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Abstract—Data clustering methods integrating information
fusion techniques have been recently developed in the framework
of belief functions. More precisely, the evidential version of fuzzy
c-means (ECM) method has been proposed to deal with the
clustering of proximity data based on an extension of the popular
fuzzy c-means (FCM) clustering method. In fact ECM doesn’t
perform very well for proximity data because it is based only
on the distance between the object and the clusters’ center to
determine the mass of belief of the object commitment. As a
result, different clusters can overlap with close centers which is
not very efficient for data clustering. To overcome this problem,
we propose a new clustering method called belief functions c-
means (BFCM) in this work. In BFCM, both the distance between
the object and the imprecise cluster’s center, and the distances
between the object and the centers of the involved specific clusters
for the mass determination are taken into account. The object
will be considered belonging to a specific cluster if it is very close
to this cluster’s center, or belonging to an imprecise cluster if it
lies in the middle (overlapped zone) of some specific clusters, or
belonging to the outlier cluster if it is too far from the data set.
Pignistic probability can be applied for the hard decision making
support in BFCM. Several examples are given to illustrate how
BFCM works, and to show how it outperforms ECM and FCM
for the proximity data.

Keywords: data clustering, information fusion, belief func-

tions, BFCM, ECM, FCM.

I. INTRODUCTION

Belief functions theory [1–3] also called evidence theory

has been widely applied in the information fusion field [4–

7] for dealing with the uncertain and imprecise information.

The classical data clustering (classification) techniques like

fuzzy1 c-means (FCM) [8] were developed in the probability

framework. However, in the clustering of the close data sets,

some data points (objects) are close to each other, but really

originate from different classes. In such cases, it would be

hard to correctly classify such objects into a particular cluster,

which indicates that the probabilistic framework can not well

model the imprecise information. Now several clustering and

classification methods [5, 9, 10] have been extended to work

in the framework of belief functions for dealing with the close

data sets.

The c-means clustering method and its variants remain so

far the most popular data clustering methods. Recently a new

version of c-means method has been developed by Kurihara

and Welling [11] in the Bayesian framework. In this paper,

1The ”fuzzy” epithet is misleading and should better be replaced by
”probabilistic” in fact.

we get out of the Bayesian framework and we propose a new

clustering method inspired from FCM and ECM, and based on

the framework of belief functions. FCM generalizes the fuzzy

partition for the data set. In order to well model the imprecise

information in the data clustering, an evidential version of

fuzzy c-Means (ECM) clustering method has been proposed

recently in [9] based on the belief functions framework.

ECM is able to produce the credal partition [10] including

outlier cluster, specific (singleton) clusters2 and imprecise

clusters (meta-clusters) as the disjunction of the associated

singleton clusters. Let us consider a frame of discernment

Ω = {w1, . . . , wk}. The credal partition as an extension of

fuzzy partition allows the object not only to belong to the

specific clusters, but also to belong to any subsets (with respect

to meta-cluster) of frame of discernment Ω with a mass of

belief defined on the power-set of Ω (denoted by 2Ω). The

power-set 2Ω is constructed by all the subsets of Ω. Therefore,

the credal partition provides more enlarged partition results

than the fuzzy partition techniques, and provides a deeper

insight to the data. This made ECM appealing for solving

imprecise (uncertain) data clustering problems in applications.

In ECM, the mass of belief for each object is based on the

distance between the object and the centers of focal elements

that are subsets of Ω. The singleton focal element corresponds

to the specific cluster, and the focal element composed by

the union of more than one singleton element of Ω is called

an imprecise element and it corresponds to (imprecise) meta-

cluster. The meta-clusters’ centers are obtained by the simple

average of the involved specific clusters’ centers. The smaller

distance between the object and the clustering center, the

bigger mass of belief of the object committed to the corre-

sponding cluster. The data point in (or close to) the middle

of several specific clusters will be likely in the meta-cluster

as the disjunction (union) of these associated specific clusters,

since it is close to the average center of these specific clusters.

However, the clustering centers of the singleton clusters may

overlap with some centers of meta-clusters, and the centers

of the different meta-clusters can still be overlapped in some

cases. This problem will cause troubles in the association of

an object with a particular specific (singleton) cluster, or the

(different) meta-cluster the object may also belong to.

