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1
Programming with Mathematica

Getting started: exercises1.2
Generate a random real number between one and one hundred. Then create a vector of twelve 

random numbers between one and one hundred. Finally, create a 4⨯4 array of such numbers 

and then compute the determinant of that array. 

1.

Using Table, create a 4⨯4 Hilbert matrix. The entry aij in row i, column j of the Hilbert matrix 

is given by 

1
i+j-1

. Check your solution against the built-in HilbertMatrix.
2.

Add the two lists, {1, 2, 3, 4, 5} and {2, 4, 6, 8, 10}. Then multiply them element-wise. 
Finally, multiply the two lists as vectors (dot product).

3.

Generate a list of the first twenty-five integers in five different ways.4.

Add the integers one through one thousand in as many different ways as you can.5.

A 2⨯2 matrix can be created using lists such as {{�, �}, {�, �}}. Define a 2⨯2 numerical 
matrix and then find its inverse, determinant, transpose, and trace.

6.

Create the following matrix using list notation:7.

1 1
1 0

Then find the inverse, determinant, and transpose of the matrix. Finally, compute the fifth 

matrix power of this matrix (m.m.m.m.m).

Solutions1.2
First, here is a random real number between one and one hundred.1.

In[1]:= RandomReal[{1, 100}]

Out[1]= 83.1802



This gives a vector of twelve such random numbers.

In[2]:= RandomReal[{1, 100}, {12}]

Out[2]= {91.5353, 8.35684, 68.0464, 57.9997, 37.9279,

97.2452, 62.8762, 36.5797, 4.61388, 87.2442, 58.6649, 45.0762}

A 4⨯4 array of them.

In[3]:= RandomReal[{1, 100}, {4, 4}]

Out[3]= {{71.1387, 15.5669, 32.9543, 10.6077}, {8.89123, 59.9753, 5.55336, 92.4248},

{31.9101, 49.9324, 51.6797, 26.3127}, {79.4064, 50.808, 4.1497, 82.4448}}

And the determinant of this array.

In[4]:= Det[%]

Out[4]= -3.65557×106

The entry aij entry of the Hilbert matrix is defined as 

1
i+j-1

.2.

In[5]:= Table
1

i + j - 1
, j, 4, i, 4
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Check against the built-in function.

In[6]:= HilbertMatrix[4]

Out[6]= 1,
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First, add the two lists.3.

In[7]:= {1, 2, 3, 4, 5} + {2, 4, 6, 8, 10}

Out[7]= {3, 6, 9, 12, 15}

To multiply the two lists, put a space between them.

In[8]:= {1, 2, 3, 4, 5} {2, 4, 6, 8, 10}

Out[8]= {2, 8, 18, 32, 50}

The dot product can be computed using either a built-in function or traditional mathematical 
notation.

In[9]:= Dot[{1, 2, 3, 4, 5}, {2, 4, 6, 8, 10}]

Out[9]= 110

In[10]:= {1, 2, 3, 4, 5}.{2, 4, 6, 8, 10}

Out[10]= 110

First the straightforward ways of generating the list of the first twenty-five integers.4.
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In[11]:= Range[25]

Out[11]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

Here are two alternate syntaxes for the Range function, a prefix form and a postfix form:

In[12]:= Range@25

Out[12]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

In[13]:= 25 // Range

Out[13]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

Using Table:

In[14]:= Tablei, i, 1, 25

Out[14]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

The coefficients of the linear term in the first 25 rows of the binomial expansion of (1 + x)n:

In[15]:= TableBinomial[n, 1], {n, 1, 25}

Out[15]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

A very roundabout (and not terribly efficient) way to do this: get the coefficients of the follow-
ing series.

In[16]:= series = Series
1

(1 - x)2
, {x, 0, 24}

Out[16]= 1 + 2 x + 3 x2 + 4 x3 + 5 x4 + 6 x5 + 7 x6 + 8 x7 + 9 x8 + 10 x9 +

11 x10 + 12 x11 + 13 x12 + 14 x13 + 15 x14 + 16 x15 + 17 x16 + 18 x17 +

19 x18 + 20 x19 + 21 x20 + 22 x21 + 23 x22 + 24 x23 + 25 x24 + O[x]25

In[17]:= CoefficientListNormalseries, x

Out[17]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

Several mathematical functions are built in that will compute the sum directly.5.

In[18]:= Sumi, i, 103

Out[18]= 500500

The same sum can be computed using familiar mathematical notation, templates for which are 

available from the �������� menu.
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In[19]:= 

i

103

i

Out[19]= 500500

In fact the sum can be done in parallel (assuming you are working on a multi-core machine) by 

using a parallelized version of Sum.

In[20]:= ParallelSumi, i, 103

Out[20]= 500500

If you are already acquainted with an imperative style of programming, such as is found in 

procedural languages like C, Fortran, and Java, then the following looping constructs should 

be familiar.

In[21]:= i = 0;

Doi = i + j, j, 103;

i

Out[23]= 500500

In[24]:= res = 0;

i = 0;

Fori = 1, i ≤ 103, i++, res = i + res;

res

Out[27]= 500500

In[28]:= res = 0;

i = 0;

Whilei ≤ 103, res = i + res; i++;

res

Out[31]= 500500

A declarative style of programming – including functional languages such as Lisp, Haskell, 
Scheme, F♯ – is one in which functions are used to declare what the program should do, rather 
than giving explicit steps or actions to be performed. In such languages, computation is done 

by evaluating functions that operate on the appropriate inputs. In this case, the input is a list of 
the first thousand positive integers; the semicolon is used to suppress the display of the output 
of that particular input.

In[32]:= lis = Range103;

In[33]:= ApplyPlus, lis

Out[33]= 500500

In[34]:= FoldPlus, 0, lis

Out[34]= 500500
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In[35]:= LastAccumulatelis

Out[35]= 500500

In[36]:= Totallis

Out[36]= 500500

Other approaches can be considered as well, including a recursive approach (Prolog, Haskell or 
Scheme), one using replacement rules, and another using sparse array arithmetic.

In[37]:= s[0] = 0;

s[n_] := s[n] = s[n - 1] + n

In[39]:= s[1000]

Out[39]= 500500

In[40]:= lis /. {x_, y__}⧴ x + y

Out[40]= 500500

In[41]:= mat = SparseArrayi_, i_ ⧴ lisi, 103, 103;

Tr[mat]

Out[42]= 500500

One approach to computing the sum of the first n integers is to use the fact (known to Gauss at 

a young age) that the sum is equal to the binomial 
n + 1

2
.

In[43]:= n = 103;

Binomial[n + 1, 2]

Out[44]= 500500

Although all of these approaches give the same answer (they had better!), some are more 

efficient in terms of memory management and some are faster than others. We don’t expect 
that these examples will all make sense to you at this point but after having read this book, you 

should be quite comfortable with each of these paradigms so that you can apply them to a wide 

variety of problems and choose the best approach for the programming problems you will 
encounter.

Here is a 2⨯2 matrix filled with numbers.6.

In[45]:= mat = {{3, 5}, {1, 2}};

And here are the operations on that matrix.

In[46]:= Inverse[mat]

Out[46]= {{2, -5}, {-1, 3}}

In[47]:= Det[mat]

Out[47]= 1
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In[48]:= Transpose[mat]

Out[48]= {{3, 1}, {5, 2}}

In[49]:= Tr[mat]

Out[49]= 5

Here is the list representation of the matrix given in the exercise.7.

In[50]:= mat = {{1, 1}, {1, 0}};

Here are the inverse, determinant, and transpose.

In[51]:= Inverse[mat]

Out[51]= {{0, 1}, {1, -1}}

In[52]:= Det[mat]

Out[52]= -1

In[53]:= Transpose[mat]

Out[53]= {{1, 1}, {1, 0}}

As for the matrix power, you could write it out explicitly.

In[54]:= mat.mat.mat.mat.mat

Out[54]= {{8, 5}, {5, 3}}

But that is tedious and wouldn’t be sensible for the 100th power say. Another built-in function 

can be used for the matrix power. You should see the Fibonacci numbers lurking in the output, 
a fact which is explored in Section 5.4.

In[55]:= MatrixPower[mat, 5]

Out[55]= {{8, 5}, {5, 3}}

In[56]:= MatrixPower[mat, 100]

Out[56]= {{573147844013817084101, 354224848179261915075},

{354224848179261915075, 218922995834555169026}}

In[57]:= Fibonacci[101]

Out[57]= 573147844013817084101

In[58]:= Clears, lis, mat, n, i, res
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2
The Mathematica language

Expressions: exercises2.1
Determine if each of the following are atomic expressions. If the expression is not atomic, find 

its head.
1.

8 / 5a.

8 / 5 + xb.

{{a, b}, {c, d}}c.

"8/5 + x"d.

Give the full (internal) form of the expression a (b + c).2.

What is the traditional representation of Times[a, Power[Plus[b, c], -1]].3.

What is the part specification of the symbol b in the expression a x2 + b x + c?4.

What will be the result of evaluating each of the following? Use FullForm on the expressions 

to help you understand their structures.
5.

x2 + y z / w[[2, 1, 2]]a.

(a / b)[[2, 2]]b.

Use Level to find all the factors in the following expression. Then find all the terms inside the 

parentheses of the output.
6.

In[1]:= expr = LegendreP[5, x]

Out[1]=

1

8
15 x - 70 x3 + 63 x5

Explain why the following expression returns an integer instead of displaying the internal 
representation of the fraction.

7.



In[2]:= FullForm
12

4


Out[2]//FullForm= 3

Modify the code for the one-dimensional random walk in this section to create two-dimen-
sional random walks. In this case the step directions will be the vectors pointing in the com-
pass directions, {0, 1}, {0, -1}, {1, 0}, and {-1, 0}.

8.

Solutions2.1
The functions AtomQ, Head, and FullForm will help answer these questions.1.

 The fraction 8 / 5 is atomic with head Rational.a.

In[1]:= AtomQ[8/5], Head[8/5]

Out[1]= {True, Rational}

The expression 8 / 5 + x is not atomic. It is a normal expression with head Plus.b.

In[2]:= AtomQ[8/5 + x], Head[8/5 + x], FullForm[8/5 + x]

Out[2]= {False, Plus, Plus[Rational[8, 5], x]}

The list {{a, b}, {c, d}} is not atomic. It has head List.c.

In[3]:= AtomQa, b, c, d, Heada, b, c, d

Out[3]= {False, List}

The string "8/5 + x" is atomic. It has head String.d.

In[4]:= AtomQ"8/5+x", Head"8/5+x"

Out[4]= {True, String}

The expression a (b + c) is given in full form as Times[a, Plus[b, c]].2.
This is simply 

a
b+c

 as can be seen by evaluating the full form expression.3.

In[5]:= Timesa, PowerPlusb, c, -1

Out[5]=

a

b + c

There are three elements in the expression; b x is the second element. 4.

In[6]:= expr = a x2 + b x + c;

In[7]:= FullForm[expr]

Out[7]//FullForm= Plus[c, Times[b, x], Times[a, Power[x, 2]]]

The first element of Times[b, x] is b, so the part specification is 2, 1.
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In[8]:= expr[[2]]

Out[8]= b x

In[9]:= expr[[2, 1]]

Out[9]= b

Looking at the internal representation of this expression with FullForm helps to unwind the 

part specification.
5.

Here is the internal representation of the expression:a.

In[10]:= FullForm
x2 + y z

w


Out[10]//FullForm= Times[Power[w, -1], Plus[Power[x, 2], y], z]

In[11]:=

x2 + y z

w
[[2, 1, 2]]

Out[11]= 2

From the FullForm of a / b, you can see that the second part is Power[b, -1] and the 

second part of that is -1. Note the need for parentheses here as the Part function has higher 
precedence than Power. For more information on operator precedence, see the tutorial 
Operator Input Forms (WLDC)

b.

In[12]:= FullFormab

Out[12]//FullForm= Times[a, Power[b, -1]]

In[13]:= ab[[2, 2]]

Out[13]= -1

At first, you might try getting the expressions at level two as follows:6.

In[14]:= expr = LegendreP[5, x]

Out[14]=

1

8
15 x - 70 x3 + 63 x5

In[15]:= Level[expr, 2]

Out[15]= 
1

8
, 15 x, -70 x3, 63 x5, 15 x - 70 x3 + 63 x5

But that gets all the parts down to level two. To extract just those parts at level two, use a 

slightly different syntax with Level.

In[16]:= Level[expr, {2}]

Out[16]= 15 x, -70 x3, 63 x5

2.1 Expressions: exercises 9
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Mathematica evaluates arguments to functions before passing them up to the calling function. So 

the fraction first evaluates to 3 and the head of 3 is of course Integer. To get the internal 
representation of the expression before it is evaluated, use Defer.

7.

In[17]:= DeferFullForm[12/4]

Out[17]= Times[12, Power[4, -1]]

The directions are the two-dimensional lists that can be thought of as vectors pointing in the 

compass directions north, south, east, and west.
8.

In[18]:= dirs = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

This picks a direction at random.

In[19]:= RandomChoicedirs

Out[19]= {1, 0}

This chooses five such.

In[20]:= RandomChoicedirs, 5

Out[20]= {{1, 0}, {0, 1}, {0, 1}, {-1, 0}, {0, -1}}

Here are the running sums, just like in the one-dimensional case.

In[21]:= Accumulate[%]

Out[21]= {{1, 0}, {1, 1}, {1, 2}, {0, 2}, {0, 1}}

And here is the nested code to create a 25 000-step two-dimensional random walk.

In[22]:= ListLinePlotAccumulateRandomChoicedirs, 25000, PlotStyle → Thin

Out[22]=

-20 20 40 60

-150

-100

-50

Numbers: exercises2.2
Is the expression 2 + π a number? Is it numeric? What is the difference?1.

Convert the base 10 integer 65 to base 2. Then convert back to base 10.2.

Define a function complexToPolar that converts complex numbers to their polar representa-
tions. Then, convert the numbers 3 + 3 ⅈ and ⅇπⅈ/3 to polar form.

3.
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Use NumberForm to display an approximate number with exactly four precise digits and three 

digits to the right of the decimal. Then use PaddedForm to display the numbers in the following 

vector with precisely two digits to the right of the decimal:

4.

In[1]:= vec = RandomReal[{0, 1}, 8]

Out[1]= {0.897363, 0.629743, 0.657265, 0.959865, 0.681584, 0.706607, 0.995883, 0.111384}

Make a histogram of the frequencies of the first 100 000 digits of π. It is an open problem in 

number theory as to whether the digits are normal, meaning that each of the digits zero through 

nine occur with about the same frequency in the decimal expansion of π. See Bailey et al. (2012) 
for more information on normality and the digits of π.

5.

Convert each of the characters in a string such as “Apple” to their eight-bit binary character 
code representation. For example, the character code for the letter A is 65:

6.

In[2]:= ToCharacterCode"A"

Out[2]= {65}

The eight-bit binary representation of 65 is 1000001, so your solution should return that base 2 

number for the letter A. Binary representations of letters are used in certain ciphers such as the 

XOR cipher discussed in Exercise 5 of Section 7.1.

Graphs consist of a set of vertices and edges connecting some subset of those vertices. They are 

implemented in Mathematica with Graph, which takes two arguments: a list of vertices and a list 

of edges. Create a random graph on n vertices by choosing m edges from the 

n
2

 possible 

edges. Such random graphs are commonly specified as G(n, m) and are essentially the model 
upon which the built-in RandomGraph is based.

7.

Extract the first 5000 digits in the decimal expansion of 1 / 17 or any other rational number. 
Then play them using ListPlay, which emits sound whose amplitude is given by the sequence 

of digits. Compare with the first 5000 digits of π. 

8.

RandomReal by default outputs numbers uniformly distributed on the interval [0, 1]. 9.

In[3]:= data = RandomReal{0, 1}, 104;

Histogramdata, 15

Out[4]=

0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

Bias the list of random numbers toward the lower end of this interval, giving a histogram 

similar to those in Figure 2.1.

2.2 Numbers: exercises 11
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Distributions of random number data biased toward the lower end of the interval [0, 1].Figure 2.1.
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Information theory, as conceived by Claude Shannon in the 1940s and 1950s, was originally 

interested in maximizing the amount of data that can be stored and retrieved over some 

channel such as a telephone line. Shannon devised a measure, now called entropy, that gives the 

theoretical maxima for such a signal. Entropy can be thought of as the average uncertainty of a 

single random variable and is computed by the following, where p(x) is the probability of event 
x over a domain X:

10.

H(X) = -∑x∈X p(x) log2 p(x)

Generate a plot of the entropy (built into Mathematica as Entropy) as a function of success 

probability. You can simulate n trials of a coin toss with probability p using a Bernoulli distribu-
tion as follows:

RandomVariateBernoulliDistribution[�], �

Solutions2.2
The expression 2 + π is certainly numeric as both 2 and π are numeric.1.

In[1]:= NumericQ[2 + π]

Out[1]= True

But it is not an explicit number because π is not an explicit number.

In[2]:= NumberQ[2 + π]

Out[2]= False

This converts the base 2 representation of the number 65 to base 10.2.

In[3]:= 2^^1000001

Out[3]= 65

To go in the other direction, use BaseForm:

In[4]:= BaseForm[65, 2]

Out[4]//BaseForm= 10000012

This function gives the polar form as a list consisting of the magnitude and the polar angle.3.
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In[5]:= complexToPolar[z_] := Abs[z], Arg[z]

In[6]:= complexToPolar[3 + 3 ⅈ]

Out[6]= 3 2 ,
π

4


Check against a built-in function (introduced inMathematica 10.1):

In[7]:= AbsArg[3 + 3 ⅈ]

Out[7]= 3 2 ,
π

4


In[8]:= complexToPolarⅇ
π ⅈ

3 

Out[8]= 1,
π

3


In[9]:= AbsArgⅇ
π ⅈ

3 

Out[9]= 1,
π

3


Here is an approximation of π to 20-digit precision.4.

In[10]:= pi = N[π, 20]

Out[10]= 3.1415926535897932385

Display four precise digits with three digits to the right of the decimal point.

In[11]:= NumberFormpi, {4, 3}

Out[11]//NumberForm=

3.142

For the second part of the exercise, here is a vector of machine precision numbers.

In[12]:= vec = RandomReal[{0, 1}, 8]

Out[12]= {0.650946, 0.238017, 0.664332, 0.840782, 0.211514, 0.0455802, 0.612099, 0.228518}

This forces the display to use three digits in total with two digits to the right of the decimal.

In[13]:= PaddedForm[vec, {3, 2}]

Out[13]//PaddedForm=

{ 0.65, 0.24, 0.66, 0.84, 0.21, 0.05, 0.61, 0.23}

To get the digits of π, use RealDigits.5.

In[14]:= RealDigits[N[π]]

Out[14]= {{3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3}, 1}

What is returned is a list with the digits first, followed by the exponent, 1. We are only interested 

in the first sublist, so use First.
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In[15]:= First[%]

Out[15]= {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3}

Here then, is a list of the first 100 000 digits of π, suppressing the display of the output using the 

semicolon.

In[16]:= pidigs = FirstRealDigitsNπ, 105;

This histogram shows that each of the digits zero through nine appear with about the same 

frequency. This is referred to as the normality of the digits of π (see Bailey et al. 2012) .

In[17]:= Histogrampidigs

Out[17]=

0 2 4 6 8 10
0

2000

4000
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8000
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First, here are the character codes of the letters in our test string, “Apple”.6.

In[18]:= ToCharacterCode"Apple"

Out[18]= {65, 112, 112, 108, 101}

Here are the base two representation of each of the above character codes.

In[19]:= IntegerDigits[%, 2]

Out[19]= {{1, 0, 0, 0, 0, 0, 1}, {1, 1, 1, 0, 0, 0, 0},

{1, 1, 1, 0, 0, 0, 0}, {1, 1, 0, 1, 1, 0, 0}, {1, 1, 0, 0, 1, 0, 1}}

Because the numbers are less than 128, the base two representation only have seven bits. To get 
the eight-bit representations, use a third argument to IntegerDigits.

In[20]:= IntegerDigitsToCharacterCode"Apple", 2, 8

Out[20]= {{0, 1, 0, 0, 0, 0, 0, 1}, {0, 1, 1, 1, 0, 0, 0, 0},

{0, 1, 1, 1, 0, 0, 0, 0}, {0, 1, 1, 0, 1, 1, 0, 0}, {0, 1, 1, 0, 0, 1, 0, 1}}

The built-in Graph function takes two arguments: a list of the vertex indices and a list of the 

edges. For a graph with n vertices, the vertex indices are simply the list of the integers one 

through n.

7.

In[21]:= n = 5;

vertices = Range[5]

Out[22]= {1, 2, 3, 4, 5}

For the edges, we need a list of all possible edges in a graph with n vertices. CompleteGraph[�] 
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is a graph with all possible edges on n vertices so we can borrow that list from CompleteGraph.

In[23]:= edgesCG = EdgeListCompleteGraph[n]

Out[23]= {1 2, 1 3, 1 4, 1 5, 2 3, 2 4, 2 5, 3 4, 3 5, 4 5}

To randomly choose m of them, use RandomChoice. RandomChoice chooses elements with 

replacement. Note that nothing prohibits what are referred to as multi-graphs, that is, graphs 

where multiple edges exist between pairs of vertices. 

In[24]:= RandomChoiceedgesCG, 8

Out[24]= {1 3, 4 5, 2 5, 2 3, 1 4, 2 3, 1 2, 1 2}

To avoid multi-edges, use RandomSample which chooses without replacement. But you will 

need to keep the desired number of edges, m, smaller than 

n
2

.

In[25]:= RandomSampleedgesCG, 8

Out[25]= {1 5, 3 4, 2 3, 1 2, 2 4, 2 5, 1 3, 3 5}

This puts the pieces together and scales it up a bit. Repeated evaluation will cause different 
random graphs to be displayed, all with n vertices and m edges.

In[26]:= n = 13;

m = 15;

GraphRange[n], RandomSampleEdgeListCompleteGraph[n], m

Out[28]=

Also note that because we have used CompleteGraph, there are no self-edges, that is, an edge 

from a vertex to itself. 
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In[29]:= n = 21;

m = 167;

GraphRange[n], RandomSampleEdgeListCompleteGraph[n], m

Out[31]=

The built-in RandomGraph constructs only simple graphs – no multi-edges and no self loops, 

hence the total possible number of edges cannot exceed 

n
2

.

In[32]:= RandomGraph[{21, 211}]

RandomGraph::args : RandomGraph{21, 211} called with invalid parameters. 

Out[32]= RandomGraph[{21, 211}]

In[33]:= Binomial[21, 2]

Out[33]= 210

First, note that RealDigits returns a list with two elements, the digits and the exponent, in this 

case indicating that the first digit starts one place to the right of the decimal point.
8.

In[34]:= RealDigits[N[1/17, 20]]

Out[34]= {{5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2}, -1}

To get only the digits, use First.

In[35]:= First[%]

Out[35]= {5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2}

Here then are the first 5000 digits of 1 / 17.

In[36]:= digs = FirstRealDigits[N[1/17, 5000]];

And this plays them through the speakers of your computer.

In[37]:= ListPlaydigs

Out[37]=

���� � | ���� ��
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There are several ways that the random number sequences can be biased. First look at a picture 

of unbiased data. The random number generator uses a uniform probability distribution by 

default so we expect to see numbers uniformly distributed across the interval [0, 1].

9.

In[38]:= data = RandomReal{0, 1}, 104;

In[39]:= Histogramdata, 10

Out[39]=

0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

One way to bias the numbers toward zero is to transform them in such a way that they bunch 

around zero. Since these numbers are all less than one, raising them to a power will make them 

smaller.

In[40]:= Histogramdata1.5, 10, ImageSize → 160, Histogramdata2, 10, ImageSize → 160

Out[40]= 

0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

,

0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

3000



Of course, choosing from a different distribution biases the numbers in a sense.

In[41]:= data = RandomVariateBenfordDistribution[10], 104;

Histogramdata, 10

Out[42]=

2 4 6 8 10
0

500

1000

1500

2000

2500

3000

In Chapters 3 and 9 we discuss listability, which will explain why we can raise every element in 

a vector to a power using the syntax above.

In[43]:= a, b, c, d, e1.5

Out[43]= a1.5, b1.5, c1.5, d1.5, e1.5

Run 10 000 trials with a range of probabilities from zero to one in increments of .001. The 

table creates pairs consisting of p together with the entropy (in base 2) for each trial.
10.

In[44]:= trials = 10000;

incr = 0.001;

info = Tablep, Entropy2, RandomVariateBernoulliDistribution[p], trials,

p, 0, 1, incr;
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Make a plot.

In[47]:= ListPlotinfo, AspectRatio → 1, GridLines → Automatic

Out[47]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Definitions: exercises2.3
Create a function reciprocal �

�
 that returns the reciprocal of the fraction ab. Check your

solution with numeric and symbolic fractions and with fractions containing zero in the
numerator.

1.

Using Total, create a function to sum the first n positive integers.2.

Create a function to compute the sum of the digits of any integer. Write an additional rule to
give the sum of the base-b digits of an integer. Then use your function to compute theHamming
weight of any integer: the Hamming weight of an integer is given by the number of ones in the
binary representation of that number. It has wide use in computer science (modular exponentia-
tion and hash tables), cryptography, and coding theory (Knuth 2011) .

3.

Write a function sumsOfCubes[�] that takes a positive integer argument n and computes the
sums of cubes of the digits of n (Hayes 1992).

4.

What rules are created by each of the following functions? Check your predictions by evaluat-
ing them and then queryingMathematicawith ? ��������_����.

5.

randLis1[n_] := RandomReal[1, {n}]a.

randLis2[n_] := (x = RandomReal[]; Table[x, {n}])b.

randLis3[n_] := (x := RandomReal[]; Table[x, {n}])c.

randLis4[n_] = Table[RandomReal[], {n}]d.

Consider two functions f and g, which are identical except that one is written using an immedi-
ate assignment and the other using a delayed assignment.

6.

In[1]:= f[n_] = Sum(1 + x)j, j, 1, n;

In[2]:= g[n_] := Sum(1 + x)j, j, 1, n

Explain why the outputs of these two functions look so different. Are they in fact different?
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In[3]:= f[2]

Out[3]=

(1 + x) -1 + (1 + x)2

x

In[4]:= g[2]

Out[4]= 1 + x + (1 + x)2

Write rules for a function log (note lowercase) that encapsulate the following identities:7.

log a b = log (a) + logb;
log  a

b
 = log (a) - logb;

log (an) = n log(a).

Create a piecewise-defined function g(x) based on the following; then plot the function from 

-2 to 0.
8.

g (x) = - 1 - (x + 2)2
-2 ≤ x ≤ - 1

1 -x2 x < 0

The built-in function RotateRight rotates the elements in a list one place to the right, with the 

last element swinging around to the front.
9.

In[5]:= RotateRighta, b, c, d, e

Out[5]= {e, a, b, c, d}

Create a function IntegerRotateRight[�] that takes an integer n and returns an integer with 

the original digits rotated one place to the right. Use this function to first verify that 142 857 is a 

divisor of its right rotation and then find all such numbers less than one million 

(Project Euler, Problem#168).

The Champernowne constant is a famous number that is created by concatenating successive 

integers and interpreting them as decimal digits. For example, here are the first 31 digits of the 

base-10 Champernowne number:

10.

In[6]:= NChampernowneNumber[10], 31

Out[6]= 0.1234567891011121314151617181920

Concatenation can be used to generate integers also. Create a function to generate the nth 

Smarandache–Wellin number, formed by concatenating the digits of successive primes. The 

first such number is 2, then 23, then 235, followed by 2357, 235711, and so on. Numerous open 

questions exist about these numbers: for example, it is not known if an infinite number of 
them are prime; see Crandall and Pomerance (2005) and Sloane (A019518).
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Solutions2.3
Note that simply giving the reciprocal on the right-hand side does not work.1.

In[1]:= reciprocala_b_ := b a

In[2]:= reciprocal[3/4]

Out[2]=

4

3

Look at the internal form to see why the pattern matcher failed to match 3/4 with a_ / b_.

In[3]:= FullForm[3/4]

Out[3]//FullForm= Rational[3, 4]

So a better approach is to use the internal form of such fractions.

In[4]:= reciprocalRationala_, b_ := Rationalb, a

Alternatively, match with the head.

In[5]:= reciprocalz_Rational := Denominator[z]Numerator[z]

This works for numeric and symbolic fractions.

In[6]:= reciprocal[3/4]

Out[6]=

4

3

In[7]:= reciprocal[z/(x + y)]

Out[7]=

x + y

z

But there is an issue with fractions containing zero in the numerator.

In[8]:= reciprocal[0/5]

Power::infy : In�nite expression 

1

0
 encountered. 

Out[8]= ComplexInfinity

We will wait until Section 2.4 to resolve this issue.

Generate the list of integers 1 through n, then total that list.2.

In[9]:= sumInts[n_] := Total[Range[n]]

In[10]:= sumInts[100]

Out[10]= 5050

In[11]:= sumInts[1000]

Out[11]= 500500
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We have not been careful to check that the arguments are positive integers here. See Section 4.1 

for a discussion of patterns used to perform argument checking on your functions.

Once you have a list of the digits in any integer (IntegerDigits), simply total the list.3.

In[12]:= DigitSum[n_] := TotalIntegerDigits[n]

In[13]:= DigitSum[10!]

Out[13]= 27

One rule can cover both parts of this exercise, using a default value of 10 for the base (see 

Section 5.4 for a discussion of default values).

In[14]:= DigitSumn_, base_: 10 := TotalIntegerDigitsn, base

The Hamming weight of a number is the number of ones in its binary representation.

In[15]:= DigitSum231 - 1, 2

Out[15]= 31

Here is a comparison with a built-in function:

In[16]:= DigitCount231 - 1, 2, 1

Out[16]= 31

Here is the sumsOfCubes function.4.

In[17]:= sumsOfCubes[n_Integer] := TotalIntegerDigits[n]3


In[18]:= sumsOfCubes[124]

Out[18]= 73

This exercise focuses on the difference between immediate and delayed assignments.5.

This will generate a list of n random numbers.a.

In[19]:= randLis1[n_] := RandomReal[1, {n}]

In[20]:= randLis1[3]

Out[20]= {0.726437, 0.820623, 0.349356}

Since the definition for x is an immediate assignment, its value does not change in Table. 
But each time randLis2 is called, a new value is assigned to x.

b.

In[21]:= randLis2[n_] := x = RandomReal[]; Table[x, {n}]

In[22]:= randLis2[3]

Out[22]= {0.974798, 0.974798, 0.974798}

In[23]:= randLis2[3]

Out[23]= {0.621851, 0.621851, 0.621851}
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Because the definition for x is a delayed assignment, the definition for randLis3 is function-
ally equivalent to randLis1.

c.

In[24]:= randLis3[n_] := x := RandomReal[]; Table[x, {n}]

In[25]:= randLis3[3]

Out[25]= {0.412708, 0.253301, 0.361384}

In an immediate assignment, the right-hand side of the definition is evaluated first. But in 

this case, n does not have a value, so Table is not able to evaluate properly.
d.

In[26]:= randLis4[n_] = TableRandomReal[], {n}

Out[26]= {0.138356, 0.374127, 0.873417, 0.769375, 0.0394529, 0.983081, 0.160601,

0.982007, 0.191435, 0.744383, 0.761298, 0.311281, 0.461935, 0.525905,

0.921668, 0.41622, 0.442365, 0.389952, 0.171867, 0.992726, 0.406445}

In[27]:= Clear[x, n]

The definition for f given in the exercise evaluates the sum first (immediate assignment), giving 

a symbolic expression for the general sum from 1 to n. When f[2] is evaluated, the argument 2 

is then substituted into this expression for n. In the case of g, the value of n is substituted and 

then the sum is evaluated. Although the resulting expressions output by these two functions 

look different at first, expanding them gives the same result.

6.

In[28]:= f[n_] = Sum(1 + x)j, j, 1, n

Out[28]=

(1 + x) (-1 + (1 + x)n)

x

In[29]:= g[n_] := Sum(1 + x)j, j, 1, n

In[30]:= Expandf[2]

Out[30]= 2 + 3 x + x2

In[31]:= Expand[g[2]]

Out[31]= 2 + 3 x + x2

The rules for the logarithm function are as follows. Note, there is no need to program the 

division rule separately. Do you see why? (Look at FullForm[x / y].)
7.

In[32]:= loga_*b_ := log[a] + logb

In[33]:= loga_n_
 := n log[a]

In[34]:= logx y2 z3

Out[34]= log[x] + 2 log[y] + 3 log[z]

In[35]:= log[x/y]

Out[35]= log[x] - log[y]

Using Piecewise, we have:8.
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In[36]:= g[x_] := Piecewise-1 1 - (x + 2)2 , -2 ≤ x ≤ -1,  1 - x2 , x < 0

In[37]:= Plot[g[x], {x, -2, 0}]

Out[37]=
-2.0 -1.5 -1.0 -0.5

-1.0

-0.5

0.5

1.0

First get a list of the digits of the integer.9.

In[38]:= IntegerDigits[142857]

Out[38]= {1, 4, 2, 8, 5, 7}

Next rotate the list using RotateRight.

In[39]:= RotateRightIntegerDigits[142857]

Out[39]= {7, 1, 4, 2, 8, 5}

Reconstruct the number from the list of digits using FromDigits.

In[40]:= FromDigitsRotateRightIntegerDigits[142857]

Out[40]= 714285

Here is the function:

In[41]:= IntegerRotateRight[n_Integer] := FromDigitsRotateRightIntegerDigits[n]

And this shows that 142857 is a divisor of its right rotation (third divisor from the end):

In[42]:= DivisorsIntegerRotateRight[142857]

Out[42]= {1, 3, 5, 9, 11, 13, 15, 27, 33, 37, 39, 45, 55, 65, 99, 111, 117, 135,

143, 165, 185, 195, 297, 333, 351, 407, 429, 481, 495, 555, 585, 715,

999, 1221, 1287, 1443, 1485, 1665, 1755, 2035, 2145, 2405, 3663, 3861,

4329, 4995, 5291, 6105, 6435, 7215, 10989, 12987, 15873, 18315, 19305,

21645, 26455, 47619, 54945, 64935, 79365, 142857, 238095, 714285}

In[43]:= MemberQDivisorsIntegerRotateRight[142857], 142857

Out[43]= True

Here are all the integers less than one million that satisfy this property; most are palindromes 

(see Chapter 5 for discussion of Select and also pure functions).
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In[44]:= SelectRange10, 106, MemberQDivisorsIntegerRotateRight[#], # &

Out[44]= {11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333, 444, 555, 666,

777, 888, 999, 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999,

11111, 22222, 33333, 44444, 55555, 66666, 77777, 88888, 99999,

102564, 111111, 128205, 142857, 153846, 179487, 205128, 222222,

230769, 333333, 444444, 555555, 666666, 777777, 888888, 999999}

One approach to creating these numbers is to use IntegerDigits to extract the digits of 
successive primes and then use FromDigits to concatenate this list of digits.

10.

To prototype, get the digits from the first ten prime numbers.

In[45]:= TablePrimei, i, 10

Out[45]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

In[46]:= IntegerDigits[%]

Out[46]= {{2}, {3}, {5}, {7}, {1, 1}, {1, 3}, {1, 7}, {1, 9}, {2, 3}, {2, 9}}

(As an aside, the above works because IntegerDigits is listable and hence automatically maps 

across lists.)

Next, flatten the output from IntegerDigits and turn that list into a number using 

FromDigits.

In[47]:= Flatten[%]

Out[47]= {2, 3, 5, 7, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 2, 9}

In[48]:= FromDigits[%]

Out[48]= 2357111317192329

Here then is a function that creates the nth Smarandache-Wellin number.

In[49]:= SmarandacheWellin[n_] :=

FromDigitsFlattenIntegerDigits@TablePrimei, i, n

And here are the first ten such numbers.

In[50]:= TableSmarandacheWellini, i, 10

Out[50]= {2, 23, 235, 2357, 235711, 23571113, 2357111317,

235711131719, 23571113171923, 2357111317192329}

Which are prime numbers themselves?

In[51]:= Select%, PrimeQ

Out[51]= {2, 23, 2357}

And here is a really big Smarandache-Wellin prime.
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In[52]:= SmarandacheWellin[1429] // N

Out[52]= 2.357111317192329×105718

In[53]:= PrimeQSmarandacheWellin[1429]

Out[53]= True

In Section 7.2 wewill look at an alternative approach to constructing these numbers using
string functions.

Predicates and Boolean operations: exercises2.4
Create a predicate function that returns a value of True if its argument is between -1 and 1.1.

Define a predicate function StringCharacterQ[���] that returns True if its argument str is a
single string character, and returns False otherwise.

2.

Write a predicate function NaturalQ[�] that returns a value of True if n is a natural number
and a value of False otherwise, that is, NaturalQ[�] gives True if n is among 0, 1, 2, 3, ….

3.

Create a predicate function, SquareNumberQ[�] that returns True if n is a square number, such
as 1, 4, 9, 16,….

4.

Create a predicate function TriangularNumberQ[�] that returns Truewhenever its argument t
is a triangular number. The nth triangular number Tn is given by the formula

5.

Tn =∑k=1
n k = 1 +2 +3 +⋯+n = n(n+1)

2
=

n + 1
2

Based on the solution to the two previous exercises, create a predicate function
SquareTriangularNumberQ[�] that returns a value of True if n is both a square number and a
triangular number. Then use this predicate to find all square triangular numbers less than one
million.

6.

Create a predicate function RealPositiveQ[�] that returns a value of True if x is a positive
real number (“real” in the mathematical sense, i.e., x ∈). Add a second rule that accepts
vectors as arguments and returns True if every element of the vector argument is a positive real
number.

7.

The built-in function CoprimeQ[�, �] returns True if a and b are relatively prime (share no
common factors other than 1) and returns False otherwise. Use ArrayPlot to visualize pairs
of relatively prime numbers from 1 to 100. Use Boole to convert the table of True/False values
returned by CoPrimeQ to zeros and ones.

8.
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An undirected graph gr is considered dense if the number of edges in gr is close to the maximum 

number of edges. The maximum for a graph with n edges occurs when every pair of vertices is 

connected by an edge and, assuming no self-loops and no multi-edges, is given by the number 

of two-element subsets of n objects, 
n
2

. The density  of a graph can be defined as

9.

 =
E

V ( V - 1)

where E  is the number of edges and V  is the number of vertices (given by EdgeCount and 

VertexCount, respectively). A graph with all possible edges has a density of 1 and a graph with 

no edges has density 0. Although there are differences of opinion as to where the cutoff is, 
assume that a graph is dense if its density is greater than or equal to 0.5.

Define a function DenseGraphQ[��] that returns a value of True if gr is dense in the above 

sense and returns a value of False otherwise. As tests, DenseGraphQ should give True for 
CompleteGraph[�] for any n and it should return False for 
RandomGraph[BernoulliGraphDistribution[�, ��]] for small probabilities pr.

Solutions2.4
There are several ways to define this function, either using the relational operator for less than,
or with the absolute value function.

1.

In[1]:= f[x_] := -1 < x < 1

In[2]:= f[x_] := Abs[x] < 1

In[3]:= f[4]

Out[3]= False

In[4]:= f[-0.35]

Out[4]= True

The requirements here are that the argument be both a string (StringQ) and have length 

(StringLength) one.
2.

In[5]:= StringCharacterQch_ := StringQch && StringLengthch ⩵ 1

In[6]:= StringCharacterQ"v"

Out[6]= True

In[7]:= StringCharacterQ"vi"

Out[7]= False

In[8]:= StringCharacterQ[v]

Out[8]= False
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A number n can be considered a natural number if it is both an integer and greater than or equal 
to zero. There is some historical precedent for not including zero, but most mathematicians and 

computer scientists now include it and so for our purposes, we will adopt the convention that 
zero is a natural number.

3.

In[9]:= NaturalQ[n_] := IntegerQ[n] && n ≥ 0

In[10]:= NaturalQ[0]

Out[10]= True

In[11]:= NaturalQ[-4]

Out[11]= False

To check that a number is a perfect square, it is sufficient to see if its square root is an integer.4.

In[12]:= SquareNumberQ[n_] := IntegerQ n 

In[13]:= SquareNumberQ[10]

Out[13]= False

In[14]:= SelectRange[100], SquareNumberQ

Out[14]= {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

Since any triangular number T is equal to n(n + 1) /2 for some n, a bit of algebraic manipulation 

gives:
5.

2 T = n2 + n
8 T = 4 n2 + 4 n

Completing the square gives:

8 T + 1 = 4 n2 + 4 n + 1
= (2 n + 1)2

So, T is triangular if and only if 8 T + 1 is an odd perfect square. Here then is the test.

In[15]:= TriangularNumberQ[t_] := OddQ 8 t + 1  && SquareNumberQ[8 t + 1]

In[16]:= TriangularNumberQ[6]

Out[16]= True

In[17]:= TriangularNumberQ[55]

Out[17]= True

In[18]:= TriangularNumberQ[56]

Out[18]= False

Combine the previous two solutions with a conjunction.6.

In[19]:= SquareTriangularNumberQ[n_] := TriangularNumberQ[n] && SquareNumberQ[n]
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In[20]:= SelectRange[1000000], SquareTriangularNumberQ

Out[20]= {1, 36, 1225, 41616}

First, create a predicate that checks if a single number is real and positive.7.

In[21]:= RealPositiveQn_?NumericQ := Im[n]⩵ 0 && Positive[n]

In[22]:= Select{-4, 23, 3 + 4 I, π}, RealPositiveQ

Out[22]= {23, π}

Now, add a rule that checks if a vector consists entirely of numbers that are real and positive.
AllTrue[����, ����] applies the test to each of the elements in expr and returns True if all of
them are true.

In[23]:= RealPositiveQvec_?VectorQ := AllTruevec, RealPositiveQ

In[24]:= RealPositiveQ[{-4, 23, 3 + 4 I, π}]

Out[24]= False

Actually we canmake this code a bit more compact by using the two-argument form of
VectorQ. The second argument is a predicate that tests each element of the vector calling the
one argument form of RealPositiveQ.

In[25]:= ClearRealPositiveQ;

RealPositiveQn_?NumericQ := Im[n]⩵ 0 && Positive[n]

In[27]:= RealPositiveQ[vec_] := VectorQvec, RealPositiveQ

Wrapping the table produced by CoprimeQ in Boole converts the true/false values to zeros and
ones, which is what ArrayPlot needs.

8.

In[28]:= ArrayPlotBooleTableCoprimeQa, b, {a, 100}, b, 100

Out[28]=

Given the definition of graph density in the exercise, here is an implementation that takes a
graph as an argument.

9.

In[29]:= DenseGraphQgr_Graph :=

2 EdgeCount[gr](VertexCount[gr] (VertexCount[gr] - 1)) ≥ 0.5
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In[30]:= gr = RandomGraph[{20, 90}]

Out[30]=

In[31]:= DenseGraphQ[gr]

Out[31]= False

Complete graphs are dense as they have all possible edges.

In[32]:= CompleteGraph[10]

Out[32]=

In[33]:= DenseGraphQ[%]

Out[33]= True

Actually, there is a built-in function that gives the density explicitly.

In[34]:= GraphDensityCompleteGraph[10]

Out[34]= 1

In[35]:= GraphDensity[gr]

Out[35]=

9

19

So an simpler definition would just use that.

In[36]:= DenseGraphQgr_Graph := GraphDensity[gr] ≥ 0.5

Attributes: exercises2.5
Ordinarily, when you define a function, it has no attributes. The arguments are evaluated
before being passed up to the calling function. So, in the following case, 2 + 3 is evaluated
before it is passed to g.

1.

In[1]:= g[x_ + y_] := x2
+ y2
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In[2]:= g[2 + 3]

Out[2]= g[5]

Use one of the Hold attributes to give g the property that its argument is not evaluated first.
The resulting output should look like this:

In[3]:= g[2 + 3]

Out[3]= 13

Define a function that takes each number, x, in a vector of numbers and returns x if it is within
a certain interval, say -0.5 < x < 0.5, and returns x otherwise. Thenmake your function
listable so that it can operate on vectors (lists) directly.

2.

The definitions used in the solution to Exercise 1 of Section 2.3 for the reciprocal function
failed to properly deal with the special case of zero in the numerator.

3.

In[4]:= reciprocalRationala_, b_ := Rationalb, a

In[5]:= reciprocal[0/5]

Out[5]= reciprocal[0]

Correct this problem by giving reciprocal the appropriate attribute.

Solutions2.5
First clear any definitions and attributes that might be associated with g.1.

In[1]:= ClearAll[g]

Then set the HoldAll attribute to prevent initial evaluation of the argument of this function.

In[2]:= SetAttributesg, HoldAll

In[3]:= g[x_ + y_] := x2
+ y2

In[4]:= ga + b

Out[4]= a2 + b2

In[5]:= g[2 + 3]

Out[5]= 13

Here is a small list of random numbers to use.2.

In[6]:= vec = RandomReal[{-1, 1}, 10]

Out[6]= {-0.798986, -0.84542, -0.747004, -0.44054, 0.117601,

-0.243944, -0.227587, 0.994751, -0.107316, 0.692977}

The function could be set up to take two arguments, the number and the bound.

In[7]:= funx_?NumberQ, bound_ := If-bound < x < bound, x, x 
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Make fun listable.

In[8]:= SetAttributesfun, Listable

In[9]:= fun[vec, 0.5]

Out[9]= {0. + 0.89386 ⅈ, 0. + 0.919467 ⅈ, 0. + 0.864294 ⅈ, -0.44054,

0.117601, -0.243944, -0.227587, 0.997372, -0.107316, 0.832452}

First, here is the original definition for reciprocal.3.

In[10]:= reciprocalz_Rational := Denominator[z]Numerator[z]

In[11]:= reciprocal[0/5]

Power::infy : In�nite expression 

1

0
 encountered. 

Out[11]= ComplexInfinity

Give it the HoldAll attribute to prevent fractions such from first evaluating and being reduced.

In[12]:= SetAttributesreciprocal, HoldAll

In[13]:= reciprocalz_Rational := Denominator[z]Numerator[z]

In[14]:= reciprocal[0/5]

Power::infy : In�nite expression 

1

0
 encountered. 

Out[14]= ComplexInfinity

We have resolved one problem, but a new one arises. The unevaluated form of 0 / 5 is in fact 
not a Rational. It will become Rational once it is evaluated.

In[15]:= FullFormHoldForm[0/5]

Out[15]//FullForm= HoldForm[Times[0, Power[5, -1]]]

So, one more rule is needed to cover this situation.

In[16]:= reciprocalTimesa_, Powerb_, -1 := b a

In[17]:= reciprocal[0/5]

Power::infy : In�nite expression 

1

0
 encountered. 

Out[17]= ComplexInfinity

In[18]:= reciprocal[2/3]

Out[18]=

3

2

In fact, this last rule now handles more complicated rational expressions such as the following.
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In[19]:= reciprocal[x/(y + z)]

Out[19]=

y + z

x
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3
Lists and associations

Creating and displaying lists: exercises3.1
Create a list of the multiples of five less than or equal to one hundred.1.

Create a list of the reciprocals of the powers of two as the powers go from zero to sixteen.2.

Generate the list {{0}, {0, 2}, {0, 2, 4}, {0, 2, 4, 6}, {0, 2, 4, 6, 8}} in two 

different ways using the Table function.
3.

Generate both of the following arrays using the Table function:4.

In[1]:= Arrayf, 5

Out[1]= f[1], f[2], f[3], f[4], f[5]

In[2]:= Arrayf, {3, 4}

Out[2]= f[1, 1], f[1, 2], f[1, 3], f[1, 4],

f[2, 1], f[2, 2], f[2, 3], f[2, 4], f[3, 1], f[3, 2], f[3, 3], f[3, 4]

Use Table to create an n⨯n matrix consisting of the positive integers one through n2
 arranged 

such that the first row is the list {1, 2, 3, …, n}, the second row is the list 
{1 + n, 2 + n, 3 + n, …, 2 n}, and in general the kth row is the list 
1 + k - 1 n, 2 + k - 1 n, 3 + k - 1 n, …, n2. For example, for n = 4, you should have

5.

{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}

In matrix form, this would be:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16



Using Table, create a symmetric matrix of the binomial coefficients for any n similar to that in 

Table 3.1.
6.

��������������������� = 5Table 3.1.

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

Given an m⨯m square lattice like the grid graph below, color all vertices on the bottom red, and 

on the top white. Your solution should be as general as possible, so that changing the size of 
the lattice (changing the value of m) will still work to color the lattice.

7.

In[3]:= m = 5;

GridGraph{m, m}, VertexLabels → "Name"

Out[4]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

To change the property of select vertices in a graph, use HighlightGraph. For example, the 

following colors vertices 1, 13, and 25 red.

In[5]:= HighlightGraph

GridGraph{m, m}, VertexLabels → "Name",

Style{1, 13, 25}, Red, VertexSize → Medium

Out[5]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Import six images, resize them to the same dimensions, then display them inside a 3⨯2 grid 

using options for Grid to format the output.
8.

Construct an integer lattice graphic like in Figure 3.1. Start by creating a list of the pairs of 
coordinate points. Then connect the appropriate pairs of coordinates with lines (use 

Graphics[Line[…]]). Add points with Graphics[Point[…]]. See Chapter 8 for details 

about creating plots from graphics primitives. Consider the function CoordinateBoundsArray 

to get the list of integer coordinates.

9.
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A 5⨯3 rectangular lattice.Figure 3.1.

Solutions3.1
Using Table, here are the multiples of 5.1.

In[1]:= Table5 j, j, 1, 100/5

Out[1]= {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100}

This can also be done with Range.

In[2]:= Range[5, 100, 5]

Out[2]= {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100}

Here are the reciprocals of the powers of two.2.

In[3]:= Table
1

2i
, i, 0, 16

Out[3]= 1,
1

2
,
1

4
,
1

8
,

1

16
,

1

32
,

1

64
,

1

128
,

1

256
,

1

512
,

1

1024
,

1

2048
,

1

4096
,

1

8192
,

1

16384
,

1

32768
,

1

65536


In[4]:= 1/(2^Range[0, 16])

Out[4]= 1,
1

2
,
1

4
,
1

8
,

1

16
,

1

32
,

1

64
,

1

128
,

1

256
,

1

512
,

1

1024
,

1

2048
,

1

4096
,

1

8192
,

1

16384
,

1

32768
,

1

65536


You can take every other element in the iterator list, or encode that in the expression 2 j.3.

In[5]:= Tablej, i, 0, 8, 2, j, 0, i, 2

Out[5]= {{0}, {0, 2}, {0, 2, 4}, {0, 2, 4, 6}, {0, 2, 4, 6, 8}}

In[6]:= Table2 j, i, 0, 4, j, 0, i

Out[6]= {{0}, {0, 2}, {0, 2, 4}, {0, 2, 4, 6}, {0, 2, 4, 6, 8}}

These lists can be generated with Table, using two iterators for the second example.4.

In[7]:= Tablefi, i, 5

Out[7]= f[1], f[2], f[3], f[4], f[5]
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In[8]:= Tablefi, j, i, 3, j, 4

Out[8]= f[1, 1], f[1, 2], f[1, 3], f[1, 4],

f[2, 1], f[2, 2], f[2, 3], f[2, 4], f[3, 1], f[3, 2], f[3, 3], f[3, 4]

There are numerous ways to create this array. Here is one approach:5.

In[9]:= n = 4;

Table1 + i + j, j, 0, n2 - 1, n, i, 0, n - 1

Out[10]= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}

But in fact, a more direct implementation using the statement of the problem, gives the 

following:

In[11]:= n = 4;

Tablej + k n, k, 0, n - 1, j, 1, n

Out[12]= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}

In[13]:= MatrixForm[%]

Out[13]//MatrixForm=

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

The binomial coefficients can be generated with Binomial. For example here are the coeffi-
cients in the expansion of (1 + x)5:

6.

In[14]:= TableBinomial5, k, k, 0, 5

Out[14]= {1, 5, 10, 10, 5, 1}

In[15]:= Expand(1 + x)5


Out[15]= 1 + 5 x + 10 x2 + 10 x3 + 5 x4 + x5

So to get all coefficients for exponent n, as n runs from one to six say, we need a second iterator 
for Table. A bit of thought is needed to determine which iterator list comes first and to make j 
dependent upon n.

In[16]:= n = 6;

TableBinomialj, i, i, 0, n - 1, j, i, n + i - 1

Out[17]= {{1, 1, 1, 1, 1, 1}, {1, 2, 3, 4, 5, 6}, {1, 3, 6, 10, 15, 21},

{1, 4, 10, 20, 35, 56}, {1, 5, 15, 35, 70, 126}, {1, 6, 21, 56, 126, 252}}

In[18]:= MatrixForm[%]

Out[18]//MatrixForm=

1 1 1 1 1 1
1 2 3 4 5 6
1 3 6 10 15 21
1 4 10 20 35 56
1 5 15 35 70 126
1 6 21 56 126 252
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First, here is the grid graph:7.

In[19]:= m = 5;

gg = GridGraph{m, m}, VertexLabels → "Name"

Out[20]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Since this is a square grid, the vertex numbers on the top of the lattice are multiples of m up to 

m2.

In[21]:= top = Rangem, m2, m

Out[21]= {5, 10, 15, 20, 25}

The bottom vertices range from one to m2 -m + 1 in increments of m.

In[22]:= bot = Range1, m2 - m + 1, m

Out[22]= {1, 6, 11, 16, 21}

To change the properties of a set of vertices, use Style.

In[23]:= HighlightGraphGridGraph{m, m}, VertexLabels → "Name",

Stylebot, Red, Styletop, White

Out[23]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Changing the size of the lattice should not trigger a need to change the code.
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In[24]:= m = 7;

top = Rangem, m2, m;

bot = Range1, m2 - m + 1, m;

HighlightGraphGridGraph{m, m}, VertexLabels → "Name",

Stylebot, Red, Styletop, White

Out[27]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Here are some sample images to work with.8.

In[28]:= images = MapExampleData, "TestImage", "Girl2", "TestImage", "Peppers",

"TestImage", "Aerial", "TestImage", "Moon", "TestImage", "Tank2",

"TestImage", "Ruler";

Get their dimensions.

In[29]:= MapImageDimensions, images

Out[29]= {{256, 256}, {512, 512}, {256, 256}, {256, 256}, {512, 512}, {512, 512}}

Resize the larger images.

In[30]:= img1 = images[[1]];

img2 = ImageResizeimages[[2]], 256;

img3 = images[[3]];

img4 = images[[4]];

img5 = ImageResizeimages[[5]], 256;

img6 = ImageResizeimages[[6]], 256;

Finally, put in a grid with some formatting.

38 Essentials of Programming in Mathematica



In[36]:= Grid

img1, img2, img3,

img4, img5, img6

, Frame → All, Spacings → {1, 1}, ItemSize → {3, 3}

Out[36]=

A bit of thought is needed to get the iterators right using Table.9.

In[37]:= xmin = -2; xmax = 2; ymin = -1; ymax = 1;

hlines = Tablexmin, y, {xmax, y}, y, ymin, ymax

Out[38]= {{{-2, -1}, {2, -1}}, {{-2, 0}, {2, 0}}, {{-2, 1}, {2, 1}}}

In[39]:= vlines = Tablex, ymin, {x, ymax}, x, xmin, xmax

Out[39]= {{{-2, -1}, {-2, 1}}, {{-1, -1}, {-1, 1}},

{{0, -1}, {0, 1}}, {{1, -1}, {1, 1}}, {{2, -1}, {2, 1}}}

Join the two sets of lines and then flatten to remove one set of braces.

In[40]:= pairs = Flattenhlines, vlines, 1

Out[40]= {{{-2, -1}, {2, -1}}, {{-2, 0}, {2, 0}},

{{-2, 1}, {2, 1}}, {{-2, -1}, {-2, 1}}, {{-1, -1}, {-1, 1}},

{{0, -1}, {0, 1}}, {{1, -1}, {1, 1}}, {{2, -1}, {2, 1}}}

In[41]:= GraphicsLinepairs

Out[41]=

Actually, this can be done more compactly. First create the coordinate points for a 5⨯3 lattice.

In[42]:= coords = Tablei, j, i, 1, 5, j, 1, 3

Out[42]= {{{1, 1}, {1, 2}, {1, 3}}, {{2, 1}, {2, 2}, {2, 3}},

{{3, 1}, {3, 2}, {3, 3}}, {{4, 1}, {4, 2}, {4, 3}}, {{5, 1}, {5, 2}, {5, 3}}}

This gives the vertical lines:
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In[43]:= GraphicsLinecoords

Out[43]=

Transposing the coordinates gives a list that can be used for the horizontal lines. Look carefully 

at the structure of coords to understand what exactly is being transposed.

In[44]:= Transpose@coords

Out[44]= {{{1, 1}, {2, 1}, {3, 1}, {4, 1}, {5, 1}},

{{1, 2}, {2, 2}, {3, 2}, {4, 2}, {5, 2}},

{{1, 3}, {2, 3}, {3, 3}, {4, 3}, {5, 3}}}

In[45]:= GraphicsLineTranspose@coords

Out[45]=

This puts everything together, adding points at each coordinate. Module is a localization 

construct, discussed in Section 6.1.

In[46]:= Latticexdim_, ydim_ := Modulecoords,

coords = Tablei, j, i, 1, xdim, j, 1, ydim;

Graphics

Linecoords, LineTransposecoords,

PointSizeMedium, PointFlattencoords, 1



In[47]:= Lattice[{6, 4}]

Out[47]=

Alternatively, you could use CoordinateBoundsArray, new in Mathematica 10.1:
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In[48]:= ?CoordinateBoundsArray

CoordinateBoundsArray{{����, ����}, {����, ����}, …} generates an array of

{�, �, …} coordinates with integer steps in each dimension.

CoordinateBoundsArray{������, ������, …}, �

uses step � in each dimension.

CoordinateBoundsArray{������, ������, …}, {��, ��, …}

uses steps ��, ��, … in successive dimensions.

CoordinateBoundsArray{������, ������, …}, Into[�]

divides into � equal steps in each dimension.

CoordinateBoundsArray{������, ������, …}, �����, �������

speci�es offsets to use for each coordinate point.

CoordinateBoundsArray{������, ������, …}, �����, �������, �

expands the array by � elements in every direction.  

So the following would simplify the computation:

In[49]:= coords = CoordinateBoundsArray[{{1, 5}, {1, 3}}]

Out[49]= {{{1, 1}, {1, 2}, {1, 3}}, {{2, 1}, {2, 2}, {2, 3}},

{{3, 1}, {3, 2}, {3, 3}}, {{4, 1}, {4, 2}, {4, 3}}, {{5, 1}, {5, 2}, {5, 3}}}

This gives five triples of coordinates and if you look carefully, these can be used to get the 

vertical lines.

In[50]:= Dimensionscoords

Out[50]= {5, 3, 2}

In[51]:= GraphicsLinecoords

Out[51]=

The horizontal lines can be obtained by transposing the coordinates returned by Coordi

nateBoundsArray.

In[52]:= Transposecoords

Out[52]= {{{1, 1}, {2, 1}, {3, 1}, {4, 1}, {5, 1}},

{{1, 2}, {2, 2}, {3, 2}, {4, 2}, {5, 2}},

{{1, 3}, {2, 3}, {3, 3}, {4, 3}, {5, 3}}}
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In[53]:= GraphicsLinecoords, LineTransposecoords

Out[53]=

In[54]:= Latticexmin_, xmax_, ymin_, ymax_ := Modulecoords,

coords = CoordinateBoundsArrayxmin, xmax, ymin, ymax;

GraphicsLinecoords, LineTransposecoords



In[55]:= Lattice[{1, 5}, {1, 3}]

Out[55]=

Testing and measuring lists: exercises3.2
What is the length of the following list? What are its dimensions? What is the position of g?1.

{a, b}, {c, d}, e, f, {g, h}

The following input generates a list of 10 000 zeros and ones weighted heavily toward the ones. 
Determine if there are any zeros in this list and if there are, find how many.

2.

In[1]:= lis = RandomChoice[{.0001, .9999} → {0, 1}, {10000}];

Given a list of integers such as the following, count the number of zeros. Find a way to count 
all those elements of the list which are not ones.

3.

In[2]:= ints = RandomInteger[{-5, 5}, 30]

Out[2]= {1, 4, -1, 2, -2, 4, 4, -5, 5, 3, 4, -3, -3, 1,

0, 4, -1, -2, 2, 0, -5, 1, -5, -4, 3, -5, -2, -3, 3, 0}

Given the list {{{1, a}, {2, b}, {3, c}}, {{4, d}, {5, e}, {6, f}}}, determine its 

dimensions. Use the Dimensions function to check your answer.
4.

Find the positions of the nines in the following list. Confirm using Position.5.

{{2, 1, 10}, {9, 5, 7}, {2, 10, 4}, {10, 1, 9}, {6, 1, 6}}

Determine if there are any prime numbers in the interval [4 302 407 360, 4 302 407 713]. Once 

you have a list of the integers that you want to test for primality, use Position (see Section 4.1) 
and Extract to return the explicit primes.

6.
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Solutions3.2
The following list has length four because it has four elements, the four pairs. 1.

In[1]:= lis = a, b, c, d, e, f, g, h;

In[2]:= Lengthlis

Out[2]= 4

Its dimensions are 4⨯2; that is, it has four rows and two columns when thought of as a rectangu-
lar array.

In[3]:= Dimensionslis

Out[3]= {4, 2}

In[4]:= MatrixFormlis

Out[4]//MatrixForm=

a b
c d
e f
g h

The element g is in the fourth row first column.

In[5]:= Positionlis, g

Out[5]= {{4, 1}}

Each time your evaluate the following input you will get a different list of 10 000 zeros and 

ones. Seeding the random number generator will give repeatable results. 
2.

In[6]:= SeedRandom[1];

lis = RandomChoice[{.0001, .9999} → {0, 1}, {10000}];

On the computer on which this was run, this seed gives some zeros in the list.

In[8]:= FreeQlis, 0

Out[8]= False

In[9]:= Countlis, 0

Out[9]= 2

Here is the list of integers to use.3.

In[10]:= ints = RandomInteger[{-5, 5}, 30]

Out[10]= {0, 2, 5, -4, 3, -2, 5, -4, 1, -5, -5, 3, -3, -3,

-4, -2, -2, -4, 2, -5, -2, -5, 1, 4, 4, -4, 1, 0, -2, 2}

Count all elements that match 0.

In[11]:= Countints, 0

Out[11]= 2
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Count all integers in ints that do not match 1.

In[12]:= Countints, Except[1]

Out[12]= 27

From the top level, there are two lists, each consisting of three sublists, each sublist consisting of 
two elements.

4.

In[13]:= Dimensions{1, a}, 2, b, {3, c}, 4, d, {5, e}, 6, f

Out[13]= {2, 3, 2}

The Position function tells us that the 9s are located in the second sublist, first position, and in 

the fourth sublist, third position.
5.

In[14]:= Position[{{2, 1, 10}, {9, 5, 7}, {2, 10, 4}, {10, 1, 9}, {6, 1, 6}}, 9]

Out[14]= {{2, 1}, {4, 3}}

Here is the interval we are interested in:6.

In[15]:= ints = Range[4 302407360, 4302407713];

Using some pattern matching (look ahead to Section 4.1), this gives the positions of the integers 

in ints that pass the PrimeQ test.

In[16]:= pos = Positionints, p_?PrimeQ

Out[16]= {{354}}

Extract and Position work well together. The positions given by Position can be given 

directly to Extract to get those elements in ints that are specified by the positions in 

Position.

In[17]:= Extractints, pos

Out[17]= {4302407713}

In[18]:= PrimeQ[%]

Out[18]= {True}

Operations on lists: exercises3.3
Given a list of coordinate pairs such as the following:1.

{{x1, y1}, {x2, y2}, {x3, y3}, {x4, y4}, {x5, y5}}

separate the x and y components to get

{{x1, x2, x3, x4, x5}, {y1, y2, y3, y4, y5}}
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Use the Part function to extract the elements of a list that are in the even-indexed positions. So 

in the list below, the even-indexed elements are {3, 8, 3, 4, 2, 13}. Then extract all those ele-
ments in the odd-indexed positions.

2.

In[1]:= lis = RandomInteger[{1, 20}, {12}]

Out[1]= {5, 3, 3, 8, 17, 3, 3, 4, 20, 2, 11, 13}

Given the following list of integers, find the five largest numbers in the list. Then find the five 

smallest numbers in the list.
3.

In[2]:= nums = RandomInteger[{-100, 100}, {25}]

Out[2]= {38, 6, -15, -31, 44, 11, -100, 47, -14, 26, 50,

48, -72, 24, 12, 66, 10, 31, 78, 85, 11, -67, 23, 63, -45}

Use Table to create the following matrix. Once created, use Table again to add all the elements 

on and above the diagonal.
4.

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

Rearrange the list of numbers one through ten so that any adjacent numbers (for example, 1 

and 2, 2 and 3, and so on) are not adjacent in the output.
5.

Create a list of all prime numbers less than 100. Repeat for a list of primes less than 1000. 
Consider using the functions Prime and PrimePi.

6.

Take the partitioned list of integers from the solution to Exercise 5 in Section 3.1 and use Grid 

to display the partitioned list in a grid similar to that in Figure 3.2.
7.

A 6⨯6 integer grid.Figure 3.2.

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

Make a histogram of the frequencies of the leading digit in the first 10 000 Fibonacci numbers. 
The resulting distribution is an instance of Benford’s law, which concerns the frequency of the 

leading digits in many kinds of data. The phenomenon, whereby a 1 occurs about 30% of the 

time, a 2 occurs about 17.6% of the time, and so on, has been shown to occur in well-known 

numerical sequences, population counts, death rates, Fibonacci numbers, and has even been 

used to detect corporate and tax fraud.

8.
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Given a matrix, use list component assignment to swap any two rows.9.

Create a function AddColumn[���, ���, ���] that inserts a column vector col into the matrix 

mat at the column position given by pos. For example:
10.

In[3]:= mat = RandomInteger[9, {4, 4}];

MatrixForm[mat]

Out[4]//MatrixForm=

4 8 5 9
9 4 1 9
1 9 5 5
9 5 6 7

In[5]:= AddColumnmat, a, b, c, d, 3 // MatrixForm

Out[5]//MatrixForm=

4 8 a 5 9
9 4 b 1 9
1 9 c 5 5
9 5 d 6 7

How would you perform the same task as Prepend[{x, y}, z] using the Join function?11.

Starting with the lists {1, 2, 3, 4} and {a, b, c, d}, create the list {2, 4, b, d}. Then 

create the list {1, a, 2, b, 3, c, 4, d}.
12.

Many lotteries include games that require you to pick several numbers and match them against 
the lottery’s random number generator. The numbers are independent, so this is essentially 

random sampling with replacement. The built-in RandomChoice does this. For example, here 

are five random samples from the integers zero through nine:

13.

In[6]:= RandomChoice[Range[0, 9], 5]

Out[6]= {5, 4, 1, 1, 3}

Write your own function randomChoice[���, �] that performs a random sampling with 

replacement, where n is the number of elements being chosen from the list lis. Here is a typical 
result using a list of symbols:

In[7]:= randomChoicea, b, c, d, e, f, g, h, 12

Out[7]= e, c, h, b, g, c, d, c, b, c, b, f

Given two lists, find all those elements that are not common to the two lists. For example, 
starting with the lists {a, b, c, d} and {a, b, e, f}, your answer would return the list 
{c, d, e, f}.

14.

One of the tasks in computational linguistics involves statistical analysis of text using what are 

called n-grams – sequences of n adjacent letters or words. Their frequency distribution in a 

body of text can be used to predict word usage based on the previous history or usage. 

15.

Import a file consisting of some text and find the twenty most frequently occurring word 

combinations. Pairs of words that are grouped like this are called bigrams, that is, n-grams for 
n = 2.

Use TextWords (new in Mathematica 10.1) to split long strings into a list of words that can then 
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be operated on with the list manipulation functions.

In[8]:= TextWords"Use StringSplit to split long strings into words."

Out[8]= {Use, StringSplit, to, split, long, strings, into, words}

Based on the previous exercise, create a function NGrams[���, �] that takes a string of text and 

returns a list of n-grams, that is, a list of the n adjacent words. For example:
16.

In[9]:= NGrams"Use StringSplit to split long strings into words.", 3

Out[9]= {{Use, StringSplit, to}, {StringSplit, to, split}, {to, split, long},

{split, long, strings}, {long, strings, into}, {strings, into, words}}

Write your own user-defined functions using the Characters and StringJoin functions to 

perform the same operations as StringInsert and StringDrop.
17.

