
Chapter 1

Linear programming

We start by giving some examples of linear programs and how they are used in

practice.

1.1 A healthy and low-priced diet

Imagine you are going on a long vacation and you need to buy food. Your objec-

tive is to buy food at minimum price, such that the daily needs of certain vitamins

and energy are satisfied. There are three kinds of food. Carrots, white cabbage and

oatmeal, each having a certain amount of Vitamin A, Vitamin C and energy per

100g serving. 1

• 100g carrots contain: 3.5 mg Vitamin A, 6 mg Vitamin C, 50 kcal Energy

• 100g white cabbage contains: 0.1 mg Vitamin A, 30 mg Vitamin C, 70 kcal En-

ergy

• 100g Oatmeal contains: 0.02 mg Vitamin A, 0.04mg Vitamin C and 300 kcal

Energy

The prices for 100g of the above are 1 CHF, 0.5 Chf and 3 CHF respectively. Your

daily needs are

• Vitamin A: 0.75 mg

• Vitamin C: 0.5 mg

• Energy: 1500 kcal

Your goal is now to come up with the right mix of these dishes, such that all

your needs in terms of energy, vitamin A, and vitamin C are satisfied and such

that this mix is as cheap as possible.

This is done with a linear program, a central object of study in this course.

We reserve variables x1, x2 and x3 which is the amount of 100g units of carrots,

1 Those are fantasy values. We are doing math and no dietary consulting ;)
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cabbage and oatmeal respectively that we will eat each day. We want that the cost

of a daily serving is minimized, in other words, we want to minimize the following

linear function

min 1 ·x1 +0.5 ·x2 +3 ·x3.

Certain constraints have to be satisfied. The constraint, which tells us that we

need at least 0.75mg of vitamin A is

3.5x1 +0.1x2 +0.02x3 > 0.75.

The variables x1, x2 and x3 have to be nonnegative, so all-together, we have to

solve the following problem

min 1 ·x1 +0.5 ·x2 +3 ·x3

subject to x1 > 0

x2 > 0

x3 > 0

3.5x1 +0.1x2 +0.02x3 > 0.75

6x1 +30x2 +0.04x3 > 0.5

50x1 +70x2 +300x3 > 1500.

1.2 Linear Programs

We use the following notation. For a matrix A ∈ Rm×n , i ∈ {1, . . . ,m} and j ∈
{1, . . . ,n} we denote the i -th row of A by ai and the j -th column of A by a j . With

A(i , j ) we denote the element of A which is in the i -th row and j -th column of A.

For a vector v ∈Rm and i ∈ {1, . . . ,m} we denote the i -th element of v by v(i ).

Definition 1.1. Let A ∈ Rm×n be a matrix, b ∈ Rm and c ∈ Rn be vectors and

I>, I6, I= ⊆ {1, . . . ,m} and J>, J6 ⊆ {1, . . . ,n} be index sets. A linear program (LP)

consists of

i) a linear objective function:

max cT x

or min cT x

ii) Linear constraints
aT

i
x > b(i ), i ∈ I>

aT
j

x 6 b( j ), j ∈ I6

aT
k

x = b(k),k ∈ I=

iii) and bounds on the variables

x( j ) > 0, j ∈ J>
x( j ) 6 0, j ∈ J6.
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Notice that we can re-write the objective function min cT x as max−cT x. Sim-

ilarly, the constraints aT
i

x > b(i ), i ∈ I> are equivalent to the constrains −aT
i

x 6

−b(i ), i ∈ I>. Also the constraints aT
k

x = b(k),k ∈ I= can be replaced by the con-

straints aT
k

x 6 b(k), −aT
k

x 6−b(k), k ∈ I=. A lower bound x( j ) > 0 can be written

as −eT
j

x 6 0, where e j is the j -th unit vector which has zeroes in every com-

ponent, except for the j -th component, which is 1. Similarly an upper bound

x( j ) 6 0 can be written as eT
j

x 6 0.

All-together, a linear program as in Definition 1.1 can always be written as

max{cT x : Ãx 6 b̃, x ∈Rn}

with a suitable matrix Ã ∈Rm×n and a suitable vector b̃ ∈Rm . This representation

has a name.

Definition 1.2. A linear program is in inequality standard form, if it is of the form

max{cT x : Ax 6 b, x ∈Rn}

for some matrix A ∈Rm×n and some vector b ∈Rm .

Definition 1.3. A point x∗ ∈Rn is called feasible, if x∗ satisfies all constraints and

bounds on the variables. If there are feasible solutions of a linear program, then

the linear program is called feasible itself. A linear program is bounded if there ex-

ists a constant M ∈R such for all feasible x∗ ∈Rn cT x∗ 6 M , if the linear program

is a maximization problem and cT x∗ > M , if the linear program is a minimiza-

tion problem. A feasible solution x∗ is an optimal solution if cT x∗ > cT y∗ for all

feasible y∗ if the linear program is a maximization problem and cT x∗ 6 cT y∗ if

the linear program is a minimization problem.

Fig. 1.1: With the objective function being to find the highest point, we have from

left-to-right an infeasible linear program, and unbounded linear program and a

bounded linear program.

We will see later that a feasible and bounded linear program has an optimal

solution.
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1.3 Two-variable linear programs

Two-variable linear programs can be solved graphically. Consider for example the

linear program

max x1 + x2

2x1 +3x2 6 9

2x1 + x2 6 5

x1, x2 > 0.

Figure 1.2 depicts the feasible solutions as the gray area. The red vector is the

objective vector (1,1). This linear program is feasible and bounded. The optimal

solution is the intersection of the two lines 2x1 + x2 = 5 and 2x1 + 3x2 = 9. This

intersection is x∗ = (3/2,2).

x1

x2

5 2x1 + x2 = 5

2x1 + 3x2 = 9

5

Fig. 1.2: A two-variable linear program

1.4 Fitting a line

The following is an example which is well known in statistics. Suppose that you

measure points (yi , xi ) ∈R2 i = 1, . . . ,n and you are interested in a linear function

y = a · x + b that reflects the sample. One way to do that is by minimizing the
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expression
n∑

i=1

(axi +b − yi )2, (1.1)

where a,b ∈R are the parameters of the line that we are looking for. The number

(axi +b− yi )2 is the square of the vertical distance of the point xi , yi from the line

y = a x +b.

Instead of using the method of least-squares, we could also minimize the fol-

lowing function, see also [13, Chapter 2.4],

n∑

i=1

|axi +b − yi |. (1.2)

This objective has the advantage to be slightly more robust towards outliers. How

can we model this as a linear program. The trick is to use an extra variable hi

which models the absolute value of axi +b − yi .

min
∑n

i=1 hi

hi > axi +b − yi , i = 1, . . . ,n

hi > −(axi +b − yi ), i = 1, . . . ,n

(1.3)

The variables of this linear program are hi , i = 1, . . . ,n, a and b. For a fixed a ∈ R

and b ∈R the optimal hi ’s will be hi = |axi +b− yi | since the objective minimizes

the sum of the hi ’s. If one of the was strictly larger than |axi + b − yi |, then the

objective could be improved by making it smaller.

1.5 Linear Programming solvers and modeling languages

We will demonstrate now how to use a modeling language for linear program-

ming and a linear programming solver to find a fitting line, as described in Sec-

tion 1.4 for the points

(1,3),(2.8,3.3),(4,2),(5.5, 2.1),(6, .2), (7,1.3), (7.5, 1), (8.5,0.8)

There are two popular formats for linear programming problems which are

widely used by linear programming solvers, the lp-format and the mps-format.

Both are not easy to read. To facilitate the modeling of a linear program, so-called

modeling languages are used. We demonstrate the use of the popular open source

modeling software called zimpl [8]. Below you see a way to model our fitting line

linear program with zimpl:

set I := { 1 to 8};

param X[I] := <1> 1, <2> 2.8, <3> 4, <4> 5.5,

<5> 6, <6> 7, <7> 7.5, <8> 8.5 ;

param Y[I] := <1> 3, <2> 3.3, <3> 2, <4> 2.1,

<5> .2, <6> 1.3, <7> 1, <8> .8 ;

http://www.zib.de/koch/zimpl
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var h[I] >= -infinity <= infinity;

var a >= -infinity <= infinity ;

var b >= -infinity <= infinity ;

minimize cost: sum <i> in I: h[i];

subto c1: forall <i> in I: h[i] >= ( a * X[i] + b -Y[i]);

subto c2: forall <i> in I: h[i] >= - ( a * X[i] + b -Y[i]);

Zimpl creates a linear program which is readable by linear programming solvers

like QSopt or SoPlex. An optimal fitting-line w.r.t. the distance measure (1.2) is

the line y =−0.293333 ·x +3.293333. It is depicted in figure 1.2.
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0
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b

b

b

b
b

Fig. 1.3: A set of points {(1,3),(2.8,3.3),(4,2),(5.5,2.1),(6, .2), (7,1.3),(7.5, 1),(8.5, 0.8)}

and the line determined by linear program (1.3).

1.6 Linear programming for longer OLED-lifetime

Organic Light Emitting Diodes (OLEDs) are considered as the display technology

of the future and more and more commercial products are equipped with such

displays as shown in Fig. 1.4. However, the cheapest OLED technology suffers

from short lifetimes. We will show in this section how linear programming can be

used to increase the lifetime of such displays.

A (passive matrix) OLED display has a matrix structure consisting of n rows

and m columns. At any crossover between a row and a column there is a vertical

diode which works as a pixel. The image itself is given as an integral non-negative

n ×m matrix (ri j ) ∈ [0, . . . ,̺]n×m representing its RGB values. Consider the con-

tacts for the rows and columns as switches. For the time the switch of row i and

column j is closed, an electrical current flows through the diode of pixel (i , j ) and

it shines. Hence, we can control the intensity of a pixel by the two quantities elec-

trical current and time. The value ri j determines the amount of time within the

time frame in which the switches i and j have to be simultaneously closed. At a

http://www2.isye.gatech.edu/~wcook/qsopt
http://soplex.zib.de/
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Fig. 1.4: Sample of a commercial OLED device with integrated driver chip

sufficient high frame rate e.g. 50 Hz, the perception by the eye is the average value

of the light emitted by the pixel and one sees the image.

The traditional addressing scheme is row-by-row. This means that the switch

for the first row is closed for a certain time while the switches for the columns are

closed for the necessary amount of time dictated by the entries r1 j , j = 1, . . . ,m.

Consequently the first row can be displayed in time max{r1 j : j = 1, . . . ,m}. Then

the second row is displayed and so on. With this addressing scheme, the pixels are

idle most of the time and then have to shine with very high intensity. This puts the

diodes under stress and is a major cause of the short lifetime of the displays.

How can this lifetime problem be dealt with? The main idea is to save time, or

equivalently to lower the maximum intensity, by displaying several rows at once.

Consider the schematic image on the left of Fig. 1.5. Let us compute the

amount of time which is necessary to display the image with this addressing

scheme. The maximum value of the entries in the first row is 238. This is the

amount of time which is necessary to display the first row. After that the second

row is displayed in time 237. In total the time which is required to display the

image is 238+237+234+232+229 = 1170 time units.

109 238 28

112 237 28

150 234 25

189 232 22

227 229 19

=

0 82 25

0 82 25

0 41 22

0 41 22

0 0 0

+

0 0 0

112 155 3

112 155 3

189 191 0

189 191 0

+

109 156 3

0 0 0

38 38 0

0 0 0

38 38 19

Fig. 1.5: An example decomposition

Now consider the decomposition of the image as the sum of the three images on

the right of Fig. 1.5. In the first image, each odd row is equal to its even successor.

This means that we can close the switches for rows 1 and 2 simultaneously, and

these two equal rows are displayed in 82 time units. Rows 3 and 4 can also be

displayed simultaneously which shows that the first image on the right can be

displayed in 82+41 time units. The second image on the right can be displayed in

155+191 time units while the third image has to be displayed traditionally. In total

all three images, and thus the original image on the left via this decomposition,
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can be displayed in 82+41+155+191+156+38+38 = 701 time units. This means

that we could reduce the necessary time via this decomposition by roughly 40%.

We could equally display the image in the original 1170 time units but reduce

the peak intensity, or equally the maximum electrical current through a diode by

roughly 40%.

We now show how to model the time-optimal decomposition of an image as

a linear program. To decompose R we need to find matrices F (1) = ( f (1)
i j

) and

F (2) = ( f (2)
i j

) where F (1) represents the singleline part and F (2) the two doubleline

parts. More precisely, the i -th row of matrix F (2) represents the doubleline cover-

ing rows i and i +1. Since the overlay (addition) of the subframes must be equal

to the original image to get a valid decomposition of R, the matrices F (1) and F (2)

must fulfill the constraint f (1)
i j

+ f (2)
i−1, j

+ f (2)
i j

= ri j for i = 1, . . . ,n and j = 1, . . . ,m,

where we now and in the following use the convention to simply omit terms with

indices running out of bounds. Since we cannot produce “negative” light we re-

quire also non-negativity of the variables f (α)
i j

> 0. The goal is to find an integral

decomposition that minimizes

n∑

i=1

max{ f (1)
i j

: 1 6 j 6 m}+
n−1∑

i=1

max{ f (2)
i j

: 1 6 j 6 m} .

This problem can be formulated as a linear program by replacing the objective by∑n
i=1 u(1)

i
+

∑n−1
i=1 u(2)

i
and by adding the constraints f (α)

i j
6 u(α)

i
. This yields

min
n∑

i=1

u(1)
i

+
n−1∑

i=1

u(2)
i

s.t. f (1)
i j

+ f (2)
i−1, j

+ f (2)
i j

= ri j for all i , j (1.4)

f (α)
i j

6 u(α)
i

for all i , j ,α (1.5)

f (α)
i j

∈R>0 for all i , j ,α

Note that the objective does not contain the f -variables. By decomposing images

like this, the average lifetime of an OLED display can be increased by roughly

100%, see [4].

Exercises

1) A company produces and sells two different products. Our goal is to determine

the number of units of each product they should produce during one month,

assuming that there is an unlimited demand for the products, but there are

some constraints on production capacity and budget.

There are 20000 hours of machine time in the month. Producing one unit

takes 3 hours of machine time for the first product and 4 hours for the second
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product. Material and other costs for producing one unit of the first product

amount to 3CHF, while producing one unit of the second product costs 2CHF.

The products are sold for 6CHF and 5CHF per unit, respectively. The available

budget for production is 4000CHF initially. 25% of the income from selling the

first product can be used immediately as additional budget for production,

and so can 28% of the income from selling the second product.

a. Formulate a linear program to maximize the profit subject to the de-

scribed constraints.

b. Solve the linear program graphically by drawing its set of feasible solu-

tions and determining an optimal solution from the drawing.

c. Suppose the company could modernize their production line to get an

additional 2000 machine hours for the cost of 400CHF. Would this invest-

ment pay off?

2) A factory produces two different products. To create one unit of product 1, it

needs one unit of raw material A and one unit of raw material B . To create one

unit of product 2, it needs one units of raw material B and two units of raw

material C . Raw material B needs preprocessing before it can be used, which

takes one minute per unit. At most 20 hours of time is available per day for

the preprocessing. Raw materials of capacity at most 1200 can be delivered to

the factory per day. One unit of raw material A, B and C has size 4, 3 and 2

respectively.

At most 130 units of the first and 100 units of the second product can be sold

per day. The first product sells for 6 CHF per unit and the second one for 9

CHF per unit.

Formulate the problem of maximizing turnover as a linear program in two

variables and solve it.

3) Prove the following statement or give a counterexample: The set of optimal

solutions of a linear program is always finite.

4) Let (1.6) be a linear program in inequality standard form, i.e.

max{cT x | Ax 6 b, x ∈Rn} (1.6)

where A ∈Rm×n , b ∈Rm , and c ∈Rn .

Prove that there is an equivalent linear program (1.7) of the form

max{c̃T x | Ãx = b̃, x > 0, x ∈Rñ} (1.7)

where Ã ∈ Rm̃×ñ , b̃ ∈ Rm̃ , and c̃ ∈ Rñ are such that every feasible point of (1.6)

corresponds to a feasible point of (1.7) with the same objective function value

and vice versa.

Linear programs of the form in (1.7) are said to be in equality standard form.
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5) Model the linear program (1.4) to decompose the EPFL logo with Zimpl. An

incomplete model containing the encoding of the grayscale values of the logo

can be found here here2.

Use an LP solver library of your choice to compute an optmal solution.

6) Provide an example of a convex and closed set K ⊆ R2 and a linear objective

function cT x such that inf{cT x : x ∈ K }>−∞but there does not exist an x∗ ∈K

with cT x∗ 6 cT x for all x ∈ K .

2 http://disopt.epfl.ch/webdav/site/disopt/users/190205/public/logo_dec.zmpl

http://disopt.epfl.ch/webdav/site/disopt/users/190205/public/logo_dec.zmpl


Chapter 2

Convex sets

A polyhedron P ⊆Rn is a set of the form P = {x ∈Rn : Ax 6 b} for some A ∈Rm×n

and some b ∈Rm . The set of feasible solutions of a linear program max{cT x : Ax 6

b} is a polyhedron. Polyhedra are convex sets. Convex sets are the main objects of

study of this chapter.

2.1 Linear, affine, conic and convex hulls

b

b

b

b

b

b

b

Fig. 2.1: The convex hull of 7 points in R2.

Let X ⊆Rn be a set of n-dimensional vectors. The linear hull, affine hull, conic

hull and convex hull of X are defined as follows.

11
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lin.hull(X ) = {λ1x1 +·· ·+λt xt | t > 0, x1, . . . , xt ∈ X , λ1, . . . ,λt ∈R} (2.1)

affine.hull(X ) = {λ1x1 +·· ·+λt xt | t > 1, (2.2)

x1, . . . , xt ∈ X ,
t∑

i=1

λi = 1, λ1, . . . ,λt ∈R}

cone(X ) = {λ1x1 +·· ·+λt xt | t > 0, (2.3)

x1, . . . , xt ∈ X , λ1, . . . ,λt ∈R>0}

conv(X ) = {λ1x1 +·· ·+λt xt | t > 1, (2.4)

x1, . . . , xt ∈ X ,
t∑

i=1

λi = 1, λ1, . . . ,λt ∈R>0}

b

b

b

b

Fig. 2.2: Two points with their convex hull on the left and their affine hull on the

right.

Proposition 2.1. Let X ⊆Rn and x0 ∈ X . One has

affine.hull(X ) = x0 + lin.hull(X − x0),

where for u ∈Rn and V ⊆Rn , u+V denotes the set u+V = {u+ v | v ∈V }.

Proof. We first show that each x ∈ affine.hull(X ) is also an element of the set x0 +
lin.hull(X − x0) and then we show that each point x ∈ x0 + lin.hull(X − x0) is also

an element of affine.hull(X ).

Let x ∈ affine.hull(X ),i.e., there exists a natural number t > 1 and λ1, . . . ,λt ∈R,

with x = λ1x1 +·· ·+λt xt and
∑t

i=1
λi = 1. Now

x = x0 − x0 +λ1x1 +λ2x2 +·· ·+λt xt

= x0 −λ1x0 −·· ·−λt x0 +λ1x1 +λ2x2 +·· ·+λt xt

= x0 +λ1(x1 − x0)+·· ·+λt (xt − x0),
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b

x1

x2

cone({x1, x2})

b

Fig. 2.3: Two points with their conic hull

which shows that x ∈ x0 + lin.hull(X − x0).

Suppose now that x ∈ x0 + lin.hull(X − x0). Then there exist λ1, . . . ,λt ∈ R with

x = x0+λ1(x1−x0)+·· ·+λt (xt −x0). With λ0 = 1−
∑t

i=1 λi one has
∑t

i=0 λi = 1 and

x = x0 +λ1(x1 − x0)+·· ·+λt (xt − x0)

= λ0x0 +·· ·+λt xt

and thus that x ∈ affine.hull(X ). ⊓⊔

Definition 2.1. The convex hull of two distinct points u 6= v ∈ Rn is called a line

segment and is denoted by uv .

Definition 2.2. A set K ⊆ Rn is convex if for each u 6= v , the line-segment uv is

contained in K , uv ⊆ K .

Fig. 2.4: The set on the left is convex, the set on the right is non-convex.

In other words, a set K ⊆ Rn is convex, if for each u, v ∈ K and λ ∈ [0,1] the

point λu+ (1−λ)v is also contained in K .
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Theorem 2.1. Let X ⊆Rn be a set of points. The convex hull, conv(X ), of X is con-

vex.

