
PID Without a PhD1  

Tim Wescott  

PID (proportional, integral, derivative) control is not as 
complicated as it sounds. Follow these simple implementation 
steps for quick results.  

At work, I am one of three designated "servo guys," and the only one who 
implements control loops in software. As a result, I often have occasion to design 
digital control loops for various projects. I have found that while there certainly are 
control problems that require all the expertise I can bring to bear, a great number of 
control problems can be solved with simple controllers, without resorting to any 
control theory at all. This article will tell you how to implement and tune a simple 
controller without getting into heavy mathematics and without requiring you to learn 
any control theory. The technique used to tune the controller is a tried and true 
method that can be applied to almost any control problem with success.  

PID control  
The PID controller has been in use for over a century in various forms. It has 
enjoyed popularity as a purely mechanical device, as a pneumatic device, and as an 
electronic device. The digital PID controller using a microprocessor has recently come 
into its own in industry. As you will see, it is a straightforward task to embed a PID 
controller into your code.  

PID stands for "proportional, integral, derivative." These three terms describe the 
basic elements of a PID controller. Each of these elements performs a different task 
and has a different effect on the functioning of a system.  

In a typical PID controller these elements are driven by a combination of the system 
command and the feedback signal from the object that is being controlled (usually 
referred to as the "plant"). Their outputs are added together to form the system 
output.  

Figure 1 shows a block diagram of a basic PID controller. In this case the derivative 
element is being driven only from plant feedback. The plant feedback is subtracted 
from the command signal to generate an error. This error signal drives the 
proportional and integral elements. The resulting signals are added together and 
used to drive the plant. I haven't described what these elements do yet-we'll get to 
that later. I've included an alternate placement for the proportional element (dotted 
lines)-this can be a better location for the proportional element, depending on how 
you want the system to respond to commands.  

                                                 
1 Taken from the EE Times embedded controller website 
(http://www.embedded.com/2000/0010/0010feat3.htm) on 10/23/2009 



 

Figure 1: A basic PID controller. 

Sample plants  
In order to discuss this subject with any sense of reality we need some example 
systems. I'll use three example plants throughout this article, and show the effects of 
applying the various controllers to them:  

• A motor driving a gear train  
• A precision positioning system  
• A thermal system  

Each of these systems has different characteristics and each one requires a different 
control strategy to get the best performance.  

Motor and gear  
The first example plant is a motor driving a gear train, with the output position of the 
gear train being monitored by a potentiometer or some other position reading device. 
You might see this kind of mechanism driving a carriage on a printer, or a throttle 
mechanism in an automobile cruise control system, or almost any other moderately 
precise position controller. Figure 2 shows a diagram of such a system. The motor is 
driven by a voltage that is commanded by software. The motor output is geared 
down to drive the actual mechanism. The position of this final drive is measured by 
the potentiometer.  

 

Figure 2: A voltage 
driven motor and gear 
train. 

 

 



 

A DC motor driven by a voltage wants to go at a constant speed that is proportional 
to the applied voltage. Usually the motor armature has some resistance that limits 
its ability to accelerate, so the motor will have some delay between the change in 
input voltage and the resulting change in speed. The gear train takes the movement 
of the motor and multiplies it by a constant. Finally, the potentiometer measures the 
position of the output shaft.  

Figure 3 shows the step response of the motor and gear combination. I'm using a 
time constant value of t0 = 0.2s. The step response of a system is just the behavior 
of the output in response to an input that goes from zero to some constant value at 
time t = 0. Since we're dealing with fairly generic examples here I've shown the step 
response as a fraction of full scale, so it goes to 1. Figure 3 shows the step input and 
the motor response. The response of the motor starts out slowly due to the time 
constant, but once that is out of the way the motor position ramps at a constant 
velocity.  

 

Figure 3: Motor and gear 
position vs. time. 

