bal 1 *>

END DrawNewBall;

PROCEDURE Bounce (ball1 movingObject >1
CONST

rightEdge = 511-ballSizei
bottomEdge = 341-ballSizei

VAR
posH, poaV, velH, velV1 INTEGER!

BEGIN
GetObJect< ball, posH, posV, velH, velV >1
IF <posH < O> OR <posH > rightEdge>

OR <posV < O> OR <posV > bottomEdge>
THEN

IF posH<O
THEN posH1=01 velH1=-velH;

ELSIF posH>rightEdge
THEN posH1=rightEdge; velH1=-velH1

END; <*IF posH*>

IF posV<O
THEN posV1m01 velV1=-velV1

ELSIF posV>bottomEdge
THEN posV1=bottomEdge1 velV1=-velV1

SetObJect< ball, posH, posV, velH, velV >1
END1 <*IF po11H*>

END Bounce;

PROCEDURE KeyWasPressed<>1 BOOLEAN;
CONST

NUL '" OC1
VAR

cho CHAR;
BEGIN

BusyRead < ch > 1
RETURN ch # NUL

END KeyWasPressed;

Chap. 3

Simulation of Motion

BEGIN
PenMode< patXor >;
Set Ticks< 20 > 1
NewObject< ball >1
SetObject< ball, 5, 150, <* Begin at left *>

120,
SetAccel(ball, o,
ClearScreen1

Ol 1 <* Moving to the right *>
220 >1 <*Gravitational accel *'

SetBallRect< ball, ballRect >1
FrameOval(ballRect >1
MoveTo< 168, 171 > 1
WritaString< 'Follow the bouncing

REPEAT

ball ! ' > I

Move(ball, ballMoved >; <*Simulate*'
IF ballMovad THEN

Bounce(ball >1 <*Bounce off sides*>
DrawNewBall< ball, ballRect >;

END1 <*IF*>
WaitForTiclq <* Synchronize *>

UNTIL KeyWasPressed<>1

MoveTo< 204, 191 >I
WriteString< 'Program ends ••• ' >1

END BounceBall.

Description:

69

• PROCEDURE BusyRead, imported from module Terminal, reads from
the keyboard. If you have pressed a key, it will return the key's value.
Otherwise, it returns a "NUL" (OC) character.

• VAR ball: State of the animated ball.
• VAR ballRect: Rectangle used to form the ball's oval.
• VAR ballMoved: Indicates whether the ball changed position during the

most recent animation interval.
• PROCEDURE SetBallRect: Calculates a rectangle that contains the

image of the ball (variable ballRect).
• PROCEDURE DrawNewBall: Erases the old ball image, computes its

new rectangle, and then draws the new image.
• PROCEDURE Bounce: Checks whether the ball has collided with a side

of the display. If it collides with a vertical wall, we reverse the ball's hor­
izontal velocity. Similarly, if it collides with the floor or ceiling, we
reverse its vertical velocity.

• PROCEDURE KeyWasPressed: Reads the keyboard, and returns true
only if the user has pressed a key.

• MODULE BounceBall:
BounceBall begins by setting the pen mode. We use the same mode

as in Sweep.

70 Animation and Simulation Chap. 3

Because the simulation is more complex than Sweep, BounceBall
needs more time for each animation interval. We set the ani­
mation frequency to 20 intervals per second.

Next, BounceBall allocates a movingObject variable to represent
the ball. We place it at the left side of the screen, moving
right at 120 pixels per second. We set the acceleration to 220
pixels per second per second downward.

Next, we clear the screen, compute the ball's enclosing rectangle,
and draw its initial imate.

Until you press a key, BounceBall will execute the following ani­
mation loop:
Compute the ball's new position with Move.
If the ball moved,

Adjust its position and velocity if it collided with a wall.
Then erase its old image and draw the new one.

Synchronize the animation loop with the clock.
After leaving the loop, BounceBall prints a termination message.

Modifications:
The possibilities for modifying BounceBall are endless. Here are a few:

The size and shape of the ball make a dramatic difference in execution
speed. QuickDraw is not terribly fast at drawing ovals, for example. Bounce­
Ball will also slow down if you increase ballSize. On the other hand, Quick­
Draw can draw rectangles extremely fast.

We can add more realism to the simulation. For example, the Bounce
procedure simulates a perfect elastic collision by reflecting 100% of the ball's
velocity. In reality, a ball will lose an appreciable amount of energy in a
bounce. Listing 3-l's version of Bounce simulates a damped collision.

PROCEDURE Bounce < ball1 movingObJect >1

PROCEDURE Partial< vel1 INTEGER >1 INTEGER;
CONST

efficiency m 81 <* preserve BOX of velocity *>
scale "' 101

BEGIN
RETURN <vel * efficiency) DIV scale

END Partial1

CONST
rightEdge = 511-ball9ize1
bottomEdge = 341-ballSize;

VAR
posH, posV, velH, velV1 INTEGER1

BEGIN
GetObJect< ball, posH, posV, velH, velV >1
IF <posH < O> OR (posH > rightEdgel

OR <posV < O> OR <posV > bottomEdge>
THEN

IF posH<.O
THEN posH1•01 velH1•-Partial<velH>1

ELSIF posH>rightEdge
THEN posH1=rightEdge1 velH1•-Partial<velH>1

EN01 <*IF po•H*>

Simulation of Motion

IF pcsV<O
THEN pcsV1'"01 velV1m-Partial(velV>1

ELSIF pcmV>bcttcmEdga
THEN pcsV1•bcttcmEdge1 velV1m-Partial(velV>1

END1 <*IF pcsV*>

SetObject< ball, pcsH, pcsV, valH, valV >1
END1 <*IF pcsH*l

END Bcunca1

Listing 3-1: Modified Bounce with velocity damping.

71

The procedures in BounceBall can animate more than one object. You
need only provide a movingObject and a Rect variable for each. Listing 3-2
and Figure 3-2 illustrate a modification that animates two balls.

VAR ball1, ball21 mcvingObject1
bal1Rect1, bal1Rect21 Rect1

BEBIN
PenMcde(patXcr >;
SetTicks< 15 >1
NewObJect< ball1 >1 <*Create and init first ball *>
SetObject< ball1,5, 150, <* Begin at left *>

120, O>J <*Moving tc the right*>
SetAccel < bal 11, o, 220 > 1 <* 9ravi taticnal accal *>
SetBallRect(ball1, bal1Rect1 >1

NewObject(ba112)J <*Create and init second ball *>
SatObjact (ball2,511-bal lSize-5, 100, <*B•gin at right*>

-120, 0>1 <*Moving tc the laft*>
SetAccel(ball2, o, 220 >1 <* 8ravitaticnal accal *>
ClearScreen1
SetBallRact< ball2, bal1Rect2 >1

FrameOval (ba11Rect1 l 1 <* Draw beth balls *>
FrameOval< bal1Rect2 >1
McveTc< 165, 167 > 1
WriteString< "Fellow the bouncing balls!' >1

REPEAT
Move(balll, ballMcved >1 <*Simulate first ball*>
IF ballMcved THEN

Bounce< ball1 >1 <*Bounce cff sides*>
DrawNewBall< ball1, ballRectl >1

ENDJ <*IF*>

Move< ball2, ballMcved >1 <*Simulate second ball*>
IF ballMcved THEN

Bounce< ball2 >t <*Bounce cff sides*>
DrawNewBall< ball2, bal1Ract2 >1

END1 <*IF*>

WaitFcrTick1 <* Synchrcniz• *>
UNTIL WeAreFinished<>1

McveTc< 204, 191 >1
WritaString('Program ands ... • >1

END Ball,

Listing 3-2: Modified BounceBall to animate two balls.

72 Animation and Simulation Chap. 3

Fol low the bouncing bal Is!

OB
0

0 0
00

Figure 3-2: Two balls animated by modified BounceBall.

Figures 3-1 and 3-2 both show the path of the ball as it moves. To
achieve this effect, remove the first of the two FrameOval calls in DrawNew­
Ball.

Notes:
BounceBall's messages are centered. Modula normally uses the monospace
Monaco-12 font (monospace means that each character in the font is equally
wide). Monaco-12 characters are 7 pixels wide by 9 high. Therefore, to center
a string n characters wide, move to a horizontal coordinate of (512 - 7n) DIV
2. For example, our opening message contains 25 characters. Thus, Bounce­
Ball moves the graphic pen to coordinate (512 - 7 * 25) DIV 2, or 168.

MOVING COMPLEX SHAPES

So far, we have been moving objects by erasing their old images and drawing
new ones. This technique works as long as the erase and redraw operations
are fast enough. As an object's complexity increases, however, these opera­
tions take longer. Notice, for example, how we had to decrease the animation
frequency when animating an oval (as in BounceBall) instead of a line (as in
Sweep). To save time, we animated only the border of the oval. If Bounce-

Moving Complex Shapes 73

Ball were to animate a filled oval, we would have to decrease the animation
frequency even more.

There is an alternative to erasing and redrawing animated objects. In­
stead, we could shift (or scroll) the object's image. To scroll an object, you
need only draw its image once. Thereafter you can scroll it wherever you
want it.

QuickDraw provides an efficient and general scrolling procedure called
ScrollRect:

PROCEDURE ScrollRect (dstRect: Rect; db, dv: INTEGER; updateRgn: RgnHandle);

Figure 3-3 illustrates how ScrollRect works. Parameter dstRect represents
the rectangular area to be scrolled. Parameters dh and dv indicate how many
pixels to shift horizontally and vertically, and in which direction. Positive dv
indicates a downward scroll. For example, in Figure 3-3 dh is negative (to
the left), whereas dv is positive (downward). ScrollRect fills the vacated por­
tion of the rectangle with a background pattern. The background pattern is
white initially. (Should you need to change the background pattern, use the
QuickDraw procedure BackPat.) The updateRgn parameter returns a region
description of the vacated portion. QuickDraw uses regions in a number of
ways. See Appendix A or Inside Macintosh for more information on regions.

dstRect
~

dv

Before

ScrollRect

updateRgn

After

Figure 3-3: ScrollRect in action.

ScrollRect is fast; its speed depends on the size of dstRect. That means
we can animate an arbitrarily complex image by scrolling it. Module Scroll­
Ball illustrates how to use scrolling for animation.

74 Animation and Simulation

Module Name: ScrollBall

Techniques Demonstrated:

• Use of ScrollRect to animate an object.
• Use of NewRgn to create a Region variable.

Procedure for Using:
Compile, link, and run ScrollBall in the same manner as BounceBall.

Listing of Module:

MODULE ScrollBall;

Chapter 3: Animate a bouncing ball by scrolling it.

FROM Motion IMPORT movingObJect, Move, SetTicks,
NewObject, SetObject., SetAccel,
GetObject;

FROM Ti.mer IMPORT WaitForTick;

FROM MiniQD IMPORT PaintOval, SetRect, MoveTo;
FROM Quicl<.DrawTypes IMPORT Rect, RgnHandle;

FROM Terminal IMPORT ClearScreen, WriteString, BusyRead;

CONST
ballSize = 25; C* diameter in piHels *>
ex = 3558;
Qui ckDraw2ModNum = ::s; <* modLtl e number of QL1i ckDraw2 *>

VAR ball: movingObject;
bal lRed:.1 Rer:t;
bal lH, ballV: INTEGER I
ballMoved1 BOOLEAN;
dummyRgn1 RgnHandle;

F'ROCEDURE NewRgn C > 1 RgnHandl e;
CODE CX; Quic~(Draw2ModNum; 13 END NewRgnJ

PROCEDURE ScrollRect< dstRect; Rect; dh,dv1 INTEGER;
updateRgn: RgnHand le > 1

CODE CXJ QuickDraw2ModNum; 37 END ScrollRect;

PROCEDURE MaxC a, b: INTEGER >1 INTEGER;
BEGIN IF a>=b THEN RETURN a ELSE RETURN b END; END Max;

PROCEDURE Min(a, bt INTEGER); INTEGER;
BEGIN IF a<=b THEN RETURN a ELSE RETURN b END; END Min;

PROCEDURE MoveObJect< object1 movingObject1
sizeH, sizeV: INTEGER;

VAR oldH, oldV: INTEGER >1
VAR

newH, newV,
discard1 INTEGER;
ri Rect;

BEGIN
GetObJect< object, newH, newV, discard, discard>;
SetRectC r,Min<newH, oldH>, MinCnewV, oldVl,

MaxCnewH, oldH>+sizeH,Max(newV, oldVl+sizeV>;

Chap.3

Moving Complex Shapes 75

ScrollRect< r, newH-oldH 1 newV-oldV, dummyRgn >1
oldH1=newH1
oldV1=newV1

END MoveObject;

PROCEDURE Bounce < object1 movingObject1
sizeH, sizeVa INTEGER >1

VAR
poeH, posV, velH, velV,
rightEdge, bottomEdge1 INTEGERp

BEGIN
rightEdge1=511-sizeH1
bottomEdge1=341-sizeV1
GetObject(ball, posH, posV, ve1H 1 velV >1
IF CposH < Ol OR CposH > rightEdgel

OR CpoeV < O> OR CposV > bottomEdge>
THEN

IF posH<O THEN posH1•01 velH1•-velH1
ELSIF posH>rightEdge THEN posH:=rightEdge;velH:•-velH9
END; <*IF posH*l
IF posV<O THEN posVa=O; velV1=-velV1
F..LSIF posV>bottomEdge THEN posV1 mbottomEdqe1

vel V: =-·vel V:
END; <*IF posV*I
SetObject< ball, posH, posV, velH, velV >1

END! <*IF pc:1sH*l
END Bounce1

F'ROCEDURE WeAreFinished<>: BOOLEAN;
CONST

NUL = OC1
VAR

cha CHARI
BEGIN

BusyRead(ch >;
RETURN ch i NUL

END WeAreFinished;

BEGIN
SetTicks(30 >I
NewObJect< ball >1
ballH1=51
ballV1m50;
SetObject(ball, bal1H 1 ballV, <* Begin at left *>

120, Ol; <*Moving right*)
SetAccel(ball, O, 250 >1 <*Gravitational accel *>
ClearScreen;
SetRect< bal1Rect 1 ballH, ballV,

ballH+ballSize, ballV+ballSizel;
PaintOval< ballRect IJ
dummyRgn1=NewRgn<>1
MoveTo< 165 1 171 >1
WriteString< 'Follow the scrolling ball!' >1

REPEAT
WaitForTick; <* Synchronize *>
Move< ball, ballMoved >1 <*Simulate *I
IF ballMoved THEN

Bounce(ball, ballSize, ballSize >1
MoveObject (bal 1, ball Size, ball Size, <*Scroll*>

ballH, ballV >1
END1 <*1F*l

UNTIL WeAreFinishedlll

MoveTo< 204, 191 IJ
WriteString('Program ends ••• ' >1

END ScrollBall.

76 Animation and Simulation Chap. 3

Description:
Since this program is much like BounceBall, we will discuss only the differ­
ences.

• TYPE RgnHandle: Imported from the QuickDrawTypes module. A han­
dle is merely a pointer to a pointer. A RgnHandle is a pointer to a
pointer to a region. A lot of Macintosh's built-in software uses handles.

• CONST ballSize: Increased to 25. ScrollRect's speed allows us to ani­
mate a larger image.

• VAR ballH and ballV: Ball's previous coordinates. MoveObject needs
these values to compute the scroll rectangle and distances.

• VAR dummyRgn: Receives the updateRgn description from ScrollRect.
We will not use it.

• PROCEDURE NewRgn: Allocates RgnHandle variables. Notice that
NewRgn is a built-in routine that we access as a CODE procedure.

• PROCEDURE ScrollRect: Built-in procedure that scrolls a rectangular
area in any direction.

• PROCEDUREs Max and Min: Return, respectively, the maximum and
the minimum of their two arguments.

• PROCEDURE MoveObject: Scrolls an object from its old coordinates
(oldH, oldV) to its new coordinates (contained in movingObject). After
the operation, MoveObject sets oldH and oldV to the new coordinates.
The size parameters include both horizontal (sizeH) and vertical (sizeV)
values.

VAR newH and newV: The object's new coordinates.
VAR discard: Receives integer arguments MoveObject does not

need.
VAR r: Rectangle to be scrolled (the dstRect parameter to Scroll­

Rect).
MoveObject begins by retrieving the object's new coordinates.
We calculate the scroll rectangle next. Start with a rectangle enclos­

ing the image to be scrolled. Now increase the boundaries in
the scroll directions by the amount to be scrolled. The result
is the scroll rectangle. Alternatively, you can think of it as
being the smallest rectangle enclosing both the old image and
the new image.

Now we actually perform the scroll.
Finally, MoveObject updated oldH and oldV with the new coor­

dinates.
• PROCEDURE Bounce has been modified to accept separate horizontal

and vertical image sizes.

Moving Complex Shapes 77

• MODULE ScrollBall:
Notice that we have increased the animation frequency to 30 inter­

vals per second. Because of ScrollRect's speed, we can do
this despite the larger image size and complexity.

This time, we paint a solid ball with the initial pen pattern, black.
Before calling ScrollRect, we must allocate its RgnHandle variable.
The animation loop is essentially unchanged. We have moved the

clock synchronization to the beginning. It can go anywhere,
so long as it is executed during each iteration.

Modifications:
There is no reason why you couldn't animate a more complex figure. The
image must be completely contained by a rectangle defined by the initial co­
ordinates and sizeH and size V.

Notes:
When running ScrollBall, you will notice a few differences from BounceBall.
First of all, the scrolled ball erases any text it encounters. This is a conse­
quence of using the scrolling technique. Remember that ScrollRect shifts
pixels. Since it ignores the pen mode, we cannot use patXor's ability to pre­
serve the background.

You will probably also notice that the ball breaks up a little when it is
near the bottom of the screen. We encountered the same phenomenon in
Sweep, and the cause is the same. The video circuitry scans the lower portion
of the screen while ScrollRect is in mid-scroll. This is an annoying problem
over which we, unfortunately, have little control.

Many computers can display from different bit-map locations (or display
pages) in memory. That kind of design allows animation intervals to alternate
pages. The program can draw on one page while the computer displays the
other. Then you switch. That way, the new image is always ready when you
need it. While Macintosh has two display pages, the alternate page is difficult
to use with MacModula-2. To animate perfectly, you must remain aware of
the current vertical scan position, and try to draw elsewhere.

ScrollRect was not specifically intended to be used for animation. The
Terminal module uses it, for instance. Say a program performs enough Write­
Strings and WriteLns to fill the screen. The next time it executes WriteLn,
ScrollRect shifts all the text up one line before continuing. Scrolling text is
ScrollRect's most common job. When you use the MacPaint grabber (the
little hand) to move around on the page, you are using ScrollRect. In the lat­
ter case, the updateRgn helps MacPaint determine which areas of the window
it must redraw.

78 Animation and Simulation Chap. 3

EXERCISES

3-1. a. If we dispensed with Motion's posnSum variables, we could only move objects at
velocities that were integral multiples of the animation frequency. What limitation
does this imply with respect to Motion's implementation of acceleration? Apply the
same accumulation technique to improve Motion's acceleration calculations.
b. The position of an accelerating object is given by:

position= velocity *time+ (acceleration * time2)/2.0

Motion computes the new position based only upon the current velocity. It com­
pletely ignores the second (acceleration) term of this equation. Adapt Motion to
use both terms. Try to make it as efficient as possible.
c. BounceBall simulates a bounce by reflecting the ball's velocity, and moving it
next to the surface it hit. During this animation interval, the ball could have traveled
past the walls of the box. Thus, when the ball bounces off the floor, it can acquire
more vertical velocity than it should. That is why the ball travels higher after each
bounce. The velocity of an accelerated object after traveling a distances is

Vnew = sqrt(V~ld + 2 * accel * s)
where accel is the acceleration. Modify Bounce to calculate the correct velocity
using this formula. The sqrt function can be found in MathLibl.

3-2. This chapter has discussed motion animation. You can also animate an object by
gradually changing its shape. For example, when a ball bounces on a surface, it will
flatten momentarily. Modify BounceBall to deform the ball appropriately during a
bounce. You will have to temporarily change ballRect from a square to an oblong
rectangle.

3-3. Can you use ScrollRect to animate multiple objects in the same area? What happens
when the objects overlap?

3-4. Use Motion and ScrollRect to help you build a simple lunar flight simulation. Ac­
cept the following commands with BusyRead: i means to apply upward thrust (ac­
celeration), j means apply thrust to the left, k means thrust to the right, and e means
exit the program. Each thrust command should apply during one animation interval.
Vertical gravitational acceleration should be 220 pixels per second per second. Dur­
ing upward thrust, vertical acceleration should be approximately -80. Left and right
thrust acceleration should be approximately -150 and 150, respectively.

BIBLIOGRAPHY

Pages 288 through 293 of Applied Concepts in Microcomputer Graphics, by Bruce Artwick
(Prentice-Hall, 1984), discuss animation timing and quality issues.

For more information on the simulation of motion, you should begin with a basic
physics text. Chapter 4 of University Physics, 4th ed., vol. 1, by Francis Sears and
Mark Zemansky (Addison-Wesley, 1970), contains a good basic discussion of accelerated
motion.

chapter four

Interactive
Graphics

We have just begun to explore the Macintosh's ability to display crisp, beau­
tiful graphics. In this chapter we will combine graphics with another Macin­
tosh strength, its natural but powerful user interface.

WHAT IS A USER INTERFACE?

The user interface is simply the way humans communicate with computers.
We converse with computers in a kind of language. In traditional user inter­
faces, like those provided by CP/M, MS-DOS, or the UCSD p-System, the
language is character-oriented. You type commands from the keyboard
(hence the term command language), and the computer responds accordingly.
This style is often efficient for such activities as programming and querying a
database. Command languages are not so effective for other tasks, such as
drawing graphics or flying a simulator. (Imagine having to direct a flight
simulator by typing a command like BANK LEFT 12.5 DEGREES.)

The Macintosh employs a different user interface style than traditional
computers. We refer to this style as direct manipulation. Rather than typing
a command that tells the computer to do something (e.g., DRAW LINE 5,5
30,0), you mimic the action yourself (e.g., press the mouse button at the
starting position and drag the line to the ending position). You can select an

79

MOUSE

80 Interactive Graphics Chap. 4

object (such as a file icon) and then choose what to do with it (such as Dupli­
cate it) from a menu.

A desirable attribute of any user interface is consistency. A consistent
interface lets you perform similar tasks in similar ways. For example, in any
Macintosh program you select commands from menus in the same way: You
press the mouse button in the menu bar, drag the cursor to highlight your
choice, and then release the button.

Apple wants to promote both direct manipulation and consistency in
the Macintosh user interface. The Macintosh contains many built-in tools
that encourage both. We will begin by introducing some of these tools.

Let's first describe how a program can use the mouse. The Macintosh mouse
contributes greatly to the direct manipulation idea. It lets you point at things
and operate on them. Module Mouse provides you with some of Macintosh's
mouse-related procedures.

Module Name: Mouse

Procedure for Using:
Enter and compile the definition and implementation modules as usual. To
determine where the mouse cursor is, call GetMouse. To determine the state
of the mouse button, call Button. SetCursor lets you define your own cursor
shapes. StillDown indicates whether the mouse button has been released
since you last looked. Be careful-StillDown has some complications that we
will explain later in this chapter.

Listing of Definition Module:

DEFINITION MODLIL.E Mouse;

FROM Qui.c:kDrawType!ll IMPORT Point., Rec:t, Cursor;

EXPORT QUALIFIED Get.Mouse, Button, StillDown, SetCursoq

PROCEDURE SetCursor <c:rsn Cursor>;

PROCEDURE GetMouse<VAR pt1 Point.>1

PROCEDURE Button01 BOOLEAN!

PROCEDURE StillDown<>1BOOLEAN1

END Mouse.

Mouse 81

Listing of Implementation Module:

Description:

IMPLEMENTATION MODULE Mouse1

FROM QuickDrawTypes IMPORT Point, Rect, Cursor;

CONST
ex = 35581
QuickDraw1ModNum = 21
EventManagerModNum m 81

PROCEDURE SetCursor<crsr1 Cursor>1
CODE CX1 QuickDraw1ModNum; 14 END SetCursor1

PROCEDURE GetMouse<VAR pt1 Point>1
CODE CX; EventManagerModNum1 5 END GetMouse1

PROCEDURE Button()a BOOLEAN!
CODE CX; EventManagerModNum; 6 END Button1

PROCEDURE StillDown<>1BOOLEAN1
CODE CX; EventManagerModNum1 7 END StillDown;

END Mouse.

• TYPE Cursor, imported from QuickDrawTypes, defines the appearance
of the mouse cursor. Its type definition is

TYPE Bits16
TYPE Cursor

ARRA Y[O .. 15] OF CARDINAL;
RECORD

data, mask: Bitsl6;
hotSpot: Point;

END;

The cursor consists of a 16-pixel-by-16-pixel block. The data field de­
fines the cursor's shape. Like a pattern, the most significant bit of the
field's first element corresponds to the cursor's top left-hand pixel. The
mask field defines how the cursor interacts with the screen image be­
neath it. Each bit in the mask field corresponds to a pixel in the cursor
image. When a mask bit is 0, the corresponding data pixel is drawn in
patXor mode (see Chapter 2). If the mask bit is 1, the data pixel is
drawn in patCopy mode. Table 4-1 summarizes the effects of mask bits.

TABLE 4-1: EFFECTS OF MASK BITS.

Data bit Mask bit Resulting screen pixel

0 0 Unchanged
1 0 Inverted
0 1 White
1 1 Black

Table 4-1: Effects of mask bits.

82 Interactive Graphics Chap. 4

The hotSpot defines the cursor's selection point. The standard arrow
cursor, for example, has a hotSpot of (0, 0), at the top left-hand corner.

• PROCEDURE SetCursor draws the mouse with a new Cursor value.
• PROCEDURE GetMouse returns the cursor's current position.
• PROCEDURE Button returns true only if the user is pressing the mouse

button.
• PROCEDURE StillDown returns true only if the user has not yet re­

leased the mouse button. Don't use this routine until you understand
events (discussed later in this chapter).

Notes:
When you move the mouse, the cursor follows automatically. It is impossible
to restrict the mouse cursor's movements when using the built-in software.

Direct Manipulation with Mouse

The next program, Drag, uses the Mouse module in an example of direct
manipulation. It allows you to grasp a rectangle with the mouse and move it
around the screen.

Module Name: Drag

Techniques Demonstrated:

• Using the Mouse module's Button and GetMouse procedures.
• Using the SetPt, AddPt, and SubPt point arithmetic procedures from

MiniQD.
• Using Pt2Rect to define rectangles.
• Using PtlnRect to detect the mouse's presence in an area of interest.
• Dragging an object across the screen.

Procedure for Using:
Run Drag. It begins by drawing a rectangle in the centE:r of the screen. Move
the mouse into the rectangle and press the button. As you slide the mouse
around, the rectangle follows it. When you release the button, the rectangle
stops following the mouse.

To end the program, press a key and click the mouse button in the rec­
tangle.

Mouse

Listing of Module:

MODULE Drag;

FROM Mouse IMPORT
FROM QuickDrawTypes IMPORT
FROM MiniQD IMPORT

FROM Terminal IMPORT

VAR
theRec:t1 Rect1

Button, GetMouse1
Point, Rect, patXor;
FrameRect, PenMode, PtinRect,
SetPt, AddPt, SubPt, Pt2Rect,
SetRect1
ClearScreen, BusyRead1

where, aize, offset1 Points
ch1 CHARI

(* Draw a rectangle at location+offset *l
PROCEDURE DrawRec:t(location1 Point >1
VAR

bottomRight1 Point1
BEGIN

AddPt(offset, location >;
bottomRight1=size1
AddPtC location, bottomRight >1
Pt2RectC location, bottomRight, theRect >1
FrameRectC theRect >1

END DrawRec:t1

BEGIN
SetPt< size, 80 1 100 >;
ClearSc:reen1
PenModeC patXor >1
SetRec:t(thaRec:t, 216, 121, 296, 221 >;
FrameRect< theRec:t >1

REPEAT (* Wait until user presses a key *>

REPEAT <* Wait until button is pressed in theRect *>
GetMouseC where >1

UNTIL PtlnRect(where, theRec:t) AND Button<>1

offset1=theRec:t.topLeft1
SubPtC where, offset >1

(* Drag theRect until user releases the button *>
WHILE Button<> DO

GetMouse< where >1
FrameRect< theRect >1
DrawRec:t(where >;

END1 <*WHILE*>

BusyRead(ch >;
UNTIL c:h # OC1

END Drag.

Description:

• VAR theRect defines the rectangle we will draw.
• VAR where contains the mouse's latest position.

83

84 Interactive Graphics Chap. 4

• VAR size: We don't use this Point variable as a position. Instead, it con­
tains the horizontal and vertical sizes of the rectangle.

• VAR offset is not used as a position either. Instead, it represents the
distance between the coordinates of the top left-hand corner of the rec­
tangle and the coordinates of the mouse.

