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Abstract

Recent hardware developments have dramatically increased the scale of data parallelism
available for neural network training. Among the simplest ways to harness next-generation
hardware is to increase the batch size in standard mini-batch neural network training al-
gorithms. In this work, we aim to experimentally characterize the effects of increasing the
batch size on training time, as measured by the number of steps necessary to reach a goal
out-of-sample error. We study how this relationship varies with the training algorithm,
model, and data set, and find extremely large variation between workloads. Along the
way, we show that disagreements in the literature on how batch size affects model quality
can largely be explained by differences in metaparameter tuning and compute budgets at
different batch sizes. We find no evidence that larger batch sizes degrade out-of-sample
performance. Finally, we discuss the implications of our results on efforts to train neu-
ral networks much faster in the future. Our experimental data is publicly available as a
database of 71,638,836 loss measurements taken over the course of training for 168,160
individual models across 35 workloads.

Keywords: neural networks, stochastic gradient descent, data parallelism, batch size,
deep learning

1. Introduction

Neural networks have become highly effective at a wide variety of prediction tasks, in-
cluding image classification, machine translation, and speech recognition. The dramatic
improvements in predictive performance over the past decade have partly been driven by
advances in hardware for neural network training, which have enabled larger models to be
trained on larger datasets than ever before. However, although modern GPUs and custom
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accelerators have made training neural networks orders of magnitude faster, training time
still limits both the predictive performance of these techniques and how widely they can
be applied. For many important problems, the best models are still improving at the end
of training because practitioners cannot afford to wait until the performance saturates. In
extreme cases, training must end before completing a single pass over the data (e.g. Anil
et al., 2018). Techniques that speed up neural network training can significantly benefit
many important application areas. Faster training can facilitate dramatic improvements
in model quality by allowing practitioners to train on more data (Hestness et al., 2017),
and by decreasing the experiment iteration time, allowing researchers to try new ideas and
configurations more rapidly. Faster training can also allow neural networks to be deployed
in settings where models have to be updated frequently, for instance when new models have
to be produced when training data get added or removed.

Data parallelism is a straightforward and popular way to accelerate neural network
training. For our purposes, data parallelism refers to distributing training examples across
multiple processors to compute gradient updates (or higher-order derivative information)
and then aggregating these locally computed updates. As long as the training objective
decomposes into a sum over training examples, data parallelism is model-agnostic and ap-
plicable to any neural network architecture. In contrast, the maximum degree of model
parallelism (distributing parameters and computation across different processors for the
same training examples) depends on the model size and structure. Although data paral-
lelism can be simpler to implement, ultimately, large scale systems should consider all types
of parallelism at their disposal. In this work, we focus on the costs and benefits of data
parallelism in the synchronous training setting.

Hardware development is trending towards increasing capacity for data parallelism in
neural network training. Specialized systems using GPUs or custom ASICs (e.g. Jouppi
et al., 2017) combined with high-performance interconnect technology are unlocking un-
precedented scales of data parallelism where the costs and benefits have not yet been well
studied. On the one hand, if data parallelism can provide a significant speedup at the limits
of today’s systems, we should build much bigger systems. On the other hand, if additional
data parallelism comes with minimal benefits or significant costs, we might consider design-
ing systems to maximize serial execution speed, exploit other types of parallelism, or even
prioritize separate design goals such as power use or cost.

There is considerable debate in the literature about the costs and benefits of data paral-
lelism in neural network training and several papers take seemingly contradictory positions.
Some authors contend that large-scale data parallelism is harmful in a variety of ways, while
others contend that it is beneficial. The range of conjectures, suggestive empirical results,
and folk knowledge seems to cover most of the available hypothesis space. Answering these
questions definitively has only recently become important (as increasing amounts of data
parallelism have become practical), so it is perhaps unsurprising that the literature remains
equivocal, especially in the absence of sufficiently comprehensive experimental data.

In this work, we attempt to provide the most rigorous and extensive experimental study
on the effects of data parallelism on neural network training to date. In order to achieve this
goal, we consider realistic workloads up to the current limits of data parallelism. We try
to avoid making assumptions about how the optimal metaparameters vary as a function of
batch size. Finally, in order to guide future work, we consider any remaining limitations in
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our methodology, and we discuss what we see as the most interesting unanswered questions
that arise from our experiments.

1.1 Scope

We restrict our attention to variants of mini-batch stochastic gradient descent (SGD), which
are the dominant algorithms for training neural networks. These algorithms iteratively
update the model’s parameters using an estimate of the gradient of the training objective.
The gradient is estimated at each step using a different subset, or (mini-) batch, of training
examples. See Section 2.2 for a more detailed description of these algorithms. A data-
parallel implementation computes gradients for different training examples in each batch in
parallel, and so, in the context of mini-batch SGD and its variants, we equate the batch
size with the amount of data parallelism.1 We restrict our attention to synchronous SGD
because of its popularity and advantages over asynchronous SGD (Chen et al., 2016).

Practitioners are primarily concerned with out-of-sample error and the cost they pay
to achieve that error. Cost can be measured in a variety of ways, including training time
and hardware costs. Training time can be decomposed into number of steps multiplied
by average time per step, and hardware cost into number of steps multiplied by average
hardware cost per step. The per-step time and hardware costs depend on the practitioner’s
hardware, but the number of training steps is hardware-agnostic and can be used to compute
the total costs for any hardware given its per-step costs. Furthermore, in an idealized data-
parallel system where the communication overhead between processors is negligible, training
time depends only on the number of training steps (and not the batch size) because the
time per step is independent of the number of examples processed. Indeed, this scenario is
realistic today in systems like TPU pods2, where there are a range of batch sizes for which
the time per step is almost constant. Since we are primarily concerned with training time,
we focus on number of training steps as our main measure of training cost.

An alternative hardware-agnostic measure of training cost is the number of training
examples processed, or equivalently the number of passes (epochs) over the training data.
This measure is suitable when the per-step costs are proportional to the number of examples
processed (e.g. hardware costs proportional to the number of floating point operations).
However, the number of epochs is not a suitable measure of training time in a data-parallel
system—it is possible to reduce training time by using a larger batch size and processing
more epochs of training data, provided the number of training steps decreases.

In light of practitioners’ primary concerns of out-of-sample error and the resources
needed to achieve it, we believe the following questions are the most important to study to
understand the costs and benefits of data parallelism with mini-batch SGD and its variants:

1. What is the relationship between batch size and number of training steps to reach a
goal out-of-sample error?

2. What governs this relationship?

3. Do large batch sizes incur a cost in out-of-sample error?

1. Mini-batch SGD can be implemented in a variety of ways, including data-serially, but a data-parallel
implementation is always possible given appropriate hardware.

2. https://www.blog.google/products/google-cloud/google-cloud-offer-tpus-machine-learning/.
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1.2 Contributions of This Work

1. We show that the relationship between batch size and number of training steps to
reach a goal out-of-sample error has the same characteristic form across six different
families of neural network, three training algorithms, and seven data sets.

Specifically, for each workload (model, training algorithm, and data set), increasing
the batch size initially decreases the required number of training steps proportionally,
but eventually there are diminishing returns until finally increasing the batch size no
longer changes the required number of training steps. To the best of our knowledge,
we are the first to experimentally validate this relationship across models, training
algorithms, and data sets while independently tuning the learning rate, momentum,
and learning rate schedule (where applicable) for each batch size. Unlike prior work
that made strong assumptions about these metaparameters, our results reveal a uni-
versal relationship that holds across all workloads we considered, across different error
goals, and when considering either training error or out-of-sample error.

2. We show that the maximum useful batch size varies significantly between workloads
and depends on properties of the model, training algorithm, and data set. Specifically,
we show that:

(a) SGD with momentum (as well as Nesterov momentum) can make use of much
larger batch sizes than plain SGD, suggesting future work to study the batch
size scaling properties of other algorithms.

(b) Some models allow training to scale to much larger batch sizes than others. We
include experimental data on the relationship between various model properties
and the maximum useful batch size, demonstrating that the relationship is not as
simple as one might hope from previous work (e.g. wider models do not always
scale better to larger batch sizes).

(c) The effect of the data set on the maximum useful batch size tends to be smaller
than the effects of the model and training algorithm, and does not depend on
data set size in a consistent way.

3. We show that the optimal values of training metaparameters do not consistently
follow any simple relationships with the batch size. In particular, popular learning
rate heuristics—such as linearly scaling the learning rate with the batch size— do not
hold across all problems or across all batch sizes.

4. Finally, by reviewing the specifics of the experimental protocols used in prior work, we
at least partially reconcile conflicting stances in the literature on whether increasing
the batch size degrades model quality. Specifically, we show that assumptions about
computational budgets and the procedures for selecting metaparameters at different
batch sizes can explain many of the disagreements in the literature. We find no evi-
dence that increasing the batch size necessarily degrades model quality, but additional
regularization techniques may become important at larger batch sizes.
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1.3 Experimental Data

We release our raw experimental data for any further analysis by the research community.3

Our database contains 454 combinations of workload (model, data set, training algorithm)
and batch size, each of which is associated with a metaparameter search space and a set of
models trained with different configurations sampled from the search space. In total, our
data contains 71,638,836 loss measurements taken over the course of training for 168,160
individual models. Together, these measurements make up the training curves of all of the
individual models we trained, and can be used to reproduce all plots in this paper.4

2. Setup and Background

In this section we set up the basic definitions and background concepts used throughout
the paper.

2.1 Learning

A data distribution is a probability distribution D over a data domain Z. For example, we
might consider a supervised learning task over a domain Z = X × Y, where X is the set
of 32-by-32-pixel color images and Y is the set of possible labels denoting what appears in
the image. A training set z1, . . . , zn ∈ Z is a collection of examples from the data domain,
conventionally assumed to be drawn i.i.d. from the data distribution D.

A machine learning model is a function that, given parameters θ from some set Θ ⊂ Rd,
and given a data point z ∈ Z, produces a prediction whose quality is measured by a
differentiable non-negative scalar-valued loss function.5 We denote by `(θ; z) the loss of a
prediction made by the model, under parameters θ, on the data point z. We denote by L
the out-of-sample loss or expected loss:

L(θ) = E
z∼D

[`(θ; z)] , (1)

and by L̂ the empirical average loss under a data set S = (z1, . . . , zn):

L̂(θ;S) =
1

n

n∑
i=1

`(θ; zi). (2)

When S is the training set, we call L̂ the average training loss. We will say that the data
source D, loss `, and model with parameter set Θ together specify a learning task, in which
our aim is to find parameters θ that achieve low out-of-sample loss (Equation 1), while
given access only to n training examples. A common approach is to find parameters of low
average training loss (Equation 2) as an estimate of the out-of-sample loss (Shalev-Shwartz
and Ben-David, 2014).