 

 

 

 

 

Precision actuator  
It is sometimes necessary to control the position of something very precisely. A 
precise positioning system can be built using a freely moving mechanical stage, a 
speaker coil (a coil and magnet arrangement), and a non-contact position transducer.  

You might expect to see this sort of mechanism stabilizing an element of an optical 
system, or locating some other piece of equipment or sensor. Figure 4 shows such a 
system. Software commands the current in the coil. This current sets up a magnetic 
field that exerts a force on the magnet. The magnet is attached to the stage, which 
moves with an acceleration proportional to the coil current. Finally, the stage position 
is monitored by a non-contact position transducer.  

 

With this arrangement, the force on the magnet is independent of the stage motion. 
Fortunately this isolates the stage from external effects. Unfortunately the resulting 
system is very "slippery," and can be a challenge to control. In addition, the 



electrical requirements to build a good current-output amplifier and non-contact 
transducer interface can be challenging. You can expect that if you are doing a 
project like this you are a member of a fairly talented team (or you're working on a 
short-lived project).  

 

Figure 4: A precision 
actuator. 

 

 

 

The equations of motion for this system are fairly simple. The force on the stage is 
proportional to the drive command alone, so the acceleration of the system is exactly 
proportional to the drive. The step response of this system by itself is a parabola, as 
shown in Figure 5. As we will see later this makes the control problem more 
challenging because of the sluggishness with which the stage starts moving, and its 
enthusiasm to keep moving once it gets going.  

 

Figure 5: Precision actuator 
position vs. time. 

 

 

 

 

 

Temperature control  
The third example plant I'll use is a heater. Figure 6 shows a diagram of an example 
system. The vessel is heated by an electric heater, and the temperature of its 
contents is sensed by a temperature-sensing device.  

Thermal systems tend to have very complex responses. I'm going to ignore quite a 
bit of detail and give a very approximate model. Unless your performance 
requirements are severe, an accurate model isn't necessary.  

Figure 7 shows the step response of the system to a change in Vd. I've used time 
constants of t1 = 0.1s and t2 = 0.3s. The response tends to settle out to a constant 



temperature for a given drive, but it can take a great deal of time doing it. Also, 
without lots of insulation, thermal systems tend to be very sensitive to outside 
effects. This effect is not shown in the figure, but we'll be investigating it later in the 
article.  

 

Figure 6: A heater. 

 

 

 

 

 

Figure 7: Heater 
temperature vs. time. 

 

 

 

 

Controllers  
The elements of a PID controller presented here either take their input from the 
measured plant output or from the error signal, which is the difference between the 
plant output and the system command. I'm going to write the control code using 
floating point to keep implementation details out of the discussion. It's up to you to 
adapt this if you are going to implement your controller with integer or other fixed-
point arithmetic.  

I'm going to assume a function call as shown below. As the discussion evolves, you'll 
see how the data structure and the internals of the function shapes up.  

 
double UpdatePID(SPid * pid,  
double error, double position) 
{ 
. 
. 
. 
} 



 

The reason I pass the error to the PID update routine instead of passing the 
command is that sometimes you want to play tricks with the error. Leaving out the 
error calculation in the main code makes the application of the PID more universal. 
This function will get used like this:  

 
. 
. 
position = ReadPlantADC(); 
drive = UpdatePID(&plantPID,  
plantCommand - position,  
position); 
DrivePlantDAC(drive); 
. 
. 
 

Proportional  
Proportional control is the easiest feedback control to implement, and simple 
proportional control is probably the most common kind of control loop. A proportional 
controller is just the error signal multiplied by a constant and fed out to the drive. 
The proportional term gets calculated with the following code:  

 
double pTerm; 
. 
. 
. 
pTerm = pid->pGain * error; 
. 
. 
. 
return pTerm; 
 

Figure 8 shows what happens when you add proportional feedback to the motor and 
gear system. For small gains (kp = 1) the motor goes to the correct target, but it 
does so quite slowly. Increasing the gain (kp = 2) speeds up the response to a point. 
Beyond that point (kp = 5, kp = 10) the motor starts out faster, but it overshoots 
the target. In the end the system doesn't settle out any quicker than it would have 
with lower gain, but there is more overshoot. If we kept increasing the gain we 
would eventually reach a point where the system just oscillated around the target 
and never settled out-the system would be unstable.  

