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Abstract

In this study, we evaluate the predictive performance of Neural Network Regression in

locating non-trivial zeros of the Riemann zeta-function relative to Support Vector Machines

Regression. We provide a brief summary of the fundamental properties of the zeta-function

and use the analysis therein to identify relevant features and reformulate the given regression

problem as a time-series prediction problem. Next, we provide a basic introduction to the

architecture and use of Neural Networks. Model design is implemented as a six stage process

including: (i) input selection, (ii) data splitting, (iii) model architecture selection, (iv) model

structure selection, (v) model calibration, and (vi) model validation. Within each stage,

optimization is achieved via available algorithms as well as trial-and-error. The range of

zeta-function zeros used is 1001 to 100,000; model training is performed on data with 99,000

observations for each of the 50 feature variables selected. Multilayer Perceptron and Recurrent

Neural Network architectures are chosen and implemented in the R programming language.

Finally, the replicative and predictive accuracies of the two neural networks are evaluated

against those of a Support Vector Machine Regression.

1 Introduction

The Riemann Zeta-function (ζ-function) is one of the most celebrated examples of Dirichlet L-

functions that has been extensively studied by mathematicians for almost 200 years. Study of this

function connects two seemingly unrelated branches of mathematics—number theory and complex

analysis. The importance of ζ-function resides in its profound links to prime numbers that provide

key insights into their distribution.

Given the complexity of ζ-function, regression with non-parametric machine learning models

offers an alternate means of exploring the Riemann ζ-function. Machine learning regression refers

to an ensemble of algorithms used to model dynamic systems by analyzing large sequences of
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system parameters or other relevant variables. Two major categories of machine learning regression

algorithms are Artificial Neural Networks and Support Vector Machines.

First introduced by neurophysiologist Warren McCulloch and logician Walter Pitts as early

as in 1943, Artifical Neural Networks did not initially experience widespread adoption due the

computational cost of implementation [29]. In recent years, however, as technological progress has

made sufficient computational resources available, ANNs have begun to attract the attention of

researchers from a wide spectrum of disciplines. At present, however, there is only one known

application of the neural networks to the task of modeling the ζ-function: Shanker [39], uses an

unspecified Neural Network Regression to predict the locations of ζ-function zeros. While Support

Vector Machines have not, to our knowledge, been applied to the study of the ζ-function, there is

strong precedent for their use in time series analysis [42, 31]. Thus, SVM may be appropriate for

purposes of this study.

In the paper that follows, we build upon the work of [39] by adapting different varieties of

neural networks to the prediction of ζ-function zeros locate on the critical line. Additionally, we

introduce the use of Support Vector Machines Regression for the problem and report relative and

absolute performance metrics for all models considered.

2 Introduction to Riemann Zeta Function

First introduced by Bernhard Riemann in 1859, for s ∈ C with <(s) > 1, Riemann ζ-Function ζ(s)

is defined as follows:

ζ(s) =

∞∑
n=1

1/ns, (1)

which converges absolutely in the specified domain and so is well-defined. More than 100 years

earlier, Leonhard Euler studied a real-variable prototype of this function (with s ∈ R), computed

ζ(2) = 1 + 1/4 + 1/9 + 1/16 . . . = π2/6 (Basel problem) and later provided expressions for values

of ζ-function at all positive even integers. In 1748, Euler made another important discovery—the

Euler’s product formula, providing the first link between the ζ-function and prime numbers [34]:

ζ(s) =

∞∑
n=1

n−s =
∏
p

(1− p−s)−1, (2)

where the product is taken over all prime numbers p. This relation can be shown by constructing

a bijection between terms of these two infinite expressions, which exists due to the Fundamental

Theorem of Arithmetic. This representation allows us to conclude that no zeros of ζ-function have
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real part greater than 1:

|ζ(s)| =
∣∣∣∏
p

1

(1− p−s)

∣∣∣ =
∏
p

1

|1− p−s|
>
∏
p

1

(1 + p−<(s))
> 0. (3)

Whereas the original series definition of the Riemann ζ-function is valid only in the half plane

<(s) > 1, Riemann extended its domain using a process of analytic continuation [4]. In this way,

Riemann continued ζ to a meromorphic function on the entire complex plane—except for a simple

pole at s = 1. Moreover, he constructed the following functional equations for the new extended

ζ-function [2]:

π−s/2Γ(
s

2
)ζ(s) = π−(1−s)/2Γ(

1− s
2

)ζ(1− s), (4)

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s), (5)

where Γ is the Gamma-function, defined as Γ(s) =
∫∞

0
xz−1e−xdx.

The second functional equation (5) can be derived from (4) using Legendre relation

Γ(z/2)Γ(z/2 + 1/2) = 2
√

(π)2−zΓ(z) with z = 1 − s, and the property sin(zπ) = π 1
Γ(z)

1
Γ(1−z)

with z = s/2 [20]. From equation (5) we see that ζ-function vanishes at negative even integers,

which Riemann called trivial zeros. Later, Riemann hypothesized that all other (non-trivial) zeros

lie on a critical line (< = 1/2). This conjecture is widely known as Riemann Hypothesis and is

now on the list of Hilbert’s unsolved problems [4]. So far, all computations confirm the Riemann

hypothesis. Moreover, it has been rigorously shown that no non-trivial zeros of ζ-function lie

outside of a critical strip, which is defined by s ∈ C : 0 < <(s) < 1 [41].

A further insight from the functional equations can be found in Riemann’s proof of (4) and (5).

In these proofs, Riemann used Cauchy’s theorem on complex integrals over closed contours [30],

which permitted him to obtain an equation of the following form:

ζ(s) = χ(s)ζ(s− 1), (6)

χ(s) =
Γ((1− s)/2)

Γ(s/2)
πs−1/2. (7)

One can observe a certain symmetry in the functional equation (4), as well as in the definition of χ

(7). In order to reveal this symmetry, we will now assume that the argument s lies on the critical

line (s = 1/2 + it). Then, we can rewrite χ-function as follows:

χ(1/2 + it) =
Γ((1− 1/2− it)/2)

(1/2 + it)/2
π1/2+it−1/2 =

Γ( 1
4 −

it
2 )

Γ( 1
4 + it

2 )
πit. (8)

For reasons that will become apparent presently, we now define the Riemann Siegel Z-function and
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use (8) to rewrite it in a different form [19]:

Z(t) := ζ(1/2 + it)(χ(1/2 + it))−1/2 ⇒ (9)

Z(t) = ζ(1/2 + it)

√
Γ( 1

4 + it
2 )

Γ( 1
4 −

it
2 )
π−it/2 = ζ(1/2 + it)π−it/2 exp(i arg(Γ(

1

4
+
it

2
))) (10)

Here, we use the fact that for any complex number z, arg(z) = 1
i ln

√
z/z, as well as Γ(z) = Γ(z).