Proof. Let u and v be points in conv(X ). This means that there exists a natu-

ral number t > 1, real numbers αi ,βi > 0, and points xi ∈ X , i = 1, . . . , t with∑t
i=1 αi =

∑t
i=1 βi = 1 with u =

∑t
i=1 αi xi and v =

∑t
i=1 βi xi . For λ ∈ [0,1] one has

λαi + (1−λ)βi > 0 for i = 1, . . . , t and
∑t

i=1

(
λαi + (1−λ)βi

)
= 1. This shows that

λu+ (1−λ)v =
∑(

λiαi + (1−λi )βi

)
xi ∈ conv(X ),

and therefore that conv(X ) is convex. ⊓⊔

Theorem 2.2. Let X ⊆ Rn be a set of points. Each convex set K containing X also

contains conv(X ).

Proof. Let K be a convex set containing X , and let x1, . . . , xt ∈ X and λi ∈ R with

λi > 0, i = 1, . . . , t and
∑t

i=1
λi = 1. We need to show that u =

∑t
i=1

λi xi is con-

tained in K . This is true for t 6 2 by the definition of convex sets.

We argue by induction. Suppose that t > 3. If one of the λi is equal to 0, then

one can represent u as a convex combination of t − 1 points in X and, by in-

duction, u ∈ K . Since t > 3, each λi > 0 and
∑t

i=1
λi = 1 one has 0 < λi < 1 for

i = 1, . . . , t and thus we can write

u =λ1x1 + (1−λ1)
t∑

i=2

λi

1−λ1
xi .

One has λi /(1−λ1) > 0 and
t∑

i=2

λi

1−λ1
= 1,

which means that the point
∑t

i=2
λi

1−λ1
xi is in K by induction. Again, by the defi-

nition of convex sets, we conclude that u lies in K . ⊓⊔

Theorem 2.2 implies that conv(X ) is the intersection of all convex sets con-

taining X , i.e.,

conv(X ) =
⋂

K⊇X
K convex

K .

Definition 2.3. A set C ⊆ Rn is a cone, if it is convex and for each c ∈ C and each

λ ∈R>0 one has λ ·c ∈C .

Similarly to Theorem 2.1 and Theorem 2.2 one proves the following.

Theorem 2.3. For any X ⊆Rn , the set cone(X ) is a cone.

Theorem 2.4. Let X ⊆ Rn be a set of points. Each cone containing X also contains

cone(X ).
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These theorems imply that cone(X ) is the intersection of all cones containing

X , i.e.,

cone(X ) =
⋂

C⊇X
C is a cone

C .

2.2 Radon’s lemma and Carathéodory’s theorem

Theorem 2.5 (Radon’s lemma). Let A ⊆Rn be a set of n+2 points. There exist dis-

joint subsets A1, A2 ⊆ A with

conv(A1)∩conv(A2) 6= ;.

Proof. Let A = {a1, . . . , an+2}. We embed these points into Rn+1 by appending a 1

in the n+1-st component, i.e., we construct

A′ =
{(a1

1

)
, . . . ,

(an+2
1

)}
⊆Rn+1.

The set A′ consists of n+2 vectors in Rn+1. Those vectors are linearly dependent.

Let

0 =
n+2∑

i=1

λi

(ai
1

)
(2.5)

be a nontrivial linear representation of 0, i.e., not all λi are 0. Furthermore, let

P = {i : λi > 0, i = 1, . . . ,n+2} and N = {i : λi < 0, i = 1, . . . ,n+2}. We claim that

conv({ai : i ∈P })∩conv({ai : i ∈ N }) 6= ;.

It follows from (2.5) and the fact that the n +1-st component of the vectors is 1

that
∑

i∈P λi =−
∑

i∈N λi = s > 0. It follows also from (2.5) that

∑

i∈P

λi ai =
∑

i∈N

−λi ai .

The point u =
∑

i∈P (λi /s) ·ai =
∑

i∈N (−λi /s)ai is contained in conv({ai : i ∈ P })∩
conv({ai : i ∈ N }), implying the claim. ⊓⊔

Theorem 2.6 (Carathéodory’s theorem). Let X ⊆ Rn , then for each x ∈ cone(X )

there exists a set X̃ ⊆ X of cardinality at most n such that x ∈ cone(X̃ ). The vectors

in X̃ are linearly independent.

Proof. Let x ∈ cone(X ), then there exist t ∈N+, xi ∈ X and λi > 0, i = 1, . . . , t , with

x =
∑t

i=1
λi xi . Suppose that t ∈N+ is minimal such that x can be represented as

above. We claim that t 6 n. If t > n +1, then the xi are linearly dependent. This

means that there are µi ∈R, not all equal to 0 with

t∑

i=1

µi xi = 0. (2.6)
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By multiplying each µi in (2.6) with −1 if necessary, we can assume that at least

one of the µi is strictly larger than 0. One has for each ε∈R

x =
t∑

i=1

(λi −ε ·µi )xi . (2.7)

What is the largest ε∗ > 0 that we can pick for ε such that (2.7) is still a conic

combination? We need to have

λi −ε ·µi > 0, for each i ∈ {1, . . . , t }. (2.8)

Let J be the set of indices J = { j : j ∈ {1, . . . , t }, µ j > 0}. We observed that we can

assume J 6= ;. We have (2.8) as long as

ε6λ j /µ j for each j ∈ J . (2.9)

This means that ε∗ = min{λ j /µ j : j ∈ J }. Let j∗ ∈ J be an index where this mini-

mum is attained. Since λi −ε∗ ·µi > 0 for all i = 1, . . . , t and since λ j∗−ε∗ ·µ j∗ = 0,

we have x ∈ cone({x1, . . . , xt } \ {x j∗ }, which is a contradiction to the minimality

of t . ⊓⊔

Corollary 2.1 (Carathéodory’s theorem for convex hulls). Let X ⊆ Rn , then for

each x ∈ conv(X ) there exists a set X̃ ⊆ X of cardinality at most n + 1 such that

x ∈ conv(X̃ ).

2.3 Separation theorem and Farkas’ lemma

We recall a basic fact from analysis, see, e.g. [12, Theorem 4.4.1].

Theorem 2.7. Let X ⊆ Rn be compact and f : X → R be continuous. Then f is

bounded and there exist points x1, x2 ∈ X with f (x1) = sup{ f (x) : x ∈ X } and

f (x2) = inf{ f (x) : x ∈ X }.

Theorem 2.8. Let K ⊆ Rn be a closed convex set and x∗ ∈ Rn \ K , then there exists

an inequality aT x >β such that aT y >β holds for all y ∈K and aT x∗ <β.

Proof. Since the mapping f (x) = ‖x∗− x‖ is continuous and since for any k ∈ K ,

K ∩ {x ∈ K : ‖x∗ − x‖ 6 ‖x∗ − k‖} is compact, there exists a point k∗ ∈ K with

minimal distance to x∗. Consider the midpoint m = 1/2(k∗ + x∗) on the line-

segment k∗x∗ and the hyperplane aT x = β with β = aT m and a = (k∗ − x∗).

Clearly, aT x∗ = β− 1/2‖k∗ − x∗‖2 and aT k∗ = β+ 1/2‖k∗ − x∗‖2. Suppose that

there exists a k ′ ∈ K with aT k ′ 6 β. The points λk∗ + (1−λ)k ′, λ ∈ [0,1] are in K

by the convexity of K , thus we can also assume that k ′ lies on the hyperplane, i.e.,

aT k ′ = β. This means that there exists a vector x′ which is orthogonal to a and

k ′ = m + x′. The distance squared of a point λk∗+ (1−λ)k ′ with λ ∈ [0,1] to m is,

by Pythagoras equal to
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λ2‖
1

2
a‖2 + (1−λ)2‖x′‖2.

As a function of λ, this is increasing at at λ = 1. Thus there exists a point on the

line-segment λx∗+ (1−λ)k which is closer to m than k∗. This point is also closer

to x∗ than k∗, which is a contradiction. Therefore aT k >β for each k ∈ K . ⊓⊔

Theorem 2.9 (Farkas’ lemma). Let A ∈ Rm×n be a matrix and b ∈ Rm be a vector.

The system Ax = b, x > 0 has a solution if and only if for all λ ∈ Rm with λT A > 0

one has λT b > 0.

Proof. Suppose that x∗ ∈ Rn
>0

satisfies Ax∗ = b and let λ ∈ Rm
>0

with λT A > 0.

Then λT b = λT Ax∗ > 0, since λT A > 0 and x∗ > 0.

Now suppose that Ax = b, x > 0 does not have a solution. Then, with X ⊆ Rn

being the set of column vectors of A, b is not in cone(X ). The set cone(X ) is con-

vex and closed, see exercise 5. Theorem 2.8 implies that there is an inequality

λT x > β such that λT y > β for each y ∈ cone(X ) and λT b < β. Since for each

a ∈ X and each µ> 0 one has µ ·a ∈ cone(X ) and thus λT (µ ·a) >β, it follows that

λT a > 0 for each a ∈ X . Furthermore, since 0 ∈ cone(X ) it follows that 0 > β and

thus that λT b < 0.

Exercises

1) Let {Ci }i∈I be a family of convex subsets of Rn . Show that the intersection⋂
i∈I Ci is convex.

2) Show that the set of feasible solutions of a linear program is convex.

3) Prove Carathéodory’s Theorem for convex hulls, Corollary 2.1.

4) Let A ∈ Rn×n be a non-singular matrix and let a1, . . . , an ∈ Rn be the columns

of A. Show that cone({a1, . . . , an}) is the polyhedron P = {y ∈ Rn : A−1 y > 0}.

Show that cone({a1, . . . , ak }) for k 6 n is the set Pk = {y ∈ Rn : a−1
i

x > 0, i =
1, . . . ,k, a−1

i
x = 0, i = k +1, . . . ,n}, where a−1

i
denotes the i -th row of A−1.

5) Prove that for a finite set X ⊆Rn the conic hull cone(X ) is closed and convex.

Hint: Use Carathéodory’s theorem and exercise 4.

6) Find a countably infinite set X ⊂R2 such that cone(X ) is not closed. Are there

any cones that are open?

7) Prove Theorem 2.3.

8) Prove Theorem 2.4.

9) Let f : Rn →Rd be a linear map.

a) Show that f (K ) = { f (x) : x ∈ K } is convex if K is convex. Is the reverse also

true?

b) For X ⊆Rn arbitrary, prove that conv( f (X )) = f (conv(X )).

10) Using Theorem 2.9, prove the following variant of Farkas’ lemma: Let A ∈Rm×n

be a matrix and b ∈ Rm be a vector. The system Ax 6 b, x ∈ Rn has a solution

if and only if for all λ ∈Rm
>0

with λT A = 0 one has λT b > 0.
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11) Provide an example of a convex and closed set K ⊆ R2 and a linear objective

function cT x such that min{cT x : x ∈ K }>−∞ but there does not exist an x∗ ∈
K with cT x∗ 6 cT x for all x ∈ K .

12) Consider the vectors

x1 =




3

1

2


 , x2 =




1

2

5


 , x3 =




2

0

1


 , x4 =




2

4

3


 , x5 =




1

1

1


 .

Let A = {x1, . . . , x5}. Find two disjoint subsets A1, A2 ⊆ A such that

conv(A1)∩conv(A2) 6= ;.

Hint: Recall the proof of Radon’s lemma

13) Consider the vectors

x1 =




3

1

2


 , x2 =




1

2

5


 , x3 =




2

0

1


 , x4 =




2

4

3


 , x5 =




1

1

1


 .

The vector

v = x1 +3x2 +2x3 + x4 +3x5 =




15

14

25




is a conic combination of the xi .

Write v as a conic combination using only three vectors of the xi .

Hint: Recall the proof of Carathéodory’s theorem



Chapter 3

The simplex method

In this chapter, we describe the simplex method. The task is to solve a linear pro-

gram

max{cT x : x ∈R
n , Ax 6 b} (3.1)

where A ∈Rm×n , b ∈Rm and c ∈Rn . We make the following assumption.

FULL-RANK ASSUMPTION

The matrix A ∈ Rm×n has full column-rank. In other words, the

columns of A are linearly independent

We will see later that this assumption can be made without loss of generality.

3.1 Roofs

Roofs are linear programs originating from (3.1) by selecting a subset of the in-

equalities only. A roof should provide an upper bound on the optimal value of

the linear program (3.1) and at the same time consist of n “linearly independent

constraints”. Here is the definition of a roof.

Definition 3.1. Consider the linear program (3.1) and let B ⊆ {1, . . . ,m} be a subset

of the row-indices. This set B is a roof if

i) |B | = n,

ii) The rows ai , i ∈B are linearly independent, and

iii) The linear program

max{cT x : aT
i x 6 b(i ), i ∈ B} (3.2)

is bounded.

What is the optimal solution of a linear program (3.2) defined by a roof? This

question is answered in the next lemma.

19
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b

b

b

c

Fig. 3.1: A linear program; the objective function vector c is pointing vertically up-

wards. The blue dots mark two roofs. Notice that the lowest roof is the optimum

of the linear program. The green point marks a non-roof. The two constraints

satisfy i) and ii) but not iii).

b

b

x∗
B

y∗

Fig. 3.2: An illustration for the proof of Lemma 3.1. The green ray illustrates the

set {x∗
B +λ(y∗− x∗

B ) : λ∈R>0}.

Lemma 3.1. Let B ⊆ {1, . . . ,m} be a roof of the linear program (3.1) and let x∗
B be

the unique solution of the linear system

ai x = b(i ), i ∈B,

then x∗
B is an optimal solution of the roof-linear program (3.2).

Proof. Suppose that y∗ is a feasible solution of the roof-linear program with

cT y∗ > cT x∗
B . We now show that each x∗

B +λ(y∗ − x∗
B ) for λ > 0 is feasible. One
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has ai (x∗
B +λ(y∗ − x∗

B )) = b(i )+λ · (ai y∗ − b(i )) 6 b(i ) for each i ∈ B and thus

x∗
B +λ(y∗− x∗

B ) is feasible for each λ> 0.

The objective function value of such a point is cT x∗
B +λ(cT y∗− cT x∗

B ) which,

for λ→∞ tends to infinity. This is a contradiction to B being a roof (condition iii).

Thus x∗
B must be an optimal solution to the roof-linear program (3.2). ⊓⊔

Now that we know that a roof-linear program has an optimal solution, we can

define the value of a roof B .

Definition 3.2. The value of a roof B is the optimum value cT x∗
B of the roof-linear

program

max{cT x : ai x 6 b(i ), i ∈ B}.

The next theorem is very simple, but in fact very important. It states that the

value of a roof is an upper bound on the optimum value of a linear program

max{cT x : x ∈Rn , Ax 6 b}.

Theorem 3.1 (Weak duality). The value of a roof is an upper bound on the objec-

tive function value of any feasible point of the linear program.

Proof. Let B be a roof of the linear program max{cT x : x ∈Rn , Ax 6 b}. Any feasi-

ble point x∗ of this linear program is also a feasible point of the roof-linear pro-

gram max{cT x : ai x 6 b(i )}. Therefore cT x∗
B > cT x∗ and the claim follows. ⊓⊔

When is an index-set B ⊆ {1, . . . ,m} satisfying i) and ii) a roof? Consider the

example in see Figure 3.3. The objective is to maximize 2x1 +x2 and the two roof-

constraints are x1 + x2 6 5 and x1 6 6. From the picture, it is clear that the objec-

tive function vector is in the cone of the two constraint vectors. In fact, this is the

characterization that holds in any dimension as we now show.

Lemma 3.2. Let B ⊆ {1, . . . ,m} satisfy i) and ii). Then B is a roof, if and only if c ∈
cone{ai : i ∈ B}.

Proof. Suppose that c ∈ cone{ai : i ∈ B}. Thus there exist λi > 0, i ∈ B with c =∑
i∈B λi ·ai . The unique solution x∗

B to the system

ai x = b(i ), i ∈ B (3.3)

is an optimal solution to max{cT x : ai x 6 b(i )}. Because if x̃ is another feasible

solution, then cT x̃ =
∑

i∈B λi ·ai x̃. Since λ> 0 and ai x̃ 6 b(i ) we can write

cT x̃ =
∑

i∈B

λi ·ai x̃ (3.4)

6
∑

i∈B

λi ·b(i ) (3.5)

=
∑

i∈B

λi ·ai x∗
B (3.6)

= (
∑

i∈B

λi ·ai ) x∗
B (3.7)

= cT x∗
B . (3.8)
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Fig. 3.3: A roof that is defined by the two constraints x1 6 2 and x1 + x2 6 3. The

objective function vector is (2,1)T . Indeed (1,1)T = 1 · (1,1)+1 · (1,0) which shows

that it is in the cone generated by the constraint-defining vectors.

Thus B is a roof.

Suppose on the other hand that B is a roof. Then, since ai , i ∈ B is a basis of

Rn , there exist yi ∈ R, i ∈ B with c =
∑

i∈B yi ·ai . If all yi > 0, i ∈ B , then it follows

that c ∈ cone{ai : i ∈ B} and we are done. Suppose therefore that there exists an

index j ∈B with y j < 0. We will derive a contradiction.

Consider the system of linear equations

a j x =−1, ai x = 0, i ∈ B \ { j }. (3.9)

This system (3.9) has a unique solution 0 6= v ∈Rn . Let x∗ be a feasible solution to

the roof-linear program. Clearly x∗+λ·v is also feasible for eachλ > 0 (Exercise 2).

But cT (x∗+λv) = cT x∗+λ·
∑n

i=1
y(i )ai v = cT x∗+λ·y j ·a j v . This increases with λ
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since y j < 0 and a j v < 0. This contradicts the fact B is a roof, since the roof-linear

program is unbounded. ⊓⊔

Definition 3.3. Let B be a roof of the linear program (3.1). The unique solution

x∗ of the system

aT
i x = b(i ), i ∈ B, (3.10)

is the vertex of the roof.

Similarly one can prove the following fact.

Proposition 3.1. Let B be a roof of the linear program (3.1). The vertex of a roof is

the unique optimal solution of the roof-linear program (3.2) if and only if c is a

strictly positive conic combination of the normal-vectors ai , i ∈ B.

3.2 The simplex algorithm

We now sketch one iteration of the simplex algorithm. Our task is to solve a linear

program (3.1) and we assume that we have a roof B to start with.

i) Compute the vertex x∗
B of the roof B .

ii) Find an index i ∈ {1, . . . ,m} \ B with ai x∗
B > b(i ). If there does not exist such

an index, then x∗
B is an optimal solution of the linear program (3.1).

iii) Determine an index j ∈B such that

a) B ′ = B ∪ {i } \ { j } is a roof, and

b) The vertex x∗
B ′ of B ′ is feasible for B .

If such an index does not exist, then the linear program (3.1) is infeasible.

The simplex algorithm iterates these steps until it has found an optimal solu-

tion, or asserts that the linear program (3.1) is infeasible. The big questions are

how to determine an index j such that iiia) and iiib) hold in step iii) and that the

algorithm is correct. Furthermore, we want to understand whether the simplex

method eventually terminates.

3.2.1 Termination and degeneracy

Definition 3.4 (Degenerate roof and linear program). A roof B of a linear pro-

gram (3.1) is degenerate if the optimum solution of the roof-linear program (3.2)

is not unique. A linear program is called degenerate, if it has degenerate roofs.

We now argue that the simplex algorithm terminates if the linear program is

non-degenerate.
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c

Fig. 3.4: A non-degenerate and a degenerate roof.

Theorem 3.2. If the linear program (3.1) is non-degenerate, then the simplex algo-

rithm terminates.

Proof. The important observation is that the simplex method makes progress

from iteration to iteration because of the non-degeneracy of the roofs. If B ′ is

the roof computed in step iii), then, since x∗
B ′ is contained in the feasible region

of the roof B , and since B is non-degenerate, we have cT x∗
B > cT x∗

B ′ . Since there

is only a finite number of roofs, the algorithm thus terminates. ⊓⊔

3.2.2 Implementing step iii)

The situation is as follows. We are having a roof B and its vertex x∗
B and an index

i ∈ {1, . . . ,m} with ai x∗
B > b(i ). We now want to bring i into the new roof and we

have to determine a j ∈ B that is supposed to leave the roof. The idea is very

similar now to the proof of Carathéodory’s theorem.

Consider the systems of equations

∑

k∈B

ak zk = cT (3.11)

∑

k∈B

ak yk = −ai (3.12)

with variables zk , k ∈ B and yk , k ∈ B .

