Pro*C/C++ Precompiler

Getting Started

Release 9.0.1 for Windows

June 2001
Part No. A90167-01

ORACLE

Pro*C/C++ Precompiler Getting Started, Release 9.0.1 for Windows
Part No. A90167-01
Copyright © 1994, 2001, Oracle Corporation. All rights reserved.

Contributors: Riaz Ahmed, Eric Belden, Janis Greenberg, Sharon Castledine, Joseph Garcia, Lisa
Giambruno, Neeraj Gupta, Bernie Harris, Ana Hernandez, Mark Kennedy, Robert Knecht, Shiva Prasad,
Ali Shehade, Helen Slattery, Jeff Stein, Nicole Sullivan, Janice Wong, Martha Woo, Ravi Gooty

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, PL/SQL, and Pro*C/C++ are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

SeNd US YOUT COMMENTES ...t sen sttt vii
g == o =TT iX
Y U [1 T=T o Lo OO OSSPSR OR X
(O] o T- 1o =1 To] o FUS OO POUEURP TR UTTTUUSPRPRON X
Related DOCUMENTALIONooiviieiieiie ettt ettt ettt ettt e e st ee s st e e s s b e s s abeaessbbeessabasesbbaesssbasesseesssnbes Xi
(0701)V7=T o1 110] o 1T OO Xii
Documentation ACCESSIDIIITYooiiiii e e e Xvii
What's NEW IN PrOX*CICH7 ettt ettt XiX
Oracle9i Release 1 (9.0.1) New Features in Pro*C/C+H+ ...t XX
Introducing Pro*C/C++
VY T L R d (0 T O L O SRR STRR 1-2
[ST L L =TSRRI 1-2
RIS 1 (o (o] o TSR PRRUOPPUUSPPRR 1-2
DITECIONY STIUCTUIE ...ttt ettt b e bbbt b e b e b s b e b e be e e b ene e e bt eneebeene e 1-3
Known Problems, Restrictions, and Workarounds.............ccccvuvviiiieiiiie e 1-3
Using Pro*C/C++
Using the Graphical User INTErfaCe. ..ot e 2-2
THEIE BAI ittt ettt st et e st e b e e te e b e et e e e beeab e ebe e Rt e e be e re e be et beeha e beebeenbenbeenbeenbenras 2-3
A1 oL T Y R 2-3

[I 1011 o F= TR 2-3

INFOPMALION PANE ..ot se ettt b s benes 2-4
STALUS B ...ttt bbbt b e it bbb e b e bt e e e b e ea e eb e et ebe e b e nne e e 2-5
Creating and Precompiling @ Pro*C/C++ Project........cccooiiiiiiiiiicesere e 2-5
(@ 01T T aTo I W ad (] 1=t ST 2-6
Setting the Default Extension of OULPUL FIlES ... 2-6
Changing the Name of an Existing Input or QUtpUt Fileccccvivviiviicicc s 2-7
AddiNg Files t0 the PrOJECTccviiiiiiriieiese ettt s 2-8
Deleting Files from the PrOJECT..........oo i sien 2-8
Setting the Precompiler OPtioNS........ccccoveieeiiicee et 2-8
Specifying Database Connection INformation.........c.ccocvvvieiiiciciccecse e 2-10
Precompiling @ Pro*C/C++ PrOJECTcoiiiiiiieiiiie et e 2-11
ChecKing the RESUILSc.vieiiiice ettt st ae s re e eeneenes 2-12

D T T = o] SRS 2-12
EXITING PrO*C/CHF .ottt ettt et e ettt e et beebesbesaesbeneeneas 2-13
Using Pro*C/C++ at the Command LiNe ..o 2-13
HEAAET FIIES ...ttt ettt ettt et s b et sbebesbere e 2-14
(I o= o Y2 o 1 (=SOSR UR 2-15
\V/IOTL A} A alg=F:To [=To IAY o] o] FTor=1 4 o] o 3SR 2-15
[=Toto g a] o 11 [=1 G @ o) 1 Lo} o 1= S 2-16
CoNFIGUIALION FIIE ...ttt 2-16
CODKE.... et e e et e b e bRt bRt bbb b e e ne s 2-16
]2 1Y SO SSTOTR 2-16
INCLUDEttt ettt h ettt e b ettt e e et et et e e te e et et et e ssetesbetesbetesaetennas 2-16
PARSE ...ttt bRttt e Rt bR bbbttt 2-16
Using Pro*C/C++ with the Oracle XA LiDrary ... 2-17
Compiling and Linking a Pro*C/C++ Program With XA.........ccccoevieiiinnieneiceeene 2-17
XA DYNamMiC REGISTIALIONccuiiiiiiiiicie ettt nesr e s 2-18
Adding an Environmental Variable for the Current SEsSion........c.cccocveevvvvievvncrennnn, 2-18
Adding a Registry Variable for All SESSIONScccoeiiiiiiiiic s 2-18

