
PID Without a PhD1

Tim Wescott

PID (proportional, integral, derivative) control is not as
complicated as it sounds. Follow these simple implementation
steps for quick results.

At work, I am one of three designated "servo guys," and the only one who
implements control loops in software. As a result, I often have occasion to design
digital control loops for various projects. I have found that while there certainly are
control problems that require all the expertise I can bring to bear, a great number of
control problems can be solved with simple controllers, without resorting to any
control theory at all. This article will tell you how to implement and tune a simple
controller without getting into heavy mathematics and without requiring you to learn
any control theory. The technique used to tune the controller is a tried and true
method that can be applied to almost any control problem with success.

PID control
The PID controller has been in use for over a century in various forms. It has
enjoyed popularity as a purely mechanical device, as a pneumatic device, and as an
electronic device. The digital PID controller using a microprocessor has recently come
into its own in industry. As you will see, it is a straightforward task to embed a PID
controller into your code.

PID stands for "proportional, integral, derivative." These three terms describe the
basic elements of a PID controller. Each of these elements performs a different task
and has a different effect on the functioning of a system.

In a typical PID controller these elements are driven by a combination of the system
command and the feedback signal from the object that is being controlled (usually
referred to as the "plant"). Their outputs are added together to form the system
output.

Figure 1 shows a block diagram of a basic PID controller. In this case the derivative
element is being driven only from plant feedback. The plant feedback is subtracted
from the command signal to generate an error. This error signal drives the
proportional and integral elements. The resulting signals are added together and
used to drive the plant. I haven't described what these elements do yet-we'll get to
that later. I've included an alternate placement for the proportional element (dotted
lines)-this can be a better location for the proportional element, depending on how
you want the system to respond to commands.

1 Taken from the EE Times embedded controller website
(http://www.embedded.com/2000/0010/0010feat3.htm) on 10/23/2009

Figure 1: A basic PID controller.

Sample plants
In order to discuss this subject with any sense of reality we need some example
systems. I'll use three example plants throughout this article, and show the effects of
applying the various controllers to them:

• A motor driving a gear train
• A precision positioning system
• A thermal system

Each of these systems has different characteristics and each one requires a different
control strategy to get the best performance.

Motor and gear
The first example plant is a motor driving a gear train, with the output position of the
gear train being monitored by a potentiometer or some other position reading device.
You might see this kind of mechanism driving a carriage on a printer, or a throttle
mechanism in an automobile cruise control system, or almost any other moderately
precise position controller. Figure 2 shows a diagram of such a system. The motor is
driven by a voltage that is commanded by software. The motor output is geared
down to drive the actual mechanism. The position of this final drive is measured by
the potentiometer.

Figure 2: A voltage
driven motor and gear
train.

A DC motor driven by a voltage wants to go at a constant speed that is proportional
to the applied voltage. Usually the motor armature has some resistance that limits
its ability to accelerate, so the motor will have some delay between the change in
input voltage and the resulting change in speed. The gear train takes the movement
of the motor and multiplies it by a constant. Finally, the potentiometer measures the
position of the output shaft.

Figure 3 shows the step response of the motor and gear combination. I'm using a
time constant value of t0 = 0.2s. The step response of a system is just the behavior
of the output in response to an input that goes from zero to some constant value at
time t = 0. Since we're dealing with fairly generic examples here I've shown the step
response as a fraction of full scale, so it goes to 1. Figure 3 shows the step input and
the motor response. The response of the motor starts out slowly due to the time
constant, but once that is out of the way the motor position ramps at a constant
velocity.

Figure 3: Motor and gear
position vs. time.

Precision actuator
It is sometimes necessary to control the position of something very precisely. A
precise positioning system can be built using a freely moving mechanical stage, a
speaker coil (a coil and magnet arrangement), and a non-contact position transducer.

You might expect to see this sort of mechanism stabilizing an element of an optical
system, or locating some other piece of equipment or sensor. Figure 4 shows such a
system. Software commands the current in the coil. This current sets up a magnetic
field that exerts a force on the magnet. The magnet is attached to the stage, which
moves with an acceleration proportional to the coil current. Finally, the stage position
is monitored by a non-contact position transducer.

With this arrangement, the force on the magnet is independent of the stage motion.
Fortunately this isolates the stage from external effects. Unfortunately the resulting
system is very "slippery," and can be a challenge to control. In addition, the

electrical requirements to build a good current-output amplifier and non-contact
transducer interface can be challenging. You can expect that if you are doing a
project like this you are a member of a fairly talented team (or you're working on a
short-lived project).