Compute solutions z∗ ∈Rn of (3.11) and y∗ ∈Rn of (3.12). Now we have for any

λ ∈R ∑

k∈B

ak (z∗
k +λ y∗

k )+λai = cT (3.13)

Notice that z∗ > 0. To bring the index i into the roof, we want to increase λ = 0

until some other component of z∗ +λy∗, component j lets say, becomes zero.

So in virtue of finding an index which drops out of B , we have to determine the

largest λ∗ ∈ R>0 such that all components of x∗ +λ y∗ are nonnegative. This is

done as follows.
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Compute the index set J = {k ∈ B : y∗
k
< 0}. Those are the indices we have to

worry about, since only those components can become negative with increasing

λ. Still, how large can λ∗ be? We have to ensure that

z∗(k)+λ∗y∗(k) > 0 for all k ∈ J . (3.14)

In other words we have to ensure

λ∗
6−

z∗(k)

y∗(k)
for all k ∈ J . (3.15)

If J 6= ;, we pick

λ∗ = min
k∈J

−
z∗(k)

y∗(k)
. (3.16)

We choose an index j ∈ J for which this minimum is achieved. This index j is the

one which leaves the roof.

Lemma 3.3. The index set B ′ = B\{i }∪ { j } is a roof and the new vertex x∗
B ′ is con-

tained in the feasible set of the roof B.

Proof. By construction, c is a nonnegative linear combination of the vectors

ak , k ∈ B ′. Thus in order to conclude that B ′ is a roof, we need to show that the

ak , k ∈ B ′ are linearly independent. The component y∗
j

is nonzero. Since y∗ is a

solution of equation (3.12) it follows that a j is a linear combination of the normal-

vectors of B ′. Thus the ak , k ∈ B ′ are a basis of Rn and since |B ′| = n they are

linearly independent.

Let x∗
B be the vertex of B and let w ∈Rn be a solution to the system

a j w =−1, ak w = 0, k ∈ B \ { j }. (3.17)

The half-line l(x∗
B , w) = {x∗+λw |λ ∈R>0} is feasible for B . We have the equation

ai =−
∑

k∈B

y∗
k ak (3.18)

where y∗
j
< 0. Thus

ai w = −
∑

k∈B

y∗
k ak w (3.19)

= y∗
k (3.20)

< 0. (3.21)

Therefore the hal-fline l(x∗, w) enters at some point, x′ ∈ Rn say, the halfspace

ai x 6 b(i ). Clearly, this x′ is the vertex x∗
B ′ of B ′. ⊓⊔

Example 3.1. Consider the linear program max{x2 : x ∈ Rn , (−1,1)x 6 1, (2,1)x 6

1, (1,2)x 6 1}. We start with the roof B = {1,2} that consists of the first two in-

equalities see Figure 3.5.
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a1 = (−1, 1)

c = (0, 1)T

a2 = (2, 1)

Fig. 3.5: The initial roof of Example 3.1.

We compute first the vertex x∗
B which is the solution to the system

(
−1 1

2 1

)
x =

(
1

1

)
. (3.22)

Thus the vertex is the vector x∗
B =

(
0

1

)
.

Next we find that the halfspace (1,2)x 6 1 is not satisfied by x∗
B =

(
0

1

)
. We want to

bring this index into the new roof B ′.
Step 3: Now we compute the solution to the system

(
−1 2

1 1

)
z =

(
0

1

)
(3.23)

and find

z∗ =
(
2/3

1/3

)
.

Next we find a solution to the system

(
−1 2

1 1

)
y =−

(
1

2

)
(3.24)

and find

y∗ =
(
−1

−1

)
.
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The index set J = {1,2} is not empty. The minimum (3.16) is achieved at j = 2. So

the halfspace (2,1)x 6 1 will leave the roof and B ′ = {1,3}. This is also what we

immediately see by looking at Figure 3.6.

a1 = (−1, 1)T

a3 = (1, 2)T

a2 = (2, 1)

Fig. 3.6: The new roof from Example 3.1.

If J =;, we assert that the linear program is infeasible based on the following

result.

Proposition 3.2. The half-spaces ak x 6 b(k), k ∈ B and ai x 6 b(i ) define together

an infeasible system if and only if J =;.

Proof. If J 6= ;, then Lemma 3.3 implies that the half-spaces ak x 6 b(k), k ∈ B

and ai x 6 b(i ) define a feasible system.

The index set J is empty if and only if y∗ > 0. We now show that, if y∗ > 0,

then the half-spaces ak x 6 b(k), k ∈ B and ai x 6 b(i ) define an infeasible sys-

tem. Since
∑

k∈B y∗
k

ak + ai = 0 this assertion follows, once we have shown that∑
k∈B yk b(k)+b(i )< 0. But

∑

k∈B

yk b(k)+b(i ) =
∑

k∈B

y∗
k ak x∗

B +b(i )

<
∑

k∈B

y∗
k ak x∗

B +ai x∗
B

=
(

∑

k∈B

y∗
k ak +ai

)
x∗

B

= 0T x∗
B

= 0.
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3.2.3 The degenerate case

The termination argument for the non-degenerate case was that the value of the

new roof is strictly dropping and thus, that a roof can never be revisited. Since

there are only a finite number of roofs, this implies that the simplex algorithm

terminates.

In the degenerate case, roofs could be revisited. This phenomenon is called

cycling and you are asked to construct such an example in the exercises. What

can we do about it? The idea is to change the objective vector c ∈ Rn a little bit

and turn it into a vector cǫ such that the following conditions hold.

1) The linear program

max{cT
ε x : x ∈Rn , Ax 6 b} (3.25)

has a roof.

2) Each non-roof of the linear program (3.1) is a non-roof of the linear pro-

gram (3.25).

3) No roof of (3.25) is degenerate.

Suppose we start with an initial roof R at the beginning of the simplex algo-

rithm and let AR ∈Rn×n be the matrix whose rows are the vectors ai , i ∈R. Notice

that we implicitly assume that the set R is ordered. We adhere to the following

notation. For i ∈ R, the function fR (i ) denotes the position of i in the ordered set

R. For example, if R = {5,2,9}, then fR (5) = 1 and fR (9) = 3.

The system AR
T y = c has a solution y∗ > 0, where some components of y∗

are zero if and only if R is degenerate. This is undesirable and we wish that y∗ is

replaced by

y∗+




ǫ

ǫ2

...

ǫn




(3.26)

for some ǫ> 0. Later it will become clear why we add the vector (ǫ, . . . ,ǫn )T instead

of the vector (ǫ, . . . ,ǫ)T . Now the vector (3.26) becomes a solution if we perturb c

and consider the vector

cǫ = c + AR
T




ǫ

ǫ2

...

ǫn




(3.27)

instead, see figure 3.7. If ǫ > 0, then R is a non-degenerate roof of the linear

program (3.25). Thus condition 1) holds for any ǫ > 0. In the sequel, we make ǫ

smaller and smaller, such that also the conditions 2) and 3) will be satisfied.

Let us first deal with condition 2). Let B be a set of linear indices such that the

vectors ai , i ∈ B are a basis of Rn and suppose that B is not a roof. We have to

guarantee that B is not a roof of the perturbed linear program.
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Roof R
c

cε

cone(AT
R )

Fig. 3.7: An example of perturbation.

Let AB ∈ Rn×n be the sub-matrix of A that is defined by the rows of A indexed

by B . Since B is not a roof, the vector AB
−T c has a strictly negative component.

Suppose that this component is the i -th component (A−T
B c)(i ) < 0. By choosing

ǫ> 0 sufficiently small, we guarantee that

(A−T
B cǫ)(i )=




A−T
B c + A−T

B AT
R




ǫ

ǫ2

...

ǫn







(i )< 0. (3.28)

Thus condition 2) is satisfied by choosing ǫ> 0 sufficiently small.

For condition 3) we have to work only a little harder, and in fact, this is why

we add the vector (ǫ, . . . ,ǫn ) instead of (ǫ, . . . ,ǫ). Let B be a roof of (3.25) and let

AB ∈ Rn×n be again the above described sub-matrix. We now argue that, if ǫ is

sufficiently small, then A−T
B cǫ does not have any component equal to zero. We

are done then in showing that, for ǫ sufficiently small, the linear program (3.25) is

non-degenerate. Because any roof of (3.25) will then be non-degenerate.

So let us inspect the vector

A−T
B cǫ = A−T

B c + A−T
B · AR

T



ǫ
...

ǫn


 . (3.29)

Each component of (3.29) is a nonzero polynomial with variable ǫ. Nonzero, be-

cause AB and AR are non-singular matrices. It is well known, that a nonzero poly-

nomial of degree n has at most n roots. Thus, for ǫ> 0, sufficiently small, no com-

ponent of (3.29) will be zero.
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So the conditions 1), 2) and 3) hold for ǫ > 0 sufficiently small. Thus we can

modify a degenerate linear program into an equivalent non-degenerate linear

program and apply the simplex algorithm to it.

Theorem 3.3. Let

max{cT x : x ∈Rn , Ax 6 b} (3.30)

be a linear program. The simplex method terminates on the perturbed linear pro-

gram (3.25). It either returns a roof B of (3.30) and (3.25) whose vertex x∗
B is an

optimal solution of (3.30) or it asserts that (3.30) is infeasible.

Proof. The simplex method terminates on (3.25) since this linear program is non-

degenerate. If it asserts that (3.27) is infeasible, then it also follows that (3.30) is

infeasible, since the perturbation only changes the objective-function vector.

If it returns a roof B of (3.25), then this is also a roof of (3.30) by condition 2).

Furthermore, the vertex x∗
B is feasible for (3.30). It follows from weak duality (The-

orem 3.1) that x∗
B is an optimal solution of (3.30). ⊓⊔

3.2.4 The lexicographic pivot rule

We now show that we do not have to physically perform the perturbation which

sends c to cǫ, but instead describe a rule to choose the leaving index from the

possible candidates for which the minimum in (3.16) is attained. Rules for enter-

ing and exiting indices are called pivoting rules. Recallthat for i ∈ B , the function

fB (i ) denotes the position of i in the ordered set B . For example, if B = {5,2,9},

then fB (5) = 1 and fB (9) = 3. We need to define the lexicographic order. A vec-

tor u ∈ Rn is lexicographically smaller than a vector v ∈ Rn if u 6= v and the first

nonzero component of v −u is positive. We write u <lex v and if u <lex v of u = v

we write u 6lex v .

Algorithm 3.1. Simplex algorithm with lexicographic pivoting rule

Input: A ∈Rm×n , c ∈Rn , b ∈Rm R ⊆ {1, . . . ,n} initial roof

Output: B optimal roof or assert that LP is infeasible

B := R

while ∃i ∈ {1, . . . ,n} with ai x∗
B > bi

compute solution y∗ of

Σk∈B ak yk =−ai

Compute J = {k ∈ B : y∗
k
< 0}

if J =; assert LP not feasible

else

Choose unique j ∈ J for which the vector
(A−T

B
[c |AR

T ]) fB ( j )

−y∗
j

is lexicographically minimal

B := B\{ j }∪ {i }
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Change T to R
A close inspection reveals that this algorithm only mimics the simplex algorithm

on the perturbed problem (3.25) if ε is arbitrarily close to 0. This is because the

first component of the vector (A−T
B [c | AR

T ]) fB ( j ) is z∗
j

, where z∗ is the solution of

(3.11) and if one replaces c in (3.11) with cε, the corresponding z∗
j

is simply

(A−T
B [c | AR

T ]) fB ( j )




1

ε

ε2

...

εn




. (3.31)

3.3 Phase I, finding an initial roof

So far, we always started with an initial roof. Where do we get it from? This is

where Phase I of the simplex method is put to work. Above, we described Phase II.

First we prove a little lemma.

Lemma 3.4. If the linear program (3.1) is feasible and bounded, then it has an op-

timal roof. In particular, a feasible and bounded linear program has an optimal

solution.

Proof. We change the linear program (3.1) by adding the additional constraint

cT x 6 M + 1, where cT x 6 M is valid for all feasible solutions. We then have a

(degenerate) roof by choosing this inequality together with any subset of n − 1

constraints whose normal-vectors together with c form a basis ofRn . The simplex

algorithm will find an optimal roof. ⊓⊔

We now form an auxiliary linear program. Observe that the linear program

max{cT x : x ∈Rn , Ax 6 b} (3.32)

has a roof if and only if the linear program max{cT x : x ∈ Rn , Ax 6 0} has a roof.

The latter linear program is feasible since 0 is a feasible solution. Furthermore,

0 is an optimal solution of this linear program if and only if it has a roof. This is

what we check with the simplex algorithm on the auxiliary program

max{cT x : x ∈Rn , Ax 6 0, cT x 6 1} (3.33)

and we start with a (possibly) degenerate roof involving the inequality cT x 6 1

and n−1 of the constraints of Ax 6 0 whose normal-vectors, together with c form

a basis of Rn . The simplex algorithm terminates with an optimal roof. If the roof

has vertex 0, then we have found a roof of the original linear program (3.32) and

can start the simplex algorithm for it. If the roof of Phase I still contains the in-
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equality cT x 6 1, then the original linear program (3.32) does not have any roof.

This either means that the program is infeasible or unbounded.

3.4 The full column-rank assumption

There is one thing that we still have to deal with. The simplex algorithm is based

on the assumption that the columns of A are linearly independent. We now argue

that this assumption can be made without loss of generality.

Suppose that A can be written as [A1 | A2] with A1 ∈ Rm×k and A2 ∈ Rm×(n−k)

where the columns of A1 are linearly independent and each column of A2 is a

linear combinations of the columns of A1. We also write c =
(c1

c2

)
with c1 ∈Rk and

c2 ∈Rn−k and consider the linear program

max{cT
1 x1 : x1 ∈Rk , A1x1 6 b} (3.34)

Since each column of A2 is a linear combination of the columns of A1, there

exists a uniquely determined matrix U ∈Rk×(n−k) with A2 = A1 ·U .

Lemma 3.5. The linear program (3.34) is feasible if and only if the linear pro-

gram (3.1) is feasible.

Proof. Suppose that x∗ =
(x∗

1

x∗
2

)
is a feasible solution of (3.1), i.e., A1x∗

1 + A2x∗
2 6

b. But A1x∗
1 + A2x∗

2 = A1(x∗
1 +U · x∗

2 ) which yields a feasible solution of (3.34).

Likewise we see that any solution x∗
1 of A1x1 6 b1 can be extended to a feasible

solution
(

x∗
1

0

)
of (3.1). ⊓⊔

Lemma 3.6. If (3.34) is feasible and if cT
2 6= cT

1 ·U , then (3.1) is unbounded.

Proof. Since (3.34) is feasible, then also (3.1) is feasible. Let x∗ thus be a feasible

solution of (3.1). Then x∗ +µ
(−Uv

v

)
is feasible for any v ∈ Rn−k and µ ∈ R. Let v

satisfy cT
2 v 6= 0, then cT

1 (−U )v +cT
2 v 6= 0 which implies that (3.1) is unbounded.

⊓⊔

The idea is thus to re-order the columns of A such that the first k columns

are linearly independent and the last n −k columns are linear combinations of

the first k columns. This also yields a matrix U and we now solve the linear pro-

gram (3.34) with the simplex algorithm. If it is infeasible or unbounded, then so

is the linear program (3.1). Otherwise the simplex algorithm finds an optimal so-

lution x∗
1 of (3.34). If cT

2 = cT
1 ·U then this optimal solution

(
x∗

1
0

)
is also an opti-

mal solution of the linear program (3.34). This is because a feasible solution
( x∗

1

x∗
2

)

of (3.1) yields a feasible solution x∗
1 +U · x∗

2 of (3.34) with same objective value

cT
1 (x∗

1 +Ux∗
2 ) = cT

1 x∗
1 +cT

2 x∗
2 .
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Exercises

1) Show that the linear program (3.2) that is defined by a roof is always feasible.

2) Let B be a roof of the linear program (3.1) and consider the system of linear

equations

aT
j x =−1, aT

i x = 0, i ∈ B \ { j }

for an index j ∈ B . Let x∗ be a feasible solution to the roof-linear program.

Show that x∗+λ · v is also feasible for each λ> 0.

3) A polyhedron P = {x ∈ Rn : Ax 6 b} contains a line, if there exists a nonzero

v ∈Rn and an x∗ ∈ Rn such that for all λ ∈R, the point x∗+λ ·v ∈P . Show that

a nonempty polyhedron P contains a line if and only if A does not have full

column-rank.

4) Prove Proposition 3.1.

5) Let B be a roof with vertex x∗
B

. Show that the set of feasible points {x ∈
Rn : aT

i
x 6 b(i ), i ∈ B} of the roof is of the form x∗

B + cone{r1, . . . ,rn} for some

suitable vectors ri ∈Rn , i = 1, . . . ,n.

6) A cone C ⊆ Rn is pointed if it does not contain a line: There are no vectors

x ∈C , v ∈Rn such that x +λv ∈C for all λ ∈R.

Prove the following variant of Carathéodory’s theorem. Given some set X ⊆Rn ,

|X | > n such that cone(X ) is pointed. For any x ∈ cone(X ), there exist at least

two different subsets X1, X2 ⊆ X with |X1| = |X2| = n such that x ∈ cone(X1)∩
cone(X2).

7) Consider the problem

max z (3.35)

s.t. x +2y 6−3 (3.36)

−2x −3y 6 5 (3.37)

−2x − y +2z 6−1 (3.38)

3x + y 6 2 (3.39)

x 6 0 (3.40)

y 6 0 (3.41)

z 6 0. (3.42)

Assume that we perform the simplex method, and at some point have the roof

given by the rows (3.36), (3.41) and (3.42). Figure 3.8 shows the situation in the

2-dimensional subspace given by the hyperplane z = 0.

Show that the simplex algorithm might not terminate, by giving a cycling se-

quence of roofs that might be selected by the simplex method. Explain why

your sequence is valid (it is sufficient to give drawings here, you do not need

to compute the roof vertices explicitly).

Hint: Never let (3.42) leave the roof. Then it is sufficient to consider the subspace

as in the illustration.
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(3.36)

(3.37)

(3.38) (3.39) (3.40)

(3.41)

b

Fig. 3.8: The halfspaces defined by system (3.35) in the subspace {(x, y,0) : x, y ∈
R}.



Chapter 4

Strong Duality

Via the termination argument by perturbation, we we can now prove the duality

theorem. We are given a linear program

max{cT x : x ∈R
n , Ax 6 b}, (4.1)

called the primal and its dual

min{bT y : y ∈Rm , AT y = c, y > 0}. (4.2)

We again formulate the theorem of weak duality in this setting.

Theorem 4.1 (Weak duality). If x∗ and y∗ are primal and dual feasible respec-

tively, then cT x∗ 6 bT y∗.

Proof. We have cT x∗ = y∗T Ax∗ 6 y∗T b. ⊓⊔

The strong duality theorem tells us that if there exist feasible primal and dual

solutions, then there exist feasible primal and dual solutions which have the same

objective value. We can prove it with the simplex algorithm.

Theorem 4.2. If the primal linear program is feasible and bounded, then so is the

dual linear program. Furthermore in this case, both linear programs have an opti-

mal solution and the optimal values coincide.

Proof. Suppose first that A has full column rank. The simplex method finds a

roof B of (4.1) with x∗
B

being an optimal feasible solution. At the same time,

the roof is a conic combination of the normal-vectors in the roof. This means

that there exists a y∗ ∈ Rm
>0

with y∗(i ) = 0 for all i ∉ B such that y∗T A = c. But

bT y∗ =
∑

i∈B b(i )y∗(i ) =
∑

i∈B aT
i

x∗
B y∗(i ) = (

∑
i∈B y∗(i )ai )T x∗

B = cT x∗
B . Thus y∗ is

an optimal solution of the dual and the objective function values coincide.

Suppose now that A does not have full column rank and we can write A =
[A1 | A2] where A1 has full column rank and A2 = A1 ·U with some matrix U as in

Section 3.4. Again, as in Section 3.4 we define the linear program

35



36

max{cT
1 x1 : x1 ∈Rk , A1x1 6 b}. (4.3)

This linear program has an optimal solution x∗
1 and cT

2 = cT
1 ·U . By what we have

proved above, there exists a y∗ ∈Rm
>0

such that bT y∗ = cT
1 x∗

1 and y∗T A1 = cT
1 and

since cT
2 = cT

1 ·U and A2 = A1 ·U we have y∗T [A1 | A2] = [cT
1 | cT

2 ]. ⊓⊔

We can formulate dual linear programs also if the linear program is not in

inequaliy standard form. The procedure above can be described as follows. We

transform a linear program into a linear program in inequality standard form and

construct its dual linear program. This dual is then transformed into an equiva-

lent linear program again which is conveniently described.

