Chapter 1 Introduction to Program Design

Chapter Overview
What is a computer program?
What are the parts of a program? How are they put together?
What kinds of questions does a program designer ask?

In this chapter you will learn how a computer can be controlled by a set of
instructions called @rogram. This chapter introduces two different aspects of

computation: single-minded instruction following and coordination among
instruction followers. The programs in this book involve both aspects of
computation.

The first aspect of computation is as step-by-step instruction following, like the
process of making a single sandwich. This kind of computation is a sequence of
instructions that produce some desired result. The question that drives this part is
"What do | do next?" Pieces are put together using "Next,...", "If ... then ... else
.. and "until...". This kind of computation has an end goal that execution of
these instructions will accomplish. The programs in this book use short sequences
of instructions, executed over and over, to create entities that can provide services

©1999 Lynn Andrea Stein. This chapter is excerpted from a drdfitefactive Programming In Java
forthcoming textbook from Morgan Kaufmann Publishers. It is an element of the course materials developed
as a part of Lynn Andrea Stein's Rethinking CS101 Project at the MIT Al Lab and the Department of
Electrical Engineering and Computer Science at the Massachusetts Institute of Technology.

Permission is granted to copy and distribute this material for educational purposes only, provided that the
following credit line is included: "©1999 Lynn Andrea Stein." In addition, if multiple copies are made,
notification of this use must be sent to ipij@ai.mit.edu or ipij@mkp.com.

1~2 Introduction to Program Design Chapter 1
[

or respond to requests (e.g., a sandwich-maker).

The second aspect of computation involves coordinating among many of these
instruction-following entities. This is like gathering the sandwich-makers (and
table-waiters and others) together to run a restaurant. This kind of computation is
creating (and managing) a community. The driving questions are "Who are the
members of the community?"”, "How do they interact?", and "What is each one
made of?" The members of the community -- the instruction-following entities --
are glued together through their interactions and communications. Executing this
kind of computation provides an ongoing program such as your car's cruise
control, a web browser, or a library's card catalog.

When you finish this chapter, you will know the basic questions to ask about
every computational system. These questions will allow you to begin to design a
wide variety of computer programs.

1.1 Computers and Programs

Computers provide services. A suitably equipped computer can retrieve a web
page, locate the book whose author you're thinking of, fly an airplane, cook
dinner, or send a message to your friend half way around the world. In order for a
computer to do any one of these things, two things must happen. First, the
computer must be toldowto provide the required services. Second, the computer
must be asked to do so.

The how-to instructions that enable computers to provide services are called
programs. A computer program is simply a set of instructions in a language that
a computer can (be made to) follow. When the computer actually follows the
program instructions, we say that iteégecuting that program. The program is

like the script for a play. It contains instructions for how the play should go. But
the script itself is just a piece of paper: no actors, no costumes, no set, no action.
Executing a program is like performing the play. Now there is something to
watch.

This analogy goes further, too. The same script can be performed multiple times,
just as the same program can be executed again and again. If audience reaction (or
the director's interpretation, or the theater, or the time of day) influences the
performance, two performances of the same script may be quite different.
Similarly, user input, hardware, software, or other environmental circumstances
may make two different executions of the same program quite different from one

IP1J || Lynn Andrea Stein

1.2 Thinking like a programmer 1~-3

another. (Think of running the same word processing program on two different
occasions; the experiences are extremely different even though the computer
follows the same general-purpose instructions both times.)

When you sit down at a computer, someone else has already told it how to do a lot
of things. For example, when you press the power switch, it boots up, or gets
started running, in the way that it has been instructed to. Personal computers
typically come with a fairly sophisticated set of startup instructions already
installed. Simply turning on the computer causes the computer to execute this
startup program.Each computer has a program that it runs automatically. The
program that your desktop or laptop PC runs is called its operating system. A disk
drive -- which is really a separate computer plus the electronic equivalent of a
huge filing cabinet -- comes equipped with instructions for how to retrieve
information from (or store information in) that filing cabinet plus how to transmit
that information across the cable that connects the disk drive with your "main"
computer. A microwave oven comes with a computer that follows instructions for
how to tell time and how to turn on its microwave generator for specified periods.
The library's card catalog provides lookup services. Your car's cruise control
accelerates and decelerates to keep you car moving at a steady rate. A web
browser fetches and displays information it retrieves from the hard drives (file
cabinets) of computers scattered around the world (at your request) (with the
assistance of the "web server" programs running on those distant computers as
well as the network (transmission) services provided by a set of intervening
computers.