To further simplify the equation above, it is useful to introduce the Riemann-Siegel θ-function:

θ(t) := arg[Γ(
1

4
+
it

2
)]− lnπ

2
t⇒ (11)

Z(t) = eiθ(t)ζ(
1

2
+ it). (12)

Finally, (12) gives us a concise representation of ζ-function on the critical line:

ζ(
1

2
+ it) = Z(t)e−iθ(t). (13)

The equation above is important because it allows us to study behavior of ζ-function on the

critical line through the Z-function, which itself possesses several useful properties. First, an

immediate consequence of (13) is the identity |Z(t)| = |ζ(1/2 + it)|. This implies that zeros of

Z coincide with zeros of ζ-function on the critical line. Therefore, a change of sign of Z-function

may help locate non-trivial zeros of ζ-function. Additionally, it turns out that Z is a real-valued

function (for t ∈ R) [19, 30]. To see this, observe that (8) implies

χ(1/2 + it)χ(1/2− it) =
Γ( 1

4 −
it
2 )

Γ( 1
4 + it

2 )
πit ·

Γ( 1
4 + it

2 )

Γ( 1
4 −

it
2 )
π−it = 1. (14)

Also, from the functional equation (4) and the definition (7) of χ-function we get

ζ(s) =
π

s−1
2 Γ( 1−s

2 )ζ(1− s)
π−s/2Γ(s/2)

= χ(s)ζ(1− s)⇒ (15)

Z(t) =
ζ(1/2 + it)√
χ(1/2 + it)

=
ζ(1/2− it)√
χ(1/2− it)

=
( ζ(1/2 + it)√

χ(1/2 + it)

)
= Z(t). (16)

To verify the last identity, we need to observe that χ(1/2 + it) = χ(1/2 + it), which follows from

Γ(s) = Γ(s) and the definition of χ-function. Along with the property ζ(s) = ζ(s) [16], this implies

equation (16) and so Z(t) = Z(t) follows. Therefore, Z(t) is real-valued for t ∈ R.

A final advantage of working with the Z-function relative to the ζ-function is that its values are

easier to compute. Before Carl Siegel made asymptotic expansion of Z-function available in 1932,

Euler-Maclaurin summation method was generally used in approximation of ζ-function. Even
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though Euler-Maclaurin summation was a more universal and a more accurate tool, it required |t|

steps as opposed to
√
|t| steps needed for evaluation of asymptotic expansion of Z-function, widely

known as the Riemann-Siegel formula [35]:

Z(t) = 2

N∑
n=1

cos(θ(t)− t ln(n))√
n

+R, (17)

where N = b
√
t/2πc, and R is a remainder term.

Given the above properties of the Z-function, it seems natural to explore its connection to the

ζ-function (16) in more detail. Let us use the Euler’s formula to separate ζ-function into its real

and imaginary parts, which we will denote by A(t) and B(t), respectively:

ζ(1/2 + it) = Z(t)e−iθ(t) = Z(t)[cos(θ(t))− i sin(θ(t))]⇒ (18)

A(t) := <(ζ(1/2 + it)) = Z(t) cos(θ(t)); (19)

B(t) := =(ζ(1/2 + it)) = −Z(t) sin(θ(t)). (20)

Locating zeros of ζ-function on the critical line is equivalent to finding values of t such that

A(t) = B(t) = 0. If B(tx) = 0, then either Z(tx) = 0 (hence, ζ(1/2 + itx) = 0), or sin(θ(tx)) = 0,

which requires θ(tx) to be a multiple of π. This discussion inspires the definition of a Gram point

gn, which is a unique solution to the equation θ(gn) = (n− 1)π. The existence and uniqueness of

such solutions are ensured by the monotonicity of θ-function [3].

A key observation is that for Gram points, we have [23]:

ζ(1/2 + ign) = A(gn) + iB(gn) = Z(gn) cos((n− 1)π) = (−1)n−1Z(gn) (21)

According to the above equation, if gn and gn+1 are two Gram points such that A(gn) and A(gn+1)

have the same sign, then Z(gn)Z(gn+1) < 0, and so Z(t) vanishes in (gn, gn+1) at least once.

Therefore, Gram points allow us to detect intervals which contain roots of the Riemann-Siegel

Z-function, and, consequently, nontrivial zeros of the Riemann ζ-function on the critical strip.

This method was invented by a Danish mathematician Jørgen Gram in 1902, who used it to show

that imaginary parts γn of the first 15 non-trivial zeros of ζ-function alternate with the first 15

Gram points gn (i.e. gn−1 < γn < gn). The conjecture regarding the universality of this pattern

is now known as Gram’s law — despite the fact that Gram himself claimed it to be false. In fact,

the first violation of this conjecture was found by Hutchinson [18] and occurs at the 127-th Gram

point [23].

It is worth going into some depth regarding Gram points because they do indeed prove useful

as regressors of both Neural Networks and Support Vector Machines Regression models of the
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Figure 1: A subset of 2000 Distance values between n = 50000 and n = 52000.

Riemann ζ zeros. Instead of predicting the imaginary parts γn of non-trivial zeros of ζ-function,

we predict differences γn − gn−1 between zeros and Gram points, which we refer to as distance.

This decision was inspired by the fact that Gram points and gn and zeros γn are asymptotically

equivalent (gn ∼ γn ∼ 2nπ/ ln (n) [24]), which allows us to obtain a mean and variance-stationary

time-series by taking differences γn − gn−1. Additioanlly, Shanker successfully uses the textitdis-

tance approach in his neural network study of Riemann ζ zeros [39].