When minimizing average training loss L̂, it is common to add regularization penalties
to the objective function. For a differentiable penalty R : Θ → R+, regularization weight

3. https://github.com/google-research/google-research/tree/master/batch_science

4. https://colab.research.google.com/github/google-research/google-research/blob/master/

batch_science/reproduce_paper_plots.ipynb

5. Technically, the loss need only be sub-differentiable. Extending our setup to this end is straightforward.
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λ > 0, and training set S, the training objective might be

J(θ) = L̂(θ;S) + λR(θ). (3)

In practice, we often approach a task by replacing its loss with another that is more
amenable to training. For instance, in supervised classification, we might be tasked with
learning under the 0/1 loss, which is an indicator of whether a prediction is correct (e.g.
matches a ground-truth label), but we train by considering instead a surrogate loss (e.g.
the logistic loss) that is more amenable to continuous optimization. When the surrogate
loss bounds the original, achieving low loss under the surrogate implies low loss under the
original. To distinguish the two, we say error to describe the original loss (e.g. 0/1), and
we save loss to refer to the surrogate used in training.

2.2 Algorithms

The dominant algorithms for training neural networks are based on mini-batch stochastic
gradient descent (SGD, Robbins and Monro, 1951; Kiefer et al., 1952; Rumelhart et al.,
1986; Bottou and Bousquet, 2008; LeCun et al., 2015). Given an initial point θ0 ∈ Θ,
mini-batch SGD attempts to decrease the objective J via the sequence of iterates

θt ← θt−1 − ηtg(θt−1;Bt),

where each Bt is a random subset of training examples, the sequence {ηt} of positive scalars
is called the learning rate, and where, for any θ ∈ Θ and B ⊂ S,

g(θ;B) =
1

|B|
∑
z∈B
∇`(θ; z) + λ∇R(θ). (4)

When the examples B are a uniformly random subset of training examples, g(θ;B) forms
an unbiased estimate of the gradient of the objective J that we call a stochastic gradient.
In our larger-scale experiments, when we sample subsequent batches Bt, we actually follow
the common practice of cycling through permutations of the training set (Shamir, 2016).
The result of mini-batch SGD can be any of the iterates θt for which we estimate that L(θt)
is low using a validation data set.

Variants of SGD commonly used with neural networks include SGD with momentum
(Polyak, 1964; Rumelhart et al., 1986; Sutskever et al., 2013), Nesterov momentum (Nes-
terov, 1983; Sutskever et al., 2013), RMSProp (Hinton et al., 2012), and Adam (Kingma and
Ba, 2015). All of these optimization procedures, or optimizers, interact with the training
examples only by repeatedly computing stochastic gradients (Equation 4), so they support
the same notion of batch size that we equate with the scale of data parallelism. In this
work, we focus on the SGD, SGD with momentum, and Nesterov momentum optimizers.
The latter two optimizers are configured by a learning rate {ηt} and a scalar γ ∈ (0, 1) that
we call momentum. They define the iterates6

SGD with momentum Nesterov momentum

vt+1 ← γvt + g(θt;Bt) vt+1 ← γvt + g(θt;Bt)

θt+1 ← θt − ηtvt+1 θt+1 ← θt − ηtg(θt;Bt)− ηtγvt+1,

6. These rules take slightly different forms across the literature and across library implementations. We
present and use the update rules from the MomentumOptimizer class in TensorFlow (Abadi et al., 2016).
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given v0 = 0 and an initial θ0. Note that plain SGD can be recovered from either optimizer
by taking γ = 0. The outcome of using these optimizers should therefore be no worse if
than SGD, in any experiment, the momentum γ is tuned across values including zero.

If we run SGD with momentum under a constant learning rate ηt = η, then, at a given
iteration t, the algorithm computes

θt+1 = θt − ηvt+1 = θ0 − η
t∑

u=0

vu+1 = θ0 − η
t∑

u=0

u∑
s=0

γu−sg(θs;Bs).

For any fixed τ ∈ {0, . . . , t}, the coefficient accompanying the stochastic gradient g(θτ ;Bτ )
in the above update is η

∑t
u=τ γ

u−τ . We define the effective learning rate, ηeff as the value
of this coefficient at the end of training (t = T ), in the limit of a large number of training
steps (T →∞, while τ is held fixed):

ηeff = lim
T→∞

T∑
u=τ

ηγu−τ =
η

1− γ
.

Put intuitively, ηeff captures the contribution of a given mini-batch gradient to the parameter
values at the end of training.

2.3 Additional Terminology in Experiments

A data-parallel implementation of mini-batch SGD (or one of its variants) computes the
summands of Equation 4 in parallel and then synchronizes to coordinate their summation.

The models and algorithms in our experiments are modifiable by what we call meta-
parameters.7 These include architectural choices, such as the number of layers in a neural
network, and training parameters, such as learning rates {ηt} and regularization weights λ.
When we use the term model, we typically assume that all architectural metaparameters
have been set. In our experiments, we tune the training metaparameters by selecting the
values that yield the best performance on a validation set. We use the term workload to
jointly refer to a data set, model, and training algorithm.

3. Related Work

In this section we review prior work related to our three main questions from Section 1.1.
First we review studies that considered the relationship between batch size and number of
training steps (Questions 1 and 2), and then we review studies that considered the effects
of batch size on solution quality (Question 3).

3.1 Steps to Reach a Desired Out-Of-Sample Error

We broadly categorize the related work on this topic as either analytical or empirical in
nature.

7. Sometimes called “hyperparameters,” but we prefer a different name so as not to clash with the notion
of hyperparameters in Bayesian statistics.

7
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3.1.1 Analytical Studies

Convergence upper bounds from the theory of stochastic (convex) optimization can be spe-
cialized to involve terms dependent on batch size, so in this sense they comprise basic related
work. These upper bounds arise from worst-case analysis, and moreover make convexity and
regularity assumptions that are technically violated in neural network training, so whether
they predict the actual observed behavior of our experimental workloads is an empirical
question in its own right.

Given a sequence of examples drawn i.i.d. from a data source, an upper bound on the
performance of SGD applied to L-Lipschitz convex losses is (Hazan, 2016; Shalev-Shwartz
and Ben-David, 2014)

J(θT )− J? ≤ O

(√
L2

T

)
, (5)

for any batch size. Here, J is the objective function, J? is its value at the global optimum,
and θT denotes the final output of the algorithm supposing it took T iterations.8 Meanwhile,
when losses are convex and the objective is H-smooth, accelerated parallel mini-batch SGD
enjoys the bound (Lan, 2012)

J(θT )− J? ≤ O

(
H

T 2
+

√
L2

Tb

)
, (6)

where b is the batch size.
Compared to sequential processing without batching (i.e. a batch size of one), the bounds

Equation 5 and Equation 6 offer two extremes, respectively:

1. No benefit: Increasing the batch size b does not change the number of steps to
convergence, as per Equation 5.

2. A b-fold benefit: The term in Equation 6 proportional to 1/
√
Tb dominates the

bound. Increasing the batch size b by a multiplicative factor decreases the number of
steps T to a given achievable objective value by the same factor.

In other words, under these simplifications, batching cannot hurt the asymptotic guarantees
of steps to convergence, but it could be wasteful of examples. The two extremes imply
radically different guidance for practitioners, so the critical task of establishing a relationship
between batch size and number of training steps remains one to resolve experimentally.

A few recent papers proposed analytical notions of a critical batch size: a point at
which a transition occurs from a b-fold benefit to no benefit. Under assumptions including
convexity, Ma et al. (2018) derived such a critical batch size, and argued that a batch size
of one is optimal for minimizing the number of training epochs required to reach a given
target error. Under different assumptions, Yin et al. (2018) established a critical batch
size and a pathological loss function that together exhibit a transition from a b-fold benefit
to no benefit. Although they ran experiments with neural networks, their experiments
were designed to investigate the effect of data redundancy and do not provide enough

8. Not necessarily the T th iterate, which may differ from θT if the algorithm averages its iterates.
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information to reveal the empirical relationship between batch size and number of training
steps. Focusing on linear least-squares regression, Jain et al. (2018) also derived a threshold
batch size in terms of the operator norm of the objective’s Hessian and a constant from a
fourth-moment bound on example inputs.

To our knowledge, in all previous work that analytically derived a critical batch size, the
thresholds defined are either (i) parameter-dependent, or (ii) specific to linear least-squares
regression. A critical batch size that depends on model parameters can change over the
course of optimization; it is not a problem-wide threshold that can be estimated efficiently
a priori. Focusing on least-squares has issues as well: while it sheds intuitive light on how
batching affects stochastic optimization locally, the quantities defined inherently cannot
generalize to the non-linear optimization setting of neural network training, both because
the objective’s Hessian is not constant across the space of parameters as it is in a quadratic
problem, and more broadly because it is unclear whether the Hessian of the objective is
still the correct analogue to consider.

3.1.2 Empirical Studies

Wilson and Martinez (2003) investigated the relationship between batch size and training
speed for plain mini-batch SGD. They found that a simple fully connected neural network
took more epochs to converge with larger batch sizes on a data set of 20,000 examples,
and also that using a batch size equal to the size of the training set took more epochs
to converge than a batch size of one on several small data sets of size ≤ 600. However,
their experimental protocol and assumptions limit the conclusions we can draw from their
results. One issue is that training time was measured to different out-of-sample errors for
different batch sizes on the same data set. To compare training speed fairly, the error goal
should be fixed across all training runs being compared. Additionally, only four learning
rates were tried for each data set, but quite often the best learning rate was at one of the
two extremes and it appeared that a better learning rate might be found outside of the
four possibilities allowed. Finally, despite the contention of the authors, their results do not
imply slower training with larger batch sizes in data-parallel training: for the most part,
their larger batch size experiments took fewer training steps than the corresponding batch
size one experiments.

In the last few years, increasingly specialized computing systems have spurred practi-
tioners to try much larger batch sizes than ever before, while increasingly promising results
have driven hardware designers to create systems capable of even more data parallelism.
Chen et al. (2016) used a pool of synchronized worker machines to increase the effective
batch size of mini-batch SGD. They demonstrated speedups in both wall time and steps to
convergence for an Inception model (Szegedy et al., 2016) on ImageNet (Russakovsky et al.,
2015) by scaling the effective batch size from 1,600 to 6,400. More recently, Goyal et al.
(2017) showed that the number of training epochs could be held constant across a range of
batch sizes to achieve the same validation error for ResNet-50 (He et al., 2016a) on Ima-
geNet. Holding the number of training epochs constant is equivalent to scaling the number
of training steps inversely with the batch size, and this reduction in training steps with
increasing batch size produced nearly proportional wall time speedups on their hardware.
Although this hints at a b-fold benefit regime in which increasing the batch size reduces the

9
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number of training steps by the same factor, the authors did not attempt to minimize the
number of training steps (or epochs) required to reach the goal at each batch size separately.
It is unclear whether any of the batch sizes that achieved the goal could do so in fewer steps
than given, or how many steps the other batch sizes would have needed to achieve the same
error goal.