When you load a new piece of software onto your computer -- a cool new game,
for example -- what you are actually doing is giving your computer a copy of the
program -- the set of instructions that tells it how to do display graphics and make
appropriate sound effects or whatever it is that the particular piece of software
does. Writing down these instructions was the job of the person (or people) who
wrote the software, theprogrammer. Loading the software makes the

instructions (the script) available to your computer. Just having these instructions
lying around doesn't do you much good, though. To actually play the game
(perform the play), you need to do one more thing. You need to run the program.

! Starting a computer is called "booting it up", presumably from the phrase "pulling yourself up by
your bootstraps". The startup program that a computer executes each time that it is turned on is
called the computer's "boot sequence”.

2 Some computer games can be run off of removable media, like CD ROMs. In this case, you don't
need to load the program onto the computer, but you do need to make sure that the disk is in the
drive, i.e., that the instructions are available to the computer.

IP1J || Lynn Andrea Stein

1~4 Introduction to Program Design Chapter 1
[

Tomorrow, if you want to play the game again, you only have to run it; you don't
have to start by loading it onto your computer.

1.2 Thinking like a programmer

A computer program -- "how-to" instructions for your computer -- must be
written in a language that the computer can follow. There are many languages
designed for instructing computers. These languages are gatigdamming
languages and they are typically quite different from the kinds of languages in
which people talk to one another. One of the main differences between talking to
a person and programming a computer is the increased level of precision required
to tell a computer how to do things. With people, it is often possible to give very
vague instructions and still get the behavior you want. A computer has no
common sense. You must be very specific with it. Your instructions must be step
by step, in great detail. In some ways, programming a computer can be a lot like
talking to a very young child or a creature from a different planet.

Imagine teaching a Martian how to make a peanut butter and jelly sandwich. You
need to give detailed, step by step instructions:

1. Get a loaf of bread.

Remove two slices of bread and put them on the counter.
Get a jar of peanut butter. Put it on the counter, too.

Get a jar of jelly. Put it next to the peanut butter.

Get a knife.

Open the jar of peanut butter.

Pick up a slice of bread.

© N o g &~ w DN

Using the knife, pick up a glop of peanut butter and spread it on the top of the
slice of bread.

9.

These instructions tell the Martian, in very specific terms, what to do. To follow
the instructions, the Martian simply needs to perform each step, one by one, in the
order given. As long as each of these instructions is one that the Martian knows
how to perform, when the Martian finishes executing this program, the Martian
will have a peanut butter and jelly sandwich.

IP1J || Lynn Andrea Stein

1.2 Thinking like a programmer 1~-5

If there is an instruction here that the Martian does not understand, that instruction
needs to be rewritten in more detail so that the Martian will be able to execute it.
For example, "pick up a glop of peanut butter" might require further explanation:

1.
a. Insert the knife blade half-way into the jar of peanut butter.

b. Remove the knife from the jar of peanut butter at a slight angle so that
some peanut butter is carried out of the jar by the knife.

C.

An instruction that needs further explanation before the Martian (or computer)
can execute it is one that we chigjh level. We can use high level steps in our
programs only if we can supply additional instructions to explain how to actually
execute these higher level steps.

Although we don't know what instructions Martians are likely to understand, a
programmer knows what kinds of instructions are a part of the particular
programming language in which s/he is developing a computer program. In this
book, we will use a programming language called Java. As you read this book,
you will learn how to think like a programmer and how to write instructions that
computers can understand. You will also learn specifically about the kinds of
instructions that are part of the Java programming language.