• PROCEDURE DrawRect draws a rectangle at the indicated mouse loca­
tion.

First, it computes the top left-hand corner's coordinates by adding
the offset to the location. This keeps the rectangle at the
same position relative to the mouse.

Next, DrawRect constructs the bottom right-hand corner coordin­
ates by adding the size to the top left-hand corner coordinates.

Pt2Rect converts the two corner coordinates into a rectangle.
Finally, DrawRect draws the new rectangle.

• MODULE Drag:
Drag begins by initializing size.
Next, it clears the screen.
Drag sets the graphic pen mode to patXor. Remember that patXor

mode is very convenient for animation, since it alternately
draws and erases pictures.

Then, it creates and draws the initial rectangle.
The main loop works as follows. Until you press a key:

It repeatedly polls the mouse until you press the button while
the mouse is inside the rectangle.

It computes the offset from the top left-hand corner of the
rectangle to the current mouse coordinates. DrawRect
adds this to the mouse position to compute the new
rectangle's corner.

Until the user releases the mouse button, it:
Obtains the latest mouse coordinates.
Erases the previous rectangle.
Draws a new rectangle.

Modifications:
Note that Drag redraws the rectangle as long as you hold down the button.
You need not redraw it if the mouse has not moved since the last drawing.
Try the following modification.

FROM MiniQD IMPORT EqualPt;

VAR
newMouse: Point;

(* Drag theRect until user releases the button *)

Mouse

WHILE Button () DO
GetMouse(new Mouse) ;
IF NOT EqualPt (newMouse, where)
THEN

where :=newMouse;
FrameRect (theRect) ;
Draw Rect (where) ;

END; (*1F*)
END; (*WHILE*)

85

Next, let's use SetCursor to indicate when the mouse is inside the rec­
tangle.

FROM QuickDrawTypes IMf'ORT Cursor;
FROM Macinterface IMPORT arrow;
FROM MoLtse IMf'ORT Set Cursor:

VAR
cross: Cursor;
index: CARDINAL;
mouseinRect: BOOLEAN;

BEGIN
mouseinRect1=FALSE;
I* define a cross-shaped cursor *)
FOR inde><:=O TO 15 DO

cross.dataE1nde><J1=128;
cross.mask[indexl1=12B;

END; l*FOR*l
cross.dataCBJ1=655351
cross.maskCBJ:=65535;
Setf't(cross.hotSpot, 8, B >1

REf'EAT <* Wait until user presses a key *>

REPEAT <* Wait until button is pressed in theRect *l
GetMousel where>;

IF PtlnRectl where. theRect)
THEN IF NOT mouseinRect

THEN mouselnRect:=TRUE1
SetCursorl cross >1

END; <*IF NOT*l
ELSE IF mouselnRect

THEN mouselnRect1=FALSE1
SetCursorl arrow >

END; <*IF mouseinRect*l
END; <*IF' F'tinRect*l

UNTIL mouseinRect AND Button<>1

• To start, we import the Cursor type and Mouse's SetCursor procedure.
We also import the standard arrow cursor from the Maclnterface
module.

• Next, we declare a Cursor variable, cross, to hold a new cursor shape. A

86 Interactive Graphics Chap. 4

boolean variable, mouselnRect, indicates whether the mouse cursor is
inside the rectangle.

• After initializing mouselnRect, we define the cross-shaped cursor.
• While waiting for the button to be pressed, we:

Obtain the latest mouse cursor coordinates.
If the mouse has moved from outside into the rectangle:

We record the new status in mouselnRect.
Then, we change the cursor to the cross shape.

Similarly, if the mouse has moved from inside the rectangle to out­
side it:

We record the new status in mouselnRect.
Then, we change the cursor back to an arrow.

Notes:
Some Toolbox and QuickDraw procedures return a boolean result (e.g., Ptln­
Rect, Button). You must be careful with these. You see, the built-in proce­
dures are designed to work with Apple's Pascal. Their implementation of
booleans is slightly different from Modula's. The difference is evident when
you attempt to compare (e.g., =, <>) booleans. Fortunately, this is rarely
necessary.

EVENTS

We cannot use StillDown without considering events. An event is a report of
an action the user has taken or caused. For example, the Macintosh generates
an event every time you press or release a key, press or release the mouse
button, or insert a disk.

Macintosh automatically collects event reports in a first-in, first-out
queue. Our programs can remove event reports from the queue with the
ToolBox procedure, GetNextEvent. GetNextEvent is defined as follows.

TYPE (* From ToolBoxTypes module *)
EventRecord = RECORD

what: INTEGER;
message: LongCard;
when: LongCard;
where: Point;
modifiers: BITSET;

END;

PROCEDURE GetNextEvent (mask: INTEGER;
VAR theEvent: EventRecord

) : BOOLEAN;

A report of an event is returned in theEvent. theEvent. what indicates the
kind of event, as described in Table 4-2.

Mouse 87

TABLE 4-2: KINDS OF EVENTS.

Number Name Definition

0 nullEvent No event to report
1 mouse Down Mouse button pressed
2 mouse Up Mouse button released
3 key Down A key was pressed
4 key Up A key was released
5 auto Key Automatic key repetition
6 updateEvt A window needs redrawing
7 diskEvt Disk was inserted
8 activateEvt A window was selected or

deselected
9 abortEvt Abort key was pressed

10 networkEvt Network event detected
11 driverEvt 1/0 driver event
12 applEvt Application-defined
13 app2Evt Application-defined
14 app3Evt Application-defined
15 app4Evt Application-defined

GetNextEvent's mask parameter lets you define the kinds of events in
which you are interested. You will not be notified of other kinds. Table 4-3
lists the basic mask values. By combining these values arithmetically, you can
define a set of event types. For example, a mask of everyevent-keyDownMask
will return any event except keyDown, while mDownMask+mUpMask re-

TABLE 4-3: EVENT MASKS

Mask Value

-1
1
2
4
8

16
32
64

128
256

512
1024
2048
4096
8192

16384
-32768

Name

every Event
nullMask
mDownMask
mUpMask
keyDownMask
keyUpMask
autoKeyMask
updateMask
diskMask
activMask

abortMask
networkMask
driver Mask
applMask
app2Mask
app3Mask
app4Mask

Definition

All events
Empty events
Mouse pressed
Mouse released
Key pressed
Key released
Automatic key repetition
Window update
Disk insertion
Window activated or

deactivated
Abort key pressed
Network event
1/0 driver event
Application-defined
Application-defined
Application-defined
Application-defined

MENUS

88 Interactive Graphics Chap. 4

turns only mouse events. If the queue does not contain an event in the mask,
GetNextEvent returns false, and theEvent.what will be equal to nullEvent.

The remaining fields of theEvent are:

• message: The contents of message depend on the type of event. For ex­
ample, in window update and activation events, message contains a
pointer to the window affected. We will use this property later in the
chapter, in our Windows module.

• when: Contains the value of the system clock (like Tick Count) at the
time the event occurred.

• where: The location of the cursor when the event occurred.
• modifier: The state of the mouse button and certain keys.

Only a few kinds of events interest us. Mouse events allow us to use the
mouse more precisely. Consider Drag, for example. First, run it. Then, while
pressing the button, slide the cursor over to the rectangle. As soon as the
mouse reaches the edge of the rectangle, it begins to drag it. This is intuitively
wrong. We should drag the rectangle only if the button was first pressed
when the cursor was inside it. This would be difficult to do with just Get­
Mouse and Button. On the other hand, a mouseDown event tells us exactly
where the cursor was when you pressed the button. We could then ignore the
event or respond to it, depending on the cursor location.

Let's postpone demonstrating events until we discuss menus.

You cannot use direct manipulation techniques for everything. Sometimes
we want to give a computer a command, such as "Use this font" or "Draw a
line." To do this on a Macintosh, we use menus.

Let's begin with some terminology. A Macintosh menu consists of a
title and a list of items. The topmost 20 pixels on the screen are called the
menu bar. Macintosh prints the titles of active menus there. When you place
the cursor over a menu title and press the mouse button, a menu appears
below the title. This technique, patented by Apple, is called the pull-down
menu.

The Macintosh toolbox contains procedures for creating and using pull­
down menus. Module Menu provides a simple interface you can use to add
these menus to your programs.

Module Name: Menu

Techniques Demonstrated:

• Creation of menus.
• Conversion of Modula-2 strings to Macintosh strings.

Menus 89

Procedure for Using:
When initializing your program, call AddMenu as necessary to create menus.
The menuName will appear in the menu bar. The menultems appear when
you pull down the menu. Menu items must be separated by semicolons, with
no unnecessary space characters. If a menu item .i() preceded by a left paren­
thesis, it will be disabled. That is, it is drawn with a gray pattern, and you
will not be able to select it. You can use this feature to display a separator
bar, as in Listing 4-1. Separator bars allow you to group related items. They
can also segregate powerful (irreversible) commands (e.g., Delete) from more
benign commands (e.g., Open or Close).

Each call to AddMenu adds a new menu, complete with a title and
items. AddMenu also assigns a reference number to each menu. The first
(and leftmost) menu is #1, the next is # 2, etc . Each item in a menu is also
assigned a number. The first (and topmost) is #1, etc. For example, in Listing
4-1, the File menu is #1, and Edit is #2. Quit is item 3 of menu 1 (you must
count disabled items). Figure 4-1 shows the resulting menu #1.

AddMenu("File" , "Operq Close;<---- ;QLtit" >;
Adc!Menu < "Edit" , "Cut,Copy;F'aste" H

Listing 4-1 : Sample menu.

Figure 4-1: Menu resulting from Listing 4-1.

90 Interactive Graphics Chap. 4

After you have created all your menus with AddMenu, call DrawMenu­
Bar. It will print the menu titles in the menu bar.

When your program detects a button-press in the menu bar, call Which­
Menu to perform the pull-down menu processing. It highlights the menu title
and returns the outcome in theMenu and theltem. To use WhichMenu, your
program must remove mouseDown events from the queue with GetNext­
Event.

Finally, when you finish processing the user's selection, call HiLite­
Menu(O) to remove all menu highlights.

Special Cases:
The limits here are eight menus, and no more than 20 items in each menu.
From a practical point of view, menus should contain no more than ten
items. As the number of items increases, users will have more difficulty locat­
ing a particular one.

Listing of Definition Module:

DEFINITION MODULE Menu;

FROM QuickDrawTypes IMPORT Point1
EXPORT QUALIFIED AddMenu, WhichMenu,

DrawMenuBar, HiLiteMenu1

PROCEDURE AddMenu(menuName, menuitems1 ARRAY OF CHAR>;

PROCEDURE WhichMenu(where1 Poir1t1
VAR theMenu, theitem1 INTEGER >;

PROCEDURE DrawMenuBar;

PROCEDURE HiLiteMenu <menuld1 INTEGER>!

END Menu.

Listing of Implementation Module:

IMPLEMENTATION MODULE Menu;

FROM ToolBoxTypes IMPORT menuHandle;
FROM QuickDrawTypes IMPORT Point;
FROM MacSystemTypes IMPORT LongCard, Str2SS;
FROM Strings IMPORT StrModToMac;

CONST

VAR

ex = 3SSB1
MenuManagerModNum 11;
lastMenu = 8;

menus1 ARRAYtl..lastMenuJ OF menuHandle;
latestMenu1 CARDINALI

PROCEDURE NewMenu<menuID1 INTEGER; menuTitle1 Str2SS
>• menuHandle;

CODE CX; MenuManagerModNum; 2 END NewMenu1

Menus

PROCEDURE AppendMenulmenu1 menuHandle; data: Str255)J
CODE CX; MenuManagerModNum1 5 END AppendMenu;

PROCEDURE InsertMenu <menu1 menuHandle1 beforeida
INTEGER) I
CODE CXg MenuManagerModNum; 8 END InsertMenu1

PROCEDURE DrawMenL1B<11q
CODE CX; MenuManagerModNum; 9 END DrawMenuBar;

PROCEDURE MenuSelectlstartPta Point): REAL I* LongCard *lJ
CODE CX; MenuManagerModNum; 15 END MenuSelect1

PROCEDURE HiLiteMenu <menuid1 INTEGER>1
CODE CX; MenuManagerModNum1 17 END HiLiteMenu1

PROCEDURE AddMenu(menuName, menuitems1 ARRAY OF CHAR >1
VAR

macString1 Str255;
BEGIN

IF latestMenu < lastMenu
THEN

INC(latestMenu >1
StrModToMac(macString, menuName >1
menustlatestMenuJ1•NewMenu< latestMenu, macString >;
StrModToMac(macString, menuitems >1
AppendMenu< menus[latestMenuJ, macString >1
InsertMenu< menusClatemtMenuJ, 0 >;

END; <*IF*>
END AddMenu;

F'ROCEDURE WhichMenul where; F'oint1
VAR theMenu, theitem: INTEGER >1

VAR
long; LongCard;

BEGIN
long.r:=MenuSelect(where >;
theMenu1=long.h;
theitem1=long.l1

END WhichMenu;

BEGIN
latestMenu1=01

END Menu.

Description:

91

• TYPE menuHandle is imported. It points to data structures created and
managed by built-in menu software.

• TYPE Str255 is the built-in software's string type, imported from Quick­
DrawTypes. A Modula string is simply a character array, with no explicit
length. Macintosh strings include length information and may contain
up to 255 characters.

• PROCEDURE StrModToMac is imported from module Strings. It con­
verts a Modula string to a Str255.

• VAR menus contains the menuHandles of each menu you create with
AddMenu.

• VAR latestMenu contains the number of the most recently added menu.

92 Interactive Graphics Chap. 4

• PROCEDURE AddMenu adds a new menu data structure but does not
display the new menu. If there are less than eight menus, Add-menu:

Allocates a new menu by adding 1 to latestMenu.
Converts the menu title to a Str255 and obtains a MenuHandle for
the new menu.
Adds the converted item names to the menu.
Adds the new menu at the end of the list of menus.

• PROCEDURE WhichMenu should be called when the mouse button is
pressed in the menu bar.

WhichMenu begins by calling MenuSelect, a built-in procedure that
displays menus and selects an item when the user releases the
button.

Then it returns the menu and item number selected by the user. If
the user did not select an item, or attempted to select a dis­
abled item, WhichMenu returns 0, 0.

The next program, TestMenu, extends Drag to demonstrate both menus
and events.

Module Name: TestMenu

Techniques Demonstrated:

• Using Menu to select a shape to display, or to exit the program.
• Using events and GetNextEvent.
• Using StillDown from module Mouse.

Procedure for Using:
Run TestMenu. It produces a display similar to Drag, except for the addition
of a menu bar (see Figure 4-2). You can drag the rectangle across the screen,
as before. When you select Oval from the Shape menu, the rectangle changes
into an oval. To end the program, select Quit from the File menu.

Special Cases:
When the shape is a rectangle, you can never move it completely off the
screen. Some part of it is always visible. That is because the rectangle's selec­
tion area is coincident with its displayed shape. Since you can never move
the cursor off the screen, a part of the rectangle must remain. On the other
hand, if the shape is oval, the selection area is larger than the displayed shape.
The selection area is still the same rectangle. If, for example, you slide the
oval into a corner, it will disappear. You can, nevertheless, retrieve the oval.
The selection area is still guaranteed to be (at least partially) on the screen.
Therefore, you need only press the button while the mouse is inside the (in­
visible) selection area.

Menus

File

Figure 4-2: Display generated by TestMenu.

Listing of Module:
MODULE TestMenu;

F'ROM Mouse IMF'ORT
FROM QuickDrawTypes IMPORT
F'ROM Mi n i QD I MP ORT

FROM Menu

FROM Terminal
FROM ToolBoxTypes

CONST

IMPORT

IMPORT
IMF'ORT

ex = 35581
EventManagerModNum • 8;
everyEvent = -11
mouseDown = 11

VAR
theRect1 Rect1

StillDown, GetMouse;
Point, Rect, patXor1
FrameRect, FrameOval,
PenMode, PtlnRect,
SetPt, AddPt, SubPt, Pt2Rect,
SetRecti
AddMenu, WhichMenu,
DrawMenuBar, HiLiteMenu1
ClearScreen;
EventRecord;

mouseWhere, size, offset1 Point;
shapelsRect: BOOLEAN;
theMenu, theitem1 INTEGER;
anEvent1 EventRecord1

PROCEDURE 8etNextEvent<mask1INTE8ER1
VAR theEvent1 EventRecord>: BOOLEAN!

CODE CX; EventManagerModNum1 1 END 8etNextEvent1

PROCEDURE DrawShape;
BEGIN

IF 11hapeI11Rect
THEN FrameRect< theRect >1

93

94

ELSE FrameOval(theRect >1
END1 <*IF shapalsRect*)

END DrawShape;

<* Draw the shape at location+offset *>
PROCEDURE NewShapa< location1 Point >1
VAR

bottomRight1 Point1
BEGIN

AddPt< offset, location >1
bottomRight1=size1
AddPt< location, bottomRight >1

Interactive Graphics

Pt2Rect< location, bottomRight, theRect >1
DrawShape1

END NewShape1

BEGIN
SetPt (size, 80, 100) 1
ClearScreen;
SetRect< theRect, 216, 121, 296, 221 >;
shapeisRect1=TRUE;
DrawShape;

AddMer1u< "File", "<----;Quit" >1
AddMenL1("Shape", "Rectangle;Oval" >;
DrawMenuBar;
PenMode(patXor >1

LOOP (*until user Quits*)

REPEAT <* until user presses buttcm in theRect *)

IF GetNeMtEvent< everyEvent, anEvent)
THEN

IF anEvent.what = mouseDown
THEN <* mouse button was pressed *'

IF anEvent..where.v <= 20
THEN <* button was pressed in menu bar *>

WhichMenu< anEvent.where, theMenu, theltem >1
PenMode(patXor >1
IF (theMenu = 1> AND <theitem = 21 THEN EXIT;
ELSIF theMenu = 2
THEN <* shape change *>

<* Erase old shape *>
theltem=l;

DrawShape1
shapeisRect1=
DrawShape1

END1 <*IF theMenu •• , *I
HiLiteMenu< 0 I;

END; <*IF anEvent.where.v*I
END; <*IF anEvent.what*I

END1 <*IF GetNeMtEvent*)

UNTIL ((anEvent.what=mouseDown)

<* Draw new one *I

AND PtinRect(anEvent.where,theRect>>1

offset1=theRact.topLeft1
SubPt< anEvent.where, offset >1

<* Drag theRect until user releases the button *'
WHILE StillDown() DO

GetMouseC mouseWhere >1
DrawShape1 (* Erase from previous location *>
NewShape(mouseWhere >1 <*Draw at new location*>

END1 C*WHILE*>

END I (*LOOP*>

END TestMenu.

Chap.4

Menus 95

Description:
We have already described Drag, the basis for TestMenu. Therefore, we will
describe only the differences.

• VAR shapelsRect indicates which shape to draw. It is true only if the
shape is a rectangle. Otherwise, it is false.

• VAR mouseWhere: We changed the name from where to mouseWhere
to avoid confusion with anEvent.where.

• VAR anEvent is an event record.
• PROCEDURE DrawShape draws a rectangle or an oval, depending on

shapelsRect.
• PROCEDURE NewShape is nearly identical to Drag's DrawRect proce­

dure. It calculates the shape's new rectangle coordinates as before. In­
stead of drawing the shape directly, it uses DrawShape.

• MODULE TestMenu:
TestMenu started by drawing the initial rectangular shape, as in

Drag.
Next, it creates and draws its menus. Because DrawMenuBar may

change the pen mode, we must set it to patXor here.
Until the user selects Quit from the File menu:

Until the user presses the button in the rectangle, TestMenu:
Reads an event with GetNextEvent. Note that it accepts

all events, since the mask is every Event.
If the result was not a nullEvent, we continue examining

the event.
TestMenu is interested only in mouseDown events.
If the button was pressed in the menu bar (vertical co­

ordinate less than 20), TestMenu calls WhichMenu
to perform pull-down menu service.

Because WhichMenu changes the pen mode, we must re­
set it to patXor.

If the user selected item 2 of menu 1 (Quit), then Test­
Menu can exit the loop and end the program.

Otherwise, if the user selected an item from menu 1, Test­
Menu must change the shape.
It begins by erasing the old shape.
Next, it sets the new shapelsRect. If the user sel­

ected item 1 (Rectangle) then ShapelsRect is
set true.

Now TestMenu draws the new shape.
After interpreting the menu selections, it turns off menu

highlighting.
TestMenu calculates the offset from the coordinates of the

96

Modifications:

Interactive Graphics Chap. 4

mouse when the button was pressed to the top left-hand
corner of the shape's defining rectangle.

Until the user releases the mouse:
TestMenu determines the latest mouse coordinates,

erase the shape from its previous position, and
draws it at the new position.

Add a Rounded Rectangle option to the Shape menu. You should redefine
shapelsRect as an enumerated type with values IsRect, IsOval, and IsRounded­
Rect. Then change DrawShape and the menu selection loop accordingly.

Notes:
TestMenu looks like a typical Macintosh application. You can manipulate an
object with the mouse and select from pull-down menus. But there is one
major difference between TestMenu and a standard application: TestMenu
lets you drag the shape into the menu bar. That should never be permitted.

TestMenu demonstrates another problem as well. Remember that we
had to keep resetting the pen mode each time TestMenu called WhichMenu.
The ToolBox assumes it can change the pen mode, shape, or pattern, at any
time. We will explain the reasons for this in the next section.

WINDOWS

A window is a rectangular area of the screen. Applications display their out­
put within windows. Each one has its own graphic pen size, mode, position,
and pattern. Coordinates in a window are relative to its top left-hand corner
(in other words, the top left-hand corner of the window is h = 0, v = 0). After
you tell the ToolBox which window to use, it prevents you from drawing
outside that window.

Before we continue, let's define some window terminology (see Figure
4-3). Macintosh windows are divided into regions. Along the top of the win­
dow is the drag region. You can drag the window across the screen if you
press the button while the mouse is in this area. Since the window's title is
displayed in the drag region, it is also called the title bar. When a window is
active, the title bar contains a highlighted effect. At the left side of the drag
region is the go-away region. A user can remove a window by clicking the
mouse button in this area. The rectangle drawn in the go-away region is called
a close box. Your program should never draw in a window's drag or go-away
region. Applications' output appears in the remaining portion of the window,
called the content region. The lower right-hand corner of the content region

Windows

Drag Region Go-Avag Region

~Close Box_

~F- Wmdow

or Title:.:=:>

Content Region

~vRegio~
]

Figure 4-3: Window terminology.

97

is called the grow region. The ToolBox contains procedures for changing the
window's size when you press the button there. We won't use this feature,
though.

The ToolBox provides procedures to perform standard window actions.
Module Windows provides a simple interface to these procedures, allowing
you to easily incorporate windows into your programs.

Module Name: Windows

Techniques Demonstrated:

• Using events and event masks.
• Using windows.
• Procedure type parameters.
• Changing fonts.
• Updating windows.
• Converting between local and global coordinate systems.

Procedure for Using:
Use MakeWindow to create and draw the windows your program needs. Dis­
poseWindow removes windows you no longer need. The main loop of your
program should begin by calling ProcessWindow. This routine automatically
detects and processes mouseDown events in a window's drag or go-away re­
gion. It also takes care of menu processing.

98 Interactive Graphics Chap. 4

Listing of Definition Module:

DEFINITION MODULE Windows1

FROM ToolBoKTypes IMPORT EventRecord 1 WindowPtr1
FROM QuickDrawTypes lMPORT 8rafPtr1

EXPORT QUALIFIED MakeWindow, PWResponse,
ProcessWindow, DisposeWindow,
UpdateProc, SetPort, SelectWindow1

<* Create a "noarowDocProc" window •>
PROCEDURE MakeWindow< VAR theWindow1 WindowPtr1

left, top, right, bottom1 CARDINALI
titler ARRAY OF CHAR >1

<• Erase and deallocate theWindow •>
PROCEDURE DisposeWindow< theWindow1 WindowPtr >;

TYPE
PWResponse • < pwignore, pwinContent,

pwinMenu, pwClose >1
UpdateProc •PROCEDURE <WindowPtr>1

<* Get and process window-related events •>
PROCEDURE ProcessWindow< VAR theEvent1 EventRecord1

VAR theWindow1 WindowPtrt
VAR theMenu, theltem1 INTE8ER1
theUpdProc1 UpdateProc

> 1 PWRasponse1

PROCEDURE SetPort <port1 8rafPtr> 1

PROCEDURE SelectWindow <theWindow1 WindowPtr>1

END Windows.

Listing of Implementation Module:

IMPLEMENTATION MODULE Windows1

FROM QuickDrawTypes IMPORT
FROM MacSystemTypes IMPORT
FROM MiniQD IMPORT
FROM Storaqe IMPORT
FROM ToolBoKTypes IMPORT

FROM Strings IMPORT
F·RoM Mac: Interface IMPORT
FROM Menu IMPORT

CONST
ex = 35581
QuickDraw1ModNum
EventManagerModNum
WindowManagerMcdNum
DeskManagerModNum

= 21
e,
91

.. 14;

noGrowDccProc = 41

inDesk .. 01
inMenuBar = 11
inSysWindow = 21
inContent = 3;
inDrag = 4;
in8row = 51
in8oAway = 61

Point, Rect, GrafPtr1
Str255, LongCard, Pt.r;
SetRect;
ALLOCATE, DEALLOCATE'
WindowPeek, WindowPtr,
EventRecord1
StrModT0Mac1
screenBits;
WhichManu1

Windows

.. -1, .. e,
= 161
.. 321

everyEvent
keyDownMask
keyUpMaak
autoKeyMask
noKeyEvents • everyEvent - keyDownMask

- keyUpMask - autoKeyMask1

mouseDown • 11
updateEvt = 6J

systemFont • 01

PROCEDURE NewWindow<wStoragea
boundsRect1
title•
visible1
theProc1
behind•
goAwayFlag1
refCon1

CODE CX; WindowManagerModNumt 3

WindowPeek1
Rect1
Str2551
BOOLEANJ
INTEGER1
WindowPtr1
BOOLEAN;
LongCard)1 WindowPtr1
END NewWindow1

PROCEDURE SetPort <port1 GrafPtrlJ
CODE CX; QuickDraw1ModNum1 5 END SetPort;

VAR
behindNone1 LongCardl

<* Create a "noGrowDocProc" window *>
PROCEDURE MakeWindow< VAR theWindow1 WindowPtr;

VAR
ri Rect;
str: Str255;
ref: LongCard1

BEGIN

left, top, right., bottom1 CARDINAL;
title: ARRAY OF CHAR >1

SetRect< r, left, top, right, bottom >;
StrModToMac< str, title >;
theWindow1=NewWindow< NIL, r, str, TRUE, noGrowDocProc,

WindowPtr<behindNone>,

SetPort< theWindow >1
END MakeWindow;

TRUE, ref >1

PROCEDURE DisposeWindow <theWindow1 WindowPtr>1
CODE CXp WindowManagerModNum; 6 END Dispo11eWindow1

PROCEDURE TrackGoAway <theWindow1 WindowPtr;
thePt1 Point>1 BOOLEAN!

CODE CX1 WindowManagerModNum; 19 END TrackG0Away1

PROCEDURE FindWindow <thePoint1 Point1
VAR theWindow1 WindowPtr>1 INTEGER!

CODE CX; WindowManagerModNum1 18 END FindWindow1

VAR
dragRect1 Rect1

PROCEDURE DragWindow <theWindowa WindowPtr1
startPt1 Pointp
boundsRecta Rect>1

CODE CX1 WindowManagerModNum1 21 END DragWindow1

PROCEDURE SelectWindow <theWindow1 WindowPtr>1
CODE CX1 WindowManagerModNum1 9 END SelectWindow;

99

100 Interactive Graphics

PROCEDURE FrontWindow()1 WindowPtr;
CODE ex, WindowManagerModNum! 16 END FrontWindow1

PROCEDURE Global ToLoc:al <VAR pt1 Point>!
CODE CX! Quic:kDraw1ModNum1 50 END Global Tol-oc:al I

PROCEDURE 8ystemClic:k<theEvent1 EventRec:ordp
theWindow1 WindowPtr>1

CODE CX! DeskManagerModNum1 3 END SystemClic:kp

PROCEDURE GetNextEvent<mask1INTEGER1
VAR theEvent1 EventRec:ord)1 BOOLEAN;

CODE CX; Event.ManagerModNum; 1 END GetNe>etEvent1

PROCEDURE BeqinUpdate <theWindow: WindowPtr>;
CODE CX; WindowManagerModNum: 28 END BeqinUpdate;

PROCEDURE EndUpdate <theWindow: WindowPtr>;
CODE CX; WlndowManagerModNum; 29 END EndUpdate1

<* Get and process window-related events *>
PROCEDURE Proc:essWindow< VAR theEvent1 Event.Record:

BE:C;JN

VAR theWindow: WindowPtr1
VAR theMenu, theltem1 INTEGER;
thelJpdProc: l..lpdateProc:

> 1 PWRespcmse1

IF Get.Next.Event< noKeyEvents, theEvent
THEN

CASE theEvent. what OF

mouseDown:
CASE FindWindow< theEvent.where, theWindow > OF

inMem1Bar:
WhichMenu< theEvent.where, theMenu, theitem >1
RETURN pwinMenLl'

inSysWindowc
SystemClick< theEvent, theWindow >;

inDrag1
DragWindow< theWindow, theEvent.where,

dragRec:t >;

inGrow, inContent1
IF theWindow #Front.Window<>
THEN SelectWindow< theWindow >1
END; <*IF*)

Set.Port< theWindow >;
GlobalToLoc:al < theEvent.where >1
RETURN pwinContent1

inGoAway:

ELSE

IF Trac:kGoAway(theWindow, theEvent.where >
THEN RETURN pwClose1
END; <*IF*>

ENOJ <*CASE FindWindow*>

updateEvt1
theWindow1=WindowPtr<theEvent,message>1
Set.Port< theWindow >1

Chap.4

Windows

ELSE

BeginUpdate< theWindow >;
theUpdProc< theWindow >1
EndUpdate< theWindow >;

END1 <*CASE t.heEvent.what*l

END; <*IF GetNextEvent*l
RETURN pwlgnore;

END ProcessWi. ndow;

PROCEDURE TextFont <font1 INTEGER>;
CODE CX; QuickDraw1ModNum; 31 END TextFont1

BEGIN
behindNone.h1•65535;
behindNone.1:•65535;

Text.Font< systemFont >1

WITH screenBits.bounds DO
SetRect< dragRect, 4, 24, right-4, bottom-4 >;

END; <*WITH screenbi ts*>
END Windows.