For example, let’s consider a 4-classes data set and the frame

2Singleton cluster means there is only one class (element) in this cluster,
and it is the same as the cluster in FCM.
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Ω = {w1, w2, w3, w4} with the corresponding centers v1, v2,

v3, and v4. It is possible that3 in some cases to have v2 ≈
(v1 + v3)/2 = v1,3, and to have also v1,4 = (v1 + v4)/2 ≈
(v2 + v3)/2 = v2,3.Then with ECM, a trouble occurs in the

association of an object with w2 or w1∪w3 if the object is close

to v2 (or v1,3), and also with w1∪w4 and w2∪w3 if the object

is close to v1,4 (or v2,3), since in ECM the determination of

the mass only depends on the distance between the object and

the centers of clusters. So we probably get overlapped clusters

(i.e. w2 and w1∪w3, w1∪w4 and w2∪w3) with ECM, which

seems not a very efficient and reasonable clustering result. We

also have noticed that the penalizing weighting factor |A|α

(|A| being the cardinality of the set A) to control the number

of data point in the cluster A in ECM is usually very big

and especially for the meta-clusters. Big |A|α factors lead that

the clusters with different cardinality have different weights in

the determination of masses of belief. This principle seems ill-

adapted (at least theoretically unjustified) for the meta-clusters

with big cardinality.

In order to overcome the limitation of ECM, a method

called belief c-means (BCM) was recently developed in [12].

In BCM, the meta-clusters are given a distinct interpretation

as in ECM, and the meta-clusters refer to the objects that are

neither close to the associated clustering centers, nor far form

them. The computation of mass of belief on the meta-clusters

is a bit complex in BCM. In this work, we propose a simpler

evidential c-means clustering method called belief functions

c-means (BFCM). The meta-clusters are used to represent

the objects that are in the middle of different clusters and

difficult to be correctly committed into a particular cluster,

and the mass of belief on the meta-clusters is determined in

a new and simple way. In the determination of the mass of

belief focused on the meta-cluster, we take into account not

only the distance between the object and the center of the

meta-cluster, but also the distances between the object and

the centers of these specific clusters involved in the meta-

cluster. Then, even if the centers of the different clusters may

be overlapped, the distances between the object and the centers

of the associated specific clusters may be different. Thus,

the data will be committed to the cluster whose associated

specific clusters are close to the data. Some few data points

far from the data set with respect to the outlier threshold will

be considered as outlier. We will represent the outlier class by

∅. The objective function of BFCM is designed according to

this basic principle, and the clustering centers and the mass

of belief for the object are acquired by the optimization of

the objective function. The credal partition can be reduced to

fuzzy partition using the Piginistic probability transformation

BetP (.) [3] for hard decision-making support if necessary.

After a brief recall of ECM approach in section II, the new

BFCM approach is introduced in section III. Then some simple

examples are given in section IV to illustrate the effectiveness

of BFCM with respect to FCM and ECM approaches, before

concluding this paper in section V.

3We denote by vi,j the center of the meta-cluster wi ∪ wj .

II. BASICS OF EVIDENTIAL C-MEANS (ECM)

ECM [9] is an extension of FCM based on credal partition

using the theoretical framework of belief functions. The class

membership of an object xi = (xi1 , · · · , xip) is represented

by a basic belief assignment (bba) mi(.) over a given frame

of discernment Ω = {w1, . . . , wk}. This representation is able

to model all situations ranging from complete ignorance to

full certainty concerning the class of xi. In ECM, the mass

of belief for associating the object xi with an element Aj

of 2Ω denoted by mij
∆
= mxi(Aj), is determined from the

distance dij between xi and the (center) prototype vector v̄j

of the element Aj . Note that Aj can either be a single class,

or an union of single classes. The prototype vector v̄j of

Aj , is defined as the mean vector of the prototype attribute

vectors of the singletons of Ω included in Aj . v̄j is defined

mathematically by

v̄j =
1

cj

c
∑

i=1

skjvk with skj =

{

1, if wk ∈ Aj

0, otherwise
(1)

where vk is the prototype attribute vector of (i.e. the center

of the single cluster associated with) the single class wk, and

cj = |Aj | denotes the cardinality of Aj , and dij denotes the

Euclidean distance between xi and v̄j .