XA and TP Monitor INfOrMAtion ..o e e 2-19

3 Sample Programs

Sample Program DeSCrIPLiONScvciiiie ettt srene e erenre s 3-2
Building the Demonstration TableS ... 3-8

Building the SAmMPIE PrOograms ...ttt e 3-9
Setting the Path for the Sample .pre Files ... 3-10

A Integrating Pro*C/C++ into Microsoft Visual C++

Integrating Pro*C/C++ within Microsoft Visual C++ Projects........ccccoevvivivvienierencneesieiesnannns A-2
Specifying the Location of the Pro*C/C++ Executable.............cooooiiiiiiiniiini e A-2
Specifying the Location of the Pro*C/C++ Header Filesccccoovveiieivivciviese e A-3
AN (o [T aTo I o ol o1 Lo (o JR- W o o] =Tt (S A-4
Adding References t0 .C FileS t0 8 PrOJECT ..o s A-4
Adding the Pro*C/C++ Library t0 a Projectcccccovvieieveiiieieeseese e A-5
Specifying Custom BuUild OPLiONS.........cccviiiiiieieeeie e A-6

Adding Pro*C/C++ t0 the TOOIS MENUc.coiiiiiiiiiiie e A-7

Index

vi

Send Us Your Comments

Pro*C/C++ Precompiler Getting Started, Release 9.0.1 for Windows
Part No. A90167-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send
comments to us in the following ways:

« E-mail: ntdoc_us@oracle.com
« FAX- (650) 506-7365 Attn: Oracle Database for Windows Documentation
« Postal service:

Oracle Corporation

Oracle Database for Windows Documentation Manager

500 Oracle Parkway, Mailstop 1op6

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally)
electronic mail address.

If you have problems with the software, please contact your local Oracle Support Services. Contact
information for Oracle Support Services is available at this Web site:

http://ww. oracl e. com support/

Vil

viii

Preface

This guide provides introductory information for the Pro*C/C++ precompiler
running on Microsoft Windows operating systems.

This preface contains these topics:
« Audience

« Organization

« Related Documentation

« Conventions

« Documentation Accessibility

Audience

Pro*C/C++ Precompiler Programmer’s Guide is intended for anyone who wants to use
Pro*C/C++ to perform the following tasks:

« Embed SQL statements in a C or C++ program.
« Build Oracle database applications with Pro*C/C++.
To use this document, you need to know:

« Commands for deleting and copying files and the concepts of the search path,
subdirectories, and path names.

« Microsoft Windows NT, Windows 95/98, or Windows 2000 operating system.

= Microsoft Visual C++ version 5.0 or higher.

Organization

This document contains:

Chapter 1, "Introducing Pro*C/C++"
Describes Pro*C/C++, the Oracle programmatic interface for the C and C++
languages running on Microsoft Windows NT and Windows 95/98 operating
systems.

Chapter 2, "Using Pro*C/C++"
Explains how to create and precompile a project. Also describes the Pro*C/C++
graphical user interface, from which you execute commands with Windows
menus and icons or with keyboard equivalents, and using Pro*C/C++ at the
command line.

Chapter 3, "Sample Programs"

Describes how to build Oracle database applications with Pro*xC/C++ using the
sample programs that are included with this release, and provides an overview
of how to build multi-threaded applications.

Appendix A, "Integrating Pro*C/C++ into Microsoft Visual C++"

Describes how to integrate Pro*C/C++ into the Microsoft Visual C++ integrated
development environment.

Related Documentation
For more information, see these Oracle resources:
« Oracle9i Database installation guide for Windows
= Oracle9i Database release notes for Windows
= Oracle9i Database Administrator’s Guide for Windows
« Oracle Enterprise Manager Administrator’s Guide
= Oracle9i Net Services Administrator’s Guide
« Oracle9i Real Application Clusters Concepts
« Oracle9i Database New Features
« Oracle9i Database Concepts
= Oracle9i Database Reference
« Oracle9i Database Error Messages
« Pro*C/C++ Precompiler Programmer’s Guide
In North America, printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracl e. cont
Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

ht t p: / / waw or acl ebookshop. cond

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://technet. oracl e. com nenber shi p/ i ndex. ht m

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://technet. oracl e. com docs/ i ndex. ht m

Xi

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text
« Conventions in Code Examples

« Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.