Use ToCharacterCode and FromCharacterCode to perform the same operations as the built-in 

StringJoin and StringReverse functions.
18.

Compute the first ten square-pyramidal numbers in three different ways. The first few square-
pyramidal numbers are 12 = 1, 12 + 22 = 5, 12 + 22 + 32 = 14,…. The number of stacked spheres 

with a square base (Figure 3.3) are represented by these numbers. In addition, they give a 

solution to the problem of counting squares in an n⨯n grid.

19.

Graphical representation of square-pyramidal numbers.Figure 3.3.

+ + =

Solutions3.3
This is a straightforward use of the Transpose function.1.

In[1]:= Transpose[{{x1, y1}, {x2, y2}, {x3, y3}, {x4, y4}, {x5, y5}}]

Out[1]= {{x1, x2, x3, x4, x5}, {y1, y2, y3, y4, y5}}

The most direct way to extract the even (or odd) indexed elements is to use the Span function as 

a second argument to Part.
2.

In[2]:= lis = {5, 3, 3, 8, 17, 3, 3, 4, 20, 2, 11, 13};

In[3]:= Partlis, 2 ;; -1 ;; 2

Out[3]= {3, 8, 3, 4, 2, 13}
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Here is the shorthand notation:

In[4]:= lis[[2 ;; -1 ;; 2]]

Out[4]= {3, 8, 3, 4, 2, 13}

And here are the elements in the odd positions.

In[5]:= lis[[1 ;; -1 ;; 2]]

Out[5]= {5, 3, 17, 3, 20, 11}

Here is the list of numbers:3.

In[6]:= nums = RandomInteger[{-100, 100}, {25}]

Out[6]= {-45, -24, 9, 38, -82, -60, -21, -66, 23, 70, -67, -13,

-98, -68, -97, -55, 10, -11, 25, -13, 7, -100, 88, 36, -86}

Sorting gives:

In[7]:= Sort[nums]

Out[7]= {-100, -98, -97, -86, -82, -68, -67, -66, -60, -55,

-45, -24, -21, -13, -13, -11, 7, 9, 10, 23, 25, 36, 38, 70, 88}

The smallest five:

In[8]:= Take[Sort[nums], 5]

Out[8]= {-100, -98, -97, -86, -82}

The largest five:

In[9]:= Take[Sort[nums], -5 ;; -1]

Out[9]= {25, 36, 38, 70, 88}

Alternatively, use the built-in functions TakeLargest and TakeSmallest:

In[10]:= TakeLargest[nums, 5]

Out[10]= {88, 70, 38, 36, 25}

In[11]:= TakeSmallest[nums, 5]

Out[11]= {-100, -98, -97, -86, -82}

There are several ways to create the matrix. One way is to use Table with two iterators.4.

In[12]:= mat = Tablei j, i, 1, 4, j, 1, 4

Out[12]= {{1, 2, 3, 4}, {2, 4, 6, 8}, {3, 6, 9, 12}, {4, 8, 12, 16}}
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In[13]:= MatrixForm[mat]

Out[13]//MatrixForm=

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

Another way is to use Outer (discussed in Section 5.1).

In[14]:= OuterTimes, Range[4], Range[4]

Out[14]= {{1, 2, 3, 4}, {2, 4, 6, 8}, {3, 6, 9, 12}, {4, 8, 12, 16}}

To add only those elements on or above the diagonal in mat, the following will pick out only 

those elements.

In[15]:= Tablemati, j, i, 1, 4, j, 1, i

Out[15]= {{1}, {2, 4}, {3, 6, 9}, {4, 8, 12, 16}}

Then flatten the nested lists.

In[16]:= Flatten[%]

Out[16]= {1, 2, 4, 3, 6, 9, 4, 8, 12, 16}

And finally, use Total to sum this list.

In[17]:= Total[%]

Out[17]= 65

There are many possible approaches to this problem including a brute-force approach that 
creates all permutations and selects on those that meet the criteria. Another approach is to split 
the list and shuffle:

5.

In[18]:= lis = Range[10]

Out[18]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

In[19]:= p = Partitionlis, 5

Out[19]= {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}}

In[20]:= Riffle[p[[1]], p[[2]]]

Out[20]= {1, 6, 2, 7, 3, 8, 4, 9, 5, 10}

Once you are familiar with the Apply function (Chapter 5), this is done more compactly as 

follows:

In[21]:= ApplyRiffle, p

Out[21]= {1, 6, 2, 7, 3, 8, 4, 9, 5, 10}

First, note that PrimePi[�] returns the number of primes less than n.6.

3.3 Operations on lists: exercises 49



In[22]:= PrimePi[100]

Out[22]= 25

So to list all the primes less than 100, we want the first PrimePi[100] = 25 primes.

In[23]:= TablePrime[n], n, PrimePi[100]

Out[23]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

An n⨯n grid with rows of length n will have n2
 elements in total. Starting with the list of integers 

one through n2, partition it into sublists of length n. For example, for n = 4:
7.

In[24]:= n = 4;

lis = PartitionRangen2, n

Out[25]= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}

And then put the list into a grid:

In[26]:= Gridlis, Frame → All

Out[26]=

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Alternatively, you can use Multicolumn:

In[27]:= n = 4;

lis = MulticolumnRangen2, n, Appearance → "Horizontal", Frame → All

Out[28]=

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

In[29]:= Clear[n]

To extract the leading digit of any number, use IntegerDigits to generate a list of the digits in 

a number, and then take the first element in that list. For example, here are the digits in the 50th 

Fibonacci number.

8.

In[30]:= IntegerDigitsFibonacci[50]

Out[30]= {1, 2, 5, 8, 6, 2, 6, 9, 0, 2, 5}

And this gives the first digit from that list.

In[31]:= First[%]

Out[31]= 1

To do this for the first 100 000 Fibonacci numbers, use Table.
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In[32]:= digits = TableFirstIntegerDigitsFibonaccii, i, 104;

In[33]:= Histogramdigits

Out[33]=

2 4 6 8 10
0

500

1000

1500

2000

2500

3000

The standard procedural approach is to use a temporary variable to do the swapping.9.

In[34]:= mat = RandomInteger[9, {4, 4}];

MatrixForm[mat]
Out[35]//MatrixForm=

4 1 2 6
1 6 2 8
0 7 2 4
1 7 6 9

In[36]:= temp = mat[[1]];

mat[[1]] = mat[[2]];

mat[[2]] = temp;

MatrixForm[mat]
Out[39]//MatrixForm=

1 6 2 8
4 1 2 6
0 7 2 4
1 7 6 9

But you can use parallel assignments to avoid the temporary variable.

In[40]:= mat = RandomInteger[9, {4, 4}];

MatrixForm[mat]
Out[41]//MatrixForm=

2 8 2 8
1 2 7 8
0 0 7 7
4 2 7 2

In[42]:= {mat[[2]], mat[[1]]} = {mat[[1]], mat[[2]]};

MatrixForm[mat]
Out[43]//MatrixForm=

1 2 7 8
2 8 2 8
0 0 7 7
4 2 7 2

In fact you can make this a bit more compact.
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In[44]:= mat = RandomInteger[9, {4, 4}];

MatrixForm[mat]
Out[45]//MatrixForm=

3 5 8 7
1 2 1 2
5 1 1 9
5 6 2 8

In[46]:= mat[[{2, 1}]] = mat[[{1, 2}]];

MatrixForm[mat]
Out[47]//MatrixForm=

1 2 1 2
3 5 8 7
5 1 1 9
5 6 2 8

A key point to notice is that in this exercise, the matrix mat was overwritten in each case; in 

other words, these were destructive operations. Section 6.1 discusses how to handle row and 

column swapping properly so that the original matrix remains untouched.

We prototype with a small matrix.10.

In[48]:= mat = RandomInteger[10, {3, 3}];

MatrixForm[mat]
Out[49]//MatrixForm=

0 3 6
3 6 8
2 9 6

Using Mean on a matrix produces a vector consisting of column means.

In[50]:= Mean[mat]

Out[50]= 
5

3
, 6,

20

3


To subtract the means from their respective columns in mat, operate on the transposed matrix.

In[51]:= centeredMat = Transpose[Transpose[mat] - Mean[mat]]

Out[51]= -
5

3
, -3, -

2

3
, 

4

3
, 0,

4

3
, 

1

3
, 3, -

2

3


In[52]:= MeancenteredMat

Out[52]= {0, 0, 0}

Alternatively, you could create a centering matrix which, when multiplied by the original 
matrix, centers it.

In[53]:= CenteringMatrix[n_] := IdentityMatrix[n] - ConstantArray[1/n, {n, n}]

In[54]:= CenteringMatrix[3].mat

Out[54]= -
5

3
, -3, -

2

3
, 

4

3
, 0,

4

3
, 

1

3
, 3, -

2

3

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As an aside, the centering matrix is symmetric and idempotent.

In[55]:= SymmetricMatrixQCenteringMatrix[3]

Out[55]= True

In[56]:= CenteringMatrix[3].CenteringMatrix[3] == CenteringMatrix[3]

Out[56]= True

This can also be accomplished with the built-in function Standardize.

In[57]:= Standardize[mat, Mean, 1 &]

Out[57]= -
5

3
, -3, -

2

3
, 

4

3
, 0,

4

3
, 

1

3
, 3, -

2

3


You need to first transpose the matrix to operate on the columns as rows. 11.

In[58]:= mat = RandomInteger[9, {4, 4}];

MatrixForm[mat]
Out[59]//MatrixForm=

8 2 2 9
3 7 9 7
1 2 7 9
0 2 6 5

In[60]:= Transpose[mat]

Out[60]= {{8, 3, 1, 0}, {2, 7, 2, 2}, {2, 9, 7, 6}, {9, 7, 9, 5}}

Now insert the column vector at the desired position. Then transpose back.

In[61]:= InsertTranspose[mat], a, b, c, d, 3 // MatrixForm

Out[61]//MatrixForm=

8 3 1 0
2 7 2 2
a b c d
2 9 7 6
9 7 9 5

In[62]:= Transpose@InsertTranspose[mat], a, b, c, d, 3 // MatrixForm

Out[62]//MatrixForm=

8 2 a 2 9
3 7 b 9 7
1 2 c 7 9
0 2 d 6 5

Here then is the function, with some basic argument checking to make sure the number of 
elements in the column vector is the same as the number of rows of the matrix. 

In[63]:= AddColumnmat_, col_, pos_ /; Lengthcol ⩵ Length[mat] :=

TransposeInsertTranspose[mat], col, pos

Join expects lists as arguments.12.
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In[64]:= Join[{z}, {x, y}]

Out[64]= {z, x, y}

Joining the two lists and then using Part with Span is the most direct way to do this.13.

In[65]:= expr = Join{1, 2, 3, 4}, a, b, c, d

Out[65]= {1, 2, 3, 4, a, b, c, d}

In[66]:= expr[[2 ;; -1 ;; 2]]

Out[66]= {2, 4, b, d}

For the second part of this exercise, the function Riffle is perfect for this task.

In[67]:= Riffle{1, 2, 3, 4}, a, b, c, d

Out[67]= {1, a, 2, b, 3, c, 4, d}

This can also be done in two steps by first transposing the two lists and then flattening.

In[68]:= Transpose{1, 2, 3, 4}, a, b, c, d

Out[68]= {{1, a}, {2, b}, {3, c}, {4, d}}

In[69]:= Flatten[%]

Out[69]= {1, a, 2, b, 3, c, 4, d}

One way to do this is to take the list and simply pick out elements at random locations. The 

right-most location in the list is given by Length[���], using Part and RandomInteger.
14.

In[70]:= randomChoicelis_, n_ := lisRandomInteger1, Lengthlis, {n}

In[71]:= randomChoicea, b, c, d, e, f, g, h, 12

Out[71]= h, b, a, g, b, c, f, a, g, f, a, d

This is another way of asking for all those elements that are in the union but not the intersec-
tion of the two sets.

15.

In[72]:= A = a, b, c, d;

B = a, b, e, f;

In[74]:= ComplementA⋃ B, A⋂ B

Out[74]= c, d, e, f

In[75]:= ComplementUnion[A, B], Intersection[A, B]

Out[75]= c, d, e, f

We will use Darwin’s On the Origin of Species text, built into Mathematica via ExampleData.16.
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In[76]:= darwin = ExampleData"Text", "OriginOfSpecies";

words = TextWordsdarwin

Out[77]=

INTRODUCTION, When, on, board, H.M.S., Beagle, as,

naturalist, I, was, much, ⋯ 149960⋯ , most, beautiful,

and, most, wonderful, have, been, and, are, being, evolved

large output show less show more show all set size limit...

First, partition the list of words into pairs with overlap one.

In[78]:= par = Partitionwords, 2, 1

Out[78]=

{INTRODUCTION, When}, {When, on}, {on, board},

{board, H.M.S.}, {H.M.S., Beagle}, ⋯ 149971⋯ , {have, been},

{been, and}, {and, are}, {are, being}, {being, evolved}

large output show less show more show all set size limit...

Then tally them and sort by the frequency count, given by the last element in each sublist. 
Finally, take the last twenty expressions, those bigrams occurring the most frequently.

In[79]:= tally = SortByTally[par], Last;

Taketally, -20

Out[80]= {{has, been}, 190}, {{each, other}, 192}, species, of, 201,

of, life, 227, {{with, the}, 230}, {{natural, selection}, 234},

{{it, is}, 237}, {{and, the}, 238}, {{by, the}, 242}, from, the, 256,

{{in, a}, 256}, {{to, be}, 267}, of, a, 268, {{have, been}, 432},

{{that, the}, 434}, {{on, the}, 498}, {{to, the}, 582},

{{the, same}, 715}, {{in, the}, 1024}, of, the, 1993

Here are the next twenty most frequently occurring bigrams.

In[81]:= Taketally, -40 ;; -21

Out[81]= {{to, have}, 120}, {{which, are}, 121}, conditions, of, 124,

{{between, the}, 125}, {{do, not}, 128}, {{and, in}, 132},

{{the, case}, 133}, {{can, be}, 137}, {{will, be}, 138}, {{as, the}, 140},

{{would, be}, 142}, number, of, 144, {{all, the}, 150}, {{at, the}, 157},

{{the, most}, 160}, {{the, other}, 166}, for, the, 170,

{{the, species}, 172}, {{I, have}, 185}, {{may, be}, 189}

This can be done in one step using WordCounts (new in Mathematica 10.1) with a second argu-
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ment to count bigrams only.

In[82]:= WordCountsdarwin, 2

Out[82]=

of, the → 1993, {in, the} → 1023, {the, same} → 715,

{to, the} → 582, {on, the} → 497, ⋯ 47987⋯ , {a, barrier} → 1,

{a, barnacle} → 1, {a, bare} → 1, {a, bar} → 1, {a, bank} → 1

large output show less show more show all set size limit...

In[83]:= Take[%, 20]

Out[83]= of, the → 1993, {in, the} → 1023, {the, same} → 715, {to, the} → 582,

{on, the} → 497, {that, the} → 434, {have, been} → 431, of, a → 268,

{to, be} → 267, {in, a} → 256, from, the → 256, {by, the} → 240,

{and, the} → 238, {it, is} → 235, {natural, selection} → 233, {with, the} → 228,

of, life → 227, species, of → 200, {each, other} → 192, {has, been} → 190

This is a straightforward extension of the previous exercise.17.

In[84]:= NGrams[text_, n_] := PartitionTextWords[text], n, 1

In[85]:= sentence = "Use StringSplit to split long strings into words.";

NGrams[sentence, 3]

Out[86]= {{Use, StringSplit, to}, {StringSplit, to, split}, {to, split, long},

{split, long, strings}, {long, strings, into}, {strings, into, words}}

Here is our user-defined stringInsert.18.

In[87]:= stringInsert[str1_, str2_, pos_] := StringJoin@Join

TakeCharacters[str1], pos - 1,

Characters[str2],
DropCharacters[str1], pos - 1



In[88]:= stringInsert"Joy world", "to the ", 5

Out[88]= Joy to the world

In[89]:= stringDrop[str_, pos_] := StringJoinDropCharacters[str], pos

In[90]:= stringDrop"ABCDEF", -2

Out[90]= ABCD

The idea in these two examples is to convert a string to a list of characters, operate on that list 
using list manipulation functions like Join, Take, and Drop, then convert back to a string. More 

efficient approaches use string manipulation functions directly (see Chapter 7).

First, here is how we might write our own StringJoin.19.
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In[91]:= FromCharacterCodeJoin

ToCharacterCode"To be, ", ToCharacterCode"or not to be"



Out[91]= To be, or not to be

And here is a how we might implement a StringReverse.

In[92]:= FromCharacterCodeReverseToCharacterCode"never odd or even"

Out[92]= neve ro ddo reven

First we could use the Sum function to add k2
 as k goes from 1 to n.20.

In[93]:= Sumk2, k, 1, 10

Out[93]= 385

Here is a list of the first ten square pyramidal numbers.

In[94]:= TableSumk2, k, 1, n, {n, 1, 10}

Out[94]= {1, 5, 14, 30, 55, 91, 140, 204, 285, 385}

A closed form expression will be much faster.

In[95]:= Sumk2, k, 1, n

Out[95]=

1

6
n (1 + n) (1 + 2 n)

In[96]:= Table
1

6
n (1 + n) (1 + 2 n), {n, 1, 10}

Out[96]= {1, 5, 14, 30, 55, 91, 140, 204, 285, 385}

Another way of looking at the computation is that we are squaring each of the first n numbers 

and then adding those squares together. Think dot product of the list of the first n integers with 

itself.

In[97]:= Range[10].Range[10]

Out[97]= 385

In[98]:= Table[Range[n].Range[n], {n, 1, 10}]

Out[98]= {1, 5, 14, 30, 55, 91, 140, 204, 285, 385}

Or, more directly, square each of the integers one through ten, then add them up.

In[99]:= TotalRange[10]2


Out[99]= 385
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Associations: exercises3.4
Create an association consisting of several songs in your music library. Include keys for song 

title, artist, release date, album cover. Once the association is defined, convert all the album 

covers to smaller images using Thumbnail.

1.

Modify the MakeRef function to display the year of publication at the end of the line for 
authors. Adjust the style so that the year displays in a bold font.

2.

In[1]:= MakeRefhamming1950

���������������� (����)

������������������������������������������

������//�����������/�������/������-�-���

Solutions3.4
Here is a small association consisting of information on three albums.1.

In[1]:= alb1 = Association

"SongTitle" → "Desvairada",

"AlbumArtist" → "Paulo Bellinati",

"AlbumTitle" → "The Guitar Works of Garoto",

"Year" → "1991",

"Cover" →

;

In[2]:= alb2 = Association

"SongTitle" → "Monk's Mood",

"AlbumArtist" → "Bud Powell",

"AlbumTitle" → "Round About Midnight At The Blue Note",

"Year" → "1962",

"Cover" →

;

58 Essentials of Programming in Mathematica



In[3]:= alb3 = Association

"SongTitle" → "Dounia",

"AlbumArtist" → "Rokia Traoré",

"AlbumTitle" → "Tchamantché",

"Year" → "2008",

"Cover" →

;

In[4]:= MapThumbnail, alb1"Cover", alb2"Cover", alb3"Cover"

Out[4]=  , , 

It is first necessary to modify the MakeRef function so that newline characters do not appear 
between all items. We want the author text to be followed by the date and then a newline. So 

instead of using a default separator in Row, we will manually put them where we want them.

2.

In[5]:= makeAuthorref_ := Styleref "Author", "TR"

In[6]:= makeTitleref_ := Styleref "Title", "TI"

In[7]:= makeLinkref_ := HyperlinkStyleref "Url", "TR", ref "Url"

In[8]:= makeDateref_ :=

RowStyle" (", "TR", Styleref "Year", "TB", Style")", "TR"

In[9]:= MakeRefref_ := CellPrint@TextCellRow

makeAuthorref , makeDateref , "\n",

makeTitleref , "\n",

makeLinkref 

, "Text", ShowStringCharacters → False
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In[10]:= art1 = Association@

"Author" → "Hamming, Richard W.",

"Title" → "Error detecting and error correcting codes",

"Journal" → "The Bell System Technical Journal",

"Year" → 1950,

"Volume" → 29,

"Issue" → 2,

"Pages" → "147�160",
"Url" → "https://archive.org/details/bstj29-2-147"



Out[10]= Author → Hamming, Richard W.,

Title → Error detecting and error correcting codes,

Journal → The Bell System Technical Journal, Year → 1950, Volume → 29,

Issue → 2, Pages → 147�160, Url → https://archive.org/details/bstj29-2-147

In[11]:= MakeRef[art1]

������������������� (����)

������������������������������������������
������//�����������/�������/������-�-���
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4
Patterns and rules

Patterns: exercises4.1
Explain why the following pattern match fails. Then find two different patterns that correctly 

match a complex number such as 3 +4 �.
1.

In[1]:= MatchQ3 + 4 I, a_ + b_I

Out[1]= False

Use conditional patterns to find all those numbers in a list of integers that are divisible by 2 or 3 

or 5.
2.

Write down four conditional patterns that match the expression {4, {a, b}, "g"}.3.

Explain why the expression 1 / y is not matched by the pattern a_ / b_.4.

In[2]:= MatchQ1/y, a_b_

Out[2]= False

Determine the correct pattern that can be used to match the symbolic expression x / y.

In[3]:= MatchQ[x/y, Power[a_, -1]]

Out[3]= False

Write a function Collatz that takes an integer n as an argument and returns 3n + 1 if n is an 

odd integer and returns n /2 if n is even.
5.

Write the Collatz function from the above exercise, but this time you should also check that 
the argument to Collatz is positive.

6.

Use alternatives to write a function abs[�] that returns x if x ≥ 0, and -x if x < 0, whenever x is 

an integer or a rational number. Whenever x is complex, abs[�] should return 

re(x)2 + im(x)2 .

7.



Create a function swapTwo[���] that returns lis with only its first two elements interchanged; 
for example, the input swapTwo[{a, b, c, d, e}] should return {b, a, c, d, e}. If lis has 

fewer than two elements, swapTwo just returns lis. Write swapTwo using three clauses: one for 
the empty list, one for one-element lists, and one for all other lists. Then write it using two 

clauses: one for lists of length zero or one and another for all longer lists.

8.

Explain the different results from the following three pattern matches:9.

In[4]:= MatchQ{4, 6, 8}, x_ /; Length[x] > 4

Out[4]= False

In[5]:= MatchQ{4, 6, 8}, {x___} /; Length[x] > 4

Length::argx : Length called with 3 arguments; 1 argument is expected. 

Out[5]= False

In[6]:= MatchQ{4, 6, 8}, {x___} /; Plus[x] > 10

Out[6]= True

Write a rule for the one-dimensional case of showWalk described in this section. Then write an 

additional rule to handle multiple one-dimensional random walks.
10.

In[7]:= Needs"EPM`RandomWalks`"

In[8]:= walk = RandomWalk1000, Dimension → 1;

showWalkwalk

Out[9]=

200 400 600 800 1000

-60

-50

-40

-30

-20

-10

In[10]:= walks = TableRandomWalk1000, Dimension → 1, {25};

showWalkwalks

Out[11]=
200 400 600 800 1000

-50

50

Given a set of data like that in Figure 4.1, remove all outliers, defined here by being greater than 

two standard deviations from the mean of the data.
11.

In[12]:= rawData = RandomVariateNormalDistribution[0, 2], {200};
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Scatter plots of original data and data with outliers removed.Figure 4.1.
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Solutions4.1
Look at the internal representation of the complex number.1.

In[1]:= FullForm[3 + 4 I]

Out[1]//FullForm= Complex[3, 4]

Although this is an equivalent representation to the traditional notation 3 +4 ⅈ, it is not the 

same syntactically and the pattern matcher is a syntactic creature. Instead, match on head 

Complex.

In[2]:= MatchQ3 + 4 I, _Complex

Out[2]= True

Although giving different information, you could also check that the expression is a number.

In[3]:= MatchQ3 + 4 I, _?NumberQ

Out[3]= True

Start by creating a list of integers with which to work.2.

In[4]:= lis = RandomInteger[1000, {20}]

Out[4]= {270, 885, 466, 194, 374, 237, 249, 228, 184,

704, 636, 922, 10, 619, 806, 497, 290, 329, 463, 168}

IntegerQ is a predicate; it returns True or False, so we need to use the logical OR to separate 

clauses here.

In[5]:= Caseslis, n_ /; IntegerQ[n /2] || IntegerQ[n /3] || IntegerQ[n /5]

Out[5]= {270, 885, 466, 194, 374, 237, 249, 228, 184, 704, 636, 922, 10, 806, 290, 168}

This is a bit more compact and direct.

In[6]:= Caseslis, n_ /; Mod[n, 2]⩵ 0 || Mod[n, 3]⩵ 0 || Mod[n, 5]⩵ 0

Out[6]= {270, 885, 466, 194, 374, 237, 249, 228, 184, 704, 636, 922, 10, 806, 290, 168}

Once you are familiar with pure functions (Section 5.5), you can also do this with Select.
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In[7]:= Selectlis, Mod[#, 2]⩵ 0 || Mod[#, 3]⩵ 0 || Mod[#, 5]⩵ 0 &

Out[7]= {270, 885, 466, 194, 374, 237, 249, 228, 184, 704, 636, 922, 10, 806, 290, 168}

FullForm should help to guide you.3.

In[8]:= FullForm4, a, b, "g"

Out[8]//FullForm= List[4, List[a, b], "g"]

In[9]:= MatchQ4, a, b, "g", x_List /; Length[x] == 3

Out[9]= True

In[10]:= MatchQ4, a, b, "g", {_, y_, _} /; y〚0〛 == List

Out[10]= True

In[11]:= MatchQ4, a, b, "g", {x_, y_, z_} /; AtomQ[z]

Out[11]= True

In[12]:= MatchQ4, a, b, "g", {x_, _, _} /; EvenQ[x]

Out[12]= True

Look at the internal representation of these two expressions:4.

In[13]:= FullForm[1/x]

Out[13]//FullForm= Power[x, -1]

In[14]:= FullForma_b_

Out[14]//FullForm= Times[Pattern[a, Blank[]], Power[Pattern[b, Blank[]], -1]]

So 1 / x is a special case of the pattern a_ / b_ but it is one that Mathematica simplifies to an 

expression with head Power. 

x / y can be matched by the pattern a_ / b_.

In[15]:= MatchQx/y, a_b_

Out[15]= True

The Collatz function has a direct implementation based on its definition. There is no need to 

check explicitly that the argument is an integer since OddQ and EvenQ handle that.
5.

In[16]:= Collatzn_?OddQ := 3 n + 1

In[17]:= Collatzn_?EvenQ :=
n

2

Here we iterate the Collatz function fifteen times starting with an initial value of 23.

In[18]:= NestListCollatz, 23, 15

Out[18]= {23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1}

Check for arguments that do not match the patterns above.
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In[19]:= Collatz[24.0]

Out[19]= Collatz[24.]

Here again is the Collatz function, but this time using a condition on the right-hand side of the 

definition.
6.

In[20]:= ClearCollatz

In[21]:= Collatz[n_] := 3 n + 1 /; OddQ[n] && Positive[n]

In[22]:= Collatz[n_] :=
n

2
/; EvenQ[n] && Positive[n]

In[23]:= Collatz[4.3]

Out[23]= Collatz[4.3]

In[24]:= Collatz[-3]

Out[24]= Collatz[-3]

In[25]:= NestListCollatz, 22, 15

Out[25]= {22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}

You could also put the conditions inside the pattern on the left-hand side if you prefer.

In[26]:= ClearCollatz

In[27]:= Collatzn_ /; OddQ[n] && Positive[n] := 3 n + 1

In[28]:= Collatzn_ /; EvenQ[n] && Positive[n] :=
n

2

In[29]:= NestListCollatz, 22, 15

Out[29]= {22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}

Using alternatives, this gives the definition for real, integer, or rational arguments.7.

In[30]:= absx_Real x_Integer x_Rational := If[x ≥ 0, x, -x]

Here is the definition for complex arguments.

In[31]:= absx_Complex := Re[x]2
+ Im[x]2

Note that these rules are not invoked for symbolic arguments.

In[32]:= Mapabs, -3, 3 + 4 I,
-4

5
, a

Out[32]= 3, 5,
4

5
, abs[a]

We first have to consider the base cases. Given a list with no elements, swapTwo should return 

the empty list. And, given a list with one element, swapping should give that one element back.
8.
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In[33]:= swapTwo[{}] := {}

swapTwo[{x_}] := {x}

Now, we use the triple-blank to indicate that r could be a sequence of zero or more elements. 

In[35]:= swapTwo[{x_, y_, r___}] := {y, x, r}

In[36]:= swapTwo[{}]

Out[36]= {}

In[37]:= swapTwo[{a}]

Out[37]= {a}

In[38]:= swapTwoa, b, c, d

Out[38]= {b, a, c, d}

Notice in this second definition for swapTwo that the second clause covers both the situation 

where the argument is the empty list and when it contains only one element.

In[39]:= swapTwo2[{x_, y_, r___}] := {y, x, r}

swapTwo2[x_] := x

In[41]:= swapTwo[{}]

Out[41]= {}

In[42]:= swapTwo[{a}]

Out[42]= {a}

In[43]:= swapTwoa, b, c, d

Out[43]= {b, a, c, d}

In the first example, x was associated with the entire list {4, 6, 8}; since the length of the list 
{4, 6, 8} is not greater than 4, the match failed. In the second example, x became the sequence 

4, 6, 8 so that the condition was Length[4, 6, 8] > 4; but Length can only have one argu-
ment, hence the error. In the last example, x was again associated with 4, 6, 8, but now the 

condition was Plus[4, 6, 8] > 10, which is perfectly valid syntax, and true.

9.

To write the one-dimensional rule, you can simply use ListLinePlot on the right hand side. 
The pattern on the left hand side though needs to match a one-dimensional list of numbers. 
VectorQ can be used to check for this.

10.

In[44]:= showWalkcoords_?VectorQ := ListLinePlotcoords

In[45]:= Needs"EPM`RandomWalks`"
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In[46]:= walk = RandomWalk1000, Dimension → 1;

showWalkwalk

Out[47]=
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The case of multiple walks is a bit trickier. First note the structure of a list of multiple one-
dimensional random walks. Here we have 25 ten-step walks.

In[48]:= walks = TableRandomWalk10, Dimension → 1, {25};

Dimensionswalks

Out[49]= {25, 10}

In situations where you are not sure what the pattern needs to be to match a complicated 

expression, it oftentimes helps to look at some representative examples.

In[50]:= ShortTakewalks, 5, 2

Out[50]//Short= {{-1, -2, -1, -2, -3, -4, -3, -4, -5, -4},

3, {-1, -2, -3, -2, -3, -2, -3, -4, -5, -4}}

So the structure is {{�������}, {�������}, …{�������}} and in this specific example we 

have 25 repeats or trials. We don’t know how long each walk will be ahead of time so we need a 

double blank to accommodate walks of length one or more. And we will check that each walk 

list consists of numbers. Here is the rule. We have also added a style directive to thin out the 

lines.

In[51]:= showWalkcoords : __?NumberQ .. :=

ListLinePlotcoords, PlotStyle → DirectiveThin

In[52]:= walks = TableRandomWalk1000, Dimension → 1, {25};

showWalkwalks

Out[53]=
200 400 600 800 1000
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The mean and standard deviation of the data can be obtained with built-in functions.11.

In[54]:= data = RandomVariateNormalDistribution[0, 2], {200};

In[55]:= {μ, σ} = Meandata, StandardDeviationdata

Out[55]= {-0.00968766, 1.93378}

This extracts all those elements of data that are within one standard deviation of the mean.

In[56]:= filtered = Casesdata, p_ /; Abs[μ - p] < σ;

len = Lengthfiltered

Out[57]= 132

In[58]:= ListPlotdata, Epilog → 

Dashed, Line{0, σ}, len, σ, Line{0, -σ}, len, -σ

Out[58]=

50 100 150 200
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-2

2

4

Transformation rules: exercises4.2
Here is a rule designed to switch the order of each pair of expressions in a list. It works fine on 

the first example, but fails on the second.
1.

In[1]:= a, b, c, d, e, f /. {x_, y_}⧴ {y, x}

Out[1]= {b, a}, {d, c}, f, e

In[2]:= a, b, c, d /. {x_, y_}⧴ {y, x}

Out[2]= {{c, d}, {a, b}}

Explain what has gone wrong and rewrite this rule to correct the situation, that is, so that the 

second example returns {{b, a}, {d, c}}.

Given a 3⨯3 matrix, here is a rule intended to swap the elements in the second and third 

columns:
2.

In[3]:= mat = a, b, c, d, e, f, g, h, i;
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In[4]:= mat /. {x_, y_, z_}⧴ {x, z, y} // MatrixForm

Out[4]//MatrixForm=

a b c
g h i
d e f

Explain what has gone wrong and rewrite the rule so that it correctly swaps columns two and 

three.

Use pattern matching to extract all negative solutions of the following polynomial:3.

x9 + 3.4 x6 - 25 x5 - 213 x4 - 477 x3 + 1012 x2 + 111 x - 123

Then extract all real solutions; that is, those which are not complex.

Create a rewrite rule that uses a repeated replacement to “unnest” the nested lists within a list.4.

In[5]:= unNest[{{α, α, α}, {α}, {{β, β, β}, {β, β}}, {α, α}}]

Out[5]= {α, α, α, α, β, β, β, β, β, α, α}

Define a function using pattern matching and repeated replacement to sum the elements of a 

list such as that produced by Range[100].
5.

Using the built-in function ReplaceList, write a function cartesianProduct that takes two 

lists as input and returns the Cartesian product of these lists.
6.

In[6]:= cartesianProduct[{x1, x2, x3}, {y1, y2}]

Out[6]= {{x1, y1}, {x1, y2}, {x2, y1}, {x2, y2}, {x3, y1}, {x3, y2}}

Write a function to count the total number of multiplications in any polynomial expression. 
For example, given a power, your function should return one less than the exponent.

7.

In[7]:= MultiplyCountt5

Out[7]= 4

In[8]:= MultiplyCount[a x y t]

Out[8]= 3

In[9]:= MultiplyCounta x y t4 + w t

Out[9]= 7

Create six graphical objects, one each to represent the faces of a standard six-sided die. 
Dice[�] should display the face of the appropriate die, as below. Then use the Dice function 

to create a function RollDice[] that “rolls” two dice and displays them side-by-side. Create an 

additional rule, RollDice[�], that rolls a pair of dice n times and displays the result in a list or 
row.

8.
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In[10]:= TableDice[n], {n, 1, 6}

Out[10]=  , , , , , 

One way to approach this problem is to think of a die face as a grid of nine elements, some of 
which are turned on (white) and some turned off (blue above). Then create one set of rules for 
each of the six die faces. Once your rules are defined, you could use something like the follow-
ing graphics code (a bit incomplete as written here) to create your images:

Dice[n_] := GraphicsGrid

MapGraphics, Partition[Range[9], 3] /. rules[[n]], {2}

Make a scatter plot of the points used to construct the polygons in a torus, which is given 

parametrically as follows: 
9.

In[11]:= ParametricPlot3D(2 + Cos[v]) Sin[u], (2 + Cos[v]) Cos[u], Sin[v],

{u, 0, 2 π}, {v, 0, 2 π}

Out[11]=

Solutions4.2
The problem here is that the pattern is too general and has been matched by the entire expres-
sion, which has the form {x_, y_}, where x is matched by {a, b} and y is matched by {c, d}. 
To fix this, use patterns to restrict the expressions that match.

1.

In[1]:= a, b, c, d /. x_Symbol, y_Symbol ⧴ {y, x}

Out[1]= {{b, a}, {d, c}}

In[2]:= a, b, c, d, e, f /. x_Symbol, y_Symbol ⧴ {y, x}

Out[2]= {b, a}, {d, c}, f, e

Here is the matrix.2.
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In[3]:= mat = a, b, c, d, e, f, g, h, i;

MatrixForm[mat]

Out[4]//MatrixForm=

a b c
d e f
g h i

This rule swaps the second and third rows, not the columns.

In[5]:= mat /. {x_, y_, z_}⧴ {x, z, y} // MatrixForm

Out[5]//MatrixForm=

a b c
g h i
d e f

It appears as if the pattern matcher starts at the outer list expression rather than at the bottom 

of the nested expression. Starting at the top, the rule matches the entire matrix with the first 
row matching the pattern x_, the second row matching y_ and the third row matching z_. 
Some additional constraints will help here.

In[6]:= mat /. x_Symbol, y_Symbol, z_Symbol ⧴ {x, z, y} // MatrixForm

Out[6]//MatrixForm=

a c b
d f e
g i h

First, get the solutions to this polynomial.3.

In[7]:= soln = Solvex9 + 3.4 x6 - 25 x5 - 213 x4 - 477 x3 + 1012 x2 + 111 x - 123⩵ 0, x

Out[7]= {{x → -2.80961}, {x → -1.85186 - 2.15082 ⅈ}, {x → -1.85186 + 2.15082 ⅈ},

{x → -0.376453}, {x → 0.323073}, {x → 1.06103 - 3.12709 ⅈ},

{x → 1.06103 + 3.12709 ⅈ}, {x → 1.30533}, {x → 3.13931}}

The pattern needs to match an expression consisting of a list with a rule inside where the value 

on the right-hand side of the rule should pass the Negative test.

In[8]:= Casessoln, x_ → _?Negative

Out[8]= {{x → -2.80961}, {x → -0.376453}}

Here are two solutions for the noncomplex roots.

In[9]:= Casessoln, _ → _Real

Out[9]= {{x → -2.80961}, {x → -0.376453}, {x → 0.323073}, {x → 1.30533}, {x → 3.13931}}

In[10]:= DeleteCasessoln, _ → _Complex

Out[10]= {{x → -2.80961}, {x → -0.376453}, {x → 0.323073}, {x → 1.30533}, {x → 3.13931}}

The transformation rule unnests lists within a list.4.

In[11]:= unNestlis_ := Map(# //.{x__}⧴ x &), lis

In[12]:= unNest{a, a, a}, {a}, b, b, b, b, b, {a, a}

Out[12]= {a, a, a, a, b, b, b, b, b, a, a}
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Note the need to put y in a list on the right-hand side of the rule. Also, an immediate rule is 

required here.
5.

In[13]:= sumListlis_ := Firstlis //.{x_, y___} → x + {y}

In[14]:= sumList[{1, 5, 8, 3, 9, 3}]

Out[14]= 29

The triple blank is required both before and after the variables x and y.6.

In[15]:= cartesianProductlis1_, lis2_ :=

ReplaceListlis1, lis2, {{___, x_, ___}, {___, y_, ___}} ⧴ {x, y}

We could also have a rule for an argument consisting of the empty list.

In[16]:= cartesianProduct[{}] := {}

In[17]:= Clearx, y, z, a, b, c, d

In[18]:= cartesianProducta, b, c, {x, y, z}

Out[18]= {{a, x}, {a, y}, {a, z}, {b, x}, {b, y}, {b, z}, {c, x}, {c, y}, {c, z}}

In[19]:= cartesianProduct[{}]

Out[19]= {}

For an expression of the form Power[�, �], the number of multiplies is b - 1.7.

In[20]:= Cases[{x^4}, Power[_, exp_]⧴ exp - 1]

Out[20]= {3}

For an expression of the form Times[�, �, �, …], the number of multiplications is given by 

one less then the number of arguments.

In[21]:= Casesa b c d e, fac_Times ⧴ Lengthfac - 1

Out[21]= {4}

For a mix of terms of these two cases, we will need to total up the counts from the respective 

terms. Here is a function that puts this all together. Use Infinity as a third argument to Cases 

to make sure the search goes all the way down the expression tree.

In[22]:= MultiplyCount[expr_] :=

Total@Cases{expr}, Power[_, exp_]⧴ exp - 1, Infinity +

Total@Cases{expr}, fac_Times ⧴ Lengthfac - 1, Infinity

In[23]:= MultiplyCounta b2 c d5

Out[23]= 8

In[24]:= poly = Expand(x + y - z)3


Out[24]= x3 + 3 x2 y + 3 x y2 + y3 - 3 x2 z - 6 x y z - 3 y2 z + 3 x z2 + 3 y z2 - z3
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In[25]:= MultiplyCountpoly

Out[25]= 28

Ideally we should check that the expression passed to this function is a polynomial first. That is 

addressed in Exercise 5, Section 6.2.

First, we create a grid of the nine locations on the die.8.

In[26]:= lis = Partition[Range[9], 3];

Gridlis

Out[27]=

1 2 3
4 5 6
7 8 9

Next, use graphics primitives to indicate if a location on the grid is colored (on) or not (off).

In[28]:= off = Red, Disk[];

on = White, Disk[];

Here are the rules for a five.

In[30]:= GraphicsGridMapGraphics,

lis /. 1 → on, 2 → off, 3 → on, 4 → off, 5 → on, 6 → off, 7 → on, 8 → off, 9 → on,

{2}, Background → Red, Spacings → 10, ImageSize → 40

Out[30]=

The five other rules are straightforward. Here then is a function that wraps up the code. Note 

the use of the Background option to GraphicsGrid to pick up the color from the value of off.

In[31]:= Dice[n_] := Modulerules, off = Darker@Blue, Disk[], on = White, Disk[],

rules = 

1 → off, 2 → off, 3 → off, 4 → off, 5 → on, 6 → off, 7 → off, 8 → off, 9 → off,

1 → off, 2 → off, 3 → on, 4 → off, 5 → off, 6 → off, 7 → on, 8 → off, 9 → off,

1 → off, 2 → off, 3 → on, 4 → off, 5 → on, 6 → off, 7 → on, 8 → off, 9 → off,

1 → on, 2 → off, 3 → on, 4 → off, 5 → off, 6 → off, 7 → on, 8 → off, 9 → on,

1 → on, 2 → off, 3 → on, 4 → off, 5 → on, 6 → off, 7 → on, 8 → off, 9 → on,

1 → on, 2 → off, 3 → on, 4 → on, 5 → off, 6 → on, 7 → on, 8 → off, 9 → on

;

GraphicsGridMapGraphics,

Partition[Range[9], 3] /. rules[[n]],
{2}, Background → Firstoff, Spacings → 10, ImageSize → 40


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In[32]:= TableDice[n], {n, 1, 6}

Out[32]=  , , , , , 

This can be done a bit more compactly by using a 3⨯3 matrix of zeros and ones.

In[33]:= Dicen_, OptionsPattern[] := Modulerules, color, grid,

color = OptionValueColor;

rules = 0 → color, Disk[], 1 → White, Disk[];

grid = {

{0, 0, 0, 0, 1, 0, 0, 0, 0},

{0, 0, 1, 0, 0, 0, 1, 0, 0},

{0, 0, 1, 0, 1, 0, 1, 0, 0},

{1, 0, 1, 0, 0, 0, 1, 0, 1},

{1, 0, 1, 0, 1, 0, 1, 0, 1},

{1, 0, 1, 1, 0, 1, 1, 0, 1}

};

GraphicsGridMapGraphics, Partitiongrid[[n]], 3 /. rules, {2},

Background → color, Spacings → 10, ImageSize → 40



Using Array, we create a list of the six dice.

In[34]:= ArrayDice, {6}

Out[34]=  , , , , , 

Rolling a pair is randomly choosing (with replacement).

In[35]:= RollDice[] := GraphicsRowRandomChoiceArrayDice, {6}, {2}

In[36]:= RollDice[]

Out[36]=

And here is the rule for rolling the pair of dice � times.

In[37]:= RollDice[n_] := TableRollDice[], {n}
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In[38]:= RollDice[4]

Out[38]=  , ,

, 

Here is the torus:9.

In[39]:= torus = ParametricPlot3D(2 + Cos[v]) Sin[u], (2 + Cos[v]) Cos[u], Sin[v],

{u, 0, 2 π}, {v, 0, 2 π}

Out[39]=

The internal form of the graphic shows the form we are looking for.

In[40]:= Short[InputForm[torus], 5]

Out[40]//Short=

Graphics3DGraphicsComplex

1.3464×10-6, 2.999999999999597, 4.48799×10-7, {<< 3 >>}, << 2296 >>,

{-2.0674956344646818, 2.067494242630337, -0.38268379517170614},

<< 2 >>, {<< 9 >>}

Mirroring what was done in the plot example in this section, here is the expression to extract 
only coordinate triples.
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In[41]:= points = Casestorus, GraphicsComplex[pts : {{_, _, _} ..}, __]⧴ pts, Infinity

Out[41]=

1.3464×10-6, 3., 4.48799×10-7,

⋯ 2297⋯ , {-2.0675, 2.06749, -0.382684}

large output show less show more show all set size limit...

And here is the scatter plot of these points.

In[42]:= ListPointPlot3Dpoints, PlotStyle → PointSizeSmall

Out[42]=

Examples: exercises4.3
Create a predicate function compositeQ that tests whether a positive integer is composite. 
Check it against the built-in CompositeQ.

1.

Plot the function Sinc[�] over the interval [–2 π, 2 π] and then use a transformation rule to 

display a reflection in the y-axis. Use Show[���� /. ���� ⧴ ����, PlotRange → All] to display 

the transformed plot in such a way that a new plot range is computed.

2.

Occasionally, when collecting data from an instrument, the collector fails or returns a bad 

value. In analyzing the data, the analyst has to make a decision about what to use to replace 

these bad values. One approach is to replace them with a column mean. Given an array of 
numbers such as the following, create a function to replace each "NAN" with the mean of the 

numbers that appear in that column:

3.

In[1]:= data =

0.9034 "NAN" 0.7163 0.8588
0.3031 0.5827 0.2699 0.8063
0.0418 0.8426 "NAN" 0.8634
"NAN" 0.8913 0.0662 0.8432

;

Given a two-column array of data4.
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In[2]:= data = RandomInteger[{0, 9}, {5, 2}];

In[3]:= MatrixFormdata, TableAlignments → "."

Out[3]//MatrixForm=

7 0
8 2
1 5
8 0
6 7

create a new array that consists of three columns where the first two columns are identical to 

the original, but the third column consists of the mean of the two numbers from the first two 

columns.

7 0 7

2

8 2 5
1 5 3
8 0 4

6 7 13

2

Given a graphic produced by Plot, use a transformation rule to halve the y-coordinate of each 

point used to construct the plot, then display the result.
5.

Extend the counting coins example to take images of coins as the argument to the function.6.

In[4]:= CountChange , , , , 

Out[4]= 0.42

Create a function FindSubsequence[������, ������] to find the positions of a subsequence 

subseq within a sequence of numbers given by digits. Assume both digits and subseq are lists of 
numbers. Your function should return a list of the starting and ending positions where the 

subsequence occurs in the sequence, similar to what Position returns. For example, here are 

the first 50 digits of π:

7.

In[5]:= pidigs = FirstRealDigits[π, 10, 100]

Out[5]= {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3,

3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1,

0, 5, 8, 2, 0, 9, 7, 4, 9, 4, 4, 5, 9, 2, 3, 0, 7, 8, 1, 6, 4, 0, 6, 2, 8,

6, 2, 0, 8, 9, 9, 8, 6, 2, 8, 0, 3, 4, 8, 2, 5, 3, 4, 2, 1, 1, 7, 0, 6, 7}

The subsequence 38 appears in two locations in pidigs.

In[6]:= FindSubsequencepidigs, {3, 8}

Out[6]= {{18, 19}, {26, 27}}

Write another definition of FindSubsequence that takes two integers as arguments. So, for 
example, the following should work:

8.
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In[7]:= SeedRandom[6];

n = RandomInteger10200

Out[8]= 38962167906640602500170931211955779575023497774170227858878429522794529

744062342783143699902237900976316871609846545097431390396795087845924

977005230435025177652637766538981421277296525589205107229653

In[9]:= FindSubsequence[n, 965]

Out[9]= {{181, 183}, {197, 199}}

Compute the area of a triangle using the following formula for three two-dimensional coordi-
nates (xi, yi, zi) embedded in three-dimensional space:

9.

A△ =
1
2

x1 y1 1
x2 y2 1
x3 y3 1

2

+

y1 z1 1
y2 z2 1
y3 z3 1

2

+

z1 x1 1
z2 x2 1
z3 x3 1

2

Using historical global surface temperatures, make a plot showing the difference in °C from the 

1950–1980 average for each year. Data is available from numerous sources, including NASA’s 

Goddard Institute for Space Studies (NASA 2015). After importing the data you will need to 

remove header and footer information before pouring the pairs {����, ������_����} into 

TimeSeries. Make the plot using DateListPlot and include a smoothed five-year moving 

average together with the plot of the raw data.

10.

Sunspots are caused by magnetic fields which in turn are caused by the current generated by 

the motion of hot plasma inside the sun. In regions where the induced magnetic field is most 
intense, the increased pressure causes the region to rise to the surface causing darker regions – 

sunspots – where the temperature is lower. The mean magnetic field of the sun has been 

recorded since 1975 and is available from the Wilcox Solar Observatory at Stanford University:

11.

In[10]:= data = Import"http://wso.stanford.edu/meanfld/MF_timeseries.txt", "Table";

Takedata, 10

Out[11]= {{Date, Daily, MF, (uT)}, {1975:05:16_20h, 29},

{1975:05:17_20h, 22}, {1975:05:18_20h, 24}, {1975:05:19_20h, 24},

{1975:05:20_20h, 13}, {1975:05:21_20h, 4}, {1975:05:22_20h, 4},

{1975:05:23_20h, XXXX}, {1975:05:24_20h, -3}}

Import the solar magnetic field data and create rules to convert the timestamps to a form that 
the time series functions can work with. You will need to convert the missing measurements 

(denoted ”XXXX” in the data) of the magnetic field strength to Missing[] which the time 

series functions will handle more gracefully. Finally, make a plot of the data over the time 

period using DateListPlot.

To convert the date to a usable format, use DateList and specify the explicit delimiters.
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In[12]:= DateList

"1975:05:18_20h", "Year", ":", "Month", ":", "Day", "_", "Hour", "h"

Out[12]= {1975, 5, 18, 20, 0, 0.}

Solutions4.3
First, the argument is checked to see if it has head Integer and if it is greater than one.1.

In[1]:= compositeQ[n_Integer /; n > 1] := NotPrimeQ[n]

Check a few numbers for compositeness.

In[2]:= compositeQ[16]

Out[2]= True

In[3]:= compositeQ231 - 1

Out[3]= False

In[4]:= compositeQ263 - 1 === CompositeQ263 - 1

Out[4]= True

Here is the plot of the sinc function.2.

In[5]:= splot = PlotSinc[x], {x, -2 π, 2 π}

Out[5]=

-6 -4 -2 2 4 6

-0.2

0.2

0.4

0.6

0.8

1.0

This replacement rule replaces each pair of numbers {x, y} with the pair {x, -y}, giving a 

reflection in the y-axis. Note the need to modify the plot range here.
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In[6]:= Showsplot /. x_?NumberQ, y_?NumberQ ⧴ {x, -y}, PlotRange → All

Out[6]=

-6 -4 -2 2 4 6

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

The argument checking (_?NumberQ) is necessary here so that pairs of arbitrary expressions 

embedded somewhere in the graphics expression are not pattern matched. We only want to 

interchange pairs of numbers, not pairs of options or other expressions that might be present in 

the underlying expression representing the graphic.

First, here is the data with which we will work.3.

In[7]:= array =

0.9034 "NAN" 0.7163 0.8588 0.1228
0.3031 0.5827 0.2699 0.8063 "NAN"
0.0418 0.8426 "NAN" 0.8634 0.9682
0.9163 0.8913 0.0662 0.8432 0.0547
0.7937 0.6905 0.9105 0.5589 0.8993

;

Get only the numeric values from the second column.

In[8]:= col2 = arrayAll, 2;

Casescol2, _?NumberQ

Out[9]= {0.5827, 0.8426, 0.8913, 0.6905}

Compute the mean of the second column.

In[10]:= MeanCasescol2, _?NumberQ

Out[10]= 0.751775

Replace the string with the column mean.

In[11]:= col2 /. "NAN" → MeanCasescol2, _?NumberQ // MatrixForm

Out[11]//MatrixForm=

0.751775
0.5827
0.8426
0.8913
0.6905

Turn it into a function.

In[12]:= fixcolumncol_ :=

arrayAll, col /. "NAN"⧴ MeanCasesarrayAll, col, _?NumberQ
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Try this function out on column 1 of our matrix.

In[13]:= fixcolumn[1]

Out[13]= {0.9034, 0.3031, 0.0418, 0.9163, 0.7937}

Map this function across all the columns. 

In[14]:= Mapfixcolumn, RangeLengthFirst[array] // MatrixForm

Out[14]//MatrixForm=

0.9034 0.3031 0.0418 0.9163 0.7937
0.751775 0.5827 0.8426 0.8913 0.6905
0.7163 0.2699 0.490725 0.0662 0.9105
0.8588 0.8063 0.8634 0.8432 0.5589
0.1228 0.51125 0.9682 0.0547 0.8993

This operated on the columns, so the array is a list of the transformed column vectors. Trans-
pose it back to put things right.

In[15]:= MatrixForm[Transpose[%]]

Out[15]//MatrixForm=

0.9034 0.751775 0.7163 0.8588 0.1228
0.3031 0.5827 0.2699 0.8063 0.51125
0.0418 0.8426 0.490725 0.8634 0.9682
0.9163 0.8913 0.0662 0.8432 0.0547
0.7937 0.6905 0.9105 0.5589 0.8993

Next, turn this into a reusable function, FixArray.

In[16]:= FixArray[mat_] := Modulefixcolumn,

fixcolumncol_ :=

matAll, col /. "NAN"⧴ MeanCasesmatAll, col, _?NumberQ;

TransposeMapfixcolumn, RangeLengthFirst[mat]



In[17]:= FixArray[array] // MatrixForm

Out[17]//MatrixForm=

0.9034 0.751775 0.7163 0.8588 0.1228
0.3031 0.5827 0.2699 0.8063 0.51125
0.0418 0.8426 0.490725 0.8634 0.9682
0.9163 0.8913 0.0662 0.8432 0.0547
0.7937 0.6905 0.9105 0.5589 0.8993

We are embedding the two-dimensional data into a three-dimensional array. The embedding 

function is written directly as a transformation rule.
4.

In[18]:= data = RandomReal[{0, 1}, {8, 2}]

Out[18]= {{0.0130644, 0.16409}, {0.639823, 0.731402},

{0.997011, 0.621673}, {0.0157075, 0.409658}, {0.705118, 0.514003},

{0.0233511, 0.539084}, {0.487938, 0.503521}, {0.848247, 0.874698}}
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In[19]:= data /. {x_, y_}⧴ {x, y, Mean[{x, y}]} // MatrixForm

Out[19]//MatrixForm=

0.0130644 0.16409 0.088577
0.639823 0.731402 0.685612
0.997011 0.621673 0.809342
0.0157075 0.409658 0.212683
0.705118 0.514003 0.60956
0.0233511 0.539084 0.281217
0.487938 0.503521 0.495729
0.848247 0.874698 0.861472

Here is a plot of the sin function.5.

In[20]:= plot = PlotSin[x], {x, 0, 2 π}

Out[20]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

This rule replaces each pair {x, y} with the pair {x, y /2}.

In[21]:= plot /. x_?NumericQ, y_?NumericQ ⧴ {x, y /2}

Out[21]=

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

Because the plot range is simply inherited from the original plot we lose some information 

after the transformation. To adjust the plot range, wrap the expression in Show and give an 

explicit plot range.
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In[22]:= Show

plot /. x_?NumericQ, y_?NumericQ ⧴ {x, y /2},

PlotRange → {{0, 2 π}, {-1, 1}}

Out[22]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

For U.S. coins, you can import images from the U.S. Mint (www.usmint.gov); adjust accord-
ingly for different currencies.

6.

In[23]:= q, d, n, p =  , , , ;

In[24]:= coins = p, p, q, n, d, d, p, q, q, p

Out[24]=  , , , , ,

, , , , 

Here are the values, given by a list of rules.

In[25]:= values = p → .01, n → .05, d → .10, q → .25;

This replaces each coin by its value.

In[26]:= coins /. values

Out[26]= {0.01, 0.01, 0.25, 0.05, 0.1, 0.1, 0.01, 0.25, 0.25, 0.01}

And here is the value of the set of coins.

In[27]:= Totalcoins /. values

Out[27]= 1.04
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Finally, here is a function that wraps up all these steps.

In[28]:= CountChangecoins_List :=

Totalcoins /. → .01, → .05, → .10,

→ .25

In[29]:= CountChange , , , , ,

, , , , 

Out[29]= 1.04

To prototype, we will only work with a small number of digits so we can easily check on our 
progress. Here are the first 50 digits of π, starting from the right of the decimal point. 

7.

In[30]:= pidigs = FirstRealDigits[π, 10, 50]

Out[30]= {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3,

3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1}

The subsequence we are searching for is also given as a list of digits.

In[31]:= subseq = {3, 2, 3, 8};

One approach to this problem is to partition the list of digits in pidigs into lists of the same 

length as the list subseq, with overlapping sublists of offset one. This means that we will 
examine all sublists of length four from pidigs.
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In[32]:= p = Partitionpidigs, Lengthsubseq, 1

Out[32]= {{3, 1, 4, 1}, {1, 4, 1, 5}, {4, 1, 5, 9}, {1, 5, 9, 2}, {5, 9, 2, 6}, {9, 2, 6, 5},

{2, 6, 5, 3}, {6, 5, 3, 5}, {5, 3, 5, 8}, {3, 5, 8, 9}, {5, 8, 9, 7}, {8, 9, 7, 9},

{9, 7, 9, 3}, {7, 9, 3, 2}, {9, 3, 2, 3}, {3, 2, 3, 8}, {2, 3, 8, 4},

{3, 8, 4, 6}, {8, 4, 6, 2}, {4, 6, 2, 6}, {6, 2, 6, 4}, {2, 6, 4, 3},

{6, 4, 3, 3}, {4, 3, 3, 8}, {3, 3, 8, 3}, {3, 8, 3, 2}, {8, 3, 2, 7},

{3, 2, 7, 9}, {2, 7, 9, 5}, {7, 9, 5, 0}, {9, 5, 0, 2}, {5, 0, 2, 8},

{0, 2, 8, 8}, {2, 8, 8, 4}, {8, 8, 4, 1}, {8, 4, 1, 9}, {4, 1, 9, 7},

{1, 9, 7, 1}, {9, 7, 1, 6}, {7, 1, 6, 9}, {1, 6, 9, 3}, {6, 9, 3, 9},

{9, 3, 9, 9}, {3, 9, 9, 3}, {9, 9, 3, 7}, {9, 3, 7, 5}, {3, 7, 5, 1}}

Now we are ready for the pattern match. From the list p above, we are looking for the positions 

of any sublist that matches {3, 2, 3, 8}. The subsequence 3238 occurs starting at the sixteenth 

digit in pidigs (fifteen digits to the right of the decimal point).

In[33]:= pos = Positionp, subseq

Out[33]= {{16}}

To mirror the default output of Position, we give the starting and ending positions of this 

match.

In[34]:= pos /. num_?IntegerQ ⧴ num, num + Lengthsubseq - 1

Out[34]= {{16, 19}}

Finally, let us turn this into a function and test it on a much larger example. Note that we use 

the pattern _List on both arguments, digits and subseq, so that FindSubsequence will only 

match arguments that have head List. 

In[35]:= FindSubsequencedigits_List, subseq_List :=

PositionPartitiondigits, Lengthsubseq, 1, subseq /.

num_?IntegerQ ⧴ num, num + Lengthsubseq - 1

Store the first 10 000 000 digits of π in the symbol pidigs.

In[36]:= pidigs = FirstRealDigitsπ, 10, 107, -1;

The subsequence 314159 occurs seven times in the first 10 000 000 digits of π, starting with the 

176 451st digit.

In[37]:= FindSubsequencepidigs, {3, 1, 4, 1, 5, 9} // Timing

Out[37]= {10.2297, {{176451, 176456},

{1259351, 1259356}, {1761051, 1761056}, {6467324, 6467329},

{6518294, 6518299}, {9753731, 9753736}, {9973760, 9973765}}}

In Section 7.2 we will see a different approach to this problem, one using string-processing 

functions that gives a substantial speedup compared to the computation above.
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This creates another rule associated with FindSubsequence that simply takes each integer 
argument, converts it to a list of integer digits, and then passes that off to the rule above.

8.

In[38]:= FindSubsequencen_Integer, subseq_Integer :=

FindSubsequenceIntegerDigits[n], IntegerDigitssubseq

Create the list of the first 100 000 digits of π.

In[39]:= pi = FromDigitsFirst@RealDigitsNPi, 105 - 3;

The subsequence 1415 occurs seven times at the following locations in this digit expansion of π.

In[40]:= FindSubsequencepi, 1415

Out[40]= {{1, 4}, {6955, 6958}, {29136, 29139}, {45234, 45237},

{79687, 79690}, {85880, 85883}, {88009, 88012}}

This is a direct translation of the formula given in the exercise using a transformation rule to 

embed the two-dimensional vectors in three-space. It is important to get the pattern on the left-
hand side of this definition correct so it matches a list consisting of three expressions (the three 

points).

9.

In[41]:= areaTriangle[pts : {_, _, _}] :=

1

2


DetptsAll, {2, 3} /. a_, b_ ⧴ a, b, 12
+

DetptsAll, {3, 1} /. a_, b_ ⧴ a, b, 12
+

DetptsAll, {1, 2} /. a_, b_ ⧴ a, b, 12


And here is a check against the built-in function.

In[42]:= pts = {{0, 0, 0}, {3, 4, 0}, {5, 5, 5}};

In[43]:= AreaTriangle[pts]

Out[43]= 5
13

2

In[44]:= areaTriangle[pts]

Out[44]= 5
13

2

First, import data from NASA’s Goddard Institute for Space Studies. 10.

In[45]:= data = Import"http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt",

"Table", "Data";

We need to strip out the header and footer information and just deal with the raw data: inspec-
tion of the data (not shown here) indicates the header info is in the first eight rows and footer 
info is in the last twelve rows.
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In[46]:= data[[9 ;; -13]];

Some filtering is also necessary as the web page repeats header row (column names) frequently.

In[47]:= DeleteCasesdata[[9 ;; -13]], "Year", __ {};

Finally, we want row fourteen, the yearly temp difference from the norm. Also, divide by 100 to 

get actual °C.

In[48]:= tempData = TimeSeries%All, 14100., "1880", "2014"

Out[48]= TimeSeries
Time: 01 Jan 1880 to 01 Jan 2014

Data points: 136 

Smooth with a five-year moving average.

In[49]:= avg = MovingAverage[tempData, 5];

Plot original data (light gray) together with smoothed data (gray). Put a thick red line on the 

mean.

In[50]:= DateListPlot{tempData, avg}, PlotStyle → LightGray, Gray, Mesh → All,

MeshStyle → DirectivePointSizeSmall, Gray,

GridLines → ToString /@ Range[1880, 2010, 10], Automatic, ImageSize → Small,

Epilog → Pink, Thick, Line"1880", 0, "2015", 0,

FrameLabel → None, "Difference from 1951-1980 average (°C)",

PlotLegends → "yearly data", "5-year moving avg"

Out[50]=
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In[51]:= Clearx, y, z, f, g, p, q, d, n, a, b, c, d, e

This imports the data from the Wilcox Observatory:11.
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In[52]:= data = Import"http://wso.stanford.edu/meanfld/MF_timeseries.txt", "Table"

Out[52]=

{Date, Daily, MF, (uT)}, {1975:05:16_20h, 29},

{1975:05:17_20h, 22}, ⋯ 14320⋯ , {2014:08:01_20h, 69},

{2014:08:02_20h, 34}, {2014:08:03_20h, 6}

large output show less show more show all set size limit...

The data is of the form {����, ��} where date is a string and the magnetic field measurement 
an integer giving the mean magnetic field measurement in μ T (micro-Teslas).

In[53]:= data[[2]] // InputForm

Out[53]//InputForm= {�����������_��������}

Using the suggestion in the exercise, create a function to convert the string to a date object.

In[54]:= dateConvertstr_String :=

DateListstr, "Year", ":", "Month", ":", "Day", "_", "Hour", "h"

Then, using a rule, convert all the dates:

In[55]:= data2 = Rest@data /. date_String, val_ ⧴ dateConvertdate, val

Out[55]=

{{1975, 5, 16, 20, 0, 0.}, 29}, {{1975, 5, 17, 20, 0, 0.}, 22},

{{1975, 5, 18, 20, 0, 0.}, 24}, ⋯ 14319⋯ , {{2014, 8, 1, 20, 0, 0.}, 69},

{{2014, 8, 2, 20, 0, 0.}, 34}, {{2014, 8, 3, 20, 0, 0.}, 6}

large output show less show more show all set size limit...

Next, we need to deal with missing data. In the data set, they are indicated by the string “XXXX”.

In[56]:= data2[[8]] // InputForm

Out[56]//InputForm= {{����������������������}��������}

The next rule converts this string to Missing[] which the time series functions can deal with 

better.
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In[57]:= data3 = data2 /. date_List, _String ⧴ date, Missing[]

Out[57]=

{{1975, 5, 16, 20, 0, 0.}, 29}, {{1975, 5, 17, 20, 0, 0.}, 22},

{{1975, 5, 18, 20, 0, 0.}, 24}, ⋯ 14319⋯ , {{2014, 8, 1, 20, 0, 0.}, 69},

{{2014, 8, 2, 20, 0, 0.}, 34}, {{2014, 8, 3, 20, 0, 0.}, 6}

large output show less show more show all set size limit...

Now, convert data3 to a time series object and plot.

In[58]:= tsData = TimeSeriesdata3

Out[58]= TimeSeries
Time: 16 May 1975 to 03 Aug 2014

Data points: 14325


In[59]:= DateListPlottsData, AspectRatio → 1/4, PlotStyle → Thin, PlotRange → All

Out[59]=
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An alternative approach could use the DateStringFormat option to Import to put the dates in 

the proper form for the time series, but it is a bit slower to do the processing during import.

In[60]:= data = Rest@Import"http://wso.stanford.edu/meanfld/MF_timeseries.txt",

"Table", "DateStringFormat" →

"Year", ":", "Month", ":", "Day", "_", "Hour", "h"

Out[60]=

 ��� �� ��� ���� , 29,  ��� �� ��� ���� , 22,  ��� �� ��� ���� , 24,  ��� �� ��� ���� , 24,

⋯ 14317⋯ ,  ��� �� ��� ���� , 87,  ��� � ��� ���� , 69,  ��� � ��� ���� , 34,  ��� � ��� ���� , 6

large output show less show more show all set size limit...

In[61]:= tsData = TimeSeriesdata

Out[61]= TimeSeries
Time: 16 May 1975 to 03 Aug 2014

Data points: 14325

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In[62]:= DateListPlottsData, AspectRatio → 1/4, PlotStyle → Thin, PlotRange → All

Out[62]=
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5
Functions

Functions for manipulating expressions: exercises5.1
Use Partition and Mean to create a two-term moving average. Then repeat for a three-term 

moving average. Check your results against the built-in MovingAverage function.
1.

In[1]:= MovingAveragea, b, c, d, e, 2

Out[1]= 
a + b

2
,
b + c

2
,
c + d

2
,
d + e

2


Use Apply to rewrite the definition of squareMatrixQ given in Section 4.1.2.

Use Inner to replicate the result in the text that used Thread to create a list of equations.3.

In[2]:= ThreadEqual{x, y, z}, a, b, c

Out[2]= {x⩵ a, y⩵ b, z⩵ c}

Heron’s formula for the area of a triangle is given as follows:4.

A = s (s - a) s - b (s - c)

where a, b, and c are the lengths of the three sides of the triangle and s is the semiperimeter of 
the triangle, defined by s = a + b + c2. Compute the area of any triangle using Heron’s 

formula. You can check your result against the built-in Area function.



In[3]:= pt1 = {0, 0}; pt2 = {5, 2}; pt3 = {3, 4};

GraphicsTriangle[{pt1, pt2, pt3}], Axes → Automatic

Out[4]=

1 2 3 4 5

1

2

3

4

In[5]:= AreaTriangle[{pt1, pt2, pt3}]

Out[5]= 7

Find all square numbers that contain the digits one through nine exactly once 

(see Madachy 1979) . Use SquareNumberQ from Exercise 4 in Section 2.4.
5.

In Section 2.4 we defined a predicate PerfectQ[�] that returns True if n is a perfect number (n 

is a perfect number if it is equal to the sum of its proper divisors). Create a function 

PerfectSearch[�] that finds all perfect numbers less than n. Then find all perfect numbers 

less than 106.

6.

Turn the computation from Exercise 6 of Section 3.3 into a reusable function 

PrimesLessThan[�] that returns all prime numbers less than n.
7.