In ECM, the determination of mij
∆
= mxi(Aj) is based on

dij as in FCM. Actually, mij is obtained by the minimization

of the following objective function under a constraint:

JECM =

n
∑

i=1

∑

Aj⊆Ω,Aj 6=∅

cαj m
β
ijd

2
ij +

n
∑

i=1

δ2mβ
i∅ (2)

Subject to
∑

Aj⊆Ω,Aj 6=∅

mij +mi∅ = 1 (3)

The solution of the minimization of (2) under the constraint

(3) has been established by Masson and Denœux in [9] and it

is given for each object xi, (i = 1, 2, . . . , n) by:

• For all Aj ⊆ Ω and Aj 6= ∅,

mij =
c
−α/(β−1)
j d

−2/(β−1)
ij

∑

Ak 6=∅

c
−α/(β−1)
k d

−2/(β−1)
ik + δ−2/(β−1)

(4)

where α is a tuning parameter allowing to control

the degree of penalization; β is a weighting exponent

(its suggested default value in [9] is β = 2); δ is a

given threshold tuning parameter for the filtering of the

outliers; cj = |Aj | is the cardinality of the set Aj .

• For Aj = ∅,

mi∅
∆
= mxi(∅) = 1−

∑

Aj 6=∅

mij . (5)

The centers of the class are given by the rows of the matrix

Vc×p

Vc×p = H−1
c×c.Bc×p (6)
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where the elements Blq of Bc×p matrix for l = 1, 2, . . . , c,
q = 1, 2, . . . p, and the elements Hlk of Hc×c matrix for l, k =
1, 2, . . . , c are given by:

Blq =

n
∑

i=1

xiq

∑

wl∈Aj

cα−1
j mβ

ij (7)

Hlk =

n
∑

i=1

∑

{wk,wl}⊆Aj

cα−2
j mβ

ij (8)

III. NEW BELIEF FUNCTIONS C-MEANS (BFCM)

A. Basic principle of BFCM

In ECM, the prototype vector (i.e. the center) of an impre-

cise (i.e. a meta) cluster is obtained by averaging the prototype

vectors of the specific clusters included in it. The smaller

distance between the object and the center of the (specific

or imprecise) cluster will lead to the bigger mass of belief

committed to this corresponding cluster. Whereas, a specific

cluster’s center may overlap with (or very close to) the center

of a meta-cluster in some cases, and the clustering centers of

the distinct meta-clusters can still overlap sometimes. If so, it

will cause a problem in the association of an object with a

particular specific cluster or the meta-cluster the object may

also belong to, and these different clusters will also overlap.

Moreover, the penalized weighting factor α of ECM is usually

very big in the applications to avoid the problem that a number

of data points are committed to the meta-clusters. The big

α leads that the clusters with different cardinality take quite

different weights in the determination of mass of belief, which

seems unfair (unjustified) especially for the meta-clusters with

big cardinality. To circumvent these problems, a new extension

of fuzzy c-means clustering method under belief functions

framework is proposed, and we call it belief functions c-means

method (and denoted by BFCM acronym).

In BFCM, the data committed to a specific (singleton)

cluster must be close to the center of this cluster. The data

belonging to the imprecise/meta-cluster cluster (i.e. the dis-

junction of these singleton clusters) should be not only close

to the average prototype of these involved singleton clusters (as

done in ECM), but also close to prototypes of these singleton

clusters. The outlier cluster represents the few data points very

far from the data set with respect to the outlier threshold.

The penalized weighting factor α in BFCM is always very

small and even zero, and the cardinality of the clusters is not

necessarily taken into account in the determination of belief.

So the meta-clusters and the specific clusters can be considered

with the (almost) same weight in BFCM. Thus, in BFCM,

the mass of belief committed to a singleton cluster for an

object will depend on the distance between the object and the

center of the singleton cluster. The belief committed to a meta-

cluster will depend on the distances between the object and

the prototypes of the singleton clusters involved in the meta-

cluster, as well as on the distances between the object and the

average center of these singleton cluster centers. The belief of

the outlier cluster is determined according to a chosen outlier

threshold.

B. The objective function of BFCM

Let us consider a set of n ≥ 1 objects. Each object (data

point) is indexed by a number i and is represented by a given

attribute vector xi of dimension 1 × p with p ≥ 1. These

objects will be clustered in a given frame of discernment (a

finite set of specific classes) Ω = {w1, w2, . . . , wk} with the

corresponding centers {v1,v2, . . . ,vk}. The meta-clusters are

generalized by the disjunction of these specific classes in the

frame of discernment Ω.

