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ABSTRACT 

This paper argues that the reduced-form jump diffusion model may not be appropriate for credit 

risk modeling. To correctly value hybrid defaultable financial instruments, e.g., convertible bonds, we 

present a new framework that relies on the probability distribution of a default jump rather than the default 

jump itself, as the default jump is usually inaccessible. As such, the model can back out the market prices 

of convertible bonds. A prevailing belief in the market is that convertible arbitrage is mainly due to 

convertible underpricing. Empirically, however, we do not find evidence supporting the underpricing 

hypothesis. Instead, we find that convertibles have relatively large positive gammas. As a typical 

convertible arbitrage strategy employs delta-neutral hedging, a large positive gamma can make the portfolio 

highly profitable, especially for a large movement in the underlying stock price. 
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1. Introduction 

A company can raise capital in financial markets either by issuing equities, bonds, or hybrids (such 

as convertible bonds). From an investor’s perspective, convertible bonds with embedded optionality offer 

certain benefits of both equities and bonds – like the former, they have the potential for capital appreciation 

and like the latter, they offer interest income and safety of principal. The convertible bond market is of 

primary global importance.  

There is a rich literature on the subject of convertible bonds. Arguably, the first widely adopted 

model among practitioners is the one presented by Goldman Sachs (1994) and then formalized by 

Tsiveriotis and Fernandes (1998). The Goldman Sachs’ solution is a simple one factor model with an equity 

binomial tree to value convertible bonds. The model considers the probability of conversion at every node. 

If the convertible is certain to remain a bond, it is then discounted by a risky discount rate that reflects the 

credit risk of the issuer. If the convertible is certain to be converted, it is then discounted by the risk-free 

interest rate that is equivalent to default free. 

Tsiveriotis and Fernandes (1998) argue that in practice one is usually uncertain as to whether the 

bond will be converted, and thus propose dividing convertible bonds into two components: a bond part that 

is subject to credit risk and an equity part that is free of credit risk. A simple description of this model and 

an easy numerical example in the context of a binomial tree can be found in Hull (2003). 

Grimwood and Hodges (2002) indicate that the Goldman Sachs model is incoherent because it 

assumes that bonds are susceptible to credit risk but equities are not. Ayache, et al. (2003) conclude that 

the Tsiveriotis-Fernandes model is inherently unsatisfactory due to its unrealistic assumption of stock prices 

being unaffected by bankruptcy. To correct this weakness, Davis and Lischka (1999), Andersen and Buffum 

(2004), Bloomberg (2009), and Carr and Linetsky (2006) etc., propose a jump-diffusion model to explore 

defaultable stock price dynamics. They all believe that under a risk-neutral measure the expected rate of 

return on a defaultable stock must be equal to the risk-free interest rate. The jump-diffusion model 

characterizes the default time/jump directly. 
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The jump-diffusion model was first introduced by Merton (1976) in the market risk context for 

modeling asset price behavior that incorporates small day-to-day diffusive movements together with larger 

randomly occurring jumps. Over the last decade, people attempt to propagate the model from the market 

risk domain to the credit risk arena.  

There are two primary types of models that attempt to describe default processes in the literature: 

structural models and reduced-form models. The structural models regard default as an endogenous event, 

focusing on the capital structure of a firm. The reduced-form models do not explain the event of a default 

endogenously, but instead characterize it exogenously as a jump process. Many practitioners in the credit 

trading arena have tended to gravitate toward the reduced-from models given their mathematical tractability 

and market consistency. 

Zhou (1997), Hilberink and Rogers (2002), Chen and Kou (2009), etc. introduce the jump-diffusion 

mechanism into the structural models, while Davis and Lischka (1999), Andersen and Buffum (2004), and 

Bloomberg (2009), etc. add a default jump to the stock price dynamics. We refer to the formers as the 

structural jump-diffusion models and the latters as the reduced-form jump-diffusion models. 

Although both the structural jump-diffusion model and the reduced-form model contain jumps, 

these jumps have different meanings: A jump in the structural jump-diffusion model corresponds to a 

sudden change in the asset value that may or may not cause the firm to default, whereas a jump in the 

reduced-form model represents the default event itself. 

In this paper, we mainly discuss the reduced-form jump-diffusion models. At the heart of the jump-

diffusion models lies the assumption that the total expected rate of return to the stockholders is equal to the 

risk-free interest rate under a risk-neutral measure. 

Although we agree that under a risk-neutral measure the market price of risk and risk preferences 

are irrelevant to asset pricing (see Hull (2003)) and thereby the expectation of a risk-free1 asset grows at 

the risk-free interest rate, we are not convinced that the expected rate of return on a defaultable asset must 

 
1 Here, risk-free means free of credit risk, but not necessarily of market risk 
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be also equal to the risk-free rate. We argue that unlike market risk, credit risk actually has a significant 

impact on asset prices. This is why regulators, such as International Accounting Standards Board (IASB), 

Basel Committee on Banking Supervision (BCBS), etc. require financial institutions to report a credit value 

adjustment (CVA) in addition to the risk-free mark-to-market (MTM) value to reflect credit risk (see Xiao 

(2013)). By definition, a CVA is the difference between the risk-free value and the risky value of an 

asset/portfolio subject to credit risk. CVA implies that the risk-free value should not be equal to the risky 

value in the presence of default risk. As a matter of fact, we will prove that the expected return of a 

defaultable asset under a risk-neutral measure actually grows at a risky rate rather than the risk-free rate. 

This conclusion is very important for risky valuation. 