101

Description:

• TYPE WindowPeek is a pointer to the data structure representing a win­
dow.

• VAR screenBits is a system variable that describes the Macintosh screen
bit-map. In this program, we are interested only in screenBits.bounds,
the rectangle that defines the size of the screen.

• CONST noGrowDocProc identifies the style of window we want. A no­
GrowDocProc (what an elegant name!) has a rectangular shape, a close
box, and no grow region.

• The FindWindow procedure (see below) translates a screen position into
one of seven logical locations:

CONST inDesk: The screen position was not in a menu or window
(i.e., none of the other constants is true).
CONST inMenuBar: The position was in the topmost 20 pixels of
the screen.
CONST inSysWindow: The position was inside a window that was
not created by your program. The clock accessory is an example.
CONST inContent: The position was in the content region of a win­
dow.
CONST inDrag: It was in the window's title bar.
CONST inGrow: The position was in a window's grow region.
CONST inGoAway: The position is in the go-away region of a
window.

• Next, we have some event masks, as used by GetNextEvent:
CONST everyEvent lets GetNextEvent examine any kind of event.

102 Interactive Graphics Chap. 4

CONST keyDownMask permits events generated by pressing a key.
CONST keyUpMask permits events generated by releasing a key.
CONST autoKeyMask passes events generated by automatic key
repetition.
CONST noKeyEvents combines the preceding four masks. noKey­
Events passes all events except the three keyboard-related kinds.

• CONST mouseDown is the event number for pressing the mouse button.
• CONST updateEvt is the event number for a window update request.

An update event is generated whenever a portion of a window is un­
covered. The program must then redraw the revealed area. Figure 4-4 il­
lustrates an example update event. In it, selection of Window 1 reveals
its lower right-hand corner, causing an update event.

• CONST systemFont is the number of the Chicago character font.
• PROCEDURE NewWindow: This ToolBox procedure allows you to de­

fine and display a window. The parameters are:
wStorage points to memory that can contain a window's data

structure. If, instead, you pass the NIL (empty) pointer,
NewWindow allocates memory for you.

boundsRect defines the position and size of the wondow's content
region.

title is printed in the drag region.
visible indicates whether the window should be displayed when it

is created.
theProc is the window's style. See Exercise 4-5 for more informa­

tion on the available styles.
behind is a pointer to a window to place the new one behind. If

behind is -1, the new window begins on top of all others.

Active window

Window 1 1 ~D§ Window 1

sD§ Window 2 2

Active window

Figure 4-4: Update event.

Windows 103

goAway indicates whether to draw a close box in the title bar. If
true, the new window will have a close box.

refCon is a user-defined value associated with the window.
NewWindow returns a pointer to the window.

• PROCEDURE SetPort: Given a pointer to a window, SetPort limits all
QuickDraw operations to the content region of the window. Note that
you can draw in a partially or completely hidden window.

• VAR behindNone is set to -1, for use as the behind argument to New­
Window.

• PROCEDURE MakeWindow is the procedure you use to create new
windows. Make Window returns a pointer to the new window in theWin­
dow. You need only supply the window's screen coordinates and title.

MakeWindow begins by creating a bounds rectangle.
It then converts the title into an Str255.
MakeWindow creates a new window. The window will be visible,

has a noGrowDocProc style, is drawn on top of all others,
and has a close box.

Finally, it limits all QuickDraw routines to the new window.
• PROCEDURE DisposeWindow erases the window from the screen and

deallocates its memory.
• PROCEDURE TrackGoAway draws a highlight in the close box as long

as the mouse is in the go-away region. TrackGoA way returns true if the
mouse was in the go-away region when the button was released.

• PROCEDURE FindWindow analyzes the supplied screen position. the­
Window returns a pointer to the window at the position. FindWindow
returns an integer that indicates which region the position was in (e.g.,
inMenuBar, inContent, etc.).

• PROCEDURE DragWindow drags a gray outline of the supplied window
with the mouse, until you release the button. DragWindow then moves
the window to the new position and generates any appropriate update­
Evt or activateEvt events (see Table 4-2). This window will then be­
come active. The boundsRect defines the screen area in which you may
drag the window. For example, dragRect is a rectangle bounded by the
menu bar at the top, and four pixels in from the left, bottom, and right
edges of the screen.

• PROCEDURE SelectWindow brings theWindow in front of all other
windows. It generates any required window update and activate events.
You still must use SetPort before drawing in theWindow.

• PROCEDURE FrontWindow returns a pointer to the frontmost win­
dow.

• PROCEDURE GlobalToLocal changes a screen-relative coordinate to a
coordinate relative to the active window. Note that the top left-hand
corner of a window's content region has local coordinates h = 0, v = 0.

104 Interactive Graphics Chap. 4

• PROCEDURE SystemClick: Call SystemClick when you detect a
mouseDown event in a system window (see FindWindow). This allows
the system to process interactions with a desk accessory.

• PROCEDURE BeginUpdaterestricts QuickDraw operations to freshly ex­
posed areas in theWindow. See ProcessWindow (below) for an example.

• PROCEDURE EndUpdate lets QuickDraw operations occur in all visible
portions of theWindow. Call EndUpdate after calling BeginUpdate and
redrawing the window's contents.

• PROCEDURE ProcessWindow detects and processes any event related
to windows or menus.

Its parameters are:
theEvent contains the event to which ProcessWindow is re­

sponding.
theWindow returns a pointer to the window associated with

the event. You may need this value when ProcessWindow
returns pwlnContent or pwlnClose.

theMenu and theltem: If you made a menu selection, Process­
Window returns pwlnMenu, and sets theMenu and the­
Item appropriately.

theUpdProc is the name of a procedure that you supply to
update a window. When ProcessWindow detects an up­
date event, it will call theUpdProc to redraw the affected
window.

ProcessWindow begins by scanning for any kind of event except a
keystroke. If there were no interesting events, it returns.

If the event was a mouse press, it calls FindWindow to deter­
mine where the mouse was.
If it was in the menu bar, WhichMenu takes care of it,

and we return the menu and item numbers. Process­
Window returns pwlnMenu.

If the mouse was in a system window, System Click takes
care of it. ProcessWindow returns pwlgnore, since
your program need not respond to this event.

If it was in the drag region of a window, DragWindow
takes care of it. Since your program need not re­
spond to this event, ProcessWindow returns
pwlgnore.

If the mouse was in the grow or content region of a win­
dow, ProcessWindow activates that window. It
converts the mouse location to coordinates local
to the window.

ProcessWindow returns pwlnContent.
If it was in the go-away region, ProcessWindow calls

TrackGoAway, to highlight the close box. If you

Windows 105

release the button while the mouse is inside the go­
away region, it returns pwClose. In that case, your
program should call DisposeWindow(theWindow).
Otherwise, your program can ignore this event.

Otherwise, if the event was an updatEvt, ProcessWindow
must update a window.

First, it extracts a pointer to the window from the event's
message field.

Next, it restricts QuickDraw operations to the updated
areas of that window.

theUpdProc redraws the window.
Finally, ProcessWindow permits drawing in the window's

content region again.

• PROCEDURE TextFont sets the character font of the current window.
Subsequent operations that draw text (such as WriteString) will do so in
the indicated font (see Appendix A).

• MODULE Windows must initialize a few things:

Notes:

It sets behindNone to -1, for use in calls to NewWindow.
We want to use the system font, initially. This makes the window

titles appear in the proper font.
Finally, we initialize dragRect as previously described.

We used the screenBits variable to determine the size of the screen. Why not
just assume Macintosh's 512 by 342 pixel bit-map? Primarily, we would like
our programs to run on versions of the Macintosh with different bit-maps,
such as the XL. Besides, you can run Macintosh programs on an Apple Lisa 2,
using a package called MacWorks. Lisa's 720-by-364-pixel bit-map is larger
than Macintosh's.

Understanding ProcessWindow's theUpdProc can be difficult. Since the
ToolBox does not remember the contents of hidden window areas, your pro­
gram must always be able to redraw all portions of a window. When Process­
Window encounters an update event, it calls theUpdProc to redraw the af­
fected window. It passes along a pointer to the window so your program can
determine which one to redraw.

While the inner workings of Windows are complex, using its facilities is
relatively easy. Test Window is a simple example that draws two windows and
lets you select and move them around.

Module Name: TestWindow

Techniques Demonstrated:

• Using Windows to display and manipulate multiple windows.
• Updating windows.
• Using Menu via ProcessWindow.

1 nteract1ve . Graphics Chap. 4

106 "t you should see\ ishow Test· d. play simi-
" r Using: When you run 1 • the display. No e Notice Procedure o W"ndow as usual. . <lows around t the File menu. dary

Prepare !est ~-5. Drag both1':i'nwindow areas. T~ut of the drag bo~: how
1

to Figure ly revea e window b and no
arindow redraws new au attempt to dra~:ton in the close ~~ay region.

:hat hap~e~: ~:~ {Try press:::,~ t;:e bmouse leave~ t~:l~: Quit to exit the (Windows .d hlf ht disappears "'. h the demonstrat10 •

the close h1g g e satisfied wit ------------==~ When you ar
program.

Window 2

Test Window Figure 4-5: demonstration.

Listing 0 f Module:

· tWi ndow; MODULE Tes

FROM Windows

FROM Menu

l· .. 1.1.ii c k Dr""' Ty pes FRIJM ··

FROM MiniQD

OM Patterns
FR lBoxTypes FROM Tl1o

o · sposeWindow, M keWi ndl1W' 1 PWResponse1 IMF'DRT F'~~ces;sWindowMenuBar,
T AddMenu, Draw

IMF'OR HiLi t eMenu:
lMPfJRT Rec.t.1

PenPat, F'OR r SetRect' Paint.Oval; IM PaintRect., .

pBlack, Ptq PORT pDiag, d Window IM RT EventRecor ' IMPO

VAR ' ndow2, wh1 ' chWindow: window!, ~lEventRecord; WindowPtr1
h ' sEvent.

t it: BOOLEAN; INTEGER; qui he Item: t heMenu, t ~. Rect; 1 shape..:;. shape '

Windows

PROCEDURE Update (theWi ndow1 Wi r1dowPtr l I
BEGIN

IF theWindow=window1 THEN PaintRect< shapa1
ELSIF theWindow=window2 THEN PaintOval< shape2
EN01 <*IF*l

ENO Upd.ate1

BEGIN
quit1•FALSE;

AddMenu< "File", "<-----1Quit" >1
OrawM11nuBar1

SetRect< shape1, 90, 50, 290, 150 >1
MakeWindow< window1, 20, 50, 400, 250, "Window 1" >1
PenPat < pOi ag l 1
Update< windowl >1

SetRect < sh.ape2, 100, 30, 190, 200 l 1
MakeWindow< window2, 200, 100, 480, 330, "Window 2" l I
PenP.at< pBlack >1
Update< window2 >1

REPEAT

CASE ProcessWindow< thisEvent, whichWindow,
theMenu, theitem, Update > OF

pwinMenu1
quit 1• <theMenu • ll ANO <theltem = 2>1
HiLiteMenu< 0 >1

pwClose1
OisposeWindow< whichWindow >1

ELSE
ENO; <*CASE ProcessWindow*l

UNTIL quit;

ENO TestWindow.

Description:

107

• VAR windowl and window2 contain pointers to the windows we draw.
• VAR whichWindow receives ProcessWindow's theWindow parameter.
• VAR thisEvent receives ProcessWindow's theEvent parameter.
• VAR quit will be set true when you select Quit from the File menu.
• VAR shapel and shape2 define the rectangular boundaries of the ob­

jects we will draw in windows 1 and 2.
• PROCEDURE Update decides which window must be updated, and re­

draws it.
• MODULE TestWindow:

After initializing quit, we create and draw the menu.
We define the initial position and size of the first window. Then we
create and draw the window with MakeWindow. TestWindow sets
the first window's pen pattern and lets Update draw the shape.

108 Interactive Graphics Chap. 4

TestWindow does the same for the second window.
Until the user selects Quit:

It allows ProcessWindow to process an event.
If you made a menu selection, TestWindow sets quit accord­
ingly. It then turns the menu highlight off.
If you clicked the button in a window's close box, then Test­
Window disposes of that window.

Modifications:
It is a simple matter to add more windows. Add more window pointers
(window3, window4, etc.) to accommodate them. Extend Update so that it
draws the shape (or shapes) you want in the windows. At the beginning of the
program, create the extra windows and let Update fill them in. For example,
Listing 4-2 adds a window with some text in it.

Notes:

MODULE TestWindow1

FROM InOut IMPORT WriteString1

FROM MiniQD IMPORT SetRect, PenPAt, MoveTo,

VAR
window31 WindowPtr;

PROCEDURE Update< thaWindow1 WindowPtr >;
BEGIN

IF theWindow=windowl THEN PaintRect< shapel
ELSIF theWindow•window2 THEN PaintOval(sh•pe2
ELSIF theWindow=window3

THEN
MoveTo< 17, 1:5) 1
WriteString(

"A long, narrow window containing teKt." >1
END1 (*IF•>

END Update1

MakeWindow< window3, 106, 144, 406, 164, "Window 3" >;
Update< window3 >1

Listing 4-2: Adding a window to Test Window.

Notice that TestWindow does not deal with events at all. Windows' Process­
Window handles all interesting events for us.

INTERACTIVE GRAPHICS

So far, we have shown you how to use the mouse, menus, and windows.
These are three powerful tools for interactive graphics programming. We will
combine them to form the core of a powerful graphics editor. MicroDraw
allows you to draw lines, rectangles, rounded rectangles, and ovals. Once you

Interactive Graphics 109

have drawn a shape, you can drag it with the mouse. A modification will
demonstrate how to save the resulting pictures in a file, and how to load
them back again.

Module Name: MicroDraw

Techniques Demonstrated:

• Using Mouse, Menu, and Windows in a graphics editor application.
• Using data structures to represent graphics objects.
• Identifying the object at which the mouse is pointing.
• Saving and loading picture files.

Procedure for Using:
MicroDraw builds a menu and fills the rest of the screen with an editing win­
dow. You may draw four shapes (see Figure 4-6): lines, rectangles, ovals, or
"rectangles" with rounded corners. Select from the Functions menu the kind
of object you want to draw. Once you have selected a shape, move the mouse
to a suitable position and press the button. While holding the button, slide
the mouse. MicroDraw stretches the object between the mouse's original

MicroDraw

Figure 4-6: A sample MicroDraw display.

110 Interactive Graphics Chap. 4

position and its current position. Once you release the button, the object's
dimensions cannot be changed. You may reposition a shape using Drag in the
Functions menu. After selecting Drag, point to a shape and press the button.
As you slide the mouse with the button pressed, the object slides with it.
When you have the shape where you want it, release the button.

To leave the program, select Quit from the Files menu.

Listing of Module:

MODULE MicroDraw;

I* Chapter 4: A graphics editor *)

FROM MCJuse
FROM Windows

FROM Menu

IMPOR r Sti 11 Down, GetMouse1
IMPORf M<ikeWindCJw, DisposeWindow,

Proc:essW1ndow, PWRespon11e,
IMPORT Add Men Lt, Dr awMenuBar ,

Hi Li teMenu 1
FROM QuickDrawTypes IMPORT Point, Rect, patCopy, patXori
FROM MiniQD IMPORT SetRec:t, PenMode, PtinRec:t,

FROM ToolBoxTypes
FROM Storage
FROM Macinterface

TYPE

IMPORT
IMPORT
IMPORT

AddPt, SubPt, Pt2Rec:t,
MoveTo, Linero, FrameRoundRec:t,
FrameRec:t, FrameOval1
EventRec:ord, WindowPtr1
ALLOCATE, DEALLOCATE1
screenBit111

Shape• (Line, Rectangle, Oval, RoundedRec:t >;
PtrShapeRec = POINTER TO ShapeRec:1
ShapeRec: = RECORD

VAR

theShape1 Shapeg
definition1 Rec:t1
boundary1 Rec:t1
next1 PtrShapeRec1

END1

theWindow, whic:hWindow1 WindowPtr1
thisEvent1 EventRecord1
quit1 BOOLEAN1
theMenu, theitem1 INTEGER1
11hapeList1 PtrShapeRec:;
currentShape1 Shape;
dragOrDraw1 C Drag, Draw >;

PROCEDURE DrawOb.iec:tC theObJec:t1 PtrShapeRec: >1
BEGIN

WITH theObjec:t~ DO
CASE theShape OF

Line1 MoveToC definition.left, definition.top>;
LineTo< definition.right, definition.bottom >1

Rectangle: FrameRec:tC definition>;

Oval1 FrameOvalC definition >1

RoundedRec:t1 FrameRoundRectc definition, 16, 16 >1

END1 <•CASE•>
ENDg C•WITH•>

END DrawObJectp

Interactive Graphics

PROCEDURE NewObject;
VAR

<* Create and draw a new object *>

anOb.iec:t1 PtrShapeReq
fixedPoint, floatlngPoint1 Pointi

BEGIN
PenMode< patXor >;
NEW(anObject >;
anObJec:tA.next:=sha.peL1st; I* Link new object to list •>
shapeL1st:=anObject;

anOb.iectA.theShape:=c:urrentShape; I• Initialize object •>
fixedPoint:•thisEvent.where;

REPEAT <• until you release the button *I
GetMouse(floatinqPoint I;
Pt2Rectl fixedPoint, floatingPoint,

anObjec:t·". bouridary >;
IF. c:urrentShape = Line
THEN

anObJectA,definition.topLeft:•fixedPoint1
anObJec:tA.definition.botRight:=floatingPoint;

ELSE
anObJec:tA.definition:=anObJect··,boundary;

END; <*IF*>
DrawObjec:t (anObject >; <* Draw the objec:t *>
DrawOb.iectl a.nObJect. I;

UNTIL NOT StillDown<>i

PenMode< patCopy >;
DrawObJectl anObJect >;

END NewObjec:t;

PROCEDURE Update< theWindow: WindowPtr I;
VAR

1istPtr: PtrSha.peRec:;
BEGIN

PenModel pat.Copy >;
listPtr1~shapeList; <*begin at start of list *I
WHILE listPtr # NIL DO <* draw each object *>

DrawObJect< listPtr >1
listPtr1•listPtr~.next;

END; <•WHILE•>
END Update;

PROCEDURE DragObJect;<* Locate and reposition an object*>
VAR

anObJect: PtrShapeRec1
la.st.Position, thisPosition, offset• Point;

BES IN
PenMode< patXor >;

<* Locate first object containing mouse *I
anObject1•shapeList1

<* until we locate the objec:t or exhaust the list *>
WHILE CanObject # NIL>

DO

AND NOT PtinRect(thisEvent.where,
anObjec:t"·. boundary

anObJec:t:•anObjec:tA.next;
END; <•WHILE•>

IF anOb.iect # NIL
THEN <• Drag the object in the window •>

lastPosition:=thisEvent.where;
REPEAT <• until you release the button •>

111

112

GetMousel thisPosit1on >;
offset:=lhisPosition;

Interactive Graphics

SubPtl lastPosition, offset >:
DrawObJectl anObJect >; <*Erase the object*>
AddPt< offset, anObJect".defin1tion.topLeft >;
AddPtl offset, anObJect'.definition.botRight >;
AddPt< offset, anObJect~.boundary.topLeft)1
AddPt< offset, anObJectn.boundary.botRiqht >1
DrawObjer;t < anClb.iect) ' <* Redraw the object *>
lastPos1tion:=thisPosit1on;

UNTIL NOT StillDown<>;

Update(theWindow >;
END; <*IF*l

END DragObiect;

BEGIN
quit1=FALSE;
currentShape1•Line;
draqOrDraw1•Draw1
shapeLi st: =NIL;

AddMenu< "File", "<-----;Quit">; <*Create menus *l
AddMenu < "Functions",

"Line;Rectangle;Oval;Rounded Rectangle;Drag" >;
DrawMen~1Bar;

WITH screenBits.bounds DO
MakeWindow< theWindow, 4, 44,

"MicroDraw" >;
END! <*WITH screenbits*>

REPEAT

<* Create window *>
right-4, bottom-4,

CASE ProcessWindow(thisEvent, whichWindow,
theMenu, theltem, Update > OF

pwinMenu:
quit 1= (theMenu = 1> AND <theitem = 2>;
IF theMenu = 2
THEN

CASE theitem OF
1: currentShape:=Line; dragOrDraw1=Draw1
21 currentShape1=Rectangle; dragOrDraw1=Draw1
31 currentShape1 =Ovall dragOrDraw: '"Draw;
4: c:urrentShape1=RoundedRect;

dragOrDraw:=Draw;
5: dragOr·Draw1=Drag1

ELSE HALT1 (* Should never reach here *>
END; <*CASE*)

END; <*IF*>
Hi Li teMenu (0) ;

pwlnContent1
IF dragOrDraw = Draw
THEN NewCJbjec:t;
ELSE DragObJec:t;
END; <*IF*l

pwC:l.ose1
DisposeWindow< whichWindow >;

ELSE.
END; <*CASE ProcessWindow*l

UNTll.. quit;

END Mic:roDraw.

Chap.4

Interactive Graphics 113

Description:

• TYPE ShapeRec contains all the information needed for a shape. Its
fields are:

theShape describes the kind of shape (line, rectangle, etc.).
definition contains the two points defining the shape. In a rec­
tangle, oval, or round corner rectangle, definition is treated as a
Rect. When theShape is a line, though, we treat definition as the
two endpoints.
boundary is the smallest rectangle containing the object. We use it
to detect when the mouse is pointing at the object. Note that when
the shape is not a line, boundary is the same as definition.
next points to the next ShapeRec on the list.

• VAR theWindow points to our program's output window.
• VAR shapeList: MicroDraw maintains a list of every object you create.

shapeList points to the first object in the list.
• VAR currentShape indicates the most recently selected shape to draw.
• VAR dragOrDraw indicates whether we are drawing new shapes or drag­

ging old ones.
• PROCEDURE DrawObject draws the object pointed to by theObject.
• PROCEDURE NewObject creates a new object of the current type, and

adds it to the list. The first defining point is fixed at where the button
was pressed. The other point is at the cursor's current position. NewOb­
ject continues to redraw the object until you release the button.

VAR anObject points to the new object.
VAR fixedPoint retains the position where the button was pressed.
VAR floatingPoint contains the mouse's current coordinates.
N ewObject begins by using our favorite pen mode for redrawing
things, patXor.
Next, it allocates a new ShapeRec, pointed to by anObject, and
links it to the list of ShapeRecs.
It initializes the new object's shape and records the object's station­
ary corner or point.
Until you release the mouse button:

NewObject retrieves the most recent mouse position and con­
structs the bounding rectangle.
If it is constructing a line, NewObject records the defining
points in definition.topLeft and definition.botRight. Other­
wise, the defining rectangle is the same as the bounding rec­
tangle.
Finally, it draws the object and erases it.

Now the object's size has been defined. NewObject returns to pat­
Copy pen mode and draws the new object.

114 Interactive Graphics Chap. 4

• PROCEDURE Update draws all objects in the list.
VAR listPtr points to a ShapeRec.
Update begins by setting listPtr to the first object in the list.
Until the list is exhausted, Update draws the object pointed to by

listPtr and then points listPtr to the next object.
• PROCEDURE DragObject determines the most recently created object

whose bounding rectangle contains the cursor. It then moves the object
along with the cursor until you release the button.

VAR anObject points to a ShapeRec.
VAR lastPosition contains the previous coordinates of the mouse

cursor.
VAR thisPosition is the most recent set of mouse coordinates.
VAR offset is the difference between lastPosition and thisPosition.
DragShape begins by pointing anObject to the first shape in the list.

Until it locates an object whose bounding rectangle contains
the cursor position, DragShape points anObject to the next
object to the list.

If the list was exhausted without finding our object, it gives up.
Otherwise, anObject points to the shape we are looking for. Drag­
Shape records the original mouse position in thisPosition.
Until you release the mouse button:

It reads the most recent mouse coordinates and computes the
offset from the next most recent coordinates.

Next, it erases the object.
DragShape shifts the object's position by adding offset to its

defining and bounding points.
It draws the object at its new position.
Then, it saves thP. current mouse position in lastPosition for

the next iterations.
Finally, DragShape redraws the window with Update.

• MODULE MicroDraw:
MicroDraw starts by permitting the user to draw lines.
Next, it creates the menus and the window. Note that MicroDraw

defines the window using screenBits.bounds (see the Notes on
Windows), so that the window uses as much space as is avail­
able.

Until you select Quit from the Files menu:
It permits ProcessWindow to read and process an event.
If you selected from a menu:

MicroDraw detects and records whether you selected
Quit.

If you selected from the Functions menu, it records the
new shape and whether the program is now in drag
or draw mode.

MicroDraw removes the highlight effect from the menu
bar.

Interactive Graphics 115

If you pressed the button in the content or grow region of
the window:

Modifications:

If the program is in draw mode, it draws a new object.
Otherwise, it finds an old object to drag across the win­

dow.
If you clicked the mouse in the close box, it removes the win­

dow.

MicroDraw violates one of Apple's major guidelines for designing Macintosh
user interfaces. This rule says that a program's modes should always be obvi­
ous. A mode is a program state that affects what the program does. In the
case of MicroDraw, we should be able to see whether we are permitted to
draw objects or drag them. If we are permitted to draw objects, we should be
able to tell which shape will appear. How can we do this? Here are two ways
(an exercise will suggest a third):

First, you could indicate the mode in the window title. Make the
changes in Listing 4-3.

FROM Qui ckDrawTypes IMF'ClRT' Point, Rect, patCopy, pat Xor,
Str255;

FROM Strings IMPORT StrModToMac;

CONST
ex = 355B;
TmilBoxModNum = 2;

PROCEDURE SetWTitleC theWindow: WindowPtr;
title• Str255 >;

CODE CX; ToolBoxModNum; 54; END SetWTitle;

PROCEDURE SetWindowTitleC title: ARRAY OF CHAR >1
VAR

SI Str255;
BEGIN

StrModToMacC s, title>;
SetWTitle< theWindow, s >1

END SetWindowTitle;

MakeWindow< theWindow, 4, 44, right-4, bottom-4,
"MicroDraw CLinel" >;

CASE theltem OF
1: c~1rrentShape1 =Line; dragOrOraw1 =Draw;

SetWindowTitle< "MicroDraw <Line>" lJ
21 currentShape1=Rectangle1 dragOrOraw1=Draw1

SetWindowTitle< "MicroDraw <Rectangle>" >1
31 currentShape1=0val1 dragOrOraw1=Draw1

SetWindowTitle("MicroDraw (Ovall" >1
41 currentShapet•RoundedRect;

dragOrOraw1=Draw;
SetWindowTitleC "MicroDraw (RoundRectl" >1

51 dragOrOraw1=Drag1
SetWindowTitle< "MicroDraw <Drag>" >1

ELSE HALT; <* Should never reach here *l
END; C*CASE*l

Listing 4-3: Displaying MicroDraw's mode in the window title.

116 Interactive Graphics Chap. 4

You could also reflect the current mode in another window. As the
mode changed, the program would draw an appropriate shape in the new
window. Listing 4-4 contains the required modifications.