Let us perform such operations on the dual linear program

min{bT y : y ∈R
m , AT y = c, y > 0}

of the primal max{cT x : x ∈Rn , Ax 6 b}. We transform it into inequality standard

form
max−bT y

AT y 6 c

−AT y 6 −c

−I y 6 0.

The dual linear program of this is

min cT x1 −cT x2

Ax1 − Ax2 − x3 = −b

x1, x2, x3 > 0

This is equivalent to

maxcT (x2 − x1)

A(x2 − x1)+ x3 = b

x1, x2, x3 > 0

which is equivalent to the primal linear program

maxcT x

Ax 6 b.

Loosely formulated one could say that “The dual of the dual is the primal”. But

this, of course, is not to be understood as a mathematical statement. In any case

we can state the following corollary.

Corollary 4.1. If the dual linear program has an optimal solution, then so does the

primal linear program and the objective values coincide.

We present another example of duality that we will need later on. Consider a

linear program
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max cT x

B x = b

C x 6 d .

(4.4)

After re-formulation, we obtain

max cT x

B x 6 b

−B x 6 −b

C x 6 d

We can form the dual of the latter problem and obtain

min bT y1 −bT y2 +dT y3

BT y1 −BT y2 +C T y3 = c

y1, y2, y3 > 0.

But this linear program is equivalent to the linear program

min bT y1 +dT y2

BT y1 +C T y2 = c

y2 > 0.

(4.5)

This justifies to say that (4.5) is the dual of (4.4).

4.1 Zero sum games

Consider the following two-player game defined by a matrix A ∈ Rm×n . The row-

player chooses a row i ∈ {1, . . . ,m} and the column-player chooses a column j ∈
{1, . . . ,n}. Both players make this choice at the same time. The payoff for the row-

player is then the matrix-element A(i , j ) whereas A(i , j ) also determines the loss

of the column player. In other words, the column player pays A(i , j ) to the row-

player. If this number is negative, then the row-player actually pays the absolute

value of A(i , j ) to the column player.

Consider for example the matrix

A =




5 1 3

3 2 4

−3 0 1


 . (4.6)

If the row-player chooses the second row and the column player chooses the

second-column, then the payoff for the row-player is 2, whereas this is the loss of

the column player.

The row-player is now interested in finding a strategy that maximizes his guar-

anteed payoff. For example, if he chooses row 1, then the best choice of the col-

umn player would be column 2, since the second element of the first row is the
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smallest element of that row. Thus the strategy that maximizes the minimal pos-

sible payoff would be to choose row 2. In other words

max
i

min
j

A(i , j )= 2.

What would be the column-player’s best hedging strategy? He wants to choose a

column such that the largest element in this column is minimized. This column

would be the second one. In other words

min
j

max
i

A(i , j )= 2.

Is it always the case that maxi min j A(i , j ) = min j maxi A(i , j )? The next example

shows that the answer is no: (
−1 1

1 −1

)
. (4.7)

Here we have maxi min j A(i , j ) =−1 and min j maxi A(i , j )= 1. This can be inter-

preted as follows. If the column player knows beforehand, the row to be chosen

by the row-player, then he would choose a column that results in a gain for him.

Similarly, if the row-player knows beforehand the column to be chosen by the

column-player, then he can guarantee him a gain of one.

The idea is thus not to stick with a pure strategy, but to play with a random or

mixed strategy. If the row-player chooses each of the two rows above uniformly at

random, then his expected payoff is zero. Similarly, if the column player chooses

each of his two columns with probability 1/2, then his expected payoff is zero as

well.

Definition 4.1 (Mixed strategy). Let A ∈ Rm×n define a two-player matrix game.

A mixed strategy for the row-player is a vector x ∈Rm
>0

with
∑m

i=1 x(i )= 1. A mixed

strategy for the column player is a vector y ∈Rn
>0

with
∑n

j=1
y(i )= 1.

Such mixed strategies define a probability distribution on the row and column

indices respectively. If the row-player and column-player choose a row and col-

umn according to this distribution respectively, then the expected payoff for the

row-player is

E [Payoff]= xT Ay. (4.8)

For the game defined by (4.7) and xT = (1/2,1/2) and yT = (1/2,1/2) the expected

payoff is 0.

Lemma 4.1. Let A ∈Rm×n , then

max
x∈X

min
y∈Y

xT Ay 6 min
y∈Y

max
x∈X

xT Ay,

where X and Y denote the set of mixed row and column-strategies respectively.

Proof. Let x′ and y ′ be some fixed mixed strategies of the row and column-player

respectively. Clearly
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min
y

x′T Ay 6 x′T Ay ′
6 max

x
xT Ay ′,

which implies the assertion. ⊓⊔

The next theorem is one of the best-known results in the field of game theory.

It states that there are mixed strategies x′ and y ′ from above such that equality

holds. It is proved with the theorem of strong duality.

Theorem 4.3 (Minimax-Theorem).

max
x∈X

min
y∈Y

xT Ay = min
y∈Y

max
x∈X

xT Ay,

where X and Y denote the set of mixed row and column-strategies respectively.

Proof. Let us inspect the value maxx∈X miny∈Y xT Ay . This can be understood as

to maximize the function

f (x) = min{(xT A) · y :
n∑

j=1

y j = 1, y > 0}.

Thus the value f (x) is the optimal solution of a bounded and feasible linear pro-

gram. The dual of this linear program (for fixed x) has only one variable x0 and

reads

max{x0 : x0 ∈R, 1x0 6 AT x}.

But this shows that the maximum value of f (x), where x ranges over all mixed

row-strategies is the linear program

max x0

1x0 − AT x 6 0∑m
i=1

xi = 1

x > 0.

(4.9)

Let us now inspect the value miny∈Y maxx∈X xT Ay . Again, by applying duality

this can be computed with the linear program

min y0

1y0 − Ay > 0∑n
j=1

y j = 1

y > 0.

(4.10)

It follows from the duality of (4.5) and (4.4) that the linear programs (4.9) and

(4.10) are duals of each other. This proves the Minimax-Theorem. ⊓⊔
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4.2 The classical simplex algorithm

I have chosen to explain the simplex algorithm as a method to obtain primal fea-

sibility of the linear program

max{cT x : x ∈Rn , Ax 6 b} (4.11)

via improving the roofs. By duality, our description can be re-interpreted as solv-

ing the linear program

min{bT y : y ∈Rm , AT y = c, y > 0} (4.12)

where AT ∈ Rn×m has now full row-rank. Recall that a roof is set of row-indices

B of A such that the corresponding rows are a basis of Rn and c is a conic com-

bination of these rows. The translation of a roof to the classical setting (4.12) is

a set of n linearly independent columns such that c is a conic combination of

these columns. The corresponding basic feasible solution is the vector x∗, where

x∗
B
= AT

B

−1
c and x∗

B
= 0. The simplex method can now be interpreted as a method

that improves the basic-feasible solution by letting a new index enter the basis

while another index leaves the basis. More on this classical simplex versus the

roof-interpretation can be found in exercise 4

4.3 A proof of the duality theorem via Farkas’ lemma

Remember Farkas’ lemma (Theorem 2.9) which states that Ax = b, x > 0 has a

solution if and only if for all λ ∈ Rm with λT A > 0 one also has λT b > 0. In fact

the duality theorem follows from this. First, we derive another variant of Farkas’

lemma.

Theorem 4.4 (Second variant of Farkas’ lemma). Let A ∈ Rm×n and b ∈ Rm . The

system Ax 6 b has a solution if and only if for all λ > 0 with λT A = 0 one has

λT b > 0.

Proof. Necessity is clear: If x∗ is a feasible solution, λ > 0 and λT A = 0, then

λT Ax∗ 6λT b implies 0 6λT b.

On the other hand, Ax 6 b has a solution if and only if

Ax+− Ax−+ z = b, x+, x−, z > 0 (4.13)

has a solution. So, if Ax 6 b does not have a solution, then also (4.13) does not

have a solution. By Farkas’ lemma, there exists a λ ∈ Rm with λT [A | −A | Im ] > 0

and λT b < 0. For this λ one also has λT A = 0 and λ> 0. ⊓⊔

We are now ready to prove the theorem of strong duality via the second variant

of Farkas’ lemma.
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Proof (of strong duality via Farkas’ lemma). Let δ be the objective function value

of an optimal solution of the dual max{bT y : y ∈ Rm, AT y 6 c}. For all ε > 0, the

system AT y 6 c,−bT y 6 −δ− ε does not have a solution. By the second variant

of Farkas’ lemma, there exists a λ > 0 with λT
(−bT

AT

)
= 0 and λT

(−δ−ε
c

)
< 0. Write

λ as λ =
(λ1

λ′
)

with λ′ ∈ Rn . If λ1 were zero, we could apply the second variant of

Farkas’ lemma to the system AT y 6 c and λ′, since we know that AT y 6 c has

a solution. Therefore, we can conclude λ1 > 0. Furthermore, by scaling, we can

assume λ1 = 1. One has λ′T AT = bT and λ′T c < δ+ε. The first equation implies

that λ′ is a feasible solution of the primal (recall λ′ > 0). The second equation

shows that the objective function value of λ′ is less than δ+ ε. This means that

the optimum value of the primal linear program is also δ, since the primal has an

optimal solution and ε can be chosen arbitrarily small. ⊓⊔

Exercises

1. Formulate the dual linear program of

max2x1 +3x2 −7x3

x1 +3x2 +2x3 = 4

x1 + x2 6 8

x1 − x3 > −15

x1, x2 > 0

2. Consider the following linear program

max x1 + x2

2x1 + x2 6 6

x1 +2x2 6 8

3x1 +4x2 6 22

x1 +5x2 6 23

Show that (4/3,10/3) is an optimal solution by providing a suitable feasible

dual solution.

3. Show that for A ∈Rm×n , one has

max
i

min
j

A(i , j ) 6 min
j

max
i

A(i , j ).

4. In the lecture you have seen the simplex algorithm for linear programs of the

form

max{cT x : Ax 6 b}.

We will now derive a simplex algorithm for linear programs of the form
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min{cT x : Ax = b, x > 0} (4.14)

with c ∈ Rn and A ∈ Rm×n , b ∈ Rm . Throughout the exercise we assume that

(4.14) is feasible and bounded, and that A has full row rank.

For i ∈ {1, . . . ,n} we define Ai as the i -th column of A. Moreover, for some sub-

set B ⊆ {1, . . . ,n}, AB is the matrix A restricted to the columns corresponding

to elements of B .

A subset B ⊆ {1, . . . ,n} with |B | = m such that AB has full rank is called a basis.

The vector x ∈ Rn defined as xi := 0 for all i ∉ B and xB := A−1
B b is called the

basic solution associated to B . Note that x is a feasible solution to (4.14) if and

only if x > 0.

Given a basis B and let j ∈ {1, . . . ,n}, j ∉ B . The vector d ∈Rn defined as d j = 1,

di = 0 for all i ∉B and dB :=−A−1
B A j is called the j -th basic direction.

Assume that the solution x associated to B is feasible. Moreover assume that

xB > 0.

a. Show that there is a θ > 0 such that x +θd is a feasible solution. Give a

formula to compute the largest θ such that x +θd is feasible.

b. Let θ∗ be maximal. Show that there is a basis B ′ such that x +θ∗d is the

basic solution associated to B ′.
c. Let x′ = x+θd . Show that the objective value of x′ changes by θ

(
c j −cT

B
A−1

B
A j

)
.

d. Consider a basis B with basic feasible solution x. Show that if c−cT
B A−1

B A >

0, then x is an optimal solution to (4.14).

This suggests the following algorithm: Start with some basis B whose associ-

ated basic solution is feasible. Compute c̄ := c −cT
B A−1

B A. If c̄ > 0, we have an

optimal solution (see 4d). Otherwise, let j be such that c̄ j < 0. Part 4b and 4c

show that if we change the basis, we find a feasible solution with an improved

objective value. We repeat these steps until the vector c̄ is nonnegative.

This is the way the simplex algorithm usually is introduced in the literature.

This algorithm is exactly the same as the one you learned in the lecture. To

get an intuition why this is true, show the following:

a. Given a basis B , show that its associated basic solution is feasible if and

only if B is a roof of the LP dual to (4.14).

b. Consider a basis B and its associated feasible basic solution x. As seen

before, B is also a roof in the dual LP. Let y be the vertex of that roof.

Show that for any j ∈ {1, . . . ,n} we have c̄ j < 0 if and only if AT
j

y > c j .



Chapter 5

Integer Programming

An integer program is a problem of the form

maxcT x

Ax 6 b

x ∈Zn ,

where A ∈Rm×n and b ∈Rm .

c

P

F

vb

u b

Fig. 5.1: This picture illustrates a polyhedron P an objective function vector c and

optimal points u, v of the integer program and the relaxation respectively.

The difference to linear programming is the integrality constraint x ∈Zn . This

powerful constraint allows to model discrete choices but, at the same time, makes

an integer program much more difficult to solve than a linear program. In fact one

can show that integer programming is NP-hard, which means that it is in theory

computationally intractable. However, integer programming has nowadays be-

come an important tool to solve difficult industrial optimization problems effi-

ciently. In this chapter, we characterize some integer programs which are easy to

43



44

solve, since the linear programming relaxation max{cT x : Ax 6 b} yields already

an optimal integer solution. The following observation is crucial.

Theorem 5.1. Suppose that x∗ is an integral optimum solution of the linear pro-

gramming relaxation max{cT x : Ax 6 b} is integral, i.e., x∗ ∈Zn , then x∗ is also an

optimal solution to the integer programming problem max{cT x : Ax 6 b, x ∈Zn}

Before we present an example for the power of integer programming we recall

the definition of an undirected graph.

Definition 5.1 (Undirected graph, matching). An undirected graph is a tuple G =
(V ,E ) where V is a finite set, called the vertices and E ⊆

(V
2

)
is the set of edges of G.

A matching of G is a subset M ⊆ E such that for all e1 6= e2 ∈ M one has e1∩e2 =;.

s

u

v

t

Fig. 5.2: A graph with 4 nodes V = {s,u, v, t } and 5 edges E =
{{s,u}, {s, v}, {u, v}, {u, t }, {v, t }}. The red edges are a matching of the graph

We are interested in the solution of the following problem, which is called

maximum weight matching problem. Given a graph G = (V ,E ) and a weight func-

tion w : E →R, compute a matching with maximum weight w(M) =
∑

e∈M w(e).

For a vertex v ∈ V , the set δ(v) = {e ∈ E : v ∈ e} denotes the incident edges to

v . The maximum weight matching problem can now be modeled as an integer

program as follows.

max
∑

e∈E w(e)x(e)

v ∈V :
∑

e∈δ(v) x(e) 6 1

e ∈ E : x(e) > 0

x ∈Z|E |.

(5.1)

Clearly, if an integer vector x ∈Zn satisfies the constraints above, then this vector

is the incidence vector of a matching of G. In other words, the integral solutions

to the constraints above are the vectors {χM : M matching of G}, where χM (e) = 1

if e ∈ M and χM (e) = 0 otherwise.
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5.1 Integral Polyhedra

In this section we derive sufficient conditions on an integer program to be solved

easily by an algorithm for linear programming. A central notion is the one of an

integral polyhedron.

Definition 5.2 (Valid inequality, face, vertex). Let P = {x ∈Rn : Ax 6 b} be a poly-

hedron. An inequality cT x 6 β is valid for P if cT x∗ 6 β for all x∗ ∈ P . A face of P

is a set of the form P ∩ {x ∈ Rn : cT x = β} for a valid inequality cT x 6 β of P . If a

face consist of one point, then it is called a vertex of P .

b

Fig. 5.3: A polyhedron with a valid inequality defining a vertex.

Definition 5.3. A rational polyhedron is called integral if each nonempty face of

P contains an integer vector.

Lemma 5.1. Let P = {x ∈ Rn : Ax 6 b} be an integral polyhedron with A ∈ Rm×n

full-column rank. If the linear program

max{cT x : x ∈R
n , Ax 6 b} (5.2)

is feasible and bounded, then the simplex method computes an optimal integral

solution to the linear program.

Proof. Recall that the simplex method finds an optimal roof B ⊆ {1, . . . ,m} of (5.2)

and the vertex of the roof x∗
B is an optimal solution to the linear program (5.2). We

have to show that x∗
B

is integral. This will follow from the fact that {x∗
B

} is a face of

P .

Proposition 3.1 implies that x∗
B is the unique optimum solution of the linear

program max{c̃T x : x ∈ Rn , aT
i

x 6 b(i ), i ∈ B}, where c̃ =
∑

i∈B ai . Consequently

x∗
B is the unique solution of the linear program

max{c̃T x : x ∈ P }

which implies that {x∗
B } is a face defined by the valid inequality c̃T x 6 c̃T x∗

B . ⊓⊔
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Lemma 5.2. Let A ∈Zn×n be an integral and invertible matrix. One has A−1b ∈Zn

for each b ∈Zn if and only if det(A) =±1.

Proof. Recall Cramer’s rule which says A−1 = 1/det(A)Ã, where Ã is the adjoint

matrix of A. Clearly Ã is integral. If det(A)=±1, then A−1 is an integer matrix.

If A−1b is integral for each b ∈ Zn , then A−1 is an integer matrix. We have 1 =
det(A · A−1) = det(A) ·det(A−1). Since A and A−1 are integral it follows that det(A)

and det(A−1) are integers. The only divisors of one in the integers are ±1. ⊓⊔
An integral matrix A ∈ {0,±1}m×n is called totally unimodular if each of its

square sub-matrices has determinant 0,±1.

Theorem 5.2 (Hoffman-Kruskal Theorem). Let A ∈ Zm×n be an integral matrix.

The polyhedron P = {x ∈ Rn | Ax 6 b, x > 0} is integral for each integral b ∈ Zm if

and only if A is totally unimodular.

Proof. Let A ∈Zm×n be totally unimodular and b ∈Zm. Let x∗ be vertex of P and

suppose that this vertex is defined by the valid inequality cT x 6 δ. Notice that

the matrix
(

A
−I

)
has full column-rank. If one applies the simplex algorithm to the

problem

max{cT x : x ∈Rn ,
(

A
−I

)
x 6

(
b
0

)
},

it finds an optimal roof B ⊆ {1, . . . ,m + n} with x∗
B = x∗. If AB denotes the ma-

trix whose rows are those rows of
(

A
−I

)
indexed by B and if bB denotes the vector

whose components are those of
(

b
0

)
indexed by B , then x∗ = A−1

B bB . We are done,

once we conclude that det(AB ) =±1, since then A−1
B is an integer matrix and since

bB is an integer vector x∗ = A−1
B b is integral as well. We can permute the columns

of AB in such a way that one obtains a matrix of the form

(
A Ã

0 −Ik

)

where A is a (n −k)× (n −k) sub-matrix of A and Ik is the k ×k identity matrix.

Here k = |B ∩ {m +1, . . . ,m +n}. Clearly 0 6= det(AB ) =±det(A) =±1.

For the converse, suppose that A is not totally unimodular. Then there exists

an index set B ⊆ {1, . . . ,m +n} with |B | = n such that the matrix AB defined as

above satisfies |det(AB )| > 2. By Lemma 5.2 there exists choices for the compo-

nents of bB making A−1
B bB non-integral. In fact, if we split B into components

L ⊆ B corresponding to lines of A and C corresponding to lines of −I we can

choose those components of bB corresponding to L being equal to zero. Now let

v be the vector with v(i ) = 1 for all i ∈ L and v(i ) = 0 for all i ∈ {1, . . . ,n}\L. By

choosing γ ∈N large enough the point x∗
B = A−1

B (bB +γAB v) is non-integral and

positive. The set B is a non-degenerate roof of the linear program

max{cT x : x ∈Rn ,
(

A
−I

)
x 6

(
b
0

)
},

where c =
∑

i∈B ai and ai denotes the i -th row of
(

A
−I

)
. If we define for j ∈

{1, . . . ,m} \ B , b( j )= ⌈aT
j

x∗
B ⌉, then x∗

B is feasible and thus a vertex of P that is non-

integral. ⊓⊔
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5.2 Applications of total unimodularity

5.2.1 Bipartite matching

A graph is bipartite, if V has a partition into sets A and B such that each edge uv

satisfies u ∈ A and v ∈ B . Recall that δ(v) is the set of edges incident to the vertex

v ∈V , that is δ(v) = {e ∈ E | v ∈ e}.