Because of their hybrid nature, convertible bonds attract different type of investors. Especially, 

convertible arbitrage hedge funds play a dominant role in primary issues of convertible debt. In fact, it is 

believed that hedge funds purchase 70% to 80% of the convertible debt offered in primary markets. A 

prevailing belief in the market is that convertible arbitrage is mainly due to convertible underpricing (i.e., 

the model prices are on average higher than the observed trading prices) (see Ammann, et al (2003), Choi, 

et al. (2009), Loncarski, et al. (2009), etc.). However, Agarwal, et al. (2007) and Batta, et al. (2007) argue 

that the excess returns from convertible arbitrage strategies are not mainly due to underpricing, but rather 

partly due to illiquid. Calamos (2011) believes that arbitrageurs in general take advantage of volatility. A 

higher volatility in the underlying equity translates into a higher value of the equity option and a lower 

conversion premium. Multiple views reveal the complexity of convertible arbitrage, involving taking 

positions in the convertible bond and the underlying asset that hedges certain risks but leaves managers 

exposed to other risks for which they reap a reward.  

This article makes a theoretical and empirical contribution to the study of convertible bonds. In 

contrast to the above mentioned literature, we present a model that is based on the probability distribution 

(or intensity) of a default jump (or a default time) rather than the default jump itself, as the default jump is 

usually inaccessible (see Duffie and Huang (1996), Jarrow and Protter (2004), etc).  
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We model both equities and bonds as defaultable in a consistent way. When a firm goes bankrupt, 

the investors who take the least risk are paid first. Secured creditors have the best chances of seeing the 

value of their initial investments come back to them. Bondholders have a greater potential for recovering 

some their losses than stockholders who are last in line to be repaid and usually receive little, if anything. 

The default proceedings provide a justification for our modeling assumptions: Different classes of securities 

issued by the same company have the same default probability but different recovery rates. Given this 

model, we are able to back out the market prices. 

Valuation under our risky model can be solved by common numerical methods, such as, Monte 

Carlo simulation, tree/lattice approaches, or partial differential equation (PDE) solutions. The PDE 

algorithm is elaborated in this paper, but of course the methodology can be easily extended to tree/lattice 

or Monte Carlo. 

Using the model proposed, we conduct an empirical study of convertible bonds. We obtain a data 

set from FinPricing (2015). The data set contains 164 convertible bonds and 2 years of daily market prices 

as well as associated interest rate curves, credit curves, stock prices, implied Black-Scholes volatilities and 

recovery rates. 

The most important input parameter to be determined is the volatility for valuation. A common 

approach in the market is to use the at-the-money (ATM) implied Black-Scholes volatility to price 

convertible bonds. However, most liquid stock options have relatively short maturates (rarely more than 8 

years). As a result, some authors, such as Ammann, et al. (2003), Loncarski, et al. (2009), Zabolotnyuk, et 

al. (2010), have to make do with historical volatilities. Therefore, we segment the sample into two sets 

according to the time to maturity: a short-maturity class (0 ~ 8 years) and a long-maturity class (> 8 years). 

For the short-maturity class, we use the ATM implied Black-Scholes volatilities for valuation, whereas for 

the long-maturity class, we calculate the historical volatility as the annualized standard deviation of the 

daily log returns of the last 2 years and then price the convertible bond based on this real-world volatility. 

The empirical results show that the model prices fluctuate randomly around the market prices, 

indicating the model is quite accurate. Our empirical evidence does not support a systematic underpricing 
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hypothesis. A similar conclusion is reached by Ammann and Wilde (2008) who use a Monte-Carlo 

simulation approach. Moreover, market participants almost always calibrate their models to the observed 

market prices using implied convertible volatilities. Therefore, underpricing may not be the main driver of 

profitability in convertible arbitrage.  

 It is useful to examine the basics of the convertible arbitrage strategy. A typical convertible bond 

arbitrage employs delta-neutral hedging, in which an arbitrageur buys a convertible bond and sells the 

underlying equity at the current delta (see Choi, et al. (2009), Loncarski, et al. (2009), etc.). With delta 

neutral positions, the sign of Gamma is important. If Gamma is negative, the portfolio profits so long as the 

underlying equity remains stable. If Gamma is positive, the portfolio will profit from large movements in 

the stock price in either direction (see Somanath (2011)). 

We study the sensitivities of convertible bonds and find that convertible bonds have relatively large 

positive gammas, implying that convertible arbitrage can make a profit on a large upside or downside 

movement in the underlying stock price. Since convertible bonds are issued mainly by start-up or small 

companies (while more established firms rely on other means of financing), the chance of a large movement 

in either direction is very likely. Even for very small movements in the underlying stock price, profits can 

still be generated from the yield of the convertible bond and the interest rebate for the short position. 

The rest of this paper is organized as follows: The model is presented in Section 2. Section 3 

elaborates the PDE approach; Section 4 discusses the empirical results. The conclusions are provided in 

Section 5. PDE implementation details, a binomial tree approach and a comparison of models are contained 

in the appendices. 

 

2 Model 

Convertible bonds can be thought of as normal corporate bonds with embedded options, which 

enable the holder to exchange the bond asset for the issuer’s stock. Despite their popularity and ubiquity, 

convertible bonds still pose difficult modeling challenges, given their hybrid nature of containing both debt 
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and equity features. Further complications arise due to the frequent presence of complex contractual clauses, 

such as, put, hard call, soft call, and other path-dependent trigger provisions. Contracts of such complexity 

can only be solved by numerical methods, such as, Monte Carlo simulation, tree/lattice approaches, or PDE 

solutions. 

From a practitioner’s perspective, Monte Carlo is a “last resort” and “least preferred” method, 

whereas lattice or PDE approaches suffer from the curse of dimensionality: The number of evaluations and 

computational cost increase exponentially with the dimension of the problem, making it impractical to use 

in more than two dimensions. 

Three sources of randomness exist in a convertible bond: the stock price, the interest rate, and the 

credit spread. As practitioners tend to eschew models with more than two factors, it is a legitimate question: 

How can we reduce the number of factors or which factors are most important? Grimwood and Hodges 

(2002) conduct a sensitivity study and find that accurately modeling the equity process appears crucial. 