Two studies performed concurrently with this work also investigated the relationship
between batch size and training speed for neural networks. Chen et al. (2018) provide
experimental evidence of a problem-dependent critical batch size after which a b-fold benefit
is no longer achieved for plain mini-batch SGD. They contend that wider and shallower
networks have larger critical batch sizes, and while their empirical results are equivocal for
this particular claim, they show that the threshold batch size can depend on aspects of
both the data set and the model. Additionally, Golmant et al. (2018) studied how three
previously proposed heuristics for adjusting the learning rate as a function of batch size
(linear scaling, square root scaling, and no scaling) affect the number of training steps
required to reach a particular result. They found that if the learning rate is tuned for the
the smallest batch size only, all three of these common scaling techniques break down for
larger batch sizes and result in either (i) divergent training, or (ii) training that cannot
reach the error goal within a fixed number of training epochs. They also describe a basic
relationship between batch size and training steps to a fixed error goal, which is comprised
of three regions: b-fold benefit initially, then diminishing returns, and finally no benefit
for all batch sizes greater than a maximum useful batch size. However, their results are
inconclusive because (i) not all model and data set pairs exhibit this basic relationship,
(ii) it does not appear consistently across error goals, and (iii) the relationship is primarily
evident in training error but not out-of-sample error. These inconsistent results may be
due to suboptimal pre-determined learning rates arising from the scaling rules, especially
at larger batch sizes. Finally, they also found that the maximum useful batch size depends
on aspects of the model and the data set type, but not on the data set size. Since all their
experiments use plain mini-batch SGD, their results are unable to reveal any effects from
the choice of optimizer and might not generalize to other popular optimizers, such as SGD
with momentum.

3.2 Solution Quality

The literature contains some seemingly conflicting claims about the effects of batch size on
solution quality (out-of-sample error at the conclusion of training). Primarily, the debate
centers on whether increasing the batch size incurs a cost in solution quality. Keskar et al.
(2017) argue that large batch9 training converges to so-called “sharp” minima with worse
generalization properties. However, Dinh et al. (2017) show that a minimum with favorable
generalization properties can be made, through reparameterization, arbitrarily sharp in the
same sense. Le Cun et al. (1998) suggest that a batch size of one can result in better
solutions because the noisier updates allow for the possibility of escaping from local minima
in a descent algorithm. However, they also note that we usually stop training long before

9. The term “large batch” is inherently ambiguous, and in this case accompanies experiments in Keskar
et al. (2017) that only compare two absolute batch sizes per data set, rather than charting out a curve
to its apparent extremes.
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reaching any sort of critical point. Hoffer et al. (2017) argue that increasing the batch size
need not degrade out-of-sample error at all, assuming training has gone on long enough.
Goyal et al. (2017), among others, tested batch sizes larger than those used in Keskar et al.
(2017) without noticing any reduction in solution quality. Still, their results with yet larger
batch sizes do not rule out the existence of a more sudden degradation once the batch size
is large enough. Meanwhile, Goodfellow et al. (2016) state that small batches can provide a
regularization effect such that they result in the best observed out-of-sample error, although
in this case other regularization techniques might serve equally well.

Alas, the best possible out-of-sample error for a particular model and data set cannot
be measured unconditionally due to practical limits on wall time and hardware resources,
as well as practical limits on our ability to tune optimization metaparameters (e.g. the
learning rate). An empirical study can only hope to measure solution quality subject to the
budgets allowed for each model experiment, potentially with caveats due to limitations of
the specific procedures for selecting the metaparameters. To the best of our knowledge, all
published results handle the training budget issue in exactly one of three ways: by ignoring
budgets (train to convergence, which is not always possible); by using a step budget (restrict
the number of gradient descent updates performed); or by using an epoch budget (restrict
number of training examples processed).10 Furthermore, while some published results tune
the learning rate anew for each batch size, others tune for only a single batch size and
use a preordained heuristic to set the learning rate for the remaining batch sizes (the most
common heuristics are constant, square root, and linear learning rate scaling rules). Tuning
metaparameters at a single batch size and then heuristically adjusting them for others could
clearly create a systematic advantage for trials at batch sizes near to the one tuned. All in all,
the conclusions we can draw from previous studies depend on the budgets they assume and
on how they select metaparameters across batch sizes. The following subsections attempt
an investigation of their experimental procedures to this end.

3.2.1 Studies That Ignore Budgets

All studies in this section compared solution quality for different batch sizes after deeming
their models to have converged. They determined training stopping time by using either
manual inspection, convergence heuristics, or fixed compute budgets that they considered
large enough to guarantee convergence.11

Keskar et al. (2017) trained several neural network architectures on MNIST and CIFAR-
10, each with two batch sizes, using the Adam optimizer and without changing the learning
rate between batch sizes. They found that the larger batch size consistently achieved worse
out-of-sample error after training error had ceased to improve. However, all models used
batch normalization (Ioffe and Szegedy, 2015) and presumably computed the batch nor-

10. Of course, there are budgets in between an epoch budget and a step budget that might allow the
possibility of trading off time, computation, and/or solution quality. For example, it may be possible
to increase the number of training epochs and still take fewer steps to reach the same quality solution.
However, we are not aware of work that emphasizes these budgets.

11. As discussed further in Section 4.8, we find that millions of training steps for small batch sizes, or
thousands of epochs for large batch sizes, are required to saturate performance even for data sets as
small and simple as MNIST. In our experiments, this corresponded to more than 25 hours of wall-time
for each metaparameter configuration.
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malization statistics using the full batch size. For a fair comparison between batch sizes,
batch normalization statistics should be computed over the same number of examples or
else the training objective differs between batch sizes (Goyal et al., 2017). Indeed, Hoffer
et al. (2017) found that computing batch normalization statistics over larger batches can
degrade solution quality, which suggests an alternative explanation for the results of Keskar
et al. (2017). Moreover, Keskar et al. (2017) reported that data augmentation eliminated
the difference in solution quality between small and large batch experiments.

Smith and Le (2018) trained a small neural network on just 1,000 examples sampled from
MNIST with two different batch sizes, using SGD with momentum and without changing
the learning rate between batch sizes. They observed that the larger batch size overfit more
than the small batch size resulting in worse out-of-sample error, but this gap was mitigated
by applying L2 regularization (Smith and Le, 2018, figures 3 and 8). They also compared a
wider range of batch sizes in experiments that either (i) used a step budget without changing
the learning rate for each batch size (Smith and Le, 2018, figures 4 and 6), or (ii) varied the
learning rate and used a step budget that was a function of the learning rate (Smith and
Le, 2018, figure 5). Instead, we focus on the case where the learning rate and batch size are
chosen independently.

Breuel (2015a,b) trained a variety of neural network architectures on MNIST with a
range of batch sizes, using the SGD and SGD with momentum optimizers with a range of
learning rates and momentum values. They found that batch size had no effect on solution
quality for LSTM networks (Breuel, 2015a), but found that larger batch sizes achieved worse
solutions for fully connected and convolutional networks, and that the scale of the effect
depended on the activation function in the hidden and output layers (Breuel, 2015b).

Finally, Chen et al. (2016) observed no difference in solution quality when scaling the
batch size from 1,600 to 6,400 for an Inception model on ImageNet when using the RMSProp
optimizer and a heuristic to set the learning rate for each batch size.

3.2.2 Studies with Step Budgets

Hoffer et al. (2017) trained neural networks with two different batch sizes on several image
data sets. They found that, by computing batch normalization statistics over a fixed number
of examples per iteration (“ghost batch normalization”), and by scaling the learning rate
with the square root of the batch size instead of some other heuristic, the solution quality
arising from the larger batch size was as good as or better than the smaller batch size.
However, the largest batch size used was 4,096, which does not rule out an effect appearing
at still larger batch sizes, as suggested by the work of Goyal et al. (2017). Moreover, it
remains open whether their proposed learning rate heuristic extends to arbitrarily large
batch sizes, or whether it eventually breaks down for batch sizes sufficiently far from the
base batch size.

3.2.3 Studies with Epoch Budgets

An epoch budget corresponds to fixing the total number of per-example gradient compu-
tations, but, in an idealized data-parallel implementation of SGD, it also corresponds to a
step (or even wall time) budget that scales inversely with the batch size. With an epoch
budget, a larger batch size can only achieve the same solution quality as a smaller batch
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size if it achieves perfect scaling efficiency (a b-fold reduction in steps from increasing the
batch size, as described in Section 3.1.1).

Masters and Luschi (2018) show that after a critical batch size depending on the model
and data set, solution quality degrades with increasing batch size when using a fixed epoch
budget. Their results effectively show a limited region of b-fold benefit for those model
and data set pairs when trained with SGD, although they did not investigate whether this
critical batch size depends on the optimizer used, and they did not consider more than one
epoch budget for each problem. We reproduced a subset of their experiments and discuss
them in Section 5.

Goyal et al. (2017) recently popularized a linear learning rate scaling heuristic for train-
ing the ResNet-50 model using different batch sizes. Using this heuristic, a 90 epoch budget,
and SGD with momentum without adjusting or tuning the momentum, they increased the
batch size from 64 to 8,192 with no loss in accuracy. However, their learning rate heuristic
broke down for even larger batch sizes. Inspired by these results, a sequence of follow-up
studies applied additional techniques to further increase the batch size while still achieving
the same accuracy and using the same 90 epoch budget. These follow-on studies (Codreanu
et al., 2017; You et al., 2017; Akiba et al., 2017) confirm that the best solution quality for
a given batch size will also depend on the exact optimization techniques used.

There are several additional papers (Lin et al., 2018; Devarakonda et al., 2017; Golmant
et al., 2018) with experiments relevant to solution quality that used an epoch budget, tuned
the learning rate for the smallest batch size, and then used a heuristic to choose the learning
rate for all larger batch sizes. For instance, Devarakonda et al. (2017) and Lin et al. (2018)
used linear learning rate scaling and Golmant et al. (2018) tried constant, square root, and
linear learning rate scaling heuristics. All of them concluded that small batch sizes have
superior solution quality to large batch sizes with a fixed epoch budget, for various notions
of “small” and “large.” This could just as easily be an artifact of the learning rate heuristics,
and a possible alternative conclusion is that these heuristics are limited (as heuristics often
are).

4. Experiments and Results

The primary quantity we measure is the number of steps needed to first reach a desired
out-of-sample error, or steps to result. To measure steps to result, we used seven image and
text data sets with training set sizes ranging from 45,000 to 26 billion examples. Table 1
summarizes these data sets and Appendix A provides the full details. We chose six families
of neural network to train on these data sets. For MNIST and Fashion MNIST, we chose a
simple fully connected neural network and a simple convolutional neural network (CNN). For
CIFAR-10, we chose the ResNet-8 model without batch normalization, partly to compare
our results to Masters and Luschi (2018), and partly to have a version of ResNet without
batch normalization. For ImageNet, we chose ResNet-50, which uses batch normalization
and residual connections, and VGG-11, which uses neither. For Open Images, we chose
ResNet-50. For LM1B, we chose the Transformer model and an LSTM model. For Common
Crawl, we chose the Transformer model. Table 2 summarizes these models and Appendix B
provides the full details.
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Data Set Type Task Size Evaluation Metric
MNIST Image Classification 55,000 Classification error
Fashion MNIST Image Classification 55,000 Classification error
CIFAR-10 Image Classification 45,000 Classification error
ImageNet Image Classification 1,281,167 Classification error
Open Images Image Classification (multi-label) 4,526,492 Average precision
LM1B Text Language modeling 30,301,028 Cross entropy error
Common Crawl Text Language modeling ∼25.8 billion Cross entropy error

Table 1: Summary of data sets. Size refers to the number of examples in the training set, which we
measure in sentences for text data sets. See Appendix A for full details.