Predicting the distance variable is conceptually equivalent to predicting zeros, since calculation

of any finite number of Gram points to a desired accuracy is a relatively easy task [39]. In this

study, we calculate first 100,000 Gram points to the 7-th digit after decimal point using a custom

numerical algorithm implemented in Python. This algorithm utilized the first five terms of the

following asymptotic expansion of θ-function, which can be derived from the Stirling’s expansion

of the Gamma function [9]:

θ(t) =
t

2
ln
( t

2π

)
− t

2
− π

8
+

1

48t
+

7

5760t3
+ · · · (22)

As is evident in Figure 1, the distance variable can indeed be represented by a time-series with

invariant mean (0.3746 for the first 100,000 values). Thus, using distance as the output of our

regression algorithms, rather than the zeros themselves which are clearly non-stationary, facilitates

the application of time series methods in the models to follow.

Recall that the definition of Gram points was chosen so that the imaginary part B(t) of ζ(1/2+
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it) vanishes in equation (18). Although no known sources have utilized the following, we investigate

a sequence of points that make cos(θ(t)) and, consequently, the real part A(t) zero as well. In the

absence of any accepted notation for these points, we refer to them as co-Gram points in order

to emphasize their similarity with Gram points. Thus, we define n-th co-Gram point as a unique

solution to θ(t) = nπ + π/2. The first 100,000 co-Gram points were computed using the same

numerical algorithm in Python and are used as inputs of our regression models.

3 Introduction to Neural Network Regression

Artificial Neural Networks (ANNs) constitute a class of machine learning models inspired by the

information processing seen in biological neural networks like the human brain. ANN models can

be divided into two major categories: data classification and Neural Network Regression (NNR).

The latter, NNR, is utilized here in our effort to represent the zeros of the Riemann Zeta function.

According to Kouam, NNR operates as a generalization over multiple classic forecasting models

(bilinear, autoregressive, non-parametric, etc.) [39]. Unlike these methods, however, NNR requires

few assumptions to be made regarding the nature of the system of interest, which makes it more

universal and usually more effective in pattern recognition [11]. Thus, the nonparametric nature

of NNR makes it a favorable option for learning tasks in which the functional form is unknown -

as is the case with the Riemann ζ function.

3.1 Forward Propagation in a Neural Network

The standard architecture of a Neural Network consists of layers of elementary processing units

known as neurons, linked together in a fashion that depends on type and purpose of a particular

ANN. The first layer is called an input layer and contains as many neurons as there are different

features in input data. Next, data is processed through neurons of custom-sized hidden layers.

ANNs with two or more hidden layers are called deep networks, while their implementation is

referred to as deep learning. The last layer is called an output layer and contains one neuron for

each feature predicted.

Upon entering the input layer of an ANN, data is transformed into output by propagating

through neurons via connections (edges) between them. The topology of these connections is

determined by the type and architecture of an ANN. In Feed-forward neural networks, data prop-

agates strictly towards the output layer, i.e. neurons output exclusively to neurons of subsequent

layers.

The simplest and the most common example of a Feed-forward network is a multilayer per-

ceptron (MLP), which is one of the models implemented in this paper. It is common practice for
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Figure 2: Standard architecture of a single layer densely connected MLP.

MLPs to have all neurons of neighboring layers connected. In other words, in most MLPs any

two subsequent layers form a complete bipartite graph with these layers as partitions [Figure 2].

Neural Networks having such a topology are often referred to as densely connected.

Whereas Feed-forward ANNs can be visualized as directed acyclic graphs [15], the recently

introduced concept of a Recurrent Neural Network (RNN) can be represented by a directed graph

that contains cycles. In neural networks of this type, signals between neurons can follow cyclic

paths; this allows RNNs to learn from the same data multiple times before the output is calculated.

As in biological neural networks, data/signal processing in ANNs occurs in neurons. Consider

the a-th neuron in the L-th layer of a given ANN, which we will denote by nLa . Additionally,

suppose that according to the topology and architecture of an ANN, it receives signals from m

and sends signals to q other neurons. Then, neuron nLa can be described by two parameters: m-

dimensional vector of weights [w1a, w2a, . . . , wma]T and a bias term ba. Given output signals of

neurons n1, n2 . . . , nm as x1, x2, . . . , xm, signal oa sent by nLa to each of the q output connections

is calculated using the following formula [43]:

oa = σL(

m∑
i=1

wiaxi − ba), (23)

where σL is an activation function specified for all neurons of layer L, and
∑m
i=1 wiaxi − ba is

referred to as input signal.

The data processing structure described above can be interpreted using analogies from basic

principles of biological neural networks. In human brains, neurons communicate through elec-

trochemical impulses, intensity of which is determined by the strength of synaptic connections

between them. In turn, strength of input signals determines their ability to excite neurons, which

have a certain activation threshold (∼ 55mA). Neurons fire an output signal to successive neu-
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Figure 3: Feedforward propagation in a single hidden layer neuron.

rons if an incoming signal exceeds this threshold, and remain dormant otherwise. Thus, biological

neuron is a switch, which is either on or off. In context of ANNs, this behavior is modeled by

introducing bias ba (threshold) and an activation function σ = h(t), where h(t) is a Heaviside step

function (also known as binary function) activated at t = 0. The strength of a signal transferred

across synapses of neurons ni and nj is imitated by weight wij . Therefore, an m-dimensional

weight vector [w1a, w2a, . . . , wma]T refers to a vector of synaptic strengths assigned to each of

the m connections coming into neuron nLa [Figure 3]. Neurons of this design are referred to as

McCulloch-Pitts neurons. [5, 25, 43].

3.2 Backprogagation in Neural Networks

The process of learning in artificial neural networks refers to the iterative optimization of weights

and thresholds (biases) for all neurons. This optimization is accomplished via the introduction of

a large amount of training data to the ANN. The ANN then uses one of the two major learning

strategies. Supervised learning is implemented by allowing neural networks to access values of

the target output variable associated with each observation of the training data. In this learning

paradigm, machines “know” the desired output yi, which allows them to estimate the accuracy of

their output ŷi and alter weights to minimize error function E = E(yi − ŷi). In biology, such a

learning strategy is called reinforcement learning. On the other hand, in unsupervised learning,

machines are given no information about the desired output, while their goal is to group data with

common patterns or features together [43].