This is why all convertible bond models in the market capture, at a minimum, the dynamics of the 

underlying equity price. Since convertible bonds are issued mainly by start-up or small companies (while 

more established firms rely on other means of financing), credit risk plays an important role in the valuation. 

Grimwood and Hodges (2002) further note that the interest rate process is of second order importance. 

Similarly, Brennan and Schwartz (1980) conclude that the effect of a stochastic interest rate on convertible 

bond prices is so small that it can be neglected. Furthermore, Ammann, et al. (2008) notice that the overall 

pricing benefit of incorporating stochastic interest rates would be very limited and would not justify the 

additional computational costs. For these reasons, most practical convertible models in the market do not 

take stochastic interest rate into account. 

We consider a filtered probability space (  , F ,  
0ttF , P ) satisfying the usual conditions, 

where   denotes a sample space, F  denotes a  -algebra, P  denotes a probability measure, and  
0ttF  

denotes a filtration.  

The risk-free stock price process can be described as 
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)()()()()( tdWtSdttStrtdS +=               (1) 

where )(tS  denotes the stock price, )(tr  denotes the risk-free interest rate,   denotes the volatility, )(tW  

denotes a Wiener process. 

 The expectation of equation (1) is 

( ) dttStrtdSE t )()()( =F                (2) 

where  tE F•  is the expectation conditional on the tF . 

 Equation (2) tells us that in a risk-neutral world, the expected return on a risk-free stock is the risk-

free interest rate )(tr , i.e., the discounted stock price under the risk neutral measure is a martingale process. 

Next, we turn to a defaultable stock. The defaultable stock process proposed by Davis and Lischka 

(1999), Andersen and Buffum (2004), and Bloomberg (2009), etc., is given by 

( ) )()()()(ˆ)()()()( tdUtStdWtSdttSthtrtdS −−− −++=              (3) 

where )(tU  is an independent Poisson process with 1)( =tdU  with probability dtth )(  and 0 otherwise, 

)(th  is the hazard rate or the default intensity, )( −tS  is the stock price immediately before any jump at time 

t. The expectation of )(tdU  is dtthtdUE t )())(( =F . 

 The expectation of equation (3) is given by 

( ) ( ) dttStrdtthtSdttSthtrtdSE t )()()()()()()()( =−+=F             (4) 

It is shown in equation (4) that the expected return of a defaultable stock under a jump-diffusion 

model also grows at the risk-free interest rate. Equation (3) is a simpler version of the Merton’s Jump-

diffusion model where the number of jumps is 1.  

The jump-diffusion model was first proposed in the context of market risk, which naturally exhibits 

high skewness and leptokurtosis levels and captures the so-called implied volatility smile or skew effects. 

Ederington and Lee (1993) find that the markets tend to have overreaction and underreaction to the outside 

news. The jump part of the model can be interpreted as the market response to outside news. If there is not 

any outside news, the asset price changes according to a geometric Brownian motion. Since the market 
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price of risk and risk preferences are irrelevant to asset pricing within the market risk context, the expected 

rate of return to the stockholders is equal to the risk-free rate under a risk-neutral measure. 

However, we wonder whether it is appropriate to propagate the jump-diffusion model directly from 

the market risk domain to the credit risk domain, as credit risk actually impacts the valuation of assets. This 

is why financial institutions are required by regulators to report CVA. In fact, we will show in the following 

derivation that the expected return of a defaultable asset under a risk-neutral measure is actually equal to a 

risky rate instead of the risk-free rate. This conclusion is very important for risky valuation. 

The world of credit modeling is divided into two main approaches: structural models and reduced-

form (or intensity) models. The structural models regard default as an endogenous event, focusing on the 

capital structure of a firm. The reduced-form models do not explain the event of default endogenously, but 

instead characterize it exogenously as a jump process. In general, structural models are based on the 

information set available to the firm's management, such as the firm’s assets and liabilities; while reduced-

form models are based on the information set available to the market, such as the firm’s bond prices or 

credit default swap (CDS) premia. Many practitioners in the credit trading arena have tended to gravitate 

toward the reduced-from models given their mathematical tractability. The reduced-form models can be 

made consistent with the risk-neutral probabilities of default backed out from corporate bond prices or CDS 

spreads/premia. 

In the reduced-form models, the stopping (or default) time   of a firm is modeled as a Cox arrival 

process (also known as a doubly stochastic Poisson process) whose first jump occurs at default and is 

defined as, 

 = 
t

s dssht
0

),(:inf      (5) 

where )(th  or ),( tth   denotes the stochastic hazard rate or arrival intensity dependent on an exogenous 

common state 
t , and   is a unit exponential random variable independent of 

t .  

It is well-known that the survival probability from time t to s in this framework is defined by 
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





−== 

s

t
duuhZtsPstp )(exp),|(:),(                   (6) 

 The default probability for the period (t, s) in this framework is defined by 







−−=−== 

s

t
duuhstpZtsPstq )(exp1),(1),|(:),(               (7) 

We consider a defaultable asset that pays nothing between dates t and T. Let )(tV  and )(TV  denote 

its values at t and T, respectively. Risky valuation can be generally classified into two categories: the default 

time approach (DTA) and the default probability (intensity) approach (DPA).  

The DTA involves the default time explicitly. If there has been no default before time T (i.e., T ), 

the value of the asset at T is )(TV . If a default happens before T (i.e., Tt  ), a recovery payoff is made 

at the default time   as a fraction of the market value2 given by )(V  where   is the default recovery 

rate and )(V  is the market value at default. Under a risk-neutral measure, the value of this defaultable 

asset is the discounted expectation of all the payoffs and is given by 

( ) tTT VtDTVTtDEtV F|1)(),(1)(),()(  +=                    (8) 

where Y  is an indicator function that is equal to one if Y is true and zero otherwise, and ),( tD  denotes 

the stochastic risk-free discount factor at t for the maturity   given by 





−=  duurtD

t


 )(exp),(      (9) 

Although the DTA is very intuitive, it has the disadvantage that it explicitly involves the default 

time/jump. We are very unlikely to have complete information about a firm’s default point, which is often 

inaccessible. Usually, valuation under the DTA is performed via Monte Carlo simulation.  