Figure 4: A precision
actuator.

The equations of motion for this system are fairly simple. The force on the stage is
proportional to the drive command alone, so the acceleration of the system is exactly
proportional to the drive. The step response of this system by itself is a parabola, as
shown in Figure 5. As we will see later this makes the control problem more
challenging because of the sluggishness with which the stage starts moving, and its
enthusiasm to keep moving once it gets going.

Figure 5: Precision actuator
position vs. time.

Temperature control
The third example plant I'll use is a heater. Figure 6 shows a diagram of an example
system. The vessel is heated by an electric heater, and the temperature of its
contents is sensed by a temperature-sensing device.

Thermal systems tend to have very complex responses. I'm going to ignore quite a
bit of detail and give a very approximate model. Unless your performance
requirements are severe, an accurate model isn't necessary.

Figure 7 shows the step response of the system to a change in Vd. I've used time
constants of t1 = 0.1s and t2 = 0.3s. The response tends to settle out to a constant

temperature for a given drive, but it can take a great deal of time doing it. Also,
without lots of insulation, thermal systems tend to be very sensitive to outside
effects. This effect is not shown in the figure, but we'll be investigating it later in the
article.

Figure 6: A heater.

Figure 7: Heater
temperature vs. time.

Controllers
The elements of a PID controller presented here either take their input from the
measured plant output or from the error signal, which is the difference between the
plant output and the system command. I'm going to write the control code using
floating point to keep implementation details out of the discussion. It's up to you to
adapt this if you are going to implement your controller with integer or other fixed-
point arithmetic.

I'm going to assume a function call as shown below. As the discussion evolves, you'll
see how the data structure and the internals of the function shapes up.

double UpdatePID(SPid * pid,
double error, double position)
{
.
.
.
}

The reason I pass the error to the PID update routine instead of passing the
command is that sometimes you want to play tricks with the error. Leaving out the
error calculation in the main code makes the application of the PID more universal.
This function will get used like this:

.
.
position = ReadPlantADC();
drive = UpdatePID(&plantPID,
plantCommand - position,
position);
DrivePlantDAC(drive);
.
.

Proportional
Proportional control is the easiest feedback control to implement, and simple
proportional control is probably the most common kind of control loop. A proportional
controller is just the error signal multiplied by a constant and fed out to the drive.
The proportional term gets calculated with the following code:

double pTerm;
.
.
.
pTerm = pid->pGain * error;
.
.
.
return pTerm;

Figure 8 shows what happens when you add proportional feedback to the motor and
gear system. For small gains (kp = 1) the motor goes to the correct target, but it
does so quite slowly. Increasing the gain (kp = 2) speeds up the response to a point.
Beyond that point (kp = 5, kp = 10) the motor starts out faster, but it overshoots
the target. In the end the system doesn't settle out any quicker than it would have
with lower gain, but there is more overshoot. If we kept increasing the gain we
would eventually reach a point where the system just oscillated around the target
and never settled out-the system would be unstable.

The motor and gear start to overshoot with high gains because of the delay in the
motor response. If you look back at Figure 2, you can see that the motor position
doesn't start ramping up immediately. This delay, plus high feedback gain, is what
causes the overshoot seen in Figure 8. Figure 9 shows the response of the precision
actuator with proportional feedback only. Proportional control alone obviously doesn't
help this system. There is so much delay in the plant that no matter how low the

gain is, the system will oscillate. As the gain is increased, the frequency of the
output will increase but the system just won't settle.

Figure 8: Motor and gear
with proportional feedback
position vs. time.

Figure 9: Precision actuator
with proportional feedback
vs. time.

Figure 10 shows what happens when you use pure proportional feedback with the
temperature controller. I'm showing the system response with a disturbance due to a
change in ambient temperature at t = 2s. Even without the disturbance you can see
that proportional control doesn't get the temperature to the desired setting.
Increasing the gain helps, but even with kp = 10 the output is still below target, and
you are starting to see a strong overshoot that continues to travel back and forth
(this is called ringing).

As the previous examples show, a proportional controller alone can be useful for
some things, but it doesn't always help. Plants that have too much delay, like the
precision actuator, can't be stabilized with proportional control. Some plants, like the
temperature controller, cannot be brought to the desired set point. Plants like the
motor and gear combination may work, but they may need to be driven faster than
is possible with proportional control alone. To solve these control problems you need
to add integral or differential control or both.