The node-edge incidence matrix of a graph G = (V ,E ) is the A ∈ {0,1}|V |×|E | with

A(v,e)=
{

1, if v ∈ e,

0 otherwise.

The integer program (5.1) can thus be formulated as

max{wT x : Ax 6 1, x > 0, x ∈ZE }. (5.3)

The next lemma implies that the simplex algorithm can be used to compute a

maximum-weight matching of a bipartite graph.

Lemma 5.3. If G is bipartite, the node-edge incidence matrix of G is totally uni-

modular.

Proof (Proof of Lemma 5.3). Let G = (V ,E ) be a bipartite graph with bi-partition

V =V1 ∪V2.

Let A′ be a k ×k sub-matrix of A. We are interested in the determinant of A.

Clearly, we can assume that A does not contain a column which contains no 1

or only one 1, since we simply consider the sub-matrix A′′ of A′, which emerges

from developing the determinant of A′ along this column. The determinant of A′

would be zero or ±1 ·det(A′′).

Thus we can assume that each column contains exactly two ones. Now we can

order the rows of A′ such that the first rows correspond to vertices of V1 and then

follow the rows corresponding to vertices in V2. This re-ordering only affects the

sign of the determinant. By summing up the rows of A′ in V1 we obtain exactly

the same row-vector as we get by summing up the rows of A′ corresponding to

V2. This shows that det(A′) = 0. ⊓⊔

5.2.2 Bipartite vertex cover

A vertex cover of a graph G = (V ,E ) is a subset C ⊆V of the nodes such e∩C 6= ; for

each e ∈ E . Let us formulate an integer program for the minimum-weight vertex-

cover problem. Here, one is given a graph G = (V ,E ) and weights w ∈RV . The goal

is to find a vertex cover C with minimum weight w(C ) =
∑

v∈V w(v).
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min
∑

v∈V w(v)x(v)

uv ∈E : x(u)+ x(v) > 1

v ∈V : x(v) > 0

x ∈ZV .

(5.4)

Clearly, this is the integer program

min{wT x : AT x > 1, x > 0, x ∈ZV }, (5.5)

where A is the node-edge incidence matrix of G. A matrix A is totally unimodular

if and only of AT is totally unimodular. Thus the simplex algorithm can be used

to compute a minimum-weight vertex-cover of a bipartite graph. Furthermore

we have the following theorem.

Theorem 5.3 (König’s theorem). In any bipartite graph, the number of edges in a

maximum matching equals the number of vertices in a minimum vertex cover.

Proof. Let A be the node-edge incidence-matrix of the bipartite graph G = (V ,E ).

The linear programs max{1T x : Ax 6 1, x > 0} and min{1T x : Ax > 1, x > 0} are

duals of each other. Since A is totally unimodular, the value of the linear pro-

grams are the cardinality of a maximum matching and minimum vertex-cover

respectively. Thus the theorem follows from strong duality. ⊓⊔

5.2.3 Flows

Let G = (V , A) be a directed graph. The node-edge incidence matrix of a directed

graph is a matrix A ∈ {0,±1}V ×E with

A(v, a)=





1 if v is the starting-node of a,

−1 if v is the end-node of a,

0 otherwise.

(5.6)

A feasible flow f of G with capacities u and in-out-flow b is then a solution

f ∈RA to the system A f = b, 0 6 f 6 u.

Lemma 5.4. The node-edge incidence matrix A of a directed graph is totally uni-

modular.

Proof. Let A′ be a k ×k sub-matrix of A. Again, we can assume that in each col-

umn we have exactly one 1 and one −1. Otherwise, we develop the determinant

along a column which does not have this property. But then, the A′ is singular,

since adding up all rows of A′ yields the 0-vector.

A consequence is that, if the b-vector and the capacities u are integral and an

optimal flow exists, then there exists an integer optimal flow.
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5.2.4 Doubly stochastic matrices

A matrix A ∈Rn×n is doubly stochastic if it satisfies the following linear constraints

∑n
i=1 A(i , j ) = 1, ∀ j = 1, . . . ,n∑n
j=1

A(i , j ) = 1, ∀i = 1, . . . ,n

A(i , j ) > 0, ∀1 6 i , j 6 n.

(5.7)

A permutation matrix is a matrix which contains exactly one 1 per row and

column, where the other entries are all 0.

Theorem 5.4. A matrix A ∈ Rn×n is doubly stochastic if and only if A is a convex

combination of permutation matrices.

Proof. Since a permutation matrix satisfies the constraints (5.7), then so does a

convex combination of these constraints.

On the other hand it is enough to show that each vertex of the polytope defined

by the system (5.7) is integral and thus a permutation matrix. However, the ma-

trix defining the system (5.7) is the node-edge incidence matrix of the complete

bipartite graph having 2n vertices. Since such a matrix is totally unimodular, the

theorem follows.

5.3 The matching polytope

We now come to a deeper theorem concerning the convex hull of matchings. We

mentioned several times in the course that the maximum weight matching prob-

lem can be solved in polynomial time. We are now going to show a theorem of

Edmonds [2] which provides a complete description of the matching polytope

and present the proof by Lovász [11].

Before we proceed let us inspect the symmetric difference M1∆M2 of two

matchings of a graph G. If a vertex is adjacent to two edges of M1 ∪M2, then one

of the two edges belongs to M1 and one belongs to M2. Also, a vertex can never

be adjacent to three edges in M1∪M2. Edges which are both in M1 and M2 do not

appear in the symmetric difference. We therefore have the following lemma.

Lemma 5.5. The symmetric difference M1∆M2 of two matchings decomposes into

node-disjoint paths and cycles, where the edges on these paths and cycles alternate

between M1 and M2.

The Matching polytope P (G) of an undirected graph G = (V ,E ) is the convex

hull of incidence vectors χM of matchings M of G.

The incidence vectors of matchings are exactly the 0/1-vectors that satisfy the

following system of equations.
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1
2

1
2

1
2

Fig. 5.4: Triangle

∑
e∈δ(v) x(e) 6 1 ∀v ∈V

x(e) > 0 ∀e ∈E .
(5.8)

However the triangle (Figure 5.4) shows that the corresponding polytope is not

integral. The objective function max 1T x has value 1.5. However, one can show

that a maximum weight matching of an undirected graph can be computed in

polynomial time which is a result of Edmonds [3].

The following (Figure 5.5) is an illustration of an Edmonds inequality. Sup-

pose that U is an odd subset of the nodes V of G and let M be a matching of

G. The number of edges of M with both endpoints in U is bounded from above

by ⌊|U |/2⌋.
Thus the following inequality is valid for the integer points of the polyhedron

defined by (5.8).

∑

e∈E (U )

x(e) 6 ⌊|U |/2⌋, for each U ⊆V , |U | ≡ 1 (mod 2). (5.9)

Fig. 5.5: Edmonds inequality.
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The goal of this lecture is a proof of the following theorem.

Theorem 5.5 (Edmonds 65). The matching polytope is described by the following

inequalities:

i) x(e) > 0 for each e ∈E,

ii)
∑

e∈δ(v) x(e) 6 1 for each v ∈V ,

iii)
∑

e∈E (U ) x(e) 6 ⌊|U |/2⌋ for each U ⊆V

Lemma 5.6. Let G = (V ,E ) be connected and let w : E −→R>0 be a weight-function.

Denote the set of maximum weight matchings of G w.r.t. w by M (w). Then one of

the following statements must be true:

i) ∃v ∈V such that δ(v)∩M 6= ; for each M ∈M (w)

ii) |M | = ⌊|V |/2⌋ for each M ∈M (w) and |V | is odd.

Proof. Suppose both i ) and i i ) do not hold. Then there exists M ∈M (w) leaving

two exposed nodes u and v . Choose M such that the minimum distance between

two exposed nodes u, v is minimized.

Now let t be on shortest path from u to v . The vertex t cannot be exposed.

u vt

Fig. 5.6: Shortest path between u and v .

Let M ′ ∈ M (w) leave t exposed. Both u and v are covered by M ′ because the

distance to u or v from t is smaller than the distance of u to v .

Consider the symmetric difference M△M ′ which decomposes into node dis-

joint paths and cycles. The nodes u, v and t have degree one in M△M ′. Let P be

a path with endpoint t in M△M ′

t

Fig. 5.7: Swapping colors.

If we swap colors on P , see Figure 5.7, we obtain matchings M̃ and M̃ ′ with

w(M)+w(M ′) = w(M̃)+w(M̃ ′) and thus M̃ ∈M (w).

The node t is exposed in M̃ and u or v is exposed in M̃ . This is a contradiction

to u and v being shortest distance exposed vertices

Proof (Proof of Theorem 5.5).

Let wT x 6β be a facet of P (G), we need to show that this facet it is of the form

i) x(e) > 0 for some e ∈ E
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ii)
∑

e∈δ(v) x(e) 6 1 for some v ∈V

iii)
∑

e∈E (U ) x(e) 6 ⌊|U |/2⌋ for some U ∈Podd

To do so, we use the following method: One of the inequalities i), ii), iii) is sat-

isfied with equality by each χM , M ∈ M (w). This establishes the claim since the

matching polytope is full-dimensional and a facet is a maximal face.

If w(e) < 0 for some e ∈ E , then each M ∈M (w) satisfies e ∉ M and thus satis-

fies x(e) > 0 with equality.

Thus we can assume that w > 0.

Let G∗ = (V ∗,E∗) be the graph induced by edges e with w(e) > 0. Each M ∈
M (w) contains maximum weight matching M∗ = M ∩E∗ of G∗ w.r.t. w∗.

If G∗ is not connected , suppose that V ∗ = V1 ∪V2, where V1 ∩V2 = ; and

V1,V2 6= ; and there is no edge connecting V1 and V2, then wT x 6β can be writ-

ten as the sum of wT
1 x 6 β1 and wT

2 x 6 β2, where βi is the maximum weight of

a matching in Vi w.r.t. wi , i = 1,2, see Figure 5.8. This would also contradict the

fact that wT x 6 β is a facet, since it would follow from the previous inequalities

and thus would be a redundant inequality.

w T
1 x 6β1 w T

2 6β2

Fig. 5.8: G∗ is connected.

Now we can use Lemma 5.6 for G∗.

i) ∃v such that δ(v)∩ M = ; for each M ∈ M (w). This means that each M in

M (w) satisfies ∑

e∈δ(v)

x(e) 6 1 with equality

ii) |M∩E∗| = ⌊|V ∗|/2⌋ for each M ∈M (w) and |V ∗| is odd. This means that each

M in M (w) satisfies

∑

e∈E (V ∗)

x(e) 6 ⌊|V ∗|/2⌋ with equality

Exercises

1. Let M ∈ Zn×m be totally unimodular. Prove that the following matrices are

totally unimodular as well:

i) MT
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ii) (M In )

iii) (M −M)

iv) M · (In −2e j eT
j

) for some j

In is the n×n identity matrix, and e j is the vector having a 1 in the j th com-

ponent, and 0 in the other components.

2. A family F of subsets of a finite groundset E is laminar, if for all C ,D ∈ F ,

one of the following holds:

(i ) C ∩D =;, (i i ) C ⊆ D, (i i i ) D ⊆C .

Let F1 and F2 be two laminar families of the same groundset E and consider

its union F1 ∪F2. Define the |F1 ∪F2| × |E | adjacency matrix A as follows:

For F ∈F1 ∪F2 and e ∈ E we have AF,e = 1, if e ∈ F and AF,e = 0 otherwise.

Show that A is totally unimodular.

3. Consider the following scheduling problem: Given n tasks with periods p1 , . . . , pn ∈
N, we want to find offsets xi ∈N0, such that every task i can be executed pe-

riodically at times xi +pi ·k for all k ∈ N0. In other words, for all pairs i , j of

tasks we require xi +k ·pi 6= x j + l ·p j for all k, l ∈N0.

Formulate the problem of finding these offsets as an integer program (with

zero objective function).

4. Let P = {x ∈Rn : Ax 6 b} be a polyhedron. Show that the following are equiv-

alent for a feasible x∗:

i) x∗ is a vertex of P .

ii) There exists a set B ⊆ {1, . . . ,m} such that |B | = n, AB is invertible and

AB x∗ = bB . Here the matrix AB and the vector bB consists of the rows of

A indexed by B and the components of b indexed by B respectively.

iii) For every feasible x1, x2 6= x∗ ∈P one has x∗ ∉ conv{x1, x2}.

5. Show the following: A polyhedron P ⊆Rn with vertices is integral, if and only

if each vertex is integral.

6. Consider the polyhedron P = {x ∈ R3 : x1 +2 x2 +4 x3 6 4, x > 0}. Show that

this polyhedron is integral.

7. Which of these matrices is totally unimodular? Justify your answer.




1 1 0 1 0

0 0 1 0 1

0 1 1 1 0

1 1 0 0 0

0 1 0 0 1







1 1 1 1 1

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0




8. Consider the complete graph Gn with 3 vertices, i.e., G = ({1,2,3},
(3

2

)
). Is the

polyhedron of the linear programming relaxation of the vertex-cover integer

program integral?
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Chapter 6

Paths, cycles and flows in graphs

Suppose you want to find a shortest path from a given starting point to a given

destination. This is a common scenario in driver assistance systems (GPS) and

can be modeled as one of the most basic combinatorial optimization problems,

the shortest path problem. In this chapter, we introduce directed graphs, short-

est paths and flows in networks. We focus in particular on the maximum-flow

problem, which is a linear program that we solve with direct methods, versus the

simplex method, and analyze the running time of these direct methods.

6.1 Growth of functions

In the analysis of algorithms, it is more appropriate to investigate the asymptotic

running time of an algorithm depending on the input and not the precise running

time itself. We review the O,Ω and Θ-notation.

Definition 6.1 (O,Ω,Θ-notation).

Let T, f : N→N be two functions

• T (n) is in O( f (n)), if there exist positive constants no ∈ N and c ∈ R>0 with

T (n) 6 c · f (n) for all n > n0.

• T (n) is in Ω( f (n)), if there exist constants no ∈ N and c ∈ R>0 with T (n) >

c · f (n) for all n > n0.

• T (n) is in Θ( f (n)) if T (n) is both in O( f (n)) and in Ω( f (n)).

Example 6.1. The function T (n) = 2n2 +3n+1 is in O(n2), since for all x > 1 one

has 2n2 +3n+1 6 6n2. Here n0 = 1 and c = 6.

Similarly T (n) = Ω(n2), since for each n > 1 one has 2n2 +3n +1 > n2. Thus

T (n) is in Θ(n2).

55
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6.2 Graphs

Definition 6.2. A directed graph is a tuple G = (V , A), where V is a finite set, called

the vertices of G and A ⊆ (V ×V ) is the set of arcs of G. We denote an arc by its two

defining nodes (u, v) ∈ A. The nodes u and v are called tail and head of the arc

(u, v) respectively.

u v

z

x y

Fig. 6.1: Example of a directed graph with 5 nodes and 7 arcs.

Definition 6.3 (Walk, path, distance). A walk is a sequence of the form

P = (v0, a1, v1, . . . , vm−1, am , vm),

where ai = (vi−1, vi ) ∈ A for i = 1, . . . ,m. If the nodes v0, . . . , vm are all different,

then P is a path. The length of P is m. The distance of two nodes u and v is the

length of a shortest path from u to v . It is denoted by d(u, v).

Example 6.2. The following is a walk and a path of the graph in Figure 6.1.

u, (u, z), z, (z, x), x, (x,u),u, (u, z), z, (z, y), y

u, (u, z), z, (z, y), y

6.3 Representing graphs and computing the distance of two

nodes

We represent a graph with n vertices v1, . . . , vn as an array A[v1, . . . , vn], where the

entry A[vi ] is a pointer to a linked list of vertices, the neighbors of vi . N (vi ) = {u ∈
V : (vi ,u) ∈ A}.
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u v x y z

z u u x x

y y

Fig. 6.2: Adjacency list representation of the graph in Figure 6.1.

6.3.1 Graphs in SAGE

In SAGE [1], directed graphs have several representations. We use in the following

the dictionary of dictionaries representation. In this representation, the nodes are

integers. The graph depicted in figure 6.1 could be represented in SAGE as follows.

G = DiGraph(’u’:[’z’], ’v’:[’u’,’y’], ’z’:[’x’,’y’], ’x’:[’u’],

’y’:[’x’]);

We next describe a very basic algorithm that computes the distances from a

designated node s ∈ V to all other nodes. The distance from s to v is denoted by

d(s, v). It is the smallest integer i such that there exists a path from s to v of length

i . If there does not exist such a path, then s and v are not connected and we define

d(s, v) =∞. For i ∈N0, Vi ⊆V denotes the set of vertices that have distance i from

s. Notice that V0 = {s}.

Lemma 6.1. For i = 1, . . . ,n−1, the set Vi is equal to the set of vertices v ∈V \(V0 ∪
·· ·∪Vi−1) such that there exists an arc (u, v) ∈ A with u ∈Vi−1.

Proof. Suppose that v ∉V0∪·· ·∪Vi−1 and there exists an arc uv ∈ A with u ∈Vi−1.

Since u ∈ Vi−1, there exists a path s, a1, v1, a2, v2, . . . , ai−1,u of length i −1 from s

to u. The sequence s, a1, v1, a2, v2, . . . , ai ,u,uv, v is a path of length i from s to v

and thus v ∈Vi .

If, on the other hand, v ∈Vi , then there exists a path

s, a1, v1, . . . , ai−1 ,u, ai , v

of length i from s to v . We need to show that u ∈ Vi−1 holds. Clearly, since there

exists a path of length i −1 from s to u, one has u ∈ V j with j 6 i −1. If j < i −1,

then there exists a path s, a′
1, v ′

1, . . . , a′
j
,u of length j which can be extended to a

path of length j +1 < i from s to v

s, a′
1, v ′

1, . . . , a′
j ,u, ai , v

which contradicts v ∈Vi+1. ⊓⊔
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The breadth-first search algorithm is an implementation of Lemma 6.1. The

algorithm maintains arrays

D[v1 = s, v2, . . . , vn]

π[v1 = s, v2, . . . , vn]

and a queue Q that contains only s in the beginning. The array D contains at

termination of the algorithm the distances from s to all other nodes and is initial-

ized with [0,∞, . . . ,∞]. The array π contains predecessor information for shortest

paths, in other words, when the algorithm terminates, π[v] = u, where uv is an

arc and D[u]+1 = D[v]. The array π is initialized with [0, . . . ,0].

After this initialization, the algorithm proceeds as follows.

while Q 6= ;
u := head(Q)

for each v ∈ N (u)

if (D[v] =∞)

π[v] := u

D[v] := D[u]+1

enqueue(Q , v)

dequeue(Q)

Here the function head(Q) returns the next element in the queue and dequeue(Q)

removes the first element of Q , while enqueue(Q , v) adds v to the queue as last

element.

Lemma 6.2. The breadth-first search algorithm assigns distance labels D correctly.

Proof. We show the following claim by induction on i ∈ {0, . . . ,n−1}.

For each i ∈ {1, . . . ,n −1} there exists a point in time where:

i) Q contains precisely the elements of Vi

ii) for each v ∈Vi , D[v ]= d(s, v )

iii) for each v ∈Vi one has π[v ]v is an arc and π[v ] ∈Vi−1.

Once this claim is shown, the lemma follows, because the labels D[v] and π[v]

are only changed once, if at all, from ∞ to an integer or a vertex respectively.

Since V0 = {s} and since Q = [s] and D[s] = 0 after the initialization, the claim

holds for i = 0. Suppose i > 0. By the induction hypothesis, there is a point in time,

where Q contains precisely Vi−1. By Lemma 6.1, after the last element of Vi−1 is

dequeued Q contains precisely the elements in Vi . Also, since D[u] = d(s,u) =
i −1 for all u ∈ Vi−1 we have for each v ∈ Vi that D[v] = d(s, v) = i . Also π[v]v is

an arc, by virtue of the algorithm, and π[v] ∈Vi−1. ⊓⊔

Definition 6.4 (Tree). A directed tree is a directed graph T = (V , A) with |A| = |V |−
1 and there exists a node r ∈ T such that there exists a path from r to all other

nodes of T .
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Lemma 6.3. Consider the arrays D andπ after the termination of the breadth-first-

search algorithm. The graph T = (V ′, A′) with V ′ = {v ∈ V : D[v] < ∞} and A′ =
{π(v)v : 1 6 D[v] <∞} is a tree.

Proof. Clearly, |A′| = |V ′|−1. For any i ∈ {1, . . . ,n−1}, by backtracking the π-labels

from any v ∈Vi , we will eventually reach s.