The DPA relies on the probability distribution of the default time rather than the default time itself. 

We divide the time period (t, T) into n very small time intervals ( t ) and assume that a default may occur 

 
2 Here we use the recovery of market value (RMV) assumption.  
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only at the end of each very small period. In our derivation, we use the approximation ( ) yy +1exp  for 

very small y. The survival and default probabilities for the period ( t , tt + ) are given by 

( ) tthtthtttptp −−=+= )(1)(exp),(:)(ˆ               (10) 

( ) tthtthtttqtq −−=+= )()(exp1),(:)(ˆ               (11) 

The binomial default rule considers only two possible states: default or survival. For the one-period 

( t , tt + ) economy, at time tt + the asset either defaults with the default probability ),( tttq +  or 

survives with the survival probability ),( tttp + . The survival payoff is equal to the market value 

)( ttV +  and the default payoff is a fraction of the market value: )()( ttVtt ++ . Under a risk-neutral 

measure, the value of the asset at t is the expectation of all the payoffs discounted at the risk-free rate and 

is given by 

( )    ( ) tt ttVttyEttVtqttpttrEtV FF )()(exp)()(ˆ)()(ˆ)(exp)( +−++−=                 (12) 

where ( ) )()()(1)()()( tctrtthtrty +=−+=   denotes the risky rate and ( ))(1)()( tthtc −=  is called the 

(short) credit spread.  

Similarly, we have 

( ) ttttVtttyEttV +++−=+ F)2()(exp)(                    (13) 

Note that ( )tty − )(exp  is ttF + -measurable. By definition, an ttF + -measurable random variable 

is a random variable whose value is known at time tt + . Based on the taking out what is known and tower 

properties of conditional expectation, we have 

( ) 
( ) ( )  

( ) ti

ttt

t

ttVttityE

ttVtttyEttyE

ttVttyEtV

F

FF

F

)2())(exp

)2()(exp)(exp

)()(exp)(

1

0
++−=

++−−=

+−=

 =

+                  (14) 

By recursively deriving from t forward over T and taking the limit as t  approaches zero, the risky 

value of the asset can be expressed as 



 11 













−=  t

T

t
TVduuyEtV F)()(exp)(            (15) 

 Using the DPA, we obtain a closed-form solution for pricing an asset subject to credit risk.  Another 

good example of the DPA is the CDS model proposed by J.P. Morgan (1999). 

The derivation of equation (15) takes into account all credit characteristics: possibility of a jump to 

default and recovery rate. It tells us that a defaultable asset under the risk-neutral measure grows at a risky 

rate. The risky rate is equal to a risk-free interest rate plus a credit spread. If the asset is a bond, the equation 

is the same as Equation (10) in Duffie and Singleton (1999), which is the market model for pricing risky 

bonds. The market bond model says that the value of a risky bond is obtained by discounting the promised 

payoff using the risk-free interest rate plus the credit spread3.  

Under a risk-neutral measure the market price of risk and risk preferences are irrelevant to asset 

pricing (see Hull (2003)) and thereby the expectation of a risk-free asset grows at the risk-free interest rate. 

However, credit risk actually has a significant impact on asset prices. This is the reason that regulators, such 

as IASB and BCBS, require financial institutions to report a CVA in addition to the risk-free MTM value 

to reflect credit risk.  

In asset pricing theory, the fundamental no-arbitrage theorems do not require expected returns to 

be equal to the risk free rate, but only that prices are martingales after discounting under the numeraire. For 

risk-free valuation, people commonly use a risk-free bond as the numeraire, whereas for risky valuation, 

they should choose an associated risky numeraire to reflect credit risk. The expected return is that of the 

numeraire. 

If a company files bankruptcy, both bonds and stocks go into a default status. In other words, the 

default probabilities for both of them are the same (i.e., equal to the firm’s probability of default). But the 

recovery rates are different because the stockholders are the lowest priority in the list of the stakeholders in 

the company, whereas the bondholders have a higher priority to receive a higher percentage of invested 

 
3 There is a liquidity component in the bond spread. This paper, however, focuses on credit risk only. 
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funds. The default proceedings provide a justification for our modeling assumptions: Different classes of 

securities issued by the same company have the same default probability but different recovery rates.  

According to equation (15), we propose a risky model that embeds the probability of the default 

jump rather than the default jump itself into the price dynamics of an asset. The stochastic differential 

equation (SDE) of a defaultable stock is defined as 

( ) )()()()()()()())(1)(()()( tdWtSdttStytdWtSdttStthtrtdS s  +=+−+=                  (16) 

where s  is the recovery rate of the stock and ( ))(1)()()( tthtrty s−+=  is the risky rate. 

For most practical problems, zero recovery at default (or jump to zero) is unrealistic. For example, 

the stock of Lehman Brothers fell 94.3% on September 15, 2008 after the company filed for Chapter 11 

bankruptcy. Similarly, the shares of General Motors (GM) plunged 32% on June 1, 2009 after the firm 

initiated Chapter 11 bankruptcy. A good framework should flexibly allow people to incorporate different 

recovery assumptions into risky valuation. 

Equation (16) is the direct derivation of equation (15). The formula allows different assumptions 

concerning recovery on default. In particular, 0=s  represents the situation where the stock price jumps 

to 0, and 1=s  corresponds to the risk-free case. The expectation of equations (16) is 

( ) ( ) dttStthtrtdSE st )())(1)(()()( −+=F                 (17) 

Equation (17) says that the expected return of a stock subject to credit risk is equal to a risky rate 

rather than the risk-free rate. The risky rate reflects the compensation investors receive for bearing credit 

risk.  