FROM Windows

FROM InOut
FROM Patterns
FROM MiniGID

VAR

IMPORT MakeWindow, DisposeWindcw,
PrccessWindcw, PWRespcnse
SelectWindcw, SetPcrtt

IMPORT WriteStringt
IMPORT pWhite, pBlackt
IMPORT BetRect, PenMcde, PtinRect,

PaintRect, PenPat,

modeWindow, theWindcw, whichWindow1 WindowPtr1
modeRect1 Rect1

PROCEDURE NewMode1
BEGIN

SetPort< madeWindcw >1
PenPat< pWhite >1
PaintRect< madeRect >t
PenPat(pBlack >1
IF dragOrDraw m Drag
THEN

MaveTa< 26, 23 >1
Wri teString < "DRAG" >I

ELSE
CASE currentShape OF

Line1 MoveTo< modeRect.left, modeRect.tap >1
LineTa< madeRect.right, modeRect.bottom >1

Rectangle• FrameRect< modeRect >1

Oval• FrameOval(modeRect)J

I RoundedRect1 FrameRoundRect< mcdeRect, 10, 10 >t
END1 <*CABE*>

END1 <*IF*>
END NewMcde1

PROCEDURE Update< theWindow1 WindowPtr >1
VAR

listPtr1 PtrShapeRec1
BEGIN

IF theWindow = modeWindow
THEN NewMode1
ELSE

PenModeC patCcpy >1
listPtr1•shapeList1 <* begin at start of list *>
WHILE listPtr # NIL DO <* draw each object *>

DrawObJect< listPtr >t
listPtr1=listPtr~.neKt1

ENDt <*WHILE*>
END1 <*IF*)

END Update;

WITH screenBits.bounds DO <* Create window *>
MakaWindow< modeWindcw, (right DIV 2>-40, bcttcm-40,

<right DIV 2>+40, bcttcm-2,
"Mede" >J

MakeWindcw< theWindcw, 4 1 44, right-4, bottcm-SO,
"MicrcDraw" >1

END1 <*WITH screenbi ts*>

Interactive Graphics

SetRect< mcdeRect, 23, 2, 57, 36 >'
NewMcde1

I 51 dragOrDraw1=Drag1
ELSE HALT1 <* Should never reach here *)
END1 <*CASE*>
NewMcde1

END1 <*IF*>
HiLiteMenu< 0 >1

pwinCcntent1
IF whichWindcw i mcdeWindcw
THEN

IF dragOrDraw • Draw
THEN NewObject1
ELSE DragObject1
END1 <*IF*>

END1 <*IF whichWindcw*)

Listing 4-4: Display MicroDraw's mode in a separate window.

117

MicroDraw has another problem. To demonstrate it, draw a perfectly
horizontal or vertical line, and then try to drag it. You can't. Consider how
the line's bounding rectangle was computed. It is defined as the smallest rec­
tangle containing the line's defining points. Since a vertical line's horizontal
coordinates are all the same, its bounding rectangle is infinitely narrow. That
means its rectangle can never contain the mouse coordinates, so you cannot
drag the line. To correct the problem, we can expand lines' bounding rectan­
gles slightly. Try the following modification:

CONST
ex= 355B;
QuickDrawlModNum = 2;

PROCEDURE InsetRect (VAR r: Rect; dh, dv: INTEGER);
CODE CX; QuickDrawlModNum; 56 END InsetRect;

PROCEDURE NewObject; (*Create and draw a new object*)

If currentShape = Line
THEN

an Object/'. definition. top Left :=fixedPoin t;
an Object!\ definition. botRight: =floatingPoint;
lnsetRect (anObjectA.boundary, -1, -1);

ELSE

InsetRect shrinks rectangle r by the specified amounts. If dh and dv are nega­
tive, as they are here, it expands the rectangle.

We would also like to save and restoreMicroDrawpictures. Trythe mod­
ification in Listing 4-5.

118 Interactive Graphics

ProcessWindow, PWResponse,
SetPort;

FROM Mfmu IMPOR'T AddMenu, DrawMenuBar,
Hi Li teMenu;

FROM Patterns
FROM ToolBoMTypes
FROM InOut

FrameRect, FrameOval,
PenPat, PaintRect;

IMPORT pWhite, pBlack;
IMPORT EventRecord, WindowPtr;
IMPORT Open l.nput, OpenOutput,

FROM SYSTEM
FROM Terminal

Closeinput, CloseOutput,
Read, WriteWrd, Done;

IMPORT WORD;
IMF'ORT CleotrScreen1

MODULE ShapeinOut;

IMPORT Read, WORD, WriteWrd, ShapeRecp

EXPORT ReadShape, WriteShape, ReadWrd1

TYPE WrdKluge = RECORD
CASE BOOLEAN OF

TRUE1 AsChars1 ARRAYCO •• ll OF CHARI
I FALSE1 AsWord1 WORD!
END;

END;

PROCEDURE ReadWrd(VAR w1 WORD>;
VAR buffer1 WrdKluge;

ch: CHARI
BEl3IN

Read C ch > 1 buffer.AsCharsCOJ1=ch1 <*rsad first byte*>
Read(ch >1 buffer.AsCharsC1l1=ch; (* ••• and second*)

END ReadWrd;

PROCEDURE ReadShape(VAR aShape1 ShapeRec >1
BEl3IN

WITH aShape DO
ReadWrd< theShape >1
WITH definition DO

ReadWrd< left >1 ReadWrdC top >1
ReadWrd< right >1 ReadWrd< bottom >1

END1 <*WITH definition *l
WITH boundary DO

ReadWrd< left >1 ReadWrd(top >1
ReadWrd(right >1 ReadWrd(bottom >1

END1 <*WITH boundary *l
END1 C*WITH aShape*l

END ReadShape;

PROCEDURE WriteShape(aShape1 ShapeRec >;
BEl31N

WITH aShape DO
WriteWrd(theShape >;
WITH definition DO

Wr·iteWrd< left.>; Writ.eWrd<
WriteWrd(right >; WriteWrd(

END; <*WllH definition*)
WI TH bllttndar·y DO

WriteWrd< left>; WriteWrd<
WriteWrdl right >; WriteWrd(

END; <*WITH boundarv *>
END; <*WITH aShape*>

END WriteShape;

END ShapelnOut.;

top) .
' bottom

top) ;
bottom

>;

) I

Chap.4

Interactive Graphics

PROCEDURE Load;
VAR

anOb .iect 1 PtrShapeRec;
numShapem: CARDINALI

BEGIN
Clear Screen;
Open Input< "DRW" >'
IF Done THEN

ReadWrd< numShapes >1
IF Done THEN

WHILE shapeList # NIL DO (*Deallocate old mhapem *)
anObject1=shapeList,
shapeLi mt 1 =mhapeLi st". next l
DISPOSE< anObJect>1

END; <*WHILE*>

WHILE numShapes > 0 DO <* Load and allocate shapes*>
DEC< numShapes >;
NEW< anObJect) I
ReadShape< anObJect~ >1
anObJect·~. ne><t 1 =shapeLi st 1
shapeList1manObject1

END1 <*WHILE*>
END1 (*IF*>
Clo!5einput1

END; <*IF*>

ClearSc:reem1
Update(theWindow >1

END Load;

PROCEDURE Savep
VAR

anObject1 PtrShapeRec;
numShapes1 CARDINAL;

BEGIN
ClearScreem;
OpenOutpLlt ("DRW") ;
IF Done THEN

anObjec:t1=shapeList;
nurnShapes:=01
WHILE anObJect # NIL DO

INC< numShapes >;
anObJect1•anObJect".newt

END; <•WHILE*>

anOb .iect 1 =shapeLi st 1
Writ.eWrd< nLlmShapes >;
WHILE anObject # NIL DO

Wr-iteShape(anObJect"' >1
anObject1=anObJect".next

END; <*WHILE*>
CloseOL1tpL1t;

END1 <•IF*>

ClearScreen1
Update< theWindow >;

END Save;

<* Draw new shapes *>

<* Count shapes *l

<* Save shapes •>

AddMenL1("File", "Load1Save1<-----;GIL1it" >1
AddMenu< "F~nctions",

CASE ProcessWindow(thisEvent, whichWindow,
theMenL1, theltem, Update) OF

119

120

pwlnMenu1
IF theMenu = 1
THEN

CASE theltem OF
11 Load;

I 21 Save;
I 41 quit1=TRUE'
END1 <•CASE*>

ELSIF theMenu = 2
THEN

CASE theltem OF
11 currentShape1=Line1

Interactive Graphics Chap. 4

dragOrDraw1=Draw1

Listing 4-5: Load and save MicroDraw pictures.

• MODULE ShapeinOut exports procedures to read and write shapes to
and from the standard input and output files.

• PROCEDURE Load reads a new list of shapes from a file.
Load begins by clearing the window and opening the file. If it

opens properly, Load next reads the number of shapes the
file contains. Note that ReadWrd reads binary data, unlike
ReadString or Readlnt. Do not attempt to examine Mircro­
Draw data files with Edit-they are not readable.

Then, Load returns all current shapes' memory to the system.
Next, it allocates memory for new shapes and reads them from the

file. As Load reads a new shape, it links the shape onto the list.
When Load has finished reading the file, it closes it. Then it clears

the window again, and draws the new shapes with Update.
• PROCEDURE Save is similar to Load.

It clears the window and opens a new file.
If the file opened properly, Save examines the shape list and counts

the number of shapes in it. It saves this number in the file.
Save writes each shape to the file, and closes it.
Finally, Save clears the window again, and redraws the shape list

with Update.
• We have added two new items to the File menu: Load and Save. Note

that the pwinMenu case has been adjusted accordingly: Item 1 invokes
the Load procedure, 2 invokes Save, and 4 sets the quit variable.

As in our Draw program (Chapter 2), Openinput requires you to specify
precisely the name of a file to read. It will not permit you to continue until
you name an existing file. Again, remember that file names are not case­
sensitive.

Notes:
By pressing Command-Shift-4, you can print the currently active window.
Use this technique to print MicroDraw images. This capability is built into

Exercises 121

the Macintosh, and is automatically provided by GetNextEvent. You can also
create a MacPaint image of the screen, including the Micro Draw window, by
pressing Command-Shift-3. Macintosh stores each image in a file named
Screen 0, Screen 1, ... , up to Screen 9.

There is a basic difference between MicroDraw and MacPaint. Once you
have drawn a MacPaint object, its description no longer exists. To move or
change it, you must explicitly outline it. MacPaint is image-oriented.

MicroDraw, on the other hand, maintains a description of every object
you draw. As presented, you are only permitted to move an object. You
could, however, enhance MicroDraw to allow any aspect of an object to be
changed. For example, you could move one endpoint of a line without chang­
ing the other, or reshape an oval.

EXERCISES

4-1. As we discussed, Drag lets you move objects into the menu bar. Modify it so you
cannot. One way to do this is to simply stop dragging the object if theRect.top
threatens to decrease below 20.

A better method is to limit theRect.top to being greater than 20, but continue
to track the mouse horizontally. That is, the object stays with the cursor until it
strays into the menu bar. It should stop its upward movement at that point, but
continue to follow the cursor's horizontal movements.

4-2. Drag lets you move a rectangle around on the screen. Modify it so that you can use
the mouse to change the rectangle's size. [Hints: Use PtlnRect to detect the cursor's
presence inside the displayed rectangle (theRect). You can define a small rectangle
covering the lower right-hand corner of the displayed rectangle. When the button is
pressed inside this smaller rectangle, adjust the lower right-hand corner of theRect
to follow the mouse until the button is released.]

Do not permit theRect's lower right-hand corner to move above or to the left
of its upper left-hand corner.

4-3. Drag lets you drag an oval shape off the screen, such that you cannot determine its
selection rectangle. Modify Drag so you can always tell where the selection rectangle
is. There are several ways to do this. For example, you can frame the selection rec­
tangle using the pGray pen pattern. Another approach is to draw small boxes in the
corners of the selection rectangle.

Use these techniques only while the program is in Drag mode.
4-4. Extend TestMenu to let you draw filled-in shapes. Add a new menu named Fill, with

items Empty, Black, Gray, White, and Diagonals. Note that you must first Paint the
shape, then Frame it.

4-5. The Too!Box supplies several window styles. Windows uses a style called a noGrow­
DocProc. That is, it is a standard document window (the kind most applications
use), but without a grow box. Another style we could use is called rDocProc
(gesundheit!). It is similar to the noGrowDocProc, but uses a rectangle with rounded
corners as a frame. The Calculator desk accessory uses an rDocProc window. Modify
Make Window to use rDocProc, and relink and run TestWindow to see the difference.
Define rDocProc = 16, and use it instead of noGrowDocProc.

122 Interactive Graphics Chap. 4

The diameter of an rDocProc's corners is 16 pixels. You can select from eight
different diameters by adding from 0 to 7 to rDocProc. The choices are:

Value

rDocProc
rDocProc + 1
rDocProc + 2
rDocProc + 3
rDocProc + 4
rDocProc + 5
rDocProc + 6
rDocProc + 7

Corner diameter

16
4
6
8

10
12
20
24

4-6. TestWindow allows you to close windows by clicking the mouse in the close box.
After you have closed all windows, you must still select Quit from the File menu to
exit the program. Make TestWindow automatically exit as soon as you close all
windows.

Alternatively, add and support a menu that lets you reopen closed windows.
4-7. We have already investigated two ways to convey the current shape mode to the

user in MicroDraw. One of the best ways to reflect a mode is with a cursor style.
Build a separately compiled Cursors module (similar to the Patterns module in Chap­
ter 2) that exports one cursor for each mode (Line, Rectangle, Oval, Rounded Rec­
tangle, and Drag). Each cursor should imply the mode. For example, the Rectangle
cursor might look like a rectangle with a small arrow at one corner. Once you have
compiled the new module, incorporate it into MicroDraw. Use SetCursor to change
the cursor shape after the user selects an item from the Functions menu.

4-8. a. Modify MicroDraw to let you delete the most recently created shape. You must:
1) Erase the shape pointed to by shapeList, 2) point shapeList to the next element
in the list, 3) DISPOSE of the deleted element, and 4) update the window.
b. Make the more difficult modification that lets users delete the shape they most
recently dragged or created. You must either bypass (link around) the deleted shape,
or mark it as invisible.
c. If you have completed part b, you will notice that the user cannot easily tell
which shape will be deleted. To remedy the situation, highlight the most recently
dragged or created shape. You may highlight it by filling it or by drawing it with a
thicker graphics pen. Never highlight more than one shape at a time.

4-9. a. Adapt Chapter 3's Bounce program to run in a window. You can determine the
window's boundaries with its WindowPtr's portRect field.
b. Exit the program with a Quit selection from the File menu. Add a Shape menu
that allows you to select from a square, oval, or rounded square ball.
c. Draw three or more windows, each of which contains a bouncing ball. The user
should be able to drag any window across the screen.

Bibliography 123

BIBLIOGRAPHY

Inside Macintosh (Apple Computer Incorporated, 1984) contains a discussion of user
interface issues. It also details the Macintosh user interface guidelines. These are the rules
developers are supposed to follow when designing Macintosh programs.

"The Smalltalk Environment," by Larry Tesler, in the August 1981 issue of BYTE,
provides valuable insight into user interface design issues. Apple incorporated many of the
concepts discussed in this article, which were developed at Xerox Corporation, into the
Macintosh user interface guidelines.

Fundamentals of Interactive Computer Graphics, by Andries van Dam and James D.
Foley (Addison-Wesley, 1983) is an excellent, high-level text on the subject. It assumes a
sound mathematical background.

chapter five

The Third
Dimension

So far, all our drawings have been two-dimensional. That is, they are flat.
Our universe, of course, is not flat (unless you live in George Abbott's Flat­
land). Few computers can actually display three-dimensional (abbreviated as
3-D) objects. There are, however, several ways to create the impression of
depth on a flat display. This chapter describes some of these.

BASICS OF THREE·DIMENSIONAL GRAPHICS

Coordinates

A point in two dimensions is defined by its distances from two axes: hori­
zontal and vertical. Similarly, a three-dimensional point is defined by its dis­
tance from three axes: horizontal, vertical, and depth (see Figure 5-1). By
convention, we refer to these as the X, Y, and Z axes, respectively. X coor­
dinates increase to the right. Y coordinates increase down. Z coordinates in­
crease away from the user, that is, into the screen. The origin is the point
where the axes meet.

In Chapter 2, we developed a program Draw that displays a two-dimen­
sional object. We described the object by enumerating the sequence of coor­
dinates that, when connected, form its boundary. We can do the same thing
in three dimensions.

Projection

Although we can describe a 3-D object, how can we display it? The Macintosh
cannot actually plot three-dimensional coordinates. Instead, we must some­
how project the object onto Macintosh's two-dimensional screen. That is, we

124

Basics Of Three-Dimensional Graphics 125

z (into the page)

H

y

Figure 5-1: Three-dimensional coordinates.

must convert each three-dimensional coordinate into a corresponding two­
dimensional coordinate.

There are several ways to do this. The simplest method is to discard one
coordinate and plot the remaining two. This is known as parallel orthographic
projection (casual mention of this term will surely impress the uninitiated).
Parallel projection is fast and easy to do. It can, for example, provide top,
side, and front views of an object. Plotting h = X and v = Y produces a front
view (as in Figure 5-2). h = X and v = Z results in a top view. Finally, h = Z
and v = Y produces a view from the left side. Parallel projection has a major
drawback-the resulting image has no depth information. Imagine a cube, the
faces of which are parallel to the axes. The top, side, and front views all look
the same. The cube would look like a square.

z

y

Figure 5-2: Parallel orthographic projection.

126 The Third Dimension Chap. 5

In the real world, faraway objects look smaller than nearer ones. This is
called perspective. Imagine the display as a slide projection screen, situated
on the positive Z axis. Now place a bright light source on the negative Z axis.
If we put an object between the screen and the light source, its shadow is
projected onto the screen. Moving the object closer to the light source en­
larges the shadow and increases the perspective effect. Moving it farther from
the light shrinks the shadow and decreases the perspective. Moving the screen
toward or away from the light enlarges or shrinks the shadow, respectively.
We provide the perspective effect by setting h = d * X/(Z - s) and v = d * Y/
(Z - s), where d is the distance from the light to the screen, and s is the Z co­
ordinate of the light (see Figure 5-3). Notice that as Z increases, the resulting
h and v values decrease.

y

Figure 5-3: Perspective projection.

Scaling

We can adjust the size of an object by a process known as scaling. Assuming
our object is centered at the origin, we need only multiply the three coordin­
ates of each point by a scaling factor. Multiplying by 2, for example, doubles
the object's size. This allows us to display a single representation of an object
in any size.

We might also want to scale the X, Y, and Z coordinates by different
factors. Say we have stored the corner points (vertices) of a cube. By scaling
it appropriately, we can turn the cube into a rectangular box of any propor­
tions.

Rotation

Rotating a three-dimensional point abut the origin is not as simple as project­
ing or scaling it. Let's first look at how one rotates a two-dimensional point.
Given a point (h, v) and an angle(), the rotated point is

Basics Of Three-Dimensional Graphics

hrot = h * cos(O)- v * sin(O)

vrot = h * sin(O) + v * cos(O)

127

In two dimensions, there is only a single axis of rotation. In three
dimensions, there are three: the X, Y, and Z axes. We may rotate a point
about one, two, or all three axes at once (see Figure 5-4).

H

y

Figure 5-4: Positive rotation angles.

Consider rotation about the X axis:

X axis: xrot = x

Yrot = y * cos(Ox) - z * sin(Ox)

zrot = y * sin(Ox) + z * cos(Ox)

Notice how similar this is to the two-dimensional case. Rotation about the
remaining axes is given by

Y axis: xrot = x * cos(Oy) - z * sin(Oy)

Yrot = Y

Zrot = x * sin(Oy) + z * cos(Oy)

z axis: Xrot = x * cos(Oz) - y * sin(Oz)

Yrot = x * sin(O z) + Y * cos(Oz)

Zrot = z

128 The Third Dimension Chap. 5

Given a point and three angles, we could now perform the rotation. Note that
the order of rotation (e.g., first X axis, then Y, then Z; or first Y, then Z,
then X, etc.) is significant. We choose to rotate about the X axis first, then Y,
then Z. Rotating a point about multiple axes means first applying the X-rota­
tion equation, then applying Y rotation to the resulting point, and finally ap­
plying Z rotation to that point. Module ThreeDee combines these equations
to implement rotation more efficiently.

Translation

Scaling and rotation operations are relative to the origin. If we rotate or scale
an object that is not centered at the origin, it will move. Thus, we should
start with objects that are centered at the origin. After rotating and scaling
such an object, we can then move (or translate) it to the desired location. To
translate an object from the origin to U. k, l), we need only add j to the X
coordinates, k to the Y coordinates, and l to the Z coordinates of the object's
vertices.

ThreeDee efficiently performs the four operations (projection, scaling,
rotation, and translation) we have just described.

Module Name: ThreeDee

Procedure for Using:
TransformSRT scales, rotates, and translates a three-dimensional point, in
that order. Before calling TransformSRT, set the scaling factors with SetScale,
the rotation angles (in degrees) with SetRot, and the translation distances
with SetTranslation.

Project performs a perspective projection on the supplied 3-D point, re­
turning a QuickDraw Point. You will probably have to add an offset to the
projected point, to position it on the screen or in a window. For example, to
center the origin on a windowless screen, add (256, 171) to each projected
point. Before calling Project, set the light source and screen positions with
SetPerspective.

Listing of Definition Module:

DEFINITION MODULE ThreeDeeJ

Chapter 5: three dimensional transforms
*)

FROM QuickDrawlypes IMF·ORT Point;

EXPORT QUALIFIED Po1nt3D, SetPoint3D,
SetRot, SetScale, SetTranslation,
Set:Perspecti ve, TransformSRT, Pro.1ect 1

Basics Of Three-Dimensional Graphics

TYPE
Point3D RECORD

X , Y, Z: REAL I
END;

PROCEDURE SetPoint3D(x, y, z: REAL; VAR p1 Point3D >;

PROCEDURE SetRot(rotX, rotY, rotZ: REAL >1

PROCEDURE SetScale< scaleX, scaleY, scaleZ1 REAL >1

PROCEDURE SetTranslationC transX, transY, transZ1 REAL >1

PROCEDURE SE1t.Perspec:tive(screenZ, sourclilZl REAL) !

PROCEDURE TransformSRT< in1 Point3D; VAR out: Point3D >1

PROCEDURE Project(in1 Point3D; VAR out1 Point >1

END ThreeDee.

Listing of Implementation Module:

IMPLEMENTATION MODULE ThreeDee,

FROM Quic~:DrawTypes
FROM MathLib1
FROM MathConst
FROM ThreeDee

VAR

IMPORT Point;
IMPORT sin, cos,
IMPORT RadConst1
IMPORT Point3D;

entier-1

cosRX, cosRY, c:osRZ, sinRX, sinRY, sinRZ1 REAL;
scalX, scalY, scalZ: REALI
tranX, tranY, tranZ1 REAL;
projectionZ, srceZ1 REALI
xiXo, >eiYo, xiZo,
yiXo, yiYo, yiZo,
ziXo, ziYo, ziZo: REAL;

PROCEDURE SetPoint3D(x, y, z1 REALI VAR p1 Point3D >;
BEGIN

WITH p DO X1=x; Y1=y1 Z:•z; END1
END SetPoint3D1

PROCEDURE SetRSM; (* calculate rotation+scale transform *>
BEGIN

>eiXo:=scalX * cosRY*cosRZ;
>eiY01=sc:alX * cosRY*sinRZ1
xiZ01=scalX * <-sinRY);
viXo:•scalY * <sinRX*sinRY*cosRZ - cosRX*sinRZ>1
yiYoc=scalY * <cosRX*cosRZ + sinRX*sinRY*sinRZ>1
yiZo:=scalY * slnRX•cosRY1

ziXo:=scalZ * (sinRX*sinRZ + cosRX*sinRY•cosRZ>1
ziYo:=scalZ * <cosRX*sinRY*sinRZ - cosRZ*sinRX>1
z1Zo:=scalZ * cosRX*cosRY;

END SetRSM1

PROCEDURE SetRot< rotX, rotY, rotZ1 REAL >1
BEGIN

rotX1=RadConst*rotX1
cosRX:=cos< rotX >1 sinRX:=sin(rotX >1
rotY:•RadConst*rotY;
cosRYt=cos< rotY >• sinRY:=sin(rotY >;
rotZ1=RadConst*rotZ1
cosRZ:=cos(rotZ >; sinRZ:=sin< rotZ >1
SetRSM1

END SetRot;

129

130 The Third Dimension Chap. 5

PROCEDURE SetScale(scaleX, scaleY, scaleZ1 REAL >1
BEGIN

scalX1=scaleX1 scalY1=scaleY1 scalZ1•scaleZ1
Set RSM!

END SetScale1

PROCEDURE SetT'ranslaticn< transX, transY, transZ1 REAL >1
BEGIN

tranX1=transX1 tranY1•transY1 tranZ1=transZ1
END SetTranslation1

PROCEDURE SetPerspective< screenZ, scurceZ1 REAL >1
BEGIN

prcJecticnZ1=screenZ-scurceZ1
srcez1 .. scurceZ1

END SetPerspective;

PROCEDURE TransfcrmSRT< in1 Point3D1 VAR cut1 Pcint3D >;
BEGIN

WITH in DO
out.X1=tranX + X*KiXo + Y*yiXo + Z*ziXc1
cut.Y1=tranY + X*KiYc + Y*yiYc + Z*ziY01
out.Z1•tranZ + X*KiZo + Y*yiZo + Z*ziZc;

END; <*WITH*>
END TransfcrmSRT;

PROCEDURE Project(in1 Point3D; VAR cut1 Point >1
VAR

effectiveZ1 REALI
BEGIN

WITH in DO
effectiveZ1=Z-srceZ1
IF ABS<effectiveZ) < 0.0001
THEN effectiveZ1=0.000l1
END; <*IF*l
out.h1•entier<prcjectionZ*XleffectiveZl;
out.v1•entier<proJecticnZ*YleffectiveZ>1

END; <*WITH*>
END Project;

BEGIN
SetTranslation< O.O, O.O, 0.0 >;
SetPerspect1ve(100,0, -100.0 l I
sc:alX1=1.0; scalY1=1.01 scalZ1=1.01
SetRot< o.o, o.o, o.o >1

END ThneeDee.

Description:

• TYPE Point3D: Three-dimensional point. Contains three REAL coor­
dinates: X, Y, and Z.

• VAR cosRX, cosRY, and cosRZ: Cosines of the rotation angles about
the X, Y, and Z axes.

• VAR sinRX, sinRY, and sinRZ: Sines of the angles.
• VAR tranX, tranY, and tranZ: Translation offsets.
• VAR projectionZ: Distance from the light to the screen.
• VAR srceZ: Z coordinate of the light.

Drawing Wire-Frame Objects 131

• VAR xiXo, xiYo, ... , ziY o, ziZo: An efficient representation of the cur­
rent scaling and rotation parameters.

• PROCEDURE SetPoint3D: Stores three coordinates in a Point3D varia­
ble.

• PROCEDURE SetRSM: Calculates the rotation and scaling variables.
• PROCEDURE SetRot: Sets the rotation angles around the three axes,

in degrees. Before recording the sines and cosines, SetRot converts the
angles from degrees to radians. Remember that rr radians= 180°.

• PROCEDURE SetScale: Records the scaling factors.
• PROCEDURE SetTranslation: Records the translation offsets.
• PROCEDURE SetPerspective: Sets the Z coordinates of the imaginary

projection screen and light source. Initially, these are set to 100.0 and
-100.0, respectively.

• PROCEDURE TransformSRT: Once you have set the scaling, rotation,
and translation parameters, TransformSRT can operate on the vertices
of an object. First TransformSRT scales the point, then rotates it by
the X, Y, and Z angles, and finally translates it.

• PROCEDURE Project: Given a 3-D point, Project performs a perspective
projection onto the imaginary screen. The resulting X and Y coordinates
are returned in a QuickDraw Point. Your program must translate the
point as required to fit on the screen or in a window.

• MODULE ThreeDee: Initializes the translation, rotation, scaling, and
perspective parameters.

Notes:
Projected points need not lie between the light source and the screen. They
can, in fact, lie beyond the screen, or behind the light source. If the entire
object is behind the screen, the effect is as if the light source were your eye
and the screen a window. You are looking at the object through the window.
In this case, the projected image will be smaller than the object. If the object
is behind the light source, its projected image appears to be rotated 180°
about the Z axis.

DRAWING WIRE-FRAME OBJECTS

We can use ThreeDee to create a program that draws three-dimensional ob­
jects. To describe an object, you first list the coordinates of its vertices. Next
enumerate the object's edge lists. An edge is a line between a pair of vertices.
An edge list is a sequence of vertices, to be connected by lines. We draw an
edge list by drawing lines from the projection of the first vertex to the next
vertex, from that vertex to the next one, etc. Drawing all the object's edge
lists produces a result that looks as if we had built a wire model of the object.

132 The Third Dimension Chap. 5

You can see directly through it. This style of 3-D representation is, reason­
ably enough, called wire-frame.