Italics Italic typeface indicates book titles or Oracle9i Database Concepts

emphasis. Ensure that the recovery catalog and target

database do not reside on the same disk.

UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
nonospace elements supplied by the system. Such column.
(fixed-wi dth elementsinclude parameters, privileges, .
font) datatypes, RMAN keywords, SQL gzlazag Iziﬂq(r::g ntge database by using the
keywords, SQL*Plus or utility commands, '
packages and methods, as well as Query the TABLE_NAME column in the USER _

system-supplied column names, database TABLES data dictionary view.

?c?ljsgts and structures, usernames, and Use the DBMS_ STATS.GENERATE_STATS
' procedure.

Xii

Convention

Meaning

Example

lowercase
monospace
(fixed-width
font)

| over case
nonospace
(fixed-width
font) italic

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase monospace italic font
represents placeholders or variables.

Enter sqlplus to open SQL*Plus.
The password is specified in the orapwd file.

Back up the datafiles and control files in the
/diskl/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

You can specify the par al | el _cl ause.

Run Uol d_rel ease.SQL where ol d_
r el ease refers to the release you installed
prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE,

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional DECIMAL (digits|[, preci sion))
items. Do not enter the brackets.

{} Braces enclose two or more items, one of {ENABLE | DISABLE}

which is required. Do not enter the braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

Convention Meaning Example
Horizontal ellipsis points indicate either:
« That we have omitted parts of the CREATE TABLE ... AS subquery;
code that are not directly related to
the example
« That you can repeat a portion of the SELECT CO_/ 1, col2, ..., coln FRC
enpl oyees;
code
Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.
Other notation You must enter symbols other than acctbal NUMBER(11, 2);
brackets, braces, vertical bars, and ellipsis acct CONSTANT NUMBER(4) : = 3:

Italics

UPPERCASE

| oner case

points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

CONNECT SYSTEM syst em password
DB NAME = dat abase_nane

SELECT | ast _nane,
enpl oyees;

SELECT * FROM USER TABLES;
DROP TABLE hr. enpl oyees;

enpl oyee_id FROM

SELECT | ast _nane,
enpl oyees;

enpl oyee_id FROM

sql plus hr/hr
CREATE USER njones | DENTI Fl ED BY t y3MB;

Xiv

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and

provides examples of their use.

Convention

Meaning

Example

Choose Start >

C\>

HOME_NAME

How to start a program. For example, to
start Oracle Database Configuration
Assistant, you must click the Start button
on the taskbar and then choose Programs
> Oracle - HOME_NAME > Database
Administration > Database Configuration
Assistant.

Represents the Windows command
prompt of the current hard disk drive.
Your prompt reflects the subdirectory in
which you are working. Referred to as the
command prompt in this guide.

Represents the Oracle home name.

The home name can be up to 16
alphanumeric characters. The only special
character allowed in the home name is the
underscore.

Choose Start > Programs > Oracle - HOME_
NAME > Database Administration > Database
Configuration Assistant

C.\oracl e\ or adat a>

C.\> net start Oracl eHOVE
NAMETNSLI st ener

XV

Convention

Meaning

Example

ORACLE_HOVE
and ORACLE
BASE

In releases prior to 8.1, when you
installed Oracle components, all
subdirectories were located under a top
level ORACLE_HOVE directory that by
default was:

. C.\ orant for Windows NT

. C:. \ or awi n95 for Windows 95

« C:\oraw n98 for Windows 98

or whatever you called your Oracle home.

In this Optimal Flexible Architecture
(OFA)-compliant release, all
subdirectories are not under a top level
ORACLE_HOVE directory. There is a top
level directory called ORACLE BASE that
by defaultis C: \ or acl e. If you install
release 9.0 on a computer with no other
Oracle software installed, the default
setting for the first Oracle home directory
isC: \ or acl e\ or a90. The Oracle home
directory is located directly under
ORACLE BASE.

All directory path examples in this guide
follow OFA conventions.

See Oracle9i Database Getting Started for
Windows for additional information on
OFA compliances and for information on
installing Oracle products in non-OFA
compliant directories.

Go to the ORACLE BASE\ ORACLE
HOVE\ r dbns\ admi n directory.

XVi

Documentation Accessibility

Oracle’s goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

htt p: // waw or acl e. comi accessi bi | ity/
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces

should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

XVii

Xviii

What's New in Pro*C/C++7?