  

3. PDE Algorithm 

The numerical solution of our risky model can be obtained by either PDE methods, tree approaches, 

or Monte Carlo simulation. In this paper, we introduce the PDE procedure, but of course the methodology 

can be easily extended to the tree/lattice or Monte Carlo algorithms.  
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The defaultable stock price process is given by 

( ) )()()()()()()())(1)(()()()( tdWtSdttSttdWtSdttStthtqtrtdS s  +=+−+−=              (18) 

where )(tq  is the dividend and ))(1)(()()()( tthtqtrt s −+−= . 

The valuation of a convertible bond normally has a backward nature since there is no way of 

knowing whether the convertible should be converted without knowledge of the future value. Only on the 

maturity date, the value of the convertible and the decision strategy are clear. If the convertible is certain to 

be converted, it behaves like a stock. If the convertible is not converted at an intermediate node, we are 

usually uncertain whether the continuation value should be treated as a bond or a stock, because in backward 

induction the current value takes into account the results of all future decisions and some future values may 

be dominated by the stock or by the bond or by both. Therefore, we arrange the valuation so that the value 

of the convertible at each node is divided into two components: a component of bond and a component of 

stock, i.e. ),(),(),( tSBtSGtSL +=  where ),( tSG  denotes the equity part of the convertible bond and 

),( tSB  denotes the bond part of the convertible. 

 Suppose that ),( tSG  is some function of S and t. Applying Ito Lemma, we have 

dW
S

G
Sdt

S

G
S

t

G

S

G
SdG




+












+




+




= 

2

2
22

2

1
    (19) 

 Since the Wiener process underlying S and G are the same, we can construct the following portfolio 

so that the Wiener process can be eliminated. 

S

G
SGX



−=       (20) 

 Therefore, we have 

dt
S

G
S

t

G
dS

S

G
dGdX 












+




=




−=

2

2
22

2

1
              (21) 
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In contrast to all previous studies, we believe that the defaultable equity should grow at the risky 

rate of the equity including dividends, whereas the equity part of the convertible bond should earn the risky 

rate of the equity excluding dividends, i.e., 

( ) ( ) dt
S

G
S

t

G
dXSdt

S

G
hqrGdthr ss 












+




==




−+−−−+

2

2
22

2

1
)1()1(              (22) 

 So that the PDE of the equity component is given by 

( ) ( ) 0)1()1(
2

1
2

2
22 =−+−




−+−+




+




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G
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S

G
S

t

G
ss     (23) 

Similarly applying Ito Lemma to the bond part of the convertible ),( tSB , we obtain 

dW
S

B
Sdt

S

B
S

t

B

S

B
SdB




+












+




+




= 

2

2
22

2

1
    (24) 

 Let us construct a portfolio so that we can eliminate the Wiener process as follows 

S

B
SBY



−=       (25) 

 Thus, we have 

dt
S

B
S

t

B
dS

S

B
dBdY 












+




=




−=

2

2
22

2

1
            (26) 

The defaultable equity should grow at the risky rate of the equity including dividends, while the 

bond part of the convertible bond grows at the risky rate of the bond. Consequently, we have  

( ) ( ) dt
S

B
S

t

B
dYSdt

S

B
hqrBdthr sb 












+




==




−+−−−+

2

2
22

2

1
)1()1(         (27) 

where b  is the recovery rate of the bond. 

 The PDE of the bond component is 

( ) ( ) 0)1()1(
2

1
2

2
22 =−+−




−+−+




+




Bhr

S

B
Shqr

S

B
S

t

B
bs      (28) 

 Equations (23) and (28) are coupled through appropriate final and boundary conditions reflecting 

the terms and conditions of each individual convertible and need to be solved simultaneously. Convertible 

bonds often incorporate various additional features, such as call and put provisions.  

 The final conditions at maturity T can be generalized as 
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

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=
otherwise
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T
,0

,max,min,,max,min 
    (30) 

where N denotes the bond principal, C denotes the coupon, cP  denotes the call price, pP  denotes the put 

price and   denotes the conversion ratio. The final conditions tell us that the convertible bond at the 

maturity is either a debt or an equity. 

 The upside constraints at time ],0[ Tt   are 

( ) 
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


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==

==
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elseBBGG

PLifelsePBG
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~
,

~

~
,0

~
,0

~
,max,min0, 

          (31) 