Model Class Sizes Optimizers Data Sets Learning rate
schedule

Fully Connected Various SGD MNIST Constant
Simple CNN Base SGD MNIST Constant

Narrow Momentum Fashion MNIST
Wide Nesterov mom.

ResNet ResNet-8 SGD CIFAR-10 Linear decay
Nesterov mom.

ResNet-50 Nesterov mom. ImageNet Linear decay
Open Images

VGG VGG-11 Nesterov mom. ImageNet Linear decay
Transformer Base SGD LM1B Constant

Narrow and shallow Momentum Common crawl
Shallow Nesterov mom.
Wide

LSTM — Nesterov mom. LM1B Constant

Table 2: Summary of models. See Appendix B for full details.

Measuring steps to result requires a particular value of out-of-sample error to be chosen
as the goal. Ideally, we would select the best achievable error for each task and model, but
since validation error is noisy, the best error is sometimes obtained unreliably. Moreover,
for some workloads, the validation error continues to improve steadily beyond the maximum
practical training time. Therefore, we generally tried to select the best validation error that
we could achieve reliably within a practical training time.

Table 2 also shows the learning rate schedule we used for each model and data set.
Learning rate schedules are often used to accelerate neural network training, but finding
the best schedule is an optimization problem in its own right (Wu et al., 2018). Instead,
researchers typically choose from a range of common learning rate functions based on vali-
dation performance and individual preference. While most schedules decay the learning rate
monotonically over training, some researchers also “warm-up” the learning rate at the start
of training (e.g. He et al., 2016a), particularly when training with large batch sizes (Goyal
et al., 2017). We ran experiments with both constant learning rates and with learning rate
decay. We used decay for ResNet-8, ResNet-50, and VGG-11, which significantly reduced
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training time for those models. We selected our decay function by running an extensive set
of experiments with ResNet-50 on ImageNet (see Appendix C for details). We chose linear
decay because it performed at least as well as all other schedules we tried, while also being
the simplest and requiring only two additional metaparameters. In experiments that used
linear decay, we specified metaparameters (η0, α, T ) such that the learning rate decayed
linearly from η0 to ηT = αη0. That is, the learning rate at step t is given by

ηt =

{
η0 − (1− α)η0

t
T if t ≤ T,

αη0 if t > T.

Steps to result depends on the training metaparameters, and, for a given task and model,
each batch size might have a different metaparameter configuration that minimizes steps
to result. In all experiments, we independently tuned the metaparameters at each batch
size, including the initial learning rate η0 and, when learning rate decay was used, the decay
schedule (α, T ). Also, unless otherwise specified, we used the Nesterov momentum optimizer
(Sutskever et al., 2013) and tuned the momentum γ.12 Tuning anew for each batch size
is extremely important since otherwise we would not be measuring steps to result as a
function of batch size, rather we would be measuring steps to result as a function of batch
size and the specific values of the learning rate and other metaparameters. We used quasi-
random search (Bousquet et al., 2017) to tune the metaparameters with equal budgets of
non-divergent13 trials for different batch sizes. We selected metaparameter search spaces by
hand based on preliminary experiments. The exact number of non-divergent trials needed
to produce stable results depends on the search space, but 100 trials seemed to suffice in
our experiments.14 If the optimal trial occurred near the boundary of the search space, or if
the goal validation error was not achieved within the search space, we repeated the search
with a new search space. We measured steps to result for each batch size by selecting the
metaparameter trial that reached the goal validation error in the fewest number of steps.

4.1 Steps to Result Depends on Batch Size in a Similar Way Across Problems

To get a sense of the basic empirical relationship, we measured the number of steps required
to reach a goal validation error as a function of batch size across several different data sets
and models (Figure 1). In all cases, as the batch size grows, there is an initial period of
perfect scaling (b-fold benefit, indicated with a dashed line on the plots) where the steps
needed to achieve the error goal halves for each doubling of the batch size. However, for
all problems, this is followed by a region of diminishing returns that eventually leads to
a regime of maximal data parallelism where additional parallelism provides no benefit
whatsoever. In other words, for any given problem and without making strong assumptions
about learning rates or other optimizer parameters, we can achieve both extremes suggested
by theory (see Section 3.1.1). A priori, it is not obvious that every workload in our ex-
periments should exhibit perfect scaling at the smallest batch sizes instead of immediately
showing diminishing returns.

12. For LSTM for LM1B, we used a fixed value of γ = 0.99. We chose this value based on initial experiments
and validated that tuning γ did not significantly affect the results for batch sizes 256, 1,024, or 4,096.

13. We discarded trials with a divergent training loss, which occurred when the learning rate was too high.
14. We used 100 non-divergent trials for all experiments except Transformer Shallow on LM1B with SGD,

Transformer on Common Crawl, and LSTM on LM1B, for which we used 50 trials each.
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(b) Simple CNN on Fashion MNIST
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(c) ResNet-8 on CIFAR-10
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(d) ResNet-50 on ImageNet
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(e) ResNet-50 on Open Images
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(f) Transformer on LM1B
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(g) Transformer on Common Crawl
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(h) VGG-11 on ImageNet
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Figure 1: The relationship between steps to result and batch size has the same charac-
teristic form for all problems. In all cases, as the batch size grows, there is an initial period
of perfect scaling (indicated with a dashed line) where the steps needed to achieve the error goal
halves for each doubling of the batch size. Then there is a region of diminishing returns that
eventually leads to a region of maximal data parallelism where additional parallelism provides
no benefit whatsoever. AP denotes average precision (see Appendix A).
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(b) Transformer on LM1B
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(c) ResNet-50 on ImageNet

Figure 2: Steps-to-result plots have a similar form for different (nearby) performance
goals. The transition points between the three regions (perfect scaling, diminishing returns, and
maximal data parallelism) are nearly the same.

4.2 Validating Our Measurement Protocol

If the curves in Figure 1 were very sensitive to the goal validation error, then measuring the
steps needed to reach our particular choice of the goal would not be a meaningful proxy for
training speed. For small changes in the goal validation error, we do not care about vertical
shifts as long as the transition points between the three scaling regions remain relatively
unchanged. Figure 2 shows that varying the error goal only vertically shifts the steps-
to-result curve, at least for modest variations centered around a good absolute validation
error. Furthermore, although we ultimately care about out-of-sample error, if our plots
looked very different when measuring the steps needed to reach a particular training error,
then we would need to include both curves when presenting our results. However, switching
to training error does not change the plots much at all (see Figure 12 in the Appendix).

Our experiments depend on extensive metaparameter tuning for the learning rate, mo-
mentum, and, where applicable, the learning rate schedule. For each experiment, we verified
our metaparameter search space by checking that the optimal trial was not too close to a
boundary of the space. See Figures 13 and 14 in the Appendix for examples of how we
verified our search spaces.

4.3 Some Models Can Exploit Much Larger Batch Sizes Than Others

We investigated whether some models can make more use of larger batches than others by
experimenting with different models while keeping the data set and optimizer fixed. We
explored this question in two ways: (i) by testing completely different model architectures
on the same data set, and (ii) by varying the size (width and depth) of a model within
a particular model family. Since the absolute number of steps needed to reach a goal
validation error depends on the model, the steps to result vs. batch size curves for each
model generally appear at different vertical offsets from each other. Since we primarily care
about the locations of the perfect scaling, diminishing returns, and maximal data parallelism
regions, we normalized the y-axis of each plot by dividing by the number of steps needed to
reach the goal for a particular batch size and data set. This normalization corresponds to
a vertical shift of each curve (on log-scale plots), and makes it easier to compare different
models. Appendix D contains all plots in this section without the y-axis normalized.
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(b) ResNet-50 vs VGG-11 on ImageNet
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(c) Transformer vs LSTM on LM1B

20 22 24 26 28 210 212 214 216

Batch Size

2-11
2-10
2-9
2-8
2-7
2-6
2-5
2-4
2-3
2-2
2-1
20
21

S
te

p
s 

/ 
(S

te
p
s 

a
t 

B
=

2
)

Steps to Reach 0.03 Validation Error

FC-1024

FC-128-128-128

FC-256-256-256

FC-512-512-512

FC-1024-1024-1024

FC-2048-2048-2048

(d) Fully Connected sizes on MNIST
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(e) Simple CNN sizes on MNIST
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Figure 3: Some models can exploit much larger batch sizes than others. Figures 3a-3c show
that some model architectures can exploit much larger batch sizes than others on the same data set.
Figures 3d-3f show that varying the depth and width can affect a model’s ability to exploit larger
batches, but not necessarily in a consistent way across different model architectures. All MNIST
models in this Figure used plain mini-batch SGD, while all other models used Nesterov momentum.
The goal validation error for each plot was chosen to allow all model variants to achieve that error.
Figure 15 in the Appendix contains these plots without the y-axis normalized.
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Figures 3a–3c show that the model architecture significantly affects the relationship
between batch size and the number of steps needed to reach a goal validation error. In
Figure 3a, the curve for the Fully Connected model flattens later than for the Simple CNN
model on MNIST (although in this case the Simple CNN model can ultimately achieve
better performance than the Fully Connected model). In Figure 3b, the curve for ResNet-
50 flattens much later than the curve for VGG-11, indicating that ResNet-50 can make
better use of large batch sizes on this data set. Unlike ResNet-50, VGG-11 does not use
batch normalization or residual connections. Figure 3c shows that Transformer can make
better use of large batch sizes than LSTM on LM1B.

Figures 3d–3f show that varying the depth and width can affect a model’s ability to
exploit larger batches, but not necessarily in a consistent way across different model archi-
tectures. In Figure 3d, the regions of perfect scaling, diminishing returns, and maximum
useful batch size do not change much when the width is varied for the Fully Connected
model on MNIST, although the shallower model seems less able to exploit larger batches
than the deeper models. This contrasts with the findings of Chen et al. (2018), although
they changed width and depth simultaneously while keeping the number of parameters
fixed. For Simple CNN on MNIST, the relationship between batch size and steps to a goal
validation error seems not to depend on width at all (Figure 15e in the Appendix shows that
the curves are the same even when the y-axis is not normalized). However, in Figure 3f, the
curves for narrower Transformer models on LM1B flatten later than for wider Transformer
models, while the depth seems to have less of an effect. Thus, reducing width appears to
allow Transformer to make more use of larger batch sizes on LM1B.