One of the tasks in analyzing DNA sequences is determining the frequency with which the 

individual nucleotides G, C, A, and T occur. In addition, the frequency of longer “words” is 

often also of interest. For example, words of length two (or longer) such as AG, AT, CC are 

sometimes used to find locations in the sequence where an evolutionary change may have 

occurred.

8.

Nucleotides are generally represented as strings, so starting with the list 
{"A", "T", "G", "C"}, create a list of all possible two-letter words from this alphabet. You 

can use StringJoin to return a string consisting of the concatenation of two strings.

In[6]:= StringJoin"A", "T" // InputForm

Out[6]//InputForm= AT

Finally, generalize this process to create words of length n for any such alphabet. For example, 
you could use a list of the amino acids as your alphabet.

In[7]:= aa = "A", "R", "N", "D", "C", "E", "Q", "G", "H", "I", "L", "K", "M", "F",

"P", "O", "U", "S", "T", "W", "Y", "V";
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Create a function LeadingDigit[�] that takes an integer n as an argument and returns the 

leading digit of n (see Exercise 7, Section 3.3). Set up your function so that it returns the leading 

digits of a list of numbers such as the first 10 000 Fibonacci numbers.

9.

Given a set of points in the plane, find the bounding rectangle that fully encloses the points. For 
three-dimensional sets of points, find the bounding rectangular box. (See Figure 5.1.)

10.

Bounding boxes (dashed lines) for points in two and three dimensions.Figure 5.1.

-10 -5 5 10

-10

-5

5

10

Given a set of points in the plane (or 3-space), find the maximum distance between any pair of 
these points. This is often called the diameter of the point set. If your definition is general 
enough it should be able to handle points in any dimension. 

11.

Create a graphic that consists of n randomly colored circles in the plane with random centers 

and random radii. Consider using Thread or MapThread to thread Circle[…] across the lists 

of centers and radii.

12.

While matrices can easily be added using Plus, matrix multiplication is a bit more involved. 
The Dot function, written as a single period, is used.

13.

In[8]:= {{1, 2}, {3, 4}}.{x, y}

Out[8]= {x + 2 y, 3 x + 4 y}

Perform matrix multiplication on {{1, 2}, {3, 4}} and {x, y} without using Dot.

An adjacency matrix can be thought of as representing a graph of vertices and edges where a 

value of one in position aij indicates an edge between vertex i and vertex j, whereas a value of 
zero indicates no such edge between vertices i and j.

14.

In[9]:= mat = RandomInteger[1, {5, 5}];

MatrixForm[mat]
Out[10]//MatrixForm=

1 0 1 0 1
0 1 0 1 1
1 1 1 1 0
0 1 0 0 1
0 1 1 1 1
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In[11]:= AdjacencyGraphmat, VertexLabels → "Name"

Out[11]=
1

2

34

5

Compute the total number of edges for each vertex in both the adjacency matrix and graph 

representations. For example, you should get the following edge counts for the five vertices 

represented in the above graph. Note: self-loops count as two edges each.

{5, 7, 7, 5, 8}

Create a function ToEdges[���] that takes a list of pairs of elements and transforms it into a list 
of directed edges suitable for a graph. For example:

15.

In[12]:= lis = RandomInteger[9, {12, 2}]

Out[12]= {{1, 4}, {1, 5}, {1, 7}, {1, 9}, {8, 0},

{3, 1}, {9, 2}, {6, 2}, {3, 4}, {4, 4}, {7, 6}, {2, 8}}

In[13]:= ToEdgeslis

Out[13]= {1 4, 1 5, 1 7, 1 9, 8 0, 3 1, 9 2, 6 2, 3 4, 4 4, 7 6, 2 8}

Make sure that your function also works in the case where its argument is a single list of a pair 
of elements.

In[14]:= ToEdges[{3, 6}]

Out[14]= 3 6

FactorInteger[�] returns a nested list of prime factors and their exponents for the number n.16.

In[15]:= FactorInteger[3628800]

Out[15]= {{2, 8}, {3, 4}, {5, 2}, {7, 1}}

Use Apply to reconstruct the original number from this nested list.

Repeat the above exercise but instead use Inner to reconstruct the original number n from the 

factorization given by FactorInteger[�].
17.

Create a function PrimeFactorForm[�] that formats its argument n in prime factorization 

form. You will need to use Superscript and CenterDot to format the factored integer.
18.

In[16]:= PrimeFactorForm[12]

Out[16]= 22·31

The Vandermonde matrix arises in Lagrange interpolation and in reconstructing statistical 
distributions from their moments. Construct the Vandermonde matrix of order n:

19.
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1 x1 x1
2 ⋯ x1

n-1

1 x2 x2
2 ⋯ x2

n-1

⋮ ⋮ ⋮ ⋱ ⋮

1 xn xn2 ⋯ xnn-1

Using Inner, write a function div[����, ����] that computes the divergence of an n-dimen-
sional vector field, vecs = {�1, �2, …, ��}, dependent upon n variables, 
vars = {�1, �2, …, ��}. The divergence is given by the sum of the pairwise partial 
derivatives.

20.

∂e1

∂v1
+
∂e2

∂v2
+⋯ +

∂en

∂vn

Using Outer, create a function JacobianMatrix[���, ����] that returns the Jacobian of the 

vector vec in the variables given by the list vars. Then use JacobianMatrix to compute the 

volume of the hypersphere in two (circle) and three (sphere) dimensions by integrating the 

absolute value of the determinant of the Jacobian.

21.

The example in this section on Select and Pick found Mersenne numbers 2n - 1 that are 

prime for exponents n from 1 to 100. Modify that example to only use prime exponents – a 

basic theorem in number theory states that a Mersenne number with composite exponent 
must be composite (Crandall and Pomerance 2005).

22.

Solutions5.1
If we are doing a 2-term moving average, then partition into 2-element lists.1.

In[1]:= Cleara, b, c, d, e, f, g, h, i

In[2]:= Partitiona, b, c, d, e, 2, 1

Out[2]= {{a, b}, {b, c}, {c, d}, {d, e}}

Then take the mean of each pair.

In[3]:= Map[Mean, %]

Out[3]= 
a + b

2
,
b + c

2
,
c + d

2
,
d + e

2


Check against the built-in function.

In[4]:= MovingAveragea, b, c, d, e, 2

Out[4]= 
a + b

2
,
b + c

2
,
c + d

2
,
d + e

2


Similarly for the 3-term moving average.
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In[5]:= MapMean, Partitiona, b, c, d, e, 3, 1

Out[5]= 
1

3
(a + b + c),

1

3
(b + c + d),

1

3
(c + d + e)

First, here is the definition given in Section 4.1.2.

In[6]:= squareMatrixQmat_?MatrixQ := Dimensions[mat][[1]]⩵ Dimensions[mat][[2]]

For a matrix, Dimensions returns a list of two integers. Applying Equal to the list will return 

True if the two dimensions are identical, that is, if the matrix is square.

In[7]:= squareMatrixQmat_?MatrixQ := ApplyEqual, Dimensions[mat]

In[8]:= squareMatrixQa, b, c, d, e, f

Out[8]= False

In[9]:= squareMatrixQa, b, c, d, e, f, g, h, i

Out[9]= True

Here is the example from the text.3.

In[10]:= Clear[x, y, z]

In[11]:= ThreadEqual{x, y, z}, a, b, c

Out[11]= {x⩵ a, y⩵ b, z⩵ c}

The first argument to Inner is a function that will be threaded over the following lists. After-
wards, the fourth argument to Inner will be applied to the result. So we use Equal as that first 
function.

In[12]:= InnerEqual, {x, y, z}, a, b, c, List

Out[12]= {x⩵ a, y⩵ b, z⩵ c}

Given three points that define a triangle, we need the distances between every pair of points, 
that is, the length of the sides of the triangles.

4.

In[13]:= pt1 = {0, 0};

pt2 = {5, 2};

pt3 = {3, 5};

First, make a list of the possible pairs of points.

In[16]:= pairs = Subsets[{pt1, pt2, pt3}, {2}]

Out[16]= {{{0, 0}, {5, 2}}, {{0, 0}, {3, 5}}, {{5, 2}, {3, 5}}}

Then apply EuclideanDistance at level one to get the distance between each pair.

In[17]:= a, b, c = ApplyEuclideanDistance, pairs, {1}

Out[17]=  29 , 34 , 13 

Here is the semiperimeter:
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In[18]:= s = a + b + c2

Out[18]=

1

2
 13 + 29 + 34 

And finally, the area computation given by Heron’s formula:

In[19]:= s (s - a) s - b (s - c) // Simplify

Out[19]=

19

2

Check:

In[20]:= AreaTriangle[{pt1, pt2, pt3}]

Out[20]=

19

2

In[21]:= Cleara, b, c, s

Here is the definition of SquareNumberQ from Exercise 4 in Section 2.4.5.

In[22]:= SquareNumberQ[n_Integer] := IntegerQ n 

First, create the numbers that contain each of the digits using FromDigits.

In[23]:= FromDigits[{1, 2, 3, 4, 5, 6, 7, 8, 9}]

Out[23]= 123456789

This then creates all such permutations.

In[24]:= nums = MapFromDigits, Permutations[Range[9]]

Out[24]=

123456789, 123456798, 123456879, 123456897,

123456978, 123456987, 123457689, 123457698, 123457869,

⋯ 362862⋯ , 987653241, 987653412, 987653421, 987654123,

987654132, 987654213, 987654231, 987654312, 987654321

large output show less show more show all set size limit...

And here are those numbers from nums that are square.

In[25]:= Selectnums, SquareNumberQ

Out[25]= {139854276, 152843769, 157326849, 215384976, 245893761, 254817369,

326597184, 361874529, 375468129, 382945761, 385297641, 412739856,

523814769, 529874361, 537219684, 549386721, 587432169, 589324176,

597362481, 615387249, 627953481, 653927184, 672935481, 697435281,

714653289, 735982641, 743816529, 842973156, 847159236, 923187456}
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A quick check that these are all square numbers.

In[26]:= %

Out[26]= {11826, 12363, 12543, 14676, 15681, 15963, 18072, 19023, 19377, 19569,

19629, 20316, 22887, 23019, 23178, 23439, 24237, 24276, 24441, 24807,

25059, 25572, 25941, 26409, 26733, 27129, 27273, 29034, 29106, 30384}

What would happen if you first found all 9-digit square numbers and then determined which of 
those contained only the digits one through nine? A bit of thought should convince you that 
that approach would be quite time and resource intensive as the first step would require 

checking every number below 109
 to see if it was a square.

Here is the definition of PerfectQ.6.

In[27]:= PerfectQ[n_] := TotalDivisors[n] ⩵ 2 n

To find all perfect numbers less than n, use Select on the list given by Range[�], using 

PerfectQ as the test.

In[28]:= PerfectSearch[n_] := SelectRange[n], PerfectQ

This finds the four perfect numbers less than one million.

In[29]:= PerfectSearch106 // Timing

Out[29]= {9.25325, {6, 28, 496, 8128}}

This is quite compute-intensive. You can speed things up by using a built-in function that is 

designed specifically for this task, DivisorSigma.

In[30]:= PerfectQ[n_] := DivisorSigma[1, n]⩵ 2 n

In[31]:= PerfectSearch106 // Timing

Out[31]= {4.1752, {6, 28, 496, 8128}}

Based on Exercise 6 from Section 3.3, here is the definition:7.

In[32]:= PrimesLessThan[n_] := TablePrime[p], p, PrimePi[n]

In[33]:= PrimesLessThan[100]

Out[33]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

Since we are interested in all possible two-letter combinations of the list of nucleotides, the 

function that should come to mind is Outer. The only question is what function to thread 

across the lists? A moment’s thought should convince you that StringJoin is what is needed.

8.

In[34]:= lis = OuterStringJoin, "A", "C", "T", "G", "A", "C", "T", "G"

Out[34]= {{AA, AC, AT, AG}, {CA, CC, CT, CG}, {TA, TC, TT, TG}, {GA, GC, GT, GG}}

You can see what is happening by using a symbolic function sj instead of StringJoin:
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In[35]:= Outersj, "A", "C", "T", "G", "A", "C", "T", "G"

Out[35]= {{sj[A, A], sj[A, C], sj[A, T], sj[A, G]},

{sj[C, A], sj[C, C], sj[C, T], sj[C, G]},

{sj[T, A], sj[T, C], sj[T, T], sj[T, G]},

{sj[G, A], sj[G, C], sj[G, T], sj[G, G]}}

Finally, we need to flatten the list lis.

In[36]:= Flattenlis

Out[36]= {AA, AC, AT, AG, CA, CC, CT, CG, TA, TC, TT, TG, GA, GC, GT, GG}

Generalizing is a bit tricky. Here is what we would need to do for words of length three.

In[37]:= OuterStringJoin, "A", "C", "T", "G", "A", "C", "T", "G",

"A", "C", "T", "G" // Flatten

Out[37]= {AAA, AAC, AAT, AAG, ACA, ACC, ACT, ACG, ATA, ATC, ATT, ATG, AGA, AGC, AGT, AGG, CAA,

CAC, CAT, CAG, CCA, CCC, CCT, CCG, CTA, CTC, CTT, CTG, CGA, CGC, CGT, CGG, TAA,

TAC, TAT, TAG, TCA, TCC, TCT, TCG, TTA, TTC, TTT, TTG, TGA, TGC, TGT, TGG, GAA,

GAC, GAT, GAG, GCA, GCC, GCT, GCG, GTA, GTC, GTT, GTG, GGA, GGC, GGT, GGG}

But what about words of length four or fourteen? Surely we can’t manually keep adding the list 
of nucleotides inside Outer. Well, for words of length four say, we want a sequence of four copies 

of the list {"A", "C", "T", "G"}. We can use Table to generate that but then we have too 

many nested lists to pass to Outer.

In[38]:= Table"A", "C", "T", "G", {4}

Out[38]= {{A, C, T, G}, {A, C, T, G}, {A, C, T, G}, {A, C, T, G}}

In[39]:= OuterStringJoin, %

Out[39]= {{A, C, T, G}, {A, C, T, G}, {A, C, T, G}, {A, C, T, G}}

The key here is to pass a sequence of these four lists. There is a function designed specifically for 
this situation: Sequence. We will apply it to the result of Table above and then give that 
sequence as the second argument to Outer.

In[40]:= ApplySequence, Table"A", "C", "T", "G", {4}

Out[40]= Sequence[{A, C, T, G}, {A, C, T, G}, {A, C, T, G}, {A, C, T, G}]
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In[41]:= OuterStringJoin, % // Flatten

Out[41]= {AAAA, AAAC, AAAT, AAAG, AACA, AACC, AACT, AACG, AATA, AATC, AATT, AATG, AAGA,

AAGC, AAGT, AAGG, ACAA, ACAC, ACAT, ACAG, ACCA, ACCC, ACCT, ACCG, ACTA, ACTC,

ACTT, ACTG, ACGA, ACGC, ACGT, ACGG, ATAA, ATAC, ATAT, ATAG, ATCA, ATCC, ATCT,

ATCG, ATTA, ATTC, ATTT, ATTG, ATGA, ATGC, ATGT, ATGG, AGAA, AGAC, AGAT, AGAG,

AGCA, AGCC, AGCT, AGCG, AGTA, AGTC, AGTT, AGTG, AGGA, AGGC, AGGT, AGGG, CAAA,

CAAC, CAAT, CAAG, CACA, CACC, CACT, CACG, CATA, CATC, CATT, CATG, CAGA, CAGC,

CAGT, CAGG, CCAA, CCAC, CCAT, CCAG, CCCA, CCCC, CCCT, CCCG, CCTA, CCTC, CCTT,

CCTG, CCGA, CCGC, CCGT, CCGG, CTAA, CTAC, CTAT, CTAG, CTCA, CTCC, CTCT, CTCG,

CTTA, CTTC, CTTT, CTTG, CTGA, CTGC, CTGT, CTGG, CGAA, CGAC, CGAT, CGAG, CGCA,

CGCC, CGCT, CGCG, CGTA, CGTC, CGTT, CGTG, CGGA, CGGC, CGGT, CGGG, TAAA, TAAC,

TAAT, TAAG, TACA, TACC, TACT, TACG, TATA, TATC, TATT, TATG, TAGA, TAGC, TAGT,

TAGG, TCAA, TCAC, TCAT, TCAG, TCCA, TCCC, TCCT, TCCG, TCTA, TCTC, TCTT, TCTG,

TCGA, TCGC, TCGT, TCGG, TTAA, TTAC, TTAT, TTAG, TTCA, TTCC, TTCT, TTCG, TTTA,

TTTC, TTTT, TTTG, TTGA, TTGC, TTGT, TTGG, TGAA, TGAC, TGAT, TGAG, TGCA, TGCC,

TGCT, TGCG, TGTA, TGTC, TGTT, TGTG, TGGA, TGGC, TGGT, TGGG, GAAA, GAAC, GAAT,

GAAG, GACA, GACC, GACT, GACG, GATA, GATC, GATT, GATG, GAGA, GAGC, GAGT, GAGG,

GCAA, GCAC, GCAT, GCAG, GCCA, GCCC, GCCT, GCCG, GCTA, GCTC, GCTT, GCTG,

GCGA, GCGC, GCGT, GCGG, GTAA, GTAC, GTAT, GTAG, GTCA, GTCC, GTCT, GTCG,

GTTA, GTTC, GTTT, GTTG, GTGA, GTGC, GTGT, GTGG, GGAA, GGAC, GGAT, GGAG,

GGCA, GGCC, GGCT, GGCG, GGTA, GGTC, GGTT, GGTG, GGGA, GGGC, GGGT, GGGG}

Here then is a function that generalizes this process. We have included some pattern matching 

of the arguments to insure that the alphabet is a list of one or more strings and that the word 

length n is a positive integer.

In[42]:= Clear[NGrams]

In[43]:= NGramsalphabet : __String, n_Integer ?Positive :=

FlattenOuterStringJoin, ApplySequence, Tablealphabet, {n}

In[44]:= NGrams"A", "C", "T", "G", 3

Out[44]= {AAA, AAC, AAT, AAG, ACA, ACC, ACT, ACG, ATA, ATC, ATT, ATG, AGA, AGC, AGT, AGG, CAA,

CAC, CAT, CAG, CCA, CCC, CCT, CCG, CTA, CTC, CTT, CTG, CGA, CGC, CGT, CGG, TAA,

TAC, TAT, TAG, TCA, TCC, TCT, TCG, TTA, TTC, TTT, TTG, TGA, TGC, TGT, TGG, GAA,

GAC, GAT, GAG, GCA, GCC, GCT, GCG, GTA, GTC, GTT, GTG, GGA, GGC, GGT, GGG}

Here is a list of all possible words of length two from the alphabet of amino acids.

In[45]:= alphabet = "K", "P", "W", "G", "E", "V", "Y", "L", "M", "Q", "R", "S",

"F", "D", "H", "I", "C", "T", "N", "A";
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In[46]:= NGramsalphabet, 2

Out[46]= {KK, KP, KW, KG, KE, KV, KY, KL, KM, KQ, KR, KS, KF, KD, KH, KI, KC, KT, KN, KA, PK,

PP, PW, PG, PE, PV, PY, PL, PM, PQ, PR, PS, PF, PD, PH, PI, PC, PT, PN, PA, WK,

WP, WW, WG, WE, WV, WY, WL, WM, WQ, WR, WS, WF, WD, WH, WI, WC, WT, WN, WA, GK,

GP, GW, GG, GE, GV, GY, GL, GM, GQ, GR, GS, GF, GD, GH, GI, GC, GT, GN, GA, EK,

EP, EW, EG, EE, EV, EY, EL, EM, EQ, ER, ES, EF, ED, EH, EI, EC, ET, EN, EA, VK,

VP, VW, VG, VE, VV, VY, VL, VM, VQ, VR, VS, VF, VD, VH, VI, VC, VT, VN, VA, YK,

YP, YW, YG, YE, YV, YY, YL, YM, YQ, YR, YS, YF, YD, YH, YI, YC, YT, YN, YA, LK,

LP, LW, LG, LE, LV, LY, LL, LM, LQ, LR, LS, LF, LD, LH, LI, LC, LT, LN, LA, MK,

MP, MW, MG, ME, MV, MY, ML, MM, MQ, MR, MS, MF, MD, MH, MI, MC, MT, MN, MA, QK,

QP, QW, QG, QE, QV, QY, QL, QM, QQ, QR, QS, QF, QD, QH, QI, QC, QT, QN, QA, RK,

RP, RW, RG, RE, RV, RY, RL, RM, RQ, RR, RS, RF, RD, RH, RI, RC, RT, RN, RA, SK,

SP, SW, SG, SE, SV, SY, SL, SM, SQ, SR, SS, SF, SD, SH, SI, SC, ST, SN, SA, FK,

FP, FW, FG, FE, FV, FY, FL, FM, FQ, FR, FS, FF, FD, FH, FI, FC, FT, FN, FA, DK,

DP, DW, DG, DE, DV, DY, DL, DM, DQ, DR, DS, DF, DD, DH, DI, DC, DT, DN, DA, HK,

HP, HW, HG, HE, HV, HY, HL, HM, HQ, HR, HS, HF, HD, HH, HI, HC, HT, HN, HA, IK,

IP, IW, IG, IE, IV, IY, IL, IM, IQ, IR, IS, IF, ID, IH, II, IC, IT, IN, IA, CK,

CP, CW, CG, CE, CV, CY, CL, CM, CQ, CR, CS, CF, CD, CH, CI, CC, CT, CN, CA, TK,

TP, TW, TG, TE, TV, TY, TL, TM, TQ, TR, TS, TF, TD, TH, TI, TC, TT, TN, TA, NK,

NP, NW, NG, NE, NV, NY, NL, NM, NQ, NR, NS, NF, ND, NH, NI, NC, NT, NN, NA, AK,

AP, AW, AG, AE, AV, AY, AL, AM, AQ, AR, AS, AF, AD, AH, AI, AC, AT, AN, AA}

IntegerDigits[�] gives a list of the digits in n. First returns the first element in that list. Here 

then is the function definition.
9.

In[47]:= LeadingDigit[n_Integer] := FirstIntegerDigits[n]

In[48]:= LeadingDigit[2495874985797]

Out[48]= 2

By default, this function has no attributes, in particular it is not listable.

In[49]:= LeadingDigit[{434, 826, 5632}]

Out[49]= LeadingDigit[{434, 826, 5632}]

We could map the function across lists, but instead we will give it the attribute that causes it to 

automatically map across lists. Set the function to have the Listable attribute.

In[50]:= SetAttributesLeadingDigit, Listable

Now, create a table of the first 10 000 Fibonacci numbers.

In[51]:= fibs = TableFibonaccii, i, 10000;

Because LeadingDigit is now a listable function, it automatically maps across the list fibs. 
Here then is a histogram of the leading digits of the first 10 000 Fibonacci digits.
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In[52]:= HistogramLeadingDigitfibs

Out[52]=

2 4 6 8 10
0

500

1000

1500

2000

2500

3000

Start with a set of points in the plane.10.

In[53]:= data = RandomReal[{-20, 20}, {40, 2}];

In[54]:= ListPlotdata, AspectRatio → Automatic

Out[54]=
-20 -15 -10 -5 5 10 15

-20

-10

10

20

The data are of the form {{x1, y1}, {x2, y2}, …}.

In[55]:= Takedata, 2

Out[55]= {{9.93547, -12.4866}, {-2.23917, -14.5885}}

Transposing the data gives a list all the x-coordinates, followed by a list of all the y-coordinates.

In[56]:= Transpose[{{x1, y1}, {x2, y2}, {x3, y3}}]

Out[56]= {{x1, x2, x3}, {y1, y2, y3}}

Then map Min and Max over this list.

In[57]:= MapMin, %

Out[57]= {Min[x1, x2, x3], Min[y1, y2, y3]}

Here then are the computations for our data. Notice the parallel assignments saving some 

typing.

In[58]:= xmin, ymin = MapMin, Transposedata

Out[58]= {-19.4808, -19.9974}
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In[59]:= {xmax, ymax} = MapMax, Transposedata

Out[59]= {18.7094, 19.5983}

As it turns out, a built-in function is available for this task. MinMax operates on vectors of 
numbers. So we will map it across the transposed data. Note the form of the data that is 

returned: first a list of the min and max x-coordinates and then likewise for the y-coordinates. A 

bit of rearranging is needed for Rectangle.

In[60]:= xmin, xmax, ymin, ymax = MapMinMax, Transposedata

Out[60]= {{-19.4808, 18.7094}, {-19.9974, 19.5983}}

In[61]:= ListPlotdata, AspectRatio → Automatic, Epilog → 

Opacity[.25], EdgeFormDashed, Rectanglexmin, ymin, {xmax, ymax}

Out[61]=
-20 -15 -10 -5 5 10 15

-20

-10

10

20

And here is the three-dimensional case:

In[62]:= data3d = RandomReal[{-10, 10}, {25, 3}];

In[63]:= xmin, xmax, ymin, ymax, zmin, zmax = MapMinMax, Transposedata3d

Out[63]= {{-9.06054, 8.82294}, {-9.13641, 8.77756}, {-9.47419, 8.14716}}

In[64]:= Graphics3D

Pointdata3d,

Blue, Opacity[.5], Cuboidxmin, ymin, zmin, {xmax, ymax, zmax}

, Boxed → False

Out[64]=

First create a set of points with which to work.11.

In[65]:= pts = RandomReal[1, {100, 2}];
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The set of all two-element subsets is given by:

In[66]:= pairs = Subsets[pts, {2}];

Apply the distance function to pairs. Note the need to apply EuclideanDistance at level one.

In[67]:= ApplyEuclideanDistance, pairs, {1};

The maximum distance (diameter) is given by Max.

In[68]:= Max[%]

Out[68]= 1.27562

Here is a function that puts it all together.

In[69]:= PointsetDiameterpts_List :=

MaxApplyEuclideanDistance, Subsets[pts, {2}], {1}

In[70]:= PointsetDiameter[pts]

Out[70]= 1.27562

To get the coordinate points that give this maximum distance, use MaximalBy:

In[71]:= MaximalBypairs, ApplyEuclideanDistance, # &

Out[71]= {{{0.94701, 0.0541054}, {0.0448236, 0.95592}}}

A quick check:

In[72]:= ApplyEuclideanDistance, %, {1}

Out[72]= {1.27562}

In fact, this function works on n-dimensional point sets.

In[73]:= pts3D = RandomReal[1, {5, 3}]

Out[73]= {{0.00512186, 0.739216, 0.594529},

{0.88659, 0.837747, 0.72644}, {0.274863, 0.754823, 0.71913},

{0.291825, 0.990644, 0.528335}, {0.88648, 0.339045, 0.871665}}

In[74]:= PointsetDiameter[pts3D]

Out[74]= 1.00684

Because of the use of Subsets, this computation will not scale well. Computing subsets has 

computational complexity On2 and so the time to compute subsets is quadratic in the size of 
the set.

In[75]:= TimingSubsets[Range[1000], {2}];

Out[75]= {0.07042, Null}

Twice as large of a set should cause the time to quadruple.
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In[76]:= TimingSubsets[Range[2000], {2}];

Out[76]= {0.315402, Null}

Exercise 5, Section 9.1 explores another approach – one that involves the convex hull – to speed 

up the computation.

First, create the random centers and radii.12.

In[77]:= n = 12;

centers = RandomReal[{-1, 1}, {n, 2}]

Out[78]= {{-0.391653, 0.830624}, {-0.747273, -0.460966}, {0.656809, -0.910538},

{-0.187957, -0.421397}, {0.574283, 0.718045}, {-0.620718, -0.831547},

{-0.548517, -0.791468}, {-0.578859, -0.448743}, {0.330763, 0.848178},

{-0.948835, -0.268074}, {0.911755, 0.460441}, {0.146787, 0.898121}}

In[79]:= radii = RandomReal[1, {n}]

Out[79]= {0.409292, 0.650746, 0.8457, 0.947663, 0.954289, 0.262659,

0.362816, 0.351422, 0.0984283, 0.601188, 0.0410166, 0.342364}

MapThread is perfect for the task of grabbing one center, one radii, and wrapping Circle 

around them.

In[80]:= circles = MapThreadCircle, centers, radii;

In[81]:= Graphicscircles

Out[81]=

And here is a rule to transform each circle into a scoped list that includes Thick and 

RandomColor. Note the need for the delayed rule (⧴); try it with an immediate rule to under-
stand why.

In[82]:= Graphicscircles /. Circle[x__]⧴ Thick, RandomColor[], Circle[x]

Out[82]=
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This can be done either in two steps, or by using the Inner function.13.

In[83]:= Transpose[{{1, 2}, {3, 4}}] {x, y}

Out[83]= {{x, 3 x}, {2 y, 4 y}}

In[84]:= Total[%]

Out[84]= {x + 2 y, 3 x + 4 y}

In[85]:= InnerTimes, {{1, 2}, {3, 4}}, {x, y}, Plus

Out[85]= {x + 2 y, 3 x + 4 y}

Here is a test matrix.14.

In[86]:= mat = RandomInteger[1, {5, 5}];

MatrixForm[mat]
Out[87]//MatrixForm=

0 0 1 0 1
0 0 0 1 0
1 1 0 0 0
1 0 0 0 1
0 1 1 0 0

A bit of thought should convince you that adding the matrix to its transpose and then totaling 

all the ones in each row will give the correct count.

In[88]:= MapTotal, mat + Transpose[mat]

Out[88]= {4, 3, 4, 3, 4}

Using graphs you can accomplish the same thing directly using VertexDegree.

In[89]:= gr = AdjacencyGraphmat, VertexLabels → "Name"

Out[89]=

1

2 3

4

5

In[90]:= VertexDegree[gr]

Out[90]= {4, 3, 4, 3, 4}

Applying DirectedEdge at level one will do the trick.15.
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In[91]:= ToEdgeslis : {{_, _} ..} := ApplyDirectedEdge, lis, {1}

In[92]:= lis = RandomInteger[9, {12, 2}];

ToEdgeslis

Out[93]= {3 6, 2 4, 0 5, 1 2, 3 6, 7 2, 3 6, 0 0, 2 8, 4 9, 3 7, 6 6}

This rule fails for the case when the argument is a single flat list of a pair of elements.

In[94]:= ToEdges[{3, 6}]

Out[94]= ToEdges[{3, 6}]

A second rule is needed for this case.

In[95]:= ToEdgeslis : {_, _} := ApplyDirectedEdge, lis

In[96]:= ToEdges[{3, 6}]

Out[96]= 3 6

To get down to the level of the nested lists, you have to use a second argument to Apply.16.

In[97]:= facs = FactorInteger[3 628800]

Out[97]= {{2, 8}, {3, 4}, {5, 2}, {7, 1}}

In[98]:= ApplyPower, facs, {1}

Out[98]= {256, 81, 25, 7}

One more use of Apply is needed to multiply these terms.

In[99]:= ApplyTimes, %

Out[99]= 3628800

Here is a function that puts this all together.

In[100]:= ExpandFactorslis_ := ApplyTimes, ApplyPower, lis, {1}

In[101]:= FactorInteger[295232799039604140847618609643520000000]

Out[101]= {{2, 32}, {3, 15}, {5, 7}, {7, 4}, {11, 3},

{13, 2}, {17, 2}, {19, 1}, {23, 1}, {29, 1}, {31, 1}}

In[102]:= ExpandFactors[%]

Out[102]= 295232799039604140847618609643520000000

Here is a factorization we can use to work through this problem.17.

In[103]:= facs = FactorInteger[3 628800]

Out[103]= {{2, 8}, {3, 4}, {5, 2}, {7, 1}}

Another approach uses Transpose to separate the bases from their exponents, then uses Inner 

to put things back together.
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In[104]:= base, exponents = Transposefacs

Out[104]= {{2, 3, 5, 7}, {8, 4, 2, 1}}

In[105]:= InnerPower, base, exponents, Times

Out[105]= 3628800

Since Tranpose returns a list of two lists in this example, we need to strip the outer list. This is 

done by applying Sequence.

In[106]:= ExpandFactors2lis_ := InnerPower, Sequence @@ Transposelis, Times

In[107]:= ExpandFactors2facs

Out[107]= 3628800

First, here is the prime factorization of a test integer:18.

In[108]:= lis = FactorInteger[10!]

Out[108]= {{2, 8}, {3, 4}, {5, 2}, {7, 1}}

Apply Superscript at level one to each of the sublists:

In[109]:= ApplySuperscript, lis, {1}

Out[109]= 28, 34, 52, 71

Finally, apply CenterDot to this list.

In[110]:= Apply[CenterDot, %]

Out[110]= 28·34·52·71

Put it all together (using shorthand notation for Apply) and Apply at level one.

In[111]:= PrimeFactorForm[p_] := CenterDot @@ Superscript @@@ FactorInteger[p]

In[112]:= PrimeFactorForm[20!]

Out[112]= 218·38·54·72·111·131·171·191

Unfortunately, this rule fails for numbers that have only one prime factor.

In[113]:= PrimeFactorForm[9]

Out[113]= CenterDot32

A second rule is needed for this special case.

In[114]:= PrimeFactorFormp_?PrimePowerQ := FirstSuperscript @@@ FactorInteger[p]

In[115]:= PrimeFactorForm[9]

Out[115]= 32

A subtle point is that Mathematica has automatically ordered these two rules, putting the one 

involving prime powers first.
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In[116]:= ?PrimeFactorForm

Global`PrimeFactorForm

PrimeFactorForm[p_?PrimePowerQ] :=

First[Apply[Superscript, FactorInteger[p], {1}]]

PrimeFactorForm[p_] :=

CenterDot @@ Apply[Superscript, FactorInteger[p], {1}]

This reordering (we evaluated the rules in a different order) is essential for this function to work 

properly. If the general rule was checked first, it would apply to arguments that happen to be 

prime powers and it would give wrong answers.

One final point: the expressions returned by PrimeFactorForm will not evaluate like ordinary 

expressions due to the use of CenterDot which has no evaluation rules associated with it. You 

could add an “interpretation” to such expressions by using Interpretation[����, ����] as 

follows.

In[117]:= PrimeFactorForm[p_Integer] := Withfp = FactorInteger[p],

Interpretation

CenterDot @@ Superscript @@@ fp,

Times @@ Power @@@ fp

Now the output of the following expression can be evaluated directly to get an interpreted 

result.

In[118]:= PrimeFactorForm[12!]

Out[118]= 210·35·52·71·111

This is a straightforward application of the Outer function.19.

In[119]:= VandermondeMatrix[n_, x_] :=

OuterPower, Tablexi, i, 1, n, Range[0, n - 1]

In[120]:= VandermondeMatrix[4, x] // MatrixForm

Out[120]//MatrixForm=

1 x1 x1
2 x1

3

1 x2 x2
2 x2

3

1 x3 x3
2 x3

3

1 x4 x4
2 x4

3

If we first look at a symbolic result, we should be able to see how to construct our function. 
For three vectors and three variables, here is the divergence (think of d as the derivative 

operator).

20.
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In[121]:= Innerd, {e1, e2, e3}, {v1, v2, v3}, Plus

Out[121]= d[e1, v1] + d[e2, v2] + d[e3, v3]

So for arbitrary-length vectors and variables, we have:

In[122]:= div[vecs_, vars_] := InnerD, vecs, vars, Plus

As a check, we can compute the divergence of the standard gravitational or electric force field, 
which should be zero.

In[123]:= div{x, y, z} x2 + y2 + z2
3/2

, {x, y, z}

Out[123]= -
3 x2

x2 + y2 + z2
5/2

-
3 y2

x2 + y2 + z2
5/2

-
3 z2

x2 + y2 + z2
5/2

+
3

x2 + y2 + z2
3/2

In[124]:= Simplify[%]

Out[124]= 0

Finally, we should note that this definition of divergence is a bit delicate as we are doing no 

argument checking at this point. For example, it would be sensible to insure that the length of 
the vector list is the same as the length of the variable list before starting the computation. Refer 
to Chapter 4 for a discussion of how to use pattern matching to deal with this issue.

The Jacobian is given by the following outer product:21.

In[125]:= JacobianMatrixvec_List, vars_List := Outer[D, vec, vars]

Add a condition that the dimensions of vec and vars are the same.

In[126]:= JacobianMatrixvec_List, vars_List :=

Outer[D, vec, vars] /; Dimensions[vec]⩵ Dimensions[vars]

To compute the volume of the hypersphere in dimension two, start with a point in 2
 

expressed in polar coordinates:

In[127]:= x = ρ Cos[θ];

y = ρ Sin[θ];

Then compute the determinant of the Jacobian.

In[129]:= JacobianMatrix[{x, y}, {ρ, θ}] // MatrixForm

Out[129]//MatrixForm=


Cos[θ] -ρ Sin[θ]
Sin[θ] ρ Cos[θ]



In[130]:= Det[%] // Simplify

Out[130]= ρ

The volume of the hypersphere is obtained by integrating the determinant of the Jacobian over 
ρ and θ:
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In[131]:= IntegrateAbs@DetJacobianMatrix[{x, y}, {ρ, θ}], {ρ, 0, r}, {θ, 0, 2 π},

Assumptions → r > 0

Out[131]= π r2

And here is the computation for dimension three:

In[132]:= x = ρ Cos[θ] Sin[ϕ];

y = ρ Sin[θ] Sin[ϕ];

z = ρ Cos[ϕ];

In[135]:= IntegrateAbs@Det@JacobianMatrix[{x, y, z}, {ρ, θ, ϕ}], {ρ, 0, r},

{θ, -π/2, π/2}, {ϕ, 0, 2 π}

Out[135]=

4 π r3

3

First create a table of primes and then use that list for values of p in the second table.22.

In[136]:= primes = TablePrime[n], {n, 1, 50}

Out[136]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,

71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,

151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229}

In[137]:= SelectTable2p - 1, p, primes, PrimeQ

Out[137]= {3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951,

618970019642690137449562111, 162259276829213363391578010288127,

170141183460469231731687303715884105727}

Or you could do the same thing more directly.

In[138]:= SelectTable2Prime[n] - 1, {n, 1, 50}, PrimeQ

Out[138]= {3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951,

618970019642690137449562111, 162259276829213363391578010288127,

170141183460469231731687303715884105727}

In[139]:= Cleara, b, c, d, e, x, y, z, pt1, pt2, pt3

Iterating functions: exercises5.2
Use NestWhileList to iterate the julia function similarly to how it was iterated with
FixedPointList in the text.

1.

Use NestList to iterate the process of summing cubes of digits, that is, starting with an initial
integer generate a list of the successive sums of cubes of its digits. For example, starting with 4,
the list should look like {4, 64, 280, 520, 133, …}, since 43 = 64, 63 + 43 = 280, etc. Extend
the list to at least fifteen values, experiment with other starting values, and look for patterns in
the sequences.

2.
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Following on the example in this section iterating rotations of a triangle, use Translate to 

iterate the translation of a square or other polygon. 
3.

Using Fold, create a function fac[�] that takes an integer n as argument and returns the 

factorial of n, that is, n(n - 1) (n - 2)⋯ 3 ·2 · 1.
4.

The naive way to multiply x22
 would be to repeatedly multiply x by itself, performing 21 

multiplications. But going as far back as about 200 bc in the Hindu classic Chandah-sutra, 
another method has been known that significantly reduces the total number of multiplications 

in performing such exponentiation. The idea is to first express the exponent in base 2. 

5.

In[1]:= IntegerDigits[22, 2]

Out[1]= {1, 0, 1, 1, 0}

Then, starting with the second bit from the left, interpret a 1 to mean square the existing 

expression and multiply by x, and a 0 to mean multiply just by x. Implement this algorithm 

using FoldList.

The Sierpiński triangle is a classic iteration example. It can be constructed by starting with an 

equilateral triangle and removing the inner triangle formed by connecting the midpoints of 
each side of the original triangle.

6.

⟶

The process is iterated by repeating the same computation on each of the resulting smaller 
triangles (other types of iteration can be used).

⟶ ⟶ …  ⟶  …

One approach is to take the starting equilateral triangle and, at each iteration, perform the 

appropriate transformations using Scale and Translate, then iterate. Implement this algo-
rithm, but be careful about nesting large symbolic graphics structures too deeply.

Solutions5.2
Here is the code with FixedPointList. The iteration stops when the distance of the iterates to 

the origin exceeds 4.0.
1.

In[1]:= Clearf, z, julia

In[2]:= f[z_] := z ^2 + -0.8 - 0.156 ⅈ

julia[z_] := FixedPointListf, z, SameTest → Abs[#2] > 4.0 &
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And here it is using NestWhileList. Iteration continues so long as the distance of the iterates to 

the origin is less than 4.0.

In[4]:= NestWhileListjulia, -0.5 + 1.5 I, Abs[#] < 4.0 &

Out[4]= {-0.5 + 1.5 ⅈ, {-0.5 + 1.5 ⅈ, -2.8 - 1.656 ⅈ, 4.29766 + 9.1176 ⅈ}}

For a given number, first we need to get its digits and then add their cubes.2.

In[5]:= IntegerDigits[64]

Out[5]= {6, 4}

In[6]:= IntegerDigits[64]3

Out[6]= {216, 64}

In[7]:= TotalIntegerDigits[64]3


Out[7]= 280

In[8]:= sumsOfCubes[n_] := TotalIntegerDigits[n]3


Then iterate:

In[9]:= NestListsumsOfCubes, 4, 12

Out[9]= {4, 64, 280, 520, 133, 55, 250, 133, 55, 250, 133, 55, 250}

In fact, it appears as if many initial values enter into cycles.

In[10]:= NestListsumsOfCubes, 32, 12

Out[10]= {32, 35, 152, 134, 92, 737, 713, 371, 371, 371, 371, 371, 371}

In[11]:= NestListsumsOfCubes, 123, 12

Out[11]= {123, 36, 243, 99, 1458, 702, 351, 153, 153, 153, 153, 153, 153}

To start, here is a triangle we will translate.3.

In[12]:= tri = TriangleCirclePoints[3]

Out[12]= Triangle
3

2
, -

1

2
, {0, 1}, -

3

2
, -

1

2


We will display with opacity turned on so that overlapping triangles will show through.

In[13]:= GraphicsOpacity[.35], EdgeFormBlack, tri

Out[13]=
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Translate[��, ����] takes a graphics object gr, and translates it according to the vectors vecs. 
So for example, here are some translation vectors; the first vector translates by 1 /2 unit to the
right, the second vector translates up and to the right. 

In[14]:= vecs = 
1

2
, 0, 

1

4
,

3

4
;

This translates the triangle using the first translation vector.

In[15]:= Translatetri, {1/2, 0}

Out[15]= TranslateTriangle
3

2
, -

1

2
, {0, 1}, -

3

2
, -

1

2
, 

1

2
, 0

The following translation function creates two objects translated by the vectors vecs.

In[16]:= translation[gr_] := Translate[gr, vecs]

In[17]:= tranTri = NestListtranslation, tri, 1

Out[17]= Triangle
3

2
, -

1

2
, {0, 1}, -

3

2
, -

1

2
, Translate

Triangle
3

2
, -

1

2
, {0, 1}, -

3

2
, -

1

2
, 

1

2
, 0, 

1

4
,

3

4


Here are the translated objects along with a red version of the original triangle.

In[18]:= GraphicsOpacity[.35], EdgeFormBlack, Thin,

tranTri, Red, tri

Out[18]=

Starting with 1, fold the Times function across the first n integers.4.

In[19]:= fac[n_] := FoldTimes, 1, Range[n]

In[20]:= fac[10]

Out[20]= 3628800

To compute x25
 say, start by expressing the exponent in base 2.5.

In[21]:= IntegerDigits[25, 2]

Out[21]= {1, 1, 0, 0, 1}

Now starting with the second bit from the left (use Rest), interpret a one to mean square the 
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existing expression and multiply by x, and a zero to mean multiply the existing expression by x.

In[22]:= Clearf, a, b, x

In[23]:= fa_, b_ := a ^2 x^b

In[24]:= FoldListf, x, Rest[{1, 1, 0, 0, 1}]

Out[24]= x, x3, x6, x12, x25

Once you are familiar with pure functions (Section 5.5), this is done directly (without the need 

to first define an auxiliary function f) as follows:

In[25]:= FoldList[#1^2 x^#2 &, x, Rest[{1, 1, 0, 0, 1}]]

Out[25]= x, x3, x6, x12, x25

Or you can start with the first bit but you will have to adjust the initial value accordingly.

In[26]:= FoldList[#1^2 x^#2 &, 1, {1, 1, 0, 0, 1}]

Out[26]= 1, x, x3, x6, x12, x25

Here is a larger computation.

In[27]:= exp = 4523;

digs = IntegerDigits[exp, 2];

FoldList#1^2 x^#2 &, 1, digs

Out[29]= 1, x, x2, x4, x8, x17, x35, x70, x141, x282, x565, x1130, x2261, x4523

First create the vertices of the triangle. Wrapping them in N[…] helps to keep the graphical 
structures small (see Section 8.3 for more on numeric vs. symbolic expressions in graphics).

6.

In[30]:= vertices = N[{{0, 0}, {1, 0}, {1/2, 1}}];

This gives the three different translation vectors.

In[31]:= translateVecs = 0.5 vertices

Out[31]= {{0., 0.}, {0.5, 0.}, {0.25, 0.5}}

Here is the set of transformations of the triangle described by vertices, scaled by 0.5, and 

translated according to the translation vectors.
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In[32]:= tri = Polygonvertices;

Graphics

Blue, TranslateScaletri, 0.5, {0., 0.}, translateVecs



Out[33]=

Finally, iterate the transformations by wrapping them in Nest.

In[34]:= Graphics

Blue, NestBlue, TranslateScale[#, 0.5, {0., 0.}], translateVecs &,

Polygonvertices, 3

Out[34]=

Once you have been through the rest of this chapter, you should be able to turn this into a
reusable function, scoping local variables, using pure functions, and adding options.

In[37]:= SierpinskiTriangleiter_, opts : OptionsPatternGraphics :=

Modulevertices, vecs,

vertices = N[{{0, 0}, {1, 0}, {1/2, 1}}];

vecs = 0.5 vertices;

GraphicsBlue, NestBlue, TranslateScale[#, 0.5, {0., 0.}], vecs &,

Polygonvertices, iter, opts
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In[36]:= SierpinskiTriangle[9]

Out[36]=

Recursive functions: exercises5.3
Create a recursive function that computes the nth power of two.1.

Create a recursive function that returns the factorial of n, for n a nonnegative integer.2.

The Tower of Hanoi puzzle is a popular game invented by the Frenchmathematician Édouard
Lucas in 1883. Given three pegs, one of which contains n disks of increasing radii, the object is
to move the stack of disks to another peg in the fewest number of moves without putting a
larger disk on a smaller one (Figure 5.2).

3.

Tower of Hanoi.Figure 5.2.

Create a recursive function TowerOfHanoi[�] that computes the minimal number of moves
for a stack of n disks over three pegs. Results for n = 1, 2, …, 10 are as follows:

{1, 3, 7, 15, 31, 63, 127, 255, 511, 1023}

Legend has it that the priests in the Indian temple Kashi Vishwanath have a roomwith a stack
of 64 disks and three pegs and that when they complete moving the stack to a new peg, the
world will end. If they move one disk per second, compute how long until the “end of the
world.”

For each of the following sequences of numbers, see if you can deduce the pattern and write a
function to compute the general term:

4.

2, 3, 6, 18, 108, 1944, 209 952, …

A1 A2 A3 A4 A5 A6 A7 …
a.
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0, 1, -1, 2, -3, 5, -8, 13, -21, …

B1 B2 B3 B4 B5 B6 B7 B8 B9 …
b.

0, 1, 2, 3, 6, 11, 20, 37, 68, …

C1 C2 C3 C4 C5 C6 C7 C8 C9 …
c.

The Fibonacci sequence can also be defined for negative integers using the following formula 

(Graham, Knuth, and Patashnik 1994):
5.

F-n = (-1)n-1 Fn

The first few terms are 

0 1 -1 2 -3 5 -8 13 -21 …

F0 F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 …

Write the definitions for Fibonacci numbers with negative integer arguments.

Create a recursive function to reverse the elements in a flat list.6.

Create a recursive function to transpose the elements of two lists. Write an additional rule to 

transpose the elements of three lists.
7.

Using dynamic programming is one way to speed up the computation of Fibonacci numbers, 
but another is to use different algorithms. A more efficient algorithm is based on the following 

identities:

8.

F1 = 1
F2 = 1
F2n = 2Fn-1Fn + Fn2, for n ≥ 1

F2n+1 = Fn+1
2 + Fn2, for n ≥ 1

Program a function to generate Fibonacci numbers using these identities.

You can still speed up the code for generating Fibonacci numbers in the previous exercise by 

using dynamic programming. Do so, and construct tables like those in this section, giving the 

number of additions performed by the two programs.

9.

An Eulerian number, denoted 
n
k
, gives the number of permutations of n-element sets with k 

increasing runs of elements. For example, for n = 3 the permutations of {1, 2, 3} contain four 

increasing runs of length one, namely {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, and {3, 1, 2}. Hence, 
3
1
 = 4.

10.

In[1]:= Permutations[{1, 2, 3}]

Out[1]= {{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}}

This can be programmed using the following recursive definition, where n and k are assumed 

to be integers:
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
n
k
 = k + 1 

n - 1
k

 + n - k  n - 1
k - 1

, for n > 0,


0
k
 = 

1 k = 0
0 k ≠ 0.

Create a function EulerianNumber[�, �]. You can check your work against Table 5.1, which 

displays the first few Eulerian numbers.

������������������������Table 5.1.

�

n
0
 

n
1
 

n
2
 

n
3
 

n
4
 

n
5
 

n
6
 

n
7
 

n
8


0 1
1 1 0
2 1 1 0
3 1 4 1 0
4 1 11 11 1 0
5 1 26 66 26 1 0
6 1 57 302 302 57 1 0
7 1 120 1191 2416 1191 120 1 0
8 1 247 4293 15 619 15 619 4293 247 1 0

Because of the triple recursion, you will find it necessary to use a dynamic programming 

implementation to compute any Eulerian numbers of even modest size. 

Hint: Although the above formulas will compute it, you can add the following rule to simplify 

some of the computation (Graham, Knuth, and Patashnik 1994):


n
k
 = 0, for k ≥ n

The Collatz sequence is generated as follows: starting with a number n, if it is even, then output 
n /2; if it is odd, then output 3 n + 1. Iterate this process while the value of the iterate is not equal 
to one. Using recursion and dynamic programming, create the function collatz[�, �], which 

computes the ith iterate of the Collatz sequence starting with integer n. Compare its speed with 

that of the procedural approach in Exercise 10 of Section 5.4.

11.

Solutions5.3
Thinking about the powers of two recursively, we have 2n = 2 × 2n-1. The base case is 20 = 1.1.

In[1]:= powersOf2[0] = 1;

In[2]:= powersOf2[n_] := 2 powersOf2[n - 1]
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In[3]:= TablepowersOf2j, j, 0, 10

Out[3]= {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}

Here are the two rules for the factorial function, defined recursively.2.

In[4]:= fact[0] = 1;

In[5]:= factn_Integer ?NonNegative := n fact[n - 1]

And here are the first ten factorials.

In[6]:= Tablefactj, j, 1, 10

Out[6]= {1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800}

Check that the rule is not called for nonintegers or negative numbers.

In[7]:= fact[3.6]

Out[7]= fact[3.6]

In[8]:= fact[-4]

Out[8]= fact[-4]

For the base case, it only takes one move to move a disk from one peg to another.3.

In[9]:= hanoi[1] = 1;

To move a stack of n disks, move the top n - 1 disks, then move the bottom disk, then move the 

n - 1 disks again. Here is the recursion.

In[10]:= hanoi[n_] := 2 hanoi[n - 1] + 1

And here are the number of moves for puzzles with one through ten disks.

In[11]:= Tablehanoii, i, 10

Out[11]= {1, 3, 7, 15, 31, 63, 127, 255, 511, 1023}

In fact, there is a closed form formula for this.

In[12]:= Table2n - 1, {n, 10}

Out[12]= {1, 3, 7, 15, 31, 63, 127, 255, 511, 1023}

The key here is to get the stopping conditions right in each case.4.

This is a straightforward recursion, multiplying the previous two values to get the next.a.

In[13]:= Cleara, b, c

In[14]:= a[1] := 2

a[2] := 3

ai_ := ai - 1 ai - 2

120 Essentials of Programming in Mathematica



In[17]:= Tableai, i, 1, 8

Out[17]= {2, 3, 6, 18, 108, 1944, 209952, 408146688}

The sequence is obtained by taking the difference of the previous two values.b.

In[18]:= b[1] := 0

b[2] := 1

bi_ := bi - 2 - bi - 1

In[21]:= Tablebi, i, 1, 9

Out[21]= {0, 1, -1, 2, -3, 5, -8, 13, -21}

Here we add the previous three values.c.

In[22]:= c[1] := 0

c[2] := 1

c[3] := 2

ci_ := ci - 3 + ci - 2 + ci - 1

In[26]:= Tableci, i, 1, 9

Out[26]= {0, 1, 2, 3, 6, 11, 20, 37, 68}

You can use your earlier definition of the Fibonacci numbers, or use the built-in Fibonacci.5.

In[27]:= fn_Integer ?NonPositive := (-1)n-1 Fibonacci[-n]

In[28]:= f[0] = 0;

f[-1] = 1;

In[30]:= Tablefi, i, 0, -8, -1

Out[30]= {0, 1, -1, 2, -3, 5, -8, 13, -21}

This is similar to the length function in the text – recursion is on the tail. The base case is a list 
consisting of a single element.

6.

In[31]:= reverse[{x_, y__}] := Join[reverse[{y}], {x}]

In[32]:= reverse[{x_}] := {x}

In[33]:= reverse1, β, 3/4, "practice makes perfect"

Out[33]= practice makes perfect,
3

4
, β, 1

Recursion is on the tails of the two lists, here denoted r1 and r2.7.

In[34]:= transpose[{{x1_, r1__}, {x2_, r2__}}] :=

Join[{{x1, x2}}, transpose[{{r1}, {r2}}]]

In[35]:= transpose[{{x_}, {y_}}] := {{x, y}}

In[36]:= transpose[{{x1, x2}, {y1, y2}}]

Out[36]= {{x1, y1}, {x2, y2}}
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In[37]:= transpose[%]

Out[37]= {{x1, x2}, {y1, y2}}

This implementation uses the identities given in the exercise together with some pattern 

matching for the even and odd cases.
8.

In[38]:= F[1] := 1

F[2] := 1

In[40]:= Fn_?EvenQ := 2 F
n

2
- 1 F

n

2
 + F

n

2

2

Fn_?OddQ := F
n - 1

2
+ 1

2
+ F

n - 1

2

2

In[42]:= Map[F, Range[10]]

Out[42]= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55}

In[43]:= TimingF104;

Out[43]= {0.405646, Null}

The use of dynamic programming speeds up the computation by several orders of magnitude.9.

In[44]:= FF[1] := 1

FF[2] := 1

In[46]:= FFn_?EvenQ := FF[n] = 2 FF
n

2
- 1 FF

n

2
 + FF

n

2

2

FFn_?OddQ := FF[n] = FF
n - 1

2
+ 1

2
+ FF

n - 1

2

2

In[48]:= Map[FF, Range[10]]

Out[48]= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55}

In[49]:= TimingFF105;

Out[49]= {0.000664, Null}

This is fairly fast, even compared with the built-in Fibonacci which uses a method based on 

the binary digits of n.

In[50]:= TimingFibonacci105;

Out[50]= {0.000171, Null}

Here are the rules translated directly from the formulas given in the exercise.10.

In[51]:= EulerianNumber0, k_ = 0;

EulerianNumber[n_Integer, 0] = 1;

EulerianNumbern_Integer, k_Integer /; k ≥ n = 0;

In[54]:= EulerianNumbern_Integer, k_Integer :=

k + 1 EulerianNumbern - 1, k  + n - k  EulerianNumbern - 1, k - 1
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In[55]:= TableEulerianNumbern, k, {n, 0, 7}, k, 0, 7 // TableForm

Out[55]//TableForm=

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 4 1 0 0 0 0 0
1 11 11 1 0 0 0 0
1 26 66 26 1 0 0 0
1 57 302 302 57 1 0 0
1 120 1191 2416 1191 120 1 0

Because of the triple recursion, computing larger values is not only time and memory intensive 

but also bumps up against the built-in recursion limit.

In[56]:= EulerianNumber[25, 15] // Timing

Out[56]= {16.0102, 531714261368950897339996}

This is a good candidate for dynamic programming. In the following implementation we have 

temporarily reset the value of $RecursionLimit using Block.

In[57]:= ClearEulerianNumber;

In[58]:= EulerianNumber0, k_ = 0;

EulerianNumber[n_Integer, 0] = 1;

EulerianNumbern_Integer, k_Integer /; k ≥ n = 0;

In[61]:= EulerianNumbern_Integer, k_Integer := Block$RecursionLimit = Infinity,

EulerianNumbern, k  = k + 1 EulerianNumbern - 1, k  +

n - k  EulerianNumbern - 1, k - 1

In[62]:= EulerianNumber[25, 15] // Timing

Out[62]= {0.001165, 531714261368950897 339996}

In[63]:= EulerianNumber[600, 65]; // Timing

Out[63]= {0.296621, Null}

In[64]:= NEulerianNumber[600, 65]

Out[64]= 4.998147102049161×101091

Recursion is on the tail of the iterator �.11.

In[65]:= collatz[n_, 0] := n

In[66]:= collatzn_, i_ := collatzn, i =
collatzn, i - 1

2
/; EvenQcollatzn, i - 1

In[67]:= collatzn_, i_ := collatzn, i = 3 collatzn, i - 1 + 1 /;

OddQcollatzn, i - 1

Here is the fifth iterate of the Collatz sequence for 27.
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In[68]:= collatz[27, 5]

Out[68]= 31

Here is the Collatz sequence for 27. This sequence takes a while to settle down to the cycle 4, 2, 1.

In[69]:= Tablecollatz27, i, i, 0, 114

Out[69]= {27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364,

182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790,

395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132,

566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619,

4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232,

4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61,

184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1}

Loops and flow control: exercises5.4
Create a function UpperTriangularMatrix[�] that generates an n⨯nmatrix with ones on and
above the diagonal and zeros below the diagonal. Create an alternative rule that defaults to the
value one for the upper values, but allows the user to specify a nondefault upper value.

1.

In[1]:= UpperTriangularMatrix[3] // MatrixForm

Out[1]//MatrixForm=

0 1 1
0 0 1
0 0 0

In[2]:= UpperTriangularMatrix[3, ζ] // MatrixForm

Out[2]//MatrixForm=

0 ζ ζ

0 0 ζ

0 0 0

Write a function sign[�]which, when applied to an integer x, returns -1, 0, or 1 if x is less
than, equal to, or greater than zero, respectively. Write it in four different ways: using three
clauses, using a single clause with If, using a single clause with Which, and using Piecewise.

2.

Use If to define a function that, given a list of numbers, doubles all the positive numbers but
leaves the negative numbers unchanged.

3.

The definition of the absolute value function in this section does not handle complex numbers
well:

4.

In[3]:= abs[3 + 4 I]

GreaterEqual::nord : Invalid comparison with 3 + 4 ⅈ attempted. 

Less::nord : Invalid comparison with 3 + 4 ⅈ attempted. 

Out[3]= abs[3 + 4 ⅈ]

Rewrite abs to include a specific rule for the case where its argument is complex.
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One of the fastest methods for computing Fibonacci numbers (Section 5.3) involves iterating 

multiplication of the matrix {{0, 1}, {1, 1}} and pulling off the appropriate part. For example, the 

last element in the output of mat9 is the tenth Fibonacci number.

5.

In[4]:= mat = {{0, 1}, {1, 1}};

MatrixPower[mat, 9]

Out[5]= {{21, 34}, {34, 55}}

In[6]:= Fibonacci[10]

Out[6]= 55

Without using MatrixPower, create a function FibMat[�] that iterates the matrix multiplica-
tion and then pulls off the correct element from the resulting matrix to give the nth Fibonacci 
number. Check the speed of your implementation against both MatrixPower and the built-in 

Fibonacci.
Using an If control structure, create a function median[���] that computes the median (the 

middle value) of a one-dimensional list. You will need to consider the case when the length of 
the list is odd and the case when it is even. In the latter case, the median is given by the average 

of the middle two elements of the sorted list. 

6.

Given a set of data representing a sine wave, perform a clipping operation where values greater 
than 0.5 are clipped to 0.5, values less than -0.5 are clipped to -0.5, and all other values are left 
unchanged (Figure 5.3).

7.

In[7]:= data = Tablex, Sin[x], {x, 0, 2 π, 0.1};

Discrete data of sine wave together with data clipped at amplitude 0.5.Figure 5.3.

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Original data

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
Clipped data

Rewrite the WhatAmI function from this section so that it properly deals with expressions such 

as π and ⅇ that are numerical but not explicit numbers.
8.

The bibliography example in Section 3.4 is unable to properly handle a key that has a missing 

value. For example, the following association has no value for both the "Issue" key and the 

"Pages" key:

9.
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In[8]:= art2 = Association"Author" → "Hathaway, David H.", "Title" → "The solar cycle",

"Journal" → "Living Reviews in Solar Physics", "Year" → 2010,

"Volume" → 7, "Issue" → "", "Pages" → "",

"Url" → "http://dx.doi.org/10.12942/lrsp-2010-1";

In[9]:= art2"Issue"

Out[9]=

Suppose you were interested in creating a formatted bibliographic reference that displayed 

volume 7, issue 4 as 7(4). But if the issue value is missing, it should display the volume value 

only. Create a function that takes the volume and issue values and displays the correct informa-
tion regardless of whether or not the issue number is present.

In[10]:= volIss[art2]

Out[10]= �

In Exercise 11, Section 5.3 we introduced Collatz numbers using recursion. Write a procedural 
implementation, CollatzSequence[�], that produces the Collatz sequence for any positive 

integer n. Consider using NestWhileList. Here is the Collatz sequence for initial value 22:

10.

In[11]:= CollatzSequence[22]

Out[11]= {22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}

Write a version of the Manipulate example visualizing interpolation order that used Which to 

instead use Switch.
11.

Compute the square root of two using Nest (see Section 5.2) and compare with the versions in 

this section using a Do loop.
12.

Do is closely related to Table, the main difference being that Do does not return any value, 
whereas Table does. Use Table instead of Do to rewrite one of the findRoot functions given in 

this section. Compare the efficiency of the two approaches.

13.

Compute Fibonacci numbers iteratively. The first few values in the Fibonacci sequence are 1, 1, 
2, 3, 5, 8, 13, …, where, after the first two 1s, each number is the sum of the previous two num-
bers in the sequence. You will need two variables, say this and prev, giving the two most 
recent Fibonacci numbers, so that after the ith iteration, this and prev have the values Fi and 

Fi-1, respectively.

14.

As mentioned in the discussion of Newton’s method for root finding, one type of difficulty that 
can arise occurs when the derivative of the function in question is either difficult or impossible 

to compute. As a very simple example, consider the function x + 3 , which has a root at 
x = -3. Both the built-in function FindRoot and our user-defined findRoot will fail with this 

function, since a symbolic derivative cannot be computed.

15.

In[12]:= DAbs[x + 3], x

Out[12]= Abs′[3 + x]
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One way around such problems is to use a numerical derivative (as opposed to an analytic 

derivative). The secant method approximates f ′(xk) using the difference quotient:

fxk- fxk-1

xk-xk-1

Implement a version of findRoot using the secant method by creating a rule that takes two 

initial values: findRoot[� , {���, �, �}].

Using a While loop, write a function gcd[�, �] that computes the greatest common divisor 
(gcd) of m and n. The Euclidean algorithm for computing the gcd of two positive integers m and 

n, sets m = n and n =mmod n. It iterates this process until n = 0, at which point the gcd of m and 

n is left in the value of m.

16.

Write the function gcd[�, �] implementing the Euclidean algorithm using an If function.17.

A permutation of the elements of a list is a reordering of the elements such that the original list 
and the reordered list are in one-to-one correspondence. For example, the permutations of the 

list a, b, c are a, b, c, a, c, b, b, a, c, b, c, a, c, a, b, c, b, a.

18.

One way to create a permutation of the elements of a list lis is to start by randomly selecting 

one element from lis and putting it in a temporary list, lis2 say. Then select one element from 

the complement of lis and lis2 and repeat the process. Using a Do loop, create a function 

randomPermutation that implements this procedure.

Create a program InversePermutation[�] that takes a list �, that is a permutation of the 

numbers one through n, and returns the inverse permutation ip. The inverse permutation ip is 

such that �〚��〚�〛〛 = ��〚�〚�〛〛 = �. Check you answer against the built-in Ordering function. 

See Sedgewick andWayne (2007) for a discussion of inverse permutations.

19.

Create a procedural definition for each of the following functions. For each function, create a 

definition using a Do loop and another using Table. 
20.

For example, the following function first creates an array consisting of zeros of the same 

dimension as mat. Then inside the Do loop it assigns the element in position {j, k} in mat to 

position {k, j} in matA, effectively performing a transpose operation. Finally, it returns matA, 
since the Do loop itself does not return a value.

In[13]:= transposeDo[mat_] :=

ModulematA, rows = Length[mat], cols = Length[mat[[1]]], j, k,

matA = ConstantArray0, rows, cols;

DomatAj, k = matk, j,

j, 1, rows,

k, 1, cols;

matA
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In[14]:= mat1 = a, b, c, d, e, f, g, h, i;

MatrixForm[mat1]
Out[15]//MatrixForm=

a b c
d e f
g h i

In[16]:= MatrixForm[transposeDo[mat1]]

Out[16]//MatrixForm=

a d g
b e h
c f i

This same computation could be performed with a structured iteration using Table.

In[17]:= transposeTablemat_?MatrixQ := ModulematA, rows, cols,

rows, cols = Dimensions[mat];

matA = ConstantArray0, rows, cols;

TablematAj, k = matk, j, j, rows, k, cols



In[18]:= transposeTable[mat1] // MatrixForm

Out[18]//MatrixForm=

a d g
b e h
c f i

Create the function reverse[���] that reverses the elements in the list vec.a.

Create a function rotateRight[���, �] that rotates the elements in the list lis n places to 

the right.
b.

The digit sum of a number is given by adding the digits of that number. For example, the digit 
sum of 7763 is 7 + 7 + 6 + 3 = 23. If you iterate the digit sum until the resulting number has only 

one digit, this is called the digit root of the original number. So the digit root of 7763 is 

7763 → 7 + 7 + 6 + 3 = 23 → 2 + 3 = 5. Create a function to compute the digit root of any positive 

integer.

21.

Quadrants in the Euclidean plane are traditionally numbered counterclockwise from quadrant i
(x and y positive) to quadrant iv (x positive, y negative) with some convention adopted for 
points that lie on either of the axes. Use Piecewise to define a quadrant function that returns 

the quadrant value for any point in the plane.

22.

Using a Do loop create a function to tally the elements in a list, returning a list of the form 

{{����1, ���1}, …, {�����, ����}}. Check your result against the built-in Tally function.
23.

In[19]:= Tallya, c, a, a, c, b, a, a, b, c, a, b

Out[19]= {{a, 6}, {c, 3}, {b, 3}}
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Solutions5.4
If, for element aij, i is bigger than j, then we are below the diagonal and should insert 0, other-
wise insert a 1.

1.

In[1]:= UpperTriangularMatrix[{m_, n_}] := TableIfi ≥ j, 0, 1, i, m, j, n

A default value can be given for an optional argument that specifies the elements above the
diagonal. 

In[2]:= UpperTriangularMatrix{m_, n_}, val_: 1 :=

TableIfi ≥ j, 0, val, i, m, j, n

In[3]:= UpperTriangularMatrix[{5, 5}, α] // MatrixForm

Out[3]//MatrixForm=

0 α α α α

0 0 α α α

0 0 0 α α

0 0 0 0 α

0 0 0 0 0

Here are the conditional definitions.2.

In[4]:= sign[x_ /; x < 0] := -1

sign[x_ /; x > 0] := 1

sign[0] = 0;

sign[0.0] = 0;

Actually the last two rules can be combined using alternatives.

In[8]:= sign[0 0.0] = 0;

In[9]:= Mapsign, {-2, 0, 1}

Out[9]= {-1, 0, 1}

Here is the signum function defined using If.

In[10]:= signIf[x_] := Ifx < 0, -1, If[x == 0, 0, 1]

In[11]:= MapsignIf, {-2, 0, 1}

Out[11]= {-1, 0, 1}

Here is the signum function defined using Which.