In BFCM, the mass of belief mxi(wj) of xi committed to

the ”singleton” cluster wj (i.e. a specific class), is assumed

to increase with the decrease of the distance dxivj between

xi and the center vj . The smaller dxivj leads to the bigger

mxi(wj). The determination of the belief committed to the

imprecise clusters takes into account not only the distance

between the object xi and the prototypes of the meta-cluster,

but also the distances between xi and the prototypes of the

singleton clusters involved in the imprecise clusters. This is

done as follows. If the object xi is closer to the centers vj ,

vj+1,. . ., vt for some j, t < k, which indicates that xi has

potentially more chance to belong to the classes wj , wj+1, . . .,
wt than to other clusters, and in the meanwhile the distances

between the object and the average center of singleton

clusters v̄s = (vj + · · · + vt)/(t − j) is smaller, then the

value committed to mxi(wj ∪ wj+1 · · · ∪ wt) by BFCM will

increase. mxi(wj ∪wj+1 · · · ∪wt) will be obtained according

to the average of the distances dxivj , · · · , dxivt and dxivs
.

Moreover, the particular distance between the object and the

average center of singleton clusters can be weighted by a

chosen weighting factor which can be tuned according to the

application. The objects too far from all the centers of clusters

(according to a chosen outlier threshold δ) will be considered

as outliers and committed to the outlier-class represented by ∅.

In BFCM, we minimize the objective function JBFCM

to compute the masses of belief of the matrix M =

(m1, · · · ,mn) ∈ R
n×2|Ω|

associated with the credal partition,

and to compute the matrix Vc×p of cluster centers. The

minimization is done under the constraint (10). The objective

function JBFCM of BFCM is different from JECM (2) and

it is defined by

JBFCM (M,V ) =

n
∑

i=1

∑

j|Aj⊆Ω,
|Aj |=1

mβ
ijd

2
ij

+

n
∑

i=1

∑

j|Aj⊆Ω,
|Aj |>1

|Aj |
αmβ

ij

∑

Ak∈Aj ,|Ak|=1

d2ik + γd2ij

|Aj |+ γ

+

n
∑

i=1

mβ
i∅δ

2 (9)

Subject to
∑

j|Aj⊆Ω

mij +mi∅ = 1 (10)
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where dij , dxivj is the distance between the data point xi

and the class center vj corresponding to the cluster Aj . If Aj

is a meta-cluster, its center is the mean value of the centers

of the involved specific clusters, and it is given by

v̄j =
1

|Aj |
·

∑

Ak∈Aj ,|Ak|=1

vk. (11)

The tuning parameters α, β, and δ have the same meaning

as in ECM. γ is the weighting factor of the distance between

the object and the center of the meta-clusters. The objective

function JBFCM can be justified by the following expected

properties:

• If the object (a data point) is quite far from all the centers

of the singleton clusters (beyond the given threshold δ),

the most mass of belief will be committed to outlier

cluster represented by ∅.
• The belief of a data point associated to a singleton cluster

is proportional to the distance between the data point and

the center of the singleton cluster.

• The belief of a data point associated to a meta-cluster

is proportional to the average distance between the data

point and the involved singleton clusters’ centers, and

also to the distance between the object and the center of

the meta-cluster with the tuned weighting factor γ.

We also notice that if Aj is a specific (singleton) cluster, then
∑

Ak∈Aj ,|Ak|=1

d2ik + γd2ij

|Aj |+ γ
=

d2ij + γd2ij
1 + γ

= d2ij (12)

Therefore, the objective function given in (9) can be rewritten

as in (13) for the convenience of optimization in the sequel.

JBFCM (M,V ) =

n
∑

i=1

∑

j|Aj⊆Ω

|Aj |
αmβ

ijD
2
ij (13)

with

D2
ij =







δ2, Aj = ∅
∑

Ak∈Aj,|Ak|=1

d2
ik+γd2

ij

|Aj |+γ , Aj 6= ∅
(14)

As with FCM [8] or ECM [9] methods, β = 2 can be used as

default value, and we have used this value in our simulations

presented in the sequel. α allows to control the number of

points assigned to the meta-clusters. The higher α leads to the

less imprecision of the clustering result. However, since we

consider that the meta-clusters must not be greatly penalized

with respect to the singleton clusters, the α parameter should

be very small and even zero (i.e α = 0 is default in this

work). δ is the threshold of the outliers and it is strongly

data-dependent. The bigger dispersion of the data set leads to

the bigger δ. The bigger γ generally produces a bigger meta-

cluster. We suggest to take 1 ≤ γ in practice. Meanwhile, γ
must not be too big. If γ is too big, the belief of the meta-

cluster will mainly be determined according to the distance

between the object and the average center of the intersecting

cluster. Then, the belief committed to the meta-cluster and

to the singleton cluster may be very similar when the center

for the meta-cluster is close to the center of the singleton

cluster. To implement BFCM algorithm, we need to minimize

JBFCM . This is explained in the next subsection.