Figure 10: Temperature
controller with proportional
feedback. The kink at time
= 2 is from the external
disturbance.

Integral
Integral control is used to add long-term precision to a control loop. It is almost
always used in conjunction with proportional control.

The code to implement an integrator is shown below. The integrator state, iState is
the sum of all the preceding inputs. The parameters iMin and iMax are the minimum
and maximum allowable integrator state values.

double iTerm;
.
.
.
// calculate the integral state
// with appropriate limiting
pid->iState += error;
if (pid->iState > pid->iMax)
pid->iState =
pid->iMax;
else if (pid->iState
<
pid->
iMin)
pid->iState = pid->iMin;
iTerm = pid->iGain * iState;
// calculate the integral term
.
.
.

Integral control by itself usually decreases stability, or destroys it altogether. Figure
11 shows the motor and gear with pure integral control (pGain = 0). The system
doesn't settle. Like the precision actuator with proportional control, the motor and

gear system with integral control alone will oscillate with bigger and bigger swings
until something hits a limit. (Hopefully the limit isn't breakable.)

Figure 11: Motor and gear
with pure integral control.

Figure 12 shows the temperature control system with pure integral control. This
system takes a lot longer to settle out than the same plant with proportional control
(see Figure 10), but notice that when it does settle out, it settles out to the target
value-even with the disturbance added in. If your problem at hand doesn't require
fast settling, this might be a workable system.

Figure 12: Temperature
control system with integral
control. The kink at time = 2
is from the external
disturbance.

Figure 12 shows why we use an integral term. The integrator state "remembers" all
that has gone on before, which is what allows the controller to cancel out any long
term errors in the output. This same memory also contributes to instability-the
controller is always responding too late, after the plant has gotten up speed. To
stabilize the two previous systems, you need a little bit of their present value, which
you get from a proportional term.

Figure 13 shows the motor and gear with proportional and integral (PI) control.
Compare this with Figures 8 and 11. The position takes longer to settle out than the
system with pure proportional control, but it will not settle to the wrong spot.

Figure 13: Motor and gear
with PI control.

Figure 14 shows what happens when you use PI control on the heater system. The
heater still settles out to the exact target temperature, as with pure integral control
(see Figure 12), but with PI control, it settles out two to three times faster. This
figure shows operation pretty close to the limit of the speed attainable using PI
control with this plant.

Figure 14: Heater with PI
control. The kink at time = 2
is from the external
disturbance.

Before we leave the discussion of integrators, there are two more things I need to
point out. First, since you are adding up the error over time, the sampling time that
you are running becomes important. Second, you need to pay attention to the range
of your integrator to avoid windup.

The rate that the integrator state changes is equal to the average error multiplied by
the integrator gain multiplied by the sampling rate. Because the integrator tends to
smooth things out over the long term you can get away with a somewhat uneven
sampling rate, but it needs to average out to a constant value. At worst, your
sampling rate should vary by no more than ý20% over any 10-sample interval. You
can even get away with missing a few samples as long as your average sample rate
stays within bounds. Nonetheless, for a PI controller I prefer to have a system where
each sample falls within ý1% to ý5% of the correct sample time, and a long-term
average rate that is right on the button.

If you have a controller that needs to push the plant hard, your controller output will
spend significant amounts of time outside the bounds of what your drive can actually
accept. This condition is called saturation. If you use a PI controller, then all the time
spent in saturation can cause the integrator state to grow (wind up) to very large
values. When the plant reaches the target, the integrator value is still very large, so
the plant drives beyond the target while the integrator unwinds and the process
reverses. This situation can get so bad that the system never settles out, but just
slowly oscillates around the target position.

Figure 15 illustrates the effect of integrator windup. I used the motor/controller of
Figure 13, and limited the motor drive to ý0.2. Not only is controller output much
greater than the drive available to the motor, but the motor shows severe overshoot.
The motor actually reaches its target at around five seconds, but it doesn't reverse
direction until eight seconds, and doesn't settle out until 15 seconds have gone by.

Figure 15: Motor and gear
with PI control and windup.

The easiest and most direct way to deal with integrator windup is to limit the
integrator state, as I showed in my previous code example. Figure 16 shows what
happens when you take the system in Figure 15 and limit the integrator term to the
available drive output. The controller output is still large (because of the proportional
term), but the integrator doesn't wind up very far and the system starts settling out
at five seconds, and finishes at around six seconds.