In[12]:= signWhich[x_] := Which[x < 0, -1, x > 0, 1, True, 0]

In[13]:= MapsignWhich, {-2, 0, 1}

Out[13]= {-1, 0, 1}

Finally, here is the signum function defined using Piecewise.
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In[14]:= Piecewise[{{-1, x < 0}, {1, x > 0}, {0, x == 0}}]

Out[14]=

-1 x < 0
1 x > 0
0 True

The pure function doubles its argument if it is greater than zero.3.

In[15]:= doublePoslis_ := MapIf[# > 0, 2 #, #] &, lis

In[16]:= doublePos[{4, 0, -3, x}]

Out[16]= 8, 0, -3, If[x > 0, 2 x, x]

The test as the first argument of If on the right-hand side checks to see if x is an element of the 

domain of complex numbers and, if it is, then re(x)2 + im(x)2  is computed. If x is not com-
plex, nothing is done, but then the other definitions for abs will be checked.

4.

In[17]:= Clearabs;

abs[x_] := SqrtRe[x]2
+ Im[x]2

 /; x ∈ Complexes;

abs[x_] := x /; x ≥ 0

abs[x_] := -x /; x < 0

In[21]:= abs[3 + 4 I]

Out[21]= 5

In[22]:= abs[-3]

Out[22]= 3

The condition itself can appear on the left-hand side of the function definition, as part of the 

pattern match. Here is a slight variation on the abs definition.

In[23]:= Clearabs

abs[x_] := If[x ≥ 0, x, -x]

absx_ /; x ∈ Complexes := SqrtRe[x]2
+ Im[x]2



In[26]:= abs[3 + 4 I]

Out[26]= 5

In[27]:= abs[-3]

Out[27]= 3

The iteration can be done with a Do loop. First, initialize the matrix tempmat to {{0, 1}, {1, 1}}. 
Then multiply tempmat by the original matrix and reset tempmat to this new value. Repeat n - 2 

times and then pull off the second element in the second row.

5.

In[28]:= FibMat[n_] := Module[{tempmat = {{0, 1}, {1, 1}}},

Do[tempmat = tempmat.{{0, 1}, {1, 1}}, {n - 2}];

Part[tempmat, 2, 2]

]
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In[29]:= TimingFibMat[201]

Out[29]= {0.004827, 453973694165307953 197296969697410619233826}

In[30]:= TimingFibonacci[201]

Out[30]= {0.000019, 453973694165307953 197296969697410619233826}

If the number of elements in the list is odd, then the median is the middle element of the sorted 

list. Divide the length in two and take the next greater integer using Ceiling to get the position 

of the middle element.

6.

In[31]:= lis = {5, 7, 2, 13, 1};

CeilingLengthlis2

Out[32]= 3

We want the element in the third position of the sorted list.

In[33]:= PartSortlis, CeilingLengthlis2

Out[33]= 5

If the length of the list is even, we take the average of the middle two elements of the sorted list. 

In[34]:= lis = {65, 2, 78, 5};

In[35]:= len = Lengthlis;

PartSortlis, len2 ;; len2 + 1

Out[36]= {5, 65}

In[37]:= Mean[%]

Out[37]= 35

Here then is the function using If to branch when the length of the list is odd or even. The 

pattern lis : {__} is matched by a list with one or more elements. We name the pattern lis 

so that we can refer to it on the right-hand side of the definition.

In[38]:= medianPlis : {__} := Modulelen = Lengthlis,

IfOddQlen,

PartSortlis, Ceilinglen2,

Mean@PartSortlis, len2 ;; len2 + 1



Here are some test data.

In[39]:= dataO = RandomInteger[10 000, 100001];

dataE = RandomInteger[10 000, 100000];

This compares our function with the built-in Median function.
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In[41]:= medianPdataO // Timing

Out[41]= {0.014395, 4981}

In[42]:= MediandataO // Timing

Out[42]= {0.01061, 4981}

In[43]:= medianPdataE // Timing

Out[43]= {0.010609, 4987}

In[44]:= MediandataE // Timing

Out[44]= {0.011003, 4987}

First, here is the data we will work with.7.

In[45]:= data = Tablex, Sin[x], {x, 0, 2 π, 0.1};

There are several approaches we could use. We will use Piecewise for the conditions as stated 

in the exercise.

In[46]:= clipped = data /. a_, b_ ⧴ a, Piecewise0.5, b > 0.5, -0.5, b < -0.5, b;

In[47]:= 

ListPlotdata, PlotLabel → "Original data",

ListPlotclipped, PlotLabel → "Clipped data", PlotRange → {-1, 1}



Out[47]= 

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
Original data

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
Clipped data



An additional clause is need in the Which expression, one that handles expressions that are 

numeric but not explicit numbers.
8.

In[48]:= WhatAmI[expr_] := Switchexpr,

_Integer, "I am an integer",

_Rational, "I am rational",

_Real, "I am real",

_Complex, "I am complex",

_?NumericQ, "I am numeric",

_, "I am not a number"

In[49]:= WhatAmI[π]

Out[49]= I am numeric

In[50]:= WhatAmI"a string"

Out[50]= I am not a number

132 Essentials of Programming in Mathematica



Here is the function to extract and format the volume information. Here we make the volume 

number format in bold.
9.

In[51]:= getVolumeref_ := Styleref "Volume", "TR", FontWeight → "Bold"

In[52]:= getIssueref_ := Ifref "Issue" ⩵ "", "",

StyleRow"(", ref "Issue", ") ", "TR"

In[53]:= volIssref_ := RowgetVolumeref , getIssueref 

In[54]:= art2 = Association"Author" → "Hathaway, David H.", "Title" → "The solar cycle",

"Journal" → "Living Reviews in Solar Physics", "Year" → 2010,

"Volume" → 7, "Issue" → "", "Pages" → "",

"Url" → "http://dx.doi.org/10.12942/lrsp-2010-1";

In[55]:= volIss[art2]

Out[55]= �

First, define the auxiliary function using conditional statements.10.

In[56]:= collatz[n_] :=
n

2
/; EvenQ[n]

In[57]:= collatz[n_] := 3 n + 1 /; OddQ[n]

Alternatively, use If.

In[58]:= collatzn_Integer ?Positive := If[EvenQ[n], n /2, 3 n + 1]

Then iterate Collatz, starting with n, and continue while n is not equal to 1.

In[59]:= CollatzSequence[n_] := NestWhileListcollatz, n, # ≠ 1 &

In[60]:= CollatzSequence[17]

Out[60]= {17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}

Here is the version of the Manipulate example using Switch instead of Which. 11.

In[61]:= data3D = TableSin[x y], {x, 0, 4, 0.5}, {y, 0, 4, 0.5};
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In[62]:= Manipulate

ListPlot3Ddata3D, InterpolationOrder → order,

PlotLabel →

Switchorder,

"None", "Linear",

0, "Voronoi cells",

1, "Baricentric",

2, "Natural neighbor",

order, "None", "Interpolation order", "None", 0, 1, 2,

SaveDefinitions → True

Out[62]=

Interpolation order None 0 1 2

To compute the square root of a number r, iterate the following expression.12.

In[63]:= fun[x_] := x2
- r;

Simplifyx -
fun[x]

fun'[x]


Out[64]=

r + x2

2 x

This can be written as a pure function, with a second argument giving the initial guess. Here we 

iterate ten times, starting with a high-precision initial value, 2.0 to 30-digit precision.

In[65]:= nestSqrtr_, init_ := Nest
r + #2

2 #
&, init, 10

In[66]:= nestSqrt[2, N[2, 30]]

Out[66]= 1.41421356237309504880168872

Here is a first basic attempt to replace the Do loop with Table.13.

In[67]:= f[x_] := x2
- 2
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In[68]:= a = 2;

Tablea = Na -
f[a]

f′[a]
, {10}

Out[69]= {1.5, 1.41667, 1.41422, 1.41421, 1.41421,

1.41421, 1.41421, 1.41421, 1.41421, 1.41421}

In[70]:= findRootfun_Symbol, var_, init_, iter_ : 10 := Modulexi = init,

Tablexi = Nxi -
funxi

fun′xi
, iter;

var → xi

In[71]:= findRootf, {x, 2}

Out[71]= {x → 1.41421}

This runs the iteration only three times.

In[72]:= findRootf, {x, 2}, 3

Out[72]= {x → 1.41422}

Note that this version of the Fibonacci function is much more efficient than the simple 

recursive version given in Section 5.3, and is closer to the version there that uses dynamic 

programming.

14.

In[73]:= Clearfib

In[74]:= fib[n_] := Moduleprev = 0, this = 1, next,

Donext = prev + this;

prev = this;

this = next,

{n - 1};

this

In[75]:= Tablefibi, i, 1, 10

Out[75]= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55}

Actually, this code can be simplified a bit by using parallel assignments.

In[76]:= fib2[n_] := Modulef1 = 0, f2 = 1,

Dof1, f2 = f2, f1 + f2,

{n - 1};

f2

In[77]:= Tablefib2i, i, 1, 10

Out[77]= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55}

Both of these implementations are quite fast and avoid the deep recursion of the classical 
definition. 
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In[78]:= Timingfib[100000];, Timingfib2[100000];

Out[78]= {{0.188238, Null}, {0.132801, Null}}

Here is an implementation of the secant method, essentially modifying our earlier Newton 

iteration to use a difference quotient to approximate the derivative. Two values are needed to 

compute the quotient which is reflected in the updated argument structure.

15.

In[79]:= findRootf_, var_, a_, b_ := Modulex1 = a, x2 = b, df,

WhileAbsf [x2] >
1

1010
,

df =
f [x2] - f [x1]

x2 - x1
;

{x1, x2} = x2, x2 -
f [x2]

df
;

{var → x2}

In[80]:= f[x_] := Abs[x + 3]

In[81]:= findRootf, {x, -3.1, -1.8}

Out[81]= {x → -3.}

This is a direct implementation of the Euclidean algorithm.16.

In[82]:= gcd[m_, n_] := Modulea = m, b = n, tmpa,

Whileb > 0,

tmpa = a;

a = b;

b = Modtmpa, b;

a

In[83]:= With{m = 12782, n = 5531207},

gcd[m, n]

Out[83]= 11

You can avoid the need for the temporary variable tmpa by performing a parallel assignment as 

in the following function. In addition, some argument checking insures that m and n are 

integers.

In[84]:= gcd[m_Integer, n_Integer] := Modulea = m, b = n,

Whileb > 0,

a, b = b, Moda, b;

a

In[85]:= With{m = 12782, n = 5531207},

gcd[m, n]

Out[85]= 11
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Here is the gcd function implemented using an If structure.17.

In[86]:= Cleargcd

In[87]:= gcd[m_Integer, n_Integer] := Ifm > 0, gcdMod[n, m], m, gcd[m, n] = n

In[88]:= With{m = 12782, n = 5531207},

gcd[m, n]

Out[88]= 11

To build this function up step-by-step, start with a small list of ten elements.18.

In[89]:= lis = Range[10]

Out[89]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

The idea is to choose a position within the list at random and remove the element in that 
position and put it into a new list lis2.

In[90]:= x = RandomChoicelis

Out[90]= 4

In[91]:= lis2 = {};

lis2 = Appendlis2, x

Out[92]= {4}

We then repeat the above process on the remaining elements of the list. Note that lis is 

assigned the value of this new list, thus overwriting the previous value.

In[93]:= lis = Complementlis, {x}

Out[93]= {1, 2, 3, 5, 6, 7, 8, 9, 10}

In[94]:= x = RandomChoicelis

lis2 = Appendlis2, x

lis = Complementlis, lis2

Out[94]= 8

Out[95]= {4, 8}

Out[96]= {1, 2, 3, 5, 6, 7, 9, 10}

In this example we know explicitly how many iterations to perform in our Do loop: n iterations, 
where n is the length of the list, lis.

In[97]:= Clearlis, lis2, x;

Now we just put the pieces of the previous computations together in one input.
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In[98]:= lis = Range[10];

lis2 = {};

Do

x = RandomChoicelis;

lis2 = Appendlis2, x;

lis = Complementlis, lis2,

i, 1, Lengthlis

When we are done, the result is left in the new list lis2.

In[101]:= lis2

Out[101]= {2, 4, 7, 6, 9, 1, 5, 3, 8, 10}

In[102]:= lis = Range[10];

lis2 = {};

Do

x = RandomChoicelis;

lis2 = Appendlis2, x;

lis = Complementlis, lis2,

i, 1, Lengthlis

Here then is our function randomPermutation that takes a list as an argument and generates a 

random permutation of that list’s elements.

In[105]:= randomPermutationarg_List := Modulelis = arg, x, lis2 = {},

Do

x = RandomChoicelis;

lis2 = Appendlis2, x;

lis = Complementlis, lis2,

i, 1, Length[arg];

lis2

Here is a permutation of the list consisting of the first 20 integers.

In[106]:= randomPermutation[Range[20]]

Out[106]= {11, 17, 16, 8, 2, 9, 14, 5, 19, 7, 1, 12, 4, 10, 20, 13, 6, 18, 15, 3}

And here is a random permutation of the lowercase letters of the English alphabet.

In[107]:= alphabet = CharacterRange"a", "z"

Out[107]= a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

In[108]:= randomPermutationalphabet

Out[108]= b, j, s, k, q, v, u, n, h, m, e, d, c, p, x, z, f, y, r, o, i, t, a, g, w, l

This functionality is built into Mathematica via the RandomSample function. 
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In[109]:= RandomSampleCharacterRange"a", "z"

Out[109]= w, z, t, y, q, g, f, h, e, k, u, p, r, v, i, n, c, x, l, b, a, o, d, s, j, m

In[110]:= Clearx, lis, lis2, alphabet

Start with a random permutation on the first ten integers.19.

In[111]:= Clearp, i, ip;

In[112]:= p = RandomSample[Range[10]]

Out[112]= {1, 8, 3, 2, 6, 10, 5, 7, 9, 4}

Initialize the inverse permutation to a list of the same length as p but filled with zeros to start.

In[113]:= ip = Table0, i, Length[p]

Out[113]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

In[114]:= Fori = 1, i ≤ Length[p], i++, ippi = i;

ip

Out[115]= {1, 4, 3, 10, 7, 5, 8, 2, 9, 6}

In[116]:= pip ⩵ ip[[p]]

Out[116]= True

The built-in Ordering function gives essentially the same result.

In[117]:= Ordering[p]

Out[117]= {1, 4, 3, 10, 7, 5, 8, 2, 9, 6}

Each solution mirrors that of the transpose example in the exercise.20.

Create a list vecA of zeros, then use a Do loop to set vecA〚�〛 to vec〚� - �〛, where n is the 

length of vec.
a.

In[118]:= Clearreverse, a, b, c, d, e

In[119]:= reverse[vec_] := ModulevecA, n = Length[vec],

vecA = ConstantArray[0, {n}];

DovecAi = vecn - i + 1,

i, 1, n;

vecA

In[120]:= reversea, b, c, d, e

Out[120]= {e, d, c, b, a}

In[121]:= reverseStruc[vec_] := ModulevecA, n = Length[vec],

vecA = ConstantArray[0, {n}];

TablevecAi = vecn - i + 1, i, n


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In[122]:= reverseStruca, b, c, d, e

Out[122]= {e, d, c, b, a}

The key to this problem is to use the Mod operator to compute the target address for any 

item from vec. That is, the element vec[�] must move to, roughly speaking, position n + i 
mod Length[vec]. The “roughly speaking” is due to the fact that the Mod operator returns 

values in the range 0 to Length[vec] - 1, whereas vectors are indexed by values 1 up to 

Length[vec]. This causes a little trickiness in this problem.

b.

In[123]:= rotateRight[vec_, n_] := ModulevecA, len = Length[vec],

vecA = ConstantArray0, len;

DovecA1 + Modn + i - 1, len = veci, i, 1, len;

vecA

In[124]:= rotateRighta, b, c, d, e, 2

Out[124]= {d, e, a, b, c}

In[125]:= rotateRightStruc[vec_, n_] := ModulevecA, len = Length[vec],

vecA = ConstantArray0, len;

TablevecA1 + Modn + i - 1, len = veci, i, len;

vecA



In[126]:= rotateRightStruca, b, c, d, e, 3

Out[126]= {c, d, e, a, b}

Given an integer, this totals the list of its digits.21.

In[127]:= TotalIntegerDigits[7763]

Out[127]= 23

This can be accomplished without iteration as follows:

In[128]:= digitRootn_Integer ?Positive := IfMod[n, 9]⩵ 0, 9, Mod[n, 9]

In[129]:= digitRoot[7763]

Out[129]= 5

Looking ahead to Chapter 6 where localization is discussed, you could also accomplish this 

with an iteration using a While loop.

In[130]:= digitRoot2n_Integer ?Positive := Modulelocn = n, lis,

While

Lengthlis = IntegerDigits@locn > 1,

locn = Totallis;

locn
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In[131]:= digitRoot2[7763]

Out[131]= 5

This is a direct implementation using Piecewise.22.

In[132]:= Piecewise[{{0, x⩵ 0 && y⩵ 0}, {-1, y⩵ 0}, {-2, x⩵ 0}, {1, x > 0 && y > 0},

{2, x < 0 && y > 0}, {3, x < 0 && y < 0}}, 4]

Out[132]=

0 x⩵ 0 && y⩵ 0
-1 y⩵ 0
-2 x⩵ 0
1 x > 0 && y > 0
2 x < 0 && y > 0
3 x < 0 && y < 0
4 True

In[133]:= quadrantPw[{x_, y_}] :=

Piecewise[{{0, x ⩵ 0 && y ⩵ 0}, {-1, y ⩵ 0}, {-2, x ⩵ 0}, {1, x > 0 && y > 0},

{2, x < 0 && y > 0}, {3, x < 0 && y < 0}}, 4]

In[134]:= MapquadrantPw, {{0, 0}, {4, 0}, {0, 1.3}, {2, 4}, {-2, 4}, {-2, -4},

{2, -4}, {2, 0}, {3, -4}}

Out[134]= {0, -1, -2, 1, 2, 3, 4, -1, 4}

Union[���] will give a list of the unique elements in lis (this is ulist below). Also, we need a 

temporary list of the counts initialized to zero (cnts). Then, starting with the first element in 

the input list (i = 1), check to see if it equals the first element in ulist, then the second, and so 

on, incrementing by one each time they are equal. When the loops are done, transpose the list 
of unique elements with the corresponding counts. Here is the function:

23.

In[135]:= Cleartally

In[136]:= tallylis_List := Moduleulist = Unionlis, cnts,

cnts = Table0, Lengthulist;

Do

DoIflisi ⩵ ulistj, ++cntsj, j, 1, Lengthulist,

i, 1, Lengthlis;

Transposeulist, cnts



In[137]:= lis = RandomChoicea, b, c, {20}

Out[137]= {c, c, a, c, a, b, c, a, a, a, a, b, b, b, a, a, a, a, b, b}

In[138]:= tallylis

Out[138]= {{a, 10}, {b, 6}, {c, 4}}

Check against the built-in function.

In[139]:= Tallylis === tallylis

Out[139]= False
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Here is another implementation. Here we are creating rules for each unique element
(counter[#]) and then incrementing the values for those rules each time the counter comes
across an element.

In[140]:= tally2lis_ := Moduleulist = Unionlis, counter,

counter[_] = 0;

Mapcounter[#]++ &, lis ;

Map{#, counter[#]} &, ulist



In[141]:= tally2lis

Out[141]= {{a, 10}, {b, 6}, {c, 4}}

Check the speed of these two functions.

In[142]:= data = RandomInteger[{0, 9}, {50000}];

In[143]:= Timingtallydata

Out[143]= {0.975904, {{0, 5078}, {1, 5041}, {2, 4928}, {3, 4973},

{4, 4969}, {5, 5037}, {6, 4875}, {7, 5040}, {8, 5014}, {9, 5045}}}

In[144]:= Timingtally2data

Out[144]= {0.180405, {{0, 5078}, {1, 5041}, {2, 4928}, {3, 4973},

{4, 4969}, {5, 5037}, {6, 4875}, {7, 5040}, {8, 5014}, {9, 5045}}}

In[145]:= TimingTallydata

Out[145]= {0.000122, {{2, 4928}, {8, 5014}, {5, 5037}, {4, 4969},

{3, 4973}, {9, 5045}, {6, 4875}, {7, 5040}, {0, 5078}, {1, 5041}}}

Pure functions: exercises5.5
Using pure functions, compute sin(x) /x for each x in the list {0, π /6, π /4, π /3, π /2} . Check
your answer against the built-in Sinc function.

1.

Create a pure function to select all integers between one and one thousand that are square
numbers; that is, numbers that are some integer squared.

2.

In Exercise 11, Section 5.1 you were asked to create a function to compute the diameter of a set
of points in n-dimensional space. Modify that solution by instead using the Norm function and
pure functions to find the diameter.

3.

Rewrite the code from Section 5.2 for finding the next prime after a given integer so that it uses
pure functions instead of relying upon the auxiliary definition addOne and the built-in function
CompositeQ.

4.

Create a function RepUnit[�] that generates integers of length n consisting entirely of ones.
For example, RepUnit[7] should produce 1 111 111.

5.
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Rewrite the example from Section 5.2 in which NestList was used to perform several rota-
tions of a triangle to instead use pure functions and dispense with the auxiliary function 

rotation used to specify the rotation angles.

6.

Given a set of numerical data, extract all those data points that are within one standard devia-
tion of the mean of the data.

7.

In[1]:= data = RandomVariateNormalDistribution[0, 1], {2500};

Using the built-in Fold function, write a function fromDigits[���, �] that accepts a list of 
digits in any base b (less than 20) and converts it to a base 10 number. For example, 11012 is 13 in 

base 10, so your function should handle this as follows:

8.

In[2]:= fromDigits[{1, 1, 0, 1}, 2]

Out[2]= 13

Check your solution against the built-in FromDigits function.

Write a pure function that moves a random walker from one location on a square lattice to one 

of the four adjoining locations with equal probability (a two-dimensional lattice walk). For 
example, starting at {0, 0}, the function should return {0, 1}, {0, -1}, {1, 0}, or {-1, 0} 

with equal likelihood. Use this pure function with NestList to generate the list of step loca-
tions for an n-step random walk starting at the origin.

9.

Modify the findRoot function from this section to allow for equations of the form x2 ⩵ 2 or 
Cos[x] ⩵ 0 as the first argument. 

10.

Create a function findRootList that is based on findRoot and returns all the intermediate 

values that are computed by the Newton iteration.
11.

A naive approach to polynomial arithmetic would require three additions and six multiplica-
tions to carry out the arithmetic in the expression a x3 + b x2 + c x + d. Using Horner’s method 

for fast polynomial multiplication, this expression can be represented as d + xc + xb + a x, 
where there are now half as many multiplications. You can see this using the MultiplyCount 

function developed in Exercise 7 of Section 4.2.

12.

In[3]:= MultiplyCounta x3 + b x2 + c x + d

Out[3]= 6

In[4]:= MultiplyCountd + x c + x b + a x

Out[4]= 3

In general, the number of multiplications in an n-degree polynomial in traditional form is 

given by:

In[5]:= Binomial[n + 1, 2]

Out[5]=

1

2
n (1 + n)
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This, of course, grows quadratically with n, whereas Horner’s method grows linearly. Create a 

function HornerPolynomial[���, ���] that gives a representation of a polynomial in Horner 
form. Here is some sample output that your function should generate:

In[6]:= HornerPolynomiala, b, c, d, x

Out[6]= d + x (c + x (b + a x))

In[7]:= Expand[%]

Out[7]= d + c x + b x2 + a x3

Find all words in the dictionary that start with the letter q and are of length five. The following 

gets all the words in the dictionary that comes with Mathematica and displays a random sample:
13.

In[8]:= words = DictionaryLookup[];

RandomSamplewords, 18

Out[9]= dare, condole, forums, attributive, impassible,

minefields, skittish, thereabout, jugful, fishiest, canter,

choral, Nanjing, toupee, solemner, Marlboro, Whigs, healthier

Given a list of angles between zero and 2 π, map them to points of the form {�, �} on the unit 
circle.

14.

In[10]:= angles = RandomReal[{0, 2 π}, {8}]

Out[10]= {5.8948, 2.50319, 1.93239, 5.65609, 0.571937, 5.32786, 4.96526, 5.49373}

Once created, display the points graphically using code similar to the following:

In[11]:= GraphicsCircle[], Point[pts]

Out[11]=

Finally, create a set of lines from the origin to each of the points on the circle and display using 

code similar to the following:

In[12]:= GraphicsCircle[], Point[pts], Linelines

Out[12]=
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Use FoldList to compute an exponential moving average of a list {�1, �2, �3}. You can check 

your result against the built-in ExponentialMovingAverage.
15.

In[13]:= ExponentialMovingAverage[{x1, x2, x3}, α]

Out[13]= {x1, -(-1 + α) x1 + α x2, -(-1 + α) (-(-1 + α) x1 + α x2) + α x3}

A well-known programming exercise in many languages is to generate Hamming numbers, 
sometimes referred to as regular numbers. These are numbers that divide powers of 60 (the 

choice of that number goes back to the Babylonians, who used 60 as a number base). Generate 

a sorted sequence of all Hamming numbers less than 1000. The key observation is that these 

numbers have only 2, 3, and 5 as prime factors.

16.

In the text, we developed FunctionsWithAttributes to find all built-in functions with a 

particular attribute. Create a new function to find all built-in functions with a given option. For 
example:

17.

In[14]:= FunctionsWithOptionStepMonitor

Out[14]= {FindArgMax, FindArgMin, FindFit, FindMaximum, FindMaxValue,

FindMinimum, FindMinValue, FindRoot, NArgMax, NArgMin, NDSolve,

NDSolveValue, NMaximize, NMaxValue, NMinimize, NMinValue,

NonlinearModelFit, NRoots, ParametricNDSolve, ParametricNDSolveValue}

Several changes from FunctionsWithAttributes will be necessary: Options does not take a 

string as an argument; and options are often given as nested lists of rules, requiring mapping at 
the appropriate level. You might also want to delete all functions beginning with $, such as 

$Context, to help speed the computation.

Graphs that are not too dense are often represented using adjacency structures which consist 
of a list for each vertex vi that includes those other vertices that vi is connected to. Create an 

adjacency structure for any graph, directed or undirected. For example, consider the graph gr 

below.

18.

In[15]:= gr = RandomGraph{8, 12}, VertexLabels → "Name"

Out[15]=

�

�

�

�

� �

�

�

Start by creating an adjacency list for any given vertex; that is, a list of those vertices to which 

the given vertex is connected. The adjacency list for vertex 4 in the above graph would be 

{1, 8, 2, 3}.

The adjacency structure is then the list of adjacency lists for every vertex in that graph. It is 

common to prepend each adjacency list with its vertex; typically the adjacency structure takes 
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the following form where this syntax indicates that vertex 1 is connected to vertices 4, 5, and 8; 
vertex 2 is connected to vertices 3, 4, 7, and 8; and so on.

{{1, {4, 5, 8}}, {2, {3, 4, 7, 8}}, {3, {2, 4, 7}}, {4, {1, 2, 3, 8}},

{5, {1, 6, 7}}, {6, {5}}, {7, {2, 3, 5}}, {8, {1, 2, 4}}}

One common use of graphs is to analyze the relationships of the objects under study. For 
example, if you were interested in finding all objects a certain distance from a given object, you 

could use NeighborhoodGraph.

19.

Here is a grid graph on which we can start prototyping:

In[16]:= gr = GridGraph{7, 7}, VertexLabels → "Name";

NeighborhoodGraph gives all those vertices up to distance two from vertex 25.

In[17]:= HighlightGraphgr, NeighborhoodGraph[gr, 25, 2]

Out[17]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

But suppose you were interested in all those vertices precisely distance two from vertex 25. 
Implement this using two different approaches: one in which you use NeighborhoodGraph 

and another using a two-argument form of VertexList in which the second argument is a 

pattern.

Create a “composition” using the digits of π to represent notes on the C scale, where a digit n is 

interpreted as a note n semitones from middle C. For example, the first few digits 1, 4, 1, 5 would 

give the notes one, four, one, and five semitones from middle C.

20.

You can generate tones using Sound and SoundNote. For example, this emits a tone five 

semitones above middle C of duration one second:

In[18]:= SoundSoundNote[5, 1] // EmitSound

And this emits the same tone but using a midi instrument instead of the default:

In[19]:= SoundSoundNote5, 1, "Vibraphone" // EmitSound

A matrix is nilpotent if it is a square matrix all of whose eigenvalues are zero. Alternatively, a 

square matrix A is nilpotent if An
 is the zero matrix for some positive integer n. Create a 

predicate NilpotentMatrixQ[���] that returns True if mat is nilpotent. Check your function 

by verifying that any directed acyclic graph (DAG) has a nilpotent adjacency matrix. A list of 

21.
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acyclic graphs is available via GraphData["Acyclic"]. See McKay et al. (2004) for informa-
tion about acyclic graphs and the eigenvalues of their adjacency matrices.

In[20]:= gr = GraphData"CayleyTree", {5, 3}

Out[20]=

In[21]:= AcyclicGraphQ[gr]

Out[21]= True

Solutions5.5
The pure function is Sin[#] / # &. 1.

In[1]:= MapSin[#]# &, {0, π/6, π/4, π/3, π/2}

Power::infy : In�nite expression 

1

0
 encountered. 

In�nity::indet : Indeterminate expression 0 ComplexIn�nity encountered. 

Out[1]= Indeterminate,
3

π
,
2 2

π
,
3 3

2 π
,

2

π


Since Sinc is listable, it automatically maps across lists.

In[2]:= Sinc[{0, π/6, π/4, π/3, π/2}]

Out[2]= 1,
3

π
,
2 2

π
,
3 3

2 π
,

2

π


Use a piecewise function to properly deal with the point at zero.

In[3]:= MapPiecewise{1, # ⩵ 0}, Sin[#]#, # ≠ 0 &, {0, π/6, π/4, π/3, π/2}

Out[3]= 1,
3

π
,
2 2

π
,
3 3

2 π
,

2

π


One test for a number to be a square number is that its square root is an integer.2.

In[4]:= SelectRange[1000], IntegerQ #  &

Out[4]= {1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289,

324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961}
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To compute the distance between two points, use either EuclideanDistance or Norm.3.

In[5]:= pts = RandomReal[1, {4, 2}]

Out[5]= {{0.578624, 0.852785}, {0.917576, 0.509619},

{0.187069, 0.755342}, {0.879409, 0.277697}}

In[6]:= Norm[pts[[1]] - pts[[2]]]

Out[6]= 0.482339

In[7]:= EuclideanDistance[pts[[1]], pts[[2]]]

Out[7]= 0.482339

Now we need the distance between every pair of points. So we first create the set of pairs.

In[8]:= pairs = Subsets[pts, {2}]

Out[8]= {{{0.578624, 0.852785}, {0.917576, 0.509619}},

{{0.578624, 0.852785}, {0.187069, 0.755342}},

{{0.578624, 0.852785}, {0.879409, 0.277697}},

{{0.917576, 0.509619}, {0.187069, 0.755342}},

{{0.917576, 0.509619}, {0.879409, 0.277697}},

{{0.187069, 0.755342}, {0.879409, 0.277697}}}

Then we compute the distance between each pair and take the Max.

In[9]:= ApplyNorm[#1 - #2] &, pairs, {1}

Out[9]= {0.482339, 0.403498, 0.648998, 0.770727, 0.235042, 0.841118}

In[10]:= Max[%]

Out[10]= 0.841118

Or, use Outer on the set of points directly, but note the need to get the level correct.

In[11]:= Max@Outer[Norm[#1 - #2] &, pts, pts, 1]

Out[11]= 0.841118

Now put it all together using a pure function in place of the distance function. The diameter 

function operates on lists of pairs of numbers, so we need to specify them in our pure function 

as #1 and #2.

In[12]:= diameterlis_ := MaxApplyNorm[#1 - #2] &, Subsetslis, {2}, {1}

In[13]:= diameter[pts]

Out[13]= 0.841118

EuclideanDistance is a bit faster here, but for large data sets, the difference is more 

pronounced.
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In[14]:= pts = RandomReal[1, {1500, 2}];

diameter[pts] // Timing

Out[15]= {3.29299, 1.40019}

In[16]:= MaxApplyEuclideanDistance, Subsets[pts, {2}], {1} // Timing

Out[16]= {1.1718, 1.40019}

Pure functions are needed to replace both addOne and CompositeQ:4.

In[17]:= nextPrime[n_Integer /; n > 1] := NestWhile# + 1 &, n, NotPrimeQ[#] &

Here is a quick check for correctness.

In[18]:= nextPrime2123 ⩵ NextPrime2123

Out[18]= True

Compare timing with the built-in function.

In[19]:= TimingnextPrime22500;

Out[19]= {0.217708, Null}

In[20]:= TimingNextPrime22500;

Out[20]= {0.207308, Null}

This function is ideally written as an iteration.5.

In[21]:= RepUnit[n_] := Nest[(10 # + 1) &, 1, n - 1]

In[22]:= RepUnit[7]

Out[22]= 1111111

In[23]:= MapRepUnit[#] &, Range[12]

Out[23]= {1, 11, 111, 1111, 11111, 111111, 1111111, 11111111,

111111111, 1111111111, 11111111111, 111111111111}

This can also be done in a functional style by first creating a list of the appropriate number of 
ones using ConstantArray, then converting that to an integer with FromDigits.

In[24]:= RepUnit[n_] := FromDigits[ConstantArray[1, {n}]]

In[25]:= RepUnit[11]

Out[25]= 11111111111

First, here is the triangle.6.

In[26]:= vertices = {0, 0}, {1, 0}, 1/2, 3  2;
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In[27]:= tri = Trianglevertices;

GraphicsLightBlue, EdgeForm[Gray], tri

Out[28]=

Here is the rotation function as defined in Section 5.2:

In[29]:= rotation[gr_] := Rotategr, π/13, RegionCentroidtri

To turn that into a pure function, replace the argument gr with the slot into which each 

successive triangle will go.

In[30]:= Graphics

LightBlue, Opacity[.5], EdgeForm[Gray],

NestListRotate#, π/13, RegionCentroidtri &, tri, 10



Out[30]=

Here are some sample data taken from a normal distribution.7.

In[31]:= data = RandomVariateNormalDistribution[0, 1], {500};

Quickly visualize the data together with dashed lines drawn one standard deviation from the 

mean.
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In[32]:= μ = Meandata;

σ = StandardDeviationdata;

len = Lengthdata;

ListPlotdata,

Epilog → Dashed, Red,

Line{0, μ + σ}, len, μ + σ,

Line{0, μ - σ}, len, μ - σ



Out[35]= 100 200 300 400 500

-3

-2

-1

1

2

Select those data elements whose distance to the mean is less than one standard deviation.

In[36]:= filtered = Selectdata, Abs[(# - μ)] < σ &;

Here is a quick check that we get about the value we might expect (we would expect about 68% 

for normally distributed data).

In[37]:= N
Lengthfiltered

Lengthdata


Out[37]= 0.68

In[38]:= ListPlotfiltered, PlotRange → All,

Epilog → Dashed, Red,

Line{0, μ + σ}, len, μ + σ,

Line{0, μ - σ}, len, μ - σ



Out[38]=

50 100 150 200 250 300

-1.0

-0.5

0.5

1.0
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This function uses a default value of 2 for the base. (Try replacing Fold with FoldList to see 

more clearly what this function is doing.)
8.

In[39]:= convertdigits_List, base_ : 2 := Foldbase #1 + #2 &, 0, digits

Here are the digits for 9 in base 2:

In[40]:= IntegerDigits[9, 2]

Out[40]= {1, 0, 0, 1}

This converts them back to the base 10 representation.

In[41]:= convert[%]

Out[41]= 9

Note, this functionality is built into the function FromDigits[���, ����].

In[42]:= FromDigits[{1, 0, 0, 1}, 2]

Out[42]= 9

This function is essentially an implementation of Horner’s method for fast polynomial
multiplication.

In[43]:= converta, b, c, d, e, x

Out[43]= e + x (d + x (c + x (b + a x)))

In[44]:= Expand[%]

Out[44]= e + d x + c x2 + b x3 + a x4

Using the list of step increments in the north, south, east, and west directions, this ten-step walk 

starts at the origin. 
9.

In[45]:= SeedRandom[0];

NSEW = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};

NestList#1 + RandomChoice[NSEW] &, {0, 0}, 10

Out[47]= {{0, 0}, {0, 1}, {0, 2}, {-1, 2}, {-1, 1},

{0, 1}, {1, 1}, {1, 2}, {2, 2}, {3, 2}, {3, 3}}

Except for the initial value, you can get the same result with Accumulate which generates 

cumulative sums.

In[48]:= SeedRandom[0];

AccumulateRandomChoice[NSEW, 10]

Out[49]= {{0, 1}, {0, 2}, {-1, 2}, {-1, 1}, {0, 1}, {1, 1}, {1, 2}, {2, 2}, {3, 2}, {3, 3}}

The key here is to take any expression of the form ��� ⩵ ��� and extract the appropriate 

function whose root you will compute using the previous implementations of findRoot. 
Looking at the internal form of an equation, some thought should convince you that ��� - ��� 
is the expression whose root we want.

10.
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In[50]:= expr = x2 ⩵ 2;

FullForm[expr]

Out[51]//FullForm= Equal[Power[x, 2], 2]

And here is the pure function that we will use with NestWhile.

In[52]:= var = x;

expr /. Equala_, b_ ⧴ FunctionEvaluate@var, a - b

Out[53]= Functionx, x2 - 2

In[54]:= ClearfindRoot;

findRootexpr_Equal, var_, init_, ϵ_: 0.0001 := Moduleresult, fun,

fun = expr /. Equala_, b_ ⧴ FunctionEvaluate@var, a - b;

result = NestWhile# -
fun[#]

fun'[#]
&, init, Absfun[#] > ϵ &;

var → result

In[56]:= findRootx2 ⩵ 2, {x, 1.0}

Out[56]= {x → 1.41422}

In[57]:= findRootCos[x]⩵ 0, {x, N[1, 20]}, 10-18

Out[57]= {x → 1.570796326794896619}

Perhaps the easiest way to see the intermediate values is to simply use NestWhileList.11.

In[58]:= findRootListexpr_, var_, init_, ϵ_: 10-15 :=

Modulefun = FunctionEvaluate[var], expr,

NestWhileList# -
fun[#]

fun'[#]
&, Ninit, Absfun[#] > ϵ &

In[59]:= findRootexpr_Equal, var_, init_, ϵ_: 0.0001 := Modulefun,

fun = expr /. Equala_, b_ ⧴ FunctionEvaluate@var, a - b;

NestWhileList# -
fun[#]

fun'[#]
&, Ninit, Absfun[#] > ϵ &

In[60]:= findRootListx2 - 2, {x, 1.0}

Out[60]= {1., 1.5, 1.41667, 1.41422, 1.41421, 1.41421}

In[61]:= findRootList[Cos[x], {x, 1.0}]

Out[61]= {1., 1.64209, 1.57068, 1.5708, 1.5708}

Alternatively, you could use Reap and Sow. Be careful where you place the closing bracket for 
Sow.
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In[62]:= ClearfindRootList;

findRootListexpr_, var_, init_, ϵ_: 0.0001 :=

Moduleresult, fun = FunctionEvaluate[var], expr,

Reap@NestWhileSow# -
fun[#]

fun'[#]
 &, Ninit, Absfun[#] > ϵ &

In[64]:= findRootListCos[x], {x, .5}, 10-15

Out[64]= {1.5708, {{2.33049, 1.38062, 1.57312, 1.5708, 1.5708}}}

Using Fold, this pure function requires two arguments. The key is to start with an initial value 

of zero.
12.

In[65]:= HornerPolynomiallist_List, var_ := Foldvar #1 + #2 &, 0, list

In[66]:= HornerPolynomiala, b, c, d, e, x

Out[66]= e + x (d + x (c + x (b + a x)))

In[67]:= Expand[%]

Out[67]= e + d x + c x2 + b x3 + a x4

Here are the words from the built-in Mathematica dictionary.13.

In[68]:= words = DictionaryLookup[];

Here are those words that start with the letter q.

In[69]:= DictionaryLookup"q" ~~ __;

RandomSample[%, 20]

Out[70]= quadruples, quaffs, quark, quarantining, quahogs, quaff, quickie,

quadrupled, quires, quit, quell, quints, quizzes, quadriplegia,

quotation, quacking, quilter, queered, quintuple, quarterfinals

And here are those words that start with the letter q and are of length five. Note the need for 
StringLength, not Length.

In[71]:= SelectDictionaryLookup"q" ~~ __, StringLength[#]⩵ 5 &

Out[71]= quack, quads, quaff, quail, quake, quaky, qualm, quark, quart,

quash, quasi, quays, queen, queer, quell, quern, query, quest, queue,

quick, quids, quiet, quiff, quill, quilt, quins, quint, quips, quire,

quirk, quirt, quite, quits, quoin, quoit, quota, quote, quoth

First, create a set of angles between zero and 2 π.14.

In[72]:= angles = RandomReal[{0, 2 π}, 6];

To turn these angles into points on the unit circle, note that the cosine of the angle gives the x-
coordinate, and sine of the angle gives the y-coordinate. So the following creates a list of the 

form {Cos[θ], Sin[θ]} for each angle θ.

154 Essentials of Programming in Mathematica



In[73]:= pts = MapCos[#], Sin[#] &, angles

Out[73]= {{0.760612, 0.649207}, {-0.505615, -0.862759}, {-0.915506, 0.402304},

{-0.813205, -0.581977}, {0.5826, -0.812759}, {-0.959663, -0.281152}}

Here is the graphic.

In[74]:= GraphicsCircle[], Point[pts]

Out[74]=

Line takes a list of two points. One of those points will be the origin for each of our coordinate 

pairs. Here is the code to create the pairs of points that will be passed to Line.

In[75]:= lines = Map[{#, {0, 0}} &, pts]

Out[75]= {{{0.760612, 0.649207}, {0, 0}}, {{-0.505615, -0.862759}, {0, 0}},

{{-0.915506, 0.402304}, {0, 0}}, {{-0.813205, -0.581977}, {0, 0}},

{{0.5826, -0.812759}, {0, 0}}, {{-0.959663, -0.281152}, {0, 0}}}

In[76]:= GraphicsCircle[], Point[pts], Linelines

Out[76]=

This can also be done more directly with AngleVectors which takes a polar angle as argument 
and returns a point on the unit circle with that polar angle.

In[77]:= pts = MapAngleVector, angles

Out[77]= {{0.760612, 0.649207}, {-0.505615, -0.862759}, {-0.915506, 0.402304},

{-0.813205, -0.581977}, {0.5826, -0.812759}, {-0.959663, -0.281152}}
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In[78]:= Graphics

Circle[],

Point[pts],

MapLine[{{0, 0}, #}] &, pts



Out[78]=

The key to solving this problem is thinking carefully about the initial value for FoldList.15.

In[79]:= FoldList[#1 + α (#2 - #1) &, x1, {x2, x3}]

Out[79]= {x1, x1 + α (-x1 + x2), x1 + α (-x1 + x2) + α (-x1 - α (-x1 + x2) + x3)}

If you were defining your own function, you would need to extract the first element of the 

(data) list as the initial value of FoldList.

In[80]:= expMovingAveragelis_, α_ := FoldList#1 + α (#2 - #1) &, Firstlis, Restlis

In[81]:= expMovingAveragea, b, c, α

Out[81]= {a, a + (-a + b) α, a + (-a + b) α + α (-a + c - (-a + b) α)}

In[82]:= ExponentialMovingAveragea, b, c, α

Out[82]= {a, -a (-1 + α) + b α, c α - (-1 + α) (-a (-1 + α) + b α)}

In[83]:= Simplify[%%⩵ %]

Out[83]= True

A first, naive implementation will use the fact that the prime factors are all less than 6. Here 

are the factors for a single integer.
16.

In[84]:= facs = FactorInteger[126]

Out[84]= {{2, 1}, {3, 2}, {7, 1}}

This extracts only the prime factors.

In[85]:= MapFirst, facs

Out[85]= {2, 3, 7}

In this case, they are not all less than 6.
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In[86]:= Max[%] < 6

Out[86]= False

Putting these pieces together, here are the Hamming numbers less than 1000.

In[87]:= SelectRange[1000], MaxMapFirst, FactorInteger[#] < 6 &

Out[87]= {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48,

50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150,

160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320,

324, 360, 375, 384, 400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600,

625, 640, 648, 675, 720, 729, 750, 768, 800, 810, 864, 900, 960, 972, 1000}

Factoring is slow for large integers and so this implementation does not scale well. This finds 

the 507 Hamming numbers less than 106.

In[88]:= Withn = 106,

SelectRange[n], MaxMapFirst, FactorInteger[#] < 6 &

; // Timing

Out[88]= {5.24049, Null}

See Dijkstra (1981) for a different implementation that starts with � = {1}, then builds lists 2 h, 
3 h, 5 h, merges these lists, and iterates.

In[89]:= HammingNumberList[n_] := Modulelim,

lim = Ifn < 100, Ceiling[Log2[n]], CeilingLog2
n

2 × 3 × 5
 Log2[n];

Join{1},

TakeUnion @@ NestListUnion @@ OuterTimes, {2, 3, 5}, # &, {2, 3, 5}, lim,

n - 1



In[90]:= HammingNumber[n_] := PartHammingNumberList[n], n

In[91]:= HammingNumberList[20]

Out[91]= {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36}

In[92]:= HammingNumber[1691] // Timing

Out[92]= {0.0806, 2125764000}

This gives the one-millionth Hamming number.

In[93]:= HammingNumber106 // Timing

Out[93]= {14.1544,

519312780448388736089589843750000000000000000000000000000000000000000

000000000000000}

First, note that Options, unlike Attributes, does not take a string as an argument.17.
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In[94]:= Options"Integrate"

Out[94]= {}

To work around this, convert strings to symbols.

In[95]:= OptionsSymbol"Integrate"

Out[95]= {Assumptions⧴ $Assumptions,

GenerateConditions → Automatic, PrincipalValue → False}

The second issue is that options are given as a list of rules which is a more deeply nested 

expression structure than the list of attributes.

In[96]:= MemberQOptions[Integrate], Assumptions

Out[96]= False

The tree structure shows that the option names occur down at level two.

In[97]:= TreeFormOptions[Integrate]

Out[97]//TreeForm=

List

RuleDelayed

Assumptions $Assumptions

Rule

GenerateConditions Automatic

Rule

PrincipalValue False

The optional third argument to MemberQ can be used to specify the level at which the pattern 

match should take place. In this case, at level two.

In[98]:= MemberQOptions[Integrate], Assumptions, 2

Out[98]= True

Next, note that many built-in symbols have no options, as indicated by the empty list returned.

In[99]:= OptionsRound

Out[99]= {}

Rather than search through these functions, let’s remove them from the search as well as any 

function that starts with “$” such as $RecursionLimit. 

Here then is the function:

In[100]:= FunctionsWithOptionopt_Symbol := Modulenames, lis,

names = ComplementNames"System`*", Names"System`$*";

lis = DeleteCasesnames, f_ /; OptionsSymbolf  === {};

Selectlis, MemberQOptionsSymbol[#], opt, 2 &
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In[101]:= FunctionsWithOptionCompiled // Timing

Out[101]= 17.3194, FindArgMax, FindArgMin, FindFit, FindMaximum,

FindMaxValue, FindMinimum, FindMinValue, FindRoot, LiftingFilterData,

NDSolve, NDSolveValue, NExpectation, NIntegrate, NProbability,

NProduct, NSum, ParametricNDSolve, ParametricNDSolveValue, Play

With a little analysis you should see that we reduced the large list of functions to search from 

over 5000 to a little more than 1200 (check the length of lis). The function would be quite a bit 
slower otherwise.

In[102]:= LengthNames"System`*"

Out[102]= 5491

First, create a prototype graph to work with.18.

In[103]:= SeedRandom[16];

gr = RandomGraph{10, 15}, VertexLabels → "Name"

Out[104]=

1

2

3

4

5

6

7

8

9

10

And here are its edges and its vertices:

In[105]:= EdgeList[gr]

Out[105]= {1 5, 1 8, 1 9, 2 5, 2 7, 2 9, 3 4,

4 5, 4 7, 4 9, 4 10, 5 8, 6 7, 7 8, 9 10}

In[106]:= VertexList[gr]

Out[106]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Below are those edges from vertex 3 to any other vertex. In other words, this gives the adja-
cency list for vertex 3.

In[107]:= With{u = 3},

SelectVertexList[gr], EdgeQgr, UndirectedEdge[u, #] &



Out[107]= {4}

The case for directed graphs is similar. Here then is a function that returns the adjacency list for 
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a given vertex u in graph gr.

In[108]:= adjacencyList[gr_, u_] :=

IfDirectedGraphQ[gr],

SelectVertexList[gr], EdgeQgr, DirectedEdge[u, #] &,

SelectVertexList[gr], EdgeQgr, UndirectedEdge[u, #] &



The adjacency structure is then given by mapping the above function across the vertex list.

In[109]:= AdjacencyStructuregr_Graph := Map#, adjacencyList[gr, #] &, VertexList[gr]

A built-in function can also be used to get the adjacency lists.

In[110]:= Map#, AdjacencyList[gr, #] &, VertexList[gr]

Out[110]= {{1, {5, 8, 9}}, {2, {5, 7, 9}}, {3, {4}},

{4, {3, 5, 7, 9, 10}}, {5, {1, 2, 4, 8}}, {6, {7}},

{7, {2, 4, 6, 8}}, {8, {1, 5, 7}}, {9, {1, 2, 4, 10}}, {10, {4, 9}}}

In[111]:= AdjacencyStructuregr_Graph := Map#, AdjacencyList[gr, #] &, VertexList[gr]

In[112]:= AdjacencyStructure[gr]

Out[112]= {{1, {5, 8, 9}}, {2, {5, 7, 9}}, {3, {4}},

{4, {3, 5, 7, 9, 10}}, {5, {1, 2, 4, 8}}, {6, {7}},

{7, {2, 4, 6, 8}}, {8, {1, 5, 7}}, {9, {1, 2, 4, 10}}, {10, {4, 9}}}

Check that it works for a directed graph also.

In[113]:= gr2 = Graph{1 2, 2 1, 3 1, 3 2, 4 1, 4 2, 4 4},

VertexLabels → "Name"

Out[113]=

1

2

3 4

In[114]:= AdjacencyStructure[gr2]

Out[114]= {{1, {2, 3, 4}}, {2, {1, 3, 4}}, {3, {1, 2}}, {4, {1, 2}}}

To start, here is a 7⨯7 grid graph.19.
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In[115]:= gr = GridGraph{7, 7}, VertexLabels → "Name", VertexStyle → 25 → Blue,

VertexSize → 25 → Medium

Out[115]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A somewhat brute force way to solve this problem is to find all vertices within distance three of 
vertex 25 and subtract out the vertices within distance two of vertex 25.

In[116]:= ComplementVertexList@NeighborhoodGraph[gr, 25, 3],

VertexList@NeighborhoodGraph[gr, 25, 2]

Out[116]= {4, 10, 12, 16, 20, 22, 28, 30, 34, 38, 40, 46}

In[117]:= HighlightGraph[gr, %]

Out[117]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Alternatively, create a function VertexNeighbors that takes a graph gr, a vertex v, and a 

distance dist, and, using GraphDistance, finds all those vertices in gr that are distance dist from v.

In[118]:= VertexNeighborsgr_, v_, dist_ :=

VertexListgr, _?GraphDistance[gr, v, #]⩵ dist &
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In[119]:= HighlightGraphgr, VertexNeighbors[gr, 25, 3]

Out[119]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

First generate 100 digits for a 100-note “composition”.20.

In[120]:= digs = FirstRealDigits[N[π, 50]];

Fix note duration at 0.5 seconds.

In[121]:= SoundSoundNote[#, 0.5] & /@ digs // EmitSound

Change the duration to be dependent upon the digit. Also change the midi instrument.

In[122]:= SoundSoundNote#, 1/(# + 1), "Vibraphone" & /@ digs // EmitSound

Go a bit further, expanding the range of notes that will be played.

In[123]:= SoundSoundNote1 + 2 #, 1/(# + 1), "Vibraphone" & /@ digs // EmitSound

As a test graph, we create a directed graph and check that it is acyclic.21.

In[124]:= gr = GraphData"Antelope", {6, 6}

Out[124]=

This converts the undirected graph gr to a directed graph.
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In[125]:= dirgr = DirectedGraphgr, "Acyclic"

Out[125]=

Check that it is indeed acyclic.

In[126]:= AcyclicGraphQdirgr

Out[126]= True

Here is its adjacency matrix.

In[127]:= mat = AdjacencyMatrixdirgr;

This gives the eigenvalues of mat.

In[128]:= Eigenvalues[mat]

Out[128]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Here then is a function that checks if the eigenvalues of a matrix are all zero. Note the use of
logical or (||) to check for both exact and approximate zero.

In[129]:= NilpotentMatrixQmat_?SquareMatrixQ :=

AllTrueEigenvalues[mat], (# == 0 || # == 0.0) &

In[130]:= NilpotentMatrixQ[mat]

Out[130]= True

Examples: exercises5.6
Write a version of the function that computes Hamming distance by using Countwith an
appropriate pattern to find the number of nonidentical pairs of corresponding numbers in two
binary signals.

1.

Write an implementation of Hamming distance using the Total function andmodular arith-
metic base 2 to compare two bits. Compare running times with the other versions discussed in
this chapter.

2.
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Rewrite the median function from Exercise 6, Section 5.4 so that instead of using an If control 
structure, you create two separate rules: one rule for the case when the list has an odd number 
of elements and another rule for the case when the length of the list is even.

3.

Extend the survivor function developed in this section to a function of two arguments, so that 
survivor[�, �] returns the survivor starting from a list of n people and executing every mth 

person.

4.

In Section 4.3 we created a function CountChange[���] that took a list of coins and, using 

transformation rules, returned the monetary value of that list of coins. Rewrite CountChange to 

use a purely functional approach. Consider using Dot, or Inner, or Tally.

5.

Create a function Regular2Graph[�] that outputs an n-sided regular graph where every vertex 

has degree two.
6.

In[1]:= Regular2Graph[5]

Out[1]=

Extend the visualization of PPI networks from this section by coloring vertices according to the 

biological process in which they are involved. The built-in ProteinData contains this informa-
tion, for example:

7.

In[2]:= ProteinData"KLKB1", "BiologicalProcesses"

Out[2]= BloodCoagulation, Fibrinolysis, InflammatoryResponse, Proteolysis

Extend the range of ReplaceElement developed in this section to accept a list of strings 

considered as nonnumeric matrix entries, each of which should be replaced by a column mean.
8.

Imagine a random walk on a graph: starting at vertex vi, the probability that you next move to 

vertex vj is given by 

9.

Pvi, vj = 

1
dvi

, if vi  vj

0, otherwise

where dvi  is the degree of vertex vi. This defines what is known as a transition probability matrix 

and can be used to create a Markov model to simulate random walks on graphs.

Given a graph, create its transition probability matrix where matrix element aij = P(vi, vj) as 

defined above. You will need the built-in functions VertexCount and VertexDegree as well as 

EdgeQ. For more on random walks on graphs, see Lovász (1993)  or Aldous and Fill (2014).
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Random graphs have a rich and deep history in spite of the fact that they were only first 
defined in the mid-twentieth century in a paper by Erdős and Rényi (1959) . They have since 

been used to study areas as diverse as percolation, telecommunications, social networks, and 

many more. 

10.

Perhaps the simplest random graph model is one in which both the number of vertices and the 

number of edges are fixed. In this model, G(n, m), the m edges are placed at random among all 
n
2

 possible edges. This is the model that the built-in function RandomGraph is based upon. In 

an alternate model, commonly referred to as G(n, p), the probability of an edge between any 

two of the n vertices is fixed. As as result, the number of edges can vary from none, for exam-

ple when p = 0, to 

n
2

 when p = 1. In this exercise you are asked to create a simplified model of 

the G(n, p) random graph.

Starting with a set of edges, assign a probability to each. The edges can be taken from a com-
plete graph, a graph in which there is an edge between every pair of vertices.

In[3]:= n = 7;

cg = CompleteGraph[n];

EdgeRules[cg]

Out[5]= {1 → 2, 1 → 3, 1 → 4, 1 → 5, 1 → 6, 1 → 7, 2 → 3, 2 → 4, 2 → 5, 2 → 6,

2 → 7, 3 → 4, 3 → 5, 3 → 6, 3 → 7, 4 → 5, 4 → 6, 4 → 7, 5 → 6, 5 → 7, 6 → 7}

Next choose an edge with probability p. An edge being chosen is a binary choice: either it is 

chosen or it isn’t. This is essentially a coin toss distribution which, in Mathematica, is repre-
sented by BernoulliDistribution. We create a list of probabilities the same length as the 

number of edges in the complete graph.

In[6]:= p = 0.45;

probs = RandomVariateBernoulliDistribution[p], EdgeCount[cg]

Out[7]= {1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1}

Finally, use Pick to include only edges whose corresponding probability is less than the 

threshold value p and display the resulting graph with Graph.

Extend the grid example from Exercise 5, Section 3.1 to color the prime grid elements (Figure 

5.4).
11.
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Grid of integers 1 through n2
 with prime elements highlighted.Figure 5.4.

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

Using Grid, create a truth table for a logical expression such as A B ⇒ C (Figure 5.5).12.

Truth table for A B⇒ C.Figure 5.5.

A B C AB ⇒ C
T T T T
T T F F
T F T T
T F F F
F T T T
F T F F
F F T T
F F F T

Create a function RandomNote[�] that plays a random sequence of n notes taken from the 

twelve-tone scale. The twelve tones in C major can be generated using Sound and SoundNote to 

create the sound objects; use EmitSound to play them through the speakers of your computer.

13.

In[8]:= SoundMapSoundNote, Range[0, 11] // EmitSound

A second argument to SoundNote can be used to alter the duration of each note, which, by 

default, is for one second. Set up RandomNote to have random durations as well as random 

notes. Finally, set up RandomNote to accept a second argument to set the midi instrument 
through which the sound will be played.

Because of the completely random nature of how the notes are chosen in the previous exercise, 
the resulting “tunes” will have no autocorrelation and the result is quite uninteresting. Create a 

new function to generate sequences of notes where the randomness is applied to the distance 

between notes, essentially performing a “random walk” through the C major scale. Music 

generated in such a way is called Brownian because it behaves much like the movement of 
particles suspended in liquid – Brownian motion. 

14.

If you read musical notation, take a musical composition such as one of Bach’s Brandenburg 

Concertos and write down a list of the frequency intervals x between successive notes. Then find 

a function that interpolates the power spectrum of these frequency intervals and determine if 
this function is of the form f (x) = c /x for some constant c. (Hint: To get the power spectrum, 
you will need to square the magnitude of the Fourier transform: take Abs[Fourier[…]]2

 of 
your data.) Compute the power spectra of different types of music using this procedure.

15.

Modify the clustering example in this section so that the cluster disks enclose every point in 

their respective clusters (Figure 5.6).
16.
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Clustering with each disk enclosing entire cluster.Figure 5.6.
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Given a set of n points in the plane, find a tour that visits each of them once, returning to the 

first point visited: choose a point v1 from the set at random; then find the point that is closest to 

v1, call it v2; of the points not chosen so far, find the point that is closest to v2; call it v3. In this 

way create a running list {v1, v2, …, vn, v1} that gives the points to visit in order, returning to the 

first point visited. This is essentially a nearest-neighbor algorithm for solving the traveling 

salesman problem. It is known that this solution is sub-optimal but it will give you a good 

feeling for these kinds of problems. See Section 8.4 for some variations on traveling salesman-
type problems.

17.

Starting with a set of n random points in the unit square, find the proportion that are also in the 

square’s inscribed disk (Figure 5.7). As n increases, this proportion (slowly!) approaches the 

value π /4.

18.

Monte Carlo simulation to approximate π.Figure 5.7.
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In Exercise 5, Section 9.2 this computation is run numerous times as a Monte Carlo simulation 

to get better and better approximations to the value of π.

Solutions5.6
Here are two small sample lists.1.
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In[1]:= l1 = {1, 0, 0, 1, 1};

l2 = {0, 1, 0, 1, 0};

First, pair them.

In[3]:= ll = Transposel1, l2

Out[3]= {{1, 0}, {0, 1}, {0, 0}, {1, 1}, {1, 0}}

Here is the conditional pattern that matches any pair where the two elements are not identical. 
The Hamming distance is the number of such nonidentical pairs.

In[4]:= Countll, {p_, q_} /; p ≠ q

Out[4]= 3

Finally, here is a function that puts this all together.

In[5]:= HammingDistance3lis1_List, lis2_List :=

CountTransposelis1, lis2, {p_, q_} /; p ≠ q

In[6]:= HammingDistance3l1, l2

Out[6]= 3

The running times of this version of HammingDistance are quite a bit slower than those where 

we used bit operators. This is due to additional computation (Transpose) and the use of pattern 

matching and comparisons at every step.

In[7]:= HammingDistance2lis1_, lis2_ := TotalBitXorlis1, lis2

In[8]:= data1 = RandomInteger1, 106;

In[9]:= data2 = RandomInteger1, 106;

In[10]:= TimingHammingDistance2data1, data2

Out[10]= {0.020373, 501050}

In[11]:= TimingHammingDistance3data1, data2

Out[11]= {0.798615, 501050}

Using Total on the binary sum, Hamming distance can be computed as follows:2.

In[12]:= HammingDistance4lis1_, lis2_ := TotalModlis1 + lis2, 2

Timing tests show that the implementation with Total is quite a bit more efficient than the 

previous versions, although still slower than the version that uses bit operators.

In[13]:= sig1 = RandomInteger1, 106;

In[14]:= sig2 = RandomInteger1, 106;

In[15]:= HammingDistance1lis1_, lis2_ :=

CountMapThreadSameQ, lis1, lis2, False
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In[16]:= Map#, Timing#sig1, sig2 &,

HammingDistance1, HammingDistance2, HammingDistance3, HammingDistance4 //

Grid

Out[16]=

HammingDistance1 {0.352712, 499983}
HammingDistance2 {0.011396, 499983}
HammingDistance3 {0.796302, 499983}
HammingDistance4 {0.038783, 499983}

The median of a list containing an odd number of elements is the middle element of the sorted 

list.
3.

In[17]:= medianlis_List /; OddQLengthlis :=

PartSortlis, CeilingLengthlis2

When the list has an even number of elements, take the mean of the middle two.

In[18]:= medianlis_List /; EvenQLengthlis := Modulelen = Lengthlis2,

MeanPartSortlis, len ;; len + 1



Check the two cases – an even number of elements, and an odd number of elements. Then 

compare with the built-in Median.

In[19]:= dataE = RandomInteger[10 000, 100000];

In[20]:= dataO = RandomInteger[10 000, 100001];

In[21]:= mediandataE // Timing

Out[21]= {0.010258, 4990}

In[22]:= MediandataE // Timing

Out[22]= {0.013946, 4990}

In[23]:= mediandataO // Timing

Out[23]= {0.011299, 5009}

In[24]:= MediandataO // Timing

Out[24]= {0.01085, 5009}

The two rules given here should be more careful about the input, using pattern matching to 

insure that these rules only apply to one-dimensional lists. The following modifications handle 

that more robustly.

In[25]:= Clearmedian

In[26]:= medianlis : {__} /; OddQLengthlis :=

PartSortlis, CeilingLengthlis2

In[27]:= medianlis : {__} /; EvenQLengthlis := Modulelen = Lengthlis2,

MeanPartSortlis, len ;; len + 1
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Just one change is needed here: add a second argument to RotateLeft that specifies the number 
of positions to rotate. We have used NestList to display the intermediate steps.

4.

In[28]:= survivor[n_, m_] := NestListRestRotateLeft[#, m - 1] &, Range[n], n - 1

In[29]:= survivor[11, 3]

Out[29]= {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, {4, 5, 6, 7, 8, 9, 10, 11, 1, 2},

{7, 8, 9, 10, 11, 1, 2, 4, 5}, {10, 11, 1, 2, 4, 5, 7, 8}, {2, 4, 5, 7, 8, 10, 11},

{7, 8, 10, 11, 2, 4}, {11, 2, 4, 7, 8}, {7, 8, 11, 2}, {2, 7, 8}, {2, 7}, {7}}

Here is a list of coins (modify for other currencies).5.

In[30]:= coins = p, p, q, n, d, d, p, q, q, p;

First count the occurrences of each.

In[31]:= MapCountcoins, # &, p, n, d, q

Out[31]= {4, 1, 2, 3}

Then a dot product of this count vector with a value vector does the trick.

In[32]:= %.{.01, .05, .10, .25}

Out[32]= 1.04

In[33]:= CountChangelis_ :=

DotMapCountlis, # &, p, n, d, q, {.01, .05, .10, .25}

In[34]:= CountChangecoins

Out[34]= {16 + 2 d + 3 q, 44 + 2 d + 3 q, 24 + 2 d + 3 q, 20 + 2 d + 3 q, 36 + 2 d + 3 q,

52 + 2 d + 3 q, 32 + 2 d + 3 q, 40 + 2 d + 3 q, 48 + 2 d + 3 q, 28 + 2 d + 3 q}

In[35]:= CountChange2lis_ :=

InnerTimes, MapCountlis, # &, p, n, d, q, {.01, .05, .10, .25}, Plus

In[36]:= CountChange2coins

Out[36]= 1.04

And here is a rule-based approach.

In[37]:= Tallycoins /. d → .10, n → .05, p → .01, q → .25

Out[37]= {{0.01, 4}, {0.25, 3}, {0.05, 1}, {0.1, 2}}

In[38]:= TotalApplyTimes, %, {1}

Out[38]= 1.04

In[39]:= CountChange3lis_ := Modulefreq,

freq = Tallylis /. p → .01, n → .05, d → .10, q → .25;

TotalApplyTimes, freq, {1}
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In[40]:= CountChange3coins

Out[40]= 1.04

If you think of the vertex indices as one through n, then each vertex needs to be connected to 

the vertex with index one less and also one more.
6.

Create the pairs using Partition with overlap one and set to cycle from the last to the first 
element.

In[41]:= Partition[Range[5], 2, 1, 1]

Out[41]= {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}

Then apply UndirectedEdge to these pairs at level one.

In[42]:= ApplyUndirectedEdge, Partition[Range[5], 2, 1, 1], {1}

Out[42]= {1 2, 2 3, 3 4, 4 5, 5 1}

This bundles up the code, using the shorthand notation for Apply at level one, @@@.

In[43]:= Regular2Graph[n_] := GraphUndirectedEdge @@@ Partition[Range[n], 2, 1, 1]

In[44]:= TableRegular2Graph[n], {n, 3, 6, 1}

Out[44]=  , , , 

(* solution to appear *)7.
Column 4 of this matrix contains several different nonnumeric values.8.

In[45]:= mat3 = 0.796495, "N/A", 0.070125, "nan", 0.806554,

"nn", -0.100365, 0.992736, -0.320560, -0.0805351,

{0.473571, 0.460741, 0.030060, -0.412400, 0.788522},

{0.614974, -0.503201, 0.615744, 0.966053, -0.011776},

-0.828415, 0.035514, 0.8911617, "N/A", -0.453926;

MatrixFormcol4 = mat3All, 4

Out[46]//MatrixForm=

nan
-0.32056
-0.4124
0.966053

N/A

To pattern match on either "N/A" or "nan", use Alternatives (|).
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In[47]:= col4 /. "N/A" "nan" → MeanCasesmat3All, 4, _?NumberQ //

MatrixForm
Out[47]//MatrixForm=

0.0776977
-0.32056
-0.4124
0.966053
0.0776977

Convert the list of strings to a set of alternatives.

In[48]:= ApplyAlternatives, "N/A", "nan", "nn"

Out[48]= N/A nan nn

Here is a third set of definitions, including a new rule for ReplaceElement where the second 

argument is a list of strings. And another rule for ReplaceElement accommodates the new 

argument structure of colMean.

In[49]:= colMeancol_, strings___String :=

col /. ApplyAlternatives, strings → MeanCasescol, _?NumberQ

In[50]:= ReplaceElementmat_, strings__ :=

TransposeMapcolMean#, strings &, Transpose[mat]

In[51]:= ReplaceElementmat3, "N/A", "nan", "nn" // MatrixForm

Out[51]//MatrixForm=

0.796495 -0.0268277 0.070125 0.0776977 0.806554
0.264156 -0.100365 0.992736 -0.32056 -0.0805351
0.473571 0.460741 0.03006 -0.4124 0.788522
0.614974 -0.503201 0.615744 0.966053 -0.011776
-0.828415 0.035514 0.891162 0.0776977 -0.453926

Let’s start with a random graph.9.