As a programmer, you will design sequences of steps much like the peanut butter
and jelly sandwich instructions. The goal of such a sequence is to get something
done, to find an answer or to create something. In order to design a program like
this, you will need to repeatedly answer the question, "What do | do next?" until
you have reached your desired result. In many ways, this approach makes
computers seem much like sophisticated calculators. In fact, this is where
computers got their start: the word "computer” used to refer to people who did
(mathematical) computations, and the original mechanical computers were
designed to perform these computations automatically.

When you are designing a program, you should ask yourself, "What do | do
next?" You don't necessarily have to write out all of the basic steps in one long
sequence. You can group them together in bigger, more abstract, higher level
chunks:

l. Assemble the ingredients.

1. Spread the peanut butter.

IP1J || Lynn Andrea Stein

1~-6 Introduction to Program Design Chapter 1
[

I, Spread the jelly.
V. Put the sandwich together.
V. Clean up.

This is a perfectly good set of instructions. But, as in the case of the Martian who
didn't know how to "pick up a glop of peanut butter", these instructions will
require further elaboration. A programming language such as Java allows you to
make up your own high level steps, like "Assemble the ingredients", and then to
explain how to do this: "1. Get a loaf of bread...." Your program is complete only
when every line is either understandable by the computer or further explained in
terms that are understandable by the computer. When you are done asking
yourself "What do | do next?" you must then ask "How do | do each of these
things?" until every line of your program is something that the computer knows
how to do.

1.3 Programming Primitives, Briefly

What kinds of things to computers know how to do? Most computers don't know
how to make peanut butter and jelly sandwiches. Most computers do know how to
manipulate numbers and also other kinds of information, like words. In the Java
programming language, you will find tools that let you send messages to other
computers on a network or create windows and buttons to communicate with
people using your programs. Other computers may have special kinds of
instructions. A robot control system has instructions that tell the robot when,
where, and how to move. A security system may have an instruction to sound an
alarm. These are the basic instructions out of which programs for each of these
systems can be constructed.

These basic instructions can be combined by sequencing them, as we've already
seen. They can also be grouped into mini-programs and given names, like
"Assemble the ingredients". These names can then be used as new instructions.
When the computer needs to execute one of these new instructions, it simply
looks up the rule for how to do it. (When the Martian needs to assemble the
ingredients, it uses the detailed instructions that begin "1. Get a loaf of bread....")

Instructions can also be combined in other ways. Sometimes, there is a choice to
be made. For example, after spreading a glop of peanut butter on top of the bread
(step 8), the next step in the peanut butter and jelly program might say:

IP1J || Lynn Andrea Stein

1.3 Programming Primitives, Briefly 1~7

[Number is wrong; should continue list above. Same problem above and below.]

1. If the top of the slice of bread is covered in peanut butter, go to step 10.
Otherwise, go back to step 8.

This step contains a choice; the next step might be 8 or it might be 10, depending
on whether the slice of bread is full. The Martian (or computer) executing this
program will have to keep track of which step comes next. This kind of choice
step is called a conditional, and it is a common construct in programming
languages. It is especially useful when the answer to the question "What do | do
next?" depends on something you won't be able to figure out until you're
executing the program.

We might want to go further, replacing steps 8 and 9 with a new kind of step that
says

1. Repeat the following substeps until the top of the slice of bread is
completely covered in peanut butter

a. pick up a glop of peanut butter
b. spread it on the top of the slice of bread.

This step ("repeat until*) is called a loop. It, too, is a common construct in
programming languages. Some loops tell you to keep going until something is
true (like the bread becoming full), while others tell you how many times to do
the steps inside the loop. Some loops even go on forever. For example, a clock is
basically a loop that moves its hand(s) (or changes its display) once a minute.
Loops are especially useful when part of "What do | do next?" is to repeat
(almost) the same thing several times.

Each of the techniques described above -- sequencing steps, conditionals, loops,
and grouping steps into new basic steps (also called procedural abstraction) -- is
an important part of building computer programs. You will learn more about how
to do these things in Part 2 of this book. These are the pieces that a programmer
uses to answer the questions "What do | do next?" and "How do | do each of these
things?" But this is only one part of the programming problem. The second part of
programming is coordinating the activities of many interdependent participants in
a computational community.