The following sections describe the new features in Oracle Pro*C/C++:

« Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++

XiX

Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++
This section contains these topics:
« Using Oracle9i on Windows 2000

There are some differences between using Oracle9i on Windows 2000 and
Windows NT 4.0.

See Also: Oracle9i Database Getting Started for Windows

XX

1

Introducing Pro*C/C++

This chapter describes Pro*C/C++, the Oracle programmatic interface for the C and
C++ languages running on Window operating systems. Pro*C/C++ enables you to
build Oracle database applications in a Win32 environment.

This chapter contains these topics:
=« Whatis Pro*C/C++?

« Features

« Restrictions

« Directory Structure

Note: See the Pro*C/C++ Precompiler Programmer’s Guide for
additional information.

Introducing Pro*C/C++ 1-1

What is Pro*C/C++?

What is Pro*C/C++?

Pro*C/C++ precompiler enables you to create applications that access your Oracle
database whenever rapid development and compatibility with other systems are
your priorities.

The Pro*C/C++ programming tool enables you to embed Structured Query
Language (SQL) statements in a C or C++ program. The Pro*C/C++ precompiler
translates these statements into standard Oracle runtime library calls, then
generates a modified source program that you can compile, link, and run in the
usual way.

Features

Pro*C/C++ supports the following features:

Restrictions

Remote access with Oracle Net or local access to Oracle databases
Embedded PL/SQL blocks

Bundled database calls, which can provide better performance in client/server
environments

Full ANSI compliance for embedded SQL programming

PL/SQL version 9.0 and host language arrays in PL/SQL procedures
Multi-threaded applications

Full ANSI C compliance

Microsoft Visual C++ support, version 6.0 for 32-bit applications

Note: Borland C++ is no longer supported.

Pro*C/C++ does not support 16-bit code generation.

1-2 Pro*C/C++ Precompiler Getting Started

Directory Structure

Directory Structure

Installing Oracle software creates a directory structure on your hard drive for the
Oracle products. A main Oracle directory contains the Oracle subdirectories and
files that are necessary to run Pro*C/C++.

When you install Pro*C/C++, Oracle Universal Installer creates a directory called

\ preconp inthe ORACLE BASE\ ORACLE HQOVE directory. This subdirectory
contains the Pro*C/C++ executable files, library files, and sample programs listed in
Table 1-1, "precomp Directory Structure".

Table 1-1 precomp Directory Structure

Directory Name Contents

\'admi n Configuration files

\ deno\ pr oc Sample programs for Pro*C/C++
\ dermo\ sql SQL scripts for sample programs

\ doc\ proc Readme files for Pro*C/C++

\ hel p\ proc Help files for Pro*C/C++
\lib\nsvc Library files for Pro*C/C++

\ nesg Message files

\'m sc\ proc Miscellaneous files for Pro*C/C++
\ public Header files

Note: The\ pr econp directory can contain files for other
products, such as Pro*COBOL.

Known Problems, Restrictions, and Workarounds

Although all Windows operating systems allow spaces in filenames and directory
names, the Oracle Pro*C/C++ and Oracle Pro*COBOL precompilers will not
precompile files that include spaces in the filename or directory name. For example,
do not use the following formats:

] proc i nane=t est one. pcC

« proc iname=d:\dirl\second dir\sanplel. pc

Introducing Pro*C/C++ 1-3

Directory Structure

1-4 Pro*C/C++ Precompiler Getting Started

2

Using Pro*C/C++

This chapter explains how to create and precompile a project. It also describes the
Pro*C/C++ graphical user interface, from which you execute commands with
Windows menus and icons or with keyboard equivalents, and using Pro*C/C++ at
the command line.

This chapter contains these topics:

Using the Graphical User Interface

Creating and Precompiling a Pro*C/C++ Project
Using Pro*C/C++ at the Command Line
Header Files

Library Files

Multithreaded Applications

Precompiler Options

Using Pro*C/C++ with the Oracle XA Library

Note: See the Pro*C/C++ Precompiler Programmer’s Guide for
additional information about Pro*C/C++.

Using Pro*C/C++ 2-1

Using the Graphical User Interface

Using the Graphical User Interface

Before you follow the instructions for creating and precompiling a Pro*C/C++
project, you should familiarize yourself with the basic commands, dialog boxes,
menus, and buttons of the Pro*C/C++ graphical user interface.