Since NNR utilizes the first learning approach, we will focus on details of its implementation.

In 1974, Paul Werbos developed an algorithm called backpropagation, which is now one of the most

widely used supervised learning techniques for ANNs. In backpropagation, ANNs are programmed

to minimize error (loss) function E by iteratively applying gradient descent—a strategy of adjusting
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weights proportional to the negative of the partial derivative of E (e.g. mean squared error)

taken with respect to each of the weights [28]. Thus, result of each iteration (propagation of a

single observation from training data through ANN) is calculation of all partials ∂E/∂wij and

transformation wij → wij − k · ∂E/∂wij applied to each weight wij , where k is a positive constant

known as learning rate. The above procedure updates biases as well. In practice, bias term ba

is often implemented as an always “on” input connection. In other words, having bias term ba is

equivalent to having (m+ 1)-th input connection of weight ba from a neuron with constant output

1. Thus, treating bias as a “virtual” connection allows us to apply backpropagation to update

both dynamic parameters of all neurons with a single iteration. A set of iterations marked by

propagation of each observation from training data exactly once is called an epoch.

The algorithm of backpropagation is clever, however, it is incompatible with ANNs that consist

of neurons of purely biological design described above. Since E = E(yi−ŷi) is necessarily a function

of the output ŷi, its partial derivatives do not exist unless a differentiable function is used as the

activation function σ. On the other hand, in order to fully simulate biological neurons, Heaviside

function should be used. In order to resolve this incompatibility, most of modern ANNs violate

the “binary-switch” nature of neurons and use continuous non-linear activation functions, such as

logistic (sigmoid), hyperbolic tangent (tanh), or rectified linear unit (ReLU).

Even though backpropagation algorithm described above is commonly used in Feed-forward

neural networks, there exists a wide spectrum of other optimization techniques, many of which are

still based on the concept of gradient descent.

3.3 Theoretical Comparison of ANNs and SVR

Support Vector Machines are a flexible class of supervised learning algorithms that use kernel

functions derive efficient solutions to certain nonlinear learning problems. For an overview of the

basic workings of SVR, as well as the key algorithms used today, see Smola [40]. To summarize,

the characteristic features of SVR are: (i) the use of a kernel function to transform the data into

a higher dimensional feature space where linear separation is possible, and (ii) the use of a convex

objective function permitting a global optimal solution via the Lagrangian. Thissen [42] argues

that the use of a convex objective function permitting a global optimal solution a key advantage of

SVR relative to ANN’s. Additionally, convergence on the global optimal solution conveys increased

generalizability, reducing the overfitting problem often encountered in ANN’s.

As a kernel-based machine, SVR can be characterized as a shallow architecture in that it

contains only one layer of trainable coefficients (i.e.features) - analogous to a single layer neural

network. Bengio [7] contrasts kernel methods with deep architectures, such as neural networks with

multiple hidden layers. He finds shallow architectures to be relatively inefficient for learning tasks
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which demand the representation of complex functional forms due to the extent of computations

required.

Further, Bengio argues that deep architecture neural networks, with their greater number of

tunable hyperparameters, offer greater flexibility and improved predictive validity for such functions

[7]. However, the potential for more flexible representation comes at the cost of an increased

propensity to get stuck in poor local minima and greater risk of overfitting. Thus, there are

compelling reasons to compare methods of deep and shallow architecture and for .

4 Neural Networks: Application to Riemann Zeta-function

Given the ability of ANN’s to provide efficient representations of complex functions, the present

study applies these methods to the modeling of the Riemann Zeta function. Specifically, we design

two ANN’s and, for comparison, a Support Vector Machines Regression to predict time-series

obtained by taking differences γn − gn−1, where γn is the imaginary part of the n-th zero located

on the critical line and gn−1 is the (n− 1)-th Gram point.

4.1 Neural Network Design Protocol

The process of building our models is guided by the protocol proposed by Wu [44]. Our imple-

mentation of this protocol consists of six phases: (i) input selection, (ii) data splitting, (iii) model

architecture selection, (iv) model structure selection, (v) model calibration, and (vi) model valida-

tion. While the data splitting and input selection procedures described below apply to both SVR

and ANN regression models, while all subsequent stages refer exclusively to ANNs.

In the model-design sections to follow, we perform repeated sensitivity analysis, evaluating

the sensitivity of model output to changes in the inputs including features, architecture, and

hyperparameters. In order to select the optimal models, and finally, validate our models we rely

on three performance criteria:

i The coefficient of determination, R2:

R2 = 1−
n∑
i=1

(
yi − ŷi

)2
(yi − ȳ)2

where yi, i = 1, · · · , n are the true values of the dependent variable ŷi , i = 1, · · · , n are the

corresponding model predictions. The coefficient of determination is a measure of relative fit

that describes the proportion of total variation in the dependent variable which is explained,

or eliminated by the model. R2 ranges from 0 to 1, with R2 = 1 indicating perfect model

fit. Thus, a key advantage of this metric that it is easily interpretable even in the absence of
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additional information about the distribution of the dependent variable.

ii The root mean square error, RMSE:

RMSE =

√√√√ 1

n

n∑
i=1

(
yi − ŷi

)2
.

The RMSE is a measure of absolute fit which indicates the standard deviation of the resid-

uals, i.e. the prediction errors. It is in the original units of (and should be interpreted in the

context of) the dependent variable.

Additionally, the mean and standard deviation of the model-fitted values are compared to the

true sample statistics of the dependent variable. This provides an overview of each model’s success

in terms of replicating the distribution of the dependent variable.

4.2 Data Splitting

Whereas linear regression is optimized for inference, the explicit goal of machine learning regression

is to make predictions. It is no surprise, then, that predictive performance is the key metric used

in the evaluation of machine learning models. In order to assess the generalizability of a model

and inspect it for overfitting, it is crucial that a model be tested on independent data, i.e., data

different from the training data. This process of randomly dividing data examples into test and

training data is known as data splitting.