Module Name: Draw3D

Techniques Demonstrated:

• Using ThreeDee to rotate and project a wire-frame model.
• Representing, creating, and retrieving a wire-frame model.
• Using lnOut.Done to detect the end of a data file.

Procedure for Using:
First, create a 3-D data file. Let's start with a simple stick figure of an air­
plane, such as the one shown in Figure 5-5. Use Edit to create a new file.

9

7

2 3

6

8

Figure 5-5: Vertices of a stick figure airplane.

Draw the airplane on graph paper, centered at the origin. Notice that one
vertex, the top of the vertical fin, is above the graph paper. You will have to
imagine its actual position. Now, number the vertices from 1 through 9.
Enter the number of vertices (9) on the first line of the file. Next, list the X,
Y, and Z coordinates of each vertex, in order. That is, the coordinates of ver­
tex 1 go first, then vertex 2, 3, etc. Next, enter the edge lists. Begin each one
with the number of its first vertex multiplied by -1. Then list the remaining
vertices in the edge, and keep listing edges until you are done. For example,
the edge list that draws the plane's wings is -2 8 9 2. The resulting file should
look like Listing 5-1. Save it as Plane.3D.

Run Draw3D. When it asks for a 3-D data file, enter Modula Programs:
Plane.3D (for Modula Programs, substitute the name of the disk that contains

Drawing Wire-Frame Objects 133

9
-50.0 o.o o.o -24.0 o.o o.o 36.0 o.o o.o
52.0 o.o o. 0 53.0 o.o -12.0 52.0 12.0 o. (l
52.0 -12.0 I). 0 o.o 44.0 o.o o.o -44.0 o.o

-1 4 7 3 6 4 5 3
-2 8 9 2

Listing 5-1: Plane.3D data file.

the data file). Draw3D clears the screen and rotates and projects the object
repeatedly until you press a key. Figure 5-6 shows one resulting image.

Figure 5-6: Stick figure airplane drawn by Draw3D.

Listing of Module:

MODULE Draw3DI

Draw and rotate a three dimensional wire-frame object
*)

FROM ThreeDee IMF'CJRT Peli nt.3D, Set Rot, Set Scale,
Set.Translation, Set.Perspective,
TransformSRT, Project1

QuickDrawType11 IMPORT Po!.nt; FROM
F'ROM
FROM
FROM

MiniQD IMPORT MoveTo, Linero, ObscureCursori
·rer·minal
lnOut.

FROM ReallnOut

CONST
maxVertices = 1501
maxEdges = 300;

VAR

IMPORT ClearScreen, BusyReadp
IMPORT Openinput, Closelnput,

Readint, WriteString, Oone1
IMPORT ReadReal;

vertices: ARRAYC1 .• maxVerticesl OF Point301
projectedVertices1 ARRAYC1 •• maxVerticesl OF Point.a
edges1 ARRAYC1 •• maxEdgesl OF INTEGER1
numVertices, numEdges1 INTESER1

134

PROCEDURE DrawEdge< from, to1 INTEGER >1
BEGIN

WITH proJectedVerticesCfromJ DO
MoveTo< 25o+h, 171+v >1

END; <*WITH*)
WITH projectedVerticesCtoJ DO

LineTo< 25o+h, 171+v >1
END; .<*WITH*)

END DrawEdge1

PROCEDURE DisplayList1
VAR

edgeindex1 INTEGER!
BEGIN

FOR edgelndex1m1 TO numEdges DO
IF edgesCedgeindexJ > 0

The Third Dimension

THEN DrawEdge< ABS<edges[edgelndex-1J),
edgesCedgelndexl >1

END1 <*IF*)
END; (*FDR*)

END DisplayLi111t1

PROCEDURE ProJectList1 <* rotate and project vertices *>
VAR

vertlndex1 INTEGER!
rotVertex1 Point3Dg

BEGIN
FOR vertlndex1=1 TO numVertices DO

TransformSRT< vertices[vertindexJ, rotVertex I;
Project< rotVertex, projectedVertices[vertindexJ I;

END; <*FDR*I
END Pro.iectList;

PROCEDURE ReadList;
VAR

index, edge: INTEGER;
BEGIN

ClearScreen;
WriteStringC

"Pl ease enter the name of a 3-D data f i 1 e1 " >I
Openlnput< "3D" >1
Readlnt< numVertices >1
FOR inde>n=1 TO numVertice& DO

WITH verticesCindexJ DO
ReadReal< X >1 ReadReal(Y >; ReadReal(Z >1

END1 <*WITH*)
END; <*FDR*>
numEdges1=01
LOOP

Read Int< edge) 1
IF NOT Done THEN EXIT; ENDJ
INC< numEdges >1
edgesCnumEdgesJ1=edge1

END; <*LOOP*>
Closeinput1

END ReadLi st!

PROCEDURE KeyWasPressed()1 BOOLEAN!
VAR

chi CHARI
BEGIN

BusyRead(ch >1
RETURN ch 0 OC1

END KeyWasPressed1

Chap.5

Drawing Wire-Frame Objects

VAR
xR, yR 1 zR1 REALI

BEGIN
ReadList1
SetTranslation< O.O, O.O, 0.0 >1
SetPerspective< 220.0, -1eo.o >1
xR1•0.01 yR1•0.01 zR1=0.01
ObscureCursorg
REPEAT

SetRot< xR, yR, zR >1
ProjectLi st I
ClearScreen1
Di spl ayLi st I
NR1=HR + e.o; yR:=yR + 10.01 zR1=zR + 12.01

UNTIL KeyWasPressed<>1
ENO Oraw3D.

Description:

135

• CONSTs max Vertices and maxEdges: Limits on the number of vertices
and edges.

• VAR vertices: Array of 3-D points defining an object's vertices.
• VAR projectedVertices: Projections of the object's vertices after scaling,

rotation, and translation.
• VAR edges: Sequence of vertices to be connected by lines.
• VAR numVertices and numEdges: Number of vertices and edges de­

fined.
• PROCEDURE DrawEdge: Draws a line between projected vertices from

and to. DrawEdge adjusts the points to center the projection screen's
origin in the display.

• PROCEDURE DisplayList: Proceeds through edges, drawing each edge.
VAR edgeindex: Index into edges array.
For every defined edge: If the vertex is not the first in an edge list,

Display List draws a line from the preceding vertex to this one.
• PROCEDURE ProjectList: Scales, rotates, translates, and projects each

vertex.
VAR vertindex: Index into vertices.
VAR rot Vertex: Retains the rotated vertex long enough to project

it_
For every vertex defined, ProjectList does the following:

Uses TransformSRT to scale, rotate, and translate the vertex,
storing it temporarily in rotVertex.

Projects rotVertex and saves the projection in projected Ver­
tices.

136 The Third Dimension Chap. 5

• PROCEDURE ReadList: Reads a wire-frame object description from a
file.

Clears the screen and prompts the user to enter the name of a data
file.

Opens the data file and reads the number of vertices it contains.
Reads the X, Y, and Z coordinates of each vertex.
ReadList loops, reading edge vertex numbers until there are no

more.
Finally, it closes the data file.

• PROCEDURE KeyWasPressed: Returns true if the user pressed a key.
• VAR xR, yR, and zR: Angles of rotation.
• MODULE Draw3D:

Reads the wire-frame data file.
Sets the translation and perspective parameters.
Sets the rotation angle variables to 0.
Hides the cursor temporarily with ObscureCursor.
Until the user pressed a key, Draw3D

Modifications:

Sets the rotation angles according to xR, yR, and zR.
Rotates and projects the object's vertices.
Clears the screen and displays the object's wire-frame.
Increments the rotation angle variables.

The data file in Listing 5-2 produces a wire-frame model of the NASA Space
Shuttle. Figure 5-7 shows an image of the Shuttle.

125
o.o 2.2 46.0 1. 5 2.6 46.0
2.2 4.6 46.0 1. 7 6. :s 46.0
o.o 6.7 46.0 -1. 7 6.5 46.0

-2.2 4.6 46.() -1.5 2.6 46.0
o.o 0.8 43.0 2.8 1. 5 43.0
4.0 4. :s 43.0 3.0 7.2 43.0
o.o 8.0 43.0 -3.0 7.2 43.0

-4.0 4.5 43.0 -2.8 1.5 43.0
o.o -1. 7 38.0 4.6 o.o 38.0
5.8 4.4 38.0 4.0 8.2 '.58,1)
o.o 9.0 38.0 -4.0 8.2 38.0

-5.8 4.4 38.0 ·-4.6 o.o 38.0
o.o -4.0 32.5 4.5 -1.0 32.5
5.8 4.6 32.5 4.C.) 9.0 32.5
o.o 9.5 32.5 -4.0 9.0 32.5

-5.8 4.6 32.5 -4.5 -1. () 32.5
o.o -8.0 26.3 3.5 -7.0 26.3
7.8 -2.0 26.3 8.0 7.0 26.3
o.o 9.8 26.3 -8.0 7.0 26.3

-7.8 -2.0 26.3 -3.5 -7.0 26.3
. o.o -8.0 21.5 3.8 -7.5 21.5
8.0 -3.0 21.5 8.0 0.0 21.5
o.o 9.8 21.5 -8.0 8.0 21.5

-8.0 -3.0 21.5 -3.8 -7.5 21.5
o.o -0.0 14.0 4.7 -7.0 14.0
8.0 -4.0 14.0 8,(1 8.7 14.0
o.o 10.0 14.0 -a.o 8.7 14.0

-8, () -4.0 14.0 -4.7 -7.0 14.0
o.o -8.0 4.0 4,7 -7.0 4.0
8.0 -4.0 4.0 a.o 8.7 4.0

Drawing Wire-Frame Objects

o.o 10.0 4.0
-0.0 -4.o 4.o
o.o -8.0 -12.0
8.0 -4.0 -12.0
o.o 10.0 -12.0

-8,0 -4.0 -12.0
o.o -8.0 -27.3
8.0 -4.0 -27.3
o.o 10.0 -27.3

-8.0 -4.0 -27.3
o.o -e.o ~35.6
8.0 -4.0 -35.6
o.o 10.0 -35.6

-8.o -4.o -35.6
o.o -9.0 -43.0
8.8 -1.5 -43.0
o.o 10.8 -43.0

-8.8 -1.5 -43.0
o.o -9.5 -48.0
9.2 -1.5 -48.0
o.o 10.2 -48.0

-9.2 -1.5 -48.0
8,7 8.7 21.0

35.0 10.0 -36.0
-8.7 8.7 21.0

-35.0 10.0 -36.0
o.o -13.0 -37.0
o.o -33.0 -69.0
6,0 -11.0 -43.0

11.0 -5.0 -43.0
-6.0 -11.0 -43.0

-11.0 -5.0 -43.0
o.o 4.5 47.5

-1 2 3 4 5 6 7 8 1

-8.0
-4.7
4.7
8. 0

-8.0
-4.7
4.7
8.0

-8.0
-4.7
4.7
8.0

-8.0
-4.7
2.0
9.0

-9,0
-2.0

2. 0
10.0

-10.0
-2.0
15.0
35.0

-15.0
-35.0

o.o
o.o
6.0

11. 0
-6.0

-11.0

-9 10 11 12 13 14 15 16 9
-17 18 19 20 21 22 23 24 17
-25 26 27 28 29 30 31 32 25
-33 34 35 36 37 38 39 40 33
-41 42 43 44 45 46 47 48 41
-49 50 51 52 53 54 55 56 49
-57 58 59 60 61 62 63 64 57
-65 66 67 68 69 70 71 72 65
-73 74 75 76 77 78 79 80 73
-81 82 83 84 85 86 87 88 81
-89 90 91 92 93 94 95 96 89

8. ·7
-7.0
-7.0
8.7
8.7

-7.0
-7.0
8.7
8.7

-7.0
-7.0
8.7
8.7

-7.0
-8.5
10.0
10.0
-8.5
-9.3
10.0
10.0
-9.3
8.7

10.0
8.7

10.0
-33.0
-14.0
-11.0
-5.0

-11. 0
-5.0

-97 98 99 100 101 102 103 104 97

4,0
4. ()

-12.0
-12.0
-12.0
-12.0
-27.3
-27.3
-27.3
-27.3
-35.6
-35.6
-35.6
-35.6
-43.0
-43.0
-43.0
-43.0
-48.0
-48.0
-48.0
-48.0
-16.0
-40.0
-16.0
-40.0
-60.0
-60.0
-48.0
-48.0
-48.0
-48.0

-125 1 9 17 23 33 41 49 37 65 73 81 89 97
-125 2 10 18 26 34 42 50 58 66 74 82 90 98
-125 3 11 19 27 35 43 51 59 67 75 83 91 99
-125 4 12 20 28 36 44 52 60 68 76 84 92 100
-125 5 13 21 29 37 45 53 61 69 77 83 93 101
-1.25 6 14 22 30 38 46 54 62 70 78 86 94 102
-125 7 15 23 31 39 47 55 63 71 79 87 95 103
-125 8 16 24 32 40 48 56 64 72 80 88 96 104
-44 105 106 107 108 92
-46 109 110 1.11 112 94
-81 113 114 115 116 89
··82 117 118
-0:3 11 9 120
-88 12l. 122
-87 123 124
-90 11 7 11 9 91
-96 121 123 95
-98 118 120 99
-104 122 124 103

Listing 5-2: Wire-frame data of the NASA Space Shuttle.

137

138 The Third Dimension Chap. 5

Figure 5-7: Image of the NASA Space Shuttle as drawn by Draw3D.

Wire-frame representations of objects can be confusing to the eye. Dis­
tinguishing the front of an object from the back is often difficult when you
can see directly through it. Perspective projection helps somewhat, since
close edges appear larger than far ones. Still, interpreting the image correctly
can be a problem.

There is an interesting way to mitigate this situation. The human brain
integrates images from the left and right eyes to discern distance. The left
eye sees a slightly different view of an object than the right eye. For example,
hold out your arm and point a finger up. Now look at a point past your fin­
ger. Alternately look at the point with your left, then your right eye. Note
how your finger's position seems to shift. Now bring your finger closer to
your face. As you continue to alternate eyes, you will see that the finger
shifts even more. The brain automatically converts this parallax effect into
distance cues.

We can simulate this effect by drawing an object twice, shifting it slight­
ly between drawings. The two images are called stereo pairs. Listing 5-3 con­
tains a modification to Draw3D that generates stereo pairs of an object.

Run the modified Draw3D and enter the name of a data file, as before.
The program will display a stereo pair of the object. Click the mouse to
display the next image. Press a key to end the program. To view a stereo pair
(see Figure 5-8), position it approximately 30 centimeters (12 inches) from
your face. Cross your eyes slightly until the images merge. You will probably
see three images. Concentrate on the center one. It should appear to stand
out from the background.

This modification works by merely translating the object left and draw­
ing it, then translating it right and drawing it again. Perspective gives us the

Drawing Wire-Frame Objects 139

parallax we need for the stereo effect. In fact, we had to decrease the per­
spective, since it was giving too much parallax.

FROM Mouse IMPORT Button1

PROCEDURE WaitClick1 <* wait for a button click *>
BEGIN

WHILE NOT Button<> DO END1
WHILE Button<> DO END1

END WaitClick1

VAR
KR, yR 1 zR1 REALI

BEGIN
ReadList1
SetTranslation< O.O, O.O, 0.0 >1
SetPerspective< 220.0, -440.0 >1
SetScale< o.a, o.a, o.a >1
KR1=0.01 yR1•0.01 zR1•0.01
ObscureCursor1
REPEAT

SetRot(KR, yR, zR >1
SetTranslation< -50.0, O.O, O.O >1
ProJectList1
ClearScreen1
DisplayList1
SetTranslation< 50.0, o.o, O.O >1
ProjectLi•tJ
DisplayList1
KR1•KR + a.01 yR1•yR + 10.01 zR1•zR + 12.01
WaitClick1

UNTIL KeyWasPressed<>1
END Draw3D.

Listing 5-3: Stereo pair modification to Draw3D.

Figure 5-8: Stereo pair of Space Shuttle.

140 The Third Dimension Chap. 5

HIDDEN EDGES

Viewing stereo pairs is not easy, comfortable, or natural. It can even give you
a headache. When we look at an actual solid object, its front surfaces obscure
features behind them (unless they are transparent). We can produce this ef­
fect by drawing only the visible edges. We will demonstrate a specific tech­
nique for doing this with a cube. A more general approach will be described
later.

A cube has six faces. Of these, no more than three are visible at a time.
Consider the cube's faces as three pairs of opposite faces (see Figure 5-9). If
we use orthographic projection, we can simply display the three faces nearest
us. That is how SolidCube works.

2 8

7 I, 3, 5, 7 2, 4, 6, 8

is
I, 2, 4, 3 opposite 7, 8, 6, 5

3 5 I, 2, 8, 7 3, 4, 6, 5

4 6

Figure 5-9: Faces of a cube.

Module Name: SolidCube

Techniques Demonstrated:

• Displaying a solid cube by drawing the nearest faces.

Procedure for Using:
Run SolidCube. It displays an orthographic projection of a rapidly rotating
solid (as opposed to wire-frame) cube (see Figure 5-10).

Hidden Edges

Figure 5-10: Cube drawn by SolidCube.

Listing of Module:

MODULE SolidCube;

FROM Qu1ckDrawfypes IMPORT Point,
FROM M•thLibl JMPORl ent1er:
FROM Thr eeDee IMF'Dfff Poi nt3D, Set Poi nt3D, Set Rot,

SetTranslation, SetPerspective,
Trans+ormSkr, Project;

FROM MiniGlD IMPORT McveTo, Linero, Obsc:ureCursor1
FROM Terminal IMPORT CJ.earSc:reen, BusyRead;

VAR
vertices: ARRAY(1,,8J OF Point3D!
pro.J!l'ctedVert1ces1 ARRAYl1 •. SJ OF Point1
rotatedZ: ARRAY(1,.8J OF REAL;

PROCEDURE DrawFac:e(v1, v2, v3, v41 INTEGER)J
BEGIN

WITH prcjec:tedVert1c:esEv1l DO
MoveTo< 256+h, 171+v >;

END1 <*WITH*>
WITH proJec:tedVertic:esCv2J DO

LineTo< 256+h, 171+v >;
END; <*WITH*>
WITH pro.iec:tedVertic:es(v3J DO

LineTo< 256+h, 171+v >;
END! <*WITH*>
WITH proJec:tedVertic:esEv4J DO

LineTo< 256+h, 171+v >1
END1 <*WITH*>
WITH proJec:tedVertic:esEvlJ DO

LineTo< 256+h, 171+v >1
END1 <*WITH*>

END DrawFac:e1

141

142 The Third Dimension

PROCEDURE FrontFace (f 1 Vl, f 1 V2, f 1 V3, f1 V4,
f2V1, f2V2, f2V3, f2V41 INTEGER>p

BEGIN
IF rotatedZ[f1V1l < rotatedZ[f2V1l
THEN DrawFac:e(f1V1, f1V2, f1V3, f1V4 >;
ELSE DrawFace(f2V1, f2V2, f2V3, f2V4 >p
END1 <*IF*>

END FrontFace;

PROCEDURE DrawCube;
BEGIN

FrontFace< 1, 3, 5, 7,
FrontFac:e< 1, 2, 4, 3,
FrontFace< 1, 2, 8, 7,

2, 4, 6, 8 >;
7,8,6,5)1
3, 4, 6, 5) ;

<* back/front *>
<* left/right *>
<* top/bottom *>

END DrawCube;

PROCEDURE F'rojectVertices;
VAR

vertindex1 INTEGER;
rotVertex1 Point3D1

BEGIN
FOR vertlndex1=l TO 8 DO

TransformSRT< vertices[vertlndexl, rotVerte>e >1
rotatedZ[vertindexl1=rotVertex.Z1
projectedVertices[vertindexl.h1•entier(rotVertex.Xl'
projectedVertices[vertindexl.v1=entier(rotVertex.Y>1

END; <*FDR*>
END ProiectVertice$:

PROCEDURE lnitVerlices:
BEGIN

S~»tf''o1 n t .. JD (-50.0, -·~'.K). 0,. 50.0,
Set Poi nt::m < -·50. o. -50.0. -50.0,
SetF'oint3D(*M•50.0, ~jO.O, 50.0,
Set.Poi nt3D (-50.0, 50.0, -50. o,
SetF'oi nt.:31) (~jf). (>. ~j(J. o, 5(l. 0,
SetF'oi nt3D (50.0, 50.011 -50.0,
Set.Poi nt.:;o < 50.0, -50.0, 50. (J'
SF•t F'1Ji. nt:3D < 50.0, -~so. o, -·50.0,

END InitVertices:

PROCEDURE KeyWasPressed <) I BOOl..EAN;
VAR

ch: CHAR;
BEGIN

BusyRead< ch >;
RETURN ch <> OC;

END KeyWasPressed;

VAR
KR, yR, zRc REAL!

BEGIN
InitVertices1
Obsc:ureCursor;
xR:=O.O; yR1=0.0; zR:=O.O;

REPEAT
Set.Rot< ><R, yR, zR l;
ProjectVertices;
ClearSc:reen;
DrawCube;

verti.ces[1J
vertices[2J
vertices[3J
vert.icest4J
vertices[5J
vertices[6J
vertices[?]
vertic:es[SJ

xR1=xR + 8.0; yR1=yR + 10.01 zR1=zR + 12.0;
UNTIL KeyWasPressed<l;

END SolidCube.

>I
) ;
) ;
) ;
) ;
) ;
) I
l I

Chap.5

Hidden Edges 143

Description:

• VAR vertices: Array of the cube's eight vertices, arranged as shown in
Figure 5-9.

• VAR projectedVertices: Orthographic projection of the rotated cube's
vertices.

• VAR rotatedZ: Array of Z coordinates of the rotated vertices.
• PROCEDURE DrawFace: Draws the cube face defined by the four ver­

tices vl, v2, v3, and v4.
• PROCEDURE FrontFace: Given two opposite faces, FrontFace decides

which is closer and draws it. It compares the Z coordinate of the first
vertex in each face. The smaller one belongs to the frontmost face.

• PROCEDURE DrawCube: Draws the rotated cube by calling FrontFace
for each pair of opposite faces.

• PROCEDURE Project Vertices: For each vertex of the cube:
Rotates the vertex.
Records its Z coordinate.
Computes and records its orthographic projection by setting h = X

and v = Y.
• PROCEDURE lnitVertices: Initializes vertices to the comer points of a

100-by-100-by-100 cube, centered at the origin.
• MODULE SolidCube:

Initializes the cube's vertices, hides the cursor, and sets the rotation
angles to zero.

Until the user presses a key, it:
Sets the rotation angles from xR, yR, and zR.
Rotates and projects the vertices.
Clears the screen.
Draws the cube.
Increments the rotation angles.

Modifications:
Once again, displaying stereo pairs of the solid cube can enhance the three­
dimensional effect. Try the modification in Listing 5-4.

Since we are not using perspective, we must explicitly rotate the cube
to achieve a stereo effect.

Notes:
This technique for displaying only visible edges does not generalize well. You
can, however, use it to display orthographic projections of any solid object
consisting of pairs of parallel faces. For example, it will work on any rectan­
gular box and on a hexagonal prism.

144

SHADING

FROM ThreeDee IMPORT SetSc:ale;
F'ROM Mm1se IMPORT Button1

The Third Dimension Chap. 5

PROCEDURE WaitClic:k; C* wait for a button c:lic:k *>
BEGIN

WHILE NOT Button<> DO END;
WHILE Button<> DO END;

END Wai tCl i clq

BEGIN
InitVertices;
Obsc:LtreCursor;
SetSc:aleC O.B, 0.8,.D.8 >;
xR1•0.0; yR1=0.01 2R1•D.O;

REF'EAT
SetRot(xR, yR+4.0, zR >;
SetTranslation< -100.0, 0.0, 0.0 >
ProjectVertic:es;
ClearScreen1
DrawCube;
SetRot< xR, vR-4.0, zR >1
SetTranslationC 100.D, 0.0, 0.0 >
Project Vertices;
DrawCube1
xR1=xR + e.01 yR1=yR + 10.01 zR1•zR + 12.01
WaitClick1

UNTIL KeyWasPressed<>1

END SolidCube.

Listing 5-4: Stereo pair modification to SolidCube.

An object's surfaces usually appear lighter or darker, depending on how they
are exposed to a light source. A simplified mathematical shading model
(Lambert's law) can be stated as:

Is = I1 *ks * cos(e)

where Is is the intensity of the light reflected from the surface, I1 is the in­
tensity of the light source, ks is a constant representing the reflectivity of the
surface material, and e is the angle between the incident light and a line per­
pendicular (normal) to the surface (see Figure 5-11).

For simplicity, let us choose the light source to be on the positive X axis,
at infinity. When determining which surface to draw from each pair, we com­
pare two points, one on each surface. These points define a line normal (per­
pendicular) to the surface. If we denote the coordinates of the visible vertex
as (Xv, Yv, Zv) and those of the hidden vertex as (Xh, Yh, Zh), then

cos(e) =(Xv -Xh)/sqrt((Xv -Xh)2 + (Yv - Yh) 2 + (Zv -Zh)2)

Shading 145

Figure 5-11: Mathematical shading model.

Thus, we can estimate the intensity of light reflected from a surface.
While the Macintosh does not have true shades of gray, we can approximate
them using patterns. So far, we have only learned how to draw lines, circles,
and rectangles in filled patterns. To fill arbitrary shapes, we will need poly­
gons.

PolyQD exports a set of QuickDraw procedures that let us define
shapes (polygons) consisting of a closed sequence of lines. With PolyQD we
can draw a polygon's boundary or fill it with a pattern, much as we can do
for QuickDraw ovals and round-corner rectangles.

Module Name: PolyQD

Procedure for Using:
You can use MiniQD's Line and LineTo to define polygons. All polygons are
stored in PolyHandle variables. To begin, call OpenPoly to initialize a Poly­
Handle variable and to start recording boundary lines. Next, call Move, Move­
To, Line, and LineTo as necessary to draw the polygon's boundary. Note
that the boundaries must form a closed shape. While the polygon is open,
QuickDraw will not actually draw lines. When you are done, call ClosePoly.
QuickDraw operations will now draw on the screen again. You may now call
FramePoly to draw the polygon's outline, or FillPoly to fill the polygon with
a pattern. When you no longer need the PolyHandle variable, call KillPoly to
deallocate the memory it is using.

See ShadedCube for an example.

146 The Third Dimension Chap. 5

Listing of Definition Module:

DEFINITION MODULE PolyQDa

FROM QuickDrawTypes IMPORT Pattern, PolyHandle1

EXPORT QUALIFIED OpenPoly, ClosePoly, KillPoly,
FramePoly, FillPolyJ

PROCEDURE OpenPoly()1

PROCEDURE ClosePoly1

PROCEDURE KillPoly

PROCEDURE FramePoly

PROCEDURE FillPoly

END PolyQD.

PolyHandle;

(poly1 PolyHandle>1

<poly1 PolyHandle>;

(polya PolyHandle1 pat1 Pattern>1

Listing of Implementation Module:

IMPLEMENTATION MODULE PolyQD1

FROM QuickDrawTypes IMPORT Pattern, PolyHandle1

CONST
ex = 35581
QuickDraw2ModNum m 3J

PROCEDURE OpenPoly()1 PolyHandle1
CODE CXp QuickDraw2ModNum1 3 END OpenPolyJ

PROCEDURE ClosePoly1
CODE CX; QuickDraw2ModNump 4 END ClosePoly!

PROCEDURE KillPoly Cpolya PolyHandle)J
CODE CX1 QuickDraw2ModNum; 5 END KillPoly;

PROCEDURE FramePoly Cpolya PolyHandle>1
CODE CX; QuickDraw2ModNum1 8 END FramePoly1

PROCEDURE Fi llPoly Cpoly1 PolyHandleq pat1 Pattern> I
CODE CX! QuickDraw2ModNum; 12 END FillPolyp

END PolyQD.

Description:

• TYPE PolyHandle: Variables of this type point to a QuickDraw repre­
sentation of a polygon. Only QuickDraw routines can manipulate this
representation directly.

• PROCEDURE OpenPoly: Returns a PolyHandle value to hold a repre­
sentation of the polygon you will create with subsequent calls to Line
and LineTo. No drawing will actually occur while the polygon is open.

Shading 147

• PROCEDURE ClosePoly: Stops recording lines as polygon boundaries.
Subsequent calls to QuickDraw routines draw on the screen normally.
The previously open PolyHandle can now be used to frame (outline) or
fill a polygon.

• PROCEDURE KillPoly: Deallocates the memory taken up by a polygon.
Call KillPoly only when you no longer need the polygon. (What a vio­
lent name! Sounds like a Monty Python skit.)

• PROCEDURE FramePoly: Draws an outline around the polygon in the
current graphic pen mode, size, and pattern.

• PROCEDURE FillPoly: Fills the polygon with a pattern.

Now we can draw a cube with shaded surfaces.

Module Name: ShadedCube

Techniques Demonstrated:

• Using patterns to simulate shades of gray.
• Using polygons to draw filled surfaces of an object.