Starting Pro*C/C++ Graphical Interface
To start the graphical user interface, choose Start > Programs > Oracle - HOME_
NAME > Application Development > Pro C_C++.

The Pro*C/C++ precompile environment contains five elements noted in the
following illustration:

Title Bar € Untitled - Pro*C/Cas —
Menu Bar —————— ~File Edt Preferences Help
Toolbar——— D |5 | 4] =] [
Irgust File Duputt Fle Dpiatie
Information
Pane
Aaady

2-2 Pro*C/C++ Precompiler Getting Started

Using the Graphical User Interface

Title Bar
The title bar displays the name of the Pro*C/C++ project. If you have not assigned a
name to the current project, the word “Untitled” appears instead.
Menu Bar
The menu bar contains the following menus:
Menu Description
File Contains commands to create a new Pro*C/C++ project, open an existing
Pro*C/C++ project, save the active Pro*C/C++ project under the same
name or under a different name, specify a connect string to an Oracle
database, precompile a Pro*C/C++ project, and exit the application.
Edit Contains commands to add files to a Pro*C/C++ project, delete files from
a Pro*C/C++ project, and display or change precompiler options.
Preferences Contains commands to set the default file extension of output files.
Help Contains the About Pro*C/C++ command, which displays the version
number of the application and copyright information.
Toolbar

The toolbar enables you to execute commands by choosing a button:

D= |E] #|=|E &

The following table describes the buttons in order, from left to right.

Button Description

New Create a new Pro*C/C++ project

Open Open an existing Pro*C/C++ project

Save Save the active Pro*C/C++ project under the same name
Add Add files to a Pro*C/C++ project

Delete Delete files from a Pro*C/C++ project

Using Pro*C/C++ 2-3

Using the Graphical User Interface

Button Description
Options Display or change precompiler options
Precompile Precompile a Pro*C/C++ project

Information Pane
The information pane consists of four elements noted in the following illustration:

£ Untitled - Pro™CiC++

Fle Edi Frefeiences Help

D |ki] 4= [a]
Input File Output File Oplions
Precompilation
status bar
Input File
Qutput File
Options
Ready |
Element Description

Precompilation Status Bar Indicates whether the precompilation for a file was successful
or unsuccessful.

Input File Shows the files of a Pro*C/C++ project to be precompiled.

Output File Shows the output files of a Pro*C/C++ project after
precompilation.

2-4 Pro*C/C++ Precompiler Getting Started

Creating and Precompiling a Pro*C/C++ Project

Status Bar

Element Description
Options Displays precompile options that are different from the default
options.

Look for one of the three status icons in the precompilation status bar after the
precompile process is complete.

« A green check indicates that the file precompiled successfully.

« Avyellow check indicates that the file precompiled successfully, but there are
one or more warnings.

« Ared X indicates that the file did not precompile successfully.

Double clicking a status icon opens the Precompilation Status dialog box. This
dialog box provides detailed information on the reason for a warning or failure.

The status bar at the bottom of the window displays information about the progress
of a precompilation. The status bar also identifies the purpose of a toolbar button or
menu command when you place the mouse pointer over the toolbar button or
menu command.

Creating and Precompiling a Pro*C/C++ Project

This section describes the steps involved in creating and precompiling a Pro*C/C++
project. After starting the Pro*C/C++ application, perform the following steps:

« Opening a Project

« Setting the Default Extension of Output Files

« Changing the Name of an Existing Input or Output File
« Adding Files to the Project

« Deleting Files from the Project

= Setting the Precompiler Options

« Specifying Database Connection Information

« Precompiling a Pro*C/C++ Project

« Checking the Results

Using Pro*C/C++ 2-5

Creating and Precompiling a Pro*C/C++ Project

« Fixing Errors

« Exiting Pro*C/C++

Opening a Project
Pro*C/C++ opens only one project at a time. A project consists of one or more
precompilable files. Project files have an extension of . pre.

= To create a new project, choose File > New Project.

= To open an existing project, choose File > Open Project.

Note: A project created by a prior release cannot be opened by
Oraclegi. It results in an Unexpected File Format error. You must
recreate the project.

Setting the Default Extension of Output Files

Use the Preferences menu to determine the default extension of the output files.

£ Untitled - Pro™C/C++
File Edit BREECa=--4 Help
0 | = | v Default Qutput C File Mame l:
Default Dutput C++ File Mame
—

This setting only affects input files that you add later. An existing output filename
will not change. However, you can change an existing output filename by
double-clicking the output file and entering a new name.

« If you select Default Output C File Name, the default extension of the output
filesis . c.