Cross-Validation is a method of model evaluation in which the original data sample is parti-

tioned into a training set used for model design, and a test set used for model validation. In k-fold

cross validation, a sample is partitioned into k equally sized subsamples and the model is trained k

times, with each subsample being used as the test data exactly once. Thus, k-fold cross-validation

offers a more robust test of generalizability by permitting all examples to enter into the test data.

Throughout our model design process, 10-fold cross validation is employed in sensitivity anal-

ysis. The resultant calibrated models are then evaluated on a 80%/20% data split: a random

selection of 80% of the shuffled data is used for training with the remaining 20% used for testing.

Both test and training error are reported using the metrics above.

4.3 Input Selection

Input selection refers to the key phase of model design in which the relevant features, (i.e., variables,

regressors) are selected from the entire pool of candidate features. In an efficient neural network,

redundant or irrelevant regressors should be associated with near-zero input layer weights as a

result of training. Further, a linear transformation equivalent to PCA can be performed in the
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input layer. As a result, it can be said that neural networks can automate feature selection via the

learning of input layer weights and biases.

Nonetheless, performing feature selection exogenous to the model may confer strong advantages

in terms of its performance. It has been observed that the predictive power of a regression with a

fixed number of observations decreases when more than a certain number of features are added—an

occurrence known as Hughes’ Phenomenon [17].

May et al. outline the principal considerations in selecting the optimal subset of features:

relevance, computational effort, dimensionality, and training difficulty [27]. Relevance refers to

the feature’s potential to contribute to the prediction of the dependent variable. For example,

a good feature cannot be noise with respect to the variable being predicted. Given a set of rel-

evant candidate features, computational effort indicates the cost of running the neural network:

as the number of variables increases linearly, computational difficulty increases exponentially be-

cause of the number of neuron connections. Additionally, as the dimension of the feature space

increases, data becomes relatively sparse and may be insufficient to satisfactorily train the great

number of connection weights produced—a phenomenon Richard Bellman named as the curse of

dimensionality [6].

Given our ability to generate (theoretically) limitless amounts of data for the problem at hand,

the greatest concern is that of training difficulty. Training difficulty refers to slow run time and

poor predictive power resulting from the inclusion of redundant or irrelevant features in a neural

network. In the simplest terms, it is a waste of time and computational effort to train weights

on features with no relation to the outcome variable. Even more concerning than wasted time,

however, is the fact that redundant features increase the number of local extrema in the cost

function. This, in turn, can cause the process of backpropagation to converge on a poor local

minima, producing a model with weak predictive power.

4.3.1 Assembling the Data

While gathering our initial pool of features, we consulted a similar study carried out by Shanker

[39]. Based on his work, we include Gram points, values of Z-function at Gram points, as well as

terms 2 through 10 of the Riemann-Siegel formula (17) evaluated at Gram points; computation of

Gram points is described in section 2. In addition, we add another 10 variables of lagged Gram

sequence (lags 1-10), and 10 variables of lagged Z-values evaluated at Gram points (lags 1-10).

Because our regression problem can be thought of a time-series prediction, we also included 25

variables of lagged distance (lags 1-25). Finally, the initial pool of input candidates is enlarged

by the following features: co-Gram sequence and the first 10 of its lags; Z-function evaluated at

co-Gram points and the first 15 of its lags; Z-function evaluated at successive integers and the
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Figure 4: The top 40 most important
variables.

Figure 5: Test error as a function of feature set
size.

first 10 of its lags. In total, this amounts to 94 candidate features. All of the computations of

Z-function were carried out using Mathematica programming software. The outcome variable,

distance is derived from the Odlyzko’s computation of the first 100,000 zeros of the Riemann zeta

function, accurate to within 3 · 10−9 [33].

Such an emphasis on Z-function was encouraged by the Cybenko’s theorem, which shows that

any continuous real-valued function can theoretically be modeled using MLP with sigmoid activa-

tion function to the desired degree of accuracy [12]. Therefore, our hope was to provide sufficient

information regarding Z-function, which has close connections to ζ-function, its zeros and, conse-

quently, to the distance variable we wish to predict.

4.3.2 Minimum Redundancy Maximum Relevance Feature Selection

From the of 94 candidate features, we select inputs for our regression models using the dual criteria

of minimum redundancy maximum relevance (mRMR). For each candidate variable, relevance

is assessed using both model-free and model-based methods. (i) We begin by computing the

correlation between each candidate feature and distance, and sort the resulting list according to

the absolute value of the correlation coefficient. (ii) Next we run a series of preliminary multilayer

neural networks and compute variable importance using the weights method proposed by Gevrey

(2003) [13]. (iii) Finally, we run a Random Forest regression and compute mean decrease in

accuracy and mean decrease in node purity for each variable. For the given data, the above

measures are largely consistent. We rank variables in descending order of importance as generated

in (ii) above.
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Next, the subset of ranked features with the greatest predictive power is chosen via forward se-

lection using a multilayer neural network. The best subset is chosen by minimizing the RMSE—this

occurs with feature set of 50 independent variables. Note that Figure 4 displays only the first forty

of these for ease of visualization. In this graph, d_lag variables refer to lagged distance sequences;

z_gram_lag and z_co_gram_lag variables—to lagged sequences of Z-function evaluated at Gram

and co-Gram points, respectively; z_term stands for the sequence of the corresponding term in

Riemann-Siegel formula (17) at Gram points. The obtained candidate set is then analyzed for

redundancy using a correlation matrix, which showed that within the final subset, no correlation

exceeds 0.5. In order to avoid any edge effects associated with data points of small indices as well

as to accommodate computations of terms of Riemann-Siegel formula, first 1,000 observations were

excluded from this final set. As a result, the dimensionality of the selected input data is 99,000 by

50. Before it was fed to the ANN models, data was preprocessed by Min-Max scaling algorithm,

which is a common approach that often results in a better predictive performance [14].