where ttt GBL
~~~

+=  is the continuation value of the convertible bond, tB
~

 is the continuation value of the 

bond component and tG
~

 is the continuation value of the equity component. Equation (31) says that the 

convertible is either in the continuation region or one of the three constraints (called, put or converted). One 

can use finite difference methods to solve the PDEs (23) and (28) for the price of a convertible bond. 

  

4. Empirical results 

 This section presents the empirical results. We use two years of daily data from September 10, 2010 

to September 10, 2012, i.e., a total of 522 observation days. This proprietary data are obtained from an 

investment bank. They consist of convertible bond contracts, market observed convertible prices, interest 

rate curves, credit curves, stock prices, implied Black-Scholes volatilities, and recovery rates. 

   

Figure 1. Histogram of convertible bonds by time to maturity 

This histogram divides the convertible bonds in our sample, as of September 10, 2012, into different bins 

according to the time to maturity. The x-axis represents the maturity in years and the y-axis represents the 
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number of convertibles in each bins. A maturity bin of n covers contracts with a time to maturity ranging 

from n-1 years to n years. 

 

We only consider the convertibles outstanding during the period and with sufficient pricing 

information. As a result, we obtain a final sample of 164 convertible bonds and a total of 164 × 522 = 

85,608 observations. None of the convertibles in this sample actually defaulted during the time window.  

As of September 10, 2012, the sample represents a family of convertible bonds with a time to 

maturity ranging from 2 months to 36.6 years, and has an average remaining maturity of 4.35 years. The 

histogram of contracts on September 10, 2012 for various maturity classes is given in Figure 1.  

Convertible bond prices observed in the market will be compared with theoretical prices under 

different volatility assumptions. The sample is segmented into two sets according to the time to maturity: a 

short-maturity class (0 ~ 8 years) and a long-maturity class (> 8 years). We first select a convertible bond 

from each group: a 7-year (or 5-year outstanding) contract and a 20-year (or 17-year outstanding) contract 

shown in Table 1.  

 

Table 1. Convertible Bonds 
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We hide the issuer names according to the security policy of the investment bank, but everything else is 

authentic. In the market, either a conversion price or a conversion ratio is given for a convertible bond, 

where conversion ratio = (face value of the convertible bond) / (conversion price). 

Convertible bond Case 1 (a 7-year convertible) Case 2 (a 20-year convertible) 

Issuer X company Y company 

Notional of bond 100 100 

Annual coupon rate 2.625 5.5 

Payment frequency Semiannual Semiannual 

Issuing date June 9, 2010 June 15, 2009 

Maturity date June 15, 2017 June 15, 2029 

Conversion price 30.288 13.9387 

Currency USD USD 

Day count 30/360 30/360 

Business day convention Following Following 

Put price - 100 at June 20, 2014 

 

 Let valuation date be September 10, 2012. An interest rate curve is the term structure of interest 

rates, derived from observed market instruments that represent the most liquid and dominant interest rate 

products for certain time horizons. Normally the curve is divided into three parts. The short end of the term 

structure is determined using the London Interbank Offered Rates (LIBOR). The middle part of the curve 

is constructed using Eurodollar futures that require convexity adjustments. The far end is derived using mid 

swap rates. The LIBOR-future-swap curve is presented in Table 2. We bootstrap the curve and get the 

continuously compounded zero rates. 

 

Table 2: USD LIBOR-Future-Swap Curve 

This table displays the closing prices as of September 10, 2012. 

Instrument Name Price 

September 19, 2012 LIBOR 0.6049% 

September 2012 Eurodollar 3 month 99.6125 
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December 2012 Eurodollar 3 month 99.6500 

March 2013 Eurodollar 3 month 99.6500 

June 2013 Eurodollar 3 month 99.6350 

September 2013 Eurodollar 3 month 99.6200 

December 2013 Eurodollar 3 month 99.5900 

March 2014 Eurodollar 3 month 99.5650 

2 year swap rate 0.3968% 

3 year swap rate 0.4734% 

4 year swap rate 0.6201% 

5 year swap rate 0.8194% 

6 year swap rate 1.0537% 

7 year swap rate 1.2738% 

8 year swap rate 1.4678% 

9 year swap rate 1.6360% 

10 year swap rate 1.7825% 

12 year swap rate 2.0334% 

15 year swap rate 2.2783% 

20 year swap rate 2.4782% 

25 year swap rate 2.5790% 

30 year swap rate 2.6422% 

 

 The equity information and recovery rates are provided in Table 3. To determine hazard rates, we 

need to know the observed market prices of corporate bonds or CDS premia, as the market standard practice 

is to fit the implied risk-neutral default intensities to these credit sensitive instruments. The corporate bond 

prices are unfortunately not available for companies X and Y, but their CDS premia are observable as shown 

in Table 4. Usually the CDS market leads the bond market, in particular during crisis situation. Liquidity 

in the bond market is typically drying up during a financial crisis. Demand for insurance against default 

risk, on the other hand, increases if the issuer is experiencing financial stress. Consequently, prices and 

spreads derived from the CDS market tend to be more reliable. Said differently, CDSs on reference entities 

are often more actively traded than bonds issued by the reference entities.  
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 Unlike other studies that use bond spreads for pricing (see Tsiveriotis and Fernandes (1998), 

Ammann, et al. (2003), Zabolotnyuk, et al. (2010), etc.), we perform risky valuation based on credit 

information extracted from CDS spreads. Given the recovery rates and the CDS premia, we can compute 

the hazard rates via a standard calibration process (see J.P. Morgan (2001)).  

 

Table 3. Equity and recovery information 

This table displays the closing stock prices and dividend yields on September 10, 2012, as well as the 

recovery rates 

 Company X Company Y 

Stock price 34.63 23.38 

Dividend yield 2.552% 3.95% 

Bond recovery rate 40% 36.14% 

Equity recovery rate 2% 1% 

 

Table 4. CDS premia 

This table displays the closing CDS premia as of September 10, 2012. 

Name Company X Company Y 

6 month CDS spread 0.00324 0.01036 

1 year CDS spread 0.00404 0.01168 

2 year CDS spread 0.00612 0.01554 

3 year CDS spread 0.00825 0.01924 

4 year CDS spread 0.01027 0.02272 

5 year CDS spread 0.01216 0.02586 

7 year CDS spread 0.01388 0.02851 

10 year CDS spread 0.01514 0.03003 

15 year CDS spread 0.01544 0.03064 

20 year CDS spread 0.01559 0.03101 
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 The most important input parameter to be determined is the volatility for valuation. A common 

approach in the market is to use the at-the-money (ATM) implied Black-Scholes volatility to price 

convertible bonds. For the 5-year outstanding convertible bond (case 1 in Table 1), we find the ATM 