The motor and gear start to overshoot with high gains because of the delay in the 
motor response. If you look back at Figure 2, you can see that the motor position 
doesn't start ramping up immediately. This delay, plus high feedback gain, is what 
causes the overshoot seen in Figure 8. Figure 9 shows the response of the precision 
actuator with proportional feedback only. Proportional control alone obviously doesn't 
help this system. There is so much delay in the plant that no matter how low the 



gain is, the system will oscillate. As the gain is increased, the frequency of the 
output will increase but the system just won't settle.  

 

Figure 8: Motor and gear 
with proportional feedback 
position vs. time. 

 

 

 

 

 

 

Figure 9: Precision actuator 
with proportional feedback 
vs. time. 

 

 

 

 

 

Figure 10 shows what happens when you use pure proportional feedback with the 
temperature controller. I'm showing the system response with a disturbance due to a 
change in ambient temperature at t = 2s. Even without the disturbance you can see 
that proportional control doesn't get the temperature to the desired setting. 
Increasing the gain helps, but even with kp = 10 the output is still below target, and 
you are starting to see a strong overshoot that continues to travel back and forth 
(this is called ringing).  

As the previous examples show, a proportional controller alone can be useful for 
some things, but it doesn't always help. Plants that have too much delay, like the 
precision actuator, can't be stabilized with proportional control. Some plants, like the 
temperature controller, cannot be brought to the desired set point. Plants like the 
motor and gear combination may work, but they may need to be driven faster than 
is possible with proportional control alone. To solve these control problems you need 
to add integral or differential control or both.  



 

Figure 10: Temperature 
controller with proportional 
feedback. The kink at time 
= 2 is from the external 
disturbance. 

 

 

 

 

Integral  
Integral control is used to add long-term precision to a control loop. It is almost 
always used in conjunction with proportional control.  

The code to implement an integrator is shown below. The integrator state, iState is 
the sum of all the preceding inputs. The parameters iMin and iMax are the minimum 
and maximum allowable integrator state values.  

 
double iTerm; 
. 
. 
. 
// calculate the integral state  
// with appropriate limiting 
pid->iState += error; 
if (pid->iState > pid->iMax)  
pid->iState = 
pid->iMax; 
else if (pid->iState  
< 
pid->  
iMin)  
pid->iState = pid->iMin; 
iTerm = pid->iGain * iState;  
// calculate the integral term 
. 
. 
. 
 

Integral control by itself usually decreases stability, or destroys it altogether. Figure 
11 shows the motor and gear with pure integral control (pGain = 0). The system 
doesn't settle. Like the precision actuator with proportional control, the motor and 



gear system with integral control alone will oscillate with bigger and bigger swings 
until something hits a limit. (Hopefully the limit isn't breakable.)  

 

Figure 11: Motor and gear 
with pure integral control. 

 

 

 

 

 

 

Figure 12 shows the temperature control system with pure integral control. This 
system takes a lot longer to settle out than the same plant with proportional control 
(see Figure 10), but notice that when it does settle out, it settles out to the target 
value-even with the disturbance added in. If your problem at hand doesn't require 
fast settling, this might be a workable system.  

 

Figure 12: Temperature 
control system with integral 
control. The kink at time = 2 
is from the external 
disturbance. 

 

 

 

 

Figure 12 shows why we use an integral term. The integrator state "remembers" all 
that has gone on before, which is what allows the controller to cancel out any long 
term errors in the output. This same memory also contributes to instability-the 
controller is always responding too late, after the plant has gotten up speed. To 
stabilize the two previous systems, you need a little bit of their present value, which 
you get from a proportional term.  