4.4 Architecture Selection

There is a great variety of different types of ANNs currently used in machine learning, includ-

ing Feed-forward, Radial Basis Function (RBF), Kohonen, Recurrent, and Convolutional Neural

Networks. Due to insufficient supply of previous works done on the topic of our interest, two

most standard NNR architectures—Multilayer Perceptron and Recurrent Neural Network—were

selected for this study. In section 3, we briefly described some fundamental characteristics of these

two models. While MLP is a Feed-forward neural network, RNN models contain feedback connec-

tions, which deliver output signals back to the inputs of neurons. This feature provides Recurrent

neural networks with “memory”, because processed data remains in the network for some period of

time. [26, 37]. Thus, RNNs are capable of learning short and long term dependencies in the input

sequences, which makes them a desired tool for time-series prediction.

All models in this study are implemented in R programming language. MLP model is con-

structed with help of RSNNS package, while RNN Sequential model with dense layers is built in

Keras module using Tensorflow as backend.

4.5 Structure Selection

This stage is concerned with selection of the optimal numbers of hidden layers and neurons for

the ANN models. As we mentioned in the second section, the dimensionality of input/output data

uniquely determines input and output layers. Since our data consists of 50 features and predicts

only one variable (distance), input and output layers of ANNs in this study had 50 and 1 neurons,

respectively. First, the number of hidden layers of the RNN and the MLP is determined iteratively
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by running these models with preliminary numbers of neurons (45 in each layer).

Hidden Layers Test RMSE Test R2

1 0.04567 0.96580
2 0.02610 0.98884
3 0.03054 0.98471
4 0.02682 0.98821
5 0.03239 0.98281

Table 1: MLP model: Selection of hidden
layers.

Hidden Layers Test RMSE Test R2

1 0.05322 0.94461
2 0.02575 0.98703
3 0.02285 0.98979
4 0.02182 0.99068
5 0.13216 0.99026

Table 2: RNN model: Selection of hidden
layers.

Results of these runs, recorded in tables 1 and 2, imply that 2 and 4 hidden layers are optimal

for MLP and RNN models, respectively. Next, the optimal number of neurons in hidden layers of

these ANNs is estimated in a similar way [Figures 6, 7]. On the leftmost plots, shaded areas mark

regions around optimal points that require finer inspections, the results of which are shown on the

rightmost plots. On the basis of this analysis, it is determined that optimal MLP model must have

2 hidden layers with 34 neurons per layer, while structure of the optimal RNN model is 4 hidden

layers with 55 neurons per layer.

Figure 6: Test Error with respect to the number of neurons in each of 2 layers of the MLP.

Figure 7: Test Error with respect to the number of neurons in each of 4 layers of the RNN.
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4.6 Calibration Stage

The calibration step is concerned with the process of training. Here, we will specify the optimization

algorithms used during neural networks training, as well as other hyper-parameters of the models.

1. Optimization algorithm: The standard backpropagation method was used for training the

MLP model (the default in the R package RSNNS). RNN model was optimized using ADAM—

a stochastic optimization algorithm [21]. In our study, ADAM was compared to several

other learning functions and proved to demonstrate better performance. This observation is

supported by existing research [22]; stochastic gradient descent was found to converge faster

and to a more optimal local minima than standard gradient descent.

2. Activation function: The sigmoid activation function is used in the MLP model and in

the output layer of the RNN model. Hidden layers of the Recurrent neural network use the

ReLU activation function. Although the sigmoid function tends to be the standard activation

function, multiple sources claim ReLU to exhibit better performance [1, 36]. The optimal

combination of these two activation functions in our models is established by trial-and-error.

3. Loss function: The Summed Squared Error (SSE) is an immutable default error function

used in RSNNS package [8] and, consequently, was used for MLP. For the RNN model, the

Mean Squared Error (MSE) metric was specified, which is the closest to the RMSE measure

used for model evaluations throughout this study.

4. Number of epochs: As mentioned in section 3, an epoch is a period of time marked by

a propagation of full input data through neural network exactly once. Additional epochs

increase optimization time, which, in general, results in lower values of loss function E on

training data. However, when sufficiently many epochs are performed, models can exhibit

overfitting—a state of dynamic parameters (i.e. weights and thresholds) tuned to replicate

training data rather than the patterns underlying it. An overfitted model is marked by

very low training error and poor performance on test sets. In order to prevent overfitting,

we record test and train errors produced by running our models with different numbers of

epochs. These results are shown in Figure 8.
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Figure 8: Test and train error curves with respect to Log2(epochs) for the MLP (left) and the
RNN (right) models.

We observe that both train and test errors have an overall decreasing trend in the specified

intervals of epochs (2 to 213 for MLP and 2 to 211 for RNN). In the framework of this study,

extending these intervals is not computationally feasible. In fact, running our ANNs with

more than 1,000 epochs already requires unreasonably costly computations. Therefore, we

choose 100 epochs for the RNN and 1,000 epochs for the MLP model.

5. Observations: The overall number of observations that can be made available to our regres-

sion models is 99,000. In order to understand the dynamics of the predictive performance of

our models when additional observations are introduced, we construct learning curves seen

in Figure 9. We observe that the learning curve appears to be sufficiently level when the full

list of 99,000 datapoints are used. Note that these plots are obtained by running preliminary

models with 80%/20% split, meaning each model is trained only on 80% of the corresponding

number of observations.

Figure 9: Test RMSE curve with respect to the number of observations available to ANNs for the
MLP (left) and the RNN (right) models.
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5 Model Validation And Predictions

In this section, we summarize the specifications of our regression models. Next, we evaluate the

predictive and replicative accuracies of the Multilayer Perceptron and Recurrent Neural Networks

implemented relative to a Support Vector Machines regression using the preselected data of 99,000

observations. Finally, a list of predicted zeros is provided.

5.1 Implementation of the Three Models

5.1.1 Implementation of the SVR Model

The SVM that we implement utilizes ν-SVR with an RBF kernel given by eγ|xi−xj |2 where xi

and xj are features, γ = 1
2σ2 , and σ denotes the width parameter. This kernel is advantageous in

that it can automatically optimize centers, weights, and thresholds [38]. Final model specification

requires the additional optimization of σ, described above and c, a regularization parameter which

controls the trade-off between training and test error. We tune this SVR model using 10-fold cross

validation with three repeats within a grid search to obtain the optimal values of σ = 0.01 and

c = 10. After an 80%/20% split into training and testing sets, our RNN model is trained on 79,200

sequential observations of the same 50 features (centered in preprocessing). A set of 50 consecutive

distance observations is chosen from the testing data and plotted against model’s predictions in

Figure 10.