In[52]:= gr = RandomGraph[{5, 8}]

Out[52]=

Let us create a list of all possible edges in gr.
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In[53]:= With{n = VertexCount[gr]},

ArrayUndirectedEdge, {n, n}

Out[53]= {{1 1, 1 2, 1 3, 1 4, 1 5},

{2 1, 2 2, 2 3, 2 4, 2 5}, {3 1, 3 2, 3 3, 3 4, 3 5},

{4 1, 4 2, 4 3, 4 4, 4 5}, {5 1, 5 2, 5 3, 5 4, 5 5}}

The transition probability matrix assigns the value 1 / VertexDegree in position {i, j} if there is 

an edge between vertex i and vertex j and zero otherwise. Here is the pure function that does 

this.

In[54]:= IfEdgeQ[gr, #], 1VertexDegreegr, First@#, 0 &;

This needs to be mapped at level two to account for the nested lists in the array.

In[55]:= With{n = VertexCount[gr]},

MapEdgeQ[gr, #] &, ArrayUndirectedEdge, {n, n}, {2}

Out[55]= {{False, True, True, False, True},

{True, False, False, True, True}, {True, False, False, True, True},

{False, True, True, False, True}, {True, True, True, True, False}}

Finally, here then is the transition matrix.

In[56]:= With{n = VertexCount[gr]},

MapIfEdgeQ[gr, #], 1VertexDegreegr, First@#, 0 &,

ArrayUndirectedEdge, {n, n}, {2}

Out[56]= 0,
1
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In[57]:= TransitionMatrixgr_Graph := With{n = VertexCount[gr]},

MapIfEdgeQ[gr, #], 1VertexDegreegr, First@#, 0 &,

ArrayUndirectedEdge, {n, n}, {2}



In[58]:=  = TransitionMatrix[gr]

Out[58]= 0,
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To see how to use  to create a random walk using Markov processes, first create some starting 

probabilities for each vertex.

In[59]:= Π = ConstantArray[1/VertexCount[gr], {VertexCount[gr]}]

Out[59]= 
1

5
,
1

5
,
1

5
,
1

5
,
1

5

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Here is the Markov process using the initial probabilities and the transition matrix.

In[60]:=  = DiscreteMarkovProcess[Π, ];

Create ten steps in the process.

In[61]:= data = RandomFunction[, {0, 10}]

Out[61]= TemporalData
Time: 0 to 10

Data points: 11 Paths: 1


These are the vertices that were visited on the walk.

In[62]:= data"Values"

Out[62]= {1, 2, 4, 5, 1, 2, 5, 1, 5, 2, 4}

Turn the successive vertices into edges and highlight them with the original graph.

In[63]:= walk = UndirectedEdge @@@ Partitiondata"Values", 2, 1

Out[63]= {1 2, 2 4, 4 5, 5 1, 1 2, 2 5, 5 1, 1 5, 5 2, 2 4}

In[64]:= HighlightGraphgr, Graphwalk

Out[64]=

Starting with a set of edges, we assign a probability to each. The edges are taken from a 

complete graph, a graph in which there is an edge between every pair of vertices. Then, using 

Pick, we include only edges whose corresponding probability is less than some threshold 

value, p. 

10.

In[65]:= n = 7;

cg = CompleteGraph[n]

Out[66]=
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Here are the edges.

In[67]:= EdgeRules[cg]

Out[67]= {1 → 2, 1 → 3, 1 → 4, 1 → 5, 1 → 6, 1 → 7, 2 → 3, 2 → 4, 2 → 5, 2 → 6,

2 → 7, 3 → 4, 3 → 5, 3 → 6, 3 → 7, 4 → 5, 4 → 6, 4 → 7, 5 → 6, 5 → 7, 6 → 7}

We want to choose an edge with probability p. An edge being chosen is a binary choice: either it 
is chosen or it isn’t. This is essentially a coin toss distribution which, in Mathematica is repre-
sented by BernoulliDistribution.

In[68]:= p = 0.45;

probs = RandomVariateBernoulliDistribution[p], EdgeCount[cg]

Out[69]= {0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0}

We will use a three-argument form of Pick to choose the edges that meet our criteria. 
Pick[���, ���, ����] returns those elements in lis for which the corresponding element of sel 
matches the pattern patt. In our case, we choose edges if the corresponding Bernoulli distribu-
tion returns a value of one.

In[70]:= includedEdges = PickEdgeRules[cg], probs, 1

Out[70]= {1 → 3, 1 → 4, 1 → 5, 1 → 6, 2 → 3, 2 → 6, 3 → 5, 3 → 6, 4 → 6, 4 → 7}

Finally, turn this list of included (undirected) edges into a graph. 

In[71]:= GraphincludedEdges, DirectedEdges → False

Out[71]=

Gather all these pieces and scale up the size of the graph.

In[72]:= n = 50; p = .12;

cg = CompleteGraph[n];

probs = RandomVariateBernoulliDistribution[p], EdgeCount[cg];

gr = GraphPickEdgeRules[cg], probs, 1, DirectedEdges → False

Out[74]=

A quick check that 50 vertices are returned and that the ratio of edges to possible edges is 

approximately equal to the probability we specified.
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In[75]:= VertexCount[gr], N@GraphDensity[gr]

Out[75]= {50, 0.114286}

Several exercises in Chapter 6 ask you to bundle up the code here and turn it into a reusable 

function inheriting options from Graph.

As an aside, the above functionality is built into BernoulliGraphDistribution[�, ��] which 

constructs an n-vertex graph, starting with an edge connecting every pair of vertices and then 

selects edges independently via a Bernoulli trial with probability pr. 

In[76]:= RandomGraphBernoulliGraphDistribution[50, 0.12]

Out[76]=

First construct the grid for the n2
 elements, partitioning on n.11.

In[77]:= n = 7;

lis = PartitionRangen2, n;

Gridlis, Frame → All

Out[79]=

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35
36 37 38 39 40 41 42
43 44 45 46 47 48 49

Extract the positions of the prime elements.

In[80]:= Positionlis, p_ /; PrimeQ[p]

Out[80]= {{1, 2}, {1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 6}, {3, 3},

{3, 5}, {4, 2}, {5, 1}, {5, 3}, {6, 2}, {6, 6}, {7, 1}, {7, 5}}

In[81]:= Positionlis, p_?PrimeQ

Out[81]= {{1, 2}, {1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 6}, {3, 3},

{3, 5}, {4, 2}, {5, 1}, {5, 3}, {6, 2}, {6, 6}, {7, 1}, {7, 5}}

Map a rule of the form �������� → Pink across the positions of the prime numbers.

In[82]:= Map# → Pink &, Positionlis, p_?PrimeQ

Out[82]= {1, 2} → , {1, 3} → , {1, 5} → , {1, 7} → , {2, 4} → ,

{2, 6} → , {3, 3} → , {3, 5} → , {4, 2} → , {5, 1} → ,

{5, 3} → , {6, 2} → , {6, 6} → , {7, 1} → , {7, 5} → 
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Use the rules with the Background option to Grid.

In[83]:= n = 7;

lis = PartitionRangen2, n;

Gridlis,

Frame → All,

Background → Join{None, None}, Map# → Pink &, Positionlis, p_?PrimeQ



Out[85]=

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35
36 37 38 39 40 41 42
43 44 45 46 47 48 49

In[86]:= Clearn, lis

Start with a prototype logical expression.12.

In[87]:= Clear[A, B]

In[88]:= expr = (A || B) ⇒ C;

In[89]:= vars = {A, B, C};

List all the possible truth value assignments for the variables.

In[90]:= tuples = TuplesTrue, False, Length[vars]

Out[90]= {{True, True, True}, {True, True, False},

{True, False, True}, {True, False, False}, {False, True, True},

{False, True, False}, {False, False, True}, {False, False, False}}

Next, create a list of rules, associating each of the triples of truth values with a triple of variables.

In[91]:= rules = MapThread[vars → #] &, tuples

Out[91]= {{A → True, B → True, C → True}, {A → True, B → True, C → False},

{A → True, B → False, C → True}, {A → True, B → False, C → False},

{A → False, B → True, C → True}, {A → False, B → True, C → False},

{A → False, B → False, C → True}, {A → False, B → False, C → False}}

Replace the logical expression with each set of rules.

In[92]:= expr /. rules

Out[92]= {True, False, True, False, True, False, True, True}

Put these last values at the end of each “row” of the tuples.
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In[93]:= table = Transpose@JoinTransposetuples, expr /. rules

Out[93]= {{True, True, True, True}, {True, True, False, False},

{True, False, True, True}, {True, False, False, False},

{False, True, True, True}, {False, True, False, False},

{False, False, True, True}, {False, False, False, True}}

Create a header for table.

In[94]:= head = Appendvars, TraditionalForm[expr]

Out[94]= A, B, C, A  B ⇒ C

Prepend head to table.

In[95]:= Prependtable, head

Out[95]= A, B, C, A  B ⇒ C, {True, True, True, True}, {True, True, False, False},

{True, False, True, True}, {True, False, False, False},

{False, True, True, True}, {False, True, False, False},

{False, False, True, True}, {False, False, False, True}

Pour into a grid.

In[96]:= GridPrependtable, head

Out[96]=

A B C A  B ⇒ C
True True True True
True True False False
True False True True
True False False False
False True True True
False True False False
False False True True
False False False True

Replace True with "T" and False with "F".

In[97]:= GridPrependtable /. True → "T", False → "F", head

Out[97]=

A B C A  B ⇒ C
T T T T
T T F F
T F T T
T F F F
F T T T
F T F F
F F T T
F F F T

Add formatting via options to Grid.
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In[98]:= GridPrependtable /. True → "T", False → "F", head,

Frame → True, Dividers → -2 → LightGray, 2 → LightGray,

ItemStyle → "Menu", 7

Out[98]=

� � � �� ⇒ �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

A simple “melody” with no correlation can be generated by randomly selecting notes from a 

scale. First we generate the frequencies of the 12 semitones from a C major scale. This is just a 

chromatic scale beginning with middle C.

13.

In[99]:= cmajor = TableSoundNotei, i, 0, 11

Out[99]= {SoundNote[0], SoundNote[1], SoundNote[2], SoundNote[3],

SoundNote[4], SoundNote[5], SoundNote[6], SoundNote[7],

SoundNote[8], SoundNote[9], SoundNote[10], SoundNote[11]}

Here is a list of ten notes randomly selected from the C major scale.

In[100]:= SoundRandomChoicecmajor, 10

Out[100]=

�� �

Add some rests and randomize the durations of each note. The symbol None is interpreted by 

Sound as a rest.

In[101]:= notes = Join[{None}, Range[0, 11]]

Out[101]= {None, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

In[102]:= durations = Range[1/8, 1, 1/8]

Out[102]= 
1

8
,
1

4
,
3

8
,
1

2
,
5

8
,
3

4
,
7

8
, 1

In[103]:= MapThreadSoundNote[#1, #2] &,

RandomChoice[notes, 8], RandomChoicedurations, 8

Out[103]= SoundNote[4, 1], SoundNote9,
1

8
, SoundNote[1, 1], SoundNote9,

7

8
,

SoundNote3,
1

8
, SoundNote2,

3

8
, SoundNote3,

1

2
, SoundNote3,

1

2

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In[104]:= Sound[%]

Out[104]=

��� �

Here then is a function that takes the number of notes and the instrument as arguments.

In[105]:= RandomNotesn_Integer, instrument_ : "Piano" :=

Withnotes = Join[{None}, Range[0, 11]], durations = Range
1

8
, 1,

1

8
,

Soundinstrument, MapThreadSoundNote[#1, #2] &,

RandomChoice[notes, n], RandomChoicedurations, n

In[106]:= RandomNotes20, "Vibraphone"

Out[106]=

���� �

First set up the options structure.14.

In[107]:= OptionsBrownianSoundList = Weights → Automatic;

In[108]:= BrownianSoundListsteps_Integer, instr_: "Vibraphone", OptionsPattern[] :=

Modulewalk, durs, weights,

weights = IfOptionValueWeights === Automatic, Table[1/9, {9}],

OptionValueWeights;

walk[n_] := AccumulateRandomChoiceweights → Range[-4, 4], n;

durs = RandomChoice[Range[1/16, 1, 1/16], {steps}];
Sound@MapThreadSoundNote#1, #2, instr &, walk[steps], durs



In[109]:= BrownianSoundList18, "Vibraphone" // EmitSound

In[110]:= BrownianSoundList18, "Marimba",

Weights → Abs@RandomVariateNormalDistribution[0, 4], 9 // EmitSound

(* solution to appear *)15.
Start with one hundred points.16.

In[111]:= data = RandomReal[{-1, 1}, {100, 2}];

Partition into eight clusters.
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In[112]:= clusters = FindClustersdata, 8;

ListPlotclusters, PlotStyle → PointSize@Medium

Out[113]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

The centroid and color computations are as before.

In[114]:= centroids = MapMean, clusters

Out[114]= {{0.813483, -0.257487}, {-0.664783, 0.609614},

{0.0631635, -0.0791516}, {-0.473583, -0.731627}, {-0.446728, 0.04197},

{0.389006, -0.792897}, {0.514577, 0.263179}, {0.683372, 0.871155}}

In[115]:= colors = TakeColorData1, "ColorList", Lengthclusters

Out[115]=  , , , , , , , 

To find the distance from each centroid to the point in its cluster farthest away, we want the 

max of the set of distances between the cluster and the points in that cluster.

In[116]:= distances = Table

Max@MapEuclideanDistancecentroidsi, # &, clustersi,

i, 1, Lengthclusters

Out[116]= {0.429688, 0.479782, 0.516458, 0.435077, 0.355637, 0.411775, 0.364234, 0.30396}

The code to create the disks is identical to that in this section.

In[117]:= disks = MapThread#1, Disk[#2, #3] &, colors, centroids, distances;
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In[118]:= ListPlotclusters, PlotStyle → colors, AspectRatio → Automatic, Epilog → 

PointSizeMedium, Pointcentroids,

Opacity[0.25], EdgeForm[Gray], disks, PlotRangePadding → .35

Out[118]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

First create a set of points with which to prototype. Choose a small set to make it easier to 

inspect the progress.
17.

In[119]:= SeedRandom[6];

pts = RandomInteger[40, {10, 2}]

Out[120]= {{16, 18}, {28, 12}, {25, 35}, {10, 13},

{26, 12}, {24, 15}, {30, 34}, {5, 0}, {16, 38}, {1, 6}}

Next, choose a point at random from this set of points.

In[121]:= base = RandomChoice[pts]

Out[121]= {16, 38}

Add it to a list path that we will maintain as the algorithm progresses.

In[122]:= path = base

Out[122]= {{16, 38}}

Next, create a list of all those points with this base points deleted, resetting pts to this new 

value.

In[123]:= pts = Complementpts, path

Out[123]= {{1, 6}, {5, 0}, {10, 13}, {16, 18},

{24, 15}, {25, 35}, {26, 12}, {28, 12}, {30, 34}}

Find the point nearest this list of points. Call it the new base point.

In[124]:= base = First@Nearestpts, path

Out[124]= {{25, 35}}

Add this new base point to existing list path and reset the value of path:
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In[125]:= path = Joinpath, base

Out[125]= {{16, 38}, {25, 35}}

Iterate:

In[126]:= SeedRandom[6];

pts = RandomInteger[40, {10, 2}];

base = RandomChoice[pts];

path = base;

Do

pts = Complementpts, path;

base = First@Nearestpts, path;

path = Joinpath, base,

Length[pts] - 1;

path

Out[131]= {{16, 38}, {25, 35}, {30, 34}, {16, 18},

{24, 15}, {10, 13}, {26, 12}, {28, 12}, {1, 6}, {5, 0}}

Find the length of the path, connecting the last point to the first to make a closed loop.

In[132]:= ArcLengthLinepath /. a_, b__ ⧴ a, b, a // N

Out[132]= 150.993

Compare the built-in function for finding shortest tours. The first element in the returned list is 

the length of the tour and the second element is the ordering on the positions of the points in 

the tour.

In[133]:= SeedRandom[6];

pts = RandomInteger[40, {10, 2}];

FindShortestTour[pts]

Out[135]= 27 + 3 10 + 2 13 + 26 + 61 + 3 65 + 130 + 397 ,

{1, 4, 10, 8, 5, 2, 6, 7, 3, 9, 1}

In[136]:= N[%[[1]]]

Out[136]= 112.121

First, create 1000 points in the unit square.18.

In[137]:= pts = RandomReal[{-1, 1}, {1000, 2}];

Next create regions that represent the unit disk and unit square.

In[138]:=  = Disk[{0, 0}, 1];

 = Polygon[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}, {-1, -1}}];
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Now select those point that are members of the disk region. You could use Select or Count.

In[140]:= Length@Selectpts, RegionMember[, #] &

Out[140]= 782

In[141]:= Countpts, p_ /; RegionMember[, p]

Out[141]= 782

The following ratio is a crude approximation to π /4.

In[142]:= Length@Selectpts, RegionMember[, #] &Length[pts]

Out[142]=

391

500

In[143]:= 4 N[%]

Out[143]= 3.128
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6
Programs

Scoping constructs: exercises6.1
The condition number of a square matrix gives a measure of how close the matrix is to being 

singular. First proposed by Alan Turing, it is often defined as the ratio of the largest singular 
value of the matrix to the smallest singular value. The condition number can give a sense of 
how much the solution of the matrix equation A.x = b can change for small perturbations of 
the vector b.

1.

Create a function ConditionNumber[���] that takes a square matrix mat and returns its 

condition number. Then test it on several Hilbert matrices (HilbertMatrix), which are 

known to have very large condition numbers, thus rendering numerical computations with 

them problematic from a precision point of view.
Turn the random graph example in Exercise 10, Section 5.6 into a function 

RandomGraphGnp[�, �] that returns a random graph on n vertices with edges chosen ran-
domly (BernoulliDistribution) using probability p.

2.

Create a function EquilateralTriangleQ that takes a Triangle object as an argument and 

returns a value of True if that triangle is equilateral and returns a value of False if it is not. A 

triangle is equilateral if the lengths of its three sides are identical. Create two implementations, 
one using EuclideanDistance to measure the side lengths and another using ArcLength with 

MeshRegion and MeshPrimitives.

3.

Based on the row-switching example in this section, create a function to swap matrix columns.4.

Rewrite the function FindSubsequence from Exercise 7, Section 4.3 using Module to localize 

the length of the subsequence subseq.
5.

The PerfectSearch function defined in Exercise 6, Section 5.1 is impractical for checking large 

numbers because it has to check all numbers from 1 through n. It is inefficient to check all 
numbers from 1 to 1000 if you are only looking for perfect numbers in the range 500 to 1000. 
Modify PerfectSearch so that it is self-contained, defining the perfect predicate inside the 

body of the function. Also, set up the argument structure to accept two numbers as input and 

6.



have the function output all perfect numbers between those inputs. For example, 
PerfectSearch[�, �] will return a list of all perfect numbers in the range from a to b.

A number n is k-perfect if the sum of its proper divisors equals k n. Redefine PerfectSearch 

from the previous exercise so that it accepts as input two numbers a and b, a positive integer k, 
and computes all k-perfect numbers in the range from a to b. Use your rule to find the only 

three 4-perfect numbers less than 2 200 000.

7.

Often in processing files you are presented with expressions that need to be converted into a 

format that can be more easily manipulated. For example, a file may contain dates in the form 

20160702 to represent July 2, 2016. Mathematica represents its dates as a list in the following 

form:

8.

{����, �����, ���, ����, �������, �������}

Write a function convertToDate[�] to convert a number consisting of eight digits such as 

20160702 into a list of the form {2016, 7, 2}.

In[1]:= convertToDate[20160702]

Out[1]= {2016, 7, 2}

Create a function zeroColumns[���, � ;; �] that zeros out columns m through n in matrix 

���. Include rules to handle the cases of zeroing out one column or a list of nonconsecutive 

columns.

9.

Following on the code for the one-dimensional random walk, create a function walk2D[�] 

that generates n steps of a two-dimensional random walk on the integer lattice (see Exercise 8, 
Section 2.1). For such a walk, the directions can be thought of as the two-dimensional vectors 

{0, 1}, {0, -1}, {1, 0}, and {-1, 0} pointing in the direction of the compass directions north, 
south, east, and west. Then create a function walk3D[�] that returns an n-step random walk 

on the three-dimensional integer lattice.

10.

Solutions6.1
Let us start with the 3⨯3 Hilbert matrix.1.

In[1]:= mat = HilbertMatrix[3]

Out[1]= 1,
1

2
,
1

3
, 

1

2
,
1

3
,
1

4
, 

1

3
,
1

4
,
1

5


Here are its singular values:

In[2]:= sv = SingularValueList[mat]

Out[2]= Root-1 + 138537 #1 - 9323424 #12 + 4665600 #13 &, 3,

Root-1 + 138537 #1 - 9323424 #12 + 4665600 #13 &, 2,

Root-1 + 138537 #1 - 9323424 #12 + 4665600 #13 &, 1
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We are interested in the ratio of the largest to the smallest.

In[3]:= NMax[sv]Min[sv]

Out[3]= 524.057

Actually, SingularValueList returns the singular values ordered from greatest to smallest. So 

we can speed up the computation by only pulling off those positions rather than computing 

maximum and minimum values.

In[4]:= NFirst[sv]Last[sv]

Out[4]= 524.057

Here is the function definition. We use Module to localize a variable sv that is used in the body 

of the function. Also, the definition given in the exercise is good for square matrices so we do 

some argument checking on the left-hand side of the definition.

In[5]:= ConditionNumbermat_?SquareMatrixQ := Modulesv = SingularValueList[mat],

First[sv]Last[sv]

Here are the condition numbers for the first five Hilbert matrices

In[6]:= TableConditionNumberHilbertMatrixi, i, 1, 5 // N

Out[6]= {1., 19.2815, 524.057, 15513.7, 476607.}

And this tests with a known pathological example of a 4⨯4 matrix (Rump 1991).

In[7]:= mat = {{-5 046135670319638, -3871391041510136, -5206336348183639,

-6745986988231149}, {-640 032173419322, 8694411469684959,

-564323984386760, -2807912511823001},

{-16935782447203334, -18752427538303772, -8188807358110413,

-14820968618548534}, {-1 069537498856711, -14079150289610606,

7074216604373039, 7257960283978710}};

In[8]:= ConditionNumber[mat] // N

Out[8]= 6.41354×1064

Here are the code fragments from Exercise 10 in Section 5.6.2.

In[9]:= With{n = 25, p = .2},

cg = CompleteGraph[n];

probs = RandomVariateBernoulliDistribution[p], EdgeCount[cg];

GraphPickEdgeRules[cg], probs, 1, DirectedEdges → False

Out[9]=
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And here is the function, localizing cg and probs.

In[10]:= RandomGraphGnp[n_, p_] := Modulecg = CompleteGraph[n], probs,

probs = RandomVariateBernoulliDistribution[p], EdgeCount[cg];

GraphPickEdgeRules[cg], probs, 1, DirectedEdges → False

In[11]:= RandomGraphGnp[50, .15]

Out[11]=

Start by creating a prototypical triangle to work with.3.

In[12]:= pts = {0, 0}, {1, 0}, 1/2, 3  2;

In[13]:= tri = Triangle[pts]

Out[13]= Triangle{0, 0}, {1, 0}, 
1

2
,

3

2


To measure the lengths of the sides, create all possible pairs of the points and apply 

EuclideanDistance (at level one).

In[14]:= ApplyEuclideanDistance, Subsets[pts, {2}], {1}

Out[14]= {1, 1, 1}

Finally, check if all distances are equal.

In[15]:= ApplyEqual, %

Out[15]= True

Here then is the first implementation:

In[16]:= EquilateralTriangleQTriangle[pts : {__}] := Moduledists,

dists = ApplyEuclideanDistance, Subsets[pts, {2}], {1};

ApplyEqual, dists

To use the region framework, first generate a mesh region from the coordinate points. MeshRe
gion takes two arguments: a list of coordinates and a region (in our case, Triangle) specified 

by the coordinate indices.

In[17]:=  = MeshRegionpts, Triangle[{1, 2, 3}]
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Out[17]=

The lines are the one-dimensional primitives in this region.

In[18]:= MeshPrimitives[, 1]

Out[18]= {Line[{{0., 0.}, {1., 0.}}],

Line[{{1., 0.}, {0.5, 0.866025}}], Line[{{0.5, 0.866025}, {0., 0.}}]}

Here are their lengths:

In[19]:= MapArcLength, %

Out[19]= {1., 1., 1.}

Here then is the implementation using regions.

In[20]:= EquilateralTriangleQTriangle[pts : {__}] := Moduledists,

dists = MapArcLength, MeshPrimitivesMeshRegionpts, Triangle[{1, 2, 3}],

1;

ApplyEqual, dists

In[21]:= tri = Triangle[{{-1, 0}, {1, 0}, {2, 1}}];

Graphicstri

Out[22]=

In[23]:= EquilateralTriangleQtri

Out[23]= False

In[24]:= pts = {0, 0}, {1, 0}, 1/2, 3  2;

EquilateralTriangleQTriangle[pts]

Out[25]= True

Switching columns is basically switching rows of the transposed matrix and then transposing 

back.
4.

In[26]:= switchRows[mat_, {r1_, r2_}] := Modulelmat = mat,

lmat[[{r1, r2}]] = lmat[[{r2, r1}]];
lmat

In[27]:= switchColumns[mat_, {c1_, c2_}] :=

Transpose@switchRows[Transpose[mat], {c1, c2}]
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In[28]:= mat = a, b, c, d, e, f, g, h, i;

switchColumns[mat, {2, 3}] // MatrixForm
Out[29]//MatrixForm=

a c b
d f e
g i h

The FindSubsequence function from Section 4.3 computed Length[������] twice on the right-
hand side of the definition. Setting up a local variable len that computes this value as part of the 

initialization shortens the code and makes it a bit more efficient.

5.

In[30]:= FindSubsequencedigits_List, subseq_List := Modulelen = Lengthsubseq,

PositionPartitiondigits, len, 1, subseq /.

num_?IntegerQ ⧴ num, num + len - 1



In[31]:= pidigs = FirstRealDigitsπ, 10, 107, -1;

In[32]:= FindSubsequencepidigs, {3, 1, 4, 1, 5, 9} // Timing

Out[32]= {10.2822, {{176451, 176456},

{1259351, 1259356}, {1761051, 1761056}, {6467324, 6467329},

{6518294, 6518299}, {9753731, 9753736}, {9973760, 9973765}}}

The following function creates a local function perfectQ using the Module construct. It then 

checks every other number between n and m by using a third argument to the Range function.
6.

In[33]:= PerfectSearch[n_, m_] := ModuleperfectQ,

perfectQj_ := DivisorSigma1, j ⩵ 2 j;

SelectRange[n, m, 2], perfectQ

In[34]:= PerfectSearch2, 107 // Timing

Out[34]= {26.3649, {6, 28, 496, 8128}}

This function does not guard against the user supplying “bad” inputs. For example, if the user 
starts with an odd number, then this version of PerfectSearch will check every other odd 

number, and, since it is known that there are no odd perfect numbers below at least 10300, none 

is reported.

In[35]:= PerfectSearch[1, 10000]

Out[35]= {}

You can fix this situation by using the (as yet unproved) assumption that there are no odd 

perfect numbers. This next version first checks that the first argument is an even number.

In[36]:= ClearPerfectSearch

In[37]:= PerfectSearchn_?EvenQ, m_ := ModuleperfectQ,

perfectQj_ := TotalDivisorsj ⩵ 2 j;

SelectRange[n, m, 2], perfectQ
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Now, the function only works if the first argument is even.

In[38]:= PerfectSearch[2, 10000]

Out[38]= {6, 28, 496, 8128}

In[39]:= PerfectSearch[1, 1000]

Out[39]= PerfectSearch[1, 1000]

This function requires a third argument.7.

In[40]:= ClearPerfectSearch;

PerfectSearchn_, m_, k_ := ModuleperfectQ,

perfectQj_ := TotalDivisorsj ⩵ k j;

SelectRange[n, m], perfectQ

The following computation can be quite time consuming and requires a fair amount of mem-
ory to run to completion. If your computer’s resources are limited, you should split up the 

search intervals into smaller units or try running this in parallel. See Section 9.2 for a discussion 

on how to set up parallel computation.

In[42]:= PerfectSearch[1, 2200000, 4] // AbsoluteTiming

Out[42]= {21.925, {30240, 32760, 2178540}}

Many implementations are possible for convertToDate. The task is made easier by observing 

that DateList handles this task directly if its argument is a string.
8.

In[43]:= DateList"20151015"

Out[43]= {2015, 10, 15, 0, 0, 0.}

The string is necessary otherwise DateList will interpret the integer as an absolute time (from 

Jan 1 1900).

In[44]:= DateList[20151015]

Out[44]= {1900, 8, 22, 5, 30, 15.}

So we need to convert the integer to a string first,

In[45]:= DateListToString[20151015]

Out[45]= {2015, 10, 15, 0, 0, 0.}

and then take the first three elements.

In[46]:= Take[%, 3]

Out[46]= {2015, 10, 15}

Here is the function that puts these steps together.

In[47]:= convertToDate[n_Integer] := TakeDateListToString[n], 3
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In[48]:= convertToDate[20151015]

Out[48]= {2015, 10, 15}

With a bit more manual work, you could also do this with StringTake.

In[49]:= convertToDate2n_Integer /; LengthIntegerDigits[n] ⩵ 8 :=

Modulestr = ToString[n],

StringTake[str, 4], StringTake[str, {5, 6}], StringTake[str, -2]

In[50]:= convertToDate2[20151015]

Out[50]= {2015, 10, 15}

You could avoid working with strings by making use of FromDigits. This uses With to create a 

local constant d, as this expression never changes throughout the body of the function.

In[51]:= convertToDate3[num_] := Withd = IntegerDigits[num],

FromDigitsTaked, 4,

FromDigitsTaked, {5, 6},

FromDigitsTaked, {7, 8}

In[52]:= convertToDate3[20151015]

Out[52]= {2015, 10, 15}

The computation of zeroing out one or more columns of a matrix can be handled with list 
component assignment. We need to use a local variable here to avoid changing the original 
matrix.

9.

In[53]:= mat = RandomReal[1, {5, 5}];

MatrixForm[mat]
Out[54]//MatrixForm=

0.560325 0.895832 0.087212 0.889873 0.405831
0.626251 0.787507 0.45469 0.384032 0.892384
0.296374 0.505962 0.319666 0.327262 0.825282
0.121677 0.0413138 0.994354 0.0078785 0.77109
0.205495 0.959287 0.337399 0.940264 0.900914

Here is a rule for zeroing out one column:

In[55]:= zeroColumns[mat_, n_Integer] := Modulelmat = mat,

lmatAll, n = 0;

lmat

This next rule is for zeroing out a range of columns:

In[56]:= zeroColumns[mat_, Span[m_, n_]] := Modulelmat = mat,

lmatAll, m ;; n = 0;

lmat

We also need a final rule for zeroing out a discrete set of columns whose positions are given by 

a list.
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In[57]:= zeroColumnsmat_, lis : {__} := Modulelmat = mat,

lmatAll, lis = 0;

lmat

In[58]:= zeroColumns[mat, 3] // MatrixForm
Out[58]//MatrixForm=

0.560325 0.895832 0 0.889873 0.405831
0.626251 0.787507 0 0.384032 0.892384
0.296374 0.505962 0 0.327262 0.825282
0.121677 0.0413138 0 0.0078785 0.77109
0.205495 0.959287 0 0.940264 0.900914

In[59]:= zeroColumns[mat, 1 ;; 2] // MatrixForm

Out[59]//MatrixForm=

0 0 0.087212 0.889873 0.405831
0 0 0.45469 0.384032 0.892384
0 0 0.319666 0.327262 0.825282
0 0 0.994354 0.0078785 0.77109
0 0 0.337399 0.940264 0.900914

In[60]:= zeroColumns[mat, {1, 3, 5}] // MatrixForm

Out[60]//MatrixForm=

0 0.895832 0 0.889873 0
0 0.787507 0 0.384032 0
0 0.505962 0 0.327262 0
0 0.0413138 0 0.0078785 0
0 0.959287 0 0.940264 0

Here is the code for the two-dimensional walk. Except for the direction vectors, it is identical 
to the code for the one-dimensional walk.

10.

In[61]:= walk2D[t_] := Moduledirs, steps,

dirs = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

steps = RandomChoicedirs, {t};

Accumulate[steps]



Try it out for a small number of steps and a large number of steps.

In[62]:= ListLinePlotwalk2D[250], AspectRatio → 1

Out[62]= -8 -6 -4 -2 2 4 6

-6

-4

-2

2

4

6
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In[63]:= ListLinePlotwalk2D[25000], AspectRatio → 1, PlotStyle → Thin

Out[63]=

-100 -50 50

-20

20

40

60

80

100

120

A bit of thought is needed to come up with the eight directions in the three-dimensional integer 
lattice.

In[64]:= dirs3 = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {-1, 0, 0}, {0, -1, 0}, {0, 0, -1}};

Here then is the three-dimensional walk function.

In[65]:= walk3D[t_] := AccumulateRandomChoicedirs3, t

And here is a 2500-step walk on the three-dimensional integer lattice.

In[66]:= Graphics3DLinewalk3D[2500]

Out[66]=

Options and messages: exercises6.2
Modify the random graph example in Exercise 2, Section 6.1 to inherit options from Graph.1.

In Section 6.1 we developed a function switchRows that interchanged two rows in a matrix. 
Create a message for this function that is issued whenever a row index greater than the size of 
the matrix is used as an argument. For example,

2.

In[1]:= mat = RandomInteger[{0, 9}, {4, 4}];

MatrixForm[mat]

Out[2]//MatrixForm=

8 0 9 2
7 2 1 9
4 5 0 4
2 8 6 4
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In[3]:= switchRows[mat, {5, 2}]

switchRows::badargs : The absolute value of the row indices 5 and 

2 in switchRows[mat,{5,2}] must be between 1 and 4, the size of the matrix.

Out[3]= {{8, 0, 9, 2}, {7, 2, 1, 9}, {4, 5, 0, 4}, {2, 8, 6, 4}}

You should also trap for a row index of zero.

In[4]:= switchRows[mat, {0, 2}]

switchRows::badargs : The absolute value of the row indices 0 and 

2 in switchRows[mat,{0,2}] must be between 1 and 4, the size of the matrix.

Out[4]= {{8, 0, 9, 2}, {7, 2, 1, 9}, {4, 5, 0, 4}, {2, 8, 6, 4}}

Create an error message for StemPlot, developed in this section, so that an appropriate 

message is issued if the argument is not a list of numbers.
3.

Extend the definitions for ToEdges from Exercise 15, Section 5.1 to include an option to output 
directed or undirected edges.

4.

The function MultiplyCount given in the solution to Exercise 7, Section 4.2 does not check 

that the expression passed to it is in fact a polynomial. Rewrite this function so that 
MultiplyCount[����, ���] checks that poly is a polynomial in the independent variable var 
and issues an appropriate message if the polynomial test fails.

5.

Solutions6.2
First, set up the options inherited from Graph.1.

In[1]:= OptionsRandomGraphGnp = OptionsGraph;

In[2]:= RandomGraphGnpn_, p_, opts : OptionsPattern[] := Modulecg, probs,

cg = CompleteGraph[n];
probs = RandomVariateBernoulliDistribution[p], EdgeCount[cg];

GraphPickEdgeRules[cg], probs, 1, opts, DirectedEdges → False

Alternatively, you could use RandomChoice to pick the True/False values.

In[3]:= RandomGraphGnpn_, p_, opts : OptionsPattern[] := Modulecg, probs,

cg = CompleteGraph[n];
probs = RandomChoice{p, 1 - p} → True, False, EdgeCount[cg];

GraphPickEdgeRules[cg], probs, opts, DirectedEdges → False

Exercise the options.
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In[4]:= RandomGraphGnp30, .2, VertexSize → Large, VertexStyle → Red, EdgeStyle → Thin

Out[4]=

The message will slot in the values of the row indices being passed to the function switchRows, 
as well as the length of the matrix, that is, the number of matrix rows.

2.

In[5]:= switchRows::badargs =

"The absolute value of the row indices `1` and `2` in switchRows[mat,`1`,`2`]

must be between 1 and `3`, the size of the matrix.";

The message is issued if either of the row indices have absolute value greater than the length of 
the matrix or if either of these indices is equal to zero.

In[6]:= switchRows[mat_, {r1_Integer, r2_Integer}] :=

Modulelmat = mat, len = Length[mat],

IfAbs[r1] > len || Abs[r2] > len || r1 r2 ⩵ 0,

MessageswitchRows::badargs, r1, r2, len,

lmat[[{r1, r2}]] = lmat[[{r2, r1}]];

lmat

In[7]:= mat = RandomInteger[9, {4, 4}];

MatrixForm[mat]

Out[8]//MatrixForm=

4 8 5 4
4 4 3 7
0 5 7 3
8 4 1 7

In[9]:= switchRows[mat, {0, 4}]

switchRows::badargs :
The absolute value of the row indices 0 and 4 in switchRows[mat,0,4] must

be between 1 and 4, the size of the matrix.

Out[9]= {{4, 8, 5, 4}, {4, 4, 3, 7}, {0, 5, 7, 3}, {8, 4, 1, 7}}

In[10]:= switchRows[mat, {2, 8}]

switchRows::badargs :
The absolute value of the row indices 2 and 8 in switchRows[mat,2,8] must

be between 1 and 4, the size of the matrix.

Out[10]= {{4, 8, 5, 4}, {4, 4, 3, 7}, {0, 5, 7, 3}, {8, 4, 1, 7}}

If the first argument is not a list containing numbers, then issue a message.3.

In[11]:= MatchQ{1, 2, a}, __?NumericQ

Out[11]= False
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Here is the message:

In[12]:= StemPlot::badarg = "The first argument to StemPlot must be a list of numbers.";

In[13]:= OptionsStemPlot = OptionsListPlot;

In[14]:= StemPlotlis_, opts : OptionsPattern[] :=

IfMatchQlis, __?NumericQ,

ListPlotlis, opts, Filling → Axis,

MessageStemPlot::badarg



In[15]:= StemPlot[4]

StemPlot::badarg : The �rst argument to StemPlot must be a list of numbers.

In[16]:= StemPlot[{1, 2, c}]

StemPlot::badarg : The �rst argument to StemPlot must be a list of numbers.

In[17]:= StemPlot[{1, 2, 3, 4, 5}]

Out[17]=

1 2 3 4 5

1

2

3

4

5

First set up the option for ToEdges.4.

In[18]:= OptionsToEdges = DirectedEdges → True;

In[19]:= ToEdgeslis : {{_, _} ..}, OptionsPattern[] :=

IfOptionValueDirectedEdges, DirectedEdge @@@ lis, UndirectedEdge @@@ lis

In[20]:= ToEdgeslis : {_, _}, OptionsPattern[] :=

IfOptionValueDirectedEdges, DirectedEdge @@ lis, UndirectedEdge @@ lis

In[21]:= pairs = Partition[Range[5], 2, 1]

Out[21]= {{1, 2}, {2, 3}, {3, 4}, {4, 5}}

In[22]:= ToEdgespairs

Out[22]= {1 2, 2 3, 3 4, 4 5}

In[23]:= ToEdgespairs, DirectedEdges → False

Out[23]= {1 2, 2 3, 3 4, 4 5}

We use If to check if the expression expr is a polynomial in the independent variable var. If it is, 
use the same code from Exercise 7, Section 4.2 to count the number of multiplies. If the test fails, 
then issue a message. 

5.
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In[24]:= MultiplyCount[expr_, var_] :=

IfPolynomialQ[expr, var],

Total@Cases{expr}, Power[_, exp_]⧴ exp - 1, Infinity +

Total@Cases{expr}, fac_Times ⧴ Lengthfac - 1, Infinity,

MessageMultiplyCount::poly, expr

Note that we have done something a bit different here. We have used an internal usage message 

poly with our MultiplyCount function. Here is the message issued by the built-in function 

PolynomialRemainder.

In[25]:= PolynomialRemainder[{3 x}, x + a, x]

PolynomialRemainder::poly : {3 x} is not a polynomial. 

Out[25]= PolynomialRemainder[{3 x}, a + x, x]

In[26]:= MultiplyCounta x4 + b x + 1, x

MultiplyCount::poly : 1 + b x + a x4 is not a polynomial. 

In[27]:= MultiplyCounta x4 + b x + 1, x

Out[27]= 5

Examples: exercises6.3
Add a message to the RandomWalk function developed in this chapter so that a warning is 

issued when a nonpositive integer is given as the first argument to RandomWalk.
1.

Consider a sequence of numbers generated by the following iterative process: starting with the 

list of odd integers 1, 3, 5, 7, …, the first odd number greater than 1 is 3, so delete every third 

number from the list; from the list of remaining numbers, the next number is 7, so delete every 

seventh number; and so on. The numbers that remain are referred to as lucky numbers. Use a 

sieving method to find all lucky numbers less than 1000. See Weisstein (Lucky Number) for 
more information.

2.

Create a function TruthTable[����, ����] that takes a logical expression such as A B and 

outputs a truth table similar to those in Section 2.4. You can create a list of truth values using 

Tuples:

3.

In[1]:= TuplesTrue, False, 2

Out[1]= {{True, True}, {True, False}, {False, True}, {False, False}}

You will also find it helpful to consider threading rules over the tuples using MapThread or 
Thread. Alternatively, consider using the built-in function BooleanTable.
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Given a list of expressions, lis, create a function NearTo[���, ����, {�}}] that returns all 
elements of lis that are exactly n positions away from elem, which is assumed to be a member of 
lis. For example:

4.

In[2]:= chars = CharacterRange"a", "z"

Out[2]= a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

In[3]:= NearTochars, "q", {3}

Out[3]= {{n}, {t}}

Write a second rule, NearTo[���, ����, �], that returns all elements in lis that are within n 

positions of elem. 

In[4]:= NearTochars, "q", 4

Out[4]= {{m, n, o, p, q, r, s, t, u}}

Finally, create your own distance function (DistanceFunction) and use it with the built-in 

Nearest to do the same computation. Two useful functions for these tasks are Position and 

Extract. Extract[����, ���] returns elements from expr whose positions pos are given by 

Position.

A Smith number is a composite number such that the sum of its digits is equal to the sum of the 

digits of its prime factors. For example, the prime factorization of 852 is 22 ·31 ·711, and so the 

sum of the digits of its prime factors is 2 + 2 + 3 + 7 + 1 = 15, which is equal to the sum of its 

digits, 8 + 5 + 2 = 15. Write a program to find all Smith numbers less than 10 000. 

5.

Develop auxiliary functions for one-, two-, and three-dimensional off-lattice random walks. 
Then create a function offLatticeWalk[�����, ���] that uses these auxiliary functions to 

return an off-lattice walk of length steps, in dimension dim. Finally, modify RandomWalk to 

include an option LatticeWalk that, when set to True, calls the latticeWalk auxiliary 

function and when set to False, calls this new offLatticeWalk auxiliary function.

6.

Here is some code to run a bond percolation simulation on an m⨯n lattice grid. For each edge 

in the grid graph gg, it creates a probability from a Bernoulli distribution (think coin flip – only 

two possible outcomes) and then picks those edges that are below the threshold probability 

prob.

7.
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In[5]:= Withm = 8, n = 13, prob = 0.47,

gg = GridGraph[{m, n}];

probs = RandomVariateBernoulliDistributionprob, EdgeCount[gg];

perc = GraphPickEdgeList[gg], probs, 1;

HighlightGraph[gg, perc]

Out[5]=

Turn the above code into a function BondPercolation[{�, �}, ����, ����] that outputs a 

graph like that above. Include a check on the arguments m and n, returning an appropriate 

message if they are not positive integers. Finally, have your function inherit options from 

Graph and pass them into the GridGraph function.

Create a function ColorResidues[���] that takes an amino acid sequence seq and returns a 

visualization like that below where the amino acids are colored according to a scheme such as 

Amino, where more polar residues are brighter and more nonpolar residues are colored darker. 
In addition to a ColorScheme option, add options to control the frame around each residue.

8.

In[6]:= Amino = "P", , "W", , "L", , "V", , "I", , "N", ,

"Q", , "S", , "T", , "C", , "M", , "H", ,

"A", , "G", , "F", , "Y", , "K", , "R", ,

"D", , "E", ;

In[7]:= muc6 = StringTakeProteinData"MUC6", "Sequence", 75

Out[7]= MVQRWLLLSCCGALLSAGLANTSYTSPGLQRLKDSPQTAPDKGQCSTWGAGHFSTFDHHVYDFSGTCNYIFAATC

In[8]:= ColorResiduesmuc6, ColorScheme → Amino, FrameMargins → 2

Out[8]= M V Q R W L L L S C C G A L L S A G L A N T S

Y T S P G L Q R L K D S P Q T A P D K G Q C S T W G

A G H F S T F D H H V Y D F S G T C N Y I F A A T C

Solutions6.3
Here is the message text that will be issued when the first argument to RandomWalk is not a 

positive integer.
1.

In[1]:= RandomWalk::rwn = "Argument `1` is not a positive integer.";

And here is the message for the Dimensions option.
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In[2]:= RandomWalk::baddim =

"The value `1` of the option Dimension is not a positive integer.";

Because we now have several conditions to trap for (non positive integer first argument, bad 

value for Dimension option), it is best to use Which to catch the various conditions and set 
appropriate actions.

In[3]:= latticeWalksteps_, dim_ := Module{w, mat},

mat = JoinIdentityMatrixdim, -IdentityMatrixdim;

w = AccumulateRandomChoice[mat, steps];

Ifdim ⩵ 1, Flatten[w], w



To simplify the code it is useful to have an auxiliary predicate that tests if its argument is a 

positive integer.

In[4]:= PositiveIntegerQ[n_] := IntegerQ[n] && Positive[n]

In[5]:= OptionsRandomWalk = Dimension → 2;

In[6]:= RandomWalkt_, OptionsPattern[] := Moduledim, latticeQ,

dim = OptionValueDimension;

Which

! PositiveIntegerQ[t], MessageRandomWalk::rwn, t,

! PositiveIntegerQdim, MessageRandomWalk::baddim, dim,

True, latticeWalkt, dim





First check that correct results are returned for correct values of the arguments and options.

In[7]:= RandomWalk[3]

Out[7]= {{1, 0}, {1, 1}, {1, 0}}

In[8]:= RandomWalk4, Dimension → 5

Out[8]= {{0, 0, -1, 0, 0}, {0, 0, -1, 0, -1}, {0, 0, -1, 0, -2}, {0, 0, -2, 0, -2}}

Then check for bad input.

In[9]:= RandomWalk4, Dimension → -5

RandomWalk::baddim : The value -5 of the option Dimension is not a positive integer.

In[10]:= RandomWalk4.3, Dimension → -5

RandomWalk::rwn : Argument 4.3` is not a positive integer.

Start with a small list of odd numbers.2.
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In[11]:= ints = Range[1, 100, 2]

Out[11]= {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31,

33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65,

67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99}

On the first iteration, drop every third number, that is, drop 5, 11, 17, and so on.

In[12]:= p = ints[[2]];

ints = Dropints, p ;; -1 ;; p

Out[13]= {1, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 49,

51, 55, 57, 61, 63, 67, 69, 73, 75, 79, 81, 85, 87, 91, 93, 97, 99}

Get the next number, 7, in the list ints; then drop every seventh number.

In[14]:= p = ints[[3]];

ints = Dropints, p ;; -1 ;; p

Out[15]= {1, 3, 7, 9, 13, 15, 21, 25, 27, 31, 33, 37, 43, 45,

49, 51, 55, 57, 63, 67, 69, 73, 75, 79, 85, 87, 91, 93, 97, 99}

Iterate. You will need to be careful about the upper limit of the iterator i.

In[16]:= ints = Range[1, 1000, 2];

Do

p = intsi;

ints = Dropints, p ;; -1 ;; p,

i, 2, 32

ints

Out[18]= {1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79,

87, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169,

171, 189, 193, 195, 201, 205, 211, 219, 223, 231, 235, 237, 241, 259,

261, 267, 273, 283, 285, 289, 297, 303, 307, 319, 321, 327, 331, 339, 349,

357, 361, 367, 385, 391, 393, 399, 409, 415, 421, 427, 429, 433, 451, 463,

475, 477, 483, 487, 489, 495, 511, 517, 519, 529, 535, 537, 541, 553, 559,

577, 579, 583, 591, 601, 613, 615, 619, 621, 631, 639, 643, 645, 651, 655,

673, 679, 685, 693, 699, 717, 723, 727, 729, 735, 739, 741, 745, 769, 777,

781, 787, 801, 805, 819, 823, 831, 841, 855, 867, 873, 883, 885, 895, 897,

903, 925, 927, 931, 933, 937, 957, 961, 975, 979, 981, 991, 993, 997}

It would be more efficient if you did not need to manually determine the upper limit of the 

iteration. A While loop is better for this task. The test checks that the value of the iterator has 

not gone past the length of the successively shortened lists.
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In[19]:= LuckyNumbersn_Integer ?Positive := Modulep, i = 2, ints = Range[1, n, 2],

Whileintsi < Lengthints,

p = intsi;

ints = Dropints, p ;; -1 ;; p;

i++;

ints

In[20]:= LuckyNumbers[1000]

Out[20]= {1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79,

87, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169,

171, 189, 193, 195, 201, 205, 211, 219, 223, 231, 235, 237, 241, 259,

261, 267, 273, 283, 285, 289, 297, 303, 307, 319, 321, 327, 331, 339, 349,

357, 361, 367, 385, 391, 393, 399, 409, 415, 421, 427, 429, 433, 451, 463,

475, 477, 483, 487, 489, 495, 511, 517, 519, 529, 535, 537, 541, 553, 559,

577, 579, 583, 591, 601, 613, 615, 619, 621, 631, 639, 643, 645, 651, 655,

673, 679, 685, 693, 699, 717, 723, 727, 729, 735, 739, 741, 745, 769, 777,

781, 787, 801, 805, 819, 823, 831, 841, 855, 867, 873, 883, 885, 895, 897,

903, 925, 927, 931, 933, 937, 957, 961, 975, 979, 981, 991, 993, 997}

This latter approach is also reasonably fast. Here is the time it takes to compute all lucky 

numbers less than one million; there are 71 918 of them.

In[21]:= LengthLuckyNumbers106 // Timing

Out[21]= {0.302607, 71918}

Start with a prototype logical expression.3.

In[22]:= Clear[A, B]

In[23]:= expr = (A || B) ⇒ C;

In[24]:= vars = {A, B, C};

List all the possible truth value assignments for the variables.

In[25]:= tuples = TuplesTrue, False, Length[vars]

Out[25]= {{True, True, True}, {True, True, False},

{True, False, True}, {True, False, False}, {False, True, True},

{False, True, False}, {False, False, True}, {False, False, False}}

Next, create a list of rules, associating each of the triples of truth values with a triple of variables.

In[26]:= rules = MapThread[vars → #] &, tuples

Out[26]= {{A → True, B → True, C → True}, {A → True, B → True, C → False},

{A → True, B → False, C → True}, {A → True, B → False, C → False},

{A → False, B → True, C → True}, {A → False, B → True, C → False},

{A → False, B → False, C → True}, {A → False, B → False, C → False}}

Replace the logical expression with each set of rules.
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In[27]:= expr /. rules

Out[27]= {True, False, True, False, True, False, True, True}

Put these last values at the end of each “row” of the tuples.

In[28]:= table = Transpose@JoinTransposetuples, expr /. rules

Out[28]= {{True, True, True, True}, {True, True, False, False},

{True, False, True, True}, {True, False, False, False},

{False, True, True, True}, {False, True, False, False},

{False, False, True, True}, {False, False, False, True}}

Create a header for table.

In[29]:= head = Appendvars, TraditionalForm[expr]

Out[29]= A, B, C, A  B ⇒ C

Prepend head to table.

In[30]:= Prependtable, head

Out[30]= A, B, C, A  B ⇒ C, {True, True, True, True}, {True, True, False, False},

{True, False, True, True}, {True, False, False, False},

{False, True, True, True}, {False, True, False, False},

{False, False, True, True}, {False, False, False, True}

Pour into a grid.

In[31]:= GridPrependtable, head

Out[31]=

A B C A  B ⇒ C
True True True True
True True False False
True False True True
True False False False
False True True True
False True False False
False False True True
False False False True

Replace True with "T" and False with "F".

In[32]:= GridPrependtable /. True → "T", False → "F", head

Out[32]=

A B C A  B ⇒ C
T T T T
T T F F
T F T T
T F F F
F T T T
F T F F
F F T T
F F F T

Add formatting via options to Grid.
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In[33]:= GridPrependtable /. True → "T", False → "F", head,

Frame → True, Dividers → -2 → LightGray, 2 → LightGray,

ItemStyle → "Menu", 8

Out[33]=

� � � �� ⇒ �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Put the pieces together.

In[34]:= TruthTable[expr_, vars_] :=

Modulelen = Length[vars], tuples, rules, table, head,

tuples = TuplesTrue, False, len;

rules = Thread[vars → #1] & /@ tuples;

table = Transpose@JoinTransposetuples, expr /. rules;

head = Appendvars, TraditionalForm[expr];

GridPrependtable /. True → "T", False → "F", head,

Frame → True, FrameStyle → Thin,

Dividers → -2 → LightGray, 2 → LightGray,

BaseStyle → "Menu", 8

In[35]:= TruthTableA B ⇒ ¬ C, {A, B, C}

Out[35]=

� � � �� ⇒ ¬ �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Alternatively, the table of values can be generated directly with BooleanTable.

In[36]:= TruthTable[expr_, vars_] := Moduletable, head,

table = BooleanTableFlatten[{vars, expr}];

head = Appendvars, TraditionalForm[expr];

GridPrependtable /. True → "T", False → "F", head,

Frame → True, FrameStyle → Thin,

Dividers → -2 → LightGray, 2 → LightGray,

BaseStyle → "Menu", 8
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In[37]:= TruthTableA B ⇒ ¬ C, {A, B, C}

Out[37]=

� � � �� ⇒ ¬ �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Position[���, ����] returns a list of positions at which elem occurs in lis. Extract[���, ���] 

returns those elements whose positions are specified by Position.
4.

In[38]:= NearTolis_List, elem_, {n_} :=

Modulepos = Positionlis, elem, Extractlis, {pos - n, pos + n}

In[39]:= NearTolis_List, elem_, n_ :=

Modulepos = Positionlis, elem, Extractlis, Range[pos - n, pos + n]

In[40]:= chars = CharacterRange"a", "z";

In[41]:= NearTochars, "q", {3}

Out[41]= {{n}, {t}}

In[42]:= NearTochars, "q", 4

Out[42]= {{m, n, o, p, q, r, s, t, u}}

The key to writing the distance function is to observe that it must be a function of two variables 

and return a numeric value (the distance metric). We are finding the difference of the positions 

of a target element in the list with the element in question, y and x, respectively in the pure 

function. The use of [[1, 1]] is to strip off extra braces returned by Position.

In[43]:= NearToNlis_, elem_, n_ :=

Nearestlis, elem, {2 n + 1, n},

DistanceFunction →

Function{x, y}, AbsPositionlis, y - Positionlis, x〚1, 1〛

In[44]:= NearToNchars, "q", 4

Out[44]= {q, p, r, o, s, n, t, m, u}

Rather than try to incorporate all the conditions into one rule, it is cleaner and more efficient to 

write separate rules for the cases where the input is prime or less than or equal to one.
5.

In[45]:= SmithNumberQ[n_ /; n ≤ 1] := False

In[46]:= SmithNumberQn_?PrimeQ := False

Given the factorization of a number, separate the prime bases from their exponents using 

Transpose.
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In[47]:= lis = FactorInteger[852]

Out[47]= {{2, 2}, {3, 1}, {71, 1}}

In[48]:= Transposelis

Out[48]= {{2, 3, 71}, {2, 1, 1}}

This multiplies the integer digits of each base by its multiplicity.

In[49]:= MapThreadIntegerDigits[#1] #2 &, %

Out[49]= {{4}, {3}, {7, 1}}

Here is the sum.

In[50]:= TotalFlatten[%]

Out[50]= 15

Check that it equals the sum of the digits of the original number:

In[51]:= TotalIntegerDigits[852]

Out[51]= 15

This puts the pieces together for the general rule.

In[52]:= SmithNumberQ[n_] := Withlis = FactorInteger[n],

TotalFlattenMapThreadIntegerDigits[#1] #2 &, Transposelis ⩵

TotalIntegerDigits[n]

Here are the Smith numbers less than 100.

In[53]:= SelectRange[100], SmithNumberQ

Out[53]= {4, 22, 27, 58, 85, 94}

There are 376 Smith numbers less than 10 000.

In[54]:= SelectRange104, SmithNumberQ // Length

Out[54]= 376

As an interesting aside, you can also generate Smith numbers using rep units (see Exercise 5 in 

Section 5.5). For example, multiply any prime repunit by a suitable factor, e.g., 1540. For details 

of the relationship between repunits and Smith numbers, see Hoffman (1999) .

In[55]:= RepUnit[n_] := Nest[(10 # + 1) &, 1, n - 1]

In[56]:= PrimeQRepUnit[19]

Out[56]= True

In[57]:= SmithNumberQ1540 RepUnit[23]

Out[57]= True
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In the one-dimensional case, steps of unit length give the lattice walk described above. For our 
off-lattice walk, we will take step directions chosen to be any real number between -1 and 1. Of 
course, this means that for this case, steps are not of length one.

6.

In[58]:= walk1DOffLattice[t_] := AccumulateRandomReal[{-1, 1}, t]

In the two-dimensional case, we essentially compute polar points and so the directions are 

polar angles between 0 and 2 π; the coordinates of the points are given by the pair (cos θ, sin θ), 
which gives steps of unit length.

In[59]:= walk2DOffLattice[t_] :=

AccumulateMapCos[#], Sin[#] &, RandomReal[{0, 2 π}, t]

Let us quickly check that each step is of length one.

In[60]:= walk2D = walk2DOffLattice[4]

Out[60]= {{-0.856498, -0.51615}, {-0.330181, -1.36644},

{-1.32972, -1.33606}, {-0.945803, -2.25943}}

In[61]:= Partitionwalk2D, 2, 1

Out[61]= {{{-0.856498, -0.51615}, {-0.330181, -1.36644}},

{{-0.330181, -1.36644}, {-1.32972, -1.33606}},

{{-1.32972, -1.33606}, {-0.945803, -2.25943}}}

In[62]:= ApplyEuclideanDistance, %, 1

Out[62]= {1., 1., 1.}

There are several different ways to approach the three-dimensional off-lattice walk. Using a 

spherical coordinate system, a point uniformly distributed on the sphere can be obtained from 

the following equations (Marsaglia 1972) :

x = cos(θ) 1 - u2 ,

y = sin(θ) 1 - u2 ,
z = u.

We need to produce pairs of random numbers θ and u with θ in the interval [0, 2 π) and u in the 

interval [-1, 1]. Here then is the function to generate t steps of an off-lattice random walk in 

three dimensions.

In[63]:= walk3DOffLattice[t_] :=

Accumulate

TableFunction{θ, u}, Cos[θ] 1 - u2 , Sin[θ] 1 - u2 , u @@

RandomReal[{0, 2 π}], RandomReal[{-1, 1}], {t}


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Again, check that each step is of unit length.

In[64]:= walk3D = walk3DOffLattice[5]

Out[64]= {{-0.0516908, 0.919087, -0.390649},

{-0.190662, 1.07929, -1.3679}, {0.404071, 1.86198, -1.55146},

{1.37636, 1.74985, -1.75659}, {1.82819, 2.53074, -1.32523}}

In[65]:= ApplyEuclideanDistance, Partitionwalk3D, 2, 1, 1

Out[65]= {1., 1., 1., 1.}

We now use the common elements to simplify our code, similarly to what we did earlier with 

the lattice walk code. The only difference amongst these three cases is the function that we are 

accumulating. We will use Which to slot in the appropriate function to Accumulate, based on 

the value of the dimension argument, dim.

In[66]:= offLatticeWalkt_, dim_ := Modulef1, f2, f3,

f1 := RandomReal[{-1, 1}, t];
f2 := MapCos[#], Sin[#] &, RandomReal[{0, 2 π}, t];

f3 := TableFunction{θ, u}, Cos[θ] 1 - u2 , Sin[θ] 1 - u2 , u @@

RandomReal[{0, 2 π}], RandomReal[{-1, 1}], {t};

Which

dim ⩵ 1, Accumulatef1,

dim ⩵ 2, Accumulatef2,

dim ⩵ 3, Accumulatef3





Try out the code for dimensions one through three.

In[67]:= ListLinePlotoffLatticeWalk[5000, 1]

Out[67]= 1000 2000 3000 4000 5000

-20

-10

10
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In[68]:= ListLinePlotoffLatticeWalk[5000, 2], AspectRatio → Automatic,

PlotStyle → Thin

Out[68]=

-40 -30 -20 -10 10 20 30

-50

-40

-30

-20

-10

10

20

In[69]:= Graphics3DLine@offLatticeWalk[5000, 3]

Out[69]=

Here is the function for running bond percolation simulations taken from the exercise. Options 

are inherited from GridGraph.
7.

In[70]:= ClearBondPercolation;

In[71]:= OptionsBondPercolation = OptionsGridGraph;

In[72]:= BondPercolationm_, n_, prob_, opts : OptionsPattern[] := Module{gg, gr},

gg = GridGraph[{m, n}, opts];
gr =

GraphPickEdgeList[gg], RandomVariateBernoulliDistributionprob,

EdgeCount[gg], 1;

HighlightGraphgg, gr, GraphHighlightStyle → "DehighlightFade"

In[73]:= BondPercolation{13, 21, .2}, VertexSize → .5

Out[73]=
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Add a check on the arguments m and n and issue a message if they are not positive integers.

In[74]:= PositiveIntegerQ[n_] := IntegerQ[n] && Positive[n]

In[75]:= BondPercolation::badargs =

"The parameters `1` and `2` must be positive integers.";

In[76]:= ClearBondPercolation;

BondPercolationm_, n_, prob_, opts : OptionsPattern[] := Module{gg, gr},

IfAllTrue{m, n}, PositiveIntegerQ,

gg = GridGraph[{m, n}, opts];
gr =

GraphPickEdgeList[gg], RandomVariateBernoulliDistributionprob,

EdgeCount[gg], 1;

HighlightGraphgg, gr, GraphHighlightStyle → "DehighlightFade",

MessageBondPercolation::badargs, m, n



In[78]:= BondPercolation[{13, 17, .2}]

Out[78]=

In[79]:= BondPercolation[{-13, 17, .2}]

BondPercolation::badargs : The parameters -13 and 17 must be positive integers.

Start with the color scheme. This is the Amino scheme used in RasMol. The color swatches can 

be entered as RGB values and then the swatch can be copied and pasted.
8.

In[80]:= ��������[{���/��������/��������/���}]

Out[80]=

In[81]:= Amino = "P", , "W", , "L", , "V", , "I", , "N", ,

"Q", , "S", , "T", , "C", , "M", , "H", ,

"A", , "G", , "F", , "Y", , "K", , "R", ,

"D", , "E", ;

Set up the options framework. ColorResidues will inherit options from Framed and also have 
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a unique option to select different color schemes. Amino will be the default scheme.

In[82]:= OptionsColorResidues = JoinColorScheme → Amino, OptionsFramed;

Write a usage message for ColorResidues.

In[83]:= ColorResidues::usage =

"ColorResidues[���] displays a sequence of amino acids from the

protein sequence ���.";

This creates an auxiliary function that turns the color scheme into a list of rules that will be 

applied in the ColorResidues function below.

In[84]:= makeAAboxscheme_, opts : OptionsPattern[] := Moduleaa, col,

aa, col = Transposescheme;

MapThread#1 ⧴ Framed#1, opts, Background → #2, FrameStyle → #2 &, aa, col

In[85]:= makeAAboxAmino

Out[85]= P⧴ P , W⧴ W , L⧴ L , V⧴ V , I⧴ I , N⧴ N ,

Q⧴ Q , S⧴ S , T⧴ T , C⧴ C , M⧴ M , H⧴ H , A⧴ A ,

G⧴ G , F⧴ F , Y⧴ Y , K⧴ K , R⧴ R , D⧴ D , E⧴ E 

Finally, here is the function with the first 100 residues of the protein MUC6 as argument.

In[86]:= ColorResiduesstr_String, opts : OptionsPattern[] :=

Modulecs = OptionValueColorScheme,

RowCharacters[str] /. makeAAboxcs, FilterRules{opts}, OptionsFramed

In[87]:= Map#, ProteinData"MUC6", # &,

"BiologicalProcesses", "Memberships", "MolecularFunctions" //

TableForm

Out[87]//TableForm=

BiologicalProcesses MaintenanceOfGastrointestinalEpithelium

Memberships
ExtracellularMatrixStructuralConstituent
ExtracellularRegion
MaintenanceOfGastrointestinalEpithelium
Proteins

MolecularFunctions ExtracellularMatrixStructuralConstituent

In[88]:= muc6 = StringTakeProteinData"MUC6", "Sequence", 100;

In[89]:= ColorResiduesmuc6, ColorScheme → Amino, FrameMargins → 1

Out[89]= M V Q R W L L L S C C G A L L S A G L A N T S Y T S P G L Q R L K D

S P Q T A P D K G Q C S T W G A G H F S T F D H H V Y D F S G T C

N Y I F A A T C K D A F P T F S V Q L R R G P D G S I S R I I V E
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7
Strings

Structure and syntax: exercises7.1
Convert the first character in a string (which you may assume to be a lowercase letter) to 

uppercase.
1.

Given a string of digits, for example, "10495", convert it to its integer value.2.

Create a function UniqueCharacters[���] that takes a string as its argument and returns a list 
of the unique characters in that string. For example, UniqueCharacters["Mississippi"] 

should return {M, i, s, p}.

3.

Using a first-name database, find all names consisting entirely of combinations of the first 
letters on the keys of a typical phone (Figure 7.1), that is, names that only contain the letters a, d, 
g, j,m, p, t, and w; for example, PAT. As a database source, the US Census Bureau curates lists of 
common names.

4.

Telephone number pad.Figure 7.1.

A somewhat simplistic cipher, known as the XOR cipher, uses binary eight-bit keys to encode 

strings. The idea is to first convert each letter in a plaintext string to their character code in 

eight-bit binary. So the letter A, whose character code is 65, is converted into 1000001. A key 

string, say the letter K, is similarly converted to an eight-bit binary representation. Then each 

letter in the plaintext is encoded by performing a bit XOR operation on the plaintext letter and 

the key, both using their eight-bit binary representation. The resulting ciphertext could remain 

in binary or it could be converted back from character codes to encoded text, the ciphertext.

5.



Create an XOR cipher and encode a plaintext string to produce a ciphertext. See Exercise 6, 
Section 2.2 for information on converting a string to its binary representation. As an aside, the 

XOR cipher is a terribly insecure cipher as simply reversing the encoding operations makes it 
easy to recover the key (Churchhouse 2001) .

Solutions7.1
Here is a test string we will use for this exercise.1.

In[1]:= str = "this is a test string"

Out[1]= this is a test string

This extracts the first character from str.

In[2]:= StringTake[str, 1]

Out[2]= t

Here is its character code.

In[3]:= ToCharacterCode[%]

Out[3]= {116}

For each lowercase letter of the English alphabet, subtracting 32 gives the corresponding 

uppercase character.

In[4]:= % - 32

Out[4]= {84}

Convert back to a character.

In[5]:= FromCharacterCode[%]

Out[5]= T

Take the original string minus its first character.

In[6]:= StringDrop[str, 1]

Out[6]= his is a test string

Finally, join the previous string with the capital T.

In[7]:= StringJoin[%%, %]

Out[7]= This is a test string

You can do this more efficiently using ToUpperCase and StringTake. This approach is more 

general in that it does not assume that the first character in your string is lower case.
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In[8]:= ToUpperCaseStringTake[str, 1]

Out[8]= T

In[9]:= StringTake[str, 2 ;; -1]

Out[9]= his is a test string

In[10]:= ToUpperCaseStringTake[str, 1] <> StringTake[str, 2 ;; -1]

Out[10]= This is a test string

This can be done most directly with Capitalize which automatically handles many of the 

issues discussed above.

In[11]:= Capitalize[str]

Out[11]= This is a test string

One approach converts the string to character codes.2.

In[12]:= ToCharacterCode"10495"

Out[12]= {49, 48, 52, 57, 53}

In[13]:= % - 48

Out[13]= {1, 0, 4, 9, 5}

In[14]:= Table10j, j, 4, 0, -1

Out[14]= {10000, 1000, 100, 10, 1}

In[15]:= %.%%

Out[15]= 10495

This is a good place to use Fold. Using FoldList, you can see how the expression is built up.