C. Minimization of JBFCM objective function

To minimize JBFCM , we use Lagrange multipliers method.

In the first step, the centers of the clusters V are considered

fixed. Lagrange multipliers λi are used to solve the constrained

minimization problem with respect to M as follows:

L(M,λ1, . . . , λn) = JBFCM (M,V )−
n
∑

i=1

λi(
∑

j|Aj⊆Ω

mij−1)

(15)

By differentiating the Lagrangian with respect to the mij ,mi∅

and λi and setting the derivatives to zero, we obtain:

∂L

∂mij
= |Aj |

αβmβ−1
ij D2

ij − λi = 0 (16)

∂L

∂λi
=

∑

j|Aj⊆Ω

mij − 1 = 0 (17)

From (16), one gets

mij = (
λi

β
)

1
β−1 (

1

|Aj |αD2
ij

)
1

β−1 (18)

and using (17) and (18), one has

(
λi

β
)
1/(β−1)

=
1

∑

j/Aj⊆Ω

1
|Aj|α/(β−1)D

2/(β−1)
ij

(19)

Returning in (18), one obtains the necessary condition of

optimality for M :

mij =
|Aj |

−α/(β−1)D
−2/(β−1)
ij

∑

Ak⊆Ω

|Ak|−α/(β−1)D
−2/(β−1)
ik

(20)

Using (14), we get the expressions of the mass of belief

respectively committed to different focal elements including

empty set (corresponding to outlier), singleton cluster, impre-

cise cluster.

mij =
δ−2/(β−1)

δ
−2
β−1 +

∑

Aj⊆Ω

|Aj |
−α
β−1 (

∑

Ak∈Aj,|Ak|=1

d2
ik+γd2

ij

|Aj |+γ )
−2
β−1

;

Aj = ∅ (21)

mij =
|Aj |

−α
β−1 (

∑

Ak∈Aj,|Ak|=1

d2
ik+γd2

ij

|Aj |+γ )
−2
β−1

δ
−2
β−1 +

∑

Aj⊆Ω

|Aj |
−α
β−1 (

∑

Ak∈Aj,|Ak|=1

d2
ik+γd2

ij

|Aj |+γ )
−2
β−1

;

Aj 6= ∅ (22)
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More precisely, if Aj is a specific cluster, one gets:

mij =
d
−2/(β−1)
ij

δ
−2
β−1 +

∑

Aj⊆Ω

|Aj |
−α
β−1 (

∑

Ak∈Aj,|Ak|=1

d2
ik+γd2

ij

|Aj |+γ )
−2
β−1

;

|Aj | = 1, Aj 6= ∅ (23)

Now let us consider that M is fixed. The minimization of

JBFCM with respect to V is an unconstrained optimization

problem. The partial derivatives of JBFCM with respect to

the centers are given by:

∂JBFCM

∂vl
=

n
∑

i=1

∑

Al∩Aj 6=∅

|Aj |
αmβ

ij

∂D2
ij

∂vl
(24)

with
∂D2

il

∂vl
= 2(vl − xi), |Al| = 1 (25)

∂D2
ij

∂vl
=

2(vl − xi) +
2γ
|Aj|

(

∑

Ag⊂Aj

vg

|Aj |
− xi)

|Aj |+ γ2
, Al ∈ Aj (26)

Therefore,

∂JBCM

∂vl
=

n
∑

i=1

2mβ
il(vl − xi)+

n
∑

i=1

∑

Al∈Aj

|Aj |
αmβ

ij

2(vl − xi) +
2γ
|Aj|

(

∑

Ag∈Aj

vg

|Aj|
− xi)

|Aj |+ γ2
(27)

Setting these derivatives to zero gives c linear equations that

can be written as:

(
n
∑

i=1

mβ
il +

n
∑

i=1

∑

Al∈Aj

|Aj |
αmβ

ij

1 + γ
|Aj|

|Aj |+ γ2
)xi =

n
∑

i=1

mβ
ilvl +

n
∑

i=1

∑

Al∈Aj

|Aj |
αmβ

ij

vl +

γ
∑

Ag∈Aj

vg

|Aj |2

|Aj |+ γ2
(28)