Figure 10: SVR predictions versus actual distance γn − gn−1 for 50 randomly selected
observations from the test data.

The optimized model requires 58,427 support vectors, which results in a very high computing

cost. As a result, each of the proposed neural networks outperform SVR in terms of efficiency by

an order of magnitude. It remains to assess the respective predictive power of the three models.

While visual inspection of the plot suggests good fit on test data, we find that this method is
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relatively inefficient, echoing the conclusions of Bengio (2007) [7].

5.1.2 Implementation of the MLP

During the structure selection stage, we determine that the optimal configuration of the MLP

neural network for our purposes has 34 neurons in each of the 2 hidden layers. At the calibration

stage, backpropagation optimization algorithm was selected to train our MLP model for 1,000

epochs.

Since we apply a standard 80%/20% split of randomly shuffled data, the MLP model is trained

on 79,200 observations of the 50 features selected during the input selection step. The remaining

19,800 observations are used as an independent test set to estimate predictive accuracy of the

trained model. From this 19,800 data points, 50 observations for distance variable are plotted

against the corresponding MLP predictions [Figure 11].

Figure 11: MLP predictions versus actual distance γn − gn−1 for 50 randomly selected
observations from the test data.

5.1.3 Implementation of the RNN

Our RNN model consists of 4 layers with 55 neurons in each. It is trained with an ADAM

stochastic gradient descent optimizer for a total of 100 epochs. The key advantage of RNNs is

their exceptional ability to extract temporal dependencies within input sequences, thus, we do not

perform random shuffling of input data prior to feeding it to the model [10]. After an 80%/20%

split into training and testing sets, our RNN model is trained on 79,200 sequential observations of

the same 50 features. A set of 50 consecutive distance observations is chosen from the testing data

and plotted against model’s predictions [Figure 12].
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Figure 12: RNN predictions versus actual distance γn − gn−1 for 50 consecutive observations
from the test data.

Based on the predictions plots shown in figures 10, 11, 12, we conclude that all three regression

models succeeded in generalizing patterns of the input data. As can be seen, they closely mimic

the behavior of the unseen (test) distance observations.

5.2 Accuracy of Models Compared

In this section, we present the performance metrics obtained for all models during the prediction

process. These accuracy measurements can be categorized into two groups—replicative accuracy

and predictive accuracy. Replicative accuracy refers the model’s performance on data that was

used during training. This should be considered a preliminary assessment of the extent to which

a model accurately expresses the underlying patterns in the training data [44].

Predictive accuracy refers to the ability of a model to correctly predict output of the unseen

data, given the respective inputs. This measurement essentially estimates the generalizability of

the models and thus requires propagation of the test data (20% of data set aside during data

splitting) through the trained neural networks.

The replicative accuracy values of the three models are summarized in table 3. Since the

original data is standardized using Min-Max scaling prior to data splitting, predictions and scaled

distance observations must be converted back to the original scaling in order to avoid corrupted

error scores. Thus, all of the metrics presented in the tables to follow are calculated with unscaled

data and predictions. Note that because RNN was trained and tested on ordered data, Mean and

SD (standard deviation) measures are omitted for this model. Based on the metrics above, we

conclude that both neural networks offer superior replicative accuracy relative to SVR.
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Model RMSE R2

Support Vector Machine 0.0202 0.9926
Multilayer Perceptron 0.0218 0.9913
Recurrent Neural Network 0.0163 0.9953

Model Mean SD

Actual Data 0.3713 0.2347
Support Vector Machine 0.3685 0.2304
Multilayer Perceptron 0.3717 0.2310
Recurrent Neural Network N/A N/A

Table 3: Replicative accuracy metrics for each of the three regression models.

Model RMSE R2

Support Vector Machine 0.0315 0.9817
Multilayer Perceptron 0.0225 0.9907
Recurrent Neural Network 0.0201 0.9913

Model Mean SD

Actual Data 0.3709 0.2337
Support Vector Machine 0.3687 0.2266
Multilayer Perceptron 0.3713 0.2301
Recurrent Neural Network N/A N/A

Table 4: Predictive accuracy metrics for each of the three regression models.

Consistent with the findings of our replicative accuracy analysis, the Recurrent Neural Network

model is most successful in predicting unseen terms of the distance variable sequence. Predictive

accuracy figures are listed in table 4. Still, all three regression methods display impressive predictive

accuracy.

The reliability of the obtained data is supported by the 10-fold cross-validation method for

the neural network models. Prior to training the reported models, we calculate average errors

of the 10 different models constructed during cross-validation in order to estimate the order of

accuracy we should expect. For MLP, the average errors were R2 = 0.9899, RMSE = 0.0234;

for the RNN model—R2 = 0.9920, RMSE = 0.0205. These values are consistent with our final

error measurements. For SVM, cross-validation was not possible due to the unreasonably extensive

computations that it required.

5.3 Predicted Zeros

Throughout this study, we use distance variable given by γn − gn−1 as the target output variable

of our models. This decision provides the ANN and SVM models with a time-series more suitable

for regression. Given that Gram points—the only component of the distance variable except for

zeros–are relatively easy to compute, predicting the distance variable is equivalent to predicting

imaginary parts γn of the non-trivial zeros of ζ-function. In table 5, we provide 4 actual predictions

of distance γn − gn−1 and γn variables (the first and the last 2 observations from the test data)

as compared to actual values. Since the RNN showed the best predictive accuracy (table 4), we

present unscaled predictions of this regression model. The residual errors of our predictions are

consistent across different observations and typically do not exceed 0.01 within test data.
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Distance γn − gn−1 Prediction Actual

γ79,201 − g79,200 0.3249 0.3171
γ79,202 − g79,201 0.4478 0.4386
γ98,999 − g98,998 0.3688 0.3728
γ99,000 − g98,999 0.2752 0.2712

Zero γn Prediction Actual Residual

γ79,201 61531.6300 61531.6222 0.0078
γ79,202 61532.4366 61532.4274 0.0092
γ98,999 74920.2557 74920.2598 -0.0041
γ99,000 74920.8316 74920.8275 0.0041

Table 5: Predictions and Actual values of the distance (γn − gn−1) and zero (γn) variables
obtained by RNN.