In[16]:= FoldList#2 + 10 #1 &, 0, ToCharacterCode"10495" - 48

Out[16]= {0, 1, 10, 104, 1049, 10495}

Much more directly, use ToExpression.

In[17]:= ToExpression"10495"

Out[17]= 10495

Start by extracting the individual characters in a string.3.

In[18]:= str = "Mississippi";

Characters[str]

Out[19]= {M, i, s, s, i, s, s, i, p, p, i}

This gives the set of unique characters in this string.
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In[20]:= UnionCharacters[str]

Out[20]= {i, M, p, s}

Union sorts the list whereas DeleteDuplicates does not.

In[21]:= DeleteDuplicatesCharacters[str]

Out[21]= {M, i, s, p}

Here then is the function.

In[22]:= UniqueCharactersstr_String := DeleteDuplicatesCharacters[str]

Try it out on a more interesting example.

In[23]:= protein = ProteinData"PP2672"

Out[23]= MKSSEELQCLKQMEEELLFLKAGQGSQRARLTPPLPRALQGNFGAPALCGIWFAEHLHPAVGMPPNYNSSMLSLSPERT

ILSGGWSGKQTQQPVPPLRTLLLRSPFSLHKSSQPGSPKASQRIHPLFHSIPRSQLHSVLLGLPLLFIQTRPSPPA

QYGAQMPLRYICFGPNIFWGSKKPQKE

In[24]:= UniqueCharactersprotein

Out[24]= {M, K, S, E, L, Q, C, F, A, G, R, T, P, N, I, W, H, V, Y}

It even works in the degenerate case.

In[25]:= UniqueCharacters""

Out[25]= {}

The U.S. Census Bureau curates lists of common first and last names. This imports a list of 
common female first names.

4.

In[26]:= data =

Import

"http://www2.census.gov/topics/genealogy/1990surnames/dist.female.first",

"Table";

The names themselves are in the first column.

In[27]:= names = dataAll, 1;

RandomChoice[names, 12]

Out[28]= {CARISA, EXIE, MICHELINE, RENEE, BRETT,

INA, KATHE, ELYSE, ANDREE, LELIA, THOMASENA, KARRI}

The first letters on the keys on the phone pad are the following. We have input them here all 
uppercase as the names from our database are in that format. You may have to make adjust-
ments to the case (ToUpperCase, ToLowerCase) depending upon your sources.

In[29]:= firstLetters = "A", "D", "G", "J", "M", "P", "T", "W";

Here are the letters in one of the names in the database. 
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In[30]:= nChars = Characters"PAT"

Out[30]= {P, A, T}

This list of letters is a subset of the first letters from the phone pad.

In[31]:= SubsetQfirstLetters, nChars

Out[31]= True

Here then is a predicate that checks if a name consists of letters that are a subset of the phone 

pad first letters.

In[32]:= PhoneNameQname_String :=

ModulenChars, firstLetters = "A", "D", "G", "J", "M", "P", "T", "W",

nChars = Characters[name];
SubsetQfirstLetters, nChars



In[33]:= PhoneNameQ"PAT"

Out[33]= True

In[34]:= Length[names]

Out[34]= 4275

In[35]:= lis = Selectnames, PhoneNameQ

Out[35]= {ADA, PAM, PAT, MA, MAGDA, JADA, AMADA, AJA, TAM, PA, JA, TAMA, ADAM, TA, JAMA}

First convert a string to binary 8-bit.5.

In[36]:= text = IntegerDigitsToCharacterCode"Orange", 2, 8

Out[36]= {{0, 1, 0, 0, 1, 1, 1, 1}, {0, 1, 1, 1, 0, 0, 1, 0}, {0, 1, 1, 0, 0, 0, 0, 1},

{0, 1, 1, 0, 1, 1, 1, 0}, {0, 1, 1, 0, 0, 1, 1, 1}, {0, 1, 1, 0, 0, 1, 0, 1}}

Now we need an 8-bit key to do the encoding. It could be a random sequence of bits or it might 
be a letter in binary Ascii. For this example, our key will be the binary Ascii code for the letter K.

In[37]:= key = First@IntegerDigitsToCharacterCode"K", 2, 8

Out[37]= {0, 1, 0, 0, 1, 0, 1, 1}

Map the BitXor operator with this key across each of the binary representations of the letters in 

text.

In[38]:= lis = MapBitXor#, key &, text

Out[38]= {{0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 1, 1, 1, 0, 0, 1}, {0, 0, 1, 0, 1, 0, 1, 0},

{0, 0, 1, 0, 0, 1, 0, 1}, {0, 0, 1, 0, 1, 1, 0, 0}, {0, 0, 1, 0, 1, 1, 1, 0}}

Convert from binary to the decimal character codes.
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In[39]:= MapFromDigits[#, 2] &, lis

Out[39]= {4, 57, 42, 37, 44, 46}

Convert from character codes to Ascii letters. Although only five characters appear to be in the 

ciphertext below, there are in fact six characters; the first character is a nonprintable Ascii 
character with character code 4.

In[40]:= ciphertext = FromCharacterCode[%]

Out[40]= \.049*%,.

This puts the pieces together in a function.

In[41]:= XorEncodetext_String, key_String := Modulelis, bitText, bitKey,

bitText = IntegerDigitsToCharacterCode[text], 2, 8;

bitKey = First@IntegerDigitsToCharacterCodekey, 2, 8;

lis = MapBitXor#, bitKey &, bitText;

FromCharacterCodeMapFromDigits[#, 2] &, lis



In[42]:= XorEncode"Orange", "K"

Out[42]= \.049*%,.

Operations on strings: exercises7.2
Create a function PalindromeQ[���] that returns a value of True if its argument str is a palin-
drome, that is, if the string str is the same forward and backward. For example, the word refer is 

a palindrome.

1.

Several dozen words in an English dictionary contain two consecutive double letters: balloon, 
coffee, succeed, for example. Find all words in the dictionary that contain three consecutive 

double letters. This puzzle appeared on the Car Talk radio show (CarTalk 2007) .

2.

Given two strings of equal length, create a function StringTranspose that transposes the 

characters in the two strings and then joins them into a single string.
3.

In[1]:= StringTranspose"abc", "def"

Out[1]= adbecf

The built-in function StringRotateLeft rotates the characters in a string by a specified 

amount.
4.

In[2]:= StringRotateLeft"a quark for Muster Mark ", 8

Out[2]= for Muster Mark a quark

Perform the same operation without using StringRotateLeft.
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Create a function StringPermutations[���] that returns all permutations of the string str. For 
example:

5.

In[3]:= StringPermutations"ABC" // InputForm

Out[3]//InputForm= {ABC, ACB, BAC, BCA, CAB, CBA}

Rewrite the function SmarandacheWellin from Exercise 10 of Section 2.3 to instead use strings 

to construct these numbers. Test your implementation for speed against the function from 

Section 2.3 that uses numerical functions only.

6.

When developing algorithms that operate on large structures (for example, large systems of 
equations), it is often helpful to be able to create a set of unique symbols with which to work. 
Create a function MakeVarList that creates unique symbols. For example:

7.

In[4]:= MakeVarList[x, 8]

Out[4]= {x1, x2, x3, x4, x5, x6, x7, x8}

In[5]:= MakeVarList[var, {10, 15}]

Out[5]= {var10, var11, var12, var13, var14, var15}

Create a function StringTally that counts each unique character in a string and returns a list 
similar to that returned by the built-in Tally function. Include the option IgnoreCase with 

default value False. When set to True, your function should convert all characters to lower-
case before doing the tally.

8.

In[6]:= StringTally"One fish, two fish, red fish, blue fish"

Out[6]= {O, 1}, {n, 1}, {e, 3}, { , 7}, f, 4, {i, 4}, {s, 4}, {h, 4},

{,, 3}, {t, 1}, {w, 1}, {o, 1}, {r, 1}, {d, 1}, {b, 1}, {l, 1}, {u, 1}

In[7]:= StringTally"One fish, two fish, red fish, blue fish", IgnoreCase → True

Out[7]= {o, 2}, {n, 1}, {e, 3}, { , 7}, f, 4, {i, 4}, {s, 4}, {h, 4},

{,, 3}, {t, 1}, {w, 1}, {r, 1}, {d, 1}, {b, 1}, {l, 1}, {u, 1}

When done, import a sample text and do a frequency analysis on the letters in that text. Letter 
frequency analysis can be used to spot transposition ciphers in encoded messages as the 

frequency of the letters is unchanged in such simple encoding schemes.

Exercise 9 in Section 7.4 asks you to extend this function to include an option to specify if 
punctuation and digits should be included.

Generalize the Caesar cipher so that it encodes by shifting n places to the right. Include the 

space character in the alphabet.
9.

A mixed-alphabet cipher is created by first writing a keyword followed by the remaining letters 

of the alphabet and then using this key to encode the text. For example, if the keyword is 

django, the encoding alphabet would be

10.
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djangobcefhiklmpqrstuvwxyz

So, a is replaced with d, b is replaced with j, c is replaced with a, and so on. As an example, the 

text

the sheik of araby 

would be encoded as

tcg scgeh mo drdjy

Implement this cipher and go one step further to output the ciphertext in blocks of length five, 
omitting spaces and punctuation.

Modify the alphabet permutation cipher so that, instead of being based on single letters, it is 

based on adjacent pairs of letters. The single letter cipher has 26! permutations:
11.

26 ! = 403 291 461 126 605 635 584 000 000 

The adjacent pairs cipher will have 262 ! = 1.883707684133810× 101621
 permutations.

Create a function StringPad[���, {�}] that pads the end of a string with n whitespace 

characters. Then create a second rule StringPad[���, �] that pads the string out to length n. If 
the input string has length greater than n, issue a warning message. Finally, mirroring the 

argument structure for the built-in PadLeft, create a third rule StringPad[���, �, �] that 
pads with n whitespaces at the front and m whitespaces at the end of the string.

12.

Fibonacci words are formed in a similar manner as Fibonacci numbers except, instead of 
adding the previous two elements, Fibonacci words concatenate the previous two elements 

(Knuth 1997) . Starting with the two strings “0” and “01,” create a function FibonacciWord[�] 

to generate the nth Fibonacci word. This can be generalized to start with any two strings, say 

“a” and “b.” Fibonacci words are examples of a well-known object from combinatorics, Stur-
mian words.

13.

In Exercise 8, Section 5.1 a function was created to generate n-grams from a given alphabet. For 
example, that function could be used to create all bigrams (words of length two) from the 

nucleotide alphabet {" G ", " C ", " A ", " T "}.

14.

Import a nucleotide sequence such as the human mitochondrial genome hsMito below and 

then create a histogram (as in Figure 7.2) showing the frequency of each of the sixteen possible 

bigrams AA, AC, AT, etc.

In[8]:= hsMito = First@Import"ExampleData/mitochondrion.fa.gz" // Short

Out[8]//Short= GATCACAGGTCTATCACCCT… CTTAAATAAGACATCACGATG
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Distribution of nucleotide words of length two in Homo sapiens mitochondria genome.Figure 7.2.
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Solutions7.2
Here is the function that checks if a string is a palindrome.1.

In[1]:= PalindromeQstr_String := StringReverse[str] == str

In[2]:= PalindromeQ"mood"

Out[2]= False

In[3]:= PalindromeQ"PoP"

Out[3]= True

Get all words in the dictionary that comes with Mathematica.

In[4]:= words = DictionaryLookup[];

Select those that pass the PalindromeQ test.

In[5]:= Selectwords, PalindromeQ

Out[5]= a, aha, aka, bib, bob, boob, bub, CFC, civic, dad, deed, deified, did, dud, DVD,

eke, ere, eve, ewe, eye, gag, gig, huh, I, kayak, kook, level, ma'am, madam, mam,

MGM, minim, mom, mum, nan, non, noon, nun, oho, pap, peep, pep, pip, poop, pop,

pup, radar, redder, refer, repaper, reviver, rotor, sagas, sees, seres, sexes,

shahs, sis, solos, SOS, stats, stets, tat, tenet, TNT, toot, tot, tut, wow, WWW

An argument that is a number can be converted to a string and then the previous rule is called.

In[6]:= PalindromeQ[num_Integer] := PalindromeQToString[num]

In[7]:= PalindromeQ[12522521]

Out[7]= True

First, we get the words in the dictionary.2.

In[8]:= words = DictionaryLookup[];

Here is the string pattern we are looking for: a letter (patten named x) repeated once, followed 

by a letter (pattern named y) repeated once, followed by another letter repeated (pattern named 

z). The pattern can be passed directly to DictionaryLookup.
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In[9]:= DictionaryLookup[___ ~~ x_ ~~ x_ ~~ y_ ~~ y_ ~~ z_ ~~ z_ ~~ ___]

Out[9]= {bookkeeper, bookkeepers, bookkeeping}

First, get the characters from the two strings.3.

In[10]:= Withstr1 = "abc", str2 = "def",

Characters[{str1, str2}]

Out[10]= {a, b, c}, d, e, f

Then perform the transpose on these two lists.

In[11]:= Transpose[%]

Out[11]= {a, d}, {b, e}, c, f

StringJoin automatically flattens the sublists.

In[12]:= StringJoin[%]

Out[12]= adbecf

In[13]:= ClearStringTranspose;

StringTranspose[str1_, str2_] :=

StringJoinTransposeCharacters[{str1, str2}]

In[15]:= StringTranspose"abc", "def"

Out[15]= adbecf

Transpose will, helpfully, return an error message if the two strings are of unequal length.

In[16]:= StringTranspose"abcd", "efg"

Transpose::nmtx : The �rst two levels of {{a, b, c, d}, {e, f, g}} cannot be transposed. 

StringJoin::string :

String expected at position 1 in StringJoinTranspose{{a, b, c, d}, {e, f, g}}. 

Out[16]= StringJoinTranspose{a, b, c, d}, e, f, g

Use the argument structure of RotateLeft.4.

In[17]:= stringRotateLeft[str_, n_: 1] := StringJoinRotateLeftCharacters[str], n

In[18]:= stringRotateLeft"squeamish ossifrage"

Out[18]= queamish ossifrages

In[19]:= stringRotateLeft"squeamish ossifrage", 5

Out[19]= mish ossifragesquea

Here is a list of the characters in a sample string.5.

In[20]:= chars = Characters"cold"

Out[20]= {c, o, l, d}
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And here are the permutations of this list of characters.

In[21]:= Permutations[%]

Out[21]= {{c, o, l, d}, {c, o, d, l}, {c, l, o, d}, {c, l, d, o}, {c, d, o, l}, {c, d, l, o},

{o, c, l, d}, {o, c, d, l}, {o, l, c, d}, {o, l, d, c}, {o, d, c, l}, {o, d, l, c},

{l, c, o, d}, {l, c, d, o}, {l, o, c, d}, {l, o, d, c}, {l, d, c, o}, {l, d, o, c},

{d, c, o, l}, {d, c, l, o}, {d, o, c, l}, {d, o, l, c}, {d, l, c, o}, {d, l, o, c}}

Finally, join each set of characters with StringJoin.

In[22]:= MapStringJoin, %

Out[22]= {cold, codl, clod, cldo, cdol, cdlo, ocld, ocdl, olcd, oldc, odcl, odlc,

lcod, lcdo, locd, lodc, ldco, ldoc, dcol, dclo, docl, dolc, dlco, dloc}

And here is the function putting these pieces together.

In[23]:= StringPermutationsstr_String := MapStringJoin, PermutationsCharacters[str]

In[24]:= StringPermutations"ACGT"

Out[24]= {ACGT, ACTG, AGCT, AGTC, ATCG, ATGC, CAGT, CATG, CGAT, CGTA, CTAG, CTGA,

GACT, GATC, GCAT, GCTA, GTAC, GTCA, TACG, TAGC, TCAG, TCGA, TGAC, TGCA}

The approach here, in comparison with that in Exercise 10 in Section 2.3, is to convert the 

integers to strings and operate on the strings. When done, we convert the string back to an 

integer. To start, here are the first few primes.

6.

In[25]:= Prime[Range[10]]

Out[25]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

Convert to strings and then concatenate.

In[26]:= MapToString, % // InputForm

Out[26]//InputForm= {��������������������������������������������������
�����}

In[27]:= StringJoin[%] // InputForm

Out[27]//InputForm= ������������������

Finally, convert the above string to a number.

In[28]:= ToExpression[%] // InputForm

Out[28]//InputForm= ����������������

In[29]:= Prime[Range[12]]

Out[29]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}

In[30]:= NumberJoin[{x__}] := ToExpressionStringJoinMapToString, {x}

In[31]:= SmarandacheWellin2n_Integer ?Positive := NumberJoinPrime[Range[n]]
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In[32]:= SmarandacheWellin2[10]

Out[32]= 2357111317192329

Compared with the solution from Section 2.3, the string-based solution is a bit faster, even with 

all the conversion from numbers to strings and back.

In[33]:= SmarandacheWellinn_Integer ?Positive :=

FromDigitsFlattenIntegerDigits@TablePrimei, i, n

In[34]:= TimingSmarandacheWellin[50000];

Out[34]= {0.228937, Null}

In[35]:= TimingSmarandacheWellin2[50000];

Out[35]= {0.136362, Null}

In[36]:= SmarandacheWellin[50000] == SmarandacheWellin2[50000]

Out[36]= True

Although there is a built-in function, Unique, that does this, it has some limitations for this 

particular task. 
7.

In[37]:= TableUnique"x", {8}

Out[37]= {x55, x56, x57, x58, x59, x60, x61, x62}

One potential limitation of Unique is that it uses the first unused symbol of a particular form. It 
does this to avoid overwriting existing symbols. 

In[38]:= TableUnique"x", {8}

Out[38]= {x63, x64, x65, x66, x67, x68, x69, x70}

However, if you want to explicitly create a list of indexed symbols with a set of specific indices, 
it is useful to create a different function. First, note that a string can be converted to a symbol 
using ToExpression or by wrapping the string in Symbol.

In[39]:= Head"x1"

Out[39]= String

In[40]:= ToExpression"x1" // Head

Out[40]= Symbol

In[41]:= Symbol"x1" // Head

Out[41]= Symbol

StringJoin is used to concatenate strings. So, let us concatenate the variable with the index, 
first with one number and then with a range of numbers.
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In[42]:= StringJoin"x", "8" // FullForm

Out[42]//FullForm= "x8"

In[43]:= ToExpressionMap"x" <> ToString[#] &, Range[12]

Out[43]= {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12}

Put all the pieces of code together.

In[44]:= MakeVarListx_Symbol, n_Integer :=

ToExpressionMapToString[x] <> ToString[#] &, Range[n]

Let us create an additional rule for this function that takes a range specification as its second 

argument.

In[45]:= MakeVarListx_Symbol, {n_Integer, m_Integer} :=

ToExpressionMapToString[x] <> ToString[#] &, Range[n, m]

In[46]:= MakeVarList[tmp, {20, 30}]

Out[46]= {tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27, tmp28, tmp29, tmp30}

Note that we have not been too careful about argument checking. 

In[47]:= MakeVarList[tmp, {-2, 2}]

Out[47]= {-2 + tmp, -1 + tmp, tmp0, tmp1, tmp2}

Using a negative index is a problem when the string is converted using ToExpression.

In[48]:= Clear[x]

In[49]:= ToString[x] <> ToString[-2] // FullForm

Out[49]//FullForm= "x-2"

In[50]:= ToExpression[%] // FullForm

Out[50]//FullForm= Plus[-2, x]

Argument checking with a different pattern corrects this problem.

In[51]:= ClearMakeVarList

In[52]:= MakeVarListx_Symbol, n_Integer ?Positive, m_Integer ?Positive :=

ToExpressionMapToString[x] <> ToString[#] &, Range[n, m]

In[53]:= MakeVarList[tmp, {2, 4}]

Out[53]= {tmp2, tmp3, tmp4}

Starting with one word, first get a list of the characters in the lowercase version of that word:8.

In[54]:= str = "Mississippi";

Characters[ToLowerCase@str]

Out[55]= {m, i, s, s, i, s, s, i, p, p, i}
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In[56]:= Tally[%]

Out[56]= {{m, 1}, {i, 4}, {s, 4}, {p, 2}}

In[57]:= StringTally[str_] := TallyCharacters[ToLowerCase@str]

To try this out on a large text, first import Lewis Caroll’s Alice’s Adventures in Wonderland from 

gutenberg.org.

In[58]:= alice = Import"http://www.gutenberg.org/ebooks/28885.txt.utf-8", "Text";

In[59]:= StringTallyalice // Sort

Out[59]= {!, 457}, {@, 2}, {#, 1}, {%, 1}, {&, 2}, {*, 48}, {(, 89},

{), 89}, {_, 514}, {-, 884}, {[, 41}, {], 41}, {., 1240}, {,, 2591},

{;, 198}, {", 2307}, {?, 212}, {', 802}, {/, 31}, {:, 277}, {

, 4045}, { , 31914}, {0, 27}, {1, 77}, {2, 23}, {3, 22}, {4, 18}, {5, 21},

{6, 16}, {7, 9}, {8, 31}, {9, 16}, {a, 10191}, {b, 1806}, {c, 3114},

{d, 5678}, {e, 15877}, f, 2446, {g, 3029}, {h, 8102}, {i, 8949},

{j, 238}, {k, 1314}, {l, 5456}, {m, 2546}, {n, 8358}, {o, 9775},

{p, 2051}, {q, 237}, {r, 6881}, {s, 7498}, {t, 12637}, {u, 4134}, ù, 1,

{v, 1000}, {w, 3049}, {x, 185}, {y, 2672}, {z, 79}, {$, 2}, {·, 13}

Let’s sort on the characters, the first element in each sublist; then take the twenty-six pairs that 
give the Ascii letter tallies.

In[60]:= counts = TakeSortStringTallyalice, -29 ;; -3

Out[60]= {a, 10191}, {b, 1806}, {c, 3114}, {d, 5678}, {e, 15877}, f, 2446,

{g, 3029}, {h, 8102}, {i, 8949}, {j, 238}, {k, 1314}, {l, 5456}, {m, 2546},

{n, 8358}, {o, 9775}, {p, 2051}, {q, 237}, {r, 6881}, {s, 7498}, {t, 12637},

{u, 4134}, ù, 1, {v, 1000}, {w, 3049}, {x, 185}, {y, 2672}, {z, 79}

Here is a bar chart of the tallies for each of these letters.

In[61]:= BarChartcountsAll, 2, ChartLabels → countsAll, 1, ChartStyle → 24

Out[61]=

a b c d e f g h i j k l m n o p q r s t u ù v w x y z
0

5000

10000

15000

This is a simple modification of the code given in the text. But first we add the space character to 

the alphabet.
9.
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In[62]:= ToCharacterCode" "

Out[62]= {32}

In[63]:= alphabet = JoinFromCharacterCode[32], CharacterRange"a", "z"

Out[63]=  , a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

Giving coderules an argument n will allow you to shift an arbitrary number of places. We give n 

a default value of 1 so that omitting the argument will default to the value n = 1.

In[64]:= coderules[n_: 1] := Threadalphabet → RotateRightalphabet, n

In[65]:= decoderules[n_] := MapReverse, coderules[n]

In[66]:= codestr_String, n_ := ApplyStringJoin, Characters[str] /. coderules[n]

In[67]:= decodestr_String, n_ := ApplyStringJoin, Characters[str] /. decoderules[n]

In[68]:= code"squeamish ossifrage", 5

Out[68]= nlp whdncvjnndamwb

In[69]:= decode[%, 5]

Out[69]= squeamish ossifrage

First, here is the list of characters from the plaintext alphabet.10.

In[70]:= PlainAlphabet = CharacterRange"a", "z"

Out[70]= a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

Here is our key, django:

In[71]:= key = "django"

Out[71]= django

And here is the cipher text alphabet, prepending the key:

In[72]:= StringJoinCharacters@key, ComplementPlainAlphabet, Characters@key

Out[72]= djangobcefhiklmpqrstuvwxyz

Make a reusable function.

In[73]:= CipherAlphabetkey_String := Withk = Characterskey,

StringJoink, ComplementCharacterRange"a", "z", k

Generate the coding rules:

In[74]:= codeRules = ThreadPlainAlphabet → Characters@CipherAlphabet"django"

Out[74]= a → d, b → j, c → a, d → n, e → g, f → o, g → b, h → c, i → e, j → f, k → h, l → i, m → k,

n → l, o → m, p → p, q → q, r → r, s → s, t → t, u → u, v → v, w → w, x → x, y → y, z → z

The encoding function follows that in the text of this section.
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In[75]:= encodestr_String := StringJoinCharacters[str] /. codeRules

In[76]:= encode"the sheik of araby"

Out[76]= tcg scgeh mo drdjy

Omit spaces and punctuation and output in blocks of length 5 (using stringPartition from 

Section 7.5).

In[77]:= stringPartitionstr_String, seq__ :=

MapStringJoin, PartitionCharacters[str], seq

In[78]:= StringSplitencode"the sheik of araby", RegularExpression"\\W+"

Out[78]= {tcg, scgeh, mo, drdjy}

In[79]:= StringJoinRifflestringPartitionStringJoin[%], 5, 5, 1, "", " "

Out[79]= tcgsc gehmo drdjy

Finally, this puts all these pieces together.

In[80]:= Clearencode;

encodestr_String, key_String, blocksize_: 5 :=

ModuleCipherAlphabet, codeRules, s1, s2, s3,

CipherAlphabetk_ :=

StringJoinCharactersk , ComplementCharacterRange"a", "z",

Charactersk ;

codeRules =

ThreadCharacterRange"a", "z" → Characters@CipherAlphabetkey;

s1 = StringJoinCharacters[str] /. codeRules;

s2 = StringSplits1, RegularExpression"\\W+";

s3 = stringPartitionStringJoin[s2], blocksize, blocksize, 1, "";

StringJoinRiffles3, " "

In[82]:= encode"the sheik of araby", "django", 3

Out[82]= tcg scg ehm odr djy

(* solution to appear *)11.
First, using StringJoin, put n spaces at the end of the string.12.

In[83]:= StringPadstr_String, {n_} := StringJoinstr, Table" ", {n}

In[84]:= StringPad"ciao", {5} // FullForm

Out[84]//FullForm= "ciao "

For the second rule, first create a message that will be issued if the string is longer than the pad 

length, n.
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In[85]:= StringPad::badlen =

"Pad length `1` must be greater than the length of string `2`.";

In[86]:= StringPadstr_String, n_ :=

Withlen = StringLength[str],

Iflen > n, MessageStringPad::badlen, n, str, StringPadstr, n - len

In[87]:= StringPad"ciao", 8 // FullForm

Out[87]//FullForm= "ciao "

In[88]:= StringPad"ciao", 3

StringPad::badlen : Pad length 3 must be greater than the length of string ciao.

Finally, here is a rule for padding at the beginning and end of the string.

In[89]:= StringPadstr_String, n_, m_ :=

StringJoinTable" ", {n}, str, Table" ", {m}

In[90]:= StringPad"ciao", 3, 8 // FullForm

Out[90]//FullForm= " ciao "

Note, StringInsert could also be used.

In[91]:= StringInsert"ciao", " ", {1, -1} // FullForm

Out[91]//FullForm= " ciao "

In[92]:= StringPad2str_String, n_, m_ :=

StringInsertstr, " ", JoinTable[1, {n}], Table[-1, {m}]

In[93]:= StringPad2"ciao", 3, 8 // FullForm

Out[93]//FullForm= " ciao "

The definition looks very similar to that for Fibonacci numbers except that the first two 

values are strings and the operation is string concatenation (StringJoin).
13.

In[94]:= FibonacciWord[1] = "0";

FibonacciWord[2] = "01";

In[96]:= FibonacciWord[n_] := FibonacciWord[n - 1] <> FibonacciWord[n - 2]

In[97]:= FibonacciWord[12]

Out[97]= 0100101001001010010100100101001001010010100100101001010010010100100101001010010

0101001001010010100100101001010010010100100101001010010010100101001001010010

0101001010010010100100101001010010010100101001001010010010100101001001010010

01

There lots of interesting things that you can discover regarding Fibonacci words.

In[98]:= TableStringCountFibonacciWordi, "1", i, 1, 15

Out[98]= {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377}
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If you were generating very large Fibonacci words, it would be advisable to use dynamic 

programming as described in Section 5.3 to reduce the scope of the recursion.

Start by importing the example FASTA file containing the mitochondrial human genome 

sequence.
14.

In[99]:= hsMito = First@Import"ExampleData/mitochondrion.fa.gz";

Here is the NGrams function:

In[100]:= NGramsalphabet : __String, n_Integer ?Positive :=

FlattenOuterStringJoin, ApplySequence, Tablealphabet, {n}

This gives all possible bigrams from the DNA alphabet.

In[101]:= bigrams = NGrams"A", "T", "G", "C", 2

Out[101]= {AA, AT, AG, AC, TA, TT, TG, TC, GA, GT, GG, GC, CA, CT, CG, CC}

This finds all the above bigrams in the sequence.

In[102]:= data = StringCaseshsMito, Alternatives @@ bigrams, Overlaps → True;

In[103]:= RandomSampledata, 12

Out[103]= {TC, CC, GG, GG, AT, CC, AC, CT, CC, AC, AA, TC}

And here is the histogram plot.

In[104]:= Histogramdata /. Threadbigrams → RangeLengthbigrams, Automatic,

"PDF", ChartLabels → None, PlacedStyle#, "SR", 6 & /@ bigrams, Bottom,

Ticks → None, Automatic, AspectRatio → .4, ChartStyle → "Pastel"

Out[104]=
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String patterns: exercises7.3
Given a list of words, some of which start with uppercase characters, convert them all to words 

in which the first character is lowercase. You can use the words in the dictionary as a good 

sample set.

1.

Create a function Palindromes[�] that finds all palindromic words of length n in the dictio-
nary. For example, kayak is a five-letter palindrome.

2.
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Modify the listSort function from Section 4.3 by creating another rule that can be used to 

sort lists of string characters.
3.

Find the number of unique words in a body of text such as Alice in Wonderland. This text can be 

imported from ExampleData:
4.

In[1]:= ExampleData"Text", "AliceInWonderland";

After splitting the text into words, convert all uppercase characters to lowercase so that you 

count words such as hare and Hare as the same word.

Another important task in computational linguistics is comparing the complexity of text-
based materials such as newspapers or school texts. There are many measures that you might 
use: the length of the text, average sentence length, levels of reasoning required, word fre-
quency, and many more. One metric is word length. Use the built-in function TextWords (new 

in Mathematica 10.1) to generate a histogram like that in Figure 7.3 showing the word-length 

distribution for a text.

5.

Word-length distribution for Alice in Wonderland.Figure 7.3.
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Then compare the word-length distribution for several different text sources such as those 

available in ExampleData[" Text "] or on gutenberg.org.

Repeat Exercise 5 but use sentence length instead of word length as the measure.6.

Semordnilaps (“palindromes” spelled backwards) are words that, when reversed, also spell a 

word. For example, live and stressed are semordnilaps because reversed, they still spell words: evil 
and desserts. Find all semordnilaps in the dictionary.

7.
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Solutions7.3
We will work with a small sample of words from the dictionary.1.

In[1]:= SeedRandom[0];

words = DictionaryLookup[];

sample = RandomSamplewords, 12

Out[3]= unaccustomed, Godhead, Jutland, dilated, observe, matchplay,

wintergreen, clans, hobgoblin, rampantly, disinheriting, performances

StringReplace operates on any words that match the pattern and leave those that do not 
match unchanged.

In[4]:= StringReplacesample, f_?UpperCaseQ ~~ r___ ⧴ ToLowerCasef  ~~ r

Out[4]= unaccustomed, godhead, jutland, dilated, observe, matchplay,

wintergreen, clans, hobgoblin, rampantly, disinheriting, performances

But there is a function built in that does this directly.

In[5]:= ?Decapitalize

Decapitalize[string] yields a string in
which the �rst character has been made lower case. 

In[6]:= Decapitalizesample

Out[6]= unaccustomed, godhead, jutland, dilated, observe, matchplay,

wintergreen, clans, hobgoblin, rampantly, disinheriting, performances

You can do a dictionary lookup with a pattern that tests whether the word is palindromic. Then 

find all palindromic words of a given length. Note the need for BlankSequence (__) as the 

simple pattern _ would only find words consisting of one character.

2.

In[7]:= Palindromeslen_Integer :=

DictionaryLookupw__ /; w == StringReverse[w] && StringLength[w]⩵ len

We also add a rule to return all palindromes of any length.

In[8]:= Palindromes[] := DictionaryLookupw__ /; w == StringReverse[w] 

In[9]:= Palindromes[7]

Out[9]= deified, repaper, reviver

In[10]:= Palindromes[]

Out[10]= a, aha, aka, bib, bob, boob, bub, CFC, civic, dad, deed, deified, did, dud, DVD,

eke, ere, eve, ewe, eye, gag, gig, huh, I, kayak, kook, level, ma'am, madam, mam,

MGM, minim, mom, mum, nan, non, noon, nun, oho, pap, peep, pep, pip, poop, pop,

pup, radar, redder, refer, repaper, reviver, rotor, sagas, sees, seres, sexes,

shahs, sis, solos, SOS, stats, stets, tat, tenet, TNT, toot, tot, tut, wow, WWW
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A simple change to the rule from Section 4.3 will allow for lists of string characters. Here we just 
add a rule to the original rule for sorting lists of numbers. As written, this only works for lists of 
lowercase letters.

3.

In[11]:= listSort = 

x___, a_?StringQ, b_?StringQ, y___ ⧴

x, b, a, y /; FirstToCharacterCodeb < FirstToCharacterCode[a],

x___, a_?NumericQ, b_?NumericQ, y___ ⧴ x, b, a, y /; b < a

;

In[12]:= {82, 5, 29, 98, 98, 43, 90, 11, 52, 46, 38, 48} //. listSort

Out[12]= {5, 11, 29, 38, 43, 46, 48, 52, 82, 90, 98, 98}

In[13]:= RandomSample@CharacterRange"a", "z"

Out[13]= h, t, x, b, v, g, n, w, s, m, k, o, f, l, i, y, q, c, a, p, e, j, u, r, d, z

In[14]:= strList = "i", "w", "z", "p", "a", "s", "n", "l", "h", "q", "r", "d", "c",

"f", "o", "y", "j", "u", "x", "t", "m", "b", "g", "e", "k", "v";

In[15]:= strList //. listSort

Out[15]= a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

First import some sample text.4.

In[16]:= text = ExampleData"Text", "AliceInWonderland";

To split into words, use a similar construction to that in this section.

In[17]:= words = StringSplittext, Characters":;\"',.?/\-` *" ..;

Shortwords, 4

Out[18]//Short= I, DOWN, THE, RABBIT, HOLE, Alice, was, beginning, to, get, very,

9949, as, well, she, might, what, a, wonderful, dream, it, had, been

Get the total number of (nonunique) words.

In[19]:= Lengthwords

Out[19]= 9971

Convert uppercase to lowercase.

In[20]:= lcwords = ToLowerCasewords;

Shortlcwords, 4

Out[21]//Short= i, down, the, rabbit, hole, alice, was, beginning, to, get, very,

9949, as, well, she, might, what, a, wonderful, dream, it, had, been

Finally, count the number of unique words.
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In[22]:= DeleteDuplicateslcwords // Length

Out[22]= 1643

In fact, splitting words using a list of characters as we have done here is not terribly robust. A 

better approach uses regular expressions (introduced in Section 7.4):

In[23]:= words = StringSplittext, RegularExpression"\\W+";

Lengthwords

Out[24]= 9969

In[25]:= lcwords = StringReplacewords,

RegularExpression"([A-Z])" ⧴ ToLowerCase"$1";

DeleteDuplicateslcwords // Length

Out[26]= 1528

Using TextWords, this can be done directly, although the count is a bit different due to slightly 

different assumptions between what we used in StringSplit and what TextWords assumes.

In[27]:= words = DeleteDuplicates@ToLowerCaseTextWords[text];

Lengthwords

Out[28]= 1549

We will work with the following text: A Portrait of the Artist as a Young Man, by James Joyce 

(available at Project Gutenberg). We use TextWords to get a list of the words and then use 

StringLength on these words to get the distribution of word lengths.

5.

Some postprocessing with Stringtake is needed to remove metadata at the beginning and at 
the end of the file.

In[29]:= joyce = StringTakeImport"http://www.gutenberg.org/cache/epub/4217/pg4217.txt",

"Text", 688 ;; -18843;

StringTakejoyce, {74, 164}

Out[30]= as animum dimittit in artes."

Ovid, Metamorphoses, VIII., 18._

</p>

Chapter 1

Once upon
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In[31]:= words = TextWordsjoyce;

HistogramStringLengthwords, Automatic, "PDF", Frame → True,

FrameLabel → "Word length", "Frequency",

FrameTicks → Automatic, None, Automatic, None

Out[32]=
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Here we use TextSentences to split the text into discrete sentences and then map WordCount 

over the list of sentences.
6.

In[33]:= sentences = TextSentencesjoyce;

In[34]:= HistogramMapWordCount, sentences, Automatic, "PDF",

Frame → True, FrameLabel → "Sentence length", "Frequency",

FrameTicks → Automatic, None, Automatic, None

Out[34]=
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First, here is a list of all words in the dictionary.7.

In[35]:= words = DictionaryLookup[__];

And this reverses those words.

In[36]:= revwords = StringReversewords;

RandomSamplerevwords, 12

Out[37]= gniniatniam, ezilaitini, ecilprus, etadrohc, sriahchsup,

aerdnA, srepod, dedrof, eimmiJ, decudorper, dnuorgwohs, straehteews

Finally, here are all those reversed words that are in the dictionary.
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In[38]:= Intersectionwords, revwords

Out[38]= a, abut, agar, ah, aha, aka, am, animal, are, at, ate, auks, avid, bad, bag, ban,

bard, bat, bats, bed, bib, bin, bob, bod, bog, bonk, boob, boy, brag, bub, bud,

bun, buns, bur, burg, bus, but, buts, cam, CFC, civic, cod, dab, dad, dag,

dam, dart, deb, debut, decaf, decal, deed, deem, deep, deeps, deer, deffer,

deified, deliver, denier, denies, denim, deres, desserts, devil, dew, dial,

dialer, diaper, did, dim, diva, dob, doc, dog, don, doom, door, dos, drab,

draw, drawer, draws, dray, dual, dub, dud, DVD, edit, eel, eh, eke, em, emir,

emit, er, era, ere, ergo, eta, etas, eve, evil, eviler, ewe, eye, faced, fer,

fires, flog, flow, gab, gad, gag, gal, gals, gar, garb, gas, gel, gem, gig,

girt, gnat, gnus, gob, god, golf, got, grub, gulp, gulper, gum, gums, guns,

gut, ha, hap, he, ho, hoop, huh, I, it, jar, kayak, keel, keels, keep, knits,

knob, know, KO, kook, laced, lag, lager, laid, lair, lamina, lap, laud, lee,

leek, leer, leg, leper, level, lever, liar, lit, live, lived, loop, loops,

loot, looter, loots, lop, ma, ma'am, mac, macs, mad, madam, mam, maps, mar,

mart, mat, maws, may, me, meed, meet, meg, MGM, mid, mils, mined, minim, mom,

mood, moor, mop, mot, mu, mug, mum, nab, nan, nap, naps, net, new, nib, nip,

nips, nit, no, nod, non, noon, not, now, nub, nun, nus, nut, nuts, ogre, oh,

oho, OK, on, oohs, pacer, pah, pal, pals, pan, pans, pap, par, part, parts,

pas, pat, paws, pay, peed, peek, peels, peep, pees, pep, per, perts, pets, pin,

pins, pip, pis, pit, plug, pol, pols, pom, pooh, pool, pools, poop, pop, ports,

pot, pots, prat, pup, pus, radar, rag, raga, rail, raj, ram, rap, raps, rat,

rats, raw, re, rebut, recap, recaps, redder, redraw, reed, reel, ref, refer,

reffed, regal, reined, relaid, relive, remit, rennet, rep, repaid, repaper,

repel, replug, retool, retros, revel, reviled, reviver, reward, rial, rime,

rood, room, rot, rotor, rub, sag, sagas, sap, saps, sate, saw, scam, seep,

sees, seined, sered, seres, serif, sexes, shahs, shoo, sip, sis, six, skua,

slag, slap, sleek, sleep, sleets, slim, sloop, sloops, slop, smart, smug, smut,

snap, snaps, snip, snips, snit, snoops, snot, snub, snug, sod, solos, sorter,

SOS, spacer, spam, span, spans, spar, spas, spat, spay, speed, spin, spins,

spit, spool, spools, spoons, sports, spot, spots, sprat, stab, star, stats,

steels, step, stets, stew, stink, stool, stop, stops, stows, strap, straw,

strep, stressed, strop, strops, stub, stun, sub, sun, sung, sup, swam, swap,

sward, sway, swot, swots, ta, tab, tam, tang, tap, taps, tar, tarp, tarps,

tat, teem, ten, tenet, tenner, ti, tide, til, time, timer, tin, tins, tip,

tips, TNT, tog, tom, ton, tons, tool, toot, top, tops, tor, tort, tot, tow,

tows, trad, tram, trams, trap, trig, trot, trow, tub, tuba, tubed, tuber, tug,

tums, tun, tut, um, war, ward, warder, warts, was, way, wed, wen, wets, wolf,

won, wonk, wort, wot, wow, WWW, xis, yam, yap, yaps, yard, yaw, yaws, yob

A word of warning: if you tried to do this by comparing every word in the dictionary with every 

reversed word in the dictionary, the number of comparisons would be extremely large and bog 

down the computation.
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In[39]:= TimeConstrained

DictionaryLookupword__ /; MemberQwords, StringReverseword,

20

Out[39]= $Aborted

Regular expressions: exercises7.4
Use regular expressions to count the occurrences of the vowels (a, e, i, o, u) in the following text:1.

In[1]:= text = "How many vowels do I have?";

Using regular expressions, find all words in the textAlice in Wonderland that contain the letter q.
Then find all words that contain either q orQ. The text can be imported with the following:

2.

In[2]:= words = TextWordsExampleData"Text", "AliceInWonderland";

Takewords, 11

Out[3]= {I, DOWN, THE, RABBIT-HOLE, Alice, was, beginning, to, get, very, tired}

Rewrite the genomic example in Section 7.3 to use regular expressions instead of string pat-
terns to find all occurrences of the sequence AA��������T. Here is the example using general
string patterns:

3.

In[4]:= gene = GenomeData"IGHV357";

StringCasesgene, "AA" ~~ _ ~~ "T"

Out[5]= {AAGT, AAGT, AAAT, AAGT, AAAT, AAAT}

Rewrite the web page example in Section 7.3 to use regular expressions to find all phone
numbers on the page, that is, expressions of the form nnn-nnn-nnnn. Modify accordingly for
other web pages and phone numbers formatted for other regions.

4.

Use a regular expression to find all words given by DictionaryLookup that consist only of the
letters a, e, i, o, u, and y in any order with any number of repetitions of the letters.

5.

Use regular expressions to rewrite the solution to Exercise 2 in Section 7.2 to find all words
containing three double letter repeats in a row.

6.

The basic rules for pluralizing words in the English language are roughly, as follows: if a noun
ends in ch, s, sh, j, x, or z, it is made plural by adding es to the end. If the noun ends in y and is
preceded by a consonant, replace the ywith ies. If the word ends in ium, replace with ia
(The Chicago Manual of Style 2010) . Of course, there are manymore rules and evenmore
exceptions, but you can implement a basic set of rules to convert singular words to plural
based on these rules and then try them out on the following list of words:

7.

In[6]:= words = "building", "finch", "fix", "ratio", "envy", "boy", "baby",

"faculty", "honorarium";

A common task in transcribing audio is cleaning up text, removing certain phrases such as um,
er, and so on, and other tags that are used to make a note of some sort. For example, the

8.
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following transcription of a lecture from the University of Warwick, Centre for Applied 

Linguistics (Base Corpus) contains quite a few fragments that should be removed, including 

newline characters, parenthetical remarks, and nonwords. Use StringReplace with the 

appropriate rules to clean this text and then apply your code to a larger corpus.

In[7]:= text =

"okay well er today we're er going to be carrying on with the er French

\nRevolution you may have noticed i was sort of getting rather er

enthusiastic \nand carried away at the end of the last one i was sort

of almost er like i sort \nof started at the beginning about someone

standing on a coffee table and s-, \nshouting to arms citizens as if i

was going to sort of leap up on the desk and \nsay to arms let's storm

the Rootes Social Building [laughter] or er let's go \nout arm in arm

singing the Marseillaise or something er like that";

Modify the solution to Exercise 8 in Section 7.2 so that StringTally includes an option 

IncludeCharacters that, by default, has value LetterCharacters, which should mean that 
StringTally only tallies letters; that is, excludes non-letter characters from the tally. Other 
values for IncludeCharacters could be All (include all characters in the tally), 
WordCharacters (include only word characters), PunctuationOnly (include only 

punctuation).

9.

In web searches and certain problems in natural language processing, it is often useful to filter 
out certain words prior to performing a search or processing of text to help with the perfor-
mance of the algorithms. Words such as and, the, and is are commonly referred to as stop words 
for this purpose. Lists of stop words are almost always created manually based on the con-
straints of a particular application. Sample lists of stop words are also commonly available 

across the Internet. For our purposes here, we will use one such list included with the materials 

for this book.

10.

In[8]:= stopwords = Rest@Import"StopWords.dat", "List";

RandomSamplestopwords, 12

Out[9]= {who'll, recently, ninety, be, no, taking, isn't, unless, what, soon, name, beside}

Using the above list of stop words, or any other that you are interested in, first filter some 

sample “search phrases” and then remove all stop words from a larger piece of text. If your 
function was called FilterText, it might work like this:

In[10]:= searchPhrases = "Find my favorite phone", "How deep is the ocean?",

"What is the meaning of life?";

In[11]:= MapFilterText#, stopwords &, searchPhrases

Out[11]= Find, favorite, phone, {deep, ocean}, meaning, life

Modify the previous exercise so that the user can supply a list of punctuation in addition to the 

list of stop words to be used to filter the text.
11.
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Solutions7.4
Here is the short piece of text.1.

In[1]:= text = "How many vowels do I have?";

The regular expression [aeiou] is matched by any of the vowels.

In[2]:= StringCounttext, RegularExpression"[aeiou]"

Out[2]= 7

First, get a list of the words in the text Alice in Wonderland.2.

In[3]:= words = TextWordsExampleData"Text", "AliceInWonderland";

The regular expression ".+q.+" is matched by strings starting with some number (possibly 

zero) of characters, followed by an explicit q, followed by some number of characters. Flatten is 

needed to remove the empty lists that are returned for each nonmatch of the pattern.

In[4]:= Flatten@StringCaseswords, RegularExpression".*q.*"

Out[4]= {quite, quite, quite, queer, question, inquisitively, Conqueror,

quiver, quite, quiet, quite, quite, quite, queer-looking, question,

quite, Conqueror, conquest, question, question, quite, question, quite,

quicker, quite, quite, quite, squeaking, quite, question, quietly,

quite, croquet, croquet, question, quite, croquet, queer-shaped,

quite, quietly, croquet, croquet, question, croquet-ground, croquet,

quarrelling, quarrel, croqueting, croquet-ground, quarreling, quite, quite}

Simply replacing q with the alternative (q Q) gets all occurrences of q either lowercase or 
uppercase.

In[5]:= Flatten@StringCaseswords, RegularExpression".*(q|Q).*"

Out[5]= {quite, quite, quite, queer, question, inquisitively, Conqueror, quiver, quite,

quiet, quite, quite, quite, queer-looking, question, quite, Conqueror,

conquest, question, question, quite, question, quite, quicker, Quick,

quite, quite, quite, squeaking, quite, question, quietly, quite, Queen,

croquet, Queen, croquet, question, quite, croquet, Queen, queer-shaped,

quite, quietly, croquet, Queen, QUEEN'S, CROQUET, Queen, Queen, Queen,

Queen, Queens, QUEEN, Queen, croquet, Queen, question, Queen, Queen's,

Queen, croquet-ground, croquet, quarrelling, Queen, quarrel, Queen,

croqueting, Queen, Queen, Queen, croquet-ground, Queen, quarreling, Queen,

Queen, quite, Queen, Queen, quite, Queen, Queen, Queen, Queen, Queen}

The pattern used earlier in the chapter was "AA" ~~ _ ~~ "T". In a regular expression, we want 
the character A repeated exactly once. Use the expression "A{2,2}" for this. The regular 
expression "." stands for any character. 

3.

In[6]:= gene = GenomeData"IGHV357";
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In[7]:= StringCasesgene, RegularExpression"A{2,2}.T"

Out[7]= {AAGT, AAGT, AAAT, AAGT, AAAT, AAAT}

First, read in the web page.4.

In[8]:= webpage = Import"http://www.wolfram.com/company/contact.cgi", "HTML";

In the original example in Section 7.3, we used the pattern NumberString, to represent arbitrary 

strings of numbers. The regular expression "\\d+" accomplishes a similar thing but it will also 

match strings of numbers that may not be in a phone number format (try it!). Instead, use 

"\\d{3}" to match a list of exactly three digits, and so on.

In[9]:= StringCaseswebpage,

RegularExpression"\\d{3}.\\d{3}.\\d{4}" // DeleteDuplicates

Out[9]= {217-398-0700, 217-398-0747, 617-764-0094}

The first solution uses regular expressions. The second uses string patterns and alternatives.5.

In[10]:= DictionaryLookupRegularExpression"[aeiouy]+", IgnoreCase → True

Out[10]= {a, aye, eye, I, IOU, oi, ya, ye, yea, yo, you}

In[11]:= DictionaryLookup"a" "e" "i" "o" "u" "y" .., IgnoreCase → True

Out[11]= {a, aye, eye, I, IOU, oi, ya, ye, yea, yo, you}

This one is a bit tricky and requires the use of named string patterns. So in the following, \\n 

refers to the immediately preceding pattern (.). It is important to name each pattern differently 

so they can be matched by different characters.

6.

In[12]:= words = DictionaryLookup[];

In[13]:= StringCaseswords, RegularExpression"\\w*(.)\\1(.)\\2(.)\\3\\w*" //

Flatten

Out[13]= {bookkeeper, bookkeepers, bookkeeping}

See the built-in tutorial Regular Expressions for more information on named string patterns.

Here is the short list of words with which we will work.7.

In[14]:= words = "building", "finch", "fix", "ratio", "envy", "boy", "baby",

"faculty", "honorarium";

Using regular expressions, these rules encapsulate those given in the exercise.
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In[15]:= rules = 

RegularExpression"(\\w+)x" ⧴ "$1" ~~ "x" ~~ "es",

RegularExpression"(\\w+)(ch)" ⧴ "$1" ~~ "$2" ~~ "es",

RegularExpression"(\\w+)([aeiou])(y)" ⧴ "$1" ~~ "$2" ~~ "$3" ~~ "s",

RegularExpression"(\\w+)(y)" ⧴ "$1" ~~ "ies",

RegularExpression"(\\w+)(i)um" ⧴ "$1" ~~ "$2" ~~ "a",

RegularExpression"(\\w+)(.)" ⧴ "$1" ~~ "$2" ~~ "s"

;

In[16]:= StringReplacewords, rules

Out[16]= buildings, finches, fixes, ratios, envies, boys, babies, faculties, honoraria

Of course, lots of exceptions exist:

In[17]:= StringReplace"man", "cattle", rules

Out[17]= {mans, cattles}

Check against the built-in function Pluralize:

In[18]:= MapPluralize, words

Pluralize::noplural : No valid English pluralization found for honorarium. 

Out[18]= buildings, finches, fixes, ratios, envies, boys, babies, faculties, honorarium

We use a combination of string patterns and regular expressions to remove the various frag-
ments. The regular expression "\[.+\] " matches strings that start with [, followed by an 

arbitrary number of characters, followed by ], followed by a space. Because brackets are used in 

regular expressions to denote sequences of characters, you need to escape them to refer to the 

explicit characters [ or ].

8.

In[19]:= text =

"okay well er today we're er going to be carrying on with the er

French \nRevolution you may have noticed i was sort of getting

rather er enthusiastic \nand carried away at the end of the

last one i was sort of almost er like i sort \nof started at

the beginning about someone standing on a coffee table and s-,

\nshouting to arms citizens as if i was going to sort of leap

up on the desk and \nsay to arms let's storm the Rootes Social

Building [laughter] or er let's go \nout arm in arm singing

the Marseillaise or something er like that";
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In[20]:= StringReplacetext, "\n" → "", " er" → "", " s-" → "",

RegularExpression"\[.+\] " → ""

Out[20]= okay well today we're going to be carrying on with the French Revolution you

may have noticed i was sort of getting rather enthusiastic and carried

away at the end of the last one i was sort of almost like i sort of

started at the beginning about someone standing on a coffee table

and, shouting to arms citizens as if i was going to sort of leap up

on the desk and say to arms let's storm the Rootes Social Building or

let's go out arm in arm singing the Marseillaise or something like that

Start by setting the options framework.9.

In[21]:= ClearStringTally

In[22]:= OptionsStringTally = IncludeCharacters → LetterCharacters;

Set up a message that will be returned if the user specifies a bad value for the 

IncludeCharacters option.

In[23]:= StringTally::badopt =

"The option value `1` can only take on the following values: All,

LetterCharacters, WordCharacters, PunctuationOnly.";

Here then is the rewritten function.

In[24]:= StringTallytxt_, OptionsPattern[] :=

Moduleic = OptionValueIncludeCharacters,

TallyStringCasestxt,

Which

ic === All, RegularExpression".",

ic === LetterCharacters, RegularExpression"[[:alpha:]]",

ic === WordCharacters, RegularExpression"\\w",

ic === PunctuationOnly, RegularExpression"\\W",

True, MessageStringTally::badopt, ic



Import Dostoyevsky’s Crime and Punishment which has quite a few non-Ascii characters.

In[25]:= text = Import"http://www.gutenberg.org/ebooks/2554.txt.utf-8", "Text";
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In[26]:= StringTallytext, IncludeCharacters → WordCharacters // Sort

Out[26]= {_, 506}, {0, 21}, {1, 66}, {2, 16}, {3, 13}, {4, 18}, {5, 25}, {6, 10}, {7, 8},

{8, 19}, {9, 12}, {a, 71960}, {æ, 4}, à, 2, {ä, 2}, {A, 2086}, {b, 11365},

{B, 919}, {c, 18602}, {ç, 1}, {C, 276}, {d, 38452}, {D, 762}, {e, 104695},

é, 17, è, 1, ê, 3, {E, 331}, f, 16891, {F, 316}, {g, 17969}, {G, 433},

{h, 54070}, {H, 1943}, {i, 56803}, î, 1, {ï, 222}, {I, 5846}, {j, 773},

{J, 66}, {k, 9437}, {K, 323}, {l, 35271}, {L, 580}, {m, 21968}, {M, 504},

{n, 62470}, {N, 686}, {o, 71737}, ô, 4, {O, 496}, {p, 12583}, {P, 1415},

{q, 766}, {Q, 22}, {r, 46718}, {R, 1776}, {s, 51775}, {S, 1743}, {t, 78967},

{T, 1864}, {u, 27687}, {ü, 1}, {U, 94}, {v, 11012}, {V, 100}, {w, 19588},

{W, 1407}, {x, 1322}, {X, 9}, {y, 20389}, {Y, 899}, {z, 894}, {Z, 194}

First read in some sample phrases to prototype.10.

In[27]:= searchPhrases = "Find my favorite phone", "How deep is the ocean?",

"What is the meaning of life?";

There are several ways to approach this problem. We will break it up into two steps: first 
eliminating punctuation, then a sample set of stop words.

In[28]:= tmp = StringSplit"How deep is the ocean?", Characters":,;.!? " ..

Out[28]= {How, deep, is, the, ocean}

In[29]:= stopwords = "how", "the", "is", "an";

In[30]:= ApplyAlternatives, stopwords

Out[30]= how the is an

Note the need for WordBoundary in what follows; otherwise, ocean would be split leaving oce 
because an is a stop word.

In[31]:= StringSplittmp, WordBoundary ~~ ApplyAlternatives, stopwords ~~ WordBoundary,

IgnoreCase → True // Flatten

Out[31]= {deep, ocean}

In[32]:= FilterTextstr_String, stopwords_List := Module{tmp},

tmp = StringSplitstr, Characters":,;.!? " ..;

Flatten@StringSplittmp, WordBoundary ~~ ApplyAlternatives, stopwords ~~

WordBoundary, IgnoreCase → True



In[33]:= stopwords = Rest@Import"StopWords.dat", "List";

In[34]:= FilterText"What is the meaning of life?", stopwords

Out[34]= meaning, life

A slight modification is needed to accept a list of punctuation.11.
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In[35]:= Characters@StringJoin".", "?" // FullForm

Out[35]//FullForm= List[".", "?"]

First remove the punctuation.

In[36]:= tmp = StringSplit"What is the meaning of life?",

Characters@StringJoin".", "?" ..

Out[36]= What is the meaning of life

Split into words.

In[37]:= First@StringCasestmp, RegularExpression"\\w+"

Out[37]= What, is, the, meaning, of, life

Remove stop words.

In[38]:= StringSplit%, WordBoundary ~~ ApplyAlternatives, stopwords ~~ WordBoundary

Out[38]= {What}, {}, {}, {meaning}, {}, life

Put these pieces together in a reusable function.

In[39]:= FilterTextstr_String, stopwords_List, punctuation_List := Module{tmp},

tmp = StringSplitstr, Characters@StringJoinpunctuation ..;

Flatten@StringSplitFirst@StringCasestmp, RegularExpression"\\w+",

WordBoundary ~~ ApplyAlternatives, stopwords ~~ WordBoundary,

IgnoreCase → True



In[40]:= FilterText"What is the meaning of life?", stopwords, ".", "?"

Out[40]= meaning, life

Try it out on a list of phrases.

In[41]:= MapFilterText#, stopwords, ".", "?" &, searchPhrases

Out[41]= Find, favorite, phone, {deep, ocean}, meaning, life

Examples: exercises7.5
Rewrite the small auxiliary function gcRatio introduced in this section to eliminate the step in
counting the AT content and instead use the length of the entire string in the denominator of
the ratio. For large strings (length over 105), this could speed up the computation by a factor of
two.

1.
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Generalize the RandomString function to allow for a Weights option so that you can provide a 

weight for each character in the generated string. Include a rule to generate a message if the 

number of weights does not match the number of characters or if the sum of the weights does 

not equal one. For example:

2.

In[1]:= RandomString"A", "T", "C", "G", 30, Weights → {.1, .2, .3, .4}

Out[1]= GTCCTGTGATTCGGTTCCAGTAGCCCGCTT

In[2]:= RandomString"A", "T", "C", "G", {5, 10}, Weights → {.1, .4, .4, .1}

Out[2]= {CCTATCCTAG, CACCTCACCC, CCTCACTTCG, CCCTCCCCAC, TCCCTCTGTT}

In[3]:= RandomString"A", "T", "C", "G", {5, 10}, Weights → {.1, .4}

RandomString::badwt :
The length of the list of weights must be the same as the length of the list of characters.

Rewrite the function Anagrams developed in Section 7.2 without resorting to the use of 
Permutations. Consider using the Sort function to sort the characters. Note the difference in 

speed of the two approaches: one involving string functions and the other list functions that 
operate on lists of characters. Increase the efficiency of your search by only searching for words 

of the same length as your source word.

3.

Create a function that searches the built-in dictionary for words containing a specified sub-
string. Set up an option to your function whose value specifies where in the string the sub-
string occurs: start, middle, end, anywhere. For example:

4.

In[4]:= FindWordsContaining"cite", WordPosition → "End"

Out[4]= {anthracite, calcite, cite, excite, incite, Lucite, overexcite, plebiscite, recite}

Using texts from several different sources, compute and then compare the number of punctua-
tion characters per 1000 characters of text. ExampleData[" Text "] gives a listing of many 

different texts that you can use.

5.

The function stringPartition was developed specifically to deal with genomic data where 

one often needs uniformly sized blocks to work with. Generalize stringPartition to fully 

accept the same argument structure as the built-in Partition.

6.

Rewrite the text-encoding example from Section 7.2 using StringReplace and regular expres-
sions. First create an auxiliary function to encode a single character based on a key list of the 

form {{��1, ��1}, …}, where pti is a plaintext character and cti is its ciphertext encoding. For 
example, the pair {z, a} would indicate the character z in the plaintext will be encoded as an a 

in the ciphertext. Then create an encoding function encode[���, ���] using regular expres-
sions to encode any string str using the key made up of the plaintext/ciphertext character pairs.

7.
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Word collocation refers to expressions of two or more words that create a familiar phrase, 
such as black coffee or sharp as a tack. They are important in many linguistic applications: natural 
language translation and corpus research involving social phenomena, for example. In this 

exercise you will create functions for extracting pairs of words of a predetermined form 

involving parts of speech such as {adjective, noun}.

8.

Start by creating some functions to preprocess your text: split the text into pairs of words and, 
for simplicity, convert all words to lowercase. Next, filter out words that are not contained in 

the dictionary. Then, find all remaining pairs that are of a certain form involving the parts of 
speech. This information is contained in WordData:

In[5]:= WordData"split", "PartsOfSpeech"

Out[5]= {Noun, Adjective, Verb}

Finally, create a function Collocation[����, {���1, ���2}] that returns all pairs in expr that 
consist of the part of speech PoS1 followed by the part of speech PoS2. For example:

In[6]:= sentence =

"Alice was beginning to get very tired of sitting by her sister on

the bank, and of having nothing to do. Once or twice she had

peeped into the book her sister was reading, but ";

In[7]:= PreProcessString[sentence]

Out[7]= {was, beginning}, {beginning, to}, {to, get}, {get, very},

{very, tired}, tired, of, of, sitting, {sitting, by}, {by, her},

{her, sister}, {sister, on}, {on, the}, {the, bank}, {bank, and},

and, of, of, having, {having, nothing}, {nothing, to}, {to, do},

{do, once}, {once, or}, {or, twice}, {twice, she}, {she, had},

{had, peeped}, {peeped, into}, {into, the}, {the, book}, {book, her},

{her, sister}, {sister, was}, {was, reading}, {reading, but}

In[8]:= Collocation%, "Verb", "Noun"

Out[8]= {{was, beginning}, {having, nothing}, {was, reading}}

Both PreProcessString and Collocation are included in the packages that accompany this 

book, but you may need to create your own versions for your applications.

Generating a list of all built-in symbols and then searching for those that have a certain prop-
erty is a not uncommon task. Examples include finding all built-in functions with the attribute 

Listable, or all functions that have the StepMonitor option (see Section 5.5). The full list of 
built-in functions includes symbols that should be omitted from such searches. Here we 

display the first and last four symbols in the System` context, that is, the built-in symbols.

9.

In[9]:= DropNames"System`*", 5 ;; -5

Out[9]= a.., b
.
., c.., d

.

., $VersionNumber, $WolframID, $WolframUUID, 

Use regular expressions to create a list of only those built-in functions that begin with a capital 
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letter. Then use that code to rewrite FunctionsWithOption (Exercise 17 in Section 5.5) so it 
only checks this smaller list of functions for options.

Solutions7.5
Here is the gcRatio function as written in the text.1.

In[1]:= gcRatioseq_String := Module{gc, at},

gc = StringCountseq, "G" "C";

at = StringCountseq, "A" "T";

N[gc/(gc + at)]



Instead of computing the occurrences of A or T, note that the denominator of the ratio is really 

the length of the entire string since DNA contains only G, C, A, and T. So instead, use 

StringLength[seq] there. This will make the code a bit shorter and slightly faster.

In[2]:= gcRatioseq_String := Module{gc},

gc = StringCountseq, "G" "C";

NgcStringLength[seq]



In[3]:= seq = "GCCCTAAGGTGGCCAAGCAC"

Out[3]= GCCCTAAGGTGGCCAAGCAC

In[4]:= gcRatio[seq]

Out[4]= 0.65

One rule is needed for one-dimensional output and another for multi-dimensional output.2.

In[5]:= ClearAllRandomString

In[6]:= OptionsRandomString = Weights → {};

In[7]:= RandomString::badwt =

"The length of the list of weights must be the same as the length

of the list of characters.";

In[8]:= RandomStringc__String, n_Integer: 1, OptionsPattern[] :=

Modulewts = OptionValueWeights,

Which

Length[wts]⩵ 0, StringJoinRandomChoice[{c}, n],

Length[wts]⩵ Length[{c}], StringJoinRandomChoice[wts → {c}, n],

True, MessageRandomString::badwt


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In[9]:= RandomStringc__String, n_Integer, len_Integer, OptionsPattern[] :=

Modulewts = OptionValueWeights,

Which

Length[wts]⩵ 0, MapStringJoin, RandomChoice{c}, n, len,

Length[wts]⩵ Length[{c}],
MapStringJoin, RandomChoicewts → {c}, n, len,

True, MessageRandomString::badwt



In[10]:= RandomString"A", "C", "T"

Out[10]= T

In[11]:= RandomString"A", "C", "T", 10

Out[11]= AATATCCTCT

In[12]:= RandomString"A", "C", "T", {4, 10}

Out[12]= {CTCAAACTCC, TATTTCTAAA, TCATAACTTT, TCTCACAATC}

In[13]:= RandomString"A", "C", "T", {4, 10}, Weights → {.2, .7, .1}

Out[13]= {CCCCACCCCA, TACCCCTCCA, CACCCCATAC, CACTCCCACC}

Check that an incorrect list for the weights returns a message.

In[14]:= RandomString"A", "C", "T", {4, 10}, Weights → {.2, .7}

RandomString::badwt :
The length of the list of weights must be the same as the length of the list of characters.

Two words are anagrams if they contain the same letters but in a different order. This function 

is fairly slow as it sorts and compares every word in the dictionary with the sorted characters of 
the input word.

3.

In[15]:= Anagrams2word_String :=

Modulechars = SortCharactersword,

DictionaryLookupx__ /; SortCharacters[x] ⩵ chars

In[16]:= Anagrams2"parsley" // Timing

Out[16]= {1.78331, {parleys, parsley, players, replays, sparely}}

You can speed things up a bit by only working with those words in the dictionary of the same 

length as the source word.

In[17]:= Anagrams3word_String := Modulelen = StringLengthword, words,

words = DictionaryLookupw__ /; StringLength[w]⩵ len;

Selectwords, SortCharacters[#] ⩵ SortCharactersword &


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In[18]:= Anagrams3"parsley" // Timing

Out[18]= {0.728484, {parleys, parsley, players, replays, sparely}}

In fact, you can speed this up a bit further by using regular expressions even though the con-
struction of the regular expression in this case is a bit clumsy looking. The lesson here is that 
conditional string patterns tend to be slower.

In[19]:= Anagrams4word_String := Modulelen = StringLengthword, words,

words = DictionaryLookupRegularExpression"\\w{" <> ToStringlen <> "}";

Selectwords, SortCharacters[#] ⩵ SortCharactersword &



In[20]:= Anagrams4"parsley" // Timing

Out[20]= {0.083218, {parleys, parsley, players, replays, sparely}}

If the test substring is cite, here is how we would find all words that end in cite. Note the triple 

blank pattern to match any sequence of zero or more characters.
4.

In[21]:= DictionaryLookup___ ~~ "cite"

Out[21]= {anthracite, calcite, cite, excite, incite, Lucite, overexcite, plebiscite, recite}

You could also use StringEndsQ, but it is quite a bit slower:

In[22]:= DictionaryLookupw__ /; StringEndsQw, "cite"

Out[22]= {anthracite, calcite, cite, excite, incite, Lucite, overexcite, plebiscite, recite}

Here are all words that begin with cite.

In[23]:= DictionaryLookup"cite" ~~ ___

Out[23]= {cite, cited, cites}

In[24]:= DictionaryLookupw__ /; StringStartsQw, "cite"

Out[24]= {cite, cited, cites}

And this gives all words that have cite somewhere in them, at the beginning, middle, or end.

In[25]:= DictionaryLookup___ ~~ "cite" ~~ ___

Out[25]= {anthracite, calcite, cite, cited, cites, elicited, excite, excited, excitedly,

excitement, excitements, exciter, exciters, excites, incite, incited,

incitement, incitements, inciter, inciters, incites, Lucite, Lucites,

overexcite, overexcited, overexcites, plebiscite, plebiscites, recite,

recited, reciter, reciters, recites, solicited, unexcited, unsolicited}
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In[26]:= DictionaryLookupw__ /; StringContainsQw, "cite"

Out[26]= {anthracite, calcite, cite, cited, cites, elicited, excite, excited, excitedly,

excitement, excitements, exciter, exciters, excites, incite, incited,

incitement, incitements, inciter, inciters, incites, Lucite, Lucites,

overexcite, overexcited, overexcites, plebiscite, plebiscites, recite,

recited, reciter, reciters, recites, solicited, unexcited, unsolicited}

Using the double blank gives words that have cite in them but not beginning or ending with cite.