4.4 Momentum Extends Perfect Scaling to Larger Batch Sizes, but Matches
Plain SGD at Small Batch Sizes

We investigated whether some optimizers can make better use of larger batches than others
by experimenting with plain SGD, SGD with momentum, and Nesterov momentum on the
same model and data set. Since plain SGD is a special case of both Nesterov momentum
and SGD with momentum (with γ = 0 in each case), and since we tune γ in all experiments,
we expect that experiments with either of these optimizers should do no worse than plain
SGD at any batch size. However, it is not clear a priori whether momentum optimizers
should outperform SGD, either by taking fewer training steps or by extending the perfect
scaling region to larger batch sizes.

Figure 4 shows that Nesterov momentum and SGD with momentum can both extend
the perfect scaling region beyond that achieved by SGD, and thus can significantly reduce
the number of training steps required to reach a goal validation error at larger batch sizes.
However, at batch sizes small enough that all optimizers are within their perfect scaling
region, momentum optimizers perform identically to SGD without momentum. Though
initially surprising, this identical performance at small batch sizes is consistent with obser-
vations made in Kidambi et al. (2018). In our experiments, we did not see a large difference
between Nesterov momentum and SGD with momentum—Nesterov momentum appears to
scale slightly better for Transformer on LM1B, but both perform about equally well for
Simple CNN on MNIST.

19



Shallue, Lee, Antognini, Sohl-Dickstein, Frostig, and Dahl

20 22 24 26 28 210 212 214 216

Batch Size

24
25
26
27
28
29

210
211
212
213
214
215
216
217

S
te

p
s

Steps to Reach 0.01 Validation Error

SGD

Momentum

Nesterov Momentum

(a) Simple CNN on MNIST
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Figure 4: Momentum extends perfect scaling to larger batch sizes, but matches plain
SGD at small batch sizes. Nesterov momentum and SGD with momentum can both significantly
reduce the absolute number of training steps to reach a goal validation error, and also significantly
extend the perfect scaling region and thus better exploit larger batches than plain mini-batch SGD.
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(b) ResNet-50 on different data sets
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Figure 5: The data set can influence the maximum useful batch size. For the data sets
shown in this plot, these differences are not simply as straightforward as larger data sets making
larger batch sizes more valuable. Appendix A.2 describes the evaluation metric used for each data
set, and the plot legends show the goal metric value for each task. Figure 16 in the Appendix
contains these plots without the y-axis normalized.

4.5 The Data Set Matters, at Least Somewhat

We investigated whether properties of the data set make some problems able to exploit
larger batch sizes than others by experimenting with different data sets while keeping the
model and optimizer fixed. We approached this in two ways: (i) by testing the same model
on completely different data sets, and (ii) by testing the same model on different subsets of
the same data set. We normalized the y-axis of all plots in this section in the same way as
Section 4.3. Appendix D contains all plots in this section without the y-axis normalized.

Figure 5 shows that changing the data set can affect the relationship between batch
size and the number of steps needed to reach a goal validation error. Figure 5a shows that
Fashion MNIST deviates from perfect scaling at a slightly larger batch size than MNIST for
the Simple CNN model. Figure 5b shows that ImageNet and Open Images are extremely
similar in how well ResNet-50 can make use of larger batch sizes, although, if anything,
ImageNet might make slightly better use of larger batch sizes. Figure 5c shows that LM1B
scales slightly better with increasing batch size than Common Crawl for Transformer. Since
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Figure 6: Investigating the effect of data set size. At least for MNIST, any effect of subset
size on the maximum useful batch size is extremely small or nonexistent. For ImageNet, the random
subset of half the images deviates from perfect scaling sooner than the full data set, but the curve
for the subset with half the classes is very close to the curve for the full data set and, if anything,
deviates from perfect scaling later. Appendix A.2 describes the evaluation metric used for each
data set, and the plot legends show the goal metric value for each task. Figure 17 in the Appendix
contains these plots without the y-axis normalized.

Fashion MNIST is the same size as MNIST, Open Images is larger than ImageNet, and
Common Crawl is far larger than LM1B, these differences are not simply as straightforward
as larger data sets making larger batch sizes more valuable.

To disentangle the effects from changes to the distribution and changes to the number
of examples, we generated steps to result vs batch size plots for different random subsets of
MNIST (Figure 6a) and ImageNet (Figure 6b). For MNIST, we selected subsets of different
sizes, while for ImageNet, we selected a random subset of half the images and a similar
sized subset that only includes images from half of the classes. At least on MNIST, any
effect on the maximum useful batch size is extremely small or nonexistent. For ImageNet,
Figure 6b shows that the random subset of half the images deviates from perfect scaling
sooner than the full data set, but the curve for the subset with half the classes is very close
to the curve for the full data set and, if anything, deviates from perfect scaling later, even
though it contains roughly the same number of images as the random subset.

4.6 Regularization Can Be More Helpful at Some Batch Sizes Than Others

We used label smoothing (Szegedy et al., 2016) to regularize training in our experiments with
ResNet-50 on ImageNet. Without label smoothing, we could not achieve our goal validation
error rate of 0.25 with batch sizes greater than 214 within our training budget. With a fixed
compute budget for each batch size, label smoothing improved the error by as much as one
percentage point at large batch sizes, while having no apparent effect at small batch sizes
(Figure 7a). Meanwhile, if multiple choices for the label smoothing metaparameter achieved
the goal within the training budget, then label smoothing did not change the number of
steps needed (Figure 7b).
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Figure 7: Regularization can be more helpful at some batch sizes than others. Plots are
for ResNet-50 on ImageNet. Each point corresponds to a different metaparameter tuning trial, so
the learning rate, Nesterov momentum, and learning rate schedule are independently chosen for each
point. The training budget is fixed for each batch size, but varies between batch sizes.

We confirmed that label smoothing reduced overfitting at large batch sizes for ResNet-50
on ImageNet (see Figure 18 in the Appendix). This is consistent with the idea that noise
from small batch training is a form of implicit regularization (e.g. Goodfellow et al., 2016).
However, although our results show that other forms of regularization can serve in place
of this noise, it might be difficult to select and tune other forms of regularization for large
batch sizes. For example, we unsuccessfully tried to control overfitting with larger batch
sizes by increasing the L2 weight penalty and by applying additive Gaussian gradient noise
before we obtained good results with label smoothing.

Finally, we also tried label smoothing with Simple CNN on MNIST and Fashion MNIST,
and found that it generally helped all batch sizes, with no consistent trend of helping smaller
or larger batch sizes more (see Figure 19 in the Appendix), perhaps because these data sets
are sufficiently small and simple that overfitting is an issue at all batch sizes.

4.7 The Best Learning Rate and Momentum Vary with Batch Size

Across all problems we considered, the effective learning rate (ηeff; see Section 2.2) that
minimized the number of training steps to a goal validation error tended to increase with
increasing batch size (Figure 8). However, it did not always follow either a linear or square
root scaling heuristic, despite the popularity of these rules of thumb. In some cases, the
optimal effective learning rate even decreased for larger batch sizes. We also found that
the best effective learning rate should be chosen by jointly tuning the learning rate and
momentum, rather than tuning only the learning rate. For example, the optimal way
to scale the effective learning rate for Transformer was to increase the momentum while
decreasing the learning rate or holding it constant (see Figures 21 and 22 in the Appendix).
This is a refinement to past prescriptions that only change the learning rate while keeping
the momentum fixed.
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(a) Simple CNN on MNIST
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(b) Simple CNN on Fashion MNIST
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(c) ResNet-8 on CIFAR-10
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(d) ResNet-50 on ImageNet
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(e) ResNet-50 on Open Images
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(f) Transformer on LM1B
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(g) Transformer on Common Crawl
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(h) VGG-11 on ImageNet
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(i) LSTM on LM1B

Figure 8: Optimal effective learning rates do not always follow linear or square root
scaling heuristics. Effective learning rates correspond to the trial that reached the goal validation
error in the fewest training steps (see Figure 1). For models that used learning rate decay schedules
(ResNet-8, ResNet-50, VGG-11), plots are based on the initial learning rate. See Figures 21 and 22
in the Appendix for separate plots of the optimal learning rate and momentum.
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(a) Transformer on LM1B with a training budget of one epoch.
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(b) Transformer on LM1B with a training budget of 25,000 steps.

Figure 9: With increasing batch size, the region in metaparameter space corresponding
to rapid training in terms of epochs becomes smaller, while the region in metaparameter
space corresponding to rapid training in terms of step-count grows larger. Yellow stars
are the trials that achieved the goal in the fewest number of steps. Contours indicate the effective
learning rate ηeff = η

1−γ . Infeasible trials are those that resulted in divergent training.
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Figure 10: Smaller models have larger stable learning rates for Transformer on LM1B.
Plots are for different sizes of Transformer on LM1B with a batch size of 1024, a goal validation
cross entropy error of 4.2, and a training budget of 50,000 steps. Contours indicate the effective
learning rate ηeff = η

1−γ . Infeasible trials are those that resulted in divergent training.

We further investigated the relationship between learning rate, momentum, and training
speed by examining our metaparameter search spaces for different batch sizes and model
sizes. For this analysis, we used Transformer on LM1B with Nesterov momentum because
the metaparameter search spaces are consistent between all batch and model sizes, and
can be easily visualized because they consist only of the constant learning rate η and the
momentum γ. We observe the following behaviors:

• With increasing batch size, the region in metaparameter space corresponding to rapid
training in terms of epochs becomes smaller (Figure 9a, consistent with the findings
of Breuel, 2015b), while the region in metaparameter space corresponding to rapid
training in terms of step-count grows larger (Figure 9b, although it eventually plateaus
for batch sizes in the maximal data parallelism regime). Thus, with a fixed error goal
and in a setting where training epochs are constrained (e.g. a compute budget), it may
become more challenging to choose good values for the metaparameters with increasing
batch size. Conversely, with a fixed error goal and in a setting where training steps
are constrained (e.g. a wall-time budget), it may become easier to choose good values
for the metaparameters with increasing batch size.

• The metaparameters yielding the fastest training are typically on the edge of the feasi-
ble region of the search space (Figure 9). In other words, small changes in the optimal
metaparameters might make training diverge. This behavior may pose a challenge for
metaparameter optimization techniques, such as Gaussian Process approaches, that
assume a smooth relationship between metaparameter values and model performance.
It could motivate techniques such as learning rate warm-up that enable stability at
larger eventual learning rates, since the maximum stable learning rate depends on the
current model parameters. We did not observe the same behavior for ResNet-50 on
ImageNet. Figure 20 in the Appendix shows the results for a range of effective learning
rates near the optimum for ResNet-50 on ImageNet and Transformer on LM1B.

• Smaller models have larger stable learning rates (Figure 10). This is consistent with
recent work predicting that the largest stable learning rate is inversely proportional
to layer width (Karakida et al., 2018).
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4.8 Solution Quality Depends on Compute Budget More Than Batch Size

We investigated the relationship between batch size and out-of-sample error for Simple
CNN on MNIST and Fashion MNIST, and for two sizes of Transformer on LM1B. For each
task, we ran a quasi-random metaparameter search over the constant learning rate η and
Nesterov momentum γ. For MNIST and Fashion MNIST, we also added label smoothing
and searched over the label smoothing parameter in {0, 0.1} to mitigate any confounding
effects of overfitting (see Section 4.6). We ran 100 metaparameter trials for each batch size
with a large practical wall-time budget.