6 Conclusion And Future Work

In this study, we applied three regression models (Support Vector Machine, Feed-forward and

Recurrent Neural Networks) to the prediction of locations of the nontrivial zeros of Riemann zeta-

function on the critical line. Basic background on the Riemann zeta-function as well as Neural

Networks is provided in the opening sections of this paper. The construction, implementation, and

evaluation of our models is thoroughly described in sections 4 and 5.

For the purpose of achieving better predictive performance of our regression models, we choose

the target output variable to be distance time-series γn− gn−1, where γn−1 refers to zeros of zeta-

function and gn is the n-th Gram point. We base our input selection on inspection of previous

works [39] and the theoretical discussion of Riemann zeta-function given in section 2. Input data

is obtained from the computations of Odlyzko [33] (zeros), Mathematica software (Z-function) and

our custom numerical algorithm implemented in Python (Gram and co-Gram points). We used

mRMR, and Random Forest algorithms to estimate the importance of the variables in predicting

our target output. The final input feature space contains 99,000 observations for each of the

50 regressors. We evaluate our models with metrics such as R2, RMSE, as well as by using

cross-validation for the neural network models. Some general statistics regarding the set of our

predictions (mean, standard deviation) are compared to those of the actual data. While the RNN

model exhibited the best replicative and predictive accuracy, all models were found to output

satisfactory predictions. The RNN predictions of distance γn − gn−1 variable are converted into

predictions of the non-trivial zeros of zeta-function. Typical residual error of these predictions

typically does not exceed 0.01 for observations within the test set.

Future research could involve the implementation of other neural network models (e.g. Long/Short

Term Memory, Radial Basis Function, etc.). Computational resources available in the framework

of this study did not permit us to increase the number of training epochs to the point of overfitting.

Therefore, future research could consider looking at larger numbers of epochs in order to select the

optimal value. The evaluation stage of our RNN model can be improved by inspecting the decay

of its predictive accuracy as separation between test and train data increases. Further, we would

like to extend our analysis to higher index levels. Finally, we hope to explore the possibility of
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using our predictions to aid in the location of new zeros.
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Appendix A Forward Propagation

Following Nielsen [32], a more detailed explanation of forward propagation is described below.

Each neuron in a given layer transforms each real-valued input it receives, x using a weight

and a bias term: x → x · w + b. Note that weight and bias may vary by layer and neuron, thus

we denote the weight for the connection running from the kth neuron in the layer l− 1 to the jth

neuron in the layer l as wljk. Similarly, blj denotes the bias for the jth neuron in the lth layer.

Next, the neuron sums each these weighted, biased inputs and transforms them into a single

output using a smooth activation function, often the logistic sigmoid function (range 0 to 1),

denoted σ. We can write the output, or "activation" of the jth neuron in the lth layer as the sum

of the weighted, biased activations produced in layer l − 1:

alj = σ
(∑

k

wlja
l−1
k + blj

)
(24)

In matrix notation, this is equivalent to:

al = σ
(
wlal−1 + bl

)
= σ(zl),

where z = wlal − 1 + bl.

(25)

This output is then sent to each neuron in the subsequent layer. The output corresponding to

a single input, x, is simply the output of the final layer.

Appendix B Backpropagation and Gradient Descent

Nielsen [32] provides the following derivation for the backpropagation algorithm for . We begin by

defining prediction error using the quadratic cost function (i.e., the mean squared error):

C(w, b) =
1

2n

∑
x

||y(x)− aL(x)||2, (26)

where n is the number of observations. To minimize C with respect to w and b, we use

the process of gradient descent. Gradient descent is an optimization algorithm in which a local

minimum is identified by taking iterative steps proportional to the negative to the gradient of the

function to minimize, here, C. Thus, we must first compute the partials ∂C
∂blj

and ∂C
∂wl

jk

. Because

both partials relate to the rate of change of C, it is useful to introduce a new variable to denote

this quantity:
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δlj =
∂C

∂zlj
(27)

Hence,δLj denotes the errors in the output layer. Using the chain rule, we derive:

δLj =
∂C

∂aLj

∂aLj
∂zlj

=
∂C

∂aLj
σ′(zLj )

(28)

In matrix form, this is equivalent to

δLj = ∇aC � σ′(zLj )

= (aL − y)� σ′(zLj ),

(29)

where � is the Hadamard product (i.e. component-wise multiplication of vectors) and ∇aC is

the vector with jth component ∂C
∂aLj

= (aL − y) for the quadratic cost function.

Next, we derive a recursive formula for error, using the transpose of the weight matrix to move

one layer backwards in the construction above:

δl = ((wl+1)T δl+1 � ′(zl)) (30)

Finally, we arrive at the key partials for the gradient of the cost function:

∂C

∂blj
= δlj (31)

and
∂C

∂wljk
= al−1

k δlj (32)

New weights and biases are computed by taking small steps proportional to the negative of the

gradient of the cost function at a given point.

In total, the algorithm works as follows:

1. Initialization: input training examples xi, i = 1, · · · ,m and randomly select initial weights,

biases

2. Feed-forward: compute zl = wlal−1 + bl and al = σ(zl) for each layer excluding the input

layer, i.e., for l = 2, 3, · · · , L

3. Backpropagation: compute the error recursively starting with the final layer. For each l =

L− 1, L− 2, · · · , 2, compute δl = ((wl+1)T δl+1 � σ′(zl) as in 30.
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4. Output: for a given output, compute error terms backwards starting at the final layer and

compute the gradient of the cost function as ( ∂C
∂blj

= δlj ,
∂C
∂wl

jk

= al−1
k δlj).

5. Gradient descent: for each layer l = L− 1, L− 2, · · · , 2, update weights and biases according

to the rule:

wl → wl − η

m

∑
x

δx,l(ax,l−1)T (33)

and

bl → bl − η

m

∑
x

δx,l, (34)

where η is a small positive number, known as the learning constant.

6. Go to step 1 until convergence.
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