IP1J || Lynn Andrea Stein

1-8 Introduction to Program Design Chapter 1
[

1.4 Ongoing Computational Activity

Some computer programs are very much like peanut butter and jelly sandwich
making instructions. They start with some ingredients and step by step calculate
whatever it is they're designed to create, producing an answer or result before
stopping. The original mechanical computers, which mimicked human computers

performing mathematical calculations, were very much like this. Sometimes, you

would bring your program to a computer operator and then come back the next
day for the result!

Today, most computer programs aren't like this. Instead, computer programs
today are constantliyteracting. They may interact with people, machines, other
computers, or other programs on the same computer. For example, a word
processing program or spreadsheet waits for you to type at it, then rearranges
things on the page or recalculates values as you type. A video game moves things
around on your screen, some in response to you and others by itself. A web
browser responds to your requests, but also talks to computers all across the
network. The cruise control system for your car responds to road conditions,
sensor readings, and your input. A robot control system interacts with the robot
and, through the robot, with the robot's environment, perhaps with no human
input at all.

These computations aren't concerned with solving some pre-specified problem
and then stopping. Most computations of interest these days are things called
servers or agents or even just applications. Most of them have some basic control
loop that responds to requests or other incoming information continually. These
computations are_embedded in an environment and they intesttt that
environment: users, networks or other communication devices, physical devices
(like the car), and other software that runs at the same time.

These programs are not just interacting with the things around them, either. In
fact, each of these programs may itself be composed of many separate pieces that
interact with each other (as well as with the world outside the program).
Coordinating the activity among the many entities that make up your program --
and their interactions with the world around them -- is the second aspect of
computer programming.

This is kind of like taking a group of Martians and organizing them to run a
restaurant. Some of the Martians will take orders from and serve food to the
customers. Other Martians will need to cook food for the customers. Still others
will need to check on supplies, make change, or coordinate other aspects of the
restaurant's operation. Each of these Martians will provide services to and make

IP1J || Lynn Andrea Stein

1.4 Introduction to Program Design 1~9

request of other Martians (or to the restaurant's customers or suppliers or other
parts of the environment in which the restaurant is embedded). Coordinating the
interactions among these Martians (and between the Martian restaurant and its
environment) involves different kinds of questions from the instruction-following
"What do | do next?"

Before we turn to the coordination of activity, though, let's look closely for a
moment at one of the Martians who will staff our restaurant. We will see that,
deep down, peanut butter and jelly programming still has an important role to play
in creating computational activity. Keep in mind that this Martian represents just
one of the many things going on in our restaurant.

The instructions that a Martian chef follows might look very much like this:

1. Pick up a new food order.

2. Find the instructions for the dish ordered and follow them.

3. Put the completed dish and the order information on the counter for pickup.
4. Go back to step 1.

Step 2 of this program is the kind of "higher level" step that we described above.
It is not itself complete; instead, it refers to other, more detailed instructions to be
followed. For example, if an order comes in for a peanut butter and jelly
sandwich, the Martian chef will need to use the instructions developed above for
how to make a peanut butter and jelly sandwich. A computer still follows simple
sequenced steps written in a language that it can execute. But while this Martian
is making a peanut butter and jelly sandwich, another Martian is asking the
customer at table 3 whether she would like some more water. Later, the Martian
waiter will come into the kitchen and pick up the sandwich that the Martian chef
just made. And when the Martian chef is done making the peanut butter and jelly
sandwich, the Martian will turn to the next food order, continuing its ongoing
interaction.

The peanut butter and jelly style of program instructions is an important part of
how the Martian chef does its job. But the Martian chef's instructions are not
simply the steps of the peanut butter and jelly program. The basic structure of the
Martian chef program is aimfinite loop -- a loop that goes on forever. This
program accepts requests (in the form of new food orders) and provides services
(in the form of the completed dishes) over and over again. We sometimes call this
kind of loop -- one that provides the main behavior for a participant in the
interactive program community -- itontrol loop. Many program community

IP1J || Lynn Andrea Stein

1~10 Introduction to Program Design Chapter 1
[

participants take this form, and we will look more closely at control loops in Part
3 of this book. Programs with ongoing central control loops like this are the
members of our interactive computational community.