Definition 6.5. The tree T from above is the shortest-path-tree of the (unweighted)

directed graph G = (V , A).

a d

b

c e

s

(a) The breadth-first search algorithm

starts with the queue Q = [s]. The

distance labels for [s, a,b,c ,d ,e] are

[0,∞,∞,∞,∞,∞] respectively.

d

b

e

a

c

s

(b) After the first iteration of the while

loop the queue is Q = [a,c] and the

distance labels are [0,1,∞,1,∞,∞]

respectively.

d

e

a

b

c

s

(c) After the second iteration of the

while loop the queue is Q = [c ,b] and

the distance labels are [0,1,2,1,∞,∞]

respectively.

d

e

a

b

c

s

(d) After the third iteration of the

while loop the queue is Q = [b] and

the distance labels are unchanged,

since c does not have any neighbors.

d

e

a

b

c

s

(e) After the fourth iteration of the

while loop the queue is Q = [d ,e] and

the distance labels are [0,1,2,1,3,3]

respectively.

d

e

a

b

c

s

(f) After the sixth iteration of the

while loop the queue is empty Q =
[] and the distance labels remain un-

changed. The blue edges denote the

shortest path tree.

Fig. 6.3: An example-run of breadth-first search
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Theorem 6.1. The breath-first-search algorithm runs in time O(|V |+ |A|).

Proof. Each vertex is queued and dequeued at most once. These queuing opera-

tions take constant time each. Thus queuing and dequeuing costs O(|V |) in total.

When a vertex u is dequeued, its neighbors are inspected and the operations

in the if statement cost constant time each. Thus one has an additional cost of

O(|A|), since these constant-time operations are carried out for each arc a ∈ A.

⊓⊔

6.4 Shortest Paths

Definition 6.6 (Cycle). A walk in which starting node and end-node agree is

called a cycle.

Suppose we are given a directed graph D = (V , A) and a length function c : A −→
R. The length of a walk W is defined as

c(W ) =
∑

a∈A
a∈W

c(a).

We now study how to determine a shortest path in the weighted directed graph G

efficiently, in case of the absence of cycles of negative length.

Theorem 6.2. Suppose that each cycle in D has non-negative length and suppose

there exists an s − t-walk in D. Then there exists a path connecting s with t which

has minimum length among all walks connecting s and t.

Proof. If there exists an s− t-walk, then there exists an s− t-path. Since the num-

ber of arcs in a path is at most |V | − 1, there must exist a shortest path P con-

necting s and t . We claim that c(P ) 6 c(W ) for all s − t-walks W . Suppose that

there exists an s − t-walk W with c(W ) < c(P ). Then let W be such a walk with a

minimum number of arcs. Clearly W contains a cycle C . Since the cycle has non-

negative length, then it can be removed from W to obtain a walk whose length is

at most c(W ) and whose number of arcs is strictly less than |C |. ⊓⊔

We use the notation |W |, |C |, |P | to denote the number of arcs in a walk W a

cycle C or a path P .

As a conclusion we can note here:

If there do not exist negative cycles in D , and s and t are connected, then there exists a

shortest walk traversing at most |V |−1 arcs.
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The Bellman-Ford algorithm

Let n = |V |. We calculate functions f0, f1, . . . , fn : V −→R∪ {∞} successively by the

following rule.

i) f0(s) = 0, f0(v) =∞ for all v 6= s

ii) For k < n if fk has been found, compute

fk+1(v) = min{ fk (v), min
(u,v)∈A

{ fk (u)+c(u, v)}}

for all v ∈V .

a d

b

c e

s
3

4

−2

3
−3

22

1

(a) The algorithm is initialized with

distance labels for s, a,b,c ,d ,e being

[0,∞,∞,∞,∞,∞] respectively

a d

b

c e

s
−2

3
−3

22

13

4

(b) After the first iteration the labels

are [0,3,∞,4,∞,∞]

a d

b

c e

s
−2

3
−3

22

3

4

1

(c) After the second iteration the la-

bels are [0,3,4,4,∞,∞]

a d

b

c e

s −3

24 2

−2

33 1

(d) After the third iteration the labels

are [0,3,4,2,7,6]

a d

b

c e

s

224

−3
−2

33 1

(e) After the fourth iteration the labels

are [0,3,4,2,7,4]

a d

b

c e

s

224

−3
−2

33 1

(f) After the fifth iteration the labels

are unchanged. The shortest path dis-

tances have been computed.

Fig. 6.4: An example-run of the Bellman-Ford algorithm. The blue edges represent

the tree whose paths have the corresponding lengths.
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Theorem 6.3. For each k = 0, . . . ,n and for each v ∈V

fk (v)= min{c(P ) : P is an s − v-walk traversing at most k arcs}.

Corollary 6.1. If D = (V , A) does not contain negative cycles w.r.t. c, then fn (v) is

equal to the length of a shortest s−v-path. The numbers fn(v) can be computed in

time O(|V | · |A|).

Corollary 6.2. In time O(|V |2|A|) one can test whether D = (V , A) has a negative

cycle w.r.t. c and eventually return one.

6.5 Maximum s − t -flows

We now turn our attention to a linear programming problem which we will solve

by direct methods, motivated by the nature of the problem. We often use the fol-

lowing notation. If f : A −→ B denotes a function and if U ⊆ A, then f (U ) is de-

fined as f (U ) =
∑

a∈U f (a).

Definition 6.7 (Network, s − t-flow). A network with capacities consists of a di-

rected simple graph D = (V , A) and a capacity function u : A → R>0. A function

f : A →R>0 is called an s − t-flow, if

∑

e∈δout (v)

f (e) =
∑

e∈δi n (v)

f (e), for all v ∈V − {s, t }, (6.1)

where s, t ∈ V . The flow is feasible, if f (e) 6 u(e) for all e ∈ A. The value of f

is defined as v alue( f ) =
∑

e∈δout (s) f (e)−
∑

e∈δi n (s) f (e). The maximum s − t-flow

problem is the problem of determining a maximum feasible s − t-flow.

Here, for U ⊆ V , δin (U ) denotes the arcs which are entering U and δout (U )

denotes the arcs which are leaving U . Arc sets of the form δout (U ) are called a cut

of D. The capacity of a cut u(δout (U )) is the sum of the capacities of its arcs.

Thus the maximum flow problem is a linear program of the form

max
∑

e∈δout (s)

x(e) −
∑

e∈δi n (s)

x(e) (6.2)

∑

e∈δout (v)

x(e) =
∑

e∈δi n (v)

x(e), for all v ∈V − {s, t } (6.3)

x(e) 6 u(e), for all e ∈ A (6.4)

x(e) > 0, for all e ∈ A (6.5)

Definition 6.8 (excess function). For any f : A → R, the excess function is the

function excess f : 2V →Rdefined by excess f (U )=
∑

e∈δi n (U ) f (e)−
∑

e∈δout (U ) f (e).
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Theorem 6.4. Let D = (V , A) be a digraph, let f : A →R and let U ⊆V , then

excess f (U )=
∑

v∈U

excess f (v). (6.6)

Proof. An arc which has both endpoints in U is counted twice with different par-

ities on the right, and thus cancels out. An arc which has its tail in U is subtracted

once on the right and once on the left. An arc which has its head in U is added

once on the right and once on the left. ⊓⊔

A cut δout (U ) with s ∈U and t ∉U is called an s − t-cut.

Theorem 6.5 (Weak duality). Let f be a feasible s − t-flow and let δout (U ) be an

s − t-cut, then v alue( f ) 6 u(δout (U )).

Proof. v alue( f ) =−excess f (s)=−excess f (U )= f (δout (U ))− f (δin (U )) 6 f (δout (U )) 6

u(δout (U )). ⊓⊔

For an arc a = (u, v) ∈ A the arc a−1 denotes the arc (v,u).

Definition 6.9 (Residual graph). Let f : A → R, and u : A → R where 0 6 f 6 u.

Consider the sets of arcs

A f = {a | a ∈ A, f (a)< u(a)}∪ {a−1 | a ∈ A, f (a) > 0}. (6.7)

The digraph D( f ) = (V , A f ) is called the residual graph of f (for capacities u).

Corollary 6.3. Let f be a feasible s − t-flow and suppose that D( f ) has no path

from s to t , then f has maximum value.

Proof. Let U be the set of nodes which are reachable in D( f ) from s. Clearly

δout (U ) is an s−t-cut. Now v alue( f ) = f (δout (U ))− f (δin (U ). Each arc leaving U

is not an arc of D( f ) and thus f (δout (U ))= u(δout (U )). Each arc entering U does

not carry any flow and thus f (δin (U ) = 0. It follows that v alue( f ) = u(δout (U ))

and f is optimal by Theorem 6.5. ⊓⊔

Definition 6.10 (undirected walk). An undirected walk is a sequence of the form

P = (v0, a1, v1, . . . , vm−1, am , vm ), where ai ∈ A for i = 1, . . . ,m and ai = (vi−1, vi )

or ai = (vi , vi−1). If the nodes v0, . . . , vm are all different, then P is an undirected

path.

Any directed path P in D( f ) yields an undirected path in D. Define for such a

path P the vector χP ∈ {0,±1}A as

χP (a)=





1 if P traverses a,

−1 if P traverses a−1,

0 if P traverses neither a or a−1.

(6.8)
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Theorem 6.6 (max-flow min-cut theorem, strong duality). The maximum value

of a feasible s − t-flow is equal to the minimum capacity of an s − t cut.

Proof. Let f be a maximum s − t-flow. Consider the residual graph D( f ). If this

residual graph contains an s − t-path P , then we can route flow along this path.

More precisely, there exists an ǫ> 0 such that f +ǫχP is feasible. We have v alue( f +
ǫχP ) = v alue( f )+ǫ. This contradics the maximality of f thus there exists no s−t-

path in D( f ).

Let U be the nodes reachable from s in D( f ). Then v alue( f ) = u(δout (U )) and

δout (U ) is an s − t-cut of minimum capacity by the weak duality theorem.

This suggests the algorithm of Ford and Fulkerson to find a maximum flow.

Start with f = 0. Next iteratively apply the following flow augmentation algorithm.

Let P be a directed s − t-path in D( f ). Set f ← f + ǫχP , where ǫ is as large as

possible to maintain 0 6 f 6 u.

Exercise 6.1. Define a residual capacity for D( f ). Then determine the maximum

ǫ such that 0 6 f 6 u.

Theorem 6.7. If all capacities are rational, this algorithm terminates.

s

u

v

t

M

M

1

M

M

The example above shows that, if the augmenting paths are chosen in a disadvan-

tageous way, then the Ford-Fulkerson algorithm may take Ω(M) iterations, where

M is the largest capacity in the network. This happens if all augmenting paths use

the arc uv or vu respectively in the residual network.

Corollary 6.4 (integrity theorem). If u(a) ∈N for each a ∈ A, then there exists an

integer maximum flow (f (a) ∈N for all a ∈ A).

Proof. This follows from the fact that the residual capacities remain integral and

thus the augmented flow is always integral. ⊓⊔

Theorem 6.8. If we choose in each iteration a shortest s− t-path in D( f ) as a flow-

augmenting path, the number of iterations is at most |V | · |A|.
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Definition 6.11. Let D = (V , A) be a digraph, s, t ∈ V and let µ(D) denote the

length of a shortest path from s to t . Let α(D) denote the set of arcs contained

in at least one shortest s − t path.

Theorem 6.9. Let D = (V , A) be a digraph and s, t ∈V . Define D ′ = (V , A∪α(D)−1).

Then µ(D) =µ(D ′) and α(D) =α(D ′).

Proof. It suffices to show that µ(D) and α(D) are invariant if we add a−1 to D for

one arc a ∈ α(D). Suppose not, then there is a directed s − t-path P1 traversing

a−1 of length at most µ(D). As a ∈ α(D) there is a path P2 traversing a of length

µ(D). If we follow P2 until the tail of a is reached and from thereon follow P1, we

obtain another s − t path P3 in D. Similarly if we follow P1 until the head of a is

reached and then follow P2, we obtain a fourth s − t path P4 in D. However P3 or

P4 has length less than µ(D). This is a contradiction. ⊓⊔

Proof (of Theorem 6.8). Let us augment flow f along a shortest s − t-path P in

D( f ) obtaining flow f ′. The residual graph D f ′ is a subgraph of D ′ = (V , A f ∪
α(D( f ))−1). Hence µ(D f ′ ) > µ(D ′) = µ(D( f )). If µ(D f ′) = µ(D( f )), then α(D f ′) ⊆
α(D ′) =α(D( f )). At least one arc of P does not belong to D f ′ , (the arc of minimum

residual capacity!) thus the inclusion is strict. Since µ(D( f )) increases at most

|V | times and, as long as µ(D( f )) does not change, |α(D( f ))| decreases at most

2 |A| times, we have the theorem. ⊓⊔

In the following let m = |A| and n = |V |.

Corollary 6.5. A maximum flow can be found in time O(n m2).

6.6 Minimum cost network flows, MCNFP

In contrast to the maximum s − t-flow problem, the goal here is to route a flow,

which comes from several sources and sinks through a network with capacities

and costs in such a way, that the total cost is minimized.

Example 6.3. Suppose you are given a directed graph width arc weights D =
(V , A), c : A → R>0 and your task is to compute a shortest path from a particu-

lar node s to all other nodes in the graph and assume that such paths exist. Then

one can model this as a MCNFP by sending a flow of value |V |−1 into the source

node and by letting a flow of value 1 leave each node. The costs on the arcs are

defined by c. The arcs have infinite capacities. We will see later, that this mini-

mum cost network flow problem has an integral solution which corresponds to

the shortest paths from s to all other nodes.

Here is a formal definition of a minimum cost network flow problem. In this

notation, vertices are indexed with the letters i , j ,k and arcs are denoted by their

tail and head respectively, for example (i , j ) denotes the arc from i to j .
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Fig. 6.5: A Network with in/out-flow, costs and capacities and a feasible flow of

cost 13.

A network is now a directed graph D = (V , A) together with a capacity function

u : A →Q>0, a cost function c : A →Q and an external flow b : V →Q. The value of

b(i ) denotes the amount of flow which comes from the exterior. If b(i ) > 0, then

there is flow from the outside, entering the network through node i . If b(i ) < 0,

there is flow which leaves the network through i .

In the following we often use the notation f (i , j ) for the flow-value on the arc

(i , j ) (instead of f ((i , j ))). Similarly we write c(i , j ) and u(i , j ).

A feasible flow is a function f : A → Q>0 which satisfies the following con-

straints. ∑
e∈δout (i) f (e)−

∑
j∈δi n(i) f (e) = bi for all i ∈V ,

0 6 f (e) 6 u(e) for all e ∈ A.

The goal is to find a feasible flow with minimum cost:

minimize
∑

e∈A c(e) f (e)

subject to
∑

e∈δout (i) f (e)−
∑

e∈δi n (i) f (e)= b(i ) for all i ∈V ,

0 6 f (e) 6 u(e) for all (e) ∈ A

Example 6.4. Imagine you are a pilot and fly a passenger airplane in hops from

airport 1 to airport 2 to airport 3 and so on, until airport n. At airport i there are

bi j passengers that want to travel to airport j , where j > i . You may decide how
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many of the bi j passengers you will take on board. Each of the passengers will

pay ci j dollars for the trip. The airplane can accommodate p people.

You are a greedy pilot and think of a plan to pick up and deliver passengers on

your hop from 1 to n which maximizes your revenue.

Finding this plan can be modeled as a minimum cost network flow problem.

Your network has nodes 1, . . . ,n and arcs (i , i +1), i = 1, . . . ,n −1 with capacities

p and without costs. These nodes do not have in/out-flow from the outside. You

furthermore have nodes i → j for i < j and i , j ∈ {1, . . . ,n} which are excess nodes

with in-flow bi j from the outside. Each node i → j is connected to i and to j

with a directed arc. The capacities on these arcs are infinite. The cost of the arc

(i → j , i ) is −ci j . The cost of the arc (i → j , j ) is zero. The outflow on the node j

is the total number of passengers that want to fly to node j . An integral optimal

flow to this problem is an optimal plan for you.

Throughout this chapter we make the following assumptions.

1. All data (cost, supply, demand and capacity) are integral.

2. The network contains an incapacitated directed path between every pair of

nodes.

3. The supplies/demands at the nodes satisfy the condition
∑

i∈V b(i ) = 0 and

the MCNFP has a feasible solution.

4. All arc costs are nonnegative.

5. The graph does not contain a pair of reverse arcs.

Exercise 6.2. Show how to transform a MCNFP on a digraph with pairs of reverse

arcs into a MCNFP on a digraph with no pairs of reverse arcs. The number of arcs

and nodes should asymptotically remain the same.

An arc-flow of D is a flow vector, that satisfies the nonnegativity and capacity

constraints.

∑

e∈δi n (i)

f (e)−
∑

e∈δout (i)

f (e)= e(i ) for all i ∈V ,

0 6 f (e) 6 u(e) for all e ∈ A.

• If e(i ) > 0, then i is an excess node (more inflow than outflow).

• If e(i ) < 0, then i is a deficit node (more outflow than inflow).

• If e(i ) = 0 then i is called balanced.

Exercise 6.3. Prove that
∑

i∈V e(i ) = 0 holds and thus that a feasible flow only ex-

ists if the sum of the b(i ) is equal to zero.

Let P be the collection of directed paths of D and let C be the collection of

directed cycles of D. A path-flow is a function β : P ∪C → R>0 which assigns

flow values to paths and cycles.

For (i , j ) ∈ A and P ∈P let δ(i , j )(P ) be 1 if (i , j )∈ P and 0 otherwise. For C ∈C

let δ(i , j )(C ) be 1 if (i , j )∈C and 0 otherwise.
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A path-flow β determines a unique arc-flow

f (i , j ) =
∑

P∈P
δ(i , j )(P )β(P )+

∑

C∈C

δ(i , j )(C )β(C ).

Theorem 6.10. Every path and cycle flow has a unique representation as a non-

negative arc-flow. Conversely, every nonnegative arc flow f can be represented as a

path and cycle flow with the following properties:

1. Every directed path with positive flow connects a deficit node with an excess

node.

2. At most n +m paths and cycles have nonzero flow and at most m cycles have

nonzero flow.

If the arc flow f is integral, then so are the path and cycle flows into which it de-

composes.

Proof. “⇒” See discussion above.

“⇐”

Let f be an arc flow. Suppose i0 is a deficit node. Then there exists an incident

arc (i0, i1) which carries a positive flow. If i1 is an excess node, we have found

a path from deficit to excess node. Otherwise, the flow balance constraint at i1

implies that there exists an arc (i1 , i2) with positive flow. Repeating this procedure,

we finally must arrive at an excess node or revisit a node. This means that we

either have constructed a directed path P from deficit node to excess node or a

directed cycle C , both involving only arcs with strictly positive flow.

In the first case, let P = i0, . . . , ik be the directed path from deficit node i0 to

excess node ik . We set β(P ) = min{−ei0 ,eik
,min{ f (i , j ) | (i , j ) ∈ P }} and f (i , j ) =

f (i , j )−β(P ), (i , j ) ∈ P . In the second case, set β(C ) = min{ f (i , j ) | (i , j ) ∈ C and

f (i , j ) = f (i , j )−β(C ), (i , j ) ∈C . Repeat this procedure until all node imbalances

are zero.

Now find an arc with positive flow and construct a cycle C by following only

positive arcs from there. Set β(C ) = min{ f (i , j ) | (i , j ) ∈ C } and f (i , j ) = f (i , j )−
β(C ), (i , j )∈C }. Repeat this process until there are no positive flow-arcs left.

Each time a path or a cycle is identified, the excess/deficit of some node is set

to zero or some arc is set to zero. This implies that we decompose into at most

n+m paths and cycles. Since cycle detection sets an arc to zero we have at most

m cycles. ⊓⊔

An arc flow f with e(i )= 0 for each i ∈V is called a circulation.

Corollary 6.6. A circulation can be decomposed into at most m cycle flows.

Let D = (V , A) be a network with capacities u(i , j ), (i , j )∈ A and costs c(i , j ), (i , j )∈
A and let f be a feasible flow of the network. The residual network D( f ) is defined

as follows.

• We replace each arc (i , j )∈ A with two arcs (i , j ) and ( j , i ).

• The arc (i , j ) has cost c(i , j ) and residual capacity r (i , j )= u(i , j )− f (i , j ).
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• The arc ( j , i ) has cost −c(i , j ) and residual capacity r ( j , i )= f (i , j ).