implied Black-Scholes volatility is 31.87%, and then price the convertible bond accordingly. The results 

are shown in Table 5. Our analysis actually indicates an overpricing of 0.42%.  

For the 17-year outstanding convertible bond (case 2 in Table 1), however, most liquid stock 

options have relatively short maturates (rarely more than 8 years). Therefore, some authors, such as 

Ammann, et al. (2003), Loncarski, et al. (2009), Zabolotnyuk, et al. (2010), have to make do with historical 

volatilities. Similarly, we calculate the historical volatility as the annualized standard deviation of the daily 

log returns of the last 2 years (from September 10, 2010 to September 10, 2012), and then value the 

convertible bond based on this real-world volatility.  The result shown in Table 5 reports an underpricing 

of 1.07%. The test results demonstrate that the model prices are very close to the market prices, indicating 

that the model is quite accurate.  

  

Table 5. Model price vs. market price 

This table shows the differences between the model prices and the market prices of the convertible bonds 

under different volatility assumptions, where Difference = (Model price) / (Market observed price) – 1. The 

convertible bonds are defined in Table 1. 

 Case 1 (a 7-year convertible) Case 2 (a 20-year convertible) 

Type of volatility ATM implied Black-Scholes volatility Annualized historical volatility 

Value of volatility 31.87% 18.07% 

Model price 134.32 171.58 

Market observed price 134.88 169.77 

Difference -0.42% 1.07% 

 



 21 

We repeat this exercise for all contracts on all observation days. For any short-maturity convertible 

bond, we use the ATM implied Black-Scholes volatility for pricing, whereas for any long-maturity 

convertible bond, we perform valuation via the historical volatility. The results are presented in Tables 6.  

 

Table 6. Statistics of underpricing for different maturity classes 

An observation corresponds to a price snapshot of a convertible bond at a certain valuation date. 

Underpricing is referred to as the model price minus the market price.  

Maturity Observations 
Underpricing 

Mean (%) Std (%) Max (%) Min (%) 

≤ 8 years 82998 -0.13 1.37 0.79 -1.08 

> 8 years 2610 1.67 2.03 2.24 0.58 

  

Next, our sample is partitioned into subsamples according to the moneyness of convertibles. The 

moneyness is measured by the ratio of the conversion value to the equivalent straight bond value or the 

investment value. The underpricing of each daily observation with respect to the degree of moneyness is 

shown in Table 7, where moneyness between 0 and 0.9 corresponds to out-of-the-money; moneyness 

between 0.9 and 1.1 represents around-the-money; and moneyness higher than 1.1 is related to in-the-

money.  

 

Table 7. Statistics of underpricing for different moneyness classes 

The moneyness is measured by dividing the conversion value through the associated straight bond value. 

An observation corresponds to a snapshot of the market used to price a convertible bond at a certain 

valuation date. 

Moneyness Observations 
Underpricing 

Mean (%) Std (%) 

< 0.5 5794 0.72 2.23 

0.5 – 0.7 10595 -0.87 2.37 
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0.7 – 0.9 19850 0.51 1.64 

0.9 – 1.1 14737 0.45 1.12 

1.1 – 1.3 14379 -0.55 1.89 

1.3 – 1.5 11631 -0.42 2.04 

> 1.5 8622 -0.62 1.72 

 

From Tables 7, it can be seen that the model prices fluctuate randomly around the market prices 

(sometimes overpriced and sometimes underpriced), indicating the model is quite accurate. Empirically, 

we do not find support for presence of a systematic underpricing as indicated in previous studies (see 

Carayannopoulos and Kalimipalli (2003), Ammann, et al. (2003), etc.). If there is no underpricing, how has 

the arbitrage strategy been successful in the past? Maybe convertible arbitrage is not solely based on 

underpricing  

 In a typical convertible bond arbitrage strategy, the arbitrageur entails purchasing a convertible 

bond and selling the underlying stock to create a delta neutral position. The number of shares sold short 

usually reflects a delta-neutral or market neutral ratio. It is well known that delta neutral hedging not only 

removes small directional risks but also is capable of making a profit on an explosive upside or downside 

breakout if the position’s gamma is kept positive. As such, delta neutral hedging is great for uncertain stocks 

that are expected to make huge breakouts in either direction. Since convertible bonds are issued mainly by 

start-up or small companies, the chance of a large movement in either direction is very likely. Even for very 

small movements in the underlying stock price, profits can still be generated from the yield of the 

convertible bond and the interest rebate for the short position. 

  We calculate the delta and gamma values for the two deals described in table 1. The Greeks vs. 

spot equity prices are plotted in Figures 2~ 5. It can be seen that the deltas increase with the underlying 

stock prices in Figures 2 and 4. At low market levels, the convertibles behave like their straight bonds with 

very small deltas. As the stock price increases, conversion becomes more likely. At certain market levels 

the convertibles are certain to be converted. In this case, the convertibles are similar to the underlying 

equities and the deltas are equal to the number of shares (i.e., conversion ratios). 
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Figure 2. Delta vs. underlying price for a 7-year convertible bond 

This graph shows how the delta of the 7-year convertible bond (described in Table 1) changes as the 

underlying stock price changes.  

 

 

Figure 3. Gamma vs. underlying price for a 7-year convertible bond 

This graph shows how the gamma of the 7-year convertible bond (described in Table 1) changes as the 

underlying stock price changes.  
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Figure 4. Delta vs. underlying price for a 20-year convertible bond 

This graph shows how the delta of the 20-year convertible bond (described in Table 1) changes as the 

underlying stock price changes.  

 

 

Figure 5. Gamma vs. underlying price for a 20-year convertible bond 
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This graph shows how the delta of the 20-year convertible bond (described in Table 1) changes as the 

underlying stock price changes.  

 

 

The gamma diagrams in Figures 3 and 5 have a frown shape. The gammas are the highest when the 

convertibles are at-the-money. It is intuitive that when the stock prices rise or fall, profits increase because 

of favorably changing deltas. For this reason, convertible bonds are very good candidates for delta neutral 

hedging. Relatively large positive gammas of convertibles could be one of the main drivers of profitability 

in convertible arbitrage.  

 

5. Conclusion 

This paper aims to value hybrid financial instruments (e.g., convertible bonds) whose values may 

simultaneously depend on different assets subject to credit risk in a proper and consistent way. The 

motivation for our model is that if a company goes bankrupt, all the securities (including the equity) of the 