« If you select Default Output C++ File Name, the default extension of the output
filesis . cpp.

« If you deselect both Default Output C File Name and Default Output C++ File
Name, the Output File dialog box appears when you add an output file.

« Enter an output filename for the file selected. After you select or enter a
filename, it appears in the Output File area of the information pane.

2-6 Pro*C/C++ Precompiler Getting Started

Creating and Precompiling a Pro*C/C++ Project

Changing the Name of an Existing Input or Output File

To change the name of an existing input or output file:

1. Double-click the filename in the Input File or Output File area of the
information pane. The Input File or Output File dialog box appears.

Dutput File
Laak in: I £ Ansidyn
@ atisidenl.c
File name: anzidunl.c Open I
Files of type: |E Files [*.c) j Caricel |
[T Open as read-only

2. Replace the old filename with the new filename.

3. Choose Open.

Using Pro*C/C++ 2-7

Creating and Precompiling a Pro*C/C++ Project

Adding Files to the Project

To add files to the project:
1. Choose Edit > Add. The Input File dialog box appears.

Input File
Look. jn: I {23 Samples j | I‘:Fl IE =
|1 Coldemot (3 Mitthrd (3 5amplet [5ampled
I Cppdemal [Z3 Mavdemol & Samplell | Sampleh
1 Cppdemoz 2 Objdemaol & Sample11 3 Samplef
I Cppdenmo3 [0raca @ Samplel 2 | Samples
-1 Cvdemo (23 Plssam & Samplez | Sampled
|- Labdemal (3 5ample [Sampled [5ampled
1| | +
File name: || Open I
Files af ype: IF'reu:u:umpiIe Files [*.pc) ﬂ Cancel |
[~ Open a3 read-only

2. Select one or more . pc files. Use the Ctrl key and the mouse to select files that
are not adjacent.

3. Choose Open. The selected files appear in the information pane.

Deleting Files from the Project

If you need to, you can easily delete one or more files from the project.

To delete files from the project:
1. Highlight the file(s) in the information pane.

2. Choose Edit > Delete.
3. Choose Yes.

Setting the Precompiler Options

The Precompiler options enable you to control how resources are used, how errors
are reported, how input and output are formatted, and how cursors are managed.

2-8 Pro*C/C++ Precompiler Getting Started

Creating and Precompiling a Pro*C/C++ Project

To set the precompile options:
1. Select one or more files in the Input File list.

2. Choose Edit > Options. The Options dialog box appears.

—Code —MLS — Objects
d& [Lines ™ MLS Local ¥ Objects
[iizes] e MLS Char Diuration Itran&action j"
[Unzafe Nul [~ Warchar
[Win32_threads Comp Charset Imulti_byh 'I Wersion IIBCEHt "I
CPP Suffix cpp

Header I ~PL/SOL Check ———— ~ Perfformance—————————————
tar. Literal Length |1024 [Auta ™ Hold Cursors
Type_code IEIrac:Ie vl Char_map |charz - ™ Release Cursors

I Close_on_commit

ful v| Code [ansiC = [yt M| [
Parse | i [ans1C x| 5L check Jsyntax Prefetch Cursors |1
ModelDfadE i D_l,lnamiclufa'ﬂE [DEMS Inative 'I Max. Open Cursors I-ID

—Intype Filename — Defines

— Configuration Filename — Supztem Include Directories

— Include Directaories
I..'\..\..'\public;' ‘chvdevstudiodwchinclude"

0K

Option Skring Cancel

parze=full include=_% A Apublic nclude="c: \devstudio'wchinclude Uil £ e

4l

Help

Default options are in effect for all newly added files. When you change an
option’s default setting, a description of the change appears in the Option
String edit field at the bottom of the Options dialog box and in the Options area
of the information pane. For additional information on options, see
"Precompiler Options" on page 2-16.

Using Pro*C/C++ 2-9

Creating and Precompiling a Pro*C/C++ Project

3. To change the format of the output list file that the precompiler writes to disk,
choose the Listing / Errors button. The Listing/Errors dialog box appears.

Lizting/Errors E

Fage Length:
Fips:
Lizgt Tope:

List Filenarme:

& Mone

& Mone

¢ [V Select Emar ok,

ISlTlines Cancel |
_ oo |

Hel
5oL sz i

 Long € Short

Browese List File |

Error Type Filename: I

Browsze Erar Type File |

The settings include the type of error information generated and the name of

the list file.