Note that with the code example above you must scale iMin and iMax whenever you
change the integrator gain. Usually you can just set the integrator minimum and

maximum so that the integrator output matches the drive minimum and maximum.
If you know your disturbances will be small and you want quicker settling, you can
limit the integrator further.

Figure 16: Motor and gear
with PI control and
integrator limiting.

Differential
I didn't even show the precision actuator in the previous section. This is because the
precision actuator cannot be stabilized with PI control. In general, if you can't
stabilize a plant with proportional control, you can't stabilize it with PI control. We
know that proportional control deals with the present behavior of the plant, and that
integral control deals with the past behavior of the plant. If we had some element
that predicts the plant behavior then this might be used to stabilize the plant. A
differentiator will do the trick.

The code below shows the differential term of a PID controller. I prefer to use the
actual plant position rather than the error because this makes for smoother
transitions when the command value changes. The differential term itself is the last
value of the position minus the current value of the position. This gives you a rough
estimate of the velocity (delta position/sample time), which predicts where the
position will be in a while.

double dTerm;
.
.
.
dTerm = pid->dGain * (position - pid->dState);
pid->dState = position;
.
.
.

With differential control you can stabilize the precision actuator system. Figure 17
shows the response of the precision actuator system with proportional and derivative
(PD) control. This system settles in less than 1/2 of a second, compared to multiple
seconds for the other systems. Figure 18 shows the heating system with PID control.

You can see the performance improvement to be had by using full PID control with
this plant.

Figure 17: Precision
actuator with PID control.

Figure 18: Heater with PID
control.

Differential control is very powerful, but it is also the most problematic of the control
types presented here. The three problems that you are most likely going to
experience are sampling irregularities, noise, and high frequency oscillations. When I
presented the code for a differential element I mentioned that the output is
proportional to the position change divided by the sample time. If the position is
changing at a constant rate but your sample time varies from sample to sample, you
will get noise on your differential term. Since the differential gain is usually high, this
noise will be amplified a great deal.

When you use differential control you need to pay close attention to even sampling.
I'd say that you want the sampling interval to be consistent to within 1% of the total
at all times-the closer the better. If you can't set the hardware up to enforce the
sampling interval, design your software to sample with very high priority. You don't

have to actually execute the controller with such rigid precision-just make sure the
actual ADC conversion happens at the right time. It may be best to put all your
sampling in an ISR or very high-priority task, then execute the control code in a
more relaxed manner.

Differential control suffers from noise problems because noise is usually spread
relatively evenly across the frequency spectrum. Control commands and plant
outputs, however, usually have most of their content at lower frequencies.
Proportional control passes noise through unmolested. Integral control averages its
input signal, which tends to kill noise. Differential control enhances high frequency
signals, so it enhances noise. Look at the differential gains that I've set on the plants
above, and think of what will happen if you have noise that makes each sample a
little bit different. Multiply that little bit by a differential gain of 2,000 and think of
what it means.

You can low-pass filter your differential output to reduce the noise, but this can
severely affect its usefulness. The theory behind how to do this and how to
determine if it will work is beyond the scope of this article. Probably the best that
you can do about this problem is to look at how likely you are to see any noise, how
much it will cost to get quiet inputs, and how badly you need the high performance
that you get from differential control. Once you've worked this out, you can avoid
differential control altogether, talk your hardware folks into getting you a lower noise
input, or look for a control systems expert.

The full text of the PID controller code is shown in Listing 1 and is available at
www.embedded.com/code.html.

Listing 1: PID controller code

typedef struct
{
double dState; // Last position input
double iState; // Integrator state
double iMax, iMin;
// Maximum and minimum allowable integrator state
double iGain, // integral gain
pGain, // proportional gain
dGain; // derivative gain
} SPid;
double UpdatePID(SPid * pid, double error, double
position)
{
double pTerm,
dTerm, iTerm;
pTerm = pid->pGain * error;
// calculate the proportional term
// calculate the integral state with appropriate limiting
pid->iState += error;
if (pid->iState > pid->iMax) pid->iState = pid->iMax;
else if (pid->iState
<

pid->iMin) pid->iState = pid->iMin;
iTerm = pid->iGain * iState; // calculate the integral term
dTerm = pid->dGain * (position - pid->dState);
pid->dState = position;
return pTerm + iTerm - dTerm;
}

Tuning
The nice thing about tuning a PID controller is that you don't need to have a good
understanding of formal control theory to do a fairly good job of it. About 90% of the
closed-loop controller applications in the world do very well indeed with a controller
that is only tuned fairly well.