This system of linear equations can be concisely rewritten as

Bc×nXn×p = Hc×cVc×p (29)

where Xn×p , [x1, · · · ,xn]
′ (i.e. the set of all attribute

vectors of data). The elements of Bc×n and Hc×c are defined

by

Bli , mβ
il +

∑

Al∈Aj

|Aj |
αmβ

ij

1 + γ
|Aj|

|Aj |+ γ
(30)

Hll ,

n
∑

i=1

mβ
il +

n
∑

i=1

∑

Al∈Aj

|Aj |
αmβ

ij

1 + γ
|Aj |2

|Aj |+ γ
(31)

Hlq ,

n
∑

i=1

∑

Al∈Ak,Aq∈Ak

|Ak|
αmβ

ik

γ

|Ak|2(|Ak|+ γ)
, l 6= q

(32)

V is the solution of the linear system (29) which can be

calculated by a standard linear system solver. The pseudo-code

of the BFCM algorithm is given in Table 1 for convenience.

Table 1. Belief functions c-means algorithm

Input: Data to cluster: {x1, · · · ,xn} in R
p

Parameters: c: number clusters, 2 ≤ c < n
δ > 0: outlier threshold

α ≥ 0: penalization factor(αd = 0)

ǫ > 0: termination threshold (ǫd = 10−3)

γ > 0: weight of the distance(γd = 1)

Initialization: Choose randomly initial mass M0

t ← 0

Repeat

t← t+ 1
Compute Bt and Ht by (30)-(32);

Compute Vt by solving (29);

Compute Mt using (21)-(22);

until ||Vt − Vt−1|| < ǫ
αd, βd,ǫd and γd are the default values of the parameters

applied in BFCM. The initial bba M0 can be randomly

generated, and the final clustering results are not very

sensitive to the initialization of M0 after the process of

optimization.

D. Hard decision-making support for BFCM

When necessary in applications, the credal partition in

BFCM can be reduced to the fuzzy partition for hard decision

making. The meta-clusters need to be eliminated from credal

partition in order to get a fuzzy partition. The mass of belief

committed to the removed clusters should be redistributed to

the other focal elements. In this work, the Pignistic probability

transformation [3], denoted BetP (.), is applied for the redis-

tribution of the belief of meta-clusters to the specific clusters.

BetP (.) is defined by

BetP (w) =
∑

w∈A

m(A)

|A|
, w ∈ Ω (33)

where |A| is the cardinality of the set A, i.e. the number of

singleton elements A contains.

The lower and upper bounds of imprecise probability asso-

ciated with bba’s correspond to the belief function Bel(.) and

the plausibility function Pl(.) [1]. [Bel(.), P l(.)] is interpreted

as the imprecise interval of the unknown probability P (.).
These bounds are given for all X in 2Ω by

Bel(X) =
∑

A⊆X,A6=∅

m(A) (34)

Pl(X) =
∑

A∩X 6=∅

m(A) (35)

Bel(.) and Pl(.) can also be used for decision-making support

when adopting pessimistic or optimistic attitudes if necessary.
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IV. NUMERICAL EXAMPLES

Example 1: Here we consider a 3-class data set in a line to

show the limitation of ECM and FCM with respect to BFCM.

There are 3 ∗ 50 = 150 data points to cluster as shown in

Fig. 1a. The data points have been generated from three 2D

Gaussian distributions characterized by the following mean

vectors and covariance matrices (I being the identity matrix):

µ1 = (0, 0),Σ1 = I

µ2 = (4, 0),Σ2 = 1.5I

µ3 = (9, 0),Σ3 = 1.5I

The number of clusters has been set to C = 3. The outlier

threshold used in ECM and BFCM was δ2 = 36, and

termination threshold ǫ = 0.001. One has tested BFCM with

α = 0 and γ = 1 or γ = 2 to show the effect of the parameter

γ on the clustering result. In ECM, we have tested α = 0
and α = 2 to show its effect on the result. In the legends of

figures, we denoted w{i,··· ,k} , wi ∪ · · · ∪ wk for notation

convenience. The clustering results obtained with FCM, ECM

and BFCM are shown in Fig. 1b–1f.
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(b) Clustering result with FCM.
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(c) Result with ECM (α = 0).
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(d) Result with ECM (α = 2).
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(e) Result with BFCM (γ = 1).
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(f) Result with BFCM (γ = 2).

Figure 1: Clustering results by different methods.