Figure 13 shows the motor and gear with proportional and integral (PI) control. 
Compare this with Figures 8 and 11. The position takes longer to settle out than the 
system with pure proportional control, but it will not settle to the wrong spot.  

 

Figure 13: Motor and gear 
with PI control. 

 

 

 

 

 

 

Figure 14 shows what happens when you use PI control on the heater system. The 
heater still settles out to the exact target temperature, as with pure integral control 
(see Figure 12), but with PI control, it settles out two to three times faster. This 
figure shows operation pretty close to the limit of the speed attainable using PI 
control with this plant. 

 

Figure 14: Heater with PI 
control. The kink at time = 2 
is from the external 
disturbance.  

 

 

 

 

 

Before we leave the discussion of integrators, there are two more things I need to 
point out. First, since you are adding up the error over time, the sampling time that 
you are running becomes important. Second, you need to pay attention to the range 
of your integrator to avoid windup.  



The rate that the integrator state changes is equal to the average error multiplied by 
the integrator gain multiplied by the sampling rate. Because the integrator tends to 
smooth things out over the long term you can get away with a somewhat uneven 
sampling rate, but it needs to average out to a constant value. At worst, your 
sampling rate should vary by no more than ý20% over any 10-sample interval. You 
can even get away with missing a few samples as long as your average sample rate 
stays within bounds. Nonetheless, for a PI controller I prefer to have a system where 
each sample falls within ý1% to ý5% of the correct sample time, and a long-term 
average rate that is right on the button.  

If you have a controller that needs to push the plant hard, your controller output will 
spend significant amounts of time outside the bounds of what your drive can actually 
accept. This condition is called saturation. If you use a PI controller, then all the time 
spent in saturation can cause the integrator state to grow (wind up) to very large 
values. When the plant reaches the target, the integrator value is still very large, so 
the plant drives beyond the target while the integrator unwinds and the process 
reverses. This situation can get so bad that the system never settles out, but just 
slowly oscillates around the target position.  

Figure 15 illustrates the effect of integrator windup. I used the motor/controller of 
Figure 13, and limited the motor drive to ý0.2. Not only is controller output much 
greater than the drive available to the motor, but the motor shows severe overshoot. 
The motor actually reaches its target at around five seconds, but it doesn't reverse 
direction until eight seconds, and doesn't settle out until 15 seconds have gone by.  

 

Figure 15: Motor and gear 
with PI control and windup. 

 

 

 

 

 

 

The easiest and most direct way to deal with integrator windup is to limit the 
integrator state, as I showed in my previous code example. Figure 16 shows what 
happens when you take the system in Figure 15 and limit the integrator term to the 
available drive output. The controller output is still large (because of the proportional 
term), but the integrator doesn't wind up very far and the system starts settling out 
at five seconds, and finishes at around six seconds.  

Note that with the code example above you must scale iMin and iMax whenever you 
change the integrator gain. Usually you can just set the integrator minimum and 



maximum so that the integrator output matches the drive minimum and maximum. 
If you know your disturbances will be small and you want quicker settling, you can 
limit the integrator further.  

 

Figure 16: Motor and gear 
with PI control and 
integrator limiting. 

 

 

 

 

Differential  
I didn't even show the precision actuator in the previous section. This is because the 
precision actuator cannot be stabilized with PI control. In general, if you can't 
stabilize a plant with proportional control, you can't stabilize it with PI control. We 
know that proportional control deals with the present behavior of the plant, and that 
integral control deals with the past behavior of the plant. If we had some element 
that predicts the plant behavior then this might be used to stabilize the plant. A 
differentiator will do the trick.  

The code below shows the differential term of a PID controller. I prefer to use the 
actual plant position rather than the error because this makes for smoother 
transitions when the command value changes. The differential term itself is the last 
value of the position minus the current value of the position. This gives you a rough 
estimate of the velocity (delta position/sample time), which predicts where the 
position will be in a while.  

 
double dTerm; 
. 
. 
. 
dTerm = pid->dGain * (position - pid->dState); 
pid->dState = position; 
. 
. 
. 
 