1.5 Coordinating a Computational Community

At its most basic level, every computer program is made of instructions that are
followed, one by one. But a single computer program may have many instruction-
followers inside it, just as our restaurant is run by many individual Martians.
When you look at the whole program -- like the whole restaurant -- you don't
necessarily see the individual instruction steps. Instead, you see coordinated
activity among a group of interacting entities. The behavior of this community --
providing customers with hot meals -- is not the responsibility of any particular
member of the community. Instead, it is the result of many community members
working together in a coordinated fashion.

Building modern interactive software involves something very much like
organizational design. We call this part of programming "constituting a
community of interacting entities". The programmer's job to figure out how to tell
the computer what to do, and no matter what the specific problem to be solved
may be, there are fundamental questions that each programmer must ask.
Designing a computation which is a community of interacting entities involves
figuring out who the members of this community are, how each one works, and
how they interact. This is like setting the cast of a play, or deciding what the sub-
units of your business will be, as well as how they should interrelate. In planning
the organizational structure of your business (or program), you also have to figure
out how each unit works and what -- and how -- they are supposed to
communicate. These are the big questions of this second aspect of programming.

When you are designing this kind of activity, you ask yourself several questions:
What is the desired behavior of the program?
Who are the entities who interact to produce this behavior?
How does each one work?
How do these entities interact?

In the remainder of this section, we will expand these questions and begin to
explore them in somewhat greater detail. Understanding these questions and their

IP1J || Lynn Andrea Stein

1.5 Coordinating a Computational Community 1~11

ramifications is the theme of this entire book. Coordinating communities is a
special focus of Part 4.

1.5.1 What is the desired behavior of the program?

Before you can design a system to solve your problem, you must know what your
problem is. This involves knowing not only what you want, but how it should
work or fail to work under a variety of different circumstances.

Some questions that you ought to be able to answer about your desired program
include:

What services should your program provide?
What guarantees does your program make about these services?

Under what assumptions (circumstances, conditions) does your program
make these guarantees?

Consider the restaurant of the previous section. What can we say about its
behavior? In answering this question, we consider both the experiences of
individual customers and the ongoing properties that the restaurant must maintain,
such as remaining solvent. A basic specification of the service provided by the
restaurant might be: Each customer is seated at a clean table, the order is taken,
food is served, a bill presented, and payment collected.

There are a number of guarantees we want to make about these services. For
example, customers should not have to wait for an unduly long time. Different
parts of the restaurant must communicate; customers should not be charged for
food that they were not served, etc. Over time, the restaurant should take in at
least enough revenue to cover its operating expense. Supplies should not run out,
nor should they rot.

We will make certain assumptions in order to be able to provide these guarantees.
For example, the "timely service" guarantee will only be possible if the load on
the restaurant is reasonable. We might decide that we will only be able to uphold
this guarantee if the number of people wanting to eat in the restaurant at one time
never exceeds its capacity, and if the rate of arrival of these people doesn't exceed
the rate at which the restaurant can serve th@imese assumptions should be

% How many customers the restaurant can handle is called its bandwidth. How quickly each one
can be served is called its latency. The number of customers per hour that the restaurant can
handle is its throughput. These quantities -- bandwidth, latency, throughput -- are common

IP1J || Lynn Andrea Stein

1~12 Introduction to Program Design Chapter 1
[

made explicit, and we will also need to say what happens when they are violated.
(In this case, the timely service guarantee won't be upheld, but how slow the
service gets should be related to how overloaded the restaurant is.)

There are other assumptions we do not make about our program, and we can
articulate these as well.. We do not assume that only one customer will be served
at a time. Instead, we expect that multiple tables must be handled (roughly)
simultaneously. It certainly won't do to wait until the first has eaten, paid, and left
before addressing the second. We also permit different interactions with each
table to be handled simultaneously or at least overlapped; food may be cooking
while checks are being written up.

This description is still fairly general, and we can imagine making it more
specific. (For example, are customers constrained to ordering off of a menu?) In
general, the more detail you can give of what your program ought to do, the easier
your task will be in designing and building it.