To disentangle the effects of the batch size from the compute budget, we compared batch
sizes subject to budgets of either training steps or training epochs. For each batch size and
compute budget, we found the model checkpoint that achieved the best validation accuracy
across all metaparameter trials, and across all training steps that fell within the compute
budget. Figure 11 shows the validation error for these best-validation-error checkpoints, as
a function of batch size, for a range of compute budgets. We observe that, subject to a
budget on training steps, larger batch sizes achieve better out-of-sample error than smaller
batch sizes, but subject to a budget on training epochs, smaller batch sizes achieve better
out-of-sample error than larger batch sizes. These observations are likely explained by the
observations that, for a fixed number of training steps, larger batch sizes train on more
data, while for a fixed number of epochs, smaller batch sizes perform more training steps.

The workloads in Figure 11 represent two distinct modes of neural network training.
For the small MNIST and Fashion MNIST data sets, we used training budgets that would
saturate (or almost saturate) performance at each batch size. In other words, out-of-sample
error cannot be improved by simply increasing the budget, with caveats due to practical
limitations on our ability to find optimal values for the metaparameters. Figures 11a and 11b
show that differences in maximum performance between batch sizes on these data sets are
very small (see Figures 23 and 24 in the Appendix for zoomed versions of these plots). We
cannot rule out that any differences at this magnitude are due to noise from metaparameter
choices and training stochasticity. Thus, for these workloads at least, the effect of batch
size on solution quality is either very small or nonexistent. On the other hand, we cannot
saturate performance with Transformer on LM1B within a practical training time. In this
case, Figures 11c and 11d show that the best error is simply achieved by the largest compute
budget.

Taken together, these observations suggest that in practice the relevant question is not
which batch size leads to the best performance, but rather how compute budget varies as a
function of batch size. Although we tried our best to saturate performance with MNIST and
Fashion MNIST, we found that it took millions of training steps for small batch sizes, and
thousands of epochs for large batch sizes, even for data sets as small and simple as these. In-
deed, despite sampling 100 metaparameter configurations per batch size and training for up
to 25 hours per configuration, it is still not certain whether we truly saturated performance
at the smallest and largest batch sizes (see Figures 23 and 24 in the Appendix). Thus,
the regime of saturated performance is of limited practical concern for most workloads—
the compute budget required to saturate performance is likely beyond what a practitioner
would typically use. For realistic workloads, practitioners should be most concerned with
identifying the batch size at which they can most efficiently apply their compute.
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Figure 11: Validation error depends on compute budget more than batch size. Plots show
the best validation error subject to budgets of training steps (left column) or training epochs (right
column). Step budgets favor large batch sizes, while epoch budgets favor small batch sizes.
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5. Discussion

Our goals in measuring the effects of data parallelism on neural network training were
twofold: first, we hoped to produce actionable advice for practitioners, and second, we
hoped to understand the utility of building systems capable of very high degrees of data
parallelism. Our results indicate that, for idealized data parallel hardware, there is a uni-
versal relationship between training time and batch size, but there is dramatic variation in
how well different workloads can make use of larger batch sizes. Across all our experiments,
increasing the batch size initially reduced the number of training steps needed proportion-
ally. However, depending on the workload, this perfect scaling regime ended anywhere from
a batch size of 24 to a batch size of 213. As batch size increases beyond the perfect scaling
regime, there are diminishing returns (where increasing the batch size by a factor of k only
reduces the number of training steps needed by a factor less than k) that end with a max-
imum useful batch size (where increasing the batch size no longer changes the number of
training steps needed). Once again, the maximum useful batch size is extremely problem-
dependent and varied between roughly 29 and 216 in our experiments. Other workloads
may have the region of perfect scaling end at batch sizes even smaller or larger than the
range we observed, as well as having even smaller or larger maximum useful batch sizes.

On the one hand, the possibility that perfect scaling can extend to batch sizes beyond
213 for some workloads is good news for practitioners because it suggests that efficient
data-parallel systems can provide extremely large speedups for neural network training.
On the other hand, the wide variation in scaling behavior across workloads is bad news
because any given workload might have a maximum useful batch size well below the limits
of our hardware. Moreover, for a new workload, measuring the training steps needed as
a function of batch size and confirming the boundaries of the three basic scaling regimes
requires expensive experiments. In this work, we have only described how to retrospectively
predict the scaling behavior by tuning the optimization metaparameters for every batch
size. Although Golmant et al. (2018) also described the same basic scaling behavior we
found, in their experiments the relationship did not appear consistently across problems,
across error goals, or in out-of-sample error. In light of our own results, the heuristics they
assumed for adjusting the learning rate as a function of batch size are the likely cause of
these inconsistencies, but this explanation only drives home the inconvenience of having to
carefully tune at every new batch size. We were unable to find reliable support for any
of the previously proposed heuristics for adjusting the learning rate as a function of batch
size. Thus we are forced to recommend that practitioners tune all optimization parameters
anew when they change the batch size or they risk masking the true behavior of the training
procedure.

If the scaling behavior of workloads with respect to batch size has a simple dependence
on properties of the workload, then we might be able to predict the limits of perfect scaling
(or the maximum useful batch size) before running extensive experiments. We could then
prioritize workloads to run on specialized hardware or decide whether gaining access to
specialized hardware would be useful for a given workload of interest. On the one hand, our
results are bad news for practitioners because they show that accurate scaling predictions
must depend on a combination of non-obvious properties of the model, optimizer, and data
set. On the other hand, we have a lot of control over the choice of model and optimizer
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and there is some indication that they might be responsible for the largest portion of the
variation between workloads. Our results comparing SGD and SGD with momentum (or
Nesterov momentum) show that, at least for the problems we tried, momentum can extend
perfect scaling to much larger batch sizes, offering clear guidance for practitioners. Other
optimizers, such as KFAC (Martens and Grosse, 2015; Grosse and Martens, 2016; Ba et al.,
2017), or optimization techniques designed specifically for massively data parallel systems
(e.g. Li et al., 2014), might allow perfect scaling to extend much further. Intuitively, it
seems plausible that optimizers that estimate local curvature information might be able to
benefit more from large batches than optimizers that only use gradients.

Although the model seems to have a large effect on the maximum useful batch size and
the limit of perfect scaling, our results do not give definitive answers on exactly how to
design models that scale better for a given optimizer and data set. Even when we kept the
model family fixed, we observed somewhat inconsistent results from changing the model
width and depth. Chen et al. (2018) suggested that wider models can exploit larger batch
sizes than narrower models, but their theoretical arguments only apply to linear networks
and fully connected networks with a single hidden layer. In contrast, we found that narrower
variants of the Transformer model scaled better to larger batch sizes, although it is unclear
if the same notion of “width” transfers between different types of neural networks.

Unlike the model and optimizer, we generally have much less control over the data set.
Unfortunately, properties of the data set also affect how well training scales in practice.
Our results are equivocal on whether the number of training examples has any effect, but
changing the data set entirely can certainly change the scaling behavior with respect to
batch size.

Finally, our results at least partially reconcile conflicting stances in the literature on
whether increasing the batch size degrades model quality. Our experiments show that:

1. Any study that only tunes the learning rate for one batch size and then uses a heuristic
to choose the learning rate for other batch sizes (Goyal et al., 2017; Keskar et al., 2017;
Hoffer et al., 2017; Lin et al., 2018; Devarakonda et al., 2017; Golmant et al., 2018)
gives a systematic advantage to the batch size used in tuning (as well as nearby batch
sizes). Our results did not show a simple relationship between the optimal learning
rate and batch size that scales indefinitely (see Figures 8 and 21), so the use of simple
heuristics for batch sizes sufficiently far from the base batch size could very well explain
the degraded solutions and divergent training reported in prior work. Similarly, the
optimal values of other metaparameters, such as the momentum and learning rate
decay schedule, should not be assumed to remain constant or scale in a simple way as
the batch size increases.

2. Assuming an epoch budget when comparing solution quality between batch sizes (Mas-
ters and Luschi, 2018; Goyal et al., 2017; Lin et al., 2018; Devarakonda et al., 2017),
in effect, limits an investigation to the perfect scaling region of the steps to result vs
batch size curve (see Figure 1). This budget favors smaller batch sizes because they
will perform more optimizer steps for the same number of training examples (see Sec-
tion 4.8). Certainly, there are situations where an epoch budget is appropriate, but
there may exist budgets just outside the perfect scaling region that can achieve the
same quality solution, and those budgets may still represent a significant reduction
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in the number of training steps required. Moreover, even for a fixed model and data
set, simply changing the optimizer can significantly extend the perfect scaling regime
to larger batch sizes. For example, Masters and Luschi (2018) found that test perfor-
mance of ResNet-8 (without batch normalization) on CIFAR-10 with a fixed epoch
budget degraded after batch size 16, but considered only plain mini-batch SGD. Our
experiments confirmed that perfect scaling ends at batch size 16 with plain mini-batch
SGD, but using Nesterov momentum extends the perfect scaling regime to batch size
256 (see Figure 1c).

3. Assuming a step budget when comparing solution quality between batch sizes (Hoffer
et al., 2017) might favor larger batch sizes because they will see more training examples
for the same number of gradient updates (see Section 4.8). A step budget is likely
sufficient for a larger batch size to reach at least the same performance as a smaller
batch size: we never saw the number of steps to reach a goal validation error increase
when the batch size was increased (see Figure 1).

4. Increasing the batch size reduces noise in the gradient estimates (see Equation 4).
However, the noise in updates due to small batches might, in some cases, provide a
helpful regularization effect (Goodfellow et al., 2016; Smith and Le, 2018). Thankfully,
other regularization techniques, such as label smoothing, can replace this effect (see
Section 4.6). Others have also used regularization techniques, such as data augmen-
tation (Keskar et al., 2017) and L2 regularization (Smith and Le, 2018), to eliminate
the “generalization gap” between two batch sizes.

5. Finally, although we do not believe there is an inherent degradation in solution quality
associated with increasing the batch size, depending on the compute budget, it may
become increasingly difficult to find good values for the metaparameters with larger
batch sizes. Specifically, increasing the batch size may shrink the region in metapa-
rameter space corresponding to rapid training in terms of epochs (see Figure 9a), as
previously reported by Breuel (2015b). On the other hand, increasing the batch size
may increase the region in metaparameter space corresponding to rapid training in
terms of steps (see Figure 9b).

5.1 Limitations of our experimental protocol

When interpreting our results, one should keep in mind any limitations of our experimental
protocol. We do not believe any of these limitations are debilitating, and we hope that
describing these potential areas of concern will spur methodological innovation in future
work.