In[27]:= DictionaryLookup__ ~~ "cite" ~~ __

Out[27]= {elicited, excited, excitedly, excitement, excitements, exciter,

exciters, excites, incited, incitement, incitements, inciter, inciters,

incites, Lucites, overexcited, overexcites, plebiscites, recited,

reciter, reciters, recites, solicited, unexcited, unsolicited}

Let us put these pieces together in a reusable function FindWordsContaining. We will include 

one option, WordPosition that identifies where in the word the substring is expected to occur. 

In[28]:= OptionsFindWordsContaining = WordPosition → "Start";

Depending upon the value of the option WordPosition, Which directs which expression will be 

evaluated.

In[29]:= FindWordsContainingstr_String, OptionsPattern[] :=

Modulewp = OptionValueWordPosition,

Which

wp == "Start", DictionaryLookup[str ~~ ___],

wp == "Middle", DictionaryLookup[__ ~~ str ~~ __],

wp == "End", DictionaryLookup[___ ~~ str],

wp⩵ "Anywhere", DictionaryLookup[___ ~~ str ~~ ___]



This could also be done with regular expressions. The pattern "\\bcite.*\\b" matches any 

string starting with a word boundary followed by the string cite, followed by characters 

repeated one or more times, followed by a word boundary.

In[30]:= DictionaryLookupRegularExpression"\\bcite.*\\b"

Out[30]= {cite, cited, cites}

With suitable modifications to the above for the target string occurring in the middle, end, or 
anywhere, here is the rewritten function. Note the need for StringJoin here to properly pass 

the argument str, as a string, into the body of the regular expression.

In[31]:= OptionsFindWordsContaining = WordPosition → "Start";
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In[32]:= FindWordsContainingstr_String, OptionsPattern[] :=

Modulewp = OptionValueWordPosition,

Which

wp == "Start",

DictionaryLookupRegularExpressionStringJoin"\\b", str, ".*\\b",

wp == "Middle",

DictionaryLookupRegularExpressionStringJoin"\\b.+", str, ".+\\b",

wp == "End", DictionaryLookup

RegularExpressionStringJoin"\\b.*", str, "\\b",

wp⩵ "Anywhere",

DictionaryLookupRegularExpressionStringJoin"\\b.*", str, ".*\\b"



In[33]:= FindWordsContaining"cite"

Out[33]= {cite, cited, cites}

In[34]:= FindWordsContaining"cite", WordPosition → "End"

Out[34]= {anthracite, calcite, cite, excite, incite, Lucite, overexcite, plebiscite, recite}

In[35]:= FindWordsContaining"cite", WordPosition → "Middle"

Out[35]= {elicited, excited, excitedly, excitement, excitements, exciter,

exciters, excites, incited, incitement, incitements, inciter, inciters,

incites, Lucites, overexcited, overexcites, plebiscites, recited,

reciter, reciters, recites, solicited, unexcited, unsolicited}

In[36]:= FindWordsContaining"cite", WordPosition → "Anywhere"

Out[36]= {anthracite, calcite, cite, cited, cites, elicited, excite, excited, excitedly,

excitement, excitements, exciter, exciters, excites, incite, incited,

incitement, incitements, inciter, inciters, incites, Lucite, Lucites,

overexcite, overexcited, overexcites, plebiscite, plebiscites, recite,

recited, reciter, reciters, recites, solicited, unexcited, unsolicited}

First read in a sample piece of text.5.

In[37]:= text = ExampleData"Text", "PrideAndPrejudice";

Check the length. Then partition into blocks consisting of 1000 characters each.

In[38]:= StringLength[text]

Out[38]= 682262

In[39]:= blocks = StringPartition[text, 1000];

Using regular expressions, we extract all characters from the first block that are not amongst A 

through z or 0 through 9 or whitespace.
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In[40]:= StringCasesblocks[[1]],

RegularExpression"[^A-z|0-9|\\s]"



Out[40]= {,, ,, ., ,, ,, ., ", ., ,, ", ,, ", ?, ", ., ., ", ,, ", ;,

", ., ,, ., ", ., ., ", ?, ", ., ", ,, ., ", ., ", ,, ,, ,, ., ;}

In[41]:= Tally[%] // InputForm

Out[41]//InputForm= {{�������}��{�������}��{��������}��{������}��{������}}

Now perform the same computation over all blocks and then compute the mean.

In[42]:= counts = MapStringCount#, RegularExpression"[^A-z|0-9|\\s]" &, blocks;

In[43]:= N[Mean[counts]]

Out[43]= 34.3021

Finally, perform the same computations on a different text.

In[44]:= text = ExampleData"Text", "OriginOfSpecies";

blocks = StringPartition[text, 1000];

counts = MapStringCount#, RegularExpression"[^A-z|0-9|\\s]" &, blocks;

N[Mean[counts]]

Out[47]= 21.9877

Here is the function as developed in the text.6.

In[48]:= stringPartitionstr_String, blocksize_ :=

MapStringJoin, PartitionCharacters[str], blocksize, blocksize, 1, {}

This passes the argument structure directly to Partition.

In[49]:= ClearstringPartition

In[50]:= stringPartitionstr_String, seq__ :=

MapStringJoin, PartitionCharacters[str], seq

In[51]:= str = RandomString"A", "C", "G", "T", 20

Out[51]= CCCTTAGTTTTTAATTATCC

Try out some of the argument structures commonly used with Partition. For example, this 

partitions the string into blocks of length 3 with offset 1, with no padding.

In[52]:= stringPartition[str, 3, 3, 1, {}]

Out[52]= {CCC, TTA, GTT, TTT, AAT, TAT, CC}

Start by creating a substitution cipher by simply shifting the alphabet three characters to the left.7.
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In[53]:= keyRL3 =

TransposeCharacterRange"a", "z", RotateLeftCharacterRange"a", "z", 3

Out[53]= {a, d}, {b, e}, c, f, {d, g}, {e, h}, f, i, {g, j}, {h, k},

{i, l}, {j, m}, {k, n}, {l, o}, {m, p}, {n, q}, {o, r}, {p, s}, {q, t},

{r, u}, {s, v}, {t, w}, {u, x}, {v, y}, {w, z}, {x, a}, {y, b}, {z, c}

Next, encode a single character using a designated key.

In[54]:= encodeCharchar_String, key_List := First@Caseskey, char, next_ ⧴ next

In[55]:= encodeChar"z", keyRL3

Out[55]= c

Finally, here is the encoding function. Recall the "$1" on the right-hand side of the rule refers to 

the first (and only in this case) regular expression on the left that is enclosed in parentheses.

In[56]:= encodestr_String, key_List :=

StringReplacestr, RegularExpression"([a-z])" ⧴ encodeChar"$1", key

The decoding uses the same key, but reverses the pairs.

In[57]:= decodestr_String, key_List := encodestr, MapReverse, key

In[58]:= encode"squeamish ossifrage", keyRL3

Out[58]= vtxhdplvk rvvliudjh

In[59]:= decode%, keyRL3

Out[59]= squeamish ossifrage

You might want to modify the encoding rule to deal with uppercase letters. One solution is 

simply to convert them to lowercase.

In[60]:= encodestr_String, key_List :=

StringReplaceToLowerCase[str],

RegularExpression"([a-z])" ⧴ encodeChar"$1", key

In[61]:= encode"Squeamish Ossifrage", keyRL3

Out[61]= vtxhdplvk rvvliudjh

Here is a sample sentence.8.

In[62]:= sentence =

"Alice was beginning to get very tired of sitting by her sister on

the bank, and of having nothing to do. Once or twice she had

peeped into the book her sister was reading, but ";

Split into words.
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In[63]:= words = TextWords[sentence]

Out[63]= Alice, was, beginning, to, get, very, tired, of, sitting, by, her,

sister, on, the, bank, and, of, having, nothing, to, do, Once, or, twice,

she, had, peeped, into, the, book, her, sister, was, reading, but

In[64]:= Clear[NGrams]

In[65]:= NGramswords : __String, len_: 2 := Partitionwords, len, 1

In[66]:= bigrams = NGramswords

Out[66]= {{Alice, was}, {was, beginning}, {beginning, to}, {to, get}, {get, very},

{very, tired}, {tired, of}, {of, sitting}, {sitting, by}, {by, her}, {her, sister},

{sister, on}, {on, the}, {the, bank}, {bank, and}, {and, of}, {of, having},

{having, nothing}, {nothing, to}, {to, do}, {do, Once}, {Once, or}, {or, twice},

{twice, she}, {she, had}, {had, peeped}, {peeped, into}, {into, the}, {the, book},

{book, her}, {her, sister}, {sister, was}, {was, reading}, {reading, but}}

The collocation grabs parts of speech data from WordData.

In[67]:= Collocationlis_List, PoS1_String, PoS2_String :=

Caseslis, p_ /; MemberQWordDatap, "PartsOfSpeech", PoS1,

q_ /; MemberQWordDataq, "PartsOfSpeech", PoS2

In[68]:= Collocationbigrams, "Noun", "Adjective"

Out[68]= {{get, very}, {sister, on}}

Try it on a larger text.

In[69]:= text = ExampleData"Text", "GettysburgAddress"

Out[69]= Four score and seven years ago, our fathers brought forth upon this continent a new

nation: conceived in liberty, and dedicated to the proposition that all men are

created equal. Now we are engaged in a great civil war...testing whether that nation,

or any nation so conceived and so dedicated. . . can long endure. We are met on a

great battlefield of that war. We have come to dedicate a portion of that field as

a final resting place for those who here gave their lives that this nation might

live. It is altogether fitting and proper that we should do this. But, in a larger

sense, we cannot dedicate...we cannot consecrate... we cannot hallow this ground.

The brave men, living and dead, who struggled here have consecrated it, far above

our poor power to add or detract. The world will little note, nor long remember,

what we say here, but it can never forget what they did here. It is for us the

living, rather, to be dedicated here to the unfinished work which they who fought

here have thus far so nobly advanced. It is rather for us to be here dedicated to

the great task remaining before us...that from these honored dead we take increased

devotion to that cause for which they gave the last full measure of devotion...

that we here highly resolve that these dead shall not have died in vain...that

this nation, under God, shall have a new birth of freedom...and that government

of the people, by the people, for the people, shall not perish from this earth.
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In[70]:= bigrams = NGramsTextWords[text], 2

Out[70]= {{Four, score}, {score, and}, {and, seven}, {seven, years}, {years, ago}, {ago, our},

{our, fathers}, {fathers, brought}, {brought, forth}, {forth, upon}, {upon, this},

{this, continent}, {continent, a}, {a, new}, {new, nation}, {nation, conceived},

{conceived, in}, {in, liberty}, {liberty, and}, {and, dedicated}, {dedicated, to},

{to, the}, {the, proposition}, {proposition, that}, {that, all}, {all, men},

{men, are}, {are, created}, {created, equal}, {equal, Now}, {Now, we}, {we, are},

{are, engaged}, {engaged, in}, {in, a}, {a, great}, {great, civil}, {civil, war},

{war, testing}, {testing, whether}, {whether, that}, {that, nation}, {nation, or},

{or, any}, {any, nation}, {nation, so}, {so, conceived}, {conceived, and}, {and, so},

{so, dedicated}, {dedicated, can}, {can, long}, {long, endure}, {endure, We}, {We, are},

{are, met}, {met, on}, {on, a}, {a, great}, {great, battlefield}, {battlefield, of},

{of, that}, {that, war}, {war, We}, {We, have}, {have, come}, {come, to}, {to, dedicate},

{dedicate, a}, {a, portion}, {portion, of}, {of, that}, {that, field}, {field, as},

{as, a}, {a, final}, {final, resting}, {resting, place}, {place, for}, {for, those},

{those, who}, {who, here}, {here, gave}, {gave, their}, {their, lives}, {lives, that},

{that, this}, {this, nation}, {nation, might}, {might, live}, {live, It}, {It, is},

{is, altogether}, {altogether, fitting}, {fitting, and}, {and, proper}, {proper, that},

{that, we}, {we, should}, {should, do}, {do, this}, {this, But}, {But, in}, {in, a},

{a, larger}, {larger, sense}, {sense, we}, {we, cannot}, {cannot, dedicate},

{dedicate, we}, {we, cannot}, {cannot, consecrate}, {consecrate, we}, {we, cannot},

{cannot, hallow}, {hallow, this}, {this, ground}, {ground, The}, {The, brave},

{brave, men}, {men, living}, {living, and}, {and, dead}, {dead, who}, {who, struggled},

{struggled, here}, {here, have}, {have, consecrated}, {consecrated, it}, {it, far},

{far, above}, {above, our}, {our, poor}, {poor, power}, {power, to}, {to, add},

{add, or}, {or, detract}, {detract, The}, {The, world}, {world, will}, {will, little},

{little, note}, {note, nor}, {nor, long}, {long, remember}, {remember, what},

{what, we}, {we, say}, {say, here}, {here, but}, {but, it}, {it, can}, {can, never},

{never, forget}, {forget, what}, {what, they}, {they, did}, {did, here}, {here, It},

{It, is}, {is, for}, {for, us}, {us, the}, {the, living}, {living, rather}, {rather, to},

{to, be}, {be, dedicated}, {dedicated, here}, {here, to}, {to, the}, {the, unfinished},

{unfinished, work}, {work, which}, {which, they}, {they, who}, {who, fought},

{fought, here}, {here, have}, {have, thus}, {thus, far}, {far, so}, {so, nobly},

{nobly, advanced}, {advanced, It}, {It, is}, {is, rather}, {rather, for}, {for, us},

{us, to}, {to, be}, {be, here}, {here, dedicated}, {dedicated, to}, {to, the}, {the, great},

{great, task}, {task, remaining}, {remaining, before}, {before, us}, {us, that},

{that, from}, {from, these}, {these, honored}, {honored, dead}, {dead, we}, {we, take},

{take, increased}, {increased, devotion}, {devotion, to}, {to, that}, {that, cause},

{cause, for}, {for, which}, {which, they}, {they, gave}, {gave, the}, {the, last},

{last, full}, {full, measure}, {measure, of}, {of, devotion}, {devotion, that},

{that, we}, {we, here}, {here, highly}, {highly, resolve}, {resolve, that}, {that, these},

{these, dead}, {dead, shall}, {shall, not}, {not, have}, {have, died}, {died, in},

{in, vain}, {vain, that}, {that, this}, {this, nation}, {nation, under}, {under, God},

{God, shall}, {shall, have}, {have, a}, {a, new}, {new, birth}, {birth, of}, {of, freedom},

{freedom, and}, {and, that}, {that, government}, {government, of}, {of, the}, {the, people},

{people, by}, {by, the}, {the, people}, {people, for}, {for, the}, {the, people},

{people, shall}, {shall, not}, {not, perish}, {perish, from}, {from, this}, {this, earth}}
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In[71]:= Collocationbigrams, "Adjective", "Noun"

Out[71]= {{seven, years}, {continent, a}, {new, nation}, {in, liberty}, {all, men},

{engaged, in}, {in, a}, {civil, war}, {any, nation}, {dedicated, can}, {on, a},

{great, battlefield}, {in, a}, {larger, sense}, {brave, men}, {here, have},

{far, above}, {poor, power}, {world, will}, {little, note}, {dedicated, here},

{unfinished, work}, {here, have}, {far, so}, {great, task}, {honored, dead},

{increased, devotion}, {last, full}, {full, measure}, {under, God}, {new, birth}}

To find symbols in the list of built-in functions that start with a capital letter, use the following 

regular expression: RegularExpression["^[[:upper:]]\\w+"]. This will be matched by a 

string that starts with one of the letters A through Z, followed by any sequence of characters. 
The caret ^ is used to denote the beginning of the string. We will use StringCases on the full 
list of built-in symbols with this regular expression as the pattern to match against.

9.

In[72]:= StringCasesNames"System`*", RegularExpression"^[[:upper:]]\\w+";

This list will need to be flattened to delete the empty lists where a match did not occur. Here 

then is the rewritten function from Exercise 17, Section 5.5.

In[73]:= FunctionsWithOptionopt_Symbol := Modulenames, lis,

names = Flatten@StringCasesNames"System`*",

RegularExpression"^[[:upper:]]\\w+";

lis = DeleteCasesnames, f_ /; OptionsSymbolf  === {};

Selectlis, MemberQOptionsSymbol[#], opt, 2 &

In[74]:= FunctionsWithOptionStepMonitor

Out[74]= {FindArgMax, FindArgMin, FindFit, FindMaximum, FindMaxValue,

FindMinimum, FindMinValue, FindRoot, NArgMax, NArgMin, NDSolve,

NDSolveValue, NMaximize, NMaxValue, NMinimize, NMinValue,

NonlinearModelFit, NRoots, ParametricNDSolve, ParametricNDSolveValue}
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8
Graphics and visualization

The graphics language: exercises8.1
Create a color wheel by coloring successive sectors of a disk according to the Hue directive.1.

Construct a graphic containing a circle, a triangle, and a rectangle. Your graphic should include 

an identifying label for each object.
2.

Create a three-dimensional graphic that includes six Cuboid graphics primitives, randomly 

placed in the unit cube. Add an opacity directive to make them transparent.
3.

Create a graphic consisting of a cube together with a rotation of 45° about the vertical axis 

through the center of that cube. Then create a dynamically rotating cube using Manipulate or 
Animate.

4.

Create a three-dimensional graphic consisting of twenty-four random points in the unit cube 

with every pair of points connected by a line. Add directives to make the points red and large 

and the lines gray and transparent. 

5.

Construct a graphic that consists of 500 points randomly distributed about the origin with 

standard deviation 1. Then, set the points to have random radii between 0.01 and 0.1 and 

colored randomly according to a Hue function.

6.

Create a random walk on the binary digits of π. For a one-dimensional walk, use 

RealDigits[���, 2] to get the base 2 digits and then convert each 0 to –1 so that you have a 

vector of ±1s for the step directions; then use Accumulate. 

7.

For the two-dimensional walk, use Partition to pair up digits and then use an appropriate 

transformation to have the four pairs, {0, 0}, {0, 1}, {1, 0}, and {1, 1} map to the 

compass directions; then use Accumulate. See Bailey et al. (2012) for more on visualizing digits 

of π.

http://www.davidhbailey.com/dhbpapers/normality-digits-pi.pdf


Create a graphic that represents the solution to the following algebraic problem that appeared 

in the Calculus&Mathematica courseware (Porta, Davis, and Uhl 1994) . Find the positive numbers 

r such that the following system has exactly one solution in x and y:

8.

(x - 1)2 + (y - 1)2 = 2
(x + 3)2 + (y - 4)2 = r2

Once you have found the right number r, plot the resulting circles on the same axes, plotting 

the first circle with solid lines and the two solutions with dashed lines.

Create a graphic of the sine function over the interval (0, 2 π) that displays vertical lines at each 

point calculated by the Plot function to produce the curve.
9.

Bundle up the code fragments for the visualization of the triangle centroid into a function 

CentroidPlot that takes a Triangle graphics primitive as its argument and returns a graphic 

similar to that in this section. Set up your function to inherit options from Graphics.

10.

Add a check to CentroidPlot to return a message if the three vertices of the triangle are 

collinear.

In[1]:= pts = {{0, 0}, {1, 1}, {2, 2}};

CentroidPlotTriangle[pts]

CentroidPlot::collinpts :
The points {{0, 0}, {1, 1}, {2, 2}} are collinear, giving a degenerate triangle.

The centroid of a triangle is only one kind of triangle center. The circumcenter is located at the 

intersection of the perpendicular bisectors of the sides of the triangle and is also the center of 
the circle passing through the vertices of the triangle, the circumcircle. The incenter is located at 
the intersection of the angle bisectors and is the center of the largest circle inside the triangle. 
The orthocenter is located at the intersection of the altitudes of the triangle (Kimberling 1994).

11.

Triangle centers.Figure 8.1.

Centroid Circumcenter Incenter Orthocenter

Create a graphic for each of these centers similar to that created for the centroid and the 

medians.

Using options to the Plot function, create a plot showing the probability density function 

(PDF) of a normal distribution together with vertical lines at the first and second standard 

deviations. Your plot should look something like that in Figure 8.2 for a normal distribution 

with μ = 0 and σ = 1.

12.
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PDF of normal distribution with standard deviation lines.Figure 8.2.

-2σ -σ μ σ 2σ

0.1

0.2

0.3

0.4

Normal distribution: μ=0, σ=1

Solutions8.1
The color wheel can be generated by mapping the Hue directive over successive sectors of a disk. 
Note that the argument to Hue must be scaled so that it falls within the range zero to one.

1.

In[1]:= colorWheel[n_] :=

GraphicsHueRescale[#, {0, 2 π}], Disk[{0, 0}, 1, {#, # + n}] & /@

Range[0, 2 π, n], ImageSize → Small

Here is a color wheel created from 256 separate sectors (hues).

In[2]:= colorWheel
π

256


Out[2]=

Here is the circle graphic primitive together with a text label.2.

In[3]:= circ = Circle[{.5, .5}, .5];

In[4]:= ctext = TextStyle"Circle", 8, {.5, -.2};

This generates the graphics primitive for the triangle and its text label.

In[5]:= tri = Triangle[{{-2, 0}, {-1, 1}, {0, 0}}];

In[6]:= ttext = TextStyle"Triangle", 8, {-1, -.2};

Here is the rectangle and label.

In[7]:= rect = Rectangle[{1.5, 0}, {2.5, 1}]

Out[7]= Rectangle[{1.5, 0}, {2.5, 1}]
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In[8]:= rtext = TextStyle"Rectangle", 8, {2, -0.2};

Finally, this displays each of these graphics elements all together. 

In[9]:= Graphicstri, ttext, circ, ctext, rect, rtext

Out[9]=

Triangle Circle Rectangle

Add some directives to each primitive.

In[10]:= Graphics

EdgeForm[Gray], LightBlue, tri, ttext,

Thick, Gray, circ, ctext,

EdgeForm[Gray], LightGreen, rect, rtext

Out[10]=

Triangle Circle Rectangle

Cuboid takes a list of three numbers as the coordinates of its lower-left corner. This maps the 

object across two such lists.
3.

In[11]:= MapCuboid, RandomReal[1, {2, 3}]

Out[11]= {Cuboid[{0.159256, 0.199787, 0.744115}], Cuboid[{0.629273, 0.77004, 0.902954}]}

Below is a list of six cuboids and the resulting graphic. Notice the large amount of overlap of the 

cubes. You can reduce the large overlap by specifying minimum and maximum values of the 

cuboid.

In[12]:= cubes = MapCuboid, RandomReal[1, {6, 3}];

In[13]:= Graphics3DOpacity[.5], cubes

Out[13]=

Start by creating a unit cube centered on the origin. An opacity directive adds transparency.4.
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In[14]:= Graphics3DOpacity[.25], Cuboid[{-0.5, -0.5, -0.5}], Boxed → False,

Axes → Automatic

Out[14]=

Next rotate 45°. Note the third argument of Rotate used to specify the axis about which the 

rotation should occur.

In[15]:= Graphics3DOpacity[.25], Cuboid[{-.5, -.5, -.5}],

RotateCuboid[{-.5, -.5, -.5}], 45 °, {0, 0, 1}

Out[15]=

Here is the dynamic version. The angle θ is the parameter that is manipulated here. The explicit 
PlotRange option is necessary to prevent its re-computation for every new angle of rotation. 

In[16]:= Manipulate

Graphics3DRotateCuboid[{-.5, -.5, -.5}], θ, {0, 0, 1}, PlotRange → 1,

{θ, 0, 2 π}

Out[16]=

θ
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Start by creating the set of points.5.

In[17]:= pts = RandomReal[{0, 1}, {24, 3}];

To connect all pairs of points, use Subsets[pts, {2}].

In[18]:= Graphics3D

Opacity[.3], LineSubsets[pts, {2}],

Red, PointSizeMedium, Point[pts]

Out[18]=

To add a label to the plot, use StringForm to slot some values into the string. The binomial 
n
2

 

gives the number of pairs of points.

In[19]:= Graphics3D

Opacity[.3], LineSubsets[pts, {2}],

Red, PointSizeMedium, Point[pts],

PlotLabel → StringForm"`1` vertices, `2` edges", Length[pts],

BinomialLength[pts], 2

Out[19]=

First we create the Point graphics primitives using a normal distribution with mean zero and 

standard deviation one.
6.

In[20]:= randomcoords := PointRandomVariateNormalDistribution[0, 1], {1, 2}

This creates the point sizes according to the specification given in the statement of the problem.

In[21]:= randomsize := PointSizeRandomReal[{.01, .1}]

This creates a random color that will be used for each primitive. 

In[22]:= randomcolor := RandomColorColorSpace → "Hue"
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Here then are 500 points. (You may find it instructive to look at just one of these points.)

In[23]:= pts = Tablerandomcolor, randomsize, randomcoords, {500};

And here is the graphic.

In[24]:= Graphics[pts]

Out[24]=

Alternatively, you could do it all in one step using MapThread.

In[25]:= With{n = 500},

GraphicsMapThread#1, PointSize[#2], Point[#3] &,

RandomColorn, ColorSpace → "Hue", RandomReal[{.01, .1}, n],

RandomVariateNormalDistribution[0, 1], {n, 2}



Out[25]=

Here are the binary digits of π. First is used to get only the digits from RealDigits.7.

In[26]:= FirstRealDigitsNPi, 12, 2

Out[26]= {1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,

0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0}

Convert zeros to negative ones.

In[27]:= 2 % - 1

Out[27]= {1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1,

-1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1}

Here then is a plot for the first fifty thousand digits.
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In[28]:= ListLinePlot

Withdigits = 50000,

Accumulate2 FirstRealDigitsNPi, digits, 2 - 1



Out[28]=

50000 100000 150000

-100

100

200

300

400

For the two-dimensional case, use Partition to pair up the binary digits, then a transformation 

rule to convert them to compass directions.

In[29]:= Withdigs = FirstRealDigitsNPi, 50000, 2,

ListLinePlot

AccumulatePartitiondigs, 2, 2 /. {{0, 0} → {-1, 0}, {1, 1} → {0, -1}},

AspectRatio → Automatic

Out[29]=

-50 50 100

-300

-200

-100

The algebraic solution is given by the following steps. First solve the equations for x and y.8.

In[30]:= Clear[x, y, r]

In[31]:= soln = Solve(x - 1)2
+ (y - 1)2

⩵ 2, (x + 3)2
+ (y - 4)2

⩵ r2, {x, y}

Out[31]= x →
1

50
-58 + 4 r2 - 3 -529 + 54 r2 - r4 ,

y →
1

50
131 - 3 r2 - 4 -529 + 54 r2 - r4 ,

x →
1

50
-58 + 4 r2 + 3 -529 + 54 r2 - r4 ,

y →
1

50
131 - 3 r2 + 4 -529 + 54 r2 - r4 

Then find those values of r for which the x and y coordinates are identical.
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In[32]:= Solve

x /. soln〚1〛 ⩵ x /. soln〚2〛,

y /. soln〚1〛 ⩵ y /. soln〚2〛,

r

Out[32]= r → -5 - 2 , r → 5 - 2 , r → -5 + 2 , r → 5 + 2 

Here then are those values of r that are positive.

In[33]:= Cases%, r → _?Positive

Out[33]= r → 5 - 2 , r → 5 + 2 

To display the solution, we will plot the first circle with solid lines and the two solutions with 

dashed lines together in one graphic. Here is the first circle centered at (1, 1).

In[34]:= circ = Circle{1, 1}, 2 ;

Here are the circles that represent the solution to the problem.

In[35]:= r1 = 5 - 2 ;

r2 = 5 + 2 ;

In[37]:= Graphicscirc, Circle[{-3, 4}, r1], Circle[{-3, 4}, r2], Axes → Automatic

Out[37]=

-8 -6 -4 -2 2

-2

2

4

6

8

10

We wanted to display the solutions (two circles) using dashed lines. The graphics directive 

Dashing[{�, �}] directs all subsequent lines to be plotted as dashed, alternating the dash x 

units and the space y units. We use it as a graphics directive on the two circles c1 and c2. The 

circles inherit only those directives in whose scope they appear.

In[38]:= dashc1 = Red, Dashing[{.025, .025}], Circle[{-3, 4}, r1];

dashc2 = Red, Dashing[{.05, .05}], Circle[{-3, 4}, r2];
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In[40]:= Graphics

Thick, circ,

dashc1, dashc2, Axes → Automatic

Out[40]=

-8 -6 -4 -2 2

-2

2

4

6

8

10

Here is a plot of the sine function.9.

In[41]:= sinplot = PlotSin[x], {x, 0, 2 π}

Out[41]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Using pattern matching, here are the coordinates that were used to construct the curve.

In[42]:= Shortcoords = Casessinplot, Line[{x__}]⧴ x, Infinity, 2

Out[42]//Short= 1.28228×10-7, 1.28228×10-7, {22, 21}, 427, {1}, {1}

Create vertical lines from each coordinate.

In[43]:= Shortlines = MapLine[{{#[[1]], 0}, #}] &, coords, 2

Out[43]//Short= {1}

Here then is the final graphic.
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In[44]:= Showsinplot, GraphicsThickness[.001], lines

Out[44]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

First, here is the code for the triangle medians from Section 5.5.10.

In[45]:= TriangleMediansTriangle[{p1_, p2_, p3_}] := Modulemidpts,

midpts = (#1 + #2)/2 & @@@ Subsets[{p1, p2, p3}, {2}];

MapThreadLine[{#1, #2}] &, {p3, p2, p1}, midpts

Second, this bundles up the code fragments from Section 8.1 into a reusable function. We have 

added options inherited from Graphics.

In[46]:= CentroidPlotTriangle[{p1_, p2_, p3_}], opts : OptionsPatternGraphics :=

Graphics

LightBlue, EdgeFormBlue, Triangle[{p1, p2, p3}],

Blue, PointSizeMedium, Point[{p1, p2, p3}],

Red, PointSizeMedium, Point@RegionCentroidTriangle[{p1, p2, p3}],

Gray, TriangleMediansTriangle[{p1, p2, p3}], PointSizeMedium,

Point(#1 + #2)/2 & @@@ Subsets[{p1, p2, p3}, {2}]

, opts

In[47]:= SeedRandom[15];

TableCentroidPlotTriangleRandomInteger[{-5, 5}, {3, 2}], {3}

Out[48]=  , , 

To deal with the pathological situation where the points are collinear, first create a message that 
will be issued under these conditions.

In[49]:= CentroidPlot::collinpts =

"The points `1` are collinear, giving a degenerate triangle.";
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Three points are collinear if and only if the area of the triangle determined by those points is 

zero. The built-in Area function returns an error message in this situation:

In[50]:= pts = {{0, 0}, {1, 1}, {2, 2}};

AreaTriangle[pts]

Area::reg : Triangle{{0, 0}, {1, 1}, {2, 2}} is not a correctly speci�ed region. 

Out[51]= Area[Triangle[{{0, 0}, {1, 1}, {2, 2}}]]

We could trap for a non-numeric value returned by Area, but we will take another, more direct 
approach. The area of the triangle determined by three points is given by the following 

determinant:

x1 y1 1
x2 y2 1
x3 y3 1

In fact, we have already implemented this in the function SignedArea from Section 4.3.

In[52]:= SignedAreaTriangle[{v1_, v2_, v3_}] :=

1

2
Det[{v1, v2, v3} /.{x_, y_}⧴ {x, y, 1}]

In[53]:= SignedAreaTriangle[pts]

Out[53]= 0

Here then is the code to trap for this condition.

In[104]:= If[SignedArea[pts]⩵ 0, Message[CentroidPlot::collinpts, pts],

����_���� _�� _��������]

In[54]:= CentroidPlotTriangle[{p1_, p2_, p3_}], opts : OptionsPatternGraphics :=

IfSignedAreaTriangle[{p1, p2, p3}] ⩵ 0,

MessageCentroidPlot::collinpts, {p1, p2, p3},

Graphics

LightBlue, EdgeFormBlue, Triangle[{p1, p2, p3}],

Blue, PointSizeMedium, Point[{p1, p2, p3}],

Red, PointSizeMedium, Point@RegionCentroidTriangle[{p1, p2, p3}],

Gray, TriangleMediansTriangle[{p1, p2, p3}], PointSizeMedium,

Point(#1 + #2)/2 & @@@ Subsets[{p1, p2, p3}, {2}]

, opts



In[55]:= CentroidPlotTriangle[pts]

CentroidPlot::collinpts :
The points {{0, 0}, {1, 1}, {2, 2}} are collinear, giving a degenerate triangle.
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In[56]:= CentroidPlotTriangleRandomInteger[{-5, 5}, {3, 2}]

Out[56]=

In[57]:=

Start with the circumcenter which is the center of the circumscribing circle. It is located at the 

intersection of the perpendicular bisectors of the sides. To find the line from the center, 
perpendicular to a side, use RegionNearest and InfiniteLine. First, get the center.

11.

In[58]:= {p1, p2, p3} = {{-1, 0}, {0, 2}, {1, 0}};

center = First@Circumsphere[{p1, p2, p3}]

Out[59]= 0,
3

4


Here are the lines through each pair of vertices:

In[60]:= lines = InfiniteLine /@ Subsets[{p1, p2, p3}, {2}]

Out[60]= InfiniteLine[{{-1, 0}, {0, 2}}],

InfiniteLine[{{-1, 0}, {1, 0}}], InfiniteLine[{{0, 2}, {1, 0}}]

And this gives the point on each line closest to the center.

In[61]:= pbs = MapRegionNearest[#, center] &, lines

Out[61]= -
1

2
, 1, {0, 0}, 

1

2
, 1

Finally, we want a line from each of these points to the center.

In[62]:= perpLines = MapLine[{center, #}] &, MapRegionNearest[#, center] &, lines

Out[62]= Line0,
3

4
, -

1

2
, 1, Line0,

3

4
, {0, 0}, Line0,

3

4
, 

1

2
, 1
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In[63]:= Graphics

Blue, PointSizeMedium, Point[{p1, p2, p3}],

EdgeForm[Gray], LightBlue, Triangle[{p1, p2, p3}],

Blue, Circumsphere[{p1, p2, p3}],

Blue, PointSize[Large], Point@center,

Purple, perpLines, PointSize[Large], Point@pbs



Out[63]=

Next, compute the orthocenter. Using InfiniteLine will make it so that we can draw on the 

computational geometry machinery to do our computations.

In[64]:= {p1, p2, p3} = {{-1, 0}, {0, 2}, {1, 0}};

In[65]:= lines = MapInfiniteLine, Subsets[{p1, p2, p3}, {2}]

Out[65]= InfiniteLine[{{-1, 0}, {0, 2}}],

InfiniteLine[{{-1, 0}, {1, 0}}], InfiniteLine[{{0, 2}, {1, 0}}]

The altitude is the line drawn from a vertex to the opposite side, perpendicular to that side. 
Note that we need to reverse the list {p1, p2, p3} so that the proper line is paired with the 

proper point.

In[66]:= altPts = MapThreadRegionNearest[#1, #2] &, lines, Reverse[{p1, p2, p3}]

Out[66]= -
3

5
,
4

5
, {0, 0}, 

3

5
,
4

5


We need lines from each vertex to the corresponding point in altPts.

In[67]:= altLines = MapThreadLine[{#1, #2}] &, Reverse@{p1, p2, p3}, altPts

Out[67]= Line{1, 0}, -
3

5
,
4

5
, Line[{{0, 2}, {0, 0}}], Line{-1, 0}, 

3

5
,
4

5


Here then is the graphic showing the triangle in gray, its vertices in blue, and the altitude lines 

and points in purple.
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In[68]:= Graphics

Blue, PointSizeMedium, Point[{p1, p2, p3}],

EdgeForm[Gray], LightBlue, Triangle[{p1, p2, p3}],

Purple, PointSize[Large], Point@altPts, altLines



Out[68]=

Finally, the incenter, the center of which is the largest circle that fits entirely inside the triangle. 
For the formula for the incenter, we will need a function to compute the perimeter of the 

triangle. This one comes essentially from Section 4.3.

In[69]:= PerimeterTriangle[pts : {p1_, p2_, p3_}] :=

RegionMeasureLine[pts /. {p_, pn__}⧴ {p1, pn, p1}]

In[70]:= inCenter[pts : {p1_, p2_, p3_}] :=

Modulea, b, c, p = PerimeterTriangle[pts],

a, b, c = {Norm[p2 - p3], Norm[p1 - p3], Norm[p2 - p1]};

a p1[[1]] + b p2[[1]] + c p3[[1]]p,

a p1[[2]] + b p2[[2]] + c p3[[2]]p

Once you have the center, the radius will be the shortest distance from the center to one of the 

sides.

In[71]:= inRadius[pts : {pt1_, pt2_, pt3_}] :=

EuclideanDistanceRegionNearestInfiniteLine[pt1, pt3], inCenter[pts],

inCenter[pts]
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In[72]:= {p1, p2, p3} = {{-1, 0}, {0, 2}, {1, 0}};

pts = {p1, p2, p3};

Graphics

EdgeForm[Gray], LightBlue, Triangle[pts],

PointSize[Large], Point[pts],

Red, CircleinCenter@pts, inRadius[pts], PointSize[Large],

PointinCenter@pts,

MapLineinCenter@pts, # &, pts

, Axes → True

Out[74]=

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

First set the distribution and compute the mean and standard deviation.12.

In[75]:=  = NormalDistribution[0, 1];

σ = StandardDeviation[];

μ = Mean[];

Next we manually construct four vertical lines at the standard deviations going from the 

horizontal axis to the pdf curve.
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In[78]:= PlotPDF[, x], {x, -4, 4},

Filling → Axis,

Epilog →

Gray, Line[{{{μ + σ, 0}, {μ + σ, PDF[, μ + σ]}},

{{μ - σ, 0}, {μ - σ, PDF[, μ - σ]}},

{{μ + 2 σ, 0}, {μ + 2 σ, PDF[, μ + 2 σ]}},

{{μ - 2 σ, 0}, {μ - 2 σ, PDF[, μ - 2 σ]}}}],

AxesOrigin → {-4, 0},

Ticks → -2 σ, "-2σ", -σ, "-σ", μ, "μ", σ, "σ", 2 σ, "2σ",

Automatic,

AspectRatio → 0.4,

PlotLabel → StringForm"Normal distribution: μ=`1`, σ=`2` ", μ, σ

Out[78]=

-2σ -σ μ σ 2σ

0.1

0.2

0.3

0.4

Normal distribution: μ=0, σ=1

And here is a little utility function to make the code a bit more readable and easier to use.

In[79]:= sdLine[_, μ_, σ_] :=

Line[{{{μ + σ, 0}, {σ + μ, PDF[, μ + σ]}},

{{μ - σ, 0}, {-σ + μ, PDF[, μ - σ]}}}]

In[80]:= PlotPDF[, x], {x, -4, 4},

Filling → Axis,

Epilog → Gray, Thickness[.0035], sdLine[, μ, σ], sdLine[, μ, 2 σ],

AxesOrigin → {-4, 0},

Ticks → -2 σ, "-2σ", -σ, "-σ", μ, "μ", σ, "σ", 2 σ, "2σ",

Automatic,

AspectRatio → 0.4,

PlotLabel → StringForm"Normal distribution: μ=`1`, σ=`2` ", μ, σ

Out[80]=

-2σ -σ μ σ 2σ

0.1

0.2

0.3

0.4

Normal distribution: μ=0, σ=1
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Dynamic graphics: exercises8.2
In the Manipulate examples in this section, the parameters were controlled by sliders. Moving 

the slider changes the value of the parameter and any expression dependent upon that parame-
ter inside the Manipulate expression. Sometimes you want to choose values for a parameter 
from a list of discrete values. A setter bar is a convenient control object for this. One way to set 
it is to use a different syntax for the parameter list:{�����, {���1, ���2, …, ����}} will cause 

Manipulate to automatically use a setter bar instead of a slider. Create a Manipulate object 
showing plots of sin, cos, or tan, each selectable from a setter bar.

1.

Modify the above exercise to use a popup menu to choose the function to plot. You can 

explicitly set the control by using ControlType → "PopupMenu".
2.

Here is a graphic showing an ellipsoid together with its two foci:3.

In[1]:= Witha = 5, b = 3,

f = a2 - b2 ;

Graphics

Circle{0, 0}, a, b,

Pointf, 0, Point-f, 0

, Axes → Automatic

Out[1]=
-4 -2 2 4

-3

-2

-1

1

2

3

Turn this into a dynamic graphic by making the semi-major and semi-minor axes lengths a 

and b dynamic which, upon updating, will cause the ellipse to change shape. Some thought 
will be needed to properly deal with the situation b > a.

Create a dynamic interface that displays various structure diagrams and space-filling plots of 
the amino acids. A list of the amino acids is given by

4.

In[2]:= ChemicalData"AminoAcids"

Out[2]=  ������� , ��������� , �������� , ��������� , �������� , ����������� , ���������� , ������������ ,

��������� , ������������ , ���������� ���� , ����������� , �������� , ���������� ���� ,

������������ , ����������� , ��������������� , ���������� , ���������� , ������������ 

The diagrams and plots that should be included are built into ChemicalData:
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In[3]:= StringCasesChemicalData"Properties", __ ~~ "Diagram" __ ~~ "Plot" //

Flatten

Out[3]= {BlackStructureDiagram, CHBlackStructureDiagram, CHColorStructureDiagram,

ColorStructureDiagram, MoleculePlot, SpaceFillingMoleculePlot}

Using the code developed in Section 8.1 for plotting the centroid of a triangle, create a dynamic 

interface that displays the triangle, the medians (lines from each vertex to the midpoint of the 

opposite side), and the triangle vertices as locators.

5.

In the 1920s and 1930s the artist Marcel Duchamp created what he termed rotoreliefs, spinning 

concentric circles giving a three-dimensional illusion of depth (Duchamp 1926). Create your 
own rotoreliefs: start with several concentric circles of different radii, then vary their centers 

around a path given by another circle, and animate.

6.

Create a plot of sin(θ) side-by-side with a circle and a dynamic point that moves along the curve 

and the circle as θ varies from 0 to 2 π (Figure 8.3).
7.

Dynamic visualization of sin function.Figure 8.3.

θ
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1.0

Take one of the two-dimensional random walk programs developed elsewhere in this book 

(Sections 6.3 and 10.3) and create an animation displaying successive steps of the random walk.
8.

Looking forward to Chapter 10, where we develop a full application for computing and visualiz-
ing random walks, create a dynamic interface that displays random walks, adding controls to 

select the number of steps from a pulldown menu, the dimension from a setter bar, and a 

checkbox to turn on and off lattice walks. 

9.

Create a visualization of two-dimensional vector addition (Figure 8.4). The interface should 

include either a 2d slider for two vectors in the plane or locators to change the position of each
vector; the display should show the two vectors as well as their vector sum. Extend the solution 

to three dimensions. (The solution of this vector interface is due to Harry Calkins of Wolfram 

Research.)

10.
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Dynamic visualization of vector arithmetic.Figure 8.4.
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Create a dynamic interface consisting of a locator constrained to the unit circle. Check the 

documentation on Locator for information on constraining the movement of locators.
11.

Create a dynamic interface that displays twenty random points in the unit square whose
locations are randomized each time you click your mouse on the graphic. Add a checkbox to 

toggle the display of the shortest path (FindShortestTour) through the points (look up 

EventHandler and MouseClicked in the documentation).

12.

A suggested addition would be to add a control to change the number of points that are used 

but take care to keep the total number of points manageable (see the note on Traveling 

Salesman problems at the end of the chapter).

Solutions8.2
Giving the parameter list in the form {�����, {���1, ���2, ���3}} automatically causes 

Manipulate to use a setter bar as the control type.
1.

In[1]:= Manipulate

Plotf[x], {x, 0, 2 π},

f, Sin, Cos, Tan

Out[1]=

f Sin Cos Tan

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

This explicitly sets the control type to a popup menu.2.
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In[2]:= Manipulate

Plotf[x], {x, 0, 2 π},

f, Sin, Cos, Tan, ControlType → PopupMenu

Out[2]=

f Sin

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

If the parameter b is greater than a, you will need to switch the foci to the vertical axis. This is 

done inside the If statement before the graphics are given.
3.

In[3]:= Manipulate

f = Ifa2 - b2 ≥ 0,  Absa2 - b2 , 0, 0, Absa2 - b2 ;

Graphics

Circle{0, 0}, a, b,

Pointf, Point-f

, PlotRange → Maxa, b + .1,

{a, 1, 5}, b, 1, 5

Out[3]=

a

b
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We will put this together in two parts: first create a function to display any amino acid using 

one of the various diagrams; then pour it into a Manipulate. Note, this function is dependent 
upon ChemicalData to create the displays. ChemicalData returns an Entity, hence the two 

rules, one for the chemical name as a string and the other as an Entity. Alternatively, you could 

modify it to use your own visualizations, such as the space-filling plots in Section 8.4.

4.

In[4]:= AminoAcidPlotaa_String, diagram_: "ColorStructureDiagram" :=

LabeledFramedChemicalDataaa, diagram, ImageSize → All,

ChemicalDataaa, "Name", LabelStyle → Directive"Menu", 9

In[5]:= AminoAcidPlotaa_Entity, diagram_: "ColorStructureDiagram" :=

LabeledFramedChemicalDataaa, diagram, ImageSize → All,

ChemicalDataaa, "Name", LabelStyle → Directive"Menu", 9

In[6]:= AminoAcidPlot"Glycine"

Out[6]=

N

O

O

N

H

N

H

O

H

�������

In[7]:= AminoAcidPlot ������� ���������� 

Out[7]=

N

O

O

N

H

N

H

O

H

�������
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In[8]:= Manipulate

AminoAcidPlotaminoacid, diagram,

aminoacid, "LAlanine", "Amino acid", aa,

diagram, "StructureDiagram", "CHColorStructureDiagram",

"CHStructureDiagram", "ColorStructureDiagram", "MoleculePlot",

"SpaceFillingMoleculePlot",

Initialization⧴ aa = ChemicalData"AminoAcids", SynchronousUpdating → False,

SaveDefinitions → True

Out[8]=

Amino acid ���������� ����

diagram ColorStructureDiagram

OO
H

OO
H

O

O NN
H

N
H

�-�������� ����

Borrowing the CentroidPlot from Exercise 10 from Section 8.1, here is the Manipulate.5.

In[9]:= ManipulateCentroidPlotTriangle[pts], PlotRange → {-0.2, 2.2},

{{pts, {{-1, 0}, {0, 2}, {1, 0}}}, Locator}, SaveDefinitions → True

Out[9]=
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Modify the radii and the centers to get different effects. Try using transparent disks instead of 
circles.

6.

In[10]:= Manipulate

Graphics

TableCircler/4 Cos[t], Sin[t], 1.1 - r, {r, .2, 1, .05},

PlotRange → 1,

{t, 0, 2 π, .1}

Out[10]=

t

Putting the two graphics pieces (Graphics[…] and Plot[…]) in a grid gives you finer control 
over their placement and formatting.

7.

In[11]:= Manipulate

Grid

GraphicsCircle[], Blue, PointSize[.04], PointCos[θ], Sin[θ],

Axes → True, PlotSin[x], {x, 0, 2 π},

Epilog → Blue, Line{θ, 0}, θ, Sin[θ], PointSize[.025],

Pointθ, Sin[θ], Frame → All, {θ, 0, 2 π}

Out[11]=

θ
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First load the package that contains the random walk code. You could use you own implementa-
tion as well.

8.

In[12]:= << EPM`RandomWalks`
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Create a 1000-step, two-dimensional, lattice walk.

In[13]:= rw = RandomWalk1000, Dimension → 2, LatticeWalk → True;

This is a basic start. Take is used to display successive increments. Note the need for the 1 in the 

parameter list to insure that steps only take on integer values.

In[14]:= Animate

GraphicsLineTake[rw, n],

n, 2, Length[rw], 1, AnimationRunning → False, SaveDefinitions → True

Out[14]=

�

The output above suffers from the fact that the display jumps around a lot as Mathematica tries 

to figure out a sensible plot range for each frame. Instead, we should fix the plot range for all 
frames to avoid this jumpiness. This is done in the definitions for xran and yran in the 

Initialization below.

In[15]:= Manipulate

GraphicsLineTake[rw, n], PlotRange → {xran, yran},

n, 2, Length[rw], 1,

Initialization⧴ 

rw = RandomWalk1000, Dimension → 2, LatticeWalk → True;

{xran, yran} = MapMin[#1], Max[#1] &, Transpose[rw],

SaveDefinitions → True

Out[15]=

n
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Using the programs developed in Section 10.3, here is the code, including a pulldown menu for 
the steps parameter, a setter bar for the dimension parameter, and a checkbox for the lattice 

parameter.

9.

In[16]:= Manipulate

ShowWalk@RandomWalksteps, Dimension → dim, LatticeWalk → latticeQ,

{steps, {100, 250, 500, 750, 1000, 10000}},

dim, 1, "Dimension", {1, 2, 3},

latticeQ, True, "Lattice walk", True, False,

Initialization⧴ Needs"EPM`RandomWalks`", SaveDefinitions → True

Out[16]=

steps 750

Dimension 1 2 3

Lattice walk

Here is the solution using Slider2D. Using Locator instead is left for the reader.10.
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In[17]:= Manipulate

Graphics

Red, Arrow[{{0, 0}, pt1}],

Blue, Arrow[{{0, 0}, pt2}],

Green, Arrow[{{0, 0}, pt1 + pt2}],

Dashed, Orange, Line[{pt1, pt1 + pt2, pt2}],

PlotRange → 6, Axes → True, GridLines → Automatic,

pt1, {1, 4}, "Red vector", {-5, -5}, {5, 5},

pt2, {3, 1}, "Blue vector", {-5, -5}, {5, 5},

ControlPlacement → Left

Out[17]=

Red vector

Blue vector
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The key here is to use a two-argument form of Dynamic, where the second argument gives the 

constraint on the parameter.
11.

In[18]:= DynamicModule{pt = {0, .5}},

Graphics

LightBlue, Rectangle[{-1, -1}, {1, 1}],

Pink, Circle[], Thick, Circle[{0, 0}, .5],

LocatorDynamicpt, pt = .5 Normalize[#] &

, PlotRange → 1.25

Out[18]=

First, create a static version of the problem; we use GraphicsComplex to display the points 

and the tour.
12.

In[19]:= pts = RandomReal[1, {25, 2}];
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In[20]:= GraphicsGraphicsComplexpts, Point@RangeLength[pts], Axes → Automatic

Out[20]=

0.4 0.6 0.8

0.4

0.6

0.8

1.0

In[21]:= tour = LastFindShortestTour[pts];

GraphicsGraphicsComplexpts,

Line[tour], Red, PointSizeMedium, Point[tour], Axes → Automatic

Out[22]=

0.4 0.6 0.8

0.4

0.6

0.8

1.0

Here is the dynamic interface using EventHandler to choose a new set of random points with 

each mouse click. 
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In[23]:= Manipulate

DynamicModulepts = RandomReal[1, {20, 2}], tour,

tour = DynamicLastFindShortestTour[pts];

EventHandler

Dynamic

GraphicsGraphicsComplexpts,

IfNotshowtour, Point@RangeLength[pts],

Line[tour], Red, PointSizeMedium, Point[tour],

Axes → Automatic,

"MouseClicked" ⧴ pts = RandomReal[1, {20, 2}]

,

showtour, False, "Show tour", True, False,

ContentSize → All

Out[23]=

Show tour
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Efficient structures: exercises8.3
Create a hexagonal grid of polygons like that in Figure 8.5. First create the grid by performing
appropriate translations using Translate or the geometric transformation
TranslationTransform. Compare this approach with a multi-polygon approach.

1.

Two-dimensional hexagonal lattice.Figure 8.5.
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Take the example visualizing a 500 000-step random walk at the beginning of this section and 

replicate the output using GraphicsComplex instead of ListLinePlot. Compare the running 

times for each as the number of steps increases.

2.

The ShowWalk function discussed in Section 4.1 for displaying random walks uses 

ListLinePlot to display the data. As mentioned in this section, ListLinePlot will get bogged 

down for large numbers of points. Using the solution to the previous exercise, create a new 

version for both the two- and three-dimensional cases of ShowWalk that uses 

GraphicsComplex instead; then test the new implementation against the one developed in 

Chapter 4.

3.

Create a graphic consisting of a three-dimensional lattice, that is, lines passing through the 

integer coordinates in 3-space (Figure 8.6). Compare approaches that use multi-lines as 

opposed to those that do not.

4.

Three-dimensional integer lattice.Figure 8.6.

A common problem in computational geometry is finding the boundary of a given set of 
points in the plane. One way to think about the boundary is to imagine the points as nails in a 

board and then to stretch a rubber band around all the nails. The stretched rubber band lies on 

a convex polygon commonly called the convex hull of the point set.

5.

Create a function ConvexHullPlot for visualizing the convex hull together with the points on 

the interior of the convex hull. Your function should inherit options for Graphics. The built-
in function ConvexHullMesh can be used to generate the hull polygon:

In[1]:= pts = RandomReal[1, {28, 2}];

ℛ = ConvexHullMesh[pts]

Out[2]=

The zero-dimensional objects in the mesh are points and the one-dimensional objects are lines 

(two-dimensional objects would be polygons). These are the points and lines on the convex 

hull.
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In[3]:= MeshPrimitives[ℛ, 0];

Take[%, 2]

Out[4]= {Point[{0.992746, 0.379391}], Point[{0.0394433, 0.0418121}]}

In[5]:= MeshPrimitives[ℛ, 1];

Take[%, 2]

Out[6]= {Line[{{0.0383976, 0.960283}, {0.0394433, 0.0418121}}],

Line[{{0.0394433, 0.0418121}, {0.225102, 0.00814885}}]}

Your function should generate output similar to the following:

In[7]:= ConvexHullPlotpts, Axes → Automatic

Out[7]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Modify ConvexHullPlot from Exercise 5 to accept an option Dimension. With default value of 
two, ConvexHullPlot should produce output like that in Exercise 5. For Dimension → 3, it 
should generate the convex hull together with large red points at each vertex of the hull 
(Figure 8.7).

6.

Three-dimensional convex hull with hull points highlighted.Figure 8.7.

Extend Exercise 7 from Section 8.1 to random walks on the base-n digits of π. For example, in 

base 3, a 1 corresponds to an angle of 120° from the current position, 2 corresponds to 240°, and 

0 to 360°. In base 4 the step angles will be multiples of 90° and in general, for base n, the step 

angles will be multiples of 360 °/n. Use GraphicsComplex to visualize the walks. Include a 

color function that depends on the length of the walk.

7.

Solutions8.3
Here is the implementation using TranslationTransform.1.

In[1]:= Clearvertices, n, α
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In[2]:= vertices[n_] := TableCos
2 π α

n
, Sin

2 π α

n
, {α, 0, n}

In[3]:= hexagon = Polygonvertices[6];

GraphicsEdgeForm[Gray], LightGray, hexagon

Out[3]=

In[4]:= Graphics

EdgeForm[Gray], LightGray,

TableGeometricTransformationhexagon,

TranslationTransform3 i +
3

4
(-1)j

+ 1,
3 j

2


, i, 5, j, 8



Out[4]=

Or use Translate directly.

In[5]:= gr1 = Graphics

EdgeForm[Gray], LightGray,

TableTranslatehexagon, 3 i +
3

4
(-1)j

+ 1,
3 j

2
, i, 5, j, 8



Out[5]=

This implementation contains one Polygon per hexagon.

In[6]:= Countgr1, _Polygon, Infinity

Out[6]= 40
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Now use multi-polygons. The following version of hexagon is defined so that it can take a pair 
of translation coordinates. Note also the need to flatten the table of vertices so that Polygon can 

be applied to the correct list structure.

In[7]:= Clearhexagon;

hexagon[{x_, y_}] := TableCos
2 π i

6
 + x, Sin

2 π i

6
 + y, i, 1, 6

In[9]:= gr2 =

GraphicsEdgeForm[Gray], LightGray,

PolygonFlattenTablehexagon3 i +
3

4
(-1)j

+ 1,
3 j

2
, i, 5, j, 8,

1



Out[9]=

In[10]:= Countgr2, _Polygon, Infinity

Out[10]= 1

Here is the usage message for GraphicsComplex.2.

In[11]:= ?GraphicsComplex

GraphicsComplex{���, ���, …}, ���� represents a

graphics complex in which coordinates given as integers
� in graphics primitives in ���� are taken to be ���.  

The first argument to GraphicsComplex is a list of coordinate points, such as the output from 

RandomWalk. The second argument is a set of graphics primitives indexed by the positions of 
the points in the list of coordinates. The walk itself gives the coordinates that will be used as the 

first argument to GraphicsComplex. 

In[12]:= walk = RandomWalk5 × 105;

In[13]:= Shortwalk, 2

Out[13]//Short= {{0, 1}, {0, 2}, {0, 3}, {0, 2}, 499992,

{-447, 892}, {-446, 892}, {-445, 892}, {-445, 891}}

The second argument a list of primitives with the coordinate indices as arguments. We want to 

connect the first point to the second, to the third, etc., with a line. That would look like 

Line[{1, 2, 3, …}]. The length of the list is given by Length[walk].
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In[14]:= GraphicsGraphicsComplexwalk, 

Line@RangeLengthwalk



Out[14]=

You could add axes and some directives and options to modify the plot.

In[15]:= GraphicsGraphicsComplexwalk, 

RGBColor[.6, .4, .5], ThicknessTiny, Line@RangeLengthwalk

, Axes → Automatic // Timing

Out[15]= 0.001048,

-500-400-300-200-100 100 200

200

400

600

800



The time to compute (and display) this object is several orders of magnitude faster than that 
with ListLinePlot. So why is ListLinePlot so slow with data of this size? It is designed to be 

as general as possible and to deal with many extraordinary situations. This generality comes at 
a cost. It is very fast for moderately sized data sets, but for large sets, another approach is 

preferable.

First, using the same argument structure as that in ShowWalk (Chapter 10), we give 

GraphicsComplex the list of coordinates followed by Line wrapped around a list of the point
indices 1 through n (the length of the walk).

3.

In[16]:= ShowWalkGCcoords : {{_, _} ..} := Graphics

GraphicsComplexcoords, LineRangeLengthcoords
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In[17]:= ShowWalkGCRandomWalk1500, Dimension → 2

Out[17]=

Add options and color the path.

In[18]:= ClearShowWalkGC;

ShowWalkGCcoords : {{_, _} ..}, opts : OptionsPatternGraphics := Graphics

GraphicsComplexcoords,

ColorData[1][1], LineRangeLengthcoords

, opts,

Axes → True, AspectRatio → Automatic

In[19]:= ShowWalkGCRandomWalk1500, Dimension → 2

Out[19]=

10 20 30

10

20

30

40

50

And similarly for the three-dimensional case:

In[20]:= ShowWalkGCcoords : {{_, _, _} ..}, opts : OptionsPatternGraphics3D :=

Graphics3DGraphicsComplexcoords,

ColorData[1][1], AbsoluteThickness[1], LineRangeLengthcoords,

opts, Axes → True, AspectRatio → Automatic

In[21]:= ShowWalkGCRandomWalk2500, Dimension → 3

Out[21]=

Finally, some timing comparisons between this implementation with GraphicsComplex and 
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the versions that used basic graphics primitives and built-in functions.

In[22]:= walk = RandomWalk[250 000];

TimingShowWalkwalk, AspectRatio → Automatic

Out[23]= 4.28677,

-100 100 200

-500

-400

-300

-200

-100



In[24]:= TimingShowWalkGCwalk

Out[24]= 0.017871,

-100 100 200

-500

-400

-300

-200

-100



One approach to creating the lattice is to manually specify the coordinates for the lines and 

then map the Line primitive across these coordinates. We will work with a small lattice.
4.

In[25]:= xmin = 0; xmax = 3;

ymin = 0; ymax = 3;

zmin = 0; zmax = 3;

Tablex, ymin, zmin, x, ymax, zmin, x, xmin, xmax

Out[28]= {{{0, 0, 0}, {0, 3, 0}}, {{1, 0, 0}, {1, 3, 0}},

{{2, 0, 0}, {2, 3, 0}}, {{3, 0, 0}, {3, 3, 0}}}

Here are the three grids.

In[29]:= gridX = Tablexmin, y, z, {xmax, y, z}, y, ymin, ymax, z, zmin, zmax;

gridY = Tablex, ymin, z, {x, ymax, z}, x, xmin, xmax, z, zmin, zmax;

gridZ = Tablex, y, zmin, {x, y, zmax}, x, xmin, xmax, y, ymin, ymax;

Finally, map Line across these grids and display as a Graphics3D object.
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In[32]:= gr1 = Graphics3D

MapLine, gridX, {2},

MapLine, gridY, {2},

MapLine, gridZ, {2}

, Boxed → False

Out[32]=

In[33]:= Countgr1, _Line, Infinity

Out[33]= 48

Using multi-lines reduces the number of Line objects substantially.

In[34]:= gr2 = Graphics3D

MapLine, gridX,

MapLine, gridY,

MapLine, gridZ

, Boxed → False

Out[34]=

In[35]:= Countgr2, _Line, Infinity

Out[35]= 12

First, generate some random points in the plane.5.

In[36]:= pts = RandomReal[1, {8, 2}];

Next, generate the mesh using a built-in function.
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In[37]:= ℛ = ConvexHullMesh[pts]

Out[37]=

Quite a bit of information is embedded in the this BoundaryMeshRegion. For example, it is easy 

to extract the points on the boundary. They are mesh primitives of dimension zero.

In[38]:= Head[ℛ]

Out[38]= BoundaryMeshRegion

In[39]:= MeshPrimitives[ℛ, 0]

Out[39]= {Point[{0.643154, 0.220953}],

Point[{0.357669, 0.997291}], Point[{0.0543152, 0.400786}],

Point[{0.120583, 0.881017}], Point[{0.892886, 0.146246}]}

Similarly, lines are mesh primitives of dimension one.

In[40]:= MeshPrimitives[ℛ, 1]

Out[40]= {Line[{{0.0543152, 0.400786}, {0.643154, 0.220953}}],

Line[{{0.643154, 0.220953}, {0.892886, 0.146246}}],

Line[{{0.892886, 0.146246}, {0.357669, 0.997291}}],

Line[{{0.357669, 0.997291}, {0.120583, 0.881017}}],

Line[{{0.120583, 0.881017}, {0.0543152, 0.400786}}]}

In fact, the polygon itself is a mesh primitive of dimension two.

In[41]:= MeshPrimitives[ℛ, 2]

Out[41]= {Polygon[{{0.0543152, 0.400786}, {0.643154, 0.220953},

{0.892886, 0.146246}, {0.357669, 0.997291}, {0.120583, 0.881017}}]}

So the pieces of the mesh that we want to show are the region itself (bounded polygon, the 

original points, and the points on the boundary. We will highlight the points on the boundary 

by making them large and red. And we will pass options from Graphics on to the function.

In[42]:= ConvexHullPlotpts_, opts : OptionsPatternGraphics :=

Module{ℛ}, ℛ = ConvexHullMesh[pts];

Showℛ, GraphicsPoint[pts], Red, PointSizeMedium, MeshPrimitives[ℛ, 0],

opts

Try it out with a larger point set.
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In[43]:= pts = RandomReal[{-100, 100}, {60, 2}];

In[44]:= ConvexHullPlotpts, Axes → Automatic, ImageSize → Small

Out[44]=
-50 50 100

-50

50

100

First, set up the options framework.6.

In[45]:= OptionsConvexHullPlot = JoinDimension → 2, OptionsGraphics,

OptionsGraphics3D;

Here is a message that will be issued if the Dimension option is set to anything other than 2 or 3.

In[46]:= ConvexHullPlot::baddim =

"The value `1` of the Dimension option should be either 2 or 3";

In[47]:= ConvexHullPlotpts_, opts : OptionsPattern[] :=

Moduleℛ, dim = OptionValueDimension,

ℛ = ConvexHullMesh[pts];
Which

dim⩵ 2,

Show

ℛ, GraphicsPoint[pts], Red, PointSizeMedium,

MeshPrimitives[ℛ, 0],

FilterRules{opts}, OptionsGraphics,

dim⩵ 3,

Show

ℛ, Graphics3DPoint[pts], Red, PointSizeMedium,

MeshPrimitives[ℛ, 0],

FilterRules{opts}, OptionsGraphics3D,

True, MessageConvexHullPlot::baddim, dim





Here is a larger point set.

In[48]:= pts = RandomReal[1, {40, 3}];

Exercise some options.
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In[49]:= ConvexHullPlotpts, Dimension → 3, Boxed → True, Background → Gray

Out[49]=

Giving a bad value for the Dimension option should produce an error message.

In[50]:= ConvexHullPlotpts, Dimension → 4

ConvexHullPlot::baddim : The value 4 of the Dimension option should be either 2 or 3

Here is the randomwalk on the digits of π in bases given by the second argument.7.

In[51]:= RandomWalkPid_, base_ /; base > 2 := Moduledigits, angles, rules,

digits = FirstRealDigitsNπ, d, base;

angles = Rest@Range0., 2 π, 2 πbase;

rules = MapThread#1 → #2 &, Range0, base - 1, angles;

AccumulateMapCos[#], Sin[#] &, digits /. rules



Using ListPlot, here is a quick visualization on base 5 digits:

In[52]:= ListLinePlotRandomWalkPi[10000, 5], AspectRatio → Automatic

Out[52]=

-100 -50

-20

20

40

60

80

100

120

Here is the GraphicsComplex.

In[53]:= walk = RandomWalkPi[10 000, 5];

len = Lengthwalk;
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In[55]:= GraphicsGraphicsComplexwalk, AbsoluteThickness[.2], LineRangelen,

AspectRatio → Automatic

Out[55]=

And here it is with color mapped to the distance from the origin.

In[56]:= GraphicsGraphicsComplexwalk,

MapHue
#〚1〛

len
, AbsoluteThickness[.25], Line[#] &,

PartitionRange2, len, 2, 1, AspectRatio → Automatic

Out[56]=

Examples: exercises8.4
Create a function ComplexListPlot that plots a list of complex numbers in the complex plane
using ListPlot. Set initial options so that the PlotStyle is red, the PointSize is a little larger
than the default, and the horizontal and vertical axes are labeled “Re” and “Im,” respectively.
Set up options to ComplexListPlot that are inherited from ListPlot.

1.

Create a function ComplexRootPlot that plots the complex zeros of a polynomial in the plane.
Use your implementation of ComplexListPlot that you developed in the previous exercise.

2.

Use Mesh in a manner similar to its use in the RootPlot function to highlight the intersection
of two surfaces, say sin(2 x - cos(y)) and sin(x - cos(2 y)). Youmay need to increase the value
of MaxRecursion to get the sampling just right.

3.

The version of VennDiagram developed in this section used Graphics to create the circles and
then combined themwith RegionPlot using Show. Modify VennDiagram so that the circles are
created entirely inside RegionPlot.

4.
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Create a new rule for VennDiagram that takes a logical expression as its first argument instead 

of a logical function. For example, your function should be able to handle input such as the 

following:

5.

In[1]:= VennDiagramA B, {A, B}

Out[1]=

A B

A  B

Extend the previous exercise to a Venn diagram on three sets, using logical expressions as the 

first argument. 
6.

In[2]:= VennDiagramA B C && ¬ A B C, {A, B, C}

Out[2]=

A B

C

(A  B  C)  ¬ (A  B  C)

Modify the dynamic Venn diagram created in this section to also display a truth table like that 
in Figure 8.8. Include the truth table side-by-side with the Venn diagram. TruthTable was 

developed in Exercise 3 in Section 6.3.

7.
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Dynamic visualization of logical expressions.Figure 8.8.

Logical function Xor

� � ��
� � �
� � �
� � �
� � �

A B

A  B

The DotPlot function developed in this section uses a fixed window size, meaning that it only 

colors a dot black if a string of length one matches a string of length one in the two sequences 

under comparison. Add a WindowSize option to DotPlot that allows you to set the length of 
the sequences to match – you will likely need stringPartition developed in Section 7.5. 
Finally, set up DotPlot to inherit the options from ArrayPlot.

8.

In[3]:= DotPlotseq2, seq1, WindowSize → 3, FrameLabel → "DQ023146.1", "DQ232610.1"

Out[3]=

DQ232610.1

D
Q
0
2
3
1
4
6
.1

When making dot plots like in the previous exercise, if you knew you were always working 

with FASTA files, you could automate both the extraction of the frame labels from the FASTA 

accession ids and their insertion in the FrameLabel option of ArrayPlot.

9.