• Delete all arcs which do not have strictly positive residual capacity.

a

b c

d e

1/1

−1/2

3/1

−3/1

1/1−1/2

2/4

−3/2

7/2

Fig. 6.6: The residual network of the flow in Figure 6.5 and a negative cycle marked

by the red edges.

A directed cycle in D( f ) is called an augmenting cycle of f .

Lemma 6.4. Suppose that f and f ◦ are feasible flows, then f − f ◦ is a circulation

in D( f ◦). Here f − f ◦ is the flow

( f − f ◦)(e) =





max{0, f (e)− f ◦(e)}, if e ∈ A(D)

max{0, f ◦(e)− f (e)}, if e−1 ∈ A(D)

0, otherwise.

Proof. It is very easy to see that the flow f − f ◦ satisfies the capacity constraints.

One also has for each v ∈V

∑
e ∈ δout (v)( f (e)− f ◦(e))−

∑

e∈δi n (v)

( f (e)− f ◦(e))= 0.

If a term ( f (e)− f ◦(e)) is negative, it is replaced by its absolute value and charged

as flow on the arc e−1 in D( f ◦) which leaves its contribution to the sum above

invariant. ⊓⊔

Theorem 6.11 (Augmenting Cycle Theorem). Let f and f ◦ be any two feasible

flows of a network flow problem. Then f equals f ◦ plus the flow of at most m di-

rected cycles in D( f ◦). Furthermore the cost of f equals the cost of f ◦ plus the cost

of flow on these augmenting cycles.
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Fig. 6.7: Two arcs e1,e2 ∈ A labeled with f (e)/ f ◦(e)/u(e) and the corresponding

flow on these arcs (or their reverse) in D( f ◦). Arcs in D( f ◦) are labeled with flow

and capacity values respectively.

Proof. This can be seen by applying flow decomposition on the flow f − f ◦ in

D( f ◦). ⊓⊔

Theorem 6.12 (Negative Cycle Optimality Conditions). A feasible flow f ∗ is an

optimal solution of the minimum cost network flow problem, if and only if it satis-

fies the negative cycle optimality conditions: The residual network D( f ∗) contains

no directed cycle of negative cost.

Proof. “⇒” Suppose that f is a feasible flow and that D( f ) contains a negative

directed cycle. Then f cannot be optimal, since we can augment positive flow

along the corresponding cycle in the network. Therefore, if f ∗ is an optimal flow,

then D( f ∗) cannot contain a negative directed cycle.

“⇐” Suppose now that f ∗ is a feasible flow and suppose that D( f ∗) does not

contain a negative cycle. Let f ◦ be an optimal flow with f ◦ 6= f ∗. The vector f ◦−
f ∗ is a circulation in D( f ◦) with non-positive cost cT ( f ◦− f ∗) 6 0. It follows from

Theorem 6.11 that the cost of f ◦ equals the cost of f ∗ plus the cost of directed

cycles in the residual network D( f ∗). The cost of these cycles is nonnegative, and

therefore c( f ◦) > c( f ∗) which implies that f ∗ is optimal. ⊓⊔

Algorithm 6.1 (Cycle Canceling Algorithm).

1. establish a feasible flow f in the network

2. WHILE D( f ) contains a negative cycle

a. detect a negative cycle C in D( f )

b. δ= min{r (i , j ) | (i , j )∈C }

c. augment δ units of flow along the cycle C

d. update D( f )

3. RETURN f

Theorem 6.13. The cycle canceling algorithm terminates after a finite number of

steps if the MCNFP has an optimal solution.
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Fig. 6.8: The result of augmenting a flow of one along the negative cycle in Fig-

ure 6.6. This flow has cost 12 but is not optimal, since the residual network still

contains a negative cycle.

Proof. The cycle canceling algorithm reduces the cost in each iteration. We have

assumed that the input data is integral. Thus the cost decreases by at least one

unit each iteration. Therefore the number of iterations is finite. ⊓⊔

Corollary 6.7. If the capacities are integral and if the MCNFP has a optimal flow,

then it has an optimal flow with integer values only.

Let π : V → R be a function (node potential). The reduced cost of an arc (i , j )

w.r.t. π is cπ((i , j )) = c((i , j )) + π(i ) − π( j ). The potential π is called feasible if

cπ((i , j )) > 0 for all arcs (i , j )∈ A.

Lemma 6.5. Let D = (V , A) be a digraph with arc weights c : A → R. Then D does

not have a negative cycle if and only if there exists a feasible node potential π of D

with arc weights c.

Proof. Consider a directed path P = i0, i1, . . . , ik . The cost of this path is

c(P ) =
k∑

j=1

c((i j−1, i j )).

The reduced cost of this path is equal to

cπ(P ) =
k∑

j=1

c((i j−1, i j ))+π(i0)−π(ik ).

If P is a cycle, then i0 and ik are equal, which means that its cost and reduced cost

coincide. Thus, if there exists a feasible node potential, then there does not exist

a negative cycle.

On the other hand, suppose that D,c does not contain a negative cycle. Add a

vertex s to D and the arcs (s, i ) for all i ∈ V . The weights (costs) of all these new

arcs is 0. Notice that in this way, no new cycles are created, thus still there does
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not exist a negative cycle. This means we can compute the shortest paths from s

to all other nodes i ∈V . Let π be the function which assigns these shortest paths

lengths. Clearly cπ((i , j ))=π(i )−π( j )+c((i , j ))> 0, since the shortest-path length

to j is at most the shortest-path length to i +c((i , j )). ⊓⊔

This means that we have again a nice way to prove that a flow is optimal. Sim-

ply equip the residual network with a feasible node potential.

Corollary 6.8 (Reduced Cost Optimality Condition). A feasible flow f ∗ is optimal

if and only if there exists a node potential π such that the reduced costs cπ(i , j ) of

each arch (i , j ) of D( f ) are nonnegative.

The cycle canceling algorithm is only pseudopolynomial. If we could always

chose a minimum cycle (cycle with best improvement) as an augmenting cycle,

we would have a polynomial number of iterations. Finding minimum cycles is

N P-hard. Instead we augment along minimum mean cycles. One can find mini-

mum mean cycles in polynomial time.

The mean cost of a cycle C ∈ C is the cost of C divided by the number of arcs

in C :

(
∑

(i , j )∈C

c(i , j ))/|C |.

Algorithm 6.2 (Minimum Mean Cycle Canceling, MMCC).

1. establish a feasible flow f in the network

2. WHILE D( f ) contains a negative cycle

a. detect a minimum mean cycle C in D( f )

b. δ= min{r (i , j ) | (i , j )∈C }

c. augment δ units of flow along the cycle C

d. update D( f )

3. RETURN f

We now analyze the MMCC-algorithm. Let µ( f ) denote the minimum mean-

weight of a cycle in D( f ).

Lemma 6.6 (See Korte & Vygen [9]). Let f1, f2, . . . be a sequence of feasible flows

such that fi+1 results from fi by augmenting flow along Ci , where Ci is a minimum

mean cycle of D( fi ), then

1. µ( fk ) 6µ( fk+1) for all k.

2. µ( fk ) 6
n

n−1
µ( fl ), where k < l and Ck ∪Cl contains a pair of reversed arcs.

Proof. 1): Suppose fk and fk+1 are two subsequent flows in this sequence. Con-

sider the multi-graph H which results from Ck and Ck+1 by deleting pairs of op-

posing arcs. The arcs of H are a subset of the arcs of D( fk ), since an arc of Ck+1

which is not in D( fk ) must be a reverse arc of Ck .
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Each node in H has even degree. Thus H can be decomposed into cycles, each

of mean weight at least µ( fk ). Thus we have c(A(H)) >µ( fk )|A(H)|.
Since the total weight of each reverse pair of arcs is zero we have

c(A(H)) = c(Ck )+c(Ck+1) =µ( fk )|Ck |+µ( fk+1)|Ck+1|.

Since |A(H)|6 |Ck |+ |Ck+1| we conclude

µ( fk )(|Ck |+ |Ck+1|) 6 µ( fk )|A(H)|
6 c(A(H))

= µ( fk )|Ck |+µ( fk+1)|Ck+1|.

Thus µ( fk ) 6µ( fk+1).

2): By the first part of the theorem, it is enough to prove the statement for k, l

such that Ci ∪Cl does not contain a pair of reverse arcs for each i , k < i < l .

Again, consider the graph H resulting from Ck and Cl by deleting pairs of op-

posing arcs. H is a subgraph of D( fk ), since any arc of Cl which does not belong

to D( fk ) must be a reverse arc of Ck ,Ck+1, . . . ,Cl−1. But only Ck contains a reverse

arc of Cl . So as above we have

c(A(H)) = c(Ck )+c(Cl ) =µ( fk )|Ck |+µ( fl )|Ck+1|.

Since |A(H)|6 |Ck |+ |Cl |−2 we have |A(H)|6 n−1
n

(|Ck |+ |Cl |). Thus we get

µ( fk )
n−1

n
(|Ck |+ |Cl |) 6 µ( fk )|A(H)|

6 c(A(H))

= µ( fk )|Ck |+µ( fl )|Cl |
6 µ( fl )(|Ck |+ |Cl |)

This implies that µ( fk ) 6
n

n−1
µ( fl ). ⊓⊔

Corollary 6.9. During the execution of the MMCC-algorithm, |µ( f )| decreases by a

factor of 1/2 every n ·m iterations.

Proof. Let C1,C2, . . . be the sequence of augmenting cycles. Every m-th iteration,

there must be an arc of the cycle, which is reverse to one of the succeeding m −1

cycles, because every iteration, one arc of the residual network will be deleted.

Thus after n m iterations, the absolute value of µ has dropped by
(

n−1
n

)n
6 e−1 6

1/2. ⊓⊔

Corollary 6.10. If all data are integral, then the MMCC-algorithm runs in polyno-

mial time.

Proof. • A lower bound on µ is the smallest cost cmin

• |µ| drops by 1/2 every m n iterations.
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• After mn logn|cmin | iterations, absolute value of minimum mean weight cycle

drops below 1/n, thus is zero.

• We need to prove that a minimum mean cycle can be found in polynomial

time

⊓⊔

This is a so-called weakly polynomial bound, since the binary encoding length

of the numbers in the input (here the costs) influences the running time. We now

prove that the MMCC-algorithm is strongly polynomial.

Theorem 6.14 (See Korte & Vygen [9]). The MMCC-algorithm requires O(m2 n logn)

iterations (mean weight cycle cancellations).

Proof. One shows that every m n(⌈log n⌉+1) iterations, at least one arc is fixed,

which means that the flow through this arc does not change anymore.

Let f1 be some flow at some iteration and let f2 be the flow m n(⌈logn⌉+ 1)

iterations later. It follows from Corollary 6.9 that

µ( f1) 6 2nµ( f2) (6.9)

holds.

Define the costs c ′(e) = c(e)−µ( f2) for the residual network D( f2). There ex-

ists no negative cycle in D( f2) w.r.t. this cost c ′. ( A cycle C has weight c ′(C ) =∑
e∈C c(e)−|C |µ( f2) and thus c ′(C )/|C | =

∑
e∈C c(e)/|C |−µ( f2) > 0). By Lemma 6.5

there exists a feasible node potential π for these weights. One has 0 6 c ′π(e) =
cπ(e)−µ( f2) and thus

cπ(e) >µ( f2), for all e ∈ A(D( f2)). (6.10)

Let C be a minimum mean cycle of D( f1). One has

cπ(C ) = c(C ) =µ( f1) |C |6 2nµ( f2)|C |. (6.11)

It follows that there exists an arc e0 of C such that

cπ(e0) 6 2nµ( f2) (6.12)

holds. The inequalities (6.10) imply that e0 ∉ A(D( f2))

We now make the following claim:

Let f ′ be a feasible flow such that e0 ∈ D( f ′), then µ( f ′) 6µ( f2).

If we have shown this claim, then it follows from Lemma 6.6 that e0 cannot be

anymore in the residual network of a flow after f2. Thus the flow along the arc e0

(or e−1
0 ) is fixed.

Let f ′ be a flow such that e0 ∈ A(D( f ′)). Recall that f ′ − f2 is a circulation in

D( f2) where e0 ∉ D( f2), e−1
0 ∈ D( f2) and this circulation sends flow over e−1

0 . This

circulation can be decomposed into cycles and one of these cycles C contains

e−1
0 . One has cπ(e−1

0 ) =−cπ(e0) >−2nµ( f2) (eq. (6.12)). Using (6.10) one obtains
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c(C ) =
∑

e∈C

cπ(e) (6.13)

> −2nµ( f2)+ (n−1)µ( f2) (6.14)

= −(n+1)µ( f2) (6.15)

> −nµ( f2). (6.16)

The reverse of C is an augmenting cycle for f ′ with total weight at most nµ( f2)

and thus with mean weight at most µ( f2). Thus µ( f ′) 6µ( f2). ⊓⊔

6.7 Computing a minimum cost-to-profit ratio cycle

Given a digraph D = (V , A) with costs c : A →Z and profit p : A →N>0, the task is

to compute a cycle C ∈C with minimum ratio

c(C )

p(C )
. (6.17)

Notice that this is the largest number β ∈Q which satisfies

β6
c(C )

p(C )
, for all C ∈C . (6.18)

By rewriting this inequality, we understand this to be the largest number β ∈Q

such that

c(C )−βp(C ) > 0 for all C ∈C . (6.19)

In other words, we search the largest number β ∈ Q such that the digraph D =
(V , A) with costs cβ : A →Q, where cβ(e) = c(e)−βp(e).

We need a routine to check whether D has a negative cycle for a given weight

function c. For this we assume w.l.o.g. that each vertex is reachible from the vertex

s, if necessary by intruducing a new vertex s from which there is an arc with cost

and profit 0 to all other nodes. The minimum cost-to-profit ration cycle w.r.t. this

new graph is then the minimum cost to profit ratio cycle w.r.t. the original graph,

since s is not a vertex of any cycle.

Recall the following single-source shortest-path algorithm of Bellman-Ford

which we now apply with weights cβ:

Let n = |V |. We calculate functions f0, f1, . . . , fn : V −→R∪{∞} successively by the follow-

ing rule.

i) f0(s) = 0, f0(v )=∞ for all v 6= s

ii) For k < n if fk has been found, compute

fk+1(v )= min{ fk (v ), min
(u,v)∈A

{ fk (u)+ cβ(u, v )}

for all v ∈V .
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There exists a negative cycle w.r.t. cβ if and only if fn (v)< fk (v) for some v ∈V

and 1 6 k < n. Thus we can test in O(m·n) steps whether D,cβ contains a negative

cycle.

We now apply the following idea to search for the correct value of β. We keep

an interval I = [L,U ] with the invariant that the value β that we are searching lies

in this interval I . As starting values, we can chose L = cmin and U = cmax , where

cmin and cmax are the smallest and largest cost respectively. In one iteration we

compute M = (L +U )/2. We then check whether D, together with cM contains a

negative cycle. If yes, we know that β is at least M and we set L ← M . If not, then

β is at most M and we update the upper bound U ← M .

When can we stop this procedure? We can stop it, if we can assure that only one

valid cost-to-profit ratio cycle lies in [L,U ]. Suppose that C1 and C2 have different

cost-to-profit ratios. Then

|c(C1)/p(C1)−c(C2)/p(C2)| =
∣∣∣∣

c(C1) p(C2)−c(C2)p(C1)

(p(C1) p(C2))

∣∣∣∣ (6.20)

> 1/(n2p2
max ). (6.21)

Thus we can stop our process, if U − L < 1/(n2p2
max ), since we know then that

there can be only one cycle c ∈C with c(C )/p(C )∈ [L,U ].

Suppose that [L,U ] is the final interval. We know then that

L 6 c(C )/p(C ) for all C ∈C

and

U > c(C )/p(C ) holds for some C ∈C .

Let C be a minimum weight cycle w.r.t. the arc costs cL . Clearly U > c(C )/p(C ) > L

holds and thus C is the minimum cost-to-profit cycle we have been looking for.

Let us analyze the number of required iterations. We need to halve the starting

interval-length 2c, where c is the largest absolute value of a cost, until the length

is at most 1/(n2p2
max ). We search the minimal i ∈N such that

(1/2)i c 6 1/(n2p2
max ). (6.22)

This shows us that we need O(log(c p2
max n2)) iterations which is O(logn log K ),

where K is the largest absolute value of a cost or a profit.

Theorem 6.15 (Lawler [10]). Let D be a digraph with costs c : A → Z and profit

p : A → N>0 an let K ∈ N such that |c(e)| + |p(e)| 6 K for all e ∈ N. A minimum

cost-to-profit ratio cycle of G can be computed in time O(m n logn log K ).

But we knew a weakly polynomial algorithm for MCNFP from the exercises. So

you surely ask: Can we do better for minimum cost-to-profit cycle computation?

The answer is “Yes”!
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6.7.1 Parametric search

Let us first roughly describe the idea on how to obtain a strongly polynomial al-

gorithm, see [14]. The Bellman-Ford algorithm tells us whether our current β is

too large or too small, depending on whether D with weights cβ contains a neg-

ative cycle or not. Recall that the B-F algorithm computes labels fi (v) for v ∈ V

and 1 6 i 6 n. If these labels are computed with costs cβ, then they are piecewise

linear functions in β and we denote them by fi (v)[β].

Denote the optimal β that we look for by β∗ and suppose that we know an

interval I with such thatβ∗ ∈ I and each function fi (v)[β] is linear if it is restricted

to this domain I . Then we can determine β∗ as follows.

Let I = [L,U ] be the interval and remember that we are searching for the

largest value of β ∈ I such that fn(v)[β] = fn−1(v)[β] holds for each v ∈V . Clearly

this holds for β= L. Thus we only need to check whether β=U by computing the

values fn (v)[U ] and fn−1(v)[U ] for each v ∈ V and check whether one of these

pairs consists of different numbers.

The idea is now to compute such an interval I = [L,U ] in strongly polynomial

time.

Consider the function f1(v)[β]. Clearly one has

f1(v)[β]=
{

c(s, v)−β ·p(s, v) if (s, v) ∈ A,

∞ otherwise.

This shows that f1(v)[β] is a linear function in β for each v ∈V .

Now suppose that i > 1 and that we have computed an interval I = [L,U ] with

β∗ ∈ I and each function fi (v)[β] is a linear function if β is restricted to I .

Now consider the function fi+1(v)[β] for a particular v ∈V . Recall the formula

fi+1(v)[β]= min{ fi (v)[β], min
(u,v)∈A

{ fi (u)[β]+c(u, v)−β ·p(u, v)}}. (6.23)

Each of the functions fi (v)[β] and fi (u)[β]+c(u, v)−β ·p(u, v) are linear on I .

The function fi (v)[β] can be retrieved by computing a shortest path Pi (v) from

s to v with arc weights cβ for some β in (L,U ) which uses at most i arcs. If β is

then allowed to vary, the line which is defined by fi (v)[β] on I is then the length

of this path P with parameter β. Similarly we can retrieve the functions (lines)

fi (u)[β]+c(u, v)−β·p(u, v) for each (u, v) ∈ A. With the Bellman-Ford algorithm,

this amounts to a running time of O(m ·n).

We now have n lines and can now compute the lower envelope of these lines

in time O(n log n) alternatively we can also compute all intersection points of

these lines and sort them w.r.t. increasing β-coordinate. This would amount to

O(n2 log n). Let β1, . . . ,βk be the sorted list of these β-coordinates. Now βtr i al :=
β⌊k/2⌋ and check whether β∗ >βtr i al . If yes, we can replace L byβtr i al and we can

delete the numbers β1, . . . ,β⌊k/2⌋−1. Otherwise, we replace U by βtr i al and delete

β⌊k/2⌋+1, . . . ,bk . In any case, we halved the number of possible β-coordinates and

continue in this way. Such a check requires a negative cycle test in the graph D
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with arc weights βtr i al and costs O(m ·n). In the end we have two consecutive

β-coordinates and have an interval [L,U ] on which fi+1(v)[β] is linear. To find an

interval I such that fi+1(v)[β] is linear on I and β∗ ∈ I costs thus O(m ·n log n)

steps.

We now continue to tighten this interval such that all functions fi+1(v)[β], v ∈
V are linear on [L,U ]. Thus in step i +1 this amounts to a running time of

O
(
n · (m ·n log n)

)
.

The total running time is thus

O(n3 ·m · log n).

Theorem 6.16. Let D = (V , A) be a directed graph and let c : A −→ R and p : A −→
R>0 be functions. One can compute a cycle C of D minimizing c(C )/p(C ) in time

O(n3 ·m · log n).