Firstly, we were unable to avoid some amount of human judgment when tuning meta-
parameters. Although we did not tune metaparameters by hand, we specified the search
spaces for automatic tuning by hand and they may not have been equally appropriate for
all batch sizes, despite our best efforts. We are most confident in our search spaces that
tuned the fewest metaparameters (such as in our experiments that only tuned learning rate
and momentum). We found it quite difficult to be confident that our tuning was sufficient
when we searched over learning rate decay schedules; readers should be aware that the steps
to result measurement is generally quite sensitive to the learning rate schedule. Thus, we
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may not have sampled enough trials at some batch sizes or, nearly equivalently, our search
spaces may have been too wide at some batch sizes. Even though we verified that the best
trial was not on the boundary of the search space, this by no means guarantees that we
found the globally optimal metaparameters.

Smaller batch sizes typically had more opportunities to measure validation error and,
when validation error was noisy, got more chances to sample a lucky validation error. Batch
sizes (usually larger ones) that did not reach the goal validation error using the first search
space used revised search spaces that gave them an extra bite of the apple, so to speak.

Finally, our analysis does not consider how robustly we can reach a goal error rate. For
instance, we did not distinguish between batch sizes where all 100 trials achieved the goal
validation error and batch sizes where only one of the 100 trials achieved the goal. The
maximum or minimum value over a set of trials is not usually a very robust statistic, but
something like the 50th percentile trial mostly reveals information about the search space.
We tried to strike a balance between studying realistic workloads and being able to repeat
our experiments so many times that these uncertainty questions became trivial. Ultimately,
we opted to study realistic workloads and simply report results for the optimal trials.

6. Conclusions and Future Work

Increasing the batch size is a simple way to produce valuable speedups across a range of
workloads, but, for all workloads we tried, the benefits diminished well within the limits of
current hardware. Unfortunately, blindly increasing the batch size to the hardware limit
will not produce a large speedup for all workloads. However, our results suggest that
some optimization algorithms may be able to consistently extend perfect scaling across
many models and data sets. Future work should perform our same measurements with
other optimizers, beyond the closely-related ones we tried, to see if any existing optimizer
extends perfect scaling across many problems. Alternatively, if we only need speedups for
specific, high-value problems, we could also consider designing models that extend perfect
scaling to much larger batch sizes. However, unlike the optimizer, practitioners are likely
to tailor their model architectures to the specific problems at hand. Therefore, instead of
searching for model architectures that happen to scale extremely well, future work should
try to uncover general principles for designing models that can scale perfectly to larger
batch sizes. Even if such principles remain elusive, we would still benefit from methods
to prospectively predict the scaling behavior of a given workload without requiring careful
metaparameter tuning at several different batch sizes. Finally, the deep learning community
can always benefit from methodical experiments designed to test hypotheses, characterize
phenomena, and reduce confusion, to balance more exploratory work designed to generate
new ideas for algorithms and models.

Acknowledgements

We thank Tomer Koren for helpful discussions. We also thank Justin Gilmer and Simon
Kornblith for helpful suggestions and comments on the manuscript. Finally, we thank Matt
J. Johnson for lending us some computing resources.

31



Shallue, Lee, Antognini, Sohl-Dickstein, Frostig, and Dahl

Appendix A. Data Set Details

This section contains details of the data sets summarized in Table 1.

A.1 Data Set Descriptions and Pre-Processing

MNIST (LeCun et al., 1998) is a classic handwritten digit image classification data set
with 10 mutually exclusive classes. We split the original training set into 55,000 training
images and 5,000 validation images, and used the official test set of 10,000 images. We did
not use data augmentation.

Fashion MNIST (Xiao et al., 2017) is another reasonably simple image classification
data set with 10 mutually exclusive classes. It was designed as a drop-in replacement for
MNIST. We split the original training set into 55,000 training images and 5,000 validation
images, and used the official test set of 10,000 images. We did not use data augmentation.

CIFAR-10 (Krizhevsky, 2009) is an image classification data set of 32×32 color images
with 10 mutually exclusive classes. We split the original training set into 45,000 training
images and 5,000 validation images. We used the official test set of 10,000 images. We
pre-processed each image by subtracting the average value across all pixels and channels
and dividing by the standard deviation.15 We did not use data augmentation.

ImageNet (Russakovsky et al., 2015) is an image classification data set with 1,000
mutually exclusive classes. We split the official training set into 1,281,167 training images
and 50,045 test images, and used the official validation set of 50,000 images. We pre-
processed the images and performed data augmentation in a similar way to Simonyan and
Zisserman (2014). Specifically, at training time, we sampled a random integer S ∈ [256, 512],
performed an aspect-preserving resize so that the smallest side had length S, and took a
random crop of size (224, 224). We randomly reflected the images horizonally, but unlike
Simonyan and Zisserman (2014), we did not distort the colors. At evaluation time, we
performed an aspect-preserving resize so that the smallest side had length 256, and took a
central crop of size (224, 224). In both training and evaluation, we then subtracted the global
mean RGB value from each pixel using the values computed by Simonyan and Zisserman
(2014).16

Open Images v4 (Krasin et al., 2017) is a data set of 9 million images that are
annotated with image-level labels and object bounding boxes.17 The image labels were
generated by a computer vision model and then verified as either positive or negative labels
by human annotators. We only considered the 7,186 “trainable” classes with at least 100
human-annotated positives in the training set. We filtered the official subsets by keeping
only images with at least one positive trainable label, which produced training, validation
and test sets of size 4,526,492; 41,225; and 124,293 images, respectively. On average, each
image in the training set has 2.9 human-annotated positive labels, while each image in the
validation and test sets have 8.4 human-annotated positive labels. We only considered the
human-annotated positives and assumed all other classes were negative. We pre-processed
the images and performed data augmentation identically to ImageNet.

15. We used the TensorFlow op tf.image.per image standardization.
16. See https://gist.github.com/ksimonyan/211839e770f7b538e2d8#description for the mean RGB val-

ues used.
17. Available at https://storage.googleapis.com/openimages/web/index.html.
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LM1B (Chelba et al., 2014) is a text data set of English news articles.18 We used
the official training set and created validation and test sets using files news.en.heldout-

00000-of-00050 and news.en.heldout-00001-of-00050, respectively. These splits con-
tain 30,301,028; 6,075; and 6,206 sentences, respectively. We used an invertable word
tokenizer to split the text into sub-word tokens with a vocabulary of size 32,000.19 On
average, the training set contains around 20 tokens per sentence and the validation and test
sets contain around 29 tokens per sentence. At training time, we clipped long sentences
to the first 64 tokens, which affected only about 2% of sentences. We did not clip long
sentences at evaluation time. The maximum sentence across the validation and test sets
has 476 tokens.

Common Crawl is a repository of web data containing over 3 billion web pages.20

We filtered and processed the data set identically to Anil et al. (2018).21 The vocabulary
contains 24,006 sub-word tokens. We randomly partitioned the sentences into a training
set (99.98%) and a holdout set (0.02%). Our training set contains ∼25.8 billion sentences.
We used the first 6,075 sentences of the holdout set as our validation set, which is the same
number of sentences in our LM1B validation set. Some sentences are tens of thousands of
tokens long. To maintain consistency with our LM1B processing, we clipped sentences to
64 tokens at training time and 476 at evaluation time.

A.2 Evaluation Metrics

We use classification error for MNIST, Fashion MNIST, CIFAR-10, and ImageNet. To
compute this metric, we consider the model’s classification for each image to be the class it
assigns the highest probability. Then

classification error =
# incorrect classifications

# classifications
.

We use class-agnostic average precision (AP) for Open Images. To compute this
metric, we first rank each image-class pair by the predicted likelihood of the class being a
true positive for that image. Then

AP =
1

w

nm∑
k=1

Precision(k) · Relevance(k), (7)

where Precision(k) is the precision when considering the top k image-class pairs, Relevance(k)
is an indicator function equal to 1 if the kth image-class pair is a verified positive and 0
otherwise, n is the number of images in the validation set, m is the number of classes, and
w is the number of positive labels. Average precision was proposed for Open Images by Veit
et al. (2017). Due to false negatives in the validation set, Veit et al. (2017) only computed
AP over the the human-annotated classes in each image. However, on average, each image

18. Available at http://www.statmt.org/lm-benchmark/.
19. The code for processing the raw data and generating the vocabulary is available at https://github.

com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/lm1b.py

20. Available at http://commoncrawl.org/2017/07/june-2017-crawl-archive-now-available/.
21. See https://github.com/google-research/google-research/tree/master/codistillation for doc-

ument IDs.
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in the validation set only has 8.4 positive and 4 negative human-annotated classes, so each
image is only evaluated over ∼12 classes out of 7,186. This yields misleadingly high values
of AP . Instead, we compute AP over all classes in each image, which may underestimate
the true AP due to false negatives in the validation set, but is more indicative of the true
performance in our experience. We compute AP using an efficient approximation of the
area under the discrete precision-recall curve.22

We use average per-token cross entropy error for LM1B and Common Crawl. For a
single sentence s = (w1, ..., wm), let p(wj |w1, ..., wj−1) denote the model’s predicted prob-
ability of the token wj given all prior tokens in the sentence. Thus, the predicted log-
probability of s is log p(s) =

∑m
j=1 log p(wj |w1, ..., wj−1). We compute the average per-token

cross entropy error over a data set {s1, ..., sn} as

cross entropy error =

∑n
i=1 log p(sn)∑n
i=1 len(sn)

,

where len(s) denotes the number of tokens in s. This is the logarithm of the per-token
perplexity.

Appendix B. Model Details

In this section we give the architectural details of the models summarized in Table 2.
In addition to the descriptions below, each model has a task-specific output layer. Models
trained on MNIST, Fashion MNIST, CIFAR-10, and ImageNet (classification with mutually
exclusive labels) use a softmax output layer to model the probability distribution over
classes. Models trained on Open Images (classification with multiple labels per image) use
a sigmoid output layer to model the probability of each class. Models trained on LM1B and
Common Crawl (language modeling) use a softmax output layer to model the probability
of the next word in a sentence given all prior words in the sentence.

Fully Connected is a fully connected neural network with ReLU activation function.
Hidden layers use dropout with probability 0.4 during training. We vary the number of
layers and number of units per layer in different experiments to investigate the impact of
model size. We use the notation FC-N1-...-Nk to denote a fully connected neural network
with k hidden layers and Ni units in the ith layer.

Simple CNN consists of 2 convolutional layers with max-pooling followed by 1 fully
connected hidden layer. The convolutional layers use 5 × 5 filters with stride length 1,
“same” padding (Goodfellow et al., 2016), and ReLU activation function. Max pooling uses
2×2 windows with stride length 2. The fully connected layer uses dropout with probability
0.4 during training. We used three different model sizes: base has 32 and 64 filters in the
convolutional layers and 1,024 units in the fully connected layer; narrow has 16 and 32
filters in the convolutional layers and 512 units in the fully connected layer; and wide has
64 and 128 filters in the convolutional layers and 2,048 units in the fully connected layer.
We used the base model unless otherwise specified.