company default. The recovery is realized in accordance with the priority established by the Bankruptcy 

Code. In other words, different securities have the same probability of default, but different recovery rates. 
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Our study shows that risky asset pricing is quite different from risk-free asset pricing. In fact, the 

expectation of a defaultable asset actually grows at a risky rate rather than the risk-free rate. This conclusion 

is very important for risky valuation. 

We propose a hybrid framework to value risky equities and debts in a unified way. The model relies 

on the probability distribution of the default jump rather than the default jump itself. The model is quite 

accurate for pricing convertible bonds. 

Empirically, we do not find evidence supporting a systematic underpricing hypothesis. We also 

find that convertible bonds have relatively large positive gammas, implying that convertible arbitrage can 

make a profit on a large upside and downside movement in the underlying stock price. 

 

Appendix 

A. Numeric implementation for PDE 

In this section, we describe the numerical method used to solve discrete forms of (23) and (28). Let 
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 The equations (A1) and (A2) can be approximated using Crank-Nicolson rule. We discretize the x 

to be equally spaced as a grid of nodes 0 ~ M. At the maturity, TG  and TB  are determined according to 

(29) and (30). At any time i+1, the boundary conditions are 
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Then, we conduct the backward induction. The procedure is as follows. 

For i = penultimateTime to currentTime 

 // determine accrual interest and call/put prices 

 // determine boundary nodes 

// use the PSOR (Projected Successive Over Relaxation) method to obtain the continuation 

value of the bond component tB
~

 and the continuation value of the equity component tG
~

, 

applying the constraints (31).  

EndFor 

The value at node[0][y] is the convertible bond price where the equity price at node[0][y] is equal 

to the current market stock price. 

B. Binomial tree algorithm 

A binomial tree method is equivalent to an explicit difference scheme. Suppose that the stock price 

S will either move up to the value uS with probability up  or down to the value dS with probability 

ud pp −= 1 . As the binomial tree is a discrete approximation to the continuous distribution of equation 

(16), the expectation and variance of the discrete distribution should be equal to those of the continuous 

distribution. This method is commonly referred to as the moment matching technique. 

 To match the expectation, we have 

( ) )exp()()()1()()(/)( 1 tytSdtSputSptStSE siiuiuii =−+=+                  (B1) 

or 

)exp()1( tydpup suu =−+                          (B2) 

where 
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where q is the dividend. 

 To match the variance, we get 
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 Solving equations (B2) and (B5) according to the usual tree-symmetry condition: u = 1/d, we obtain 
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 There are many ways to approximate equations (B7) and (B8). The most well-known one is the 

Cox, Ross, and Rubinstein (1979) type approximation that is up to order t  accuracy and is given by 
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 Equations (B6), (B9) and (B10) specify the binomial risky tree parameters that are used to map the 

continuous stock price dynamics into the lattice representation. 

Suppose that there is a convertible bond. Let us construct a trading strategy ),( =H to hold   

units of the risky stock and   units of the risky bond. At time it  the convertible bond value is 
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corresponding to either an up movement or a down movement in the stock price. The discounted portfolio 

should replicate the discounted convertible bond4, which yields 
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 Solving for 11 , ++ ii   yields 
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 For a self-financing portfolio, the initial wealth needed to finance this strategy (sometimes called 

the manufacturing cost of the contingent claim) is 
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where up  is defined in (B6). 

 We split equation (B15) into an equity equation and a bond equation, and get 

  )exp()()1()()( 11 tytCptCptC si
d
Sui

u
SuiS −−+= ++          (B16) 

  )exp()()1()()( 11 tytCptCptC bi
d
Bui

u
BuiB −−+= ++           (B17) 

 Equations (B16) and (B17) tell us that the fair price of an equity component or a bond component 

is equal to the expected value of its future payoffs discounted by the associated risky rate. The expected 

value is calculated using the corresponding values from the latter two nodes (up or down) weighted by the 

transition probabilities. 

 

 
4 Unlike the risk-free tree, the risky tree tries to match the discounted value of the replicating portfolio to 

the discounted value of the convertible bond in order to catch credit risk properly. 
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C. A comparison of results 

Let us now briefly turn to a comparison with previous works. We use a simple example described 

in Table C1, which is similar to the example used in Tsiveriotis and Fernandes (1998) and Ayache, et al.  

(2003). We assume that the interest rate, the bond spread, and the volatility are flat. The hazard rate is 

02.0)01/(02.0 =− . As the call and put prices are quoted using the clean prices, we need to convert them to 

the dirty prices as 

)()()( tAItPtP cleandirty +=                (C1) 

where the accrued interest is give by 
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),(
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tt

tt
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


=          (C2) 

where C denotes the coupon, ),( es st  denotes the accrual factor or day count fraction for period ( st , et ) 

where es ttt  , st  denotes the start time of the accrual period, and et  denotes the end time of the accrual 

period. The numerical results are shown in Table C2, from which we can see that our model generates lower 

results than AVF and TF models.  

 

Table C1.  A 5-year convertible bond 

Maturity 5 years 

Payment frequency Semiannual 

Coupon payment 4 

Notional  100 

Conversion rule 1 share (ratio) in 0 – 5 years 

Clean call price 110 in 2 – 5 years 

Clean put price  105 at 3 years 

Spot stock price 100 

Implied volatility of the convertible 0.2 

Interest rate 0.05 
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Bond spread 0.02 

Bond recovery rate 0 

Stock recovery rate 0 

 

 

Table C2.  Model comparison results 

This table presents the numerical results for model comparison. The Tsiveriotis and Fernandes (1998) 

model is referred to as the TF model and the Ayache, et al. (2003) model is referred to as the AFV model. 

The convertible bond is described in Table C1. 

Time steps This model AFV TF 

200 122.6921 122.7341 124.0025 

400 122.6938 122.7333 123.9916 

800 122.6961 122.7325 123.9821 

1600 122.6953 122.7319 123.9754 

3200 122.6952 122.7316 123.9714 
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