6.7.1.1 Exercises

1) Show that there are no two different paths from r to another node in a directed

tree T = (V , A).

2) Prove Lemma 6.3.

3) Why can we assume without loss of generality that a minimum cost network

has a path from i to j for all i 6= j ∈V which is incapacitated?

4) Provide an example of a MCNFP for which the simple cycle-canceling algo-

rithm from above can require an exponential number of cancels, if the cycles

are chosen in a disadvantageous way.

5) Provide a proof of Theorem 6.7.

6) Let Q =< u1, . . . ,uk > be the queue before an iteration of the while loop of the

breadth-first-search algorithm. Show that D[ui ] is monotonously increasing

and that D[u1] + 1 > D[uk ]. Conclude that the sequence of assigned labels

(over time) is a monotonously increasing sequence.



Chapter 7

The ellipsoid method

It is not known whether the simplex algorithm is an algorithm that runs in poly-

nomial time. For many pivoting rules it was even proved to require an exponential

number of iterations [7]. It was long open, whether there exists a polynomial time

algorithm for linear programming until Khachiyan [6] showed that the ellipsoid

method[17, 15] can solve linear programs in polynomial time. The remarkable

fact is that the algorithm is polynomial in the binary encoding length of the lin-

ear program. In other words, if the input consists of the problem max{cT x : x ∈
Rn , Ax 6 b}, where A ∈Qm×n and b ∈Qm , then the algorithm runs in polynomial

time in m+n+ s, where s is the largest binary encoding length of a rational num-

ber appearing in A or b. The question, whether there exists an algorithm which

runs in time polynomial in m +n and performs arithmetic operations on num-

bers, whose binary encoding length remains polynomial in m +n + s is one of

the most prominent open problems in theoretical computer science and discrete

optimization.

Initially, the ellipsoid method can be used to solve the following problem.

Given a matrix A ∈Zm×n and a vector b ∈Zm , determine a feasible point x∗ in the poly-

hedron P = {x ∈Rn | Ax 6b} or assert that P is not full-dimensional or P is unbounded.

After we understand how the ellipsoid method solves this problem in polynomial

time, we discuss why linear programming can be solved in polynomial time.

Clearly, we can assume that A has full column rank. Otherwise, we can find

with Gaussian elimination an invertible matrix U ∈Rn×n with A ·U = [A′|0] where

A′ has full column rank. The system A′x 6 b is then feasible if and only if Ax 6 b

is feasible.

Exercise 7.1. Let x′ be a feasible solution of A′x 6 b and suppose that U from

above is given. Show how to compute a feasible solution x of Ax 6 b. Also vice

versa, show how to compute x′, if x is given.

The unit ball is the set B = {x ∈ Rn | ‖x‖ 6 1} and an ellipsoid E (A,b) is the

image of the unit ball under a linear map t : Rn → Rn with t(x) = Ax +b, where

A ∈Rn×n is an invertible matrix and b ∈Rn is a vector. Clearly

79
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E (A,b)= {x ∈Rn | ‖A−1x − A−1b‖6 1}. (7.1)

Exercise 7.2. Consider the mapping t(x) =
(

1 3
2 5

)(
x(1)
x(2)

)
. Draw the ellipsoid which is

defined by t . What are the axes of the ellipsoid?

The volume of the unit ball is denoted by Vn , where Vn ∼ 1
πn

(
2eπ

n

)n/2
. It follows

that the volume of the ellipsoid E (A,b) is equal to |det(A)| ·Vn . The next lemma is

the key to the development of the ellipsoid method.

Lemma 7.1 (Half-Ball Lemma). The half-ball H = {x ∈ Rn | ‖x‖ 6 1, x(1) > 0} is

contained in the ellipsoid

E =
{

x ∈Rn |
(

n+1

n

)2 (
x(1)−

1

n+1

)2

+
n2 −1

n2

n∑

i=2

x(i )2
6 1

}
(7.2)

x(1) >0

Fig. 7.1: Half-ball lemma.

Proof. Let x be contained in the unit ball, i.e., ‖x‖ 6 1 and suppose further that

0 6 x(1) holds. We need to show that

(
n+1

n

)2 (
x(1)−

1

n+1

)2

+
n2 −1

n2

n∑

i=2

x(i )2
6 1 (7.3)

holds. Since
∑n

i=2 x(i )2 6 1− x(1)2 holds we have

(
n+1

n

)2 (
x(1)−

1

n+1

)2

+
n2 −1

n2

n∑

i=2

x(i )2

6

(
n+1

n

)2 (
x(1)−

1

n+1

)2

+
n2 −1

n2
(1− x(1)2)

(7.4)



81

This shows that (7.3) holds if x is contained in the half-ball and x(1) = 0 or x(1) =
1. Now consider the right-hand-side of (7.4) as a function of x(1), i.e., consider

f (x(1)) =
(

n+1

n

)2 (
x(1)−

1

n+1

)2

+
n2 −1

n2
(1− x(1)2). (7.5)

The first derivative is

f ′(x(1)) = 2 ·
(

n+1

n

)2 (
x(1)−

1

n+1

)
−2 ·

n2 −1

n2
x(1). (7.6)

We have f ′(0) < 0 and since both f (0) = 1 and f (1) = 1, we have f (x(1)) 6 1 for all

0 6 x(1) 6 1 and the assertion follows.

In terms of a matrix A and a vector b, the ellipsoid E is described as E = {x ∈
Rn | ‖A−1x − A−1b‖}, where A is the diagonal matrix with diagonal entries

n

n+1
,

√
n2

n2 −1
, . . . ,

√
n2

n2 −1

and b is the vector b = (1/(n+1),0, . . . ,0). Our ellipsoid E is thus the image of the

unit sphere under the linear transformation t(x) = Ax +b. The determinant of A

is thus n
n+1

(
n2

n2−1

)(n−1)/2
which is bounded by

e−1/(n+1)e(n−1)/(2·(n2−1)) = e−
1

2(n+1) . (7.7)

We can conclude the following theorem.

Theorem 7.1. The half-ball {x ∈Rn | x(1) > 0, ‖x‖6 1} is contained in an ellipsoid

E, whose volume is bounded by e−
1

2(n+1) ·Vn .

Recall the following notion from linear algebra. A symmetric matrix A ∈ Rn×n

is called positive definite if all its eigenvalues are positive. Recall the following

theorem.

Theorem 7.2. Let A ∈Rn×n be a symmetric matrix. The following are equivalent.

i) A is positive definite.

ii) A = LT L, where L ∈Rn×n is a uniquely determined upper triangular matrix.

iii) xT Ax > 0 for each x ∈Rn \ {0}.

iv) A = QT diag(λ1, . . . ,λn )Q, where Q ∈ Rn×n is an orthogonal matrix and λi ∈
R>0 for i = 1, . . . ,n.

It is now convenient to switch to a different representation of an ellipsoid. An

ellipsoid E (A, a) is the set E (A, a) = {x ∈ Rn | (x − a)T A−1(x − a) 6 1}, where A ∈
Rn×n is a symmetric positive definite matrix and a ∈ Rn is a vector. Consider the

half-ellipsoid E (A, a)∩ (cT x 6 cT a).

Our goal is a similar lemma as the half-ball-lemma for ellipsoids. Geometri-

cally it is clear that each half-ellipsoid E (A, a)∩ (cT x 6 cT a) must be contained
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in another ellipsoid E (A′,b′) with vol(E (A′, a′))/vol(E (A, a)) 6 e−1/(2n). More pre-

cisely this follows from the fact that the half-ellipsoid is the image of the half-ball

under a linear transformation. Therefore the image of the ellipsoid E under the

same transformation contains the half-ellipsoid. Also, the volume-ratio of the two

ellipsoids is invariant under a linear transformation.

We now record the formula for the ellipsoid E ′(A′, a′). It is defined by

a′ = a −
1

n+1
b (7.8)

A′ =
n2

n2 −1

(
A−

2

n+1
b bT

)
, (7.9)

where b is the vector b = A c/
p

cT A c. The proof of the correctness of this formula

can be found in [5].

Lemma 7.2 (Half-Ellipsoid-Theorem). The half-ellipsoid E (A,b)∩ (cT x 6 cT a)

is contained in the ellipsoid E ′(A′, a′) and one has vol(E ′)/vol(E ) 6 e−1/(2n).

7.1 The method

Suppose we know the following things of our polyhedron P .

I) We have a number L such that vol(P ) > L if P is full-dimensional.

II) We have an ellipsoid Eini t which contains P if P is bounded.

The ellipsoid method is now easily described.

Algorithm 7.1 (Ellipsoid method exact version).

a) (Initialize): Set E (A, a) := Eini t

b) If a ∈ P , then assert P 6= ; and stop

c) If vol(E ) < L, then assert that P is unbounded or P is not full-dimensional

d) Otherwise, compute an inequality cT x 6 β which is valid for P and satisfies

cT a >β and replace E (A, a) by E (A′, a) computed with formula (7.8) and goto

step b).

Theorem 7.3. The ellipsoid method computes a point in the polyhedron P or as-

serts that P is unbounded or not full-dimensional. The number of iterations is

bounded by 2 ·n ln(vol(Eini t )/L).

Proof. Unless P is unbounded, we start with an ellipsoid which contains P . This

then holds for all the subsequently computed ellipsoids. After i iterations one has

vol(E )/vol(Eini t ) 6 e−
i

2n . (7.10)

Since we stop when vol(E ) < L, we stop at least after 2 ·n ln(vol(Eini t )/L) itera-

tions. This shows the claim.
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7.1.1 The separation problem

At this point we can already notice a very important fact. Inspect step d of the al-

gorithm. What is required here ? An inequality which is valid for P but not for the

center a of E (A, a). Such an inequality is readily at hand if we have the complete

inequality description of P in terms of a system C x 6 d . Just pick an inequal-

ity which is violated by a. Sometimes however, it is not possible to describe the

polyhedron of a combinatorial optimization problem with an inequality system

efficiently, simply because the number of inequalities is too large. An example of

such a polyhedron is the matching polytope, see Theorem 5.5.

The great power of the ellipsoid method lies in the fact that we do not have to

write down the polyhedron entirely. We only have to solve the so-called separa-

tion problem for the polyhedron, which is defined as follows.

SEPARATION PROBLEM

Given a point a ∈Rn determine, whether a ∈ P and if not, compute an

inequality cT x 6β which is valid for P with cT a >β.

Exercise 7.3. We are given an undirected graph G = (V ,E ). A spanning tree T is a

subset T ⊆ E of the edges such that T does not contain a cycle and T connects all

the vertices V . Consider the following spanning tree polytope Pspan

∑

e∈E

x(e) = n−1 (7.11)

∑

e∈δ(U )

x(e) > 1 ∀;⊂U ⊂V (7.12)

x(e) 6 1 ∀e ∈E (7.13)

x(e) > 0 ∀e ∈E . (7.14)

Let x be an integral solution of Pspan and define T = {e ∈ E | x(e) = 1}. The in-

equality (7.11) ensures that exactly n−1 edges are picked. The inequalities (7.12)

ensure that T connects the vertices of G. Thus T must be a spanning tree. Clearly,

there are exponentially many inequalities of type (7.12). Nevertheless, a fractional

solution of this polytope can be computed using the ellipsoid method.

Show that the separation problem for Pspan can be solved in polynomial time.

Hint: To verify whether a vector x ∈ R
|E |
>0

fulfills inequalities of type (7.12), it is

a good idea to recall the MinCut or MaxFlow problem.

Via binary search even an optimal solution can be computed in polynomial time (in the input

length) if we introduce edge costs (you don’t have to show that). In the next semester you will

see that any optimal basis solution is integral and hence defines an optimal spanning tree w.r.t.

the edge costs.

Exercise 7.4. Consider the triangle defined by
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−x(1)− x(2) 6 −2

3x(1) 6 4

−2x(1)+2x(2) 6 3.

Draw the triangle and simulate the ellipsoid method with starting ellipsoid

being the ball of radius 6 around 0. Draw each of the computed ellipsoids with

your favorite program (pstrics, maple . . . ). How many iterations does the ellipsoid

method take?

Ignore the occurring rounding errors!

7.2 How to start and when to stop

In our description of the ellipsoid method, we did not explain yet what the ini-

tial ellipsoid is and when we can stop with asserting that P is either not full-

dimensional or unbounded.

Suppose therefore that P = {x ∈ Rn | Ax 6 b} is full-dimensional and bounded

with A ∈Zm×n and b ∈Zm . Let B be the largest absolute value of a component of

A and b. In this section we will show the following things.

i) The vertices of P are in the box {x ∈ Rn | −nn/2Bn 6 x 6 nn/2Bn }. Thus P is

contained in the ball around 0 with radius nn Bn . Observe that the encoding

length of this radius is size(nnBn ) =O(n logn+n size(B)) which is polynomial

in the dimension n and the largest encoding length of a coefficient of A and

b.

ii) The volume of P is bounded from below by 1/(n ·B)3n2
.

The following lemma is proved in any linear algebra course.

Lemma 7.3 (Inverse formula and Cramer’s rule). Let C ∈ Rn×n be a nonsingular

matrix. Then

C−1( j , i )= (−1)i+ j det(Ci j )/det(C ),

where Ci j is the matrix arising from C by the deletion of the i -th row and j -

th column. If d ∈ Rn is a vector then the j -th component of C−1d is given by

det(C̃ )/det(C ), where C̃ arises from C be replacing the j -th column with d.

We now define the size of a rational number r = p/q with p and q relatively

prime integers, a vector c ∈Qn and a matrix A ∈Qm×n :

• size(r )= 1+⌈log(|p|+1)⌉+⌈log(|q|+1)⌉
• size(c) = n+

∑n
i=1

size(c(i ))

• size(A)= m ·n+
∑n

i=1

∑m
j=1 size(A(i , j ))

We recall the Hadamard inequality which states that for A ∈Rn×n one has

|det(A)|6
n∏

i=1

‖ai ‖, (7.15)
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where ai denotes the i -th column of A. In particular, if B is the largest absolute

value of an entry in A, then

|det(A)|6 nn/2Bn . (7.16)

Now let us inspect the vertices of a polyhedron P = {x ∈ Rn | Ax 6 b}, where

A and b are integral and the largest absolute value of any entry in A and b is

bounded by B . A vertex is determined as the unique solution of a linear system

A′x = b′, where A′x 6 b′ is a subsystem of Ax 6 b and A′ is invertible. Using

Cramer’s rule and our observation (7.16) we see that the vertices of P lie in the

box {x ∈Rn | −nn/2Bn 6 x 6 nn/2Bn }. This shows i).

Now let us consider a lower bound on the volume of P . Since P is full-dimensional,

there exist n+1 affinely independent vertices v0, . . . , vn of P which span a simplex

in Rn . The volume of this simplex is determined by the formula

1

n!
·
∣∣∣∣det

(
1 · · · 1

v0 . . . vn

)∣∣∣∣ . (7.17)

By Cramer’s rule and the Hadamard inequality, the common denominator of each

component of vi can be bounded by nn/2Bn . Thus (7.17) is bounded by

1/
(
nn (n

n
2 ·Bn )n+1

)
> 1/

(
n3n2

B2n2
)
> 1/(n ·B)3·n2

, (7.18)

which shows ii).

Now we plug these values into our analysis in Theorem 7.3. Our initial volume

vol(Eini t ) is bounded by the volume of the box with side-lengths 2(n ·B)n . Thus

vol(Eini t ) 6 (2 ·n ·B)n2

. (7.19)

Above we have shown that

L > 1/(n ·B)3n2

. (7.20)

Clearly

vol(Eini t )/L 6 (n ·B)4·n2

. (7.21)

By Theorem 7.3 the ellipsoid method performs

O
(
2 ·n · ln

(
(n ·B)4·n2

))
(7.22)

iterations. This is bounded by

O(n3 · ln(n ·B)). (7.23)

Now recall that logB is the number of bits which are needed to encode the coef-

ficient with the largest absolute value of the constraint system Ax 6 b and that n

is the number of variables of this system. Therefore the expression (7.23) is poly-
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nomial in the binary input encoding of the system Ax 6 b. We conclude the fol-

lowing theorem.

Theorem 7.4. The ellipsoid method (exact version) performs a polynomial num-

ber of iterations.

7.3 The boundedness and full-dimensionality condition

In this section we want to show how the ellipsoid method can be used to solve

the following problem.

Given a matrix A ∈Zm×n and a vector b ∈Zm , determine a feasible point x∗ in the poly-

hedron P = {x ∈Rn | Ax 6b} or assert that P =;.

7.3.1 Boundedness

We have argued that the matrix A ∈ Zm×n can be assumed to have full column

rank. So, if P is not empty, then P does have at least one vertex. The vertices are

contained in the box {x ∈Rn | −nn/2Bn 6 x 6 nn/2Bn }. Therefore, we can append

the inequalities −nn/2Bn 6 x 6 nn/2Bn to Ax 6 b without changing the status of

P 6= ; or P =;. Notice that the binary encoding length of the new inequalities is

polynomial in the binary encoding length of the old inequalities.

7.3.2 Full-dimensionality

Exercise 7.5. Let P = {x ∈ Rn | Ax 6 b} be a polyhedron and ε > 0 be a real num-

ber. Show that Pε = {x ∈Rn | Ax 6 b +ε ·1} is full-dimensional if P 6= ;.

The above exercise raises the following question. Is there an ε > 0 such that

Pε =; if and only if P =; and furthermore is the binary encoding length of this

ε polynomial in the binary encoding length of A and b ?

Recall Farkas’ Lemma (Theorem 2.9 and Exercise 10 of chapter 2).

Theorem 7.5. The system Ax 6 b does not have a solution if and only if there exists

a nonnegative vector λ∈Rm
>0

such that λT A = 0 and λT b =−1.

Let A ∈ Zm×n and b ∈ Zm and let B be the largest absolute value of a coef-

ficient of A and b. If Ax 6 b is not feasible, then there exists a λ > 0 such that

λT (A|b) = (0|−1). We want to estimate the largest absolute value of a coefficient

of λ with Cramer’s rule and the Hadamard inequality. We can choose λ such that

the nonzero coefficients of λ are the unique solution of a system of equations
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C x = d , where each coefficient has absolute value at most B . By Cramer’s rule

and the Hadamard inequality we can thus choose λ such that |λ(i )| 6 (n ·B)n .

Now let ε= 1/((n+1) · (n ·B)n ). Then |λT 1 ·ε| < 1 and thus

λT (b +ε ·1) < 0. (7.24)

Consequently the system Ax 6 b +ε1 is infeasible if and only of Ax 6 b is infea-

sible. Notice again that the encoding length of ε is polynomial in the encoding

length of Ax 6 b and we conclude with the main theorem of this section.

Theorem 7.6. The ellipsoid method can be used to decide whether a system of in-

equalities Ax 6 b contains a feasible point, where A ∈Zm×n and b ∈Zm . The num-

ber of iterations is bounded by a polynomial in n and logB, where B is the largest

absolute value of a coefficient of A and b.

7.4 The ellipsoid method for optimization

Suppose that you want to solve a linear program

max{cT x | x ∈R
n , Ax 6 b} (7.25)

and recall that if (7.25) is bounded and feasible, then so is its dual and the two

objective values are equal. Thus, we can use the ellipsoid method to find a point

(x, y) with cT x = bT y , Ax 6 b and AT y = c, y > 0.

However, we mentioned that the strength of the ellipsoid method lies in the

fact that we do not need to write the system Ax 6 b down explicitly. The only

thing which has to be solvable is the separation problem. This is to be exploited

in the next exercise.

Exercise 7.6. Show how to solve the optimization problem max{cT x | Ax 6 b}

with a polynomial number of calls to an algorithm which solves the separation

problem for Ax 6 b. You may assume that A has full column rank and the poly-

nomial bound on the number of calls to the algorithm to solve the separation

problem can depend on n and the largest size of a component of A,b and c.

7.5 Numerical issues

We did not discuss the numerical details on how to implement the ellipsoid

method such that it runs in polynomial time. One issue is crucial.

We only want to compute with a precision which is polynomial in the

input encoding!
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In the formula (7.8) the vector b is defined by taking a square root. The ques-

tion thus rises on how to round the numbers in the intermediate ellipsoids such

that they can be handled on a machine. Also one has to analyze the growth of the

numbers in the course of the algorithm. All these issues can be overcome but we

do not discuss them in this course. I would like to refer you to the book of Alexan-

der Schrijver [16] for further details. They are not difficult, but a little technical.
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