4. After you set the options in the Options dialog box, choose OK.

Specifying Database Connection Information

If you selected semantics or full for the SQL Check option in the Options dialog box,
you may heed to specify database connection information to the Oracle database.
You do not need to connect to the Oracle database if every table referenced in a data
manipulation statement or PL/SQL block is defined in a DECLARE TABLE

statement.

2-10 Pro*C/C++ Precompiler Getting Started

Creating and Precompiling a Pro*C/C++ Project

To specify database connection information:

1.

Choose File > Connect. The Connect dialog box appears.

|Jsernarme: I]

Pazzword: I Cancel
Caonnect; I Help

[T Save Connect Sting to Disk

Pl

Use this dialog box to specify database connection information prior to
precompiling. No database connection is performed at this time. Only one set of
database connection information can be specified for all files requiring semantic
or full checking with SQLCHECK.

The Connect dialog box appears automatically at precompile time if you have
not previously responded. Enter the username, the password, and the network
service name (database alias). The network service name is not required for a
local database.

If you want to save the connection information between Pro*C/C++ sessions,
select the Save Connect String to Disk check box. If you do not select the check
box, you must enter this information each time you precompile.

Choose OK.

Precompiling a Pro*C/C++ Project
You can precompile any number of files in the Input File list.

To precompile:

1.

Select one or more files in the Input File list. You can use the Control key to
highlight files that are not adjacent to each other (for example, the first and
third files in a list).

Choose File > Precompile.

Using Pro*C/C++ 2-11

Creating and Precompiling a Pro*C/C++ Project

When precompiling is completed, the message in the dialog box indicates
“Preconpi |l i ng Fi ni shed! ”, and the Cancel button changes to OK.

3. Choose OK.

Note: Although Cancel does not interrupt the precompile for a file
already in process, it does halt the precompile chain for remaining
files.

Checking the Results

Fixing Errors

Precompiling can result in success, success with warning(s), or failure. When
precompiling is finished, check the precompilation status bar.

« A green check indicates that the file compiled successfully.

« Avyellow check indicates that the file compiled successfully, but there are one or
more warnings.

« Ared X indicates that the file did not compile successfully.

If you see a yellow check or a red X, double-click the icon in status bar. The
Precompilation Status dialog box appears. This dialog box lists warning messages
or reasons why the precompilation failed. For example:

Precompilation 5 tatus Ed
E

Syntax error at line 173, column 13, file ciloranti\pro22ichsamples)zamplelzample.po:
EXEC 3QL WORK RELEASE;

[l) PCC-5-022Z01, Encountered the symbol "WORE™ when expecting one of the following:

for, at, close, commit, connect, declare, describe, execute,
fetch, open, prepare, rollback, select, whenewer, alter,
andit, comment, create, delete, drop, grant, inszert, lock,
noaudit, rename, rewvoke, zet, update, walidate, arraylen,
allocate, context, enable, sawvepoint, analyze, explain,
truncate,
The symbol "commit,”™ was substituted for "WORK™ to continue. v|
L

Kl
1154 |

2-12 Pro*C/C++ Precompiler Getting Started

Using Pro*C/C++ at the Command Line

Switch to your development environment to fix the problem(s). After you correct
the errors, precompile again.

Note: If you receive a PCC-5-02014 error (syntax error at line num,
column colnam, file name), do the following:

« Copy the batch files rod_i ncl . bat and add_new . bat from
the ORACLE BASEl ORACLE HOVE\ pr econp\ ni sc\ pr oc
directory to the directory that contains the problematic
INCLUDE file.

« Runnod_incl.bat.

Exiting Pro*C/C++

To exit Pro*C/C++, choose File > Exit. If your project changed in any way, you are
prompted to save it.

Suggestion: If you want to keep an original file, as well as a
version of the file with your changes, choose the Save As
command. The Save command overwrites the previous version.

Using Pro*C/C++ at the Command Line
To precompile a file at the command line, enter the following command:
C\> proc i nane=fi | enane. pc

where f i | enane. pc is the name of the file. If the file is not in your current
working directory, include the file’s full path after the INAME argument.

Pro*C/C++ generates f i | enane. ¢, which can be compiled by your C compiler.

Using Pro*C/C++ 2-13

Header Files

Header Files

The ORACLE BASE|I ORACLE HOVE\ pr econp\ publ i ¢ directory contains the
Pro*C/C++ header files.

See Also: See the Pro*C/C++ Precompiler Programmer’s Guide for
more information about or aca. h, sql ca. h, and sql da. h.