1.5.2 Who are the members of the community?

This question can't be answered in isolation, because any and every decision you
make aboutvhothe entities are is also at least a partial commitmewhtt they

are anchow they work. So answering this question is in many ways like solving
the whole problem. The trick is to answer this question in fairly high-level,
general terms, then to sit down and try to hash out the answers to all of the what
and how questions. In answering those, you'll almost certainly have to return to
this question and rearrange your answer a few times. This is fine; it's even typical
enough to have a namacremental program design

In the restaurant, an appropriate high level division of labor might have a wait

staff unit (the people who deal directly with the customers), a kitchen staff unit

(the people who cook the food), and a financial unit (who keep track of how much
which things cost, collect money, and buy supplies). At this point, we haven't

committed to whether these are three roles played by a single Martian, three
separate Martians, or even three groups of several Martians each.

1.5.3 What goes inside each one?

To answer this question requires knowing a bit about how each entity will interact
with the other members of its community. This means that answering "what goes

measures of program performance.

IP1J || Lynn Andrea Stein

1.5 Coordinating a Computational Community 1~13

inside" is closely related to "how do they interact." After all, specifying what
interactions each entity needs to support goes a far way towards telling you
whether the "what goes inside" meets the requirements of the community.

Some subsidiary questions to ask about how each of the entities is constituted
include:

What responsibilities does it have?

What guarantees (promises, commitments) does it make? Under what
assumptions?

What resources does it control?
How does it work?
Is it a community, too?

For example, the restaurant's wait staff might be responsible for greeting the
customers in a timely fashion, supplying each one with a menu (a structure that
the program will have to provide and keep updated!), taking the order, delivering
it to the kitchen staff, picking up and serving the cooked meal, obtaining a price
from the accounting entity, and obtaining payment for that amount from the
customer. The wait staff might guarantee to communicate with (most of) the
customers within minutes, provided the total number of customers is limited and
the maximum time spent with each is under a certain amount. It might also
promise to deliver food within some small amount of time after it's done cooking,
provided that the kitchen staff notifies the wait staff in a timely manner. The wait
staff controls menus, knows which food items were ordered by which customers,
and is the only part of the restaurant that deals directly with the customers. And so
on.

When it comes to "How does it work?", there are two kinds of answers. One
answer is that the behavior of the entity is accomplished by a single rule-follower
running an interactive control loop. We saw an example of this when we
considered the Martian chef earlier. In this case, we ask "What does the Martian
do next?" over and over, until we wind up with a well-defined set of instructions
for this Martian to follow.

The other possible answer to the question "How does this entity work?" is that
this entity is itself a community. (The wait staff might be further divided into the
person who takes the order, the person who clears the table, and the person who
serves the wine.) In this case, we need to figure out how to build each of these
entities, asking again "What goes inside each one?" The problem of figuring out

IP1J || Lynn Andrea Stein

1~14 Introduction to Program Design Chapter 1
[

how to coordinate the activity of a community continues until each community
member is a single (rule-follower) Martian. Then we ask about the instructions
this Martian follows.

1.5.4 How do they interact?

This question concerns coordination and communication among two or more
entities. Some of the questions that you should ask about how these entities
interact include:

* What are the entities' interfaces?
> What promises does each one make?
> What contracts does it fulfill?
- What services does it provide?
e How do they communicate?
> What mechanisms do they use?
- What interaction patterns do they use?
- How do they preserve liveness, i.e., make sure that things keep moving?
* What interaction patterns are possible?
* What happens when something goes wrong?

A protocol is the specification for an interaction between two entities. For
example, a common protocol for the interaction between the wait staff and
kitchen staff of a restaurant involves a slip of paper with the customer's order
written on it. The waiter hangs this piece of paper in the window over the
kitchen's food pickup counter, a place where it will be easy to find when someone
from the kitchen is ready for a new job. When a member of the kitchen staff is
ready to process the order, the piece of paper is removed and used to guide the
food preparation. When the order is ready, it is placed on the food pickup counter
together with the original order slip. This identifies the food with the original
request when the waiter returns to retrieve it. The slip of paper serves as a crucial
reminder of several associated pieces of information: what was ordered, by
whom, and where they are seated.