If you can, hook your system up to some test equipment, or write in some debug
code to allow you to look at the appropriate variables. If your system is slow enough
you can spit the appropriate variables out on a serial port and graph them with a
spreadsheet. You want to be able to look at the drive output and the plant output. In
addition, you want to be able to apply some sort of a square-wave signal to the
command input of your system. It is fairly easy to write some test code that will
generate a suitable test command. Once you get the setup ready, set all gains to
zero. If you suspect that you will not need differential control (like the motor and
gear example or the thermal system) then skip down to the section that discusses
tuning the proportional gain. Otherwise start by adjusting your differential gain.

The way the controller is coded you cannot use differential control alone. Set your
proportional gain to some small value (one or less). Check to see how the system
works. If it oscillates with proportional gain you should be able to cure it with
differential gain. Start with about 100 times more differential gain than proportional
gain. Watch your drive signal. Now start increasing the differential gain until you see
oscillation, excessive noise, or excessive (more than 50%) overshoot on the drive or
plant output. Note that the oscillation from too much differential gain is much faster
than the oscillation from not enough. I like to push the gain up until the system is on
the verge of oscillation then back the gain off by a factor of two or four. Make sure
the drive signal still looks good. At this point your system will probably be
responding very sluggishly, so it's time to tune the proportional and integral gains.

If it isn't set already, set the proportional gain to a starting value between 1 and 100.
Your system will probably either show terribly slow performance or it will oscillate. If
you see oscillation, drop the proportional gain by factors of eight or 10 until the
oscillation stops. If you don't see oscillation, increase the proportional gain by factors
of eight or 10 until you start seeing oscillation or excessive overshoot. As with the
differential controller, I usually tune right up to the point of too much overshoot then
reduce the gain by a factor of two or four. Once you are close, fine tune the
proportional gain by factors of two until you like what you see.

Once you have your proportional gain set, start increasing integral gain. Your
starting values will probably be from 0.0001 to 0.01. Here again, you want to find
the range of integral gain that gives you reasonably fast performance without too
much overshoot and without being too close to oscillation.

Other issues
Unless you are working on a project with very critical performance parameters you
can often get by with control gains that are within a factor of two of the "correct"
value. This means that you can do all your "multiplies" with shifts. This can be very
handy when you're working with a slow processor.

Sampling rate
So far I've only talked about sample rates in terms of how consistent they need to be,
but I haven't told you how to decide ahead of time what the sample rate needs to be.
If your sampling rate is too low you may not be able to achieve the performance you
want, because of the added delay of the sampling. If your sampling rate is too high
you will create problems with noise in your differentiator and overflow in your
integrator.

The rule of thumb for digital control systems is that the sample time should be
between 1/10th and 1/100th of the desired system settling time. System settling
time is the amount of time from the moment the drive comes out of saturation until
the control system has effectively settled out. If you look at Figure 16, the controller
comes out of saturation at about 5.2s, and has settled out at around 6.2s. If you can
live with the one second settling time you could get away with a sampling rate as low
as 10Hz.

You should treat the sampling rate as a flexible quantity. Anything that might make
the control problem more difficult would indicate that you should raise the sampling
rate. Factors such as having a difficult plant to control, or needing differential control,
or needing very precise control would all indicate raising the sampling rate. If you
have a very easy control problem you could get away with lowering the sampling
rate somewhat (I would hesitate to lengthen the sample time to more than one-fifth
of the desired settling time). If you aren't using a differentiator and you are careful
about using enough bits in your integrator you can get away with sampling rates
1,000 times faster than the intended settling time.

Exert control
This covers the basics of implementing and tuning PID controllers. With this
information, you should be able to attack the next control problem that comes your
way and get it under control.

Tim Wescott has a master's degree in electrical engineering and has been working in
industry for more than a decade. His experience has included a number of control
loops closed in software using 8- to 32-bit microprocessors, DSPs, assembly
language, C, and C++. He is currently involved in control systems design at FLIR
Systems where he specifies mechanical, electrical, and software requirements and
does electrical and software design. You can contact him at tim@wescottdesign.com.