With differential control you can stabilize the precision actuator system. Figure 17 
shows the response of the precision actuator system with proportional and derivative 
(PD) control. This system settles in less than 1/2 of a second, compared to multiple 
seconds for the other systems. Figure 18 shows the heating system with PID control. 



You can see the performance improvement to be had by using full PID control with 
this plant.  

 

Figure 17: Precision 
actuator with PID control. 

 

 

 

 

 

 

 

Figure 18: Heater with PID 
control. 

 

 

 

 

 

 

Differential control is very powerful, but it is also the most problematic of the control 
types presented here. The three problems that you are most likely going to 
experience are sampling irregularities, noise, and high frequency oscillations. When I 
presented the code for a differential element I mentioned that the output is 
proportional to the position change divided by the sample time. If the position is 
changing at a constant rate but your sample time varies from sample to sample, you 
will get noise on your differential term. Since the differential gain is usually high, this 
noise will be amplified a great deal.  

When you use differential control you need to pay close attention to even sampling. 
I'd say that you want the sampling interval to be consistent to within 1% of the total 
at all times-the closer the better. If you can't set the hardware up to enforce the 
sampling interval, design your software to sample with very high priority. You don't 



have to actually execute the controller with such rigid precision-just make sure the 
actual ADC conversion happens at the right time. It may be best to put all your 
sampling in an ISR or very high-priority task, then execute the control code in a 
more relaxed manner.  

Differential control suffers from noise problems because noise is usually spread 
relatively evenly across the frequency spectrum. Control commands and plant 
outputs, however, usually have most of their content at lower frequencies. 
Proportional control passes noise through unmolested. Integral control averages its 
input signal, which tends to kill noise. Differential control enhances high frequency 
signals, so it enhances noise. Look at the differential gains that I've set on the plants 
above, and think of what will happen if you have noise that makes each sample a 
little bit different. Multiply that little bit by a differential gain of 2,000 and think of 
what it means.  

You can low-pass filter your differential output to reduce the noise, but this can 
severely affect its usefulness. The theory behind how to do this and how to 
determine if it will work is beyond the scope of this article. Probably the best that 
you can do about this problem is to look at how likely you are to see any noise, how 
much it will cost to get quiet inputs, and how badly you need the high performance 
that you get from differential control. Once you've worked this out, you can avoid 
differential control altogether, talk your hardware folks into getting you a lower noise 
input, or look for a control systems expert.  

The full text of the PID controller code is shown in Listing 1 and is available at 
www.embedded.com/code.html.  

Listing 1: PID controller code  

 
typedef struct 
{ 
double dState; // Last position input 
double iState; // Integrator state 
double iMax, iMin;  
// Maximum and minimum allowable integrator state 
double iGain, // integral gain 
pGain, // proportional gain 
dGain; // derivative gain 
} SPid; 
double UpdatePID(SPid * pid, double error, double 
position) 
{ 
double pTerm, 
dTerm, iTerm; 
pTerm = pid->pGain * error;  
// calculate the proportional term 
// calculate the integral state with appropriate limiting 
pid->iState += error; 
if (pid->iState > pid->iMax) pid->iState = pid->iMax; 
else if (pid->iState  
< 



pid->iMin) pid->iState = pid->iMin; 
iTerm = pid->iGain * iState; // calculate the integral term 
dTerm = pid->dGain * (position - pid->dState); 
pid->dState = position; 
return pTerm + iTerm - dTerm; 
} 

Tuning  
The nice thing about tuning a PID controller is that you don't need to have a good 
understanding of formal control theory to do a fairly good job of it. About 90% of the 
closed-loop controller applications in the world do very well indeed with a controller 
that is only tuned fairly well.  