Protocols can also address temporal issues. For example, the wait staff/kitchen

IP1J || Lynn Andrea Stein

1.5 Coordinating a Computational Community 1~15

staff interaction described in the preceding paragraph needs to happen in real
time, meaning that the protocol itself can't introduce significant delays. There
must also be guarantees made about the frequency with which the wait staff
checks for completed dishes (or the kitchen staff for incoming orders). If
assumptions such as these are built into protocols, they must be documented so
that they are maintained in the behavior of participant entities.

In contrast, the wait staff interacts with the financial unit by obtaining prices for
food and turning over any moneys collected. These interactions could happen in
batch, meaning that it is OK for the wait staff to get the price list at the beginning
of the week or for money to be handed over at the end of the Ty difference
between real time and batch interactions is only one dimension that must be
determined in order to coordinate the activities of the members of your
computational community.

A protocol specifies the interface, or meeting, between various entities in the
community that constitutes your program. Once the interfaces have been
thoroughly fleshed out, each entity can in theory be implemented by a separate
programmer (or team of programmers) provided that it is built to spec, i.e., that it
meets the specifications of the agreed-upon interface.

In practice, the task of implementing an entity to match a given specification often
results in questions about or revision of that interface. Programming is not so neat
a task as students of computer science would often like to believe; there's a cycle
of specification and implementation, debugging and testing, usage and revision,
that characterizes almost all real-world software. The later stages of this process
are sometimes called the software life cycle; but the repeated revision that
characterizes those later stages start before a piece of software is even born.

1.6 The Development Cycle

The sections above concern the design of a computer program. Typically, you will
be given a set of specifications and some components that need to be integrated
into the system you build. Perhaps you will only be asked to build a single entity
or to modify existing entities to facilitate coordination. Regardless of your
particular design problem, you will find it useful to situate your task in the context

“ Batch processing is like the old-fashioned computations in which you handed your program to a
computer operator and came back the next day for your results.

IP1J || Lynn Andrea Stein

1~16 Introduction to Program Design Chapter 1
[

of these six questions:
What is the behavior of this program?
Who are the entities that combine to produce this behavior?
How do they interact?

What is each one made of? (A community of entities or a single instruction-
following control loop?)

And, when we get down to instruction-followers,
What does it do next?
How does it do each one of these things?

Once you have the answers to all of these questions, you can start to build your
program. Of course, you will already have found that you needed to go back to
earlier parts of the design process to modify or flesh out various decisions. You
may also have shown your completed design to other programmers -- or, perhaps
more importantly, to the users or customers for whom you are creating this
service -- and revised your design specification in response to their feedback.

The implementation phase of the project is no different. In building a program
that is supposed to meet your specification, you will often find that you need to go
back and change that specification. When this happens, you need to be careful to
consider all of the interdependencies that led you to your original design. That is,
the development of software is cyclic, beginning with design but often returning
to it. It will not always be desirable (or even possible) to change your design, but
it is quite common to discover additional assumptions or nuances that must be
percolated through the design during later phases of development.

When you begin to build your program, it is often advisable to implement only a
small piece of your system first. This may mean implementing only some of the
entities, or it may mean implementing all of the entities but only simple, basic
versions of each. In large scale system development, this initial phase is called
prototyping. Even in most of the smaller scale programs that you will encounter in
your early coursework, it is a good idea to utilize this approach of incremental
program development. Part of developing good programming skills involves
learning to consciously and explicitly design a staged development plan in which
smaller simpler programs are constructed and debugged, then gradually expanded
until the desired functionality is obtained.

IP1J || Lynn Andrea Stein

1.6 The Development Cycle 1~17

Building a simpler version of your system gives you an opportunity to test your
basic approach before you have built up too much complexity. It also means that
your bugs or program errors, will be easier to find. Bugs come in many flavors,
ranging from simple syntactic errors such as spelling mistakes, to programming
errors such as incorrect variable scoping, to conceptual design problems such as
impossible-to-meet but critical guarantees.