The three original data sets are close to each other, and

they are partly overlapped at the margins. FCM produces 3

singleton clusters w1, w2 and w3 based on the probability

framework, and some points in the overlapped zone are

wrongly clustered. ECM provides the credal partitions in

belief function framework, but there are too many data points

committed to meta-clusters when α = 0 as shown in Fig.

1c. If one takes α = 2, the meta-clusters will become much

smaller as shown in Fig. 1d. Nevertheless, we can find that

some points originated from w3 are considered belonging

to w1 ∪ w2, whereas w1 ∪ w2 and w3 are incompatible. So

these results are not very well justified. This problem arises

in ECM approach because the center (v1 + v2)/2 of the

meta-cluster w1 ∪ w2 is close to the center v3 of the specific

cluster w3, and because the distances between the objects

and the centers of the involved specific clusters (i.e. w1 and

w2) are not considered in the determination of the belief of

the meta-clusters (i.e. w1 ∪ w2). As shown in Fig. 1e, when

γ = 1 is selected in BFCM, several points in the middle

of the different classes are clustered into the meta-clusters

w1 ∪ w3 and w2 ∪ w3, and there is no point belonging to

w1 ∪ w2 since w1 and w2 are not overlapped. Several points

which are wrongly classified by FCM are committed to

the imprecise class. For example, in FCM, one point from

w2 is classified into w3 and another one point from w3 is

classified into w2, whereas these two points are committed to

w2 ∪w3 by BFCM. This indicates that BFCM can reduce the

risk of the false clustering but of course it will increase the

imprecision of the clustering results, which is the price we

have to pay to get mor erobust results. If BFCM runs with

γ = 2 as shown in Fig. 1f, we see that the the meta-clusters

become bigger than when taking γ = 1, and there are still

no point committed to w1 ∪ w2. This example illustrates the

effectiveness of BFCM in the clustering of the proximity data

sets.

Example 2: In this example, the 4-classes of artificial data

generated from two 2D Gaussian distributions are used to

test BFCM, ECM and FCM. The Gaussian distributions were

characterized by the following mean vectors µi and covariance

matrices Σi, i = 1, 2, 3, 4:

µ1 = (0, 0),Σ1 = I

µ2 = (5, 0),Σ2 = 2I

µ3 = (10, 0),Σ3 = I

µ4 = (16, 0),Σ4 = 1.5I

Fifty samples were generated for each class, and there were

in total 50× 4 = 200 data points to cluster as shown in Fig.

2a. The number of the clusters has been chosen to C = 4.

BFCM and ECM used δ2 = 25 and ǫ = 0.001. In BFCM, one

has taken α = 0, and γ = 1 or γ = 2. One has tested ECM

with α = 0 and with α = 2. The clustering results obtained

with FCM, ECM and BFCM are shown in Fig. 2b– 2f.

As we can see on Fig. 2a, the four original data sets partly

overlap on the margins. Nevertheless, FCM just gives four
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(b) Clustering result with FCM.
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(c) Result with ECM (α = 0).
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(d) Result with ECM (α = 2).
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(e) Result with BFCM (γ = 1).
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(f) Result with BFCM (γ = 2).

Figure 2: Clustering results by different methods.

specific clusters since it is based on the probability framework.

In ECM, the clustering results as in Fig. 2c are very imprecise

when one applies α = 0. The data points originated from

w2 and w3 are almost all committed to the distinct meta-

clusters, and these meta-clusters are almost overlapped, which

is bad for decision-making. If we use ECM with α = 2,

the results in Fig. 2d slightly improve. However, there remain

many points from w2 and w3 belonging to the distinct meta-

clusters. Particularly, some points are respectively committed

to w1 ∪ w4 and w2 ∪ w3. Whereas, w1 ∪ w4 and w2 ∪ w3

are totally incompatible and distinct, but the points in these

two clusters are close and even overlap to each other. So

these ECM results do not appear reasonable in our opinion.

This problem arises mainly because the clustering centers of

w1∪w4 and w2∪w3 are almost overlapped, and the distances

between the object and the centers of the involved specific

clusters are not taken into account in the derivation of bba’s by

ECM. It indicates that the tuning of the penalization parameter

α cannot solve the problem that some distinct clusters may

overlap. In such example, BFCM produces only three meta-

clusters and these meta-clusters respectively lie in the middle

of the associated specific clusters, which intuitively makes

perfect sense. The three meta-clusters are not overlapped,

which shows that BFCM has better performances than ECM in

the clustering of the proximity data. When BFCM works with

γ = 2, it provides bigger meta-clusters than with γ = 1, but

these meta-clusters still do not overlap at all. Fig. 2f illustrates

that bigger γ values increase the size of meta-clusters.