Procedure for Using:
Compile, link, and run ShadedCube. It draws a rotating cube (see Figure
5-12), shaded as if it were illuminated by a light source on the right-hand
side of the screen.

Figure 5-12: Display produced by ShadedCube.

148 The Third Dimension

Listing of Module:

MODULE ShadedCubef

FROM GluickDraw'Types IMPORT Point, PolyHandle, F·attern1
FROM MathLib1 IMPOR'T entier, sqrt, ipower;
FROM ThreeDee IMPORT Point3D, SetPoint3D, SetRot,

SetTranslation, SetPerspectlve,
TransformSRT, Pr0Ject1

FROM Mini(J.D
FROM Ped vGlD

IMPORT
IMPORT

Mc1ve'To, Li neTo, Obsc:ureCursor;
OpenPoly, ClosePoly, KillPoly,
FillPoly, FramePoly;

FROM Pat.terns
FROM r er mi nal

IMPORT
IMPORT

pWhite, pLGray, pGray, pDGray;
Cl ear Screen, F.hJ&yRead;

VAR
verticest ARRAYC1 .. 8J OF Point3D;
rotat.edVertic:es: ARRAYU •. SJ OF Point30;
proJectedVertices: ARRAYtl .• SJ OF Point;

< * v 1 is a vertex on the surface to be shaded,
v2 is the correspondinq vertex on the opposite surface

*)
PROCEDURE ComputeShade(v1, v21 INTEl3ERt

VAR theShade: Pattern >1
VAR

cosTheta: REAL; <* cosine of angle between surface
normal and X axis *>

pl, p2: Point3D;
BEGIN

pl1=rotatedVerticestvlJ1 p2t=rotatedVerticestv2J;
cosTheta1=(pl.X-p2.X)/ sqrt< ipowerCp1.X-p2.X, 2>

+ ipower<pl.Y-p2.Y, 2>
+ ipower· Cpl. Z-p2. z, 2>) 1

IF cosTheta >= 0.6667 THEN theShade1=pWhite1
ELSIF cosTheta >• 0.3333 THEN theShade1=pLGray;
ELSIF cosTheta >= 0.0 THEN theShadet•pGray;
ELSE theShade:=pDGray;
ENO; <*IF*>

END ComputeShade;

PROCEDURE DrawFacel vl, v2, v3, v4, oppositeVlt INTEGER >;
VAR

aPoly: PolyHandle;
theShade: Pattern;

BEGIN
aPoly1=0penPolyC>1
WITH proJectedVerticestvlJ DO

MoveToC 256+h, 171+v >;
END1 <*WITH*>
WITH projectedVerticestv2J DO

LineToC 256+h, 171+v >1
END; <*WITH*>
WITH projectedVerticestv3J DO

LineTc< 256+h, 171+v >1
END; <*WITH*>
WITH projectedVerticestv4l DO

LineTol 256+h, 171+v Ip
END; <*WITH*>
WITH proJectedVert1cestvll DO

LineTo< 256+h, 171+v >;
END1 l*WITH*>
ClosePcly;
ComputeShadeC v1, cppositeVl, theShade >;
FillPoly< aPoly, theShade >;
FramePolyC aPoly >;
killPolyC aPoly >;

END DrawFace;

Chap.5

Shading

PROCEDURE FrontFace< flVl, f1V2, f1V3, f1V4,
f2V1, f2V2, f2V3, f2V4: INTEGER>!

BEGIN
IF rotatedVertices[flVlJ.Z < rotatedVertices[f2V1J.Z
THEN DrawFac:e< f1V1, f1V2, f1V3, f1V4, f2V1 >1
ELSE DrawFaceC f2V1, f2V2, f2V3, f2V4, f1V1 >1
ENDJ <*IF*>

END FrontFaceg

PROCEDURE DrawCube1
BEGIN

FrontFace< 1, 3, 5, 7,
FrontFace< 1, 2, 4, 3,
FrontFace< 1, 2, 8, 7,

2, 4, 6, 8) 1 <* back/front *>
7, 8, 6, 5 >I <* left/right *>
3, 4, 6, 5 >1 <*top/bottom*>

END DrawCube1

PROCEDURE ProJectVertices1
VAR

vertindex1 INTEGER!
rotVertex1 Point3D1

BEGIN
FOR vertindex1=1 TO 8 DO

TransformSRT< vert.icestvertindexJ, rotVerte>e >1
rotatedVertices[vertinde>eJ1=rotVertex1
proJec:tedVerticesCvertindexJ.h1•entier<rotVertex.X>1
proJec:tedVerticesCvertindexl.v1•entier<rotVertex.Y>1

END; <*F'OR*l
END Pr·ojectVertices;

PROCEDURE InitVertices;
BEGIN

SetF'oint3DC -50.0, -50.0,
SetPoi nt::!D < -so.o. -50.0,
Set.F'oint3D(-50.0., 50.0,
SetPrJi. nt.:3o < -50.0, 50.0,
Set.Poi. nt:Jo < 50.0, 50.0,
SetF·c:1i nt:;.io < 50.0, 50. o,
SetPoint3L>< 50.0, -5(> .. 0 'I

SetF'oint3D< 50.0. -50.0,
END InitVert1ces1

50.0,
-50.0,
50.0,

-50.0,
50. C)'

-50.0,
:so.o,

-e.o.o,

F'ROCEDIJRE KeyWasf-'ressed < > 1 BOOLEAN;
VAR

ch: CHAR;
BEGIN

BusyRead(ch >;
RETURN ch < > OC;

END KeyWasF'ressed;

VAR
xR, yR, zR1 REALI

BEGIN
InitVertices1
ObscureCursor1
xR1=0.01 yR:=o.o; zR1•0.01

REPEAT
SetRot(xR, yR, zR >1
Project Vertices;
ClearScreen;
DrawCube1

vertic:es[lJ
vertices[2J
vertic:es[3J
verticesC4J
vertices[5J
vertic:es[6J
vertices[7J
vertices[8J

xR1•xR + e.01 yR1•yR + 10.01 zR1•zR + 12.01
UNTIL KeyWasPressed<>1

END ShadedCube.

) ;
) ;
) ;
) ;
) ;

) '
>1
) ;

149

150 The Third Dimension Chap. 5

Description:
ShadedCube is so similar to SolidCube that we need only describe the differ­
ences.

• VAR rotatedVertices: Cube's vertices after rotation.
• PROCEDURE ComputeShade: Calculates the appropriate pattern with

which to shade a surface.
The parameters are:

vl: A vertex on the surface to be shaded.
v2: The corresponding vertex on the opposite, hidden surface.

For example, if we were to shade the front surface of
Figure 5-9, vl might be vertex 8, whereas v2 would be
vertex 7.

VAR theShade: Returns the pattern we will use to approxunate
the correct shade of gray.

Compute Shade's variables are:
VAR cosTheta: Computed cosine of the angle between the X

axis and the line from v2 to vl.
VAR pl and p2: The 3-D points corresponding to vertices vl

and v2.
ComputeShade calculates the cosine of the angle between the

line from p2 to pl and the X axis, using the previously
described formula.

It assigns one of four gray levels (white, light gray, gray, or dark
gray) using the following approach: If the cosine is between
0.6667 and 1.0, the shade is white; between 0.3333 and
0.6667, light gray; between 0.0 and 0.3333, gray; less than
0.0 (the surface facing away from the light), dark gray. We
do not use a black pattern, since it would make the edges too
difficult to see.

• PROCEDURE DrawFace: Draws the supplied face, filled with the ap­
propriate pattern. Its new parameter, oppositeVl, is the first vertex on
the opposite face.

VAR aPoly: Contains the polygon that represents the face we are
drawing.

First, DrawFace opens a polygon, to be recorded in aPoly.
As in SolidCube, the program uses MoveTo and LineTo to define

the face's boundaries. The lines are not actually drawn on the
screen during this process, since the polygon is open.

When the polygon difinition is complete, DrawFace closes it.
Next, it calls ComputeShade to determine the correct pattern, and

uses it to fill the polygon.
Finally, DrawFace draws the outline of the polygon (the edges)

and deallocates aPoly.

A More General Hidden-Edge Display Technique 151

A MORE GENERAL HIDDEN-EDGE DISPLAY TECHNIQUE

The technique we used to draw solid cubes cannot portray more complex ob­
jects. This section presents a program that can display a wide range of solid
objects. First, we must introduce QuickDraw regions.

A region is similar to a QuickDraw polygon. You can define the bound­
aries of a region by drawing its bounding lines. You can also define a region's
boundary with rectangles, ovals, and round-corner rectangles. You can even
perform a kind of arithmetic on regions. We will use this property in our gen­
eral hidden-edge program, Poly3D.

Module Name: RegionOD

Procedure for Using:
Regions are shapes with arbitrarily complex boundaries. While the boundaries
of a polygon consist only of lines, those of a region may be formed from
lines, ovals, rectangles, and rounded rectangles. QuickDraw provides the
unique ability to combine regions to form new ones. For instance, you can
create a region that contains only the overlapping area of its parent regions
(SectRgn).

One references regions via RgnHandles. Unlike QuickDraw polygons,
programs must explicitly allocate and deallocate RngHandles with NewRgn
and DisposeRgn. After allocating a handle, define its region by calling Open­
Rgn and drawing the boundaries. Call CloseRgn to complete the region and
to save the resulting handle. You may also define regions in terms of others
by calling SectRgn. See Appendix A for details on other region operations.

QuickDraw provides the usual procedures to draw regions (i.e., Frame­
Rgn, FillRgn). When you are done with a region, deallocate it. See Poly3D
for examples.

Listing of Definition Module:
DEFINITION MODULE ReqionQD1

FROM QuickDrawTypea IMPORT RgnHandle, Pattern;

EXPORT QUALIFIED NewRgn, DiaposeRgn, OpenRgn, CloseRgn,
SectRgn, EmptyRgn, FrameRgn, FillRgn1

PROCEDURE NewRgnC)1 RgnHandle1

PROCEDURE DispoaeRgnlrgn: RqnHandlelg

PROCEDURE OpenRgn;

PROCEDURE CloseRgn CdstRgn1 RgnHandle>;

PROCEDURE SectRqn lsrcRgnA,srcRqnB,dstRgn1 RgnHandlel;

PROCEDURE EmptyRgn Crgn: RgnHandlel: BOOLEANJ

PROCEDURE FrameRgn lrgn1 RqnHandlel;

PROCEDURE FillRgn lrgn1 RgnHandle1 pat1 Pattern>;

END ReqionQD.

152 The Third Dimension Chap. 5

Listing of Implementation Module:

lMPLEMEl~TA"f llJN MODULE ReqicmQD1

FROM G!uickOr·awTypes IMPORT RgnHandle, Pattern:

CONST
ex ::i 35~Et~

Quick0raw2ModNum • 3; <* module number of QuickDraw2 *>

PROCEDURE NewRqnC>: RqnHandle;
CODE CX; QuickDraw2ModNum1 13 END NewRqn1

PROCEDURE DlsposeRqn<rgn: RgnHandle>;
CODE CX; QuickDraw2ModNum; 14 END DisposeRqn;

PROCEDURE OpenRgn;
CODE CX; G!uickDraw:2ModNum; 19 END OpenRgn;

PROCEDURE CloseRgn (dstRgn; RgnHandle>;
CODE CX; Gll.1ickDraw2ModNum; 20 END CloseRqn1

PROCEDURE Sec:tRgn <srcRgnA,src:RgnB,dstRgn: RgnHandlel1
CODE CX; Quic:kDraw2ModNum1 24 END Sec:tRgn1

PROCEDURE EmptyRgn <rgn1 RgnHandlel1 BOOLEAN;
CODE CX; QuickDraw2ModNum; 29 END EmptyRgn;

PROCEDURE FrameRgn <rgn1 RgnHandle>1
CODE CX; Quic:kDraw2ModNum; 32 END FrameRgn1

PROCEDURE FillRgn <rgn1 RgnHandle1 pat1 Pattern>;
CODE CX; Quic:k0raw2ModNum; 36 ENO FillRgn;

END RegionQD,

Description:

• PROCEDURE NewRgn: Allocates space for a RgnHandle.
• PROCEDURE DisposeRgn: Deallocates a RgnHandle.
• PROCEDURE OpenRgn: Begins recording all drawing operations in the

current window as the boundaries of a region.
• PROCEDURE CloseRgn: Stops recording region boundaries and stores

the saved region in dstRgn.
• PROCEDURE SectRgn: Returns in dstRgn the region equivalent to the

intersection (overlap) of srcRgnA and srcRgnB.
• PROCEDURE EmptyRgn: Returns true if the region is empty.
• PROCEDURE FrameRgn: Draws the outline of the region in the current

graphics pen mode, pattern, and size.
• PROCEDURE FillRgn: Fills the region with the given pattern.

Notes:
The region is QuickDraw's greatest innovation. Among other things, its effi­
ciency and flexibility permit Macintosh to provide powerful window opera­
tions.

A More General Hidden-Edge Display Technique 153

We can define a solid object as a group of straight-edged surfaces called
polygons (not to be confused with QuickDraw polygons). For example, a
cube consists of six square polygons. To display the object, we need only
draw its polygons. If we fill each polygon, it will obscure previously drawn
ones. The question is, in what order do we draw them? Intuitively, our pro­
gram must draw the polygons from back to front.

Our program thus begins by sorting the polygons in order of descending
maximum Z coordinate. That is, we note the largest Z coordinate of all ver­
tices in each polygon. The polygon with the greatest Z becomes the first in
the list. This step is called a Z sort or depth sort. For simple objects (such as
cubes), drawing polygons in the resulting order is adequate.

A simple depth sort will not produce the correct order for many other
polygon configurations. The problem is that comparing polygons' maximum
Z coordinates does not necessarily predict their visibility order correctly.
Consider, for example, Figure 5-13. Polygon A's maximum Z coordinate is
greater than that of B. Thus, a simple depth sort would draw A first, then B.
Yet, B is behind A and should be drawn first. How can we detect and correct
this situation?

y z

q A
"-......., B
~-

' x x
Front View Top View

Figure 5-13: Polygon configuration resulting in incorrect diplay order
as calculated by pure depth sort.

Geometry suggests an answer. Given three points on a polygon, we can
calculate the equation of the plane it lies on. From this equation, we can
determine whether the vertices of another polygon are in front of, or behind
that plane. The resulting algorithm is

• Sort the object's polygons by descending maximum Z coordinate (depth
sort).

154 The Third Dimension Chap. 5

• Proceed through the resulting list, comparing each polygon (A) to those
"above" it (B). For each such comparison, if:

1) The minimum and maximum Z coordinates of the two polygons
overlap.

2) And the projected polygons overlap.
3) And not all vertices of A are behind the plane of B.
4) And not all vertices of Bare in front of the plane of A.

then we must reorder the list, to draw B before A.

Poly3D embodies this algorithm.

Module Name: Poly3D

Techniques Demonstrated:

• Defining and drawing QuickDraw regions to portray polygonal surfaces.
• Displaying polygonal representations of a solid object.
• Using SectRgn and EmptyRgn to determine whether two regions over­

lap.

Procedure for Using:
The format of Poly3D's data files is similar to that of Draw3D. It begins with
the number of vertices and their definitions. Then we define the polygons
with lists of vertices. For example, we can draw a tetrahedron (a four-sided
solid, similar in shape to a pyramid) with the following definition.

4
-50.0 43.3

0.0 -43.3
1 2 -3
1 4 -3
1 4 -2
2 4 -3

-43.3
-43.3

50.0 43.3 -43.3
0.0 0.0 43.3

We list a polygon's vertices in the order they are connected. The last
vertex in the polygon is denoted as a negative number. Note that the connec­
tion from the last vertex to the first is implied.

Poly3D begins by requesting the name of a data file. Once you have
entered the name, it reads the file and displays the object. Poly3D rotates
and displays the object repeatedly until you press a key.

Figure 5-14 contains a sample display produced by the object defini­
tion of Listing 5-5.

A More General Hidden-Edge Display Technique

Figure 5-14: Imaginary aerospace vehicle drawn by Poly3D.

20
-100. 0 I). I)

90. (J 50. 0
60.0 -50.0
90.0
90.1)
90.0

-30.0
-30.0

o. 0
-70.0
70.0
10. 0

-10.0
30.0 o.o
90.0 o.o

2 3 4 5 -1
1 6 -2
1 5 -6
2 6 7 -3
5 4 7 -6
:5 7 -4
2 10 11 -3
5 4 9 -e
12 13 -16
12 16 -15
14 15 -16
14 16 -13
17 18 19 -20

-10.0
-10.0
-10.0

20.()
-30.0
-30.0
-10.0
-10.0
-10.0
-40.0

60.1) 50 .. () -·10.1)
90.0 -50.(1 -·10. 0
60. 0 o. o 20.0
80. () -·70.0 ·-:30. (I
80.0 70.0 -30.0

-50.0 o. 0 -10.0
-20.0 o.o -10.0
-35.() o.o -17.0
70.0 o. (I -10.0
8(). I) o.o -40.0

Listing 5-5: Data file of object in Figure 5-14.

Special Cases:
Poly3D's algorithm has two limitations.

155

First, given any two polygons P and Q in your object, they may never
both:

1) Mutually intersect. That is, algorithm tests 3 and 4 succeed when com­
paring P to Q and when comparing Q to P.

2) And overlap their minimum and maximum Z coordinates (i.e., algorithm
test 1).

156 The Third Dimension Chap. 5

For example, if the central fin of Figure 5-14 extended further back, it
would conflict in this manner with the rear bulkhead.

Should you violate this restriction, the algorithm will loop forever,
shuffling the off ending polygons back and forth. Should that happen, press
the front programmer's switch or turn the Macintosh off and on again. Then
correct the data file.

You must also ensure that the first three vertices of each polygon do
not lie in a straight line. Collinear vertices cannot produce an accurate plane
equation. Simply list the vertices such that the second vertex is a corner of
the polygon. Of course, this implies you cannot define a polygon that is a
simple line. Also, every vertex of the polygon should reside on the same
plane. Otherwise, the displayed object will look wrong.

Listing of Module:

MODULE Poly3D;

Draw and rotate a three dimensional, hidden edge object
Copyright 1985 by R. Schnapp

FROM ThreeDee
FROM QuickDrawTypes
FROM MiniQD

IMPORT Point3D, SetRot, TransformSRT1
IMPORT Point, RgnHandleJ
IMPORT MoveTo, LineTo, ObscureCursor1
IMPORT NewRgn, OpenRgn, CloseRgn, FROM RegionQD

FROM Patterns
FROM Terminal
FROM InDut

FROM MathLibl
FROM RealinOut

CONST
ma>< Vertices
maKEdges
ma><Polys

'TYPE

401
=lOOJ
= 40;

DisposeRgn, SectRgn, EmptyRgn,
FrameRgn, FillRgn1

IMPORT pWhitep
IMPORT ClearScreen, BusyRe•d1
IMPOR'T Openinput, Closeinput, Readint,

WriteString, WriteLn, Done1
IMPORT entierp
IMPORT ReadRealg

PlaneData RECORD
A, B, C, D: RE.ALp

END;

PolyData RECORD

VAR

startingEdgea IN'TEGER;
maKZ, minZ1 REAL;
region: RonHandle;
plane: PlaneData;

END:

vertices: ARRAYEl •• ma><Vert1cesJ OF PointJD1
rntatedVert1ces1 ARRAYC1 .• ma><Verticesl OF Point301
edges: ARRAYCl .. maxEdqesJ OF INTEGER;
polyqcms: ARRAYCl •. maxPolysJ OF PolyData;
sortedPolys: ARRAYC!.,maxPolysJ OF IN'TEGER1
numVert1ces, numPolys: INTEGER: ·

A More General Hidden-Edge Display Technique

PROCEDURE DrawEdge(fromV, toV: INTEGER) ;
BEGIN

WITH rotatedVertices[fromVJ DO
MoveTo< 25b+entier<X>, 171+entier<Y> >, END1

WITH rotatedVertices[toVJ DO
LineToC 25b+entier<X>, 171+entier<YI >1 END1

END DrawEdge;

PROCEDURE DisplayPolys;
VAR

polylndex, edgeindex, firstEdge1 INTEGER,
BEGIN

FOR polyindex:=l TO numPolys DO
WITH polygons[sortedPolysCpolylndexJ DO

FillRgn(region, pWhite >;
FrameRgnC region >,
DisposeRgn< region >1

ENDp <•WITH•>
ENO' <•FOR*)

END DisplayPolysp

PROCEDURE RotateVertices1 <•rotate all vertices •I
VAR

vertindex1 INTEGER=
BEGIN

FOR vertlndex1=1 TO numVertices DO
TransformSRT< verticestvertindexJ,

rotatedVerticesCvertindexJ >;
ENDp <•FOR•>

END RotateVertices;

<*Calculates the polygon's plane coefficients. Assumes
the polygon's first 3 vertices are not colinear. •I

PROCEDURE CalculatePlane< edge1 INTEGER!
VAR plane1 PlaneData >1

VAR
j , k , l 1 INTEGER I
vj, vk, vl1 Point30;
KkJ, ykJ, zkJ, xlj, ylj, zlj1 REALp

BEGIN
J:•edgestedgeJ; k:=edgestedge+lJJ l:=ABSCedgesCedge+2J>1
vJ:=rotatedVerticesCJJ;
vk1=rotatedVerticesCkJ1
vl:=rotatedVerticestlJ;
xkJ:•vk.X-vj.X; ykj:•vk.Y-vJ.Y1 zkJ:•vk.Z-vJ.ZJ
xlJ:•vl.X-vJ.X; ylJ:=vl.Y-vJ.Y; zlJ1=vl.Z-vJ.Z1
WITH plane DO

A:=ykJ•zlJ - zkJ*ylJ1
B 1 =z k j *x l J - K k j •z l .i ;
Cc=xkJ•ylj - ykJ•xlJ1
D:=A*vk.X + B•vk.Y + C*vk.Z;

ENDJ <•WITH*>
END CalculatePlane1

<• return TRUE if polyl is entirely behind poly2 •>
PROCEDURE Is8ehind< polyl, poly2: INTEGER)1 BOOLEAN;
VAR

edge, vertex• INTEGER;
BEGIN

edge1=polygonsC sortedPolysCpolylJ J.startingEdge;
WITH polygons[sortedPolystpoly2J J.plane DO

IF ABSCC) < 0.0001 THEN RETURN FALSE1 END;
LOOP

vertex1•edgesCedgeJ'
WITH rotatedVerticesC ABS<vertex> J DO

157

158 The Third Dimension

IF <Z+0,011 < <<D - A*X - B*YI I Cl
THEN RETURN FALSE!
END; <*IF*I
IF verte>< < 0 THEN RETURN TRUE1 ENDJ <*1F*I
INC< edge>;

END; <*WITH rotatedVertic:em*I
END1 <*LOOP*I

ENDJ <*WITH polygons*>
END I11Behind1

<* return TRUE if poly1 is entirely in front of poly2
*>
PROCEDURE IsinFront< poly1, poly21 INTEGER 11 BOOLEAN!
VAR

edge, verte><1 INTEGER1
BEGIN

edge1=polygon11[sortedPolys[poly1J J.startingEdge;
WITH polygons[sortedPolys[poly2J J.plane DO

IF ABS<CI < 0,0001 THEN RETURN FALSE1 END1
LOOP

verte>11=edges[edgel1
WITH rotatedVertic:es[ABS<verte><> J DO

IF <Z-0.01> > <<D - A*X - B*YI I Cl
THE:N RETURN FALSE1
END; <*IF*>
IF verte>< < 0 THEN RETURN TRUEJ END; <*IF*>
INC< edge >1

END1 <*WITH rotatedVertic:es*I
END1 <*LOOP*>

ENDJ <*WITH polygons*)
END IsinFrontp

<*Returns true if there is an overlap between polyl's
and poly2's min and ma>< Z c:oordinates. *'

PROCEDURE ZOverlap< polyl, poly21 INTEGER 11 BOOLEAN1
VAR

minl, maxl, min2, max21 REAL;
BEGIN

WITH polygons;CsortedPolys[poly1JJ DO
min11=minZ1 maxl1=ma>1Z;

END1
WITH polygons[sortedF'olys[poly2JJ DO

min2:=minZ; max21•maxZ;
END;
RETURN <<min2 <= min11 AND !min1 <= ma><211

OR ((minl <= max21 AND <ma><2 <= maH111
END ZOverlap;

<* Return true if the regions overlap *I
PROCEDURE RegionOverlap(poly!, poly21 INTEGER 11 BOOLEAN!
VAR

intersec:tedRegion1 RgnHandle;
re111ll t 1 BOOLEAN;

BEGIN
intersec:tedRegion1=NewRgn<l1
Sec:tRgn(polygons[sortedPolys[poly1JJ.region,

polygons[sortedPolys[poly2JJ.region,
intersec:tedRegion >1

result:=NOT EmptyRgn< intersec:tedRegion >1
DisposeRgn(intersec:tedRegion I;
RETURN result1

END RegionOverlap1

Chap.5

A More General Hidden-Edge Display Technique

<* Sort the polygons by descending max Z coordinates *>
PROCEDURE Bubble6ort1
VAR .

i, J, temp: INTEGER!
BEGIN

FOR ii=numPolys-1 TO 1 BY -1 DO
FOR J1•1 TO i DO

IF polygons[sortedPolysCJJ J.maxZ
< polygons[sortedPolysCj+ll J.ma>eZ

THEN <* swap polygons *>
temp1=sortedPolysCJJ1
sortedPolysCJJ1=sortedPolysCJ+lJ1
sortedPolysCj+1J1=temp1

END1 <*IF*>
ENDJ <*FOR J*>

END! <*FOR i*>
END BubbleSort1

<* Sort polygons in order of visibility *>
PROCEDURE ReorderPolys1
VAR

nextPoly, testPoly, temp, i1 INTEGER1
BEGIN

FOR nextPoly1•l TO numPolys-1 DO
testPoly:=nextPoly+l;

LOOP I* check nextPoly against polygons above it *>
IF ZOverlapl nextPoly, testPoly)

AND ReqionOverlapl ne>etPoly, testPoly >
AND NOT IsBehindl nextPoly, testPoly >
AND NOT IsinFrontl testPoly, nextPoly)

THEN I* swap the two *>
temp:=sortedPolysCtestPolyJ;
FOR i1=testPoly TO nextPoly+l BY -1 DO

sortedPolysCil:=sortedPolysCi-lJ;
END; l*FOR*l
sortedPolysCnextPolyl:=temp;
testPoly1=nextPoly+l1 <* restart the test *>

END; <*IF*l
IF testPoly = numPolys THEN EXIT; END1
INCi testF'oly >;

END; <*LOOP*>
END; <*FOR*>

END ReorderPolys1

PROCEDURE Proc:essPolys;
VAR

polyindex, edgeindex, vertex: INTEGER;
rotZ: REAL;

BEGIN
FOR polyindex:=1 TO numPolys DO

WITH polygonsCpolyindexl DO

edgeindew:=startingEdge;
maxZ:=rotatedVerticesC edgesCedgeindexJ J.Z1
mi n Z : =max Z I
region:=NewRgn<>1
OpenRgn;

<* create polygon region*>

LOOP (* process each polygon *l
verte>e1=ABSledgesCedgeindexJ>1
rotZ:=rotatedVerticesCvertexJ.Z1
IF maxZ < rotZ THEN maxZ1mrotZ1 END1
IF minZ > rotZ THEN minZ1•rotZ1 END;

159

160 The Third Dimension

IF edges[edgelndexl > 0 (* add edge to region *>
THEN DrawEdge(vertex, ABS(edges[edgelndex+1l> >1

INC(edgeindex >p
ELSE DrawEdge(vertex, edgeststartingEdgel >1

EXIT1
END; <*IF*>

END; <*LOOP*>

CloseRgn< region >1
Cal c:ul atePl ane < star ti ngEdge, plane >;

END1 <*WITH*)

END; <*FOR*>
BubbleSort;
Reorde,,-.PrJl ys1

END ProcessPolys!

PROCEDURE ReadU st I
VAR

<* sort by descending rotated Z *>
(* sort by visibility *>

index, edge, numEdges1 INTEGER;
BEGIN

Cl earE>cr·een;
Wr .. i. t.e8tr- i nq (

"Please enter- the name of a polygon data file," >1
WriteLn1
Openinput< "POLY" >;
Readint(numVer-tic:es >;
FOR index1=1 TO numVert.ices 00 <* r-ead vertices *)

WITH vertlces[indexl DD
ReadReal< X >; ReadReal (Y >1 ReadReal (Z >;

END! (*WITH*>
ENO; <*FOR*>

numEdges1=01
numPolys1=1;
polygonsCnumPolysl.startingEdge1=l1
LOOF' <* Read list of polygon edges *>

Readlnt< edge >1
IF NOT Done THEN EXIT1 ENO!
INC< numEdges >;
edgesCnumEdgesJ:=edge;
IF edge < O
THEN <* last vertex in polygon *>

INC< numPolys >1
polygonsCnumPolysl.startingEdge1=numEdges+l1

ENDp <*IF*>
END I <*LOOP*>
DEC< numPolys >1

Closeinput;
END Read Li st I

PROCEDURE KeyWasPressed()1 BOOLEANg
VAR

ch1 CHAR;
BEGIN

BusyRead (c:h > I
RETURN ch <> OC;

END KeyWasPressed1

VAR
xR, yR, zR1 REAL;
i 1 INTEGER;

Chap.5

A More General Hidden-Edge Display Technique

BEGIN
FOR i: =1 TO ma>< Pol ye DO sortedPol y;;Ci J 1 =i; END!