22. Equation 7 can be interpreted as a right Riemann sum of the discrete precision-recall curve {(ri, pi)|i =
1, ..., w}, where ri = i/w and pi is the maximum precision among all values of precision with re-
call ri (each value of recall may correspond to different values of precision at different classification
thresholds). We use the TensorFlow op tf.metrics.auc with curve="PR", num thresholds=200, and
summation method="careful interpolation".
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ResNet-8 consists of 7 convolutional layers with residual connections followed by 1 fully
connected hidden layer. We used the model described in section 4.2 of He et al. (2016a) with
n = 1, but with the improved residual block described by He et al. (2016b). We removed
batch normalization, which is consistent with Masters and Luschi (2018).

ResNet-50 consists of 49 convolutional layers with residual connections followed by
1 fully connected hidden layer. We used the model described in section 4.1 of He et al.
(2016a), but with the improved residual block described by (He et al., 2016b). We replaced
batch normalization (Ioffe and Szegedy, 2015) with ghost batch normalization to keep the
training objective fixed between batch sizes and to avoid possible negative effects from
computing batch normalization statistics over a large number of examples (Hoffer et al.,
2017). We used a ghost batch size of 32 for all experiments. We also applied label smoothing
(Szegedy et al., 2016) to regularize the model at training time, which was helpful for larger
batch sizes. The label smoothing coefficient was a metaparameter that we tuned in our
experiments.

VGG-11 consists of 8 convolutional layers followed by 3 fully connected hidden layers.
We used the model referred to as “model A” by Simonyan and Zisserman (2014).

LSTM is a one hidden-layer LSTM model (Hochreiter and Schmidhuber, 1997). It is
a simpler variant of the LSTM-2048-512 model described by Jozefowicz et al. (2016), with
1,024 embedding dimensions, 2,048 hidden units, and 512 projection dimensions. We did
not use bias parameters in the output layer because we found this improved performance
in our preliminary experiments.

Transformer is a self-attention model that was originally presented for machine trans-
lation (Vaswani et al., 2017). We used it as an autoregressive language model by applying
the decoder directly to the sequence of word embeddings for each sentence. We used four
different sizes: the base model described by Vaswani et al. (2017); a shallow model that
is identical to the base model except with only two hidden layers instead of six; a narrow
and shallow model that is identical to the shallow model except with half as many hidden
units and attention heads as well as half the filter size; and a wide model that is identical
to the base model except with double the number of hidden units and attention heads as
well as double the filter size. We used the base model unless otherwise specified.

Appendix C. Learning Rate Schedules

We chose our learning rate schedule by experimenting with a variety of different schedules
for ResNet-50 on ImageNet. For each schedule, we specified the following metaparameters:

• η0: initial learning rate

• α: decay factor (α > 0)

• T : number of training steps until the learning rate decays from η0 to αη0

Each schedule corresponds to a decay function d(t), such that the learning rate at
training step t is

η(t) =

{
d(t) · η0 if t ≤ T,
αη0 if t > T.

We experimented with the following decay functions:

35



Shallue, Lee, Antognini, Sohl-Dickstein, Frostig, and Dahl

• Constant: d(t) = 1

• Linear: d(t) = 1− (1− α) tT

• Cosine (Loshchilov and Hutter, 2017): d(t) = α+ (1−α)
2

(
1 + cosπ t

T

)
• Exponential Polynomial: d(t) = α+ (1− α)

(
1− t

T

)λ
, where λ > 0

• Inverse Exponential Polynomial: d(t) = α

α+(1−α)( tT )
λ , where λ > 0

• Exponential: d(t) = αt/T

We also tried piecewise linear learning rate schedules. These schedules are specified by
a sequence of pairs {(t0, η0), ..., (tk, ηk)}, with 0 = t0 < t1... < tk, such that the learning
rate at training step t is

η(t) =

{
ηi + ηi+1−ηi

ti+1−ti (t− ti) if ti ≤ t < ti+1,

ηk if t ≥ tk.

The schedules used by both He et al. (2016a) (piecewise constant) and Goyal et al. (2017)
(linear warm-up followed by piecewise constant) for ResNet-50 on ImageNet can both be
expressed as piecewise linear.

We ran experiments with ResNet-50 on ImageNet, using Nesterov momentum with batch
size 1,024 for 150,000 training steps, while tuning the momentum and all metaparameters
governing the learning rate schedule. We used quasi-random metaparameter search as
described in Section 4. For piecewise linear schedules, we tried 1, 3, and 5 decay events. We
found that it was possible to get good results with several of the schedules we tried, and it is
likely that other schedules would also work well. Ultimately, we chose linear decay because
it performed at least well as all other schedules we tried, while also being the simplest and
requiring only two additional metaparameters.
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Appendix D. Additional Plots

20 22 24 26 28 210 212 214 216

Batch Size

20

22

24

26

28

210

212

214

216

S
te

p
s

Validation, 0.01

Train, 0.01

(a) Simple CNN on MNIST
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(b) Transformer on LM1B
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(c) ResNet-50 on ImageNet

Figure 12: Steps to result on the training set is almost the same as on the validation set.
The evaluation metrics are described in Appendix A.2. Error goals are specified in the plot legends.
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Figure 13: Validating metaparameter search spaces for Transformer on LM1B. Rows cor-
respond to the metaparameters we tuned (learning rate η and momentum γ) and columns correspond
to different batch sizes. The x-axis is the search range that was sampled by the quasi-random search
algorithm. Blue dots represent trials that reached the goal of 3.9 validation cross entropy error, and
yellow stars correspond to trials that achieved the goal in the fewest steps. We deem these search
spaces appropriate because the yellow stars are not on the boundaries.
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Figure 14: Validating metaparameter search spaces for ResNet-50 on ImageNet. Rows
correspond to the metaparameters we tuned (initial learning rate η0, momentum γ, learning rate
decay parameters α, T , and label smoothing parameter) and columns correspond to different batch
sizes. For all parameters except the label smoothing parameter, the x-axis is the search range sam-
pled by the quasi-random search algorithm. The label smoothing parameter was sampled uniformly
in {0, 0.01, 0.1} for b ≤ 214 and {0, 0.1} for b > 214. Blue dots represent trials that reached the goal
validation error rate of 0.25, and yellow stars correspond to trials that achieved the goal in the fewest
steps. We deem these search spaces appropriate because the yellow stars are not on the boundaries.

38



Measuring the Effects of Data Parallelism on Neural Network Training

20 22 24 26 28 210 212 214 216

Batch Size

25
26
27
28
29

210
211
212
213
214
215
216
217
218

S
te

p
s

Steps to Reach 0.03 Validation Error

FC-1024-1024-1024

Simple CNN

(a) Fully Connected vs Simple CNN on MNIST

25 26 27 28 29 210 211 212 213 214 215 216

Batch Size

210

211

212

213

214

215

216

217

218

219

220

221

S
te

p
s

Steps to Reach 0.35 Validation Error

ResNet-50

VGG-11

(b) ResNet-50 vs VGG-11 on ImageNet
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(c) Transformer vs LSTM on LM1B
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Figure 15: Figure 3 without the y-axis normalized.

39



Shallue, Lee, Antognini, Sohl-Dickstein, Frostig, and Dahl

20 22 24 26 28 210 212 214 216

Batch Size

20

22

24

26

28

210

212

214

216
S
te

p
s

MNIST, 0.01

Fashion MNIST, 0.1

(a) Simple CNN on different data sets

26 27 28 29 210 211 212 213 214 215 216

Batch Size

210

211

212

213

214

215

216

217

218

219

220

221

S
te

p
s

ImageNet, 0.25

Open Images, 0.31

(b) ResNet-50 on different data sets

24 25 26 27 28 29 210 211 212 213 214 215

Batch Size

28
29

210

211
212
213

214
215
216

217
218
219
220

S
te

p
s

Common Crawl, 3.9

LM1B, 3.9

(c) Transformer on different data sets

Figure 16: Figure 5 without the y-axis normalized.
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(b) ResNet-50 on ImageNet subsets

Figure 17: Figure 6 without the y-axis normalized.
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Figure 18: Label smoothing reduces overfitting at large batch sizes. Plots are training
curves for the two best models with and without label smoothing for ResNet-50 on ImageNet with
batch size 216. The two models correspond to different metaparameter tuning trials, so the learning
rate, Nesterov momentum, and learning rate schedule were independently chosen for each trial. The
two trials shown are those that reached the highest validation error at any point during training, for
label smoothing equal to 0 and 0.1 respectively.
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(b) Simple CNN on Fashion MNIST

Figure 19: Label smoothing helps all batch sizes for Simple CNN on MNIST and Fashion
MNIST. There is no consistent trend of label smoothing helping smaller or larger batch sizes more.
Each point corresponds to a different metaparameter tuning trial, so the learning rate, Nesterov
momentum, and learning rate schedule are independently chosen for each point. The training budget
is fixed for each batch size, but varies between batch sizes.
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(b) ResNet-50 on ImageNet

Figure 20: Validation error vs effective learning rate. Training budgets are consistent for each
batch size, but not between batch sizes. These plots are projections of the entire metaparameter
search space, which is 2-dimensional for Transformer on LM1B (see Figure 13) and 5-dimensional
for ResNet-50 on ImageNet (see Figure 14).
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(a) Simple CNN on MNIST
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(b) Simple CNN on Fashion MNIST
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(c) ResNet-8 on CIFAR-10
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(d) ResNet-50 on ImageNet
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(e) ResNet-50 on Open Images
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(f) Transformer on LM1B
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(g) Transformer on Common Crawl
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(h) VGG-11 on ImageNet
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(i) LSTM on LM1B

Figure 21: Optimal learning rates do not always follow linear or square root scaling
heuristics. Learning rates correspond to the trial that reached the goal validation error in the fewest
training steps (see Figure 1). For models using learning rate decay schedules (ResNet-8, ResNet-50,
VGG-11), plots are based on the initial learning rate. See Figure 22 for the corresponding plot of
optimal momentum, and Figure 8 for the corresponding plot of effective learning rate.
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(a) Simple CNN on MNIST
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(b) Simple CNN on Fashion MNIST
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(c) ResNet-8 on CIFAR-10
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(d) ResNet-50 on ImageNet
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(e) ResNet-50 on Open Images
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(f) Transformer on LM1B
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(g) Transformer on Common Crawl

25 26 27 28 29210211212213214215216

Batch Size

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

M
o
m

e
n
tu

m

(h) VGG-11 on ImageNet
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(i) LSTM on LM1B*

Figure 22: Optimal momentum has no consistent relationship with batch size. Momentum
corresponds to the trial that reached the goal validation error in the fewest training steps (see
Figure 1). See Figure 21 for the corresponding plot of optimal learning rate, and Figure 8 for the
corresponding plot of effective learning rate. *For LSTM on LM1B, we only tuned η with fixed
γ = 0.99.
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(a) Simple CNN on MNIST: Validation Error
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(b) Simple CNN on MNIST: Test Error

Figure 23: Zoomed version of Figure 11a.
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(a) Simple CNN on Fashion MNIST: Validation Error
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Figure 24: Zoomed version of Figure 11b.
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