Example 3 : The iris flower real data set shown in Fig. 3a

is a typical test case for data clustering [13]. This data set

consists of 50 samples from each of three species of Iris

flowers (Iris setosa, Iris virginica and Iris versicolor), and the

number of the total samples is 3 × 50 = 150. Four features

were measured from each sample. They are the length and

the width of sepal and petal (in centimeters). For the notation

convenience, we denote w1 , Iris setosa, w2 , Iris virginica,

and w3 , Iris versicolor. The number of singleton clusters is

set to C = 3. In ECM and BFCM, we have taken δ2 = 100,and

ǫ = 0.001. The best clustering results can be obtained if we

select α = 2 in ECM as Fig. 3c, and γ = 1.3 in BFCM as

Fig. 3d. The clustering results of FCM are shown in Fig. 3b.
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(a) Original data set.
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(b) Clustering result with FCM.
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(c) Clustering result with ECM.
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(d) Clustering result with BFCM.

Figure 3: Clustering results of IRIS data set.

As we can see in the original data sets shown in Fig. 3a, w1

is obviously distinct with w2 and w3, but w2 and w3 partly

overlap. So w1 can be easily separated from w2 and w3 by the

three methods. Whereas, w2 and w3 are difficult to separate

from each other in the overlapped zone.

There is no meta-cluster in FCM, and all the samples are

committed to the specific clusters. It causes that many samples

in the overlapped zone of w2 and w3 are wrongly classified.

More precisely, there are 13 samples of w3 considered as w2,

and 3 samples of w2 considered as w3 by FCM. In ECM,

several samples in the overlapped zone are classified into the

meta-clusters. There are 6 samples in w2 or w3 belonging

to w2 ∪ w3, and 1 sample in w2 belonging to w1 ∪ w2. 12

samples in the overlapped zone are miss-classified by ECM.

The number of samples with false classification reduces to 7
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when using BFCM, but of course the number of the samples

in the meta-clusters increases to 13. 12 samples are committed

to w2 ∪w3 and 1 sample is committed to w1 ∪w2 by BFCM.

Our analysis indicates that the samples lying in the overlapped

zones which were wrongly classified by ECM and FCM are

considered as imprecision and committed to the meta-cluster

w2 ∪ w3 by BFCM. Hence BFCM reduces the rate of false

classification at the necessary price of imprecision increase.

It shows that length and the width of sepal and petal are

not sufficient for the specific classification of the Iris data set

especially for samples in the overlapped zone of w2 and w3.

If we have to take a hard decision in applications, some other

available information sources should be applied to fuse with

the clustering results of BFCM for the final decision-making

support. We should be more cautious to the objects in the

meta-clusters, since they are quite similar to each other and

easily classified by mistake.

V. CONCLUSION

A new c-means clustering method based on the framework

of belief functions (denoted by BFCM) has been proposed

in this work to overcome the limitations of the evidential c-

means (ECM) clustering method. In ECM, the belief of each

cluster is only determined (keeping tuning parameters aside)

by the distances between the object and the corresponding

cluster’s centers. If the centers of different clusters overlap

or are very close, this will cause trouble in the association

of an object with a particular specific cluster or a meta-

cluster. Therefore as a final result with ECM we get possibly

overlapped clusters, which is not a very efficient solution of

the clustering problem. To overcome this problem, in BFCM

we take into account both the distance between the object

and the meta-cluster’s center and also the distances between

the object and the centers of the involved specific clusters in

order to compute the belief of the (imprecise) meta-clusters.

With BFCM, the different clusters cannot overlap even if their

centers are very close or overlapped. When one data point

is very close to a singleton (specific) cluster’s center, it is

committed to this specific cluster as done with FCM and ECM.

When a data point is close to the middle of some singleton

clusters and also close to these clusters themselves, then it is

clustered into the meta-cluster defined by the disjunction of

these singleton clusters. This implies that this point likely lies

in the overlapped zone of these specific clusters and it is not

easy to be correctly classified into a specific cluster. Any data

point too far from the other data set with respect to the outlier

threshold is considered as an outlier. If the hard decision of the

clustering is necessary, the Pignistic probability transformation

can be used to reduce the credal partition into a fuzzy partition

as when working with FCM. The effectiveness of BFCM have

been shown by some simple examples using both artificial and

real data set with respect to FCM and ECM.
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