Even after you've found the bugs that keep your program from running, you will
need to subject your code to rigorous testing. This means trying out not only the
"normal” expected behavior, but also checking how your program handles
unexpected or anomalous behavior. Think of your program as an opponent you're
trying to trick; see if you can get it to misbehave. This testing -- when done right -
- will lead you to modify your code or even your design.

This repeated cycling through and between the various stages of specification (or
design) development, implementation, and testing is a crucial skill for any good

programmer. Classroom programs are too often written once and tested on
obvious cases. Most of the time and money spent on real-world software is spent
on revision and maintenance rather than on initial development. Acquainting

yourself with this cycle -- and with writing clean, easy-to-read, reusable code --

may be the most important part of becoming a skilled programmer. These issues -
- together with a tour through the development cycle -- are the topic of the next

chapter.

1.7 The Interactive Control Loop

This book focuses on the problem of designing interactive software. At the heart
of our approach is the idea of ameractive control loop. This is a simple
program that repeatedly receives an input -- a new request, a set of sensor
readings, or some other information -- and responds appropriately. In the general
case, the response may involve initiating a series of other activities, so this kind of
program can in principle become almost arbitrarily complex. The basic idea is
rather simple, though.

To conclude this chapter, we present an extremely simple interactive control loop.
This example will be used as a motivator for the development of the next part of
the book. The interactive control loop idea is a theme that runs through this entire
book. In a way, it might be thought of as the "atomic unit" or basic vocabulary
element of this kind of computation.

IP1J || Lynn Andrea Stein

1~18 Introduction to Program Design Chapter 1
[

Perhaps the simplest interactive control loop igem program. When run, this
program waits for the user to type something. When the user finishes typing, the
program simply repeats back what it has been given. That is, it's a loop that gets
some input, processes that input (in this case trivially), and then spits out its
result.

Although the echo program seems too trivial to be of much use, a minor variant of
it runs in almost every program you type to: it's what makes the characters appear
on the screen. Far more importantly, the basic structure of this program underlies
essentially every interactive computation. And it demonstrates many of the
important properties of an interactive computation:

It is embedded in an environment (in this case involving a user's typing and
a display that the user can see).

It is interactive (with that user, but we could have it talk to another program
or over a network instead).

It is concurrent: other things happen at the same time that the program is
running. (In this case, the user might be typing the next line even while the
echo program is producing its output.)

The idea of an interactive control loop is the root of this approach to
programming. By putting together interactive control loops, you constitute a
community of interacting entities. Interactive control loops are what goes inside;
communication between them is how they interact. In other words, as they say, all
the rest is corollary....

Chapter Summary

» Computers follow special instructions, called a program, which is written in a
special programming language.

« Computation results when a computer has access to these instructions and
executes them.

* Each set of instructions must answer:

- What should the program do next?

IP1J || Lynn Andrea Stein

Summary 1~19

- How should it do it?
» Groups of steps can be combined to make a "higher order" step.
e Steps can involve choices or decisions.
e Steps can be executed over and over again using a loop.

e Most modern programs combine many separate looping instruction-followers
into an interacting community.

* Every computation is embedded in an environment and interacts with the
other (computational and physical) entities around it.

» The programmer's job is to figure out:
- What services (behavior) does my program provide?
- Who are the entities that together provide this behavior?
- How does each one work?
- How do they interact?

* Program construction is a cycle of designing, building, testing, and then
designing again.

Exercises
1. Give step by step instructions for how to tie shoelaces.
2. Select your favorite recipe and give step by step instructions for how to cook it.

3. Give detailed directions for how to get from your classroom to where you live.
Include indications that will tell whether you've gone too far and how to get back
on track.

4. Specify the expected behavior for each of the following interrelated services
provided by a bank account:

1. A deposit.

2. A withdrawal request.

IP1J || Lynn Andrea Stein

1~20 Introduction to Program Design Chapter 1
I

3. Checking your balance.
Does your specification permit overdrafts?

5. You are at a fruit market. Describe the protocol by which you purchase a piece
of fruit from the fruit seller.

6. Describe the division of responsibility and coordination of activities among the
players on a soccer team.

IP1J || Lynn Andrea Stein