In[4]:= Import"H5N1ChickenDQ023146.1.fasta", "FASTA", "Accession"

Out[4]= {DQ023146.1}

Create a version of DotPlot that accepts two FASTA files as input and has the same options 

structure as in the previous exercise.
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In[8]:= DotPlot"H5N1ChickenDQ023146.1.fasta", "H5N1DuckDQ232610.1.fasta",

WindowSize → 3

Out[8]=

DQ232610.1

D
Q
0
2
3
1
4
6
.1

Modify the Manipulate expression animating the hypocycloid so that the plot range deals with 

the case where the radius of the inner circle is larger than the radius of the outer circle.
10.

An epicycloid is a curve generated by tracing out a fixed point on a circle rolling around the 

outside of a second circle. The parametric formula for an epicycloid is similar to that for the 

hypocycloid:

11.

x = a + b cos(θ) - b cos a+b
b

θ,

y = a + b sin(θ) - b sin a+b
b

θ.

Create a dynamic animation of the epicycloid similar to that for the hypocycloid in this 

section.

Modify PathPlot so that it inherits options from Graphics as well as having its own option, 
PathClosed, that can take on values of True or False and closes the path accordingly by 

appending the first point to the end of the list of coordinate points.

12.

Modify SimplePath so that the point with the smallest x-coordinate of the list of data is chosen 

as the base point; repeat but with the largest y-coordinate; then try ordering the points about 
the polar angle each makes with the centroid of the set of points.

13.

There are conditions under which the program SimplePath will occasionally fail (think 

collinear points). Experiment by repeatedly computing SimplePath for a set of ten integer-
valued points until you see the failure. Determine the conditions that must be imposed for the 

program to work consistently.

14.

Modify the ChemicalSpaceFillingPlot function to add legends that give identifying informa-
tion for each atomic element in the plot (Figure 8.9). Consider using Legended and 

SwatchLegend.

15.
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Space-filling plot of serotonin (with legends).Figure 8.9.

������

��������

������

��������

Create a dynamic interface similar to the triangle circumcenter example in this section but 
instead compute the orthocenter, which is located at the intersection of the three altitudes of the 

triangle (Figure 8.10). The altitude of a triangle is a line through a vertex perpendicular to the 

opposite side.

16.

Triangle orthocenter at the intersection of the altitudes.Figure 8.10.

Leonhard Euler in 1765 showed that for any triangle, the centroid, circumcenter, and orthocen-
ter are collinear. In fact, the line that passes through these triangle centers also passes through 

several other notable points such as the incenter, the nine-point center, the de Longchamps 

point, and others. And, remarkably, when you change the shape of the triangle, the relative 

distances between the centers is unchanged.

17.

Construct an interface to display a triangle with dynamic vertices together with the triangle’s 

centroid, circumcenter, orthocenter, and the Euler line. Give distinct colors to each of the four 
sets: incenter and angle bisectors, medians and centroid, perpendicular bisectors and circum-
center and circumcircle, altitudes and orthocenter. Add a legend that identifies the objects by 

color.

One way to get a sense of the extent of data, such as a two-dimensional random walk, is to 

superimpose the eigenvectors of a certain tensor over a line plot of the walk. This tensor, called 

the radius of gyration tensor , is discussed in Section 6.3. For a given walk, the eigenvectors of 
 point in the direction of the greatest and smallest spans of the walk, while the eigenvalues of 
 give a measure of how elongated the walk is in the directions pointed by the corresponding 

eigenvectors.

18.

Create a function EigenvectorPlot[����, , ����] that takes a two-dimensional list walk, 
the radius of gyration tensor  of that walk, and generates a visualization of the walk using 
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ListLinePlot together with the eigenvector/value lines as described above. 

Solutions8.4
The function ComplexListPlot plots a list of numbers in the complex plane – the real part is 

identified with the horizontal axis and the imaginary part is identified with the vertical axis. 
Start by setting the options for ComplexListPlot to inherit those for ListPlot.

1.

In[1]:= OptionsComplexListPlot = OptionsListPlot;

In[2]:= ComplexListPlotpoints_, opts : OptionsPattern[] :=

ListPlotMap{Re[#], Im[#]} &, points, opts,

PlotStyle → Red, PointSize[.025],

AxesLabel → Style"Re", 8, Style"Im", 8,

LabelStyle → Directive"Menu", 6

This plots four complex numbers in the plane and uses some options, inherited from ListPlot.

In[3]:= ComplexListPlot{-1 + I, 2 + I, 1 - 2 I, 0, 1},

PlotStyle → Blue, PointSizeMedium

Out[3]= -��� -��� ��� ��� ��� ���
��

-���

-���

-���

-���

���

���

��

The function ComplexRootPlot takes a polynomial, solves for its roots, and then uses 

ComplexListPlot from the previous exercise to plot these roots in the complex plane.
2.

In[4]:= ComplexRootPlotpoly_, z_, opts : OptionsPattern[] :=

ComplexListPlotz /. NSolvepoly == 0, z, opts, AspectRatio → Automatic

In[5]:= ComplexRootPlotCyclotomic[17, z], z, GridLines → Automatic

Out[5]=

-��� -��� ���
��

-���

-���

���

���

��

Use PlotStyle to highlight the two different surfaces and MeshStyle and Mesh to highlight 
their intersection.

3.
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In[6]:= Clearf, x, y, g

In[7]:= f[x_, y_] := Sin[2 x - Cos[y]];

g[x_, y_] := Sin[x - Cos[2 y]];

In[9]:= Plot3Df[x, y], g[x, y], {x, -π, π}, {y, -π, π}, Mesh → {{0.}},

MaxRecursion → 4, MeshFunctions → f[#1, #2] - g[#1, #2] &,

MeshStyle → Thick, Red, PlotStyle → Cyan, Yellow

Out[9]=

We can display both the circle regions as wells as the logical regions using RegionPlot. Three 

changes are needed to the function definition given in the text: the first argument to 

RegionPlot should now be a list with the regions (the two circles) added; a PlotStyle options 

should be given that specifies the circle interiors in white and the region colored blue; the text 
identifying the sets/circles needs to be added using the Epilog option. Also note that we have 

added the MaxRecursion option to RegionPlot to increase the resolution a bit to avoid some 

jaggedness at the intersection of the two circles (try reducing it to see the problem otherwise).

4.

In[10]:= ClearVennDiagram

In[11]:= VennDiagramf_, vars : {A_, B_} :=

Moduleregions, x, y, c1 = {-.5, 0}, c2 = {.5, 0},

regions = Apply(x - #1)2
+ (y - #2)2

< 1 &, {c1, c2}, {1};

RegionPlotregions, Applyf , regions, {x, -2, 2}, {y, -2, 2},

Frame → True, FrameTicks → None, PlotLabel → f @@ vars, AspectRatio → Automatic,

PlotRange → {{-2, 2}, {-1.2, 1.2}},

PlotStyle → White, White, LightBlue,

MaxRecursion → 4,

Epilog → TextFirst[vars], {-.5, .75}, Text[Last[vars], {.5, .75}]



In[12]:= VennDiagram[Xor, {A, B}]

Out[12]=

AB

A B
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The key to turning the logical expression into a function that can be applied to the regions for 
RegionPlot is to create a pure function. Here is a prototype expression and set of variables.

5.

In[13]:= expr = a b && ¬ a b;

vars = a, b;

This substitutes the threaded rules into the expression where a is replaced with #1, and b is 

replaced with #2.

expr /. Thread[vars → {#1, #2}] &

Here then is the function.

In[15]:= ClearVennDiagram

In[16]:= VennDiagramexpr_, vars : {__} /; Length[vars]⩵ 2 :=

Modulec1, c2, regions, x, y, f,

{c1, c2} = {{-1/2, 0}, {1/2, 0}};

regions = (x - #1)2
+ (y - #2)2

< 1 & @@@ {c1, c2};

f = expr /. Thread[vars → {#1, #2}] &;

RegionPlotregions, f @@ regions, {x, -2, 2}, {y, -3/2, 3/2},

AspectRatio → Automatic, FrameTicks → None,

FrameLabel → TraditionalForm[expr],
PlotStyle → White, White, LightBlue,

MaxRecursion → 4,

Epilog → {Text[vars[[1]], {-1/2, 3/4}], Text[vars[[2]], {1/2, 3/4}]}



In[17]:= VennDiagrama b && ¬ a b, a, b

Out[17]=

(a b) ¬ (a b)

a b

To start, here are the centers and the regions for three circles (sets).6.

In[18]:= {c1, c2, c3} = {-1/2, 0}, {1/2, 0}, 0, 3  2;

regions = (x - #1)2
+ (y - #2)2

< 1 & @@@ {c1, c2, c3}

Out[18]= 
1

2
+ x

2

+ y2 < 1, -
1

2
+ x

2

+ y2 < 1, x2 + -
3

2
+ y

2

< 1
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In[19]:= GraphicsCircle[c1], Circle[c2], Circle[c3],

Text[A, {-1/2, .75}], Text[B, {1/2, .75}], Text[C, {0, 1.6}]

Out[19]=

A B

C

We repeat what was done in the previous exercise but instead use an expression in three 

variables.

In[20]:= expr = a b c && ¬ a b c;

vars = a, b, c;

This substitutes the threaded rules into the expression where a is replaced with #1, b is replaced 

with #2, and so on.

expr /. Thread[vars → {#1, #2, #3}] &

Here then is the function. It has the same name as above but will only be called if the variable 

list is of length three.

In[22]:= VennDiagramexpr_, vars : {__} /; Length[vars]⩵ 3 :=

Modulec1, c2, c3, regions, x, y, f,

{c1, c2, c3} = {-1/2, 0}, {1/2, 0}, 0, 3  2;

regions = (x - #1)2
+ (y - #2)2

< 1 & @@@ {c1, c2, c3};

f = expr /. Thread[vars → {#1, #2, #3}] &;

RegionPlotregions, f @@ regions, {x, -2, 2}, {y, -3/2, 5/2},

AspectRatio → Automatic, FrameTicks → None,

FrameLabel → TraditionalForm[expr],
PlotStyle → White, White, White, LightBlue, BoundaryStyle → GrayLevel[.65],

Epilog → {Text[vars[[1]], {-1/2, -.75}], Text[vars[[2]], {1/2, -.75}],

Text[vars[[3]], {0, 1.6}]}



8.4 Examples: exercises 305



In[23]:= VennDiagrama b c && ¬ a b c, a, b, c

Out[23]=

(a b c) ¬ (a b c)

a b

c

We will use the code for the TruthTable function from Exercise 3 in Section 6.3 together with 

the VennDiagram function from this section, using Row.
7.

In[24]:= ManipulateRow

TruthTablef[A, B], {A, B},

VennDiagramA B, {A, B}

, f, Xor, "Logical function", And, Or, Xor, Implies, Nand, Nor,

SaveDefinitions → True

Out[24]=

Logical function Xor

� � � �
� � �
� � �
� � �
� � �

A B

A B

First, import two sequences.8.

In[25]:= seq1 = First@Import"H5N1ChickenDQ023146.1.fasta";

seq2 = First@Import"H5N1DuckDQ232610.1.fasta";

To set the window size, we need to partition the strings. stringPartition was defined in 

Section 7.5 and is available in the EPM packages.

In[27]:= << EPM`

This sets a window size of 4, meaning that strings of length 4 will be compared in what follows.
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In[28]:= Withwindowsize = 4,

TakestringPartitionseq1, windowsize, 1, 1, {}, 12



Out[28]= {ACAT, CATC, ATCA, TCAT, CATG, ATGG, TGGC, GGCT, GCTT, CTTC, TTCT, TCTC}

First set up DotPlot to inherit options from ArrayPlot and to have one new option, 
WindowSize with a default value of one.

In[29]:= OptionsDotPlot = JoinWindowSize → 1, OptionsArrayPlot;

The rest of the code is similar to what was developed in the chapter but instead of passing the 

two sequences whole to ArrayPlot, we pass the two partitioned sequences. We have also set 
the option Frame to True, which can be overridden by setting that option explicitly when you 

use DotPlot.

In[30]:= DotPlotp1_, p2_, opts : OptionsPattern[] :=

Modulew = OptionValueWindowSize,

ArrayPlotOuterBoole[#1 == #2] &, stringPartition[p1, w, 1, 1, {}],

stringPartition[p2, w, 1, 1, {}],

FilterRules{opts}, Options@ArrayPlot, Frame → True

The noise in the earlier plots when we were comparing every nucleotide with every other 
across the two sequences is clearly cleaned up.

In[31]:= DotPlotseq2, seq1, WindowSize → 4, FrameLabel → "DQ023146", "DQ232610",

ColorRules → 1 → Black, 0 → LightYellow, ImageSize → Small

Out[31]=

DQ232610

D
Q
0
2
3
1
4
6

We just need to add a few lines grabbing the sequences and the accession numbers.9.
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In[32]:= DotPlotfile1_, file2_, opts : OptionsPattern[] :=

Modulew = OptionValueWindowSize, p1, p2, lab1, lab2,

p1 = First@Importfile1, "FASTA", "Sequence";

p2 = First@Importfile2, "FASTA", "Sequence";

lab1 = First@Importfile1, "FASTA", "Accession";

lab2 = First@Importfile2, "FASTA", "Accession";

ArrayPlotOuterBoole[#1 == #2] &,

stringPartition[p1, w, 1, 1, {}],

stringPartition[p2, w, 1, 1, {}]

, FilterRules{opts}, Options@ArrayPlot, Frame → True,

FrameLabel → lab1, lab2

In[33]:= DotPlot"H5N1ChickenDQ023146.1.fasta", "H5N1DuckDQ232610.1.fasta",

WindowSize → 3, ImageSize → Small

Out[33]=

DQ232610.1

D
Q
0
2
3
1
4
6
.1

The problem with the two radii is really only one of getting the plot range correct for the two 

situations. This can be done most simply with an If statement as the value of the PlotRange 

option.

10.

In[34]:= Hypocycloida_, b_, θ_ :=

a - b Cos[θ] + b Cosθ
a - b

b
, a - b Sin[θ] - b Sinθ

a - b

b


In[35]:= HypocycloidPlot[R_, r_, θ_] := Module{center},

centerth_, R1_, r2_ := (R1 - r2) Costh, Sinth;

Show

ParametricPlotHypocycloid[{R, r}, t], {t, 0, θ}, PlotStyle → Red,

Axes → None,

GraphicsBlue, Thick, Circle[{0, 0}, R], Circle[center[θ, R, r], r],

PointSize[.02], Point[center[θ, R, r]],

Thick, Linecenter[θ, R, r], Hypocycloid[{R, r}, θ],

Red, PointSize[.02], PointHypocycloid[{R, r}, θ]

, PlotRange → If[r < R, 2 R, 2 r], GridLines → Automatic, ImageSize → Medium
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In[36]:= ManipulateHypocycloidPlot[1, 3, θ], {θ, 0.1, 6 π }, SaveDefinitions → True

Out[36]=

θ

Just a few modifications to the code for the hypocycloid are needed: use the formula for the 

epicycloid; change the center of the rotating circle so that its radius is R + r, not R - r; and 

modify the plot range.

11.

In[37]:= EpicycloidPlot[R_, r_, θ_] := Moduleepicycloid, center,

epicycloida_, b_, t_ :=

a + b Cos[t] - b Cost
a + b

b
, a + b Sin[t] + b Sint

a + b

b
;

centerth_, R1_, r2_ := (R1 + r2) Costh, Sinth;

Show

ParametricPlotepicycloid[{R, r}, t], {t, 0, θ}, PlotStyle → Red,

Axes → None, ImageSize → Small,

Graphics

Blue, Thick, Circle[{0, 0}, R],

Circle[center[θ, R, r], r],

PointSize[.015], Point[center[θ, R, r]],

Thick, Linecenter[θ, R, r], epicycloid[{R, r}, θ],

Red, PointSize[.015], Pointepicycloid[{R, r}, θ]

, PlotRange → 1.5 (R + r), GridLines → Automatic

First, create a static image.
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In[38]:= EpicycloidPlot[3, 1, 2 π]

Out[38]=

And here is the dynamic version.

In[39]:= ManipulateEpicycloidPlot[R, r, θ],

θ, 0 + 0.01, 2 Denominator[(R - r)/r] π,

{R, {3, 4, 5, 6, 7, 8}, Setter}, {r, {1, 2, 3, 4, 5}, Setter},

SaveDefinitions → True

Out[39]=

θ

R 3 4 5 6 7 8

r 1 2 3 4 5

First, set up the options structure.12.

In[40]:= OptionsPathPlot = JoinClosedPath → True, OptionsGraphics;

Make two changes to the original PathPlot: add an If statement that checks the value of 
ClosedPath and if True, appends the first point to the end of the list; if False, it leaves the 

coordinate list as is. The second change is to filter those options that are specific to Graphics 

and insert them in the appropriate place.
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In[41]:= PathPlotlis_List, opts : OptionsPattern[] :=

Modulecoords = lis, IfOptionValueClosedPath,

coords = coords /. a_, b__ ⧴ a, b, a;

GraphicsLinecoords, PointSizeMedium, Red, Pointcoords,

FilterRules{opts}, OptionsGraphics

In[42]:= SeedRandom[424];

coords = RandomReal[1, {10, 2}];

In[44]:= PathPlotcoords, ClosedPath → True, GridLines → Automatic

Out[44]=

A simple change to the program SimplePath chooses the base point with the largest y-
coordinate.

13.

In[45]:= SimplePath3lis_ := Modulebase, angle, sorted,

base = LastSortBylis, Last;

anglea_, b_ := ArcTan @@ b - a;

sorted = SortComplementlis, base, anglebase, #1 ≤ anglebase, #2 &;

Joinbase, sorted

In[46]:= pts = RandomReal[1, {20, 2}];

In[47]:= PathPlotSimplePath3[pts]

Out[47]=

Choosing a base point randomly and then sorting according to the arc tangent could cause a 

number of things to go wrong with the algorithm. The default branch cut for ArcTan gives 

values between -π /2 and π /2 (think about why this could occasionally cause the algorithm in 

the text to fail). By choosing the base point so that it lies at some extreme of the diameter of 
the set of points, the polar angle algorithm given in the text will work consistently. If you 

choose the base point so that it is lowest and left-most, then all the angles will be in the range 

(0, π].

14.
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In[48]:= SimplePath1lis_List := Modulebase, angle, sorted,

base = FirstSortBylis, Last;

anglea_, b_ := ArcTan @@ b - a;

sorted = SortComplementlis, base, anglebase, #1 ≤ anglebase, #2 &;

Joinbase, sorted

In[49]:= pts = RandomReal[1, {40, 2}];

In[50]:= PathPlotSimplePath1[pts]

Out[50]=

And here is a solution based on ordering the points according to the polar angle each makes 

with the centroid of the set of points.

In[51]:= SimplePathCMlis_ := Modulecentroid, angle,

centroid = RegionCentroidPolygon@lis;

anglea_, b_ := ApplyArcTan, b - a;

Sortlis, anglecentroid, #1 ≤ anglecentroid, #2 &

In[52]:= PathPlotSimplePathCM[pts]

Out[52]=

Using Legended and SwatchLegend, you can add identifying information for each atomic 

element.
15.
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In[53]:= ChemicalSpaceFillingPlotfile_String :=

Moduleelements, pos, radii, names, colors, labels,

pos, elements =

First /@ Importfile, "VertexCoordinates", "VertexTypes";

radii = QuantityMagnitude@MapElementData#, "VanDerWaalsRadius" &,

elements;

labels = DeleteDuplicateselements;

names = ElementData#, "StandardName" & /@ labels;

colors = labels /. ColorData"Atoms", "ColorRules";

Legended

Graphics3DSpecularityWhite, 50,

MapThreadColorData"Atoms", #1, Sphere[#2, #3] &,

elements, pos, radii

, Lighting → "Neutral",

SwatchLegendcolors, names, LegendMarkers → "SphereBubble",

LabelStyle → DirectiveFontSize → 7.5





In[54]:= ChemicalSpaceFillingPlot"5hydroxytryptamine.sdf"

Out[54]=

������

��������

������

��������

First, here is a static image of the triangle with orthocenter and altitudes.16.
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In[55]:= {p1, p2, p3} = {{-1, 0}, {1, 2}, {2, 0}};

lines = InfiniteLine /@ Subsets[{p1, p2, p3}, {2}];

altPts = MapThreadRegionNearest[#1, #2] &, lines, Reverse[{p1, p2, p3}];

altLines = MapThreadLine[{#1, #2}] &, altPts, Reverse[{p1, p2, p3}];

iLines = ApplyInfiniteLine, altLines, {1};

center = {x, y} /. FirstSolve({x, y} ∈ #1 &) /@ iLines, {x, y};

GraphicsLightBlue, EdgeForm[Gray], Triangle[{p1, p2, p3}],

Blue, PointSizeMedium, Point[{p1, p2, p3}], PointaltPts,

PointSize[Large], Point[center], Gray, iLines, PlotLabel → "Orthocenter"

Out[60]=

Orthocenter

And here is the dynamic version. Note the orthocenter will be located outside the triangle if the 

triangle is not acute.

In[61]:= DynamicModule{pts = 5 {{-1, 0}, {1, 2}, {2, 0}}},

LocatorPaneDynamicpts, Appearance → Tiny,

DynamicGraphicsEdgeForm[Gray], LightBlue, Triangle[pts],

Gray, InfiniteLine /@ Subsets[pts, {2}],

PointMapThreadRegionNearest[#1, #2] &,

InfiniteLine /@ Subsets[pts, {2}], Reverse[pts],

MapThreadInfiniteLine[{#1, #2}] &,

MapThreadRegionNearest[#1, #2] &,

InfiniteLine /@ Subsets[pts, {2}], Reverse[pts],

Reverse[pts]

Out[61]=

(* solution to appear *)17.
Start with a two-dimensional random walk.18.

In[62]:= << EPM`

In[63]:= << EPM`RandomWalks`
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In[64]:= walk = RandomWalk10 000, Dimension → 2, LatticeWalk → False;

 = RadiusOfGyrationTensorwalk

Out[65]= {{1689.48, 1477.75}, {1477.75, 1495.96}}

The eigenvectors of the radius of gyration tensor, , point in the directions of greatest and 

smallest spans of the walk. The eigenvalues give a measure of how elongated the walk is in 

these directions. This can be seen by creating lines along each eigenvector of a length propor-
tional to the corresponding eigenvalues. In the computation below, the slope of the line is given 

by the y-coordinate of the eigenvector divided by the corresponding x-coordinate.

In[66]:= {λ1, λ2} = Eigenvalues[]

Out[66]= {3073.63, 111.809}

In[67]:= {{v1x, v1y}, {v2x, v2y}} = Eigenvectors[]

Out[67]= {{-0.729841, -0.683617}, {0.683617, -0.729841}}

In[68]:= {cmx, cmy} = Meanwalk

Out[68]= {-36.9605, -31.5695}

In[69]:= ev1 =
v1y

v1x
(x - cmx) + cmy // Expand

Out[69]= 3.05005 + 0.936665 x

In[70]:= ev2 =
v2y

v2x
(x - cmx) + cmy // Expand

Out[70]= -71.0292 - 1.06762 x

Putting all these pieces together, we create the function EigenvectorPlot that returns a plot of 
the original data set together with plots of the orthogonal lines and puts a large red point at 
their intersection, the center of mass.

In[71]:= EigenvectorPlotdata : {{_, _} ..}, tensor_,

opts : OptionsPatternListLinePlot :=

Module{T = tensor, cmx, cmy, λ1, λ2, v1x, v1y, v2x, v2y},

{λ1, λ2} = Eigenvalues[T];

{cmx, cmy} = Meandata;

{{v1x, v1y}, {v2x, v2y}} = Eigenvectors[T];

ShowListLinePlotdata, opts, PlotStyle → Thin,

GraphicsLinecmx - λ1, cmy -
v1y λ1

v1x
, cmx + λ1, cmy +

v1y λ1

v1x
,

Linecmx - λ2, cmy -
v2y λ2

v2x
, cmx + λ2, cmy +

v2y λ2

v2x
,

PointSize[Large], Red, PointMeandata, AspectRatio → Automatic

8.4 Examples: exercises 315



In[72]:= << EPM`RandomWalks`

In[73]:= SeedRandom[4];

walk = RandomWalk10 000, Dimension → 2, LatticeWalk → False;

 = RadiusOfGyrationTensorwalk

Out[75]= {{1977.94, -67.2011}, {-67.2011, 761.669}}

In[76]:= EigenvectorPlotwalk, 

Out[76]=

20 40 60 80 100 120 140

-20

20

40

60

80
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9
Program optimization

Efficient programs: exercises9.1
One of the problems with measuring the time it takes to complete a computation is that 
computers are often busy doing many things simultaneously: checking mail, running system 

scripts in the background, and so on. To give a more accurate measure of the time spent on a 

computational task, create a function AverageTiming that runs several trials and then averages 

the results. Set up the function to return both the result and the timing, similar to Timing and 

AbsoluteTiming. Be careful that your function does not evaluate its input before it is passed 

into the body of the function.

1.

The nth triangular number is defined as the sum of the integers 1 through n. They are so named 

because they can be represented visually by arranging rows of dots in a triangular manner 
(Figure 9.1). Program several different approaches to computing triangular numbers and 

compare their efficiency.

2.

Pictorial representation of the first five triangular numbers.Figure 9.1.

Recall the Anagrams function in Section 7.2 that used Select to find words in the dictionary 

consisting of a permutation of the letters of a given word. Here is another implementation, 
converting the word to a list of characters, getting all permutations of that list of characters,
joining the characters in each sublist, and then checking against actual words in the dictionary.

3.

In[1]:= Anagrams1word_String := Modulewords,

words = MapStringJoin, PermutationsCharactersword;

DictionaryLookupx__ /; MemberQwords, x



In[2]:= TimingAnagrams1"alerts"

Out[2]= {16.3502, {alerts, alters, salter, staler}}

And here is an implementation that uses Alternatives instead of the conditional pattern 

above:

In[3]:= Anagrams2word_String := Modulechars = Charactersword, words,

words = MapStringJoin, Permutationschars;

DictionaryLookupAlternatives @@ words



In[4]:= TimingAnagrams2"alerts"

Out[4]= {0.940914, {alerts, alters, salter, staler}}

The following implementation from Chapter 7 uses regular expressions and Select but only 

checks words in the dictionary of the same length as the test word:

In[5]:= Anagrams3word_String := Modulelen = StringLengthword, words,

words = DictionaryLookupRegularExpression"\\w{" <> ToStringlen <> "}";

Selectwords, SortCharacters[#] ⩵ SortCharactersword &



In[6]:= TimingAnagrams3"alerts"

Out[6]= {0.052693, {alerts, alters, salter, staler}}

Determine what is causing the sharp differences in timing between these three implementa-
tions.

Several different implementations of the Hamming distance computation were given in 

Section 5.6; some run much faster than others. For example, the version with bit operators runs 

about one-and-a-half orders of magnitude faster than the version using Count and MapThread. 
Determine what is causing these differences.

4.

In[7]:= HammingDistance1lis1_, lis2_ :=

CountMapThreadSameQ, lis1, lis2, False

In[8]:= HammingDistance2lis1_, lis2_ := TotalBitXorlis1, lis2

In[9]:= sig1 = RandomInteger1, 106;

sig2 = RandomInteger1, 106;

In[11]:= TimingHammingDistance1sig1, sig2

Out[11]= {0.325111, 499258}

In[12]:= TimingHammingDistance2sig1, sig2

Out[12]= {0.012189, 499258}
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Consider the computation of the diameter of a set of points in d-dimensional space, d, as was 

done in Exercise 11, Section 5.1. 
5.

In[13]:= PointsetDiameterpts_List :=

MaxApplyEuclideanDistance, Subsets[pts, {2}], {1}

This function suffers from the fact that computing subsets is computationally expensive. 
Computing pairs of subsets typically is O(n2) and so the time to do this computation will grow 

quadratically with the size of the point set. Beyond about 10 000 points, the time is substantial.

In[14]:= pts = RandomReal[1, {5000, 2}];

PointsetDiameter[pts] // Timing

Out[15]= {21.2414, 1.39259}

Try to speed up the computation of the diameter by using some computational geometry. In 

particular, note that the two points contained in the diameter must lie on the convex hull of 
the point set. Use this observation to substantially reduce the number of subsets that are 

computed (see O’Rourke 1998).

Searching for numbers which are both square and palindromic can be done by using the two 

predicate functions developed earlier, SquareNumberQ (Exercise 4, Section 2.4) and 

PalindromeQ (Section 1.1). For example, using these functions, the following finds all square 

palindromic numbers below 106:

6.

In[16]:= Withn = 106,

SelectSelectRange[n], SquareNumberQ, PalindromeQ // Timing

Out[16]= {10.1161, {1, 4, 9, 121, 484, 676, 10201,

12321, 14641, 40804, 44944, 69696, 94249, 698896}}

Somewhat surprisingly, checking for palindromes first and then finding square numbers 

amongst those, is about three to four times faster.

In[17]:= Withn = 106,

SelectSelectRange[n], PalindromeQ, SquareNumberQ // Timing

Out[17]= {3.79878, {1, 4, 9, 121, 484, 676, 10201,

12321, 14641, 40804, 44944, 69696, 94249, 698896}}

Determine why this is so.

Consider the Monte Carlo approach to approximating π discussed in several places in this 

book. One way to perform the simulation is to create a large vector of random points in the 

square and count the number of such points that lie within the circle x2 + y2 ≤ 1. Here are two 

approaches, the first using Apply at level one, the second using Map:

7.
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In[18]:= pts = RandomReal{-1, 1}, 106, 2;

4. TotalApplyBoole[#1^2 + #2 ^2 ≤ 1] &, pts, {1}Length[pts] //

Timing

Out[19]= {3.31052, 3.1408}

In[20]:= 4. TotalMapBooleFirst[#]^2 + Last[#]^2 ≤ 1 &, ptsLength[pts] //

Timing

Out[20]= {0.27429, 3.1408}

Determine why the approach with Apply at level one is over an order of magnitude slower.

Solutions9.1
First, we set things up so that AverageTiming has the HoldAll attribute. This way its argument, 
the expression to be measured, does not evaluate before it is used inside the body of the 

AverageTiming function itself.

1.

In[1]:= SetAttributesAverageTiming, HoldAll

In[2]:= AverageTimingexpr_, trials_ :=

MeanTableFirstAbsoluteTiming[expr], trials

As a simple test, here we compute the time needed to invert a large matrix.

In[3]:= mat = RandomReal[1, {1000, 1000}];

AbsoluteTiming[Inverse[mat];]

Out[4]= {0.047831, Null}

And for five trials, the average time is given by the following.

In[5]:= AverageTiming[Inverse[mat], 5]

Out[5]= 0.0421236

For a compound expression, you could either enclose the subexpressions in a list or separate 

them with semicolons.

In[6]:= AverageTiming[{

mat.mat,

Inverse[mat],

Det[mat]

}, 5]

Out[6]= 0.0694276
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In[7]:= AverageTiming[

mat.mat;

Inverse[mat];

Det[mat];,

5]

Out[7]= 0.068383

Collect the results of the Table and pull out the parts needed – the timings and the result.

In[8]:= SetAttributesAverageTiming, HoldAll

In[9]:= AverageTimingexpr_, trials_ := Modulelis,

lis = TableAbsoluteTiming[expr], trials;

MeanlisAll, 1, lis[[1, 2]]



In[10]:= AverageTiming[FactorInteger[50! + 1], 5]

Out[10]= {0.739426, {{149, 1}, {3989, 1}, {74195127103, 1},

{6854870037011, 1}, {100612041036938568804690996722352077, 1}}}

A first attempt, using a brute force approach, is to total the list {1, 2, …, �} for each n.2.

In[11]:= TriangularNumber[n_] := Total[Range[n]]

In[12]:= TableTriangularNumberi, i, 1, 100

Out[12]= {1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190,

210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595,

630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176,

1225, 1275, 1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1830, 1891,

1953, 2016, 2080, 2145, 2211, 2278, 2346, 2415, 2485, 2556, 2628, 2701, 2775,

2850, 2926, 3003, 3081, 3160, 3240, 3321, 3403, 3486, 3570, 3655, 3741, 3828,

3916, 4005, 4095, 4186, 4278, 4371, 4465, 4560, 4656, 4753, 4851, 4950, 5050}

In[13]:= TimingTriangularNumber107

Out[13]= {0.067392, 50000005000000}

A second approach uses iteration. As might be expected, this is the slowest of the approaches 

here.

In[14]:= TriangularNumber2[n_] := Fold[#1 + #2 &, 0, Range[n]]

In[15]:= TimingTriangularNumber2107

Out[15]= {1.40948, 50000005000000}

This is a situation where a little mathematical knowledge goes a long way. The nth triangular 

numbers is just the following binomial coefficient: 
n + 1

2
 .

In[16]:= TriangularNumber3[n_] := Binomial[n + 1, 2]
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In[17]:= TimingTriangularNumber3107

Out[17]= {0.000015, 50000005000000}

Here are the three anagrams functions from the exercise.3.

In[18]:= Anagrams1word_String := Modulechars = Charactersword, words,

words = MapStringJoin, Permutationschars;

DictionaryLookupx__ /; MemberQwords, x

In[19]:= Anagrams2word_String := Modulechars = Charactersword, words,

words = MapStringJoin, Permutationschars;

DictionaryLookupAlternatives @@ words



In[20]:= Anagrams3word_String := Modulelen = StringLengthword, words,

words = DictionaryLookupRegularExpression"\\w{" <> ToStringlen <> "}";

Selectwords, SortCharacters[#] ⩵ SortCharactersword &



Anagrams1 is the slowest. Here are the two main computations in that function. Almost the 

entire computational time is spent in the pattern matching second step below. This is because 

every word in the dictionary is compared with the list words. This brute force approach is 

clearly going to be very expensive.

In[21]:= Withchars = Characters"alerts",

Timingwords = MapStringJoin, Permutationschars;



Out[21]= {0.000828, Null}

In[22]:= TimingDictionaryLookupx__ /; MemberQwords, x;



Out[22]= {16.3338, Null}

Anagrams2, by comparison is much faster as every word in the dictionary is not being com-
pared with the list words.

In[23]:= TimingDictionaryLookupAlternatives @@ words;

Out[23]= {1.11167, Null}

But Anagrams3 is the fastest. First, it is only checking words of the same length as the test word 

“alerts”. That list is nine times smaller than the entire list of words in the dictionary. But the 

biggest speed improvement comes from the fact that it is not using the pattern matcher so 

intensively but instead is sorting lists of characters, which, for short lists, is quite fast.

In[24]:= TimingAnagrams3"alerts";

Out[24]= {0.048765, Null}
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In[25]:= LengthDictionaryLookupw__ /; StringLength[w]⩵ StringLength"alerts"

Out[25]= 10549

In[26]:= LengthDictionaryLookup[]

Out[26]= 92518

The first implementation essentially performs a transpose of the two lists, wrapping SameQ 

around each corresponding pair of numbers. It then does a pattern match (Count) to determine 

which expressions of the form SameQ[����1, ����2] return False. 

4.

In[27]:= HammingDistance1lis1_, lis2_ :=

CountMapThreadSameQ, lis1, lis2, False

In[28]:= HammingDistance2lis1_, lis2_ := TotalBitXorlis1, lis2

In[29]:= sig1 = RandomInteger1, 106;

In[30]:= sig2 = RandomInteger1, 106;

In this case, it is the threading that is expensive rather than the pattern matching with Count.

In[31]:= res = MapThreadSameQ, sig1, sig2; // Timing

Out[31]= {0.283291, Null}

In[32]:= Countres, False // Timing

Out[32]= {0.035301, 500001}

The reason the threading is expensive can be seen by turning on the packing message as 

discussed in this section.

In[33]:= On"Packing"

In[34]:= res = MapThreadSameQ, sig1, sig2;

Developer`FromPackedArray::punpack1 : Unpacking array with dimensions {1000000}. 

Developer`FromPackedArray::punpack1 : Unpacking array with dimensions {1000000}. 

The other factors contributing to the significant timing differences have to do with the fact that 
BitXor has the Listable attribute. MapThread does not. And so, BitXor can take advantage of 
specialized (compiled) codes internally to speed up its computations. 

In[35]:= AttributesBitXor

Out[35]= {Flat, Listable, OneIdentity, Orderless, Protected}

In[36]:= AttributesMapThread

Out[36]= {Protected}

In[37]:= Timingtemp = BitXorsig1, sig2;

Out[37]= {0.011554, Null}
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And finally, compute the number of ones using Total which is extremely fast at adding lists of 
numbers.

In[38]:= TimingTotal[temp];

Out[38]= {0.002223, Null}

Return the packed array messaging to its default value.

In[39]:= Off"Packing"

The key observation here is to note that the two points that make up the diameter of a set of 
points necessarily lie on the convex hull of that set of points.

5.

First, create some sample points in 3-space.

In[40]:= pts = RandomReal[1, {12, 3}];

This computes the convex hull.

In[41]:= ℛ = ConvexHullMesh[pts]

Out[41]=

This gives the coordinates of the points on the hull.

In[42]:= MeshCoordinates[ℛ]

Out[42]= {{0.943138, 0.120452, 0.295862},

{0.00281024, 0.0372368, 0.55261}, {0.323796, 0.539883, 0.176544},

{0.629912, 0.484183, 0.198963}, {0.404037, 0.786687, 0.905667},

{0.747504, 0.550974, 0.384268}, {0.715909, 0.0785744, 0.302986},

{0.648593, 0.864685, 0.186089}, {0.45307, 0.541464, 0.981177}}

So, instead of taking the subsets of the entire set of points, only take subsets from this list of 
mesh coordinates. Here then is the function from Exercise 11, Section 5.1, with this modification.

In[43]:= PointsetDiameterCH[pts_] := Module{ℛ},

ℛ = ConvexHullMesh[pts];
Max@ApplyEuclideanDistance, SubsetsMeshCoordinates[ℛ], {2}, {1}



For timing comparisons, let’s take a large point set.

In[44]:= pts = RandomReal[1, {2500, 3}];
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First, here is the computation using Subsets.

In[45]:= PointsetDiameterpts_List :=

MaxApplyEuclideanDistance, Subsets[pts, {2}], {1}

In[46]:= TimingPointsetDiameter[pts]

Out[46]= {3.41869, 1.62249}

PointsetDiameterCH is substantially faster than the approach above using all subsets.

In[47]:= TimingPointsetDiameterCH[pts]

Out[47]= {0.041134, 1.62249}

The one disadvantage to this approach is that the computation of the convex hull mesh is only 

valid for dimensions one through three.

One way to analyze the difference in this problem is to check how long it takes each of these 

predicates to pick out numbers from one to one million.
6.

In[48]:= CountRange106, p_?PalindromeQ // Timing

Out[48]= {0.37367, 0}

In[49]:= CountRange106, p_?SquareNumberQ // Timing

Out[49]= {0.385763, 0}

Clearly SquareNumberQ is slow relative to PalindromeQ for checking the same number of 
integers, so making it only check 1998 numbers rather than one million is what helps.

The mystery here is not clear until you look turn on the packed array messaging as described in 

the text.
7.

In[50]:= On"Packing"

In[51]:= pts = RandomReal{-1, 1}, 106, 2;

4. TotalBoole[#1^2 + #2 ^2 ≤ 1] & @@@ ptsLength[pts] // Timing

Developer`FromPackedArray::punpack1 : Unpacking array with dimensions {1000000, 2}. 

Out[52]= {2.47989, 3.14176}

In[53]:= pts = RandomReal{-1, 1}, 106, 2;

4. TotalBooleFirst[#]^2 + Last[#]^2 ≤ 1 & /@ ptsLength[pts] //

Timing

Out[54]= {0.282033, 3.14466}

Apply at level one (@@@), unpacks packed arrays and this step causes the significant slowdown 

in this computation.

Reset the system option.

In[55]:= Off"Packing";
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Parallel processing: exercises9.2
Many different methods can be used to smooth a noisy signal. Depending upon the nature of 
the data (periodic, for example) and the nature of the noise, some smoothing methods are 

more appropriate than others. Given a noisy signal, compare a variety of smoothing methods 

in parallel by displaying the original signal together with each smoothed version. For example, 
this displays the original signal together with an eight-term weighted moving average:

1.

In[1]:= signal = TableSin[t] + RandomReal[0.2], {t, -2 π, 2 π, 0.05};

In[2]:= ma = MovingAveragesignal, {1, 2, 6, 8, 6, 2, 1}/8;

ListPlotsignal, ma, Joined → False, True, PlotStyle → Automatic, Red

Out[3]=

50 100 150 200 250

-1.0

-0.5

0.5

1.0

Example smoothers to consider include moving averages with different numbers of terms and 

weights, a convolution with a Gaussian kernel, a lowpass filter, and any others you might be 

familiar with (wavelets, for example).

The search for perfect numbers programmed in Exercise 6 in Section 5.1 gets bogged down for 
searches of more than one million numbers. Try to speed it up by considering the range of 
numbers searched, the built-in functions used, and the possibility of doing the computation in 

parallel.

2.

In the eighteenth century, Leonhard Euler proved that all even perfect numbers must be of the 

form 2p-1 (2p - 1) for 2p - 1 prime and p a prime number. (No one has yet proved that any odd 

perfect numbers exist.) Use this fact to find all even perfect numbers for p < 104.

3.

A common task in many areas of computational linguistics is comparing certain features of a 

text across a broad corpus. One such comparison is counting the occurrence of a certain word 

across numerous texts. This is a good problem for parallel computation. Use the parallel tools 

to import and count the occurrence of a word, say history, across four different texts. Guten-
berg.org is a good source for importing entire texts, but any available source could be used.

4.

Monte Carlo simulations are computations that use random sampling to approximate a 

numerical result. One of the classical examples is the approximation to π. The idea is to 

generate a large number of random numbers in a square and compute the proportion that lie 

within the inscribed circle (Figure 9.2). The approximation to π is four times this proportion. 
This method converges quite slowly, so a large number of points and averaging many trials is 

needed to get better approximations.

5.
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Monte Carlo simulation for approximating π.Figure 9.2.
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Use RandomReal to create points in a square, then count points inside the inscribed disk using 

two different implementations – one with a Do loop and another using the computational 
geometry machinery (RegionMember in particular). Compare the efficiency of these two 

implementations.

The following code can be used to create a plot of the Mandelbrot set. It uses Table to compute 

the value for each point in the complex plane on a small grid. We have deliberately chosen a 

relatively coarse grid (n = 100) as this is an intensive and time-consuming computation. The 

last argument to NestWhileList, 250 here, sets a limit on the number of iterations that can be 

performed for each input. Increase the resolution of the graphic by running the computation 

of the table of points in parallel. 

6.

In[4]:= Mandelbrot[c_] := LengthNestWhileList# ^2 + c &, 0, Abs[#] < 2 &, 1, 250

In[5]:= data = With{n = 100}, TableMandelbrot[x + I y], y, -1.3, 1.3,
1

n
,

x, -2, 0.6,
1

n
;

In[6]:= ArrayPlotdata, ColorFunction → "GreenPinkTones"

Out[6]=

Solutions9.2
Here is a noisy signal to work with.1.

In[1]:= signal = TableSin[t] + RandomReal[{-.25, .25}], t, 0, 4 Pi, 0.025;

Here is an eight-term moving average.
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In[2]:= ma8 = MovingAveragesignal, {1, -2, 6, 8, 6, 2, 1}/8;

ListLinePlotsignal, ma8, PlotStyle → Automatic, Red, Thickness[.005]

Out[3]=
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A six-term moving average:

In[4]:= ma = MovingAveragesignal, {1, 1, 2, 1, 1}/6;

A low-pass filter:

In[5]:= LowpassFiltersignal, .5, 31;

And a convolution with a Gaussian kernel:

In[6]:= kerneln_?OddQ := Table
Exp- k2

n2


2 π
, k, -Floor

n

2
, Floor

n

2


In[7]:= ListConvolvekernel[17], signal;
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In[8]:= ParallelTable

ListLinePlotsignal, comp,

ImageSize → Tiny,

PlotStyle → Automatic, Red, Thickness[.005],

comp, 

MovingAveragesignal, {1, -2, 6, 8, 6, 2, 1}/8,

MovingAveragesignal, {1, 1, 2, 1, 1}/6,

LowpassFiltersignal, .5, 31,

kerneln_?OddQ := Table
Exp- k2

n2


2 π
, k, -Floor

n

2
, Floor

n

2
;

ListConvolvekernel[17]6, signal



Out[8]= 
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

Here is the definition from Exercise 6 in Section 5.1.2.

In[9]:= PerfectSearch[n_] := ModuleperfectQ,

perfectQk_ := TotalDivisorsk  ⩵ 2 k ;

SelectRange[n], perfectQ

In[10]:= PerfectSearch106 // Timing

Out[10]= {8.41595, {6, 28, 496, 8128}}

We can give a speed boost by using DivisorSigma[1, �] which gives the sum of the divisors 

of k.

In[11]:= PerfectSearch2[n_] := ModuleperfectQ,

perfectQk_ := DivisorSigma1, k  ⩵ 2 k ;

SelectRange[n], perfectQ

In[12]:= PerfectSearch2106 // Timing

Out[12]= {4.72435, {6, 28, 496, 8128}}

Reduce the number of sheer computations by using the, as yet, unproven conjecture that there 
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are no odd perfect numbers (confirmed for n < 10300). Also use a pure function for the predicate 

test.

In[13]:= PerfectSearch3[n_] := SelectRange[2, n, 2], DivisorSigma[1, #]⩵ 2 # &

In[14]:= PerfectSearch3106 // Timing

Out[14]= {2.35038, {6, 28, 496, 8128}}

In[15]:= PerfectSearchParallel[n_] :=

ParallelizeSelectRange[2, n, 2], DivisorSigma[1, #]⩵ 2 # &

In[16]:= PerfectSearchParallel106 // Timing

Out[16]= {0.143826, {6, 28, 496, 8128}}

First we find those values of p for which 2p - 1 is prime. This first step is quite compute-inten-
sive; fortunately, it parallelizes well.

3.

In[17]:= primes = ParallelizeSelectRange[10 000], PrimeQ2# - 1 &

Out[17]= {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127,

521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941}

So for each of the above values of the list primes, 2p-1 (2p - 1) will be even perfect numbers 

(thanks to Euler).

In[18]:= perfectLis = Map2#-1 2# - 1 &, primes;

And finally, a check.

In[19]:= perfectQj_ := TotalDivisorsj ⩵ 2 j;

In[20]:= MapperfectQ, perfectLis

Out[20]= {True, True, True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True, True, True}

These are very large numbers indeed.

In[21]:= 2#-1 2# - 1 &[9941] // N

Out[21]= 5.988854963873362×105984

In[22]:= CloseKernels[]

Out[22]= KernelObject[1, local, <defunct>], KernelObject[2, local, <defunct>],

KernelObject[3, local, <defunct>], KernelObject[4, local, <defunct>]

Start by importing four texts, James Joyce’s Ulysses, Hermann Hesse’s Siddhartha, Emily Brontë’s 

Wuthering Heights, and Virginia Woolf’s Jacob’s Room:
4.

In[23]:= joyce = Import"http://www.gutenberg.org/ebooks/4300.txt.utf-8", "Text";

In[24]:= hesse = Import"http://www.gutenberg.org/ebooks/2500.txt.utf-8", "Text";

In[25]:= bronte = Import"http://www.gutenberg.org/ebooks/768.txt.utf-8", "Text";
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In[26]:= woolf = Import"http://www.gutenberg.org/ebooks/5670.txt.utf-8", "Text";

Here is the count for the word history in the James Joyce text, accounting for possible 

capitalization.

In[27]:= StringCountjoyce, "history" "History"

Out[27]= 30

And here is the computation across all four texts done in parallel.

In[28]:= LaunchKernels[];

In[29]:= ParallelTableStringCounttext, "history" "History",

text, joyce, hesse, bronte, woolf

Out[29]= {30, 0, 9, 10}

In[30]:= CloseKernels[];

First, here is the implementation using a Do loop.5.

In[31]:= PiApproxtrials_ := Modulein = 0, pt, pi, error,

pt := RandomReal[1, {2}];

DoIfTotalpt2 ≤ 1, in++, trials;

pi = N4 intrials;

error = Absπ - pi;

pi, error

In[32]:= TableFormTableJoin10i, PiApprox10i, i, 1, 6,

TableHeadings → None, "Trials", "π approx", "Error"

Out[32]//TableForm=

Trials π approx Error
10 2.8 0.341593
100 2.96 0.181593
1000 3.148 0.00640735
10000 3.1312 0.0103927
100000 3.14068 0.000912654
1000000 3.14122 0.000376654

Next, an implementation using RegionMember. Start by creating a disk and square. It is impor-
tant to use Disk and not Circle in order to then be able to use the computational geometry 

function RegionMember – Circle is a region, but a one-dimensional region consisting of the 

curve itself only.

In[33]:= RegionDimension@Circle[{0, 0}, 1]

Out[33]= 1

In[34]:= RegionDimension@Disk[{0, 0}, 1]

Out[34]= 2

In[35]:=  = Disk[{.5, .5}, .5];

 = Polygon[{{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}];
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Here is the computation for 10 000 points.

In[37]:= pts = RandomReal{0, 1}, 104, 2;

in = Selectpts, RegionMember[, #] &;

out = Complementpts, in;

4 NLengthinLength[pts], 20

Out[40]= 3.1228000000000000000

Here is an image.

In[41]:= Graphics

Opacity[.25], EdgeFormThickness[.01], Gray, , ,

PointSizeTiny, Red, Pointin, Blue, Point[out]

, Axes → True, ImageSize → Small

Out[41]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

The first implementation is much faster given that it is purely arithmetic.

In[42]:= TimingPiApprox104

Out[42]= {0.037764, {3.1388, 0.00279265}}

In[43]:= PiMonteCarlon_, prec_: $MachinePrecision := Module, , pts, in,

 = Disk[{.5, .5}, .5];

 = Polygon[{{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}];

pts = RandomReal[{0, 1}, {n, 2}];

in = Selectpts, RegionMember[, #] &;

4 NLengthinLength[pts], prec



In[44]:= TimingPiMonteCarlo104

Out[44]= {2.10258, 3.113600000000000}

But we can speed up this second implementation by using a one-argument form of RegionMem
ber to create a RegionMemberFunction object as described in Section 9.1.
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In[45]:= PiMonteCarlo2n_, prec_: $MachinePrecision := Module, , pts, in, rm, pi,

 = Disk[{.5, .5}, .5];

 = Polygon[{{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}];

pts = RandomReal[{0, 1}, {n, 2}];

rm = RegionMember[];

in = Select[pts, rm[#] &];

pi = 4 NLengthinLength[pts], prec;

pi, Absπ - pi



Let’s parallelize. First, launch the kernels and distribute the definition of PiMonteCarlo2.

In[46]:= LaunchKernels[];

In[47]:= DistributeDefinitionsPiMonteCarlo2

Out[47]= {PiMonteCarlo2, , , pts, in}

Run twenty-four simulations and then average the results.

In[48]:= ParallelTablePiMonteCarlo2106, {24}

Out[48]= {{3.141060000000000, 0.000532653589793}, {3.141440000000000, 0.000152653589793},

{3.138152000000000, 0.003440653589793}, {3.143144000000000, 0.001551346410207},

{3.140664000000000, 0.000928653589793}, {3.142020000000000, 0.000427346410207},

{3.141864000000000, 0.000271346410207}, {3.143704000000000, 0.002111346410207},

{3.143156000000000, 0.001563346410207}, {3.139856000000000, 0.001736653589793},

{3.139976000000000, 0.001616653589793}, {3.141120000000000, 0.000472653589793},

{3.141684000000000, 0.000091346410207}, {3.140172000000000, 0.001420653589793},

{3.144920000000000, 0.003327346410207}, {3.138968000000000, 0.002624653589793},

{3.141128000000000, 0.000464653589793}, {3.139412000000000, 0.002180653589793},

{3.138632000000000, 0.002960653589793}, {3.142496000000000, 0.000903346410207},

{3.142932000000000, 0.001339346410207}, {3.138740000000000, 0.002852653589793},

{3.142288000000000, 0.000695346410207}, {3.141844000000000, 0.000251346410207}}

In[49]:= Mean[%]

Out[49]= {3.141223833333333, 0.001413221132483}

As an aside, you could try parallelizing the implementation with the Do loop by using 

ParallelDo or Parallelize, but you will need to share the variable in across subkernels using 

SetSharedVariable. The cost of communication between kernels to keep track of and incre-
ment this counter is quite expensive and hence any gains in running this function in parallel 
will be erased.

In[50]:= CloseKernels[];

Only two changes are required to run this in parallel – distribute the definition for Mandelbrot 

and change Table to ParallelTable. To increase the resolution the grid now has many more 

divisions in each direction (n = 400).

6.
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In[51]:= Mandelbrot[c_] := LengthNestWhileList# ^2 + c &, 0, Abs[#] < 2 &, 1, 250

In[52]:= LaunchKernels[]

Out[52]= {KernelObject[13, local], KernelObject[14, local],

KernelObject[15, local], KernelObject[16, local]}

In[53]:= DistributeDefinitionsMandelbrot

Out[53]= {Mandelbrot}

In[54]:= data = With{n = 400}, ParallelTableMandelbrot[x + ⅈ y], y, -1.3, 1.3,
1

n
,

x, -2, 0.6,
1

n
;

In[55]:= ArrayPlotdata, ColorFunction → "CMYKColors"

Out[55]=

In[56]:= CloseKernels[];

Compiling: exercises9.3
Create a compiled function that computes the distance to the origin of a two-dimensional
point. Then compare it to some of the built-in functions such as Norm and EuclideanDistance
to compute the distances for a large set of points. If you have a C compiler installed on your
computer, use the Compile option CompilationTarget → "C" and compare the results.

1.

Modify the previous exercise under the assumption that complex numbers are given as input
to your compiled function.

2.

Padé approximants are rational functions that are often used to approximate functions whose
Taylor series does not converge. For example, the Taylor series for ln(1 + x) has poor conver-
gence on 0 ≤ x ≤ 1. Here is its third-order Padé approximant:

3.

In[1]:= PadeApproximant[Log[1 + x], {x, 0, 3}]

Out[1]=

x + x2 + 11 x3

60

1 + 3 x

2
+

3 x2

5
+

x3

20

Create a compiled function that computes the above expression for x a real number and then
evaluate a range of values from zero to two andmake a discrete plot of the differences between
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the approximated values and Log[1 + �].

Many other iteration functions can be used for the Julia set computation. Experiment with
some other functions such as c sin(z), c ⅇz, or Gaston Julia’s original function:

4.

z4 + z3 / (z - 1) + z2 / (z3 + 4 z2 + 5) + c.

For these functions, you will have to adjust the test to determine if a point is unbounded upon
iteration. Try (Abs[Im[#]] > 50 &).

Solutions9.3
First, create a test point with which to work.1.

In[1]:= pt = RandomReal[1, {2}]

Out[1]= {0.380097, 0.592515}

The following does not quite work because the default pattern is expected to be a flat
expression.

In[2]:= distReal = Compilep, _Real, SqrtFirst[p]2
+ Last[p]2

,

RuntimeAttributes → Listable, Parallelization → True

Compile::part :
Part speci�cation p〚1〛 cannot be compiled since the argument is not a tensor of suf�cient

rank. Evaluation will use the uncompiled function. 

Compile::part :
Part speci�cation p〚-1〛 cannot be compiled since the argument is not a tensor of

suf�cient rank. Evaluation will use the uncompiled function. 

Out[2]= CompiledFunction Argument count: 1

Argument types: {_Real}



Give a third argument to the pattern specification to deal with this: {p, _Real, 1}.

In[3]:= ArrayDepth[pt]

Out[3]= 1

In[4]:= distReal = Compilep, _Real, 1, SqrtFirst[p]2
+ Last[p]2

,

RuntimeAttributes → Listable, Parallelization → True

Out[4]= CompiledFunction Argument count: 1

Argument types: {{_Real, 1}}



In[5]:= distReal[pt]

Out[5]= 0.703951
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Check it against the built-in function:

In[6]:= Norm[pt]

Out[6]= 0.703951

Check that it threads properly over a list of points.

In[7]:= pts = RandomReal[1, {3, 2}]

Out[7]= {{0.73132, 0.692825}, {0.00172384, 0.878972}, {0.0588752, 0.367734}}

In[8]:= distReal[pts]

Out[8]= {1.00739, 0.878974, 0.372417}

Norm does not have the Listable attribute so it must be mapped over the list.

In[9]:= Map[Norm, pts]

Out[9]= {1.00739, 0.878974, 0.372417}

In[10]:= distReal[pts] == Map[Norm, pts]

Out[10]= True

Now scale up the size of the list of points and check efficiency.

In[11]:= pts = RandomReal1, 106, 2;

In[12]:= AbsoluteTimingdistReal[pts];

Out[12]= {0.050415, Null}

In[13]:= AbsoluteTiming[Map[Norm, pts];]

Out[13]= {0.087031, Null}

In[14]:= distReal[pts]⩵ Map[Norm, pts]

Out[14]= True

Compiling to C (assuming you have a C compiler installed), speeds things up even more.

In[15]:= distReal = Compilep, _Real, 1, SqrtFirst[p]2
+ Last[p]2

,

RuntimeAttributes → Listable, Parallelization → True, CompilationTarget → "C"

Compile::nogen : A library could not be generated from the compiled function. 

Out[15]= CompiledFunction Argument count: 1

Argument types: {{_Real, 1}}



You can squeeze a little more speed out of these functions by using Part instead of First and 

Last.
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In[16]:= distReal2 = Compilep, _Real, 1, Sqrtp[[1]]2
+ p[[2]]2

,

RuntimeAttributes → Listable, Parallelization → True, CompilationTarget → "C"

Compile::nogen : A library could not be generated from the compiled function. 

Out[16]= CompiledFunction Argument count: 1

Argument types: {{_Real, 1}}



In[17]:= AbsoluteTimingdistReal2[pts];

Out[17]= {0.07329, Null}

As an aside, the mean distance to the origin for random points in the unit square approaches 

the following, asymptotically.

In[18]:= NIntegrate x2 + y2 , {x, 0, 1}, {y, 0, 1}

Out[18]= 0.765196

In[19]:= Mean@distReal[pts]

Out[19]= 0.764885

We need to make just three slight modifications to the code from the previous exercise: remove 

the rank specification; specify Complex as the type; extract the real and imaginary parts to do the 

norm computation.

2.

In[20]:= distComplex = Compilez, _Complex, SqrtRe[z]2
+ Im[z]2

,

RuntimeAttributes → Listable, Parallelization → True

Out[20]= CompiledFunction Argument count: 1

Argument types: {_Complex}



In[21]:= pts = RandomComplex[1, {3}]

Out[21]= {0.707041 + 0. ⅈ, 0.0774789 + 0. ⅈ, 0.366904 + 0. ⅈ}

In[22]:= distComplex[pts]

Out[22]= {0.707041, 0.0774789, 0.366904}

In[23]:= distComplex[pts] == Map[Norm, pts]

Out[23]= True

Here is the Padé approximant for Log[1 + x] about zero, or order three.3.
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In[24]:= PadeApproximant[Log[1 + x], {x, 0, 3}]

Out[24]=

x + x2 + 11 x3

60

1 + 3 x

2
+

3 x2

5
+

x3

20

Create a compiled function that computes the above expression for x a real number and then 

evaluates a range of values from 0 to 2 and makes a discrete plot of the differences between the 

approximated values and Log[1 + x].

In[25]:= logC = Compilex, _Real,
x + x2 +

11 x3

60

1 + 3 x
2
+

3 x2

5
+

x3

20



Out[25]= CompiledFunction Argument count: 1

Argument types: {_Real}



In[26]:= DiscretePlotLog[1 + x] - logC[x], {x, 0, 2, .1}, PlotRange → All

Out[26]=

0.5 1.0 1.5 2.0

5. × 10-7

1. × 10-6

1.5 × 10-6

2. × 10-6

2.5 × 10-6

3. × 10-6

Here is a higher order approximant. Note the need to evaluate PadeApproximant before the 

compilation.

In[27]:= logC = Compilex, _Real, EvaluatePadeApproximant[Log[1 + x], {x, 0, 5}]

Out[27]= CompiledFunction Argument count: 1

Argument types: {_Real}


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In[28]:= DiscretePlotLog[1 + x] - logC[x], {x, 0, 2, .1}, PlotRange → All

Out[28]=

0.5 1.0 1.5 2.0

5. × 10-7

1. × 10-6

1.5 × 10-6

2. × 10-6

2.5 × 10-6

3. × 10-6

Here is the computation for the iteration function c sin(z) using c = 1 +0.4 ⅈ.4.

In[29]:= cJulia2 = Compilez, _Complex, c, _Complex, Module{cnt = 1},

FixedPointcnt++;

c Sin[#] &, z, 100, SameTest → Abs[Im[#2]] > 50 &;

cnt, CompilationTarget → "C", RuntimeAttributes → Listable,

Parallelization → True, "RuntimeOptions" → "Speed"

Compile::nogen : A library could not be generated from the compiled function. 

Out[29]= CompiledFunction Argument count: 2

Argument types: {_Complex, _Complex}



In[30]:= LaunchKernels[]

Out[30]= {KernelObject[17, local], KernelObject[18, local],

KernelObject[19, local], KernelObject[20, local]}

In[31]:= With{res = 100},

ArrayPlotParallelTable-cJulia2[x + y I, 1 + 0.4 I], y, -2 π, 2 π,
1

res
,

x, -2 π, 2 π,
1

res
, ColorFunction → ColorData"CMYKColors"

Out[31]=

In[32]:= CloseKernels[];
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10
Packages

Working with packages: exercises10.3
The following set of exercises will walk you through the creation of a package Collatz, a 

package of functions for performing various operations related to the Collatz problem that we 

investigated earlier (Exercises 5 and 6 of Section 4.1, Exercise 11 of Section 5.3, and Exercise 10 of 
Section 5.4). Recall that the Collatz function, for any integer n, returns 3 n + 1 for odd n, and n /2 

for even n. The (as yet unproven) Collatz conjecture is the statement that, for any initial 
positive integer n, the iterates of the Collatz function always reach the cycle 4, 2, 1,…. Start by 

creating an auxiliary function collatz[�] that returns 3 n + 1 for n odd and n /2 for n even.

1.

Create the function CollatzSequence[�] that lists the iterates of the auxiliary function 

collatz[�]. Here is some sample output of the CollatzSequence function:
a.

In[1]:= CollatzSequence[7]

Out[1]= {7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}

Create a usage message for CollatzSequence and warning messages for each of the 

following situations:
b.

noint: the argument to CollatzSequence is not a positive integer

argx: CollatzSequence was called with the wrong number of arguments.

Modify the definition of CollatzSequence that you created in part a. above so that it does 

some error trapping and issues the appropriate warning message that you created in part b.
c.

Finally, put all the pieces together and write a package Collatz` that includes the appropri-
ate BeginPackage and Begin statements, usage messages, warning messages, and function 

definitions. Make CollatzSequence a public function and collatz a private function. Put 
your package in a directory where Mathematica can find it on its search path and then test it 
to see that it returns correct output such as in the examples below.

d.

In[2]:= Quit[];



In[1]:= << EPM`Collatz`

In[2]:= ?CollatzSequence

CollatzSequence[�] computes the sequence of Collatz iterates starting with
initial value �. The sequence terminates as soon as it reaches the value 1.

Here are various cases in which CollatzSequence is given bad input:

In[3]:= CollatzSequence[-5]

CollatzSequence::notint : The argument, -5, to CollatzSequence must be a positive integer.

In[4]:= CollatzSequencea, b

CollatzSequence::notint : The argument, a, b, to CollatzSequence must be a positive integer.

And this computes the sequence for starting value 27:

In[5]:= CollatzSequence[27]

Out[5]= {27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364,

182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263,

790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377,

1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238,

1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077,

9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122,

61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1}

Take the StemPlot function developed in Section 6.2 and create a package around it. Include a 

usage message and appropriate warning messages that are issued when bad input is supplied.
2.

Solutions10.3
Here are the definitions for the auxiliary collatz function.1.

In[1]:= collatzn_?EvenQ := n /2

In[2]:= collatzn_?OddQ := 3 n + 1

This is essentially the definition given in the solution to Exercise 5 from Section 6.2.a.

In[3]:= CollatzSequence[n_] := NestWhileListcollatz, n, # ≠ 1 &

In[4]:= CollatzSequence[7]

Out[4]= {7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}

First we write the usage message for CollatzSequence, our public function. Notice that we 

write no usage message for the private collatz function.
b.
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In[5]:= CollatzSequence::usage =

"CollatzSequence[n] computes the sequence of Collatz iterates

starting with initial value n. The sequence terminates as soon

as it reaches the value 1.";

Here is the warning message that will be issued whenever CollatzSequence is passed an 

argument that is not a positive integer.

In[6]:= CollatzSequence::notint =

"First argument, `1`, to CollatzSequence must be a positive integer.";

Here is the modified definition which now issues the warning message created above 

whenever the argument n is not a positive integer.
c.

In[7]:= CollatzSequence[n_] := IfIntegerQ[n] && n ≥ 0, NestWhileListcollatz, n, # ≠ 1 &,

MessageCollatzSequence::notint, n

The following case covers the situation when CollatzSequence is passed two or more argu-
ments. Note that it uses the built-in argx message, which is issued whenever built-in functions 

are passed the wrong number of arguments.

In[8]:= CollatzSequence[_, args__] /;

MessageCollatzSequence::argx, CollatzSequence, Length[{args}] + 1 :=

Null

The package begins by giving usage messages for every exported function. The functions to 

be exported are mentioned here – before the subcontext Private` is entered – so that the 

symbol CollatzSequence has context Collatz`. Notice that collatz is not mentioned 

here and hence will not be accessible to the user of this package.

d.

In[9]:= Quit[]

In[1]:= BeginPackage"EPM`Collatz`";

In[2]:= CollatzSequence::usage =

"CollatzSequence[n] computes the sequence of Collatz iterates

starting with initial value n. The sequence terminates as soon

as it reaches the value 1.";

In[3]:= CollatzSequence::notint =

"First argument, `1`, to CollatzSequence must be a positive integer.";

A new context EPM`Collatz`Private` is then begun within EPM`Collatz. All the definitions 

of this package are given within this new context. The context 
EPM`Collatz`CollatzSequence is defined within the System` context. The context of 
collatz, on the other hand, is EPM`Collatz`Private`.

In[4]:= Begin"`Private`";

In[5]:= collatzn_?EvenQ := n /2

In[6]:= collatzn_?OddQ := 3 n + 1
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In[7]:= CollatzSequence[n_] := IfIntegerQ[n] && n ≥ 0, NestWhileListcollatz, n, # ≠ 1 &,

MessageCollatzSequence::notint, n

In[8]:= CollatzSequence[_, args__] /;

MessageCollatzSequence::argx, CollatzSequence, Length[{args}] + 1 :=

Null

In[9]:= End[];

In[10]:= EndPackage[]

After the End[] and EndPackage[] functions are evaluated, $Context and $ContextPath 

revert to whatever they were before, except that EPM`Collatz` is added to $ContextPath. 
Users can refer to CollatzSequence using its short name, but they can only refer to the auxil-
iary function collatz by its full name. The intent is to discourage clients from using collatz at 
all, and doing so should definitely be avoided, since the author of the package may change or 
remove auxiliary definitions at a later time.

Here is the code for the StemPlots package.2.

In[11]:= BeginPackage"EPM`StemPlots`"

Out[11]= EPM`StemPlots`

In[12]:= StemPlot::usage =

"StemPlot[����] returns a stem plot of the discrete data, ����.";

In[13]:= StemPlot::badarg = "The first argument to StemPlot must be a list of numbers.";

In[14]:= OptionsStemPlot = OptionsListPlot;

In[15]:= Begin"`Private`"

Out[15]= EPM`StemPlots`Private`

In[16]:= StemPlotlis_, opts : OptionsPattern[] :=

IfMatchQlis, __?NumericQ,

ListPlotlis, opts, Filling → Axis,

MessageStemPlot::badarg



In[17]:= End[]

Out[17]= EPM`StemPlots`Private`

In[18]:= EndPackage[]

After saving in an appropriate location, this loads the package:

In[19]:= << EPM`StemPlots`

Check the usage message:
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In[20]:= ?StemPlot

StemPlot[����] returns a stem plot of the discrete data, ����.

And try some sample input:

In[21]:= data = RandomInteger[{-5, 10}, 12];

StemPlotdata

Out[22]=

2 4 6 8 10 12

-4

-2

2

4

6

8

In[23]:= StemPlotdata,

PlotStyle → DirectivePointSizeMedium, FillingStyle → Red



Out[23]=

2 4 6 8 10 12

-4

-2

2

4

6

8
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