If you can, hook your system up to some test equipment, or write in some debug 
code to allow you to look at the appropriate variables. If your system is slow enough 
you can spit the appropriate variables out on a serial port and graph them with a 
spreadsheet. You want to be able to look at the drive output and the plant output. In 
addition, you want to be able to apply some sort of a square-wave signal to the 
command input of your system. It is fairly easy to write some test code that will 
generate a suitable test command. Once you get the setup ready, set all gains to 
zero. If you suspect that you will not need differential control (like the motor and 
gear example or the thermal system) then skip down to the section that discusses 
tuning the proportional gain. Otherwise start by adjusting your differential gain.  

The way the controller is coded you cannot use differential control alone. Set your 
proportional gain to some small value (one or less). Check to see how the system 
works. If it oscillates with proportional gain you should be able to cure it with 
differential gain. Start with about 100 times more differential gain than proportional 
gain. Watch your drive signal. Now start increasing the differential gain until you see 
oscillation, excessive noise, or excessive (more than 50%) overshoot on the drive or 
plant output. Note that the oscillation from too much differential gain is much faster 
than the oscillation from not enough. I like to push the gain up until the system is on 
the verge of oscillation then back the gain off by a factor of two or four. Make sure 
the drive signal still looks good. At this point your system will probably be 
responding very sluggishly, so it's time to tune the proportional and integral gains.  

If it isn't set already, set the proportional gain to a starting value between 1 and 100. 
Your system will probably either show terribly slow performance or it will oscillate. If 
you see oscillation, drop the proportional gain by factors of eight or 10 until the 
oscillation stops. If you don't see oscillation, increase the proportional gain by factors 
of eight or 10 until you start seeing oscillation or excessive overshoot. As with the 
differential controller, I usually tune right up to the point of too much overshoot then 
reduce the gain by a factor of two or four. Once you are close, fine tune the 
proportional gain by factors of two until you like what you see.  

Once you have your proportional gain set, start increasing integral gain. Your 
starting values will probably be from 0.0001 to 0.01. Here again, you want to find 
the range of integral gain that gives you reasonably fast performance without too 
much overshoot and without being too close to oscillation.  



Other issues  
Unless you are working on a project with very critical performance parameters you 
can often get by with control gains that are within a factor of two of the "correct" 
value. This means that you can do all your "multiplies" with shifts. This can be very 
handy when you're working with a slow processor.  

Sampling rate  
So far I've only talked about sample rates in terms of how consistent they need to be, 
but I haven't told you how to decide ahead of time what the sample rate needs to be. 
If your sampling rate is too low you may not be able to achieve the performance you 
want, because of the added delay of the sampling. If your sampling rate is too high 
you will create problems with noise in your differentiator and overflow in your 
integrator.  

The rule of thumb for digital control systems is that the sample time should be 
between 1/10th and 1/100th of the desired system settling time. System settling 
time is the amount of time from the moment the drive comes out of saturation until 
the control system has effectively settled out. If you look at Figure 16, the controller 
comes out of saturation at about 5.2s, and has settled out at around 6.2s. If you can 
live with the one second settling time you could get away with a sampling rate as low 
as 10Hz.  

You should treat the sampling rate as a flexible quantity. Anything that might make 
the control problem more difficult would indicate that you should raise the sampling 
rate. Factors such as having a difficult plant to control, or needing differential control, 
or needing very precise control would all indicate raising the sampling rate. If you 
have a very easy control problem you could get away with lowering the sampling 
rate somewhat (I would hesitate to lengthen the sample time to more than one-fifth 
of the desired settling time). If you aren't using a differentiator and you are careful 
about using enough bits in your integrator you can get away with sampling rates 
1,000 times faster than the intended settling time.  

Exert control  
This covers the basics of implementing and tuning PID controllers. With this 
information, you should be able to attack the next control problem that comes your 
way and get it under control.  

Tim Wescott has a master's degree in electrical engineering and has been working in 
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language, C, and C++. He is currently involved in control systems design at FLIR 
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