ReadList;
xR:=O.O; yR:=O.O; zR:•O.O;
ObscureCursor;
REPEAT

SetRot(><R, yR, zR >;
RotateVerti c:es;
Proc:essPolys;
Cl earScreem;
DisplayPolys;
><R1=xR+10.o; yR:=yR+12.0; zR:=zR+15.0;

UNTIL KeyWasPressed ();
END Poly3D.

Description:

161

• CONST max:Vertices, max:Edges, and max:Polys: Maximum number of
vertices, edges, and polygons permitted.

• TYPE PlaneData: Coefficients of a plane's equation. These four values
mathematically define a plane.

• TYPE PolyData: Description of a polygon.
startingEdge: Index into edges of first vertex in the polygon.
maxZ, minZ: Maximum and minimum Z coordinates of the poly­

gon's vertices.
region: Handle of a region representing the polygon's projection.
plane: Polygon's plane coefficients.

• VAR vertices: The object's vertex points.
• VAR rotatedVertices: Rotated version of vertices.
• VAR edges: Lists of vertices that define the object's polygons.
• VAR polygons: Description of each polygon.
• VAR sortedPolys: Indices into polygons, sorted by order of visibility.
• VAR numVertices, numPolys: Number vertices, polygons in the object.
• PROCEDURE DrawEdge: Draws a line from the orthographic projec­

tion of rotated vertex fromV to toV. Since DrawEdge is called only
while a region is open, QuickDraw does not draw the line, but only ac­
cumulates it as a boundary.

• PROCEDURE DisplayPolys: Draws the object's polygons in visibility
order.

• PROCEDURE Rotate Vertices: Rotates the object's vertices.
• PROCEDURE CalculatePlane: A plane is defined by the equation

A*X+B*Y+C*Z=D

Given the first edge of a polygon, CalculatePlane uses its first three ro­
tated vertices to calculate the plane coefficients, A, B, C, and D.

162 The Third Dimension Chap. 5

• PROCEDURE IsBehind: polyl and poly2 are indices into sortedPolys.
Thus, polyl refers to polygons[sortedPolys[polyl]], and poly2 like­
wise.
IsBehind returns true if all of polyl 's vertices are in front of the plane

defined by poly2.
sets edge to the index into edges of the first vertex in polyl.
if coefficient C of poly2 is near zero, the plane is parallel to the Z axis.

Thus, nothing is behind poly2 and we return false.
otherwise, scans vertex through polyl 's rotated vertices.

For each vertex,
IsBehind calculates the Z coordinate of the vertex's orthographic

projection onto the plane. If the vertex's Z is less than (in
front of) the projected Z, IsBehind returns false. We add 0.01
to the vertex's Z during this comparison, to allow for arith­
metic error.

if IsBehind tested the last vertex of polyl, IsBehind returns true.
otherwise, we examine the next vertex.

• PROCEDURE IslnFront: Nearly identical to IsBehind. Returns false if,
instead, a vertex Z is greater than (behind) a projected Z.

• PROCEDURE ZOverlap: Returns true if the maximum and minimum Z
coordinates of polyl and poly2 overlap.

• PROCEDURE RegionOverlap:
Returns true if the two polygons' regions overlap.
allocates a RgnHandle with NewRgn.
computes a new region consisting of the overlap of polyl and poly
2.
records a result of true if the new region is not empty.
deallocates the RgnHandle.

• PROCEDURE BubbleSort: Sorts the indices of sortedPolys by decreas­
ing maximum Z coordinate. The bubble sort algorithm works by exam­
ining pairs of elements of sortedPolys and interchanging pairs that are
out of order. It is called a bubble sort because elements "bubble" to
their correct locations. While the bubble is not one of the faster sorting
algorithms, it is one of the smallest and simplest.

• PROCEDURE ReorderPolys: Takes sortedPolys, already in decreasing
Z order, and adjusts it in order of visibility.

VAR nextPoly: Next polygon to be tested against all polygons
"above" it.
VAR testPoly: Polygon to test against nextPoly.
ReorderPolys:

Scans nextPoly from the most distant polygon to the nearest.
Scans testPoly from nextPoly to the nearest polygon.

Exercises 163

Compares nextPoly to testPoly. If they pass the four previ­
ously described tests, it moves testPoly to nextPoly's
position and shifts the intervening elements up one.
Then it starts scanning testPoly from nextPoly+ 1 again.
If any of the tests fail, in increments testPoly.

• PROCEDURE ProcessPolys: Performs several tasks, preparatory to
drawing the object.

First, it examines each polygon, recording the maximum and mini­
mum Z coordinates, creating its region, and calculating its
plane coefficients.

Then it sorts the polygons by maximum Z coordinate.
Finally, ProcessPolys sorts the polygons by order of visibility.

• PROCEDURE ReadList: Reads the vertices and polygon edges from the
data file.

• MODULE Poly3D:

Notes:

Initializes each element of sortedPolys to the index of the corre-
sponding element of polygons.

Reads the data file.
Sets the initial rotation angles to zero.
Until the user presses a key, Poly3D repeatedly:

Sets the new rotation parameters.
Rotates the objects' vertices.
Sorts the polygons by order of visibility.
Clears the screen.
Displays the polygons in visibility order.
Adjusts the rotation angles.

QuickDraw regions have some disadvantages. First, if all of a region's bound­
aries lie on a single line, it is considered to be empty. Thus it will not appear
at all when you draw it. For example, a region representing a polygon viewed
edge-on is invisible if drawn. If drawn with a QuickDraw polygon, you would
be able to see the boundary line.

Another problem results from the way FrameRgn works. It draws a line
just inside the boundary of the region. Thus, when two polygons abut (as in
Figure 5-14), the junction is unnecessarily emphasized.

EXERCISES

5-1. a. Draw3D animates an object by rotating it. We can also animate an object by trans­
lating it. For example, to move the object right, increase its X translation value each
time you regenerate the image. Write and test a modification to Draw3D that moves
the shuttle or airplane from a translation value of (-7 40.0, -500.0, 1000.0) to (10.0,
10.0, -100.0) in 30 steps.

164 The Third Dimension Chap. 5

b. At a fixed Z value, the range of X and Y coordinates visible on the projection sur­
face is determined by the Projection parameters, screenZ and sourceZ, and by the
size of the projection screen. Assuming Macintosh's 512-by-342-pixel screen, derive
a pair of equations that show the relationship of these parameters to the visible X
and Y coordinates. That is, given a particular Z coordinate, what X and Y coordin­
ates correspond to the edge of the projection screen?
c. Given the projection parameters used by Draw3D (screenZ=220.0 and sourceZ=
-180.0), calculate the projected length of a line from (-50.0, 0.0, 350.0) to (50.0,
0.0, 350.0).

5-2. Use parallel orthographic projection to display the top, side, and front view of a
3-D data file.

5-3. In ShadedCube, we assumed that all surfaces reflect the same amount of light. Mod­
ify ShadedCube to make it draw one of the faces a shade darker than the rest.

5-4. a. When Poly3D encounters a polygon configuration as described in Special Cases,
its ReorderPolys procedure can loop forever. Modify Poly3D to prevent this condi­
tion. The simplest way would modify ReorderPolys to record which testPoly caused
a swap with nextPoly. If that pair is encountered again, don't swap.
b. In the Notes, we discussed two problems with drawing surfaces with regions. If
Poly3D used regions only to detect overlap, but drew surfaces with QuickDraw
polygons, the problems would disappear. Apply and test this modification.
c. Poly3D can draw shaded polygons, like ShadedCube. You must calculate the co­
sine of the angle (} between the X axis and a line perpendicular to the plane. We can
derive this value from the plane coefficients:

cos(6) = A/sqrt(A 2 + B 2 + C2)

Note that you must now list polygon vertices in counterclockwise order, as seen
from the outside of the object. In fact, Listing 5-4 was constructed in this manner.
First, make these changes to Poly3D and observe the results. Then describe and ex­
plain the problem you see involving free-standing polygons, such as wings or fins.
The cosine of the angle i/J between the Z axis and the line perpendicular to the plane
is

cos(l/I) = C/sqrt(A 2 + B2 + C2)

Given this equation, can you shade free-standing polygons properly and eliminate
the need to list vertices in any particular order? If so, do so.

BIBLIOGRAPHY

Chapter 7 of Fundamentals of Interactive Computer Graphics, by James Foley and •
Andries van Dam (Addison-Wesley, 1983) derives the formulae we use to rotate 3-D ob­
jects. Chapter 8 discusses projection. Chapter 13 describes advanced techniques for repre­
senting and displaying three-dimensional objects, including curved surfaces. Chapter 14
further develops the hidden-edge algorithm used in Poly3D. It also describes advanced
mathematical shading models.

Pages 283-285 of Applied Concepts in Microcomputer Graphics by Bruce Artwick
(Prentice-Hall, 1984) describe another interesting method for eliminating hidden edges.

Bibliography 165

A Programmer's Geometry, by Adrian Bowyer and John Woodwark (Butterworths,
1984), contains formulae and program fragments (albeit in FORTRAN) that solve numer­
ous geometric problems arising in 3-D graphics. For example, to calculate the shading on
an arbitrary surface, we must derive the equation for its perpendicular line, and the angle
between that line and the incoming light rays. Chapter 7 presents techniques for accom­
plishing such tasks.

appendix A

Important
Quick draw
Procedures

This appendix does not take the place of Apple's Inside Macintosh. It de­
scribes most (but not all) QuickDraw procedures. If a procedure could be
explained briefly, it was included.

Most of the procedures in this appendix are found in file QuickDraw­
Procs, on the Modula Master 1 disk. Exceptions will be noted in the descrip­
tions. To use one of these procedures, locate it in QuickDrawProcs and copy
it to the module that will use or export it.

Cursor Manipulation

• PROCEDURE SetCursor: Draws the mouse with a new Cursor value.
• PROCEDURE HideCursor: Makes the mouse cursor invisible. It also de­

crements a "cursor level" counter. The Macintosh still keeps track of
the cursor's position and will display the cursor as soon as it is made
visible again.

• PROCEDURE ShowCursor: Increments the "cursor level" counter. If
the counter reaches 0, it makes the cursor visible again. In other words,
QuickDraw keeps track of how many times HideCursor and ShowCursor
have been invoked. This allows you to nest routines that temporarily
tum off the cursor while they work.

• PROCEDURE ObscureCursor: Makes the cursor invisible until the user
moves the mouse.

• PROCEDURE InitCursor: Sets the cursor to an arrow pointing north­
northwest, and resets the level counter to zero.

166

Appendix A 167

Pen Manipulation

• PROCEDURE HidePen: Prevents subsequent QuickDraw operations
from drawing on the display. It also decrements a "pen level" counter.
QuickDraw continues to keep track of the cursor's position, and will
draw again as soon as the pen level reaches zero.

• PROCEDURE ShowPen: Increments the pen level counter (see Hide­
Pen).

• PROCEDURE GetPen: Returns the current position of the graphics pen.
• PROCEDURE GetPenState: Returns a record that contains the graphics

pen's size, position, mode, and pattern.
• PROCEDURE SetPenState: Sets the graphics pen according to a record

returned by GetPenState.
• PROCEDURE PenSize: Sets the graphics pen's width and height.
• PROCEDURE PenMode: Sets the graphics pen's drawing mode (see

Chapters 2 and 3).
• PROCEDURE PenPat: Sets the pattern used by the graphics pen (see

Chapter 2).
• PROCEDURE PenNormal: Sets the pen pattern to solid black, the size

to one pix.el by one pixel, and the mode to patCopy.
• PROCEDURE MoveTo: Sets the pen position.
• PROCEDURE Move: Moves the pen relative to its current position.
• PROCEDURE LineTo: Moves the pen to the given coordinates, drawing

a line. LineTo uses the current pen shape, pattern, and mode. Remember
that the pen hangs below and to the right of the pen position. The line
is thus not centered over the path between the two points. Instead, its
upper left border rests on that path.

• PROCEDURE Line: Moves the pen relative to its original coordinates,
drawing a line.

• PROCEDURE BackPat: Sets the background pattern used by the Erase
. . . procedures.

Text Procedures

• PROCEDURE TextFont: Sets the current font to one of those specified
in module ToolBoxConsts (systemFont, applFont, NewYork, Geneva,
Monaco, Venice, London, Athens, SanFran, or Toronto).

• PROCEDURE TextFace: Sets the current text enhancements to any
combination of extend, condense, shadow, outline, underline, italic,
or bold, as exported from QuickDrawTypes. For example, TextFace
({italic, bold}) draws text in bold italics.

• PROCEDURE TextMode: Draws text in the specified transfer mode

168 Important Quickdraw Procedures Appendix A

(see Chapter 3). Permissible text modes are srcOr, srcXor, srcBic, and
srcCopy.

• PROCEDURE TextSize: Sets the size with which text is drawn. If zero,
the system will choose a size. If the font doesn't contain a given size, it
will approximate it.

• PROCEDURE SpaceExtra: Sets the number of pixels to add to the
width of each space character.

• PROCEDURE DrawChar: Draws a character above and to the right of
the current graphics pen position, and advances the pen.

• PROCEDURE Drawstring: Draws a string (Str255) of characters above
and to the right of the graphics pen, and advances the pen.

• PROCEDURE CharWidth: Returns the width of a character (in pixels)
in the current font with the current enhancements.

• PROCEDURE StringWidth: Returns the width (in pixels) of a string
drawn in the current font with the current enhancements.

Arithmetic on Points

• PROCEDURE SetPt: Returns a Point given a horizontal and a vertical
coordinate.

• PROCEDURE AddPt: Given two points, computes their (vector) sum.
It replaces the second point with the result.

• PROCEDURE SubPt: Computes the vector difference of two points,
and replaces the second point with the result.

• PROCEDURE EqualPt: Compares two points. It returns true if they are
identical.

• PROCEDURE ScalePt: Treats the Point argument as a width and height.
Scales the width and height in the same proportions as dstRect is to src­
Rect.

• PROCEDURE MapPt: Given a Point within srcRect, maps it to the
equivalent point within dstRect.

• PROCEDURE LocalToGlobal: Converts a point in the current window
to the point's location in screen coordinates.

• PROCEDURE GlobalToLocal: Converts a point in screen coordinates
to the point's position in the current window.

Rectangles

• PROCEDURE SetRect: Given four boundary coordinates, returns a
value of type Rect, representing a rectangle.

• PROCEDURE Pt2Rect: Given two points, returns a value of type Rect,
representing the smallest rectangle enclosing those points.

Appendix A 169

• PROCEDURE EqualRect: Returns true if the two rectangles are identi­
cal.

• PROCEDURE EmptyRect: Returns true if the rectangle is empty (i.e.,
top= bottom and left =right).

• PROCEDURE InsetRect: Shrinks or expands the rectangle by the given
horizontal and vertical values. If the values are positive (negative), Inset­
Rect shrinks (expands) the corresponding rectangle dimensions.

• PROCEDURE OffsetRect: Moves the rectangle by the given horizontal
and vertical values.

• PROCEDURE MapRect: Maps a Rect r, contained within the srcRect,
to the equivalent rectangle within dstRect.

• PROCEDURE SectRect: Returns the rectangle equivalent to the inter­
section (overlap) of srcl and src2.

• PROCEDURE UnionRect: Returns the smallest rectangle containing
srcl and src2.

• PROCEDURE PtlnRect: Returns true only if the supplied point lies in­
side the rectangle.

• PROCEDURE FrameRect: Draws a hollow rectangle, in the current pen
pattern, shape, size, and mode. The rectangle is drawn just inside the
boundaries defined by the Rect argument.

• PROCEDURE EraseRect: Fills the rectangle with the current back­
ground pattern (see BackPat).

• PROCEDURE lnvertRect: Reverses all pixels inside a rectangle.
• PROCEDURE PaintRect: Fills the interior of a rectangle with the cur­

rent pen pattern.
• PROCEDURE FillRect: Fills the interior of a rectangle with the speci­

fied pen pattern.

Round-cornered Rectangles

• PROCEDURE FrameRoundRect: Draws a hollow round-cornered rec­
tangle, in the current pen pattern, shape, and mode. The round-cornered
rectangle is drawn just inside the boundaries defined by the Rect argu­
ment.

• PROCEDURE EraseRoundRect: Fills the round-cornered rectangle with
the current background pattern.

• PROCEDURE InvertRoundRect: Reverses all pixels inside a round­
cornered rectangle.

• PROCEDURE PaintRoundRect: Fills the interior of a round-cornered
rectangle with the current pen pattern.

• PROCEDURE FillRoundRect: Fills the interior of a round-cornered
rectangle with the specified pen pattern.

170 Important Quickdraw Procedures Appendix A

Ovals

• PROCEDURE FrameOval: Draws a hollow oval, in the current pen pat­
tern, shape, and mode. The oval is drawn just inside the boundaries de­
fined by the Rect argument.

• PROCEDURE EraseOval: Fills the oval with the current background
pattern.

• PROCEDURE InvertOval: Reverses all pixels inside an oval.
• PROCEDURE PaintOval: Fills the interior of an oval with the current

pen pattern.
• PROCEDURE FillOval: Fills the interior of an oval with the specified

pen pattern.

Arcs

• PROCEDURE FrameArc: Draws the outline of a section of the oval in­
scribed within the given rectangle. The section extends from startAngle
to endAngle. The angles are in degrees, with 0° at the top, and positive
angles increasing clockwise.

• PROCEDURE EraseArc: Fills a wedge of the arc with the current back­
ground pattern.

• PROCEDURE InvertArc: Reverses all pixels inside the wedge of the arc.
• PROCEDURE PaintArc: Fills the wedge of the arc with the current pen

pattern.
• PROCEDURE FillArc: Fills the wedge of the arc with the specified pen

pattern.
• PROCEDURE PtToAngle: Returns the point on the arc at the given

angle. Use this to draw an arc's radii.

Polygons

• PROCEDURE OpenPoly: Returns a PolyHandle value to reference a
representation of the polygon you will create with subsequent calls to
Line and LineTo (see Chapter 5). No drawing will actually take place
while the polygon is open.

• PROCEDURE ClosePoly: Stops recording lines as polygon boundaries.
Subsequent calls to QuickDraw routines draw on the screen normally.
The previously open PolyHandle can now be used to frame (outline) or
fill a polygon.

• PROCEDURE KillPoly: Deallocates the memory taken up by a polygon.
Call KillPoly only when you no longer need the polygon.

Appendix A 171

• PROCEDURE OffsetPoly: Moves all vertices of the polygon by the
given horizontal and vertical distances.

• PROCEDURE MapPoly: Maps the vertices of the polygon contained in
fromRect into toRect.

• PROCEDURE FramePoly: Draws an outline around the polygon in the
current graphic pen mode, size, and pattern.

• PROCEDURE PaintPoly: Fills the polygon with the pen pattern.
• PROCEDURE ErasePoly: Fills the polygon with the background pat­

tern.
• PROCEDURE Invert Poly: Inverts the interior of the polygon.
• PROCEDURE FillPoly: Fills the polygon with a pattern.

Regions

A region is a description of a solid shape with arbitrary boundaries. It is simi­
lar to a polygon, except that the boundaries need not be straight lines. Re­
gions may have several disconnected shapes and can even have holes. Regions
are always referenced through RgnHandles (from QuickDrawTypes), which
you must allocate and deallocate with NewRgn and DisposeRgn. See Poly3D
in Chapter 5 for an example.

• PROCEDURE NewRgn: Allocates space for a RgnHandle.
• PROCEDURE DisposeRgn: Deallocates a RgnHandle.
• PROCEDURE CopyRgn: Makes a copy of the region. dstRgn must have

previously been allocated with New Rgn.
• PROCEDURE SetEmptyRgn: Makes the region empty.
• PROCEDURE SetRectRgn: Makes a region in the shape of the given

rectangle boundaries.
• PROCEDURE RectRgn: Makes a region in the shape of the given rec­

tangle.
• PROCEDURE OpenRgn: Begins recording all drawing operations in the

current window (except text and arc procedures) as the boundaries of a
region.

• PROCEDURE CloseRgn: Stops recording region boundaries and stores
the saved region in dstRgn.

• PROCEDURE OffsetRgn: Moves the region by the supplied horizontal
and vertical distances.

• PROCEDURE MapRgn: Maps the boundaries of the region contained in
fromRect into the equivalent region within toRect.

• PROCEDURE InsetRgn: Shrinks or expands points on the boundary of
the region by the given amounts (see InsetRect).

172 Important Quickdraw Procedures Appendix A

• PROCEDURE SectRgn: Returns the region equivalent to the intersec­
tion (overlap) of srcRgnA and srcRgnB.

• PROCEDURE UnionRgn: Returns the region equivalent to the union
(combination) of srcRgnA and srcRgnB.

• PROCEDURE DiffRgn: Returns the region equivalent to the result of
excluding srcRgnB from srcRgnA.

• PROCEDURE XorRgn: Returns the region equivalent to the union of
srcRgnA and srcRgnB less its intersection.

• PROCEDURE EqualRgn: Returns true if the two regions are identical.
• PROCEDURE EmptyRgn: Returns true if the region is empty.
• PROCEDURE PtlnRgn: Returns true if the point is in the region.
• PROCEDURE RectlnRgn: Returns true if any part of the rectangle is

in the region.
• PROCEDURE FrameRgn: Draw the outline of the region in the current

graphics pen mode, pattern, and size.
• PROCEDURE PaintRgn: Fill the region with the current graphics pen

pattern.
• PROCEDURE EraseRgn: Fill the region with the current background

pattern (see BackPat).
• PROCEDURE InvertRgn: Reverse the bits in the region's interior.
• PROCEDURE FillRgn: Fill the region with the given pattern.

Pictures

A picture is a recording of QuickDraw operations that you can play back at
any time. Like polygons, QuickDraw allocates a picture with OpenPicture,
and you must deallocate it with KillPicture.

• PROCEDURE OpenPicture: Allocates and returns a picture handle and
begins recording all QuickDraw operations in it. QuickDraw does not
actually write on the screen while a picture is open.

• PROCEDURE ClosePicture: Stops recording QuickDraw operations and
permits subsequent drawing on the screen.

• PROCEDURE DrawPicture: Replays the QuickDraw operations re­
corded in the picture.

• PROCEDURE KillPicture: Deallocates the memory associated with the
picture. Use KillPicture only when you no longer need the picture.

Miscellaneous

• PROCEDURE ScrollRect: See Chapter 3. Shifts (scrolls) the contents
of a rectangular area in the current window or the screen.

Appendix A 173

• PROCEDURE GetPixel: Returns true if the pixel at the given position
is black.

• PROCEDURE Stuftllex: Interprets the string (Str255) as a hexadeci­
mal number. Places the equivalent binary value in thingptr, a pointer to
your variable. StuffHex is most useful for initializing Pattern or Cursor
variables. For example, we could have initialized our pDiag variable with

StrMacToMod (anStr255, "0102040810204080");
StuffHex (/\pDiag, anStr255);

• PROCEDURE PackBits: (This procedure is exported from module Mis­
cellaneous. You may import it directly from that module.) Compresses
data in a bit-map into a buffer. srcPtr points to a bit-map, while dstPtr
points to a buffer (such as an ARRAY OF CHAR). byteCnt is the num­
ber of bytes to compress. After the operation, srcPtr is incremented by
byteCnt, while dstPtr is incremented by the size of the compressed ver­
sion. The address of the bit-map of a window, aWindowPtr, is calculated
by aWindowPtrA .portBits.baseAddr.

• PROCEDURE UnPackBits: (Also exported from module Miscellaneous.)
Decompresses data compressed by PackBits. srcPtr points to a buffer,
while dstPtr points to the bit-map. byteCnt is the number of decom­
pressed bytes. After the call to UnPackBits, dstPtr is incremented by
byteCnt, while scrPtr is incremented by the number of required buffer
bytes.

MacPaint files, for example, consist of a header of 512 bytes, fol­
lowed by a packed representation of a bit-map, 576 pixels wide by 720
pixels high.

• PROCEDURE Random: Returns a pseudorandom integer between
-32767 and 32768. The seed that controls the sequence is accessible via
Maclnterface.randSeed. The seed is initialized to one.

appendix B

Important
Toolbox
Procedures

This appendix does not take the place of Inside Macintosh. It describes many
of the ToolBox procedures. The primary criterion for including procedures
here was the ability to explain them briefly. An explanation of all the Tool­
Box procedures would require its own book.

Like the QuickDraw procedures, to use these, you must copy the code
from the indicated file into modules that will use or export them.

Clock (from ClockManagerProcs)

• PROCEDURE ReadDateTime: Returns the number of seconds since
January 1, 1904.

• PROCEDURE SetDateTime: Sets the number of seconds since January
1, 1904.

• PROCEDURE Date2Secs: Converts a DateTimeRec (from ToolBox­
Types) to a number of seconds.

• PROCEDURE Secs2Date: Converts a number of seconds back to a Date­
TimeRec.

• PROCEDURE GetTime: Returns the current time.
• PROCEDURE SetTime: Sets the current time.

Fonts (from FontManagerProcs)

• PROCEDURE InitFonts: Loads the system font (Chicago-12) from the
System file.

174

Appendix B 175

• PROCEDURE GetFontName: Returns the font name equivalent to the
given number.

• PROCEDURE GetFNum: Returns the font number equivalent to the
given name.

• PROCEDURE RealFont: Returns true only if the font number is avail­
able in the given size.

Events (from EventManagerProcs)

• PROCEDURE GetNextEvent: Returns, in theEvent, the next event per­
mitted by mask. If true, the event is not null. See Chapter 4 for exam­
ples.

• PROCEDURE EventAvail: Works precisely like GetNextEvent but does
not remove the event from the queue.

• PROCEDURE PostEvent: Inserts the eventNum and eventMsg into the
queue.

• PROCEDURE FlushEvents: Removes from the queue all the events of
type whichMask up to, but not including, the first event matching stop­
Mask. If stopMask is zero, all whichMask events will be removed. For
example, FlushEvents(everyEvent,O) will remove all events from the
queue.

• PROCEDURE GetMouse: Returns the cursor's current position.
• PROCEDURE Button: Returns true only if the user is pressing the

mouse button.
• PROCEDURE StillDown: Returns true only if the user has not yet re­

leased the mouse button.
• PROCEDURE WaitMouseUp: Like StillDown, returns true only if the

user has not yet released the mouse button. If the user has released the
button, WaitMouseUp removes the mouseUp event.

• PROCEDURE SetEventMask: Only permits events specified by the
mask to be inserted into the event queue. This does not affect update
or activate events.

• PROCEDURE TickCount: Returns the total number of video clock
ticks (60 per second) since you turned the Macintosh on.

Windows (from WindowManagerProcs)

• PROCEDURE InitWindows: Initializes the window manager and draws
the desktop with an empty menu bar.

• PROCEDURE NewWindow: Defines a new window. Returns a pointer
to the new window. The parameters are

wStorage points to memory that can contain a window's data
structure. If, instead, you pass the NIL (empty) pointer, NewWin­
dow allocates memory for you.

176 Important Toolbox Procedures Appendix B

boundsRect defines the position and size of the window's content
region.
title is printed in the drag region.
visible indicates whether the window should be displayed when it
is created.
theProc is the style of the window. See Exercise 4-5 for more in­
formation on window styles.
behind is a pointer to a window to place the new one behind. If
behind is -1, the new window begins on top of all others.
goAway indicates whether to draw a close box in the title bar. If
true, the new window will have a close box.
refCon is a user-defined value associated with the window.

• PROCEDURE DisposeWindow erases the window from the screen and
deallocates its memory.

• PROCEDURE SetWTitle: Sets the title of the window.
• PROCEDURE GetWTitle: Returns the title of the window.
• PROCEDURE SelectWindow: Brings the window on top of all others

and generates the appropriate update and activate events (see Chapter
4).

• PROCEDURE HideWindow: Makes the window invisible and generates
the appropriate update and activate events.

• PROCEDURE ShowWindow: Makes the window visible and generates
the appropriate activate and update events.

• PROCEDURE FrontWindow: Returns a pointer to the frontmost win­
dow.

• PROCEDURE FindWindow: Classifies a screen position as residing in
one of seven logical locations:

inDesk: The screen position was not in an interesting area.
inMenuBar: The position was in the topmost 20 pixels of the
screen.
inSysWindow: The position was inside a window that was not
created by your program. The clock accessory is an example.
inContent: The position was in the content region of a window.
inDrag: It was in the window's title bar.
in Grow: It was in a window's grow region.
inGoAway: The position is in the go-away region of a window.

• PROCEDURE SetPort: This procedure may be found in QuickDraw­
Procs. Given a pointer to a window, SetPort limits all QuickDraw opera­
tions to the content region of the window. Note that you can draw in a
partially or completely hidden window.

• PROCEDURE TrackGoAway: Draws a highlight in the close box as
long as the mouse is in the go-away region. TrackGoAway returns true
if the mouse was in the go-away region when the button was released.

Appendix B 177

• PROCEDURE DragWindow: Drags a gray outline of the supplied win­
dow with the mouse, until you release the button. DragWindow then
moves the window to the new position, and generates any appropriate
updateEvt or activateEvt events (see Table 4-2). This window will then
become active. The boundsRect defines the screen area in which you
may drag the window.

• PROCEDURE BeginUpdate: Restricts QuickDraw operations to freshly
exposed areas in theWindow.

• PROCEDURE EndUpdate: Permits QuickDraw operations to take place
in all visible portions of theWindow. Call EndUpdate after having called
BeginUpdate and redrawn the window's contents.

• PROCEDURE SetWRefCon: Sets the window's reference value to data.
• PROCEDURE GetWRefCon: Returns the window's reference value.
• PROCEDURE SetWindowPic: Associates a QuickDraw picture (see Ap­

pendix A) with theWindow. Update events will then automatically draw
the picture.

• PROCEDURE GetWindowPic: Returns the handle of the picture associ­
ated with theWindow.

Menus (from MenuManagerProcs)

• PROCEDURE InitMenus: Initializes the menu manager and draws the
menu bar.

• PROCEDURE NewMenu: Creates a new menu with the given title. Allo­
cates required memory and returns a handle to the new menu.

• PROCEDURE DisposeMenu: Discards the supplied menu handle and
deallocates its memory. Be sure to remove the menu from the menu list
first, by calling DeleteMenu.

• PROCEDURE AppendMenu: Adds an item or items to the menu. Chap­
ter 4 contains an example. Some special characters you can use in the
item string are:

"·" ' "!"

"("

"("

separates multiple items.
precedes the item with the character that follows the excla­
mation point. Typically used to supply a check mark. See
also Checkltem, below.
followed by a B, I, U, 0, or S, adds a character enhancement
to the item (bold, italic, underline, outline, or shadow, re­
spectively). See SetltemStyle, below.
disables the item. The item prints in a gray pattern and can­
not be selected. See also Enableltem and Disableltem, below.

• PROCEDURE InsertMenu: Place the menu onto the list, before the
menu beforeld. The first on the list is menu number one. To add the
menu to the end of the list, set beforeld to zero.

178 Important Toolbox Procedures Appendix B

• PROCEDURE DrawMenuBar: Draws the menu titles in the menu bar,
with menu number one leftmost.

• PROCEDURE DeleteMenu: Removes the menu from the list. Call Draw­
MenuBar to display the new list of titles.

• PROCEDURE ClearMenuBar: Erases the menu bar.
• PROCEDURE MenuSelect: Given the point where the mouse was last

pressed, it pulls down menus and highlights items until you release the
button. MenuSelect then returns the menu and item number selected.
See module Menu, Chapter 4, for an example.

• PROCEDURE HiLiteMenu: Highlights the indicated title in the menu
bar. If you supply a menuid of zero, it will remove the highlights from
all menu titles.

• PROCEDURE Setltem: Changes the text of the menu item to that indi­
cated byitemString. The AppendMenu editingcharacters ("(","('',etc.)
are not recognized by Setltem.

• PROCEDURE Getltem: Returns the text of the specified menu item.
• PROCEDURE Disableltem: Disables the specified menu item. That is,

it prints the item in gray and prevents you from selecting it.
• PROCEDURE Enableltem: Enables the specified menu item.
• PROCEDURE Checkltem: If checked is true, places a checkmark next

to the indicated menu item. Otherwise, erases any mark character.
• PROCEDURE SetltemStyle: Changes the character enhancements of

the indicated menu item. See Appendix A, TextFace.
• PROCEDURE GetltemStyle: Returns the menu item's character en­

hancements.
• PROCEDURE SetltemMark, GetltemMark: Sets or returns the character

marking the specified item.
• PROCEDURE SetMenuFlash: Indicates the number of times the menu's

items will flash when selected.
• PROCEDURE CountMitems: Returns the number of items in the menu.
• PROCEDURE FlashMenuBar: Highlights the title of the indicated

menu. If menuID is zero, it will highlight the entire menu bar.

appendix C

Glossary
animation frequency. Number of times an animation program draws a new
image each second.

animation interval. Inverse of animation frequency. The time interval be­
tween each new image.

artifact. An unintended feature in an image. For example, the stair-steps in
an oval are an artifact.

aspect ratio. The ratio of width to height. The Macintosh screen, for exam­
ple, is 7 inches wide by 4. 7 5 inches high, giving a screen aspect ratio of 1.4 7.
Because Macintosh's pixels are nearly square (each has an aspect ratio close
to 1.0), we can also calculate the screen's aspect ratio by dividing the bit­
map's pixel width by height.

ballistic motion. The motion of an object accelerated only by gravity.

base type. The Modula type of an element of a SET or a subrange. For exam­
ple, the base type of {1, 3, 5} is CARDINAL, while the base type of -3 .. 3 is
INTEGER.

bit-map. A graphics display in which each pixel on the screen reflects the
state of one or more bits in memory.

case-sensitive. A language is case-sensitive when it considers uppercase char­
acters in identifiers to be different from the equivalent lowercase characters.
Modula, for example, considers Counter to be a different identifier than
counter. Pascal and BASIC, on the other hand, are not case-sensitive.

179

180 Glossary Appendix C

character-map. A video display that maps rectangular blocks of pixels on the
screen to one or more bytes in memory.

click. A rapid press and release of the mouse button.

client module. Modula jargon. A module that imports another is considered
its client module. In Chapter 2 for example, FillConcen is a client module of
Patterns.

coordinate. The row or column number of a particular pixel.

decrement. To decrease the value of a variable.

DEF file. A definition module source file. Definition modules should be
saved in files ending in .DEF.

definition module. The source module defining the types, procedures, vari­
ables, or constants to be made available by a corresponding, separately com­
piled, implementation module.

delimiter. A character that marks the beginning or ending of a sequence. For
example, Modula string constants are delimited by either apostrophe (') or
quote (")characters.

dialect. A dialect is a nonstandard version of a programming language.

dialog box. Window that requires you to respond in some way, before allow­
ing you to proceed. The compiler's Open box is an example.

digitization. Encoding of the shape, color, or other aspect of a real-world ob­
ject for processing or display. Digitization can be done by hand, as described
in Chapter 2, or with a camera or other computer hardware.

direct manipulation. A user interface term. The ability to modify elements
of a program as if they were physical objects (e.g., by pointing or dragging
with the mouse).

double-click. Two closely spaced clicks of the mouse button.

drag. To move the mouse while the button is pressed.

dynamic memory management. Macintosh sets aside a pool of memory that
a program can use as necessary. To allocate a variable from that pool, you
use NEW. To return a variable you no longer need, use DISPOSE. See Chap­
ter 3, Motion, for an example.

enumerated type. Data type for which you explicitly list (enumerate) all per­
missible values. For example, TYPE WeekEnd = (friday, saturday, sunday).

export. To make an object available for use in client modules. For example,
the Patterns module (Chapter 2) exports several Pattern variables, such as
pBlack and pDiag.

Appendix C

factor. Number A is a factor of number B if B is divisible by A.

handle. In Macintosh terminology, a handle is a pointer to a pointer.

181

heap. Pool of memory from which dynamically allocated variables are dis­
pensed. See also dynamic memory management.

implementation module. Implements the objects promised by the correspond­
ing, separately compiled, definition module.

import. To use an object made available (exported) by another module.

increment. To increase the value of a variable by adding to it.

information-hiding. A software design principle. Suggests that modules
should export the minimum information necessary to manipulate a data type.
Thus, we can easily change the definition of the type without affecting how
it is used. See also opaque type export.

interpreter. Program that simulates an imaginary computer. MacModula-2
programs are executed by an interpreter.

iteration. Repeated execution of one or more program statements.

language extension. Nonstandard feature added to a language.

launch. Macintosh jargon for starting a program.

LOO file. A ready-to-execute MacModula program. When you link a module,
M2 Linker saves the resulting program in a file ending with .LOO.

loop and a half. A program flow iteration construct. A loop and a half con­
sists of a LOOP statement that contains a sequence of statements, a condi­
tional EXIT statement, and another sequence of statements. See the example
in Chapter 1.

matrix. A rectangular array. An element of a matrix can be specified by its
horizontal (column) and vertical (row) coordinates.

MC68000. Microprocessor used in the Macintosh. The 68000 is a high-per­
formance, 32-bit internal, 16-bit external processor. It was designed by
Motorola Corporation.

millisecond. Thousandth of a second.

MOD file. Contains the source code of a separately compiled program or
definition module. Its file name ends in .MOD.

model. An analogy that helps you understand and predict how a system
works. The turtle robot, for example, is a model for turtle graphics.

monospace font. A character set in which all characters are equally wide. See
also proportional font.

182 Glossary Appendix C

opaque type export. A way to export a type without permitting clients to
directly inspect its implementation. Only POINTER may be exported as
opaque types. For example, to perform an opaque export of NewType, in­
clude the statement TYPE NewType; in the definition module. Then com­
pletely define NewType in the implementation module. See also information­
hiding.

operator. Symbol denoting an arithmetic or logical operation. For example,
+, -, AND, and IN are some of the operators Modula provides.

origin. Intersection of all axes.

page-click. Clicking of the mouse button in an Edit window's scroll bar, be­
tween the position indicator and a direction arrow. This scrolls the document
by one windowful.

parallax. Difference in views between two positions.

pixel. The small spots (picture elements) that make up a graphics display.

polling. Repeatedly reading a value. For example, you might poll the mouse
button (by calling Button()), waiting for the user to press it.

polygon. A closed shape defined by a sequence of lines. See Chapter 5, Poly­
QD.

program module. A module that may be compiled and linked to form an ex­
ecutable program.

programmer's switch. Piece of plastic that can be inserted in the Macintosh's
left-hand vent. The switch provides two buttons, only one of which is useful.
By pressing the frontmost button, you may restart the Macintosh as if you
had turned it off and back on again. This is the only way to exit a program
that loops indefinitely.

proportional font. A typeface in which each character's width may be differ­
ent. See also monospace font.

pseudorandom. A sequence of numbers that seems random but technically is
not. The "random number" generators supplied by most computers (includ­
ing the Macintosh) are pseudorandom. One reason they are not considered
truly random is that the sequence eventually repeats.

readability. The ease with which you can read and understand a module. This
consists of several aspects, including appropriate use of comments, indenta­
tion, white space, and grouping of related objects. The Elements of Program­
ming Style, by Brian Kernighan and P. J. Plauger (McGraw-Hill, 1974), while
oriented toward FOR TRAN and PL/I, nevertheless has some useful things to
say on the subject.

Appendix C 183

recursive procedure. A procedure that may (directly or indirectly) call itself.
In Boxes (Chapter 2), ZigLine is an example of a recursive procedure.

region. A closed shape whose boundaries may be constructed from arbitrary
graphic elements, such as lines, ovals, polygons, etc. See module Poly3D in
Chapter 5 for an example, and Appendix A for more details.

REL file. A file resulting from the compilation of a program or implementa­
tion module. The compiler ends the file's name with .REL.

resolution. The number of pixels per linear or rectangular measure. Macin­
tosh's display resolution is approximately 72 pixels per inch. The higher the
resolution of a display, the better the quality.

scope. Range within which an identifier is recognized. For example, the
scope of a variable or constant declared within a procedure is limited to that
procedure. On the other hand, the scope of a procedure declared within a
module depends on whether the procedure is exported.

scrolling. A window is a viewport through which we can look at a rectangular
portion of a larger picture or document. To see other sections, we scroll
(slide) the document or picture beneath the window. The term is derived
from the ancient method of storing and displaying long documents rolled
around a pair of sticks. You view different portions of a scroll by unrolling
the document from one stick, and taking up the slack on the other.

selection. An object or item the user has chosen.

separate compilation. The ability to compile sections of a program at differ­
ent times.

SYM file. File resulting from the compilation of a definition module. Its file
name ends with .SYM.

turtle graphics. A graphics system in which we assign a heading and an "up"
or "down" state to the graphics pen. We can then turn the pen and move it
forward by a given distance. The pen draws a line only if it is "down."

type transfer function. A function that converts a value's type without per­
forming a computation. Every Modula type is its own transfer function. To
obtain a Value with type AType, simply use the expression, AType(aValue).
Use type transfer functions with great care. Note, for example, that INTE­
GER("3") is not equal to 3.

type-checking. Verification of the compatibility of every data type. A lan­
guage with weak type-checking automatically converts data types as neces­
sary. Languages like Modula require you to explicitly perform all type con­
versions or transfers.

184 Glossary Appendix C

video refresh. The process of drawing (refreshing) the display 60 times per
second.

visibility. The ability to reference an identifier at a given point in a program.
Internal modules allow you to control the visibility of identifiers. Unless you
export an identifier from a module, it is invisible outside that module.

user. The person who will use a program.

Index
Abbott, George, 124
Absolute pen motion (See MoveTo procedure,

LineTo procedure)
AddMenu procedure, 89-90, 91, 92, 94
AddPt procedure, 28, 83, 168
Angles, 45
Animation, 54-78

by erasing and redrawing, 54-58, 66-72
by scrolling, 72-77
frames per second, 54
multiple objects at one time, 71-72
of a line, 54-58
pen-and-ink, 54
smoothness, 57-58
timing, 55-57, 58-61

Animation frequency, 59, 62, 65
AppendMenu procedure, 1 77
Arcs, 170
Art\vick,Bruce,78, 164
Aspect ratio, 41
Atkinson, bill, 21

BackPat procedure, 167
Begin Update procedure, 104, 177
Bit-map display, 20-21
Bounce procedure, 68, 69
BounceBall program, 66-72
Bowyer, Adrian, 165
Boxes program, 48-51
BusyRead procedure, 69
Button procedure, 80, 82, 83, 175
BYTE magazine, 19

Capitalization policy, 7
Case sensitivity, 7
Case statement, 6

Centering text, 72
CHAR type transfer function, 35
Character-map display, 20-21
CharWidth procedure, 168
Checkltem procedure, 178
ClearMenuBar procedure, 178
Clock procedures, 174
ClosePicture procedure, 172
ClosePoly procedure, 145, 147, 170
CloseRgn procedure, 151-52, 171
Command language, 79
Compiling programs, 13-14, 15
Components of a vector, 47
Concentric program, 29-33
Configuring Modula-2 disks, 9-11
CopyRgn procedure, 171
CountMltems procedure, 178
Cursor construction, 85-86
Cursor manipulation procedures, 166-67
Cursor type, 81-82
ex instruction, 29

Damped collisions, 70-71
Data types, 1
Date2Secs procedure, 1 74
Debugging, 14-15, 16-17
Definition module, 5
DeleteMenu procedure, 178
Depth sort, 153-54
DiffRgn procedure, 1 72
Digitization, 41-4 2
Direct manipulation, 79-80
Disabled menu items, 89
Disableltem procedure, 178
Display pages, 77
DISPOSE procedure, 8, 64, 65, 66

185

186 Index

DisposeObject procedure, 62, 65
DisposeRgn procedure, 151-52, 171 _
DisposeWindow procedure, 97, 98, 103, 176,

177
Drag program, 82-86
Dragwindow procedure, 103, 177
Draw program, 38-44
DrawChar procedure, 168
DrawMenuBar procedure, 90, 178
DrawPicture procedure, 172
DrawString procedure, 168
Draw3D program, 132-39

input data, 132-33, 136-38
Duplicate identifier error, 7
Dynamic memory management, 8, 62, 65, 66

Editing programs, 11-13
Elastic collisions, 70-71
ELSIF clause, 6
EmptyRect procedure, 169
EmptyRgn procedure, 152, 172
Enableitem procedure, 178
EndUpdate procedure, 104, 177
Enumerated types, 7
EqualPt procedure, 28, 84-85, 168
EqualRect procedure, 169
EqualRgn procedure, 1 72
Equipment requirements, xi
EraseArc procedure, 1 70
EraseOval procedure, 1 70
ErasePoly procedure, 171
EraseRect procedure, 169
EraseRgn procedure, 1 72
EraseRoundRect procedure, 169
EventAvail procedure, 175
Event manipulation procedures, 175
Event masks, 87-88, 101-2
Event numbers, 87, 88, 102
EventRecord type, 86-88
Events,86-88,93-96,97-105
EXPORT, 1,4

Fileinput,38-41, 117-20
File name conventions, 13
FillArc procedure, 1 70
FillConcen program, 36-38
FillOval procedure, 1 70
FillPoly procedure, 145, 147, 171
FillRect procedure, 169
FillRgn procedure, 151-52, 172
FillRoundRect procedure, 169
FindWindow procedure, 99, 101, 176
FlashMenuBar procedure, 178
FlushEvents procedure, 175
Foley, James D., 123, 164
Font procedures, 174-75
Fonts, 167
FOR statement, 6
Fractals, 4 8-5 3
FrameArc procedure, 170
FrameHandle procedure, 147
FrameOval procedure, 28, 30, 31, 170
FramePoly procedure, 1 71
FrameRect procedure, 28, 30, 31, 83, 84, 169
FrameRgnprocedure, 151-52, 163, 172

FrameRoundRect procedure, 28, 31, 169
FrontWindow procedure, 103, 176

GetFNum procedure, 175
GetF ontName procedure, 175
Getltem procedure, 178
GetltemMark procedure, 178
GetltemStyle procedure, 178
GetMouse procedure, 80, 82, 83, 175
GetNextEvent procedure, 86-88, 94, 95, 175
GetPen procedure, 167
GetPenState procedure, 167
GetPixel procedure, 1 73
GetTime procedure, 174
GetWRefCon procedure, 1 77
GetWTitle procedure, 176
GetwindowPic procedure, 177
GlobalToLocal procedure, 103, 168
Graphics editor, 108-21
Graphics pen, 26

Heap, 66
Hidden edge object depiction, 140-43,

153-63
cubes, 140-43
objects with polygonal faces, 151, 153-63

HideCursor procedure, 26, 166
HidePen procedure, 167
HideWindow procedure, 176
HiLiteMenu procedure, 90, 91, 178
Hot-spot, cursor, 82

IMPORT, 7
Information-hiding, 1
InitCursor procedure, 166
InitFonts procedure, 1 74
InitMenus procedure, 177
Initwindows procedure, 175
InOut module, 40-41, 44
InsertMenu procedure, 1 77
lnsetRect procedure, 117, 169
InsetRgn procedure, 1 71
Inside Macintosh, 22, 53, 123
InvertArc procedure, 1 70
InvertOval procedure, 28, 170
InvertPoly procedure, 171
InvertRect procedure, 28, 169
InvertRgn procedure, 1 72
InvertRoundRect procedure, 28, 169

Journal of Pascal, Ada, and Modula-2, 19

KeyWasPressed procedure, 68, 69
KillPicture procedure, 1 72
KillPoly procedure, 145, 147, 170
Koch curves, 48-53

Lambert's law, 144
Line procedure, 28, 167
LineTo procedure, 28, 40, 167
Linking, 15-16
LocalToGlobal procedure, 168
Logo, 44, 53
Loop and a half, 6

LOOP statement, 6
Lunar flight simulation, 78

Macintosh XL, 105
Macintosh Modula-2:

disk configuration, 9-11
how to use, 9-17
overview, 8-9

MakeWindow procedure, 97, 98, 99, 103
Mandelbrot, Benoit, 53
MapPoly procedure, 171
MapPt procedure, 168
MapRect procedure, 169
MapRgn procedure, 1 71
Mask bits, cursor, 81
MathLibl module, 44, 45-46
Menu bar, 88
Menu module, 88-92
Menu procedures, 177-78
MenuHandle type, 90, 91
MenuSelect procedure, 178
Menus, 88-96

disabling items, 89
items, 88
separator bars, 89
titles, 88
using, 92-96

MicroDraw program, 109-21
displaying mode, 115-17
saving and restoring images, 117-20

MiniQD module, 22-29
Modula Corporation, xi, 190
Modula Graphics diskette offer, xii, 190
Modula-2, advantages, 2
MODULEs, 2-4
Modulus operator (MOD), 47
MODUS, (Modula-2 User's Society), 18
Moire pattern, 32-33
Motion module, 61-66
Mouse module, 80-82

using, 82-86
Mouse, obtaining coordinates from an Event­

Record, 86, 94
Move procedure:

in Motion module, 62, 65
QuickDraw, 27, 167
turtle-graphics, 46, 47, 49, 52

MoveTo procedure, 27, 40, 167
turtle-graphics, 46, 49, 5 2

MovingObject type, 62, 65, 66

NASA Space Shuttle, 136-38
NEW procedure, 8, 64, 65, 66
NewMenu procedure, 1 77
NewObject procedure, 62, 65, 66
NewRgn procedure, 74-75, 76, 151-52, 171
Newwindow procedure, 175-76
NoGrowDocProc window style, 101
Normal (perpendicular) line, 144-45

ObscureCursor procedure, 26, 40, 166
OffsetPoly procedure, 171
OffsetRect procedure, 169
OffsetRgn procedure, 171

Index 187

Ohran, Richard, 19
Opaque type export, 5, 61, 62-63, 66
Openlnput procedure, 39
OpenPicture procedure, 1 72
OpenPoly procedure, 47, 145, 170
OpenRgn procedure, 151-52, 171
Origin, 124
Ovals, 170

PackBits procedure, 173
Page-switching, (display page), 77
PaintArc procedure, 1 70
PaintOval procedure, 29, 170
PaintPoly procedure, 1 71
PaintRect procedure, 28, 169
PaintRgn procedure, 1 72
PaintRoundRect procedure, 28, 169
Parallax effect, 13 8-3 9
Parallel orthographic projection, 125
PatBic mode, 27
PatCopy mode, 27
PatOr mode, 27
PatXor mode, 27
PatXor pen mode, 57, 83, 84
Pattern type, 2 5
Patterns, 33-36

crosshatch, 3 5
herringbone, 35

PC offset, 16-17
Pen modes, 2 7
PenDown procedure, 44, 45, 47, 49, 52
PenMode procedure, 27, 167
PenNormal procedure, 167
PenPat procedure, 26-27, 167
PenSize procedure, 26, 31, 40, 49, 52, 167
Pen Up procedure, 44, 45, 47, 49, 52
Perspective projection, 126, 131
Pictures, QuickDraw, 172
Pixels, 20
Plane, equation of, 161
Point, three-dimensional, 124
Point arithmetic, 168
Point type, 25
Point3D type, 129, 130
Polygons, QuickDraw, 145-47, 170-71
Poly3D program, 154-63

input data, 154, 155
restrictions, 155-56, 164

PolyHandle type, 145, 146
PolyQD module, 145-47

using, 147-50
Portability, 8
PostEvent procedure, 175
Printing the screen, 120-21
Processwindow procedure, 97, 98, 100, 104-5
Program control statements, 6-8
Program development cycle, 11-17
Program listings, 13, 14, 16, 17
Project procedure, 128, 130, 131
Projection, 124-26, 164
PtlnRect procedure, 28, 83, 169
PtlnRgn procedure, 1 72
PtToAngle procedure, 170
Pt2Rect procedure, 28, 83, 84, 168

188 Index

Qualified import, 4 7
Qualified references, 7
QuickDraw, 21-22
QuickDraw procedures, 166-73

rDocProc window style, 121-22
RadConst, 46
Random procedure, 173
ReadDateTime procedure, 1 74
ReadWrd procedure, 118, 120
RealFont procedure, 175
Rect type, 26
Rectangles, QuickDraw, 168-69
RectlnRgn, 1 72
RectRgn procedure, 171
Recursive procedures, 50
RegionQD module, 151-52
Regions, QuickDraw, 151-52, 162, 163,

171-72
Relative pen motion (See Move procedure,

Line procedure)
RgnHandle type, 74, 76, 151-52
Rotation, 126-28
Round-cornered rectangles, 169
Run-time errors, 16-17

Saving screen image in a file, 121
ScalePt procedure, 168
Scaling, 12 6
Scope rules, 7
ScreenBits, 105
Screen. coordinates, 20, 21
Screen regions, 101
ScrollBall program, 74-77
ScrollRect procedure, 73-77, 172
Secs2Date procedure, 174
SectRect procedure, 169
SectRgn procedure, 151-52, 172
SelectWindow procedure, 103, 176
Self-similarity of fractals, 51
Separate compilation, 2, 4-5
SetAccel procedure, 62, 66
SetCursor procedure, 80, 82, 85-86, 166
SetDateTime procedure, 1 74
SetEmptyRgn procedure, 1 71
SetEvent Mask procedure, 175
Setltem procedure, 178
SetltemMark procedure, 178
SetltemStyle procedure, 17 8
SetMenuFlash procedure, 178
SetPenState procedure, 167
SetPerspective procedure, 130, 131
SetPort procedure, 103, 176
Setpt p•·ocedure, 28, 83, 85, 168
SetRect procedure, 28, 30, 31, 168
SetRectRgn procedure, 1 71
SetScale procedure, 12 8, 130, 131
SetTicks procedure:

in Motion module, 62, 65
in Timer module, 59, 60

SetTime procedure, 1 74
SetWRefCon procedure, 1 77
SetWTitle procedure, 1 76
SetWindowPic procedure, 1 77
ShadedCube program, 147-50
Shading surfaces, 144-45, 147-50, 164

ShapelnOut module, 118, 120
Shift-click shortcut, 9
Short-cuts:

automatic link after compilation, 1 7
open dialog file selection, 16
selection by shift-click, 9
transferring between Linker, Compiler, and

Edit, 17
ShowCursor procedure, 26, 166
ShowPen procedure, 167
ShowWindow procedure, 176
Simulation, 54-78

accelerated motion, 61-78
accelerated motion, equations, 61
constant velocity, 54-5 8

Smith, Alvy Ray, 53
Snowflake Koch curve, 51, 52
SolidCube program, 140-44
Sorting, 153-54, 159, 162
SpaceExtra procedure, 16 8
Square Koch curve, 48-51
Stack implementation, 2-5
Stereo pairs, 138-39, 143, 144

viewing, 13 8
StillDown procedure, 80, 82, 92, 94, 96, 175
Storage module, 8

requirement to import when using NEW or
DISPOSE, 8

Stringwidth procedure, 168
StrModToMac procedure, 91
Structured Language World, 19
StuffHex procedure, 173
SubPt procedure, 28, 83, 168
Sweep program, 54-5 8
Synchronization, 58-59, 70
System Click procedure, 104

Tesler, Larry, 123
TestMenu program, 92-96
Testwindow program, 105-8
Tetrahedron, 154
Text enchancements, 167
TextFont procedure, 105, 167
Textfonts, 167
Text manipulation procedures, 167-68
TextMode procedure, 167-68
TextSize procedure, 168
TextFace procedure, 105, 167
Text transfer modes, 167-68
ThreeDee module, 128-31
Three-dimensional representation, 124-65

coordinates, 124, 125
projection, 124-26
rotation, 126-28
scaling, 126
translation, 12 8

Tick Count procedure, 17 5
Timer module:

elaborate, 59-61
simple, 55, 57

Toolbox procedures, 174-78
TrackGoAway procedure, 103, 176
TransformSRT procedure, 128, 130, 131
Translation (of three-dimensional coordinates),

128
TurnBy procedure, 44, 45, 46, 48, 49, 52, 54

TurnTo procedure, 49, 52
Turtle-Graphics module, 44-47
Type-checking, 5-6
Type conversion, 6
Type transfer functions, 6
Types, 1

UnionRect procedure, 169
UnionRgn procedure, 1 72
UnPackBits procedure, 173
Update events, 101-102, 105
Update regions, 102

after ScrollRect, 73, 74-7 5, 76, 77
User interface, 79-123

guidelines, 115

Van Dam, Andries, 123, 164
Video artifacts, 77

Index 189

WaitForTick procedure, 59, 60
WaitMouseUp procedure, 175
WhichMenu procedure, 90, 91, 92
Windows, 96-109

procedures, 175-77
regions, 96-97
styles, 101, 121-22

Windows module, 97-105
using, 105-8

Wire-frame object depiction, 131-39
Wirth, Niklaus, 1, 18, 19
Woodwark, John, 165
WriteWrd procedure, 118

XorRgn procedure, 172

Z sort, 153-54

.-

For a diskette containing source code of all modules in this book, send a check or money
order for $11.95 (plus 6% tax in California) to:

Schnapp Software Consulting
P.O. Box 261091
San Diego, California 92126-0970

Educational and quantity discounts available.

The MacModula-2 package can be purchased by writing to:

Modula Corporation
950 North University Avenue
Provo, Utah 84604

or by calling:

1-800-LI LIPH2

190