Header File Description

oraca. h Contains the Oracle Communications Area (ORACA), which helps you to diagnose
runtime errors and to monitor your program'’s use of various Oracle9i resources.

sql 2oci . h Contains SQLLIB functions that enable the Oracle Call Interface (OCI) environment
handle and OCI service context to be obtained in a Pro*C/C++ application.

sql apr. h Contains ANSI prototypes for externalized functions that can be used in conjunction
with OCI.

sqlca. h Contains the SQL Communications Area (SQLCA), which helps you to diagnose runtime

errors. The SQLCA is updated after every executable SQL statement.

sqlcpr.h Contains platform-specific ANSI prototypes for SQLLIB functions that are generated by
Pro*C/C++. By default, Pro*C/C++ does not support full-function prototyping of SQL
programming calls. If you need this feature, include sql cpr . h before any EXEC SQL
statements in your application source file.

sqgl da. h Contains the SQL Descriptor Area (SQLDA), which is a data structure required for
programs that use dynamic SQL Method 4.

sql kpr. h Contains K&R prototypes for externalized functions that can be used in conjunction with
OCI.

sql proto. h The sql pr ot o. h header file was obsoleted in Pro*C/C++ release 8.0.3. Use sql cpr. h

instead of sql pr ot 0. h. However, applications that were built using sql pr ot 0. h can
be created without modification: a dummy sql pr ot o. h file that includes sql cpr. h
has been provided in the ORACLE BASE| ORACLE _HOVE\ pr econp\ publ i c directory.

2-14 Pro*C/C++ Precompiler Getting Started

Multithreaded Applications

Library Files

The ORACLE BASE|I ORACLE HOVE\ pr econp\ | i b\ nsvc directory contains the
library file that you use when linking Pro*C/C++ applications. The library file is
called orasql 9. |i b.

Pro*C/C++ application program interface (API) calls are implemented in DLL files
provided with your Pro*C/C++ software. To use the DLLs, you must link your
application with the import libraries (.lib files) that correspond to the Pro*C/C++
DLLs. Also, you must ensure that the DLL files are installed on the computer that is
running your Pro*C/C++ application.

Microsoft provides you with three libraries: | i bc. i b,libcnt. i b,and
nsvcrt. | i b. The Oracle DLLs use the msvcrt. | i b runtime library. You must
link with msvcrt. | i b rather than the other two Microsoft libraries.

Multithreaded Applications

Build multithreaded applications if you are planning to perform concurrent
database operations.

Windows NT, Windows 2000, and Windows 95/98 schedule and allocate threads
belonging to processes. A thread is a path of a program’s execution. It consists of a
kernel stack, the state of the CPU registers, a thread environment block, and a users
stack. Each thread shares the resources of a process. Multithreaded applications use
the resources of a process to coordinate the activities of individual threads.

When building a multithreaded application, make sure that your C/C++ code is
reentrant. This means that access to static or global data must be restricted to one
thread at a time. If you mix multithreaded and non-reentrant functions, one thread
can modify information that is required by another thread.

The Pro*C/C++ precompiler automatically creates variables on the local stack of the
thread. This ensures that each thread using the Pro*C/C++ function has access to a
unique set of variables and is reentrant.

See Also: See the Pro*C/C++ Precompiler Programmer’s Guide for

additional information on how to write multithreaded applications
with Pro*C/C++.

Using Pro*C/C++ 2-15

Precompiler Options

Precompiler Options
This section highlights issues related to Pro*C/C++ for Windows platforms.
See Also: See the "Precompiler Options" chapter of the Pro*C/C++

Precompiler Programmer’s Guide for more information on the
precompiler options.

Configuration File

A configuration file is a text file that contains precompiler options.

For this release, the system configuration file is called pcscf g. cf g. This file is
located in the ORACLE_BASE|l ORACLE HOVE! pr econp\ admi n directory.

CODE

The CODE option has a default setting of ANSI _C. Pro*C/C++ for other operating
systems may have a default setting of KR_C.

DBMS

DBMS=V6__CHAR is not supported when using CHAR_MAP=VARCHARZ. Instead, use
DBMB=V7.

INCLUDE

For the Pro*C/C++ graphical user interface, use the Include Directories field of the
Options dialog box to enter | NCLUDE path directories. If you want to enter more
than one path, separate each path with a semicolon, but do not insert a space after
the semicolon. This causes a separate “I NCLUDE=" string to appear in front of each
directory.

For sample programs that precompile with PARSE=PARTI AL or PARSE=FULL, an
include path of c: \ program fi | es\ devst udi o\ vc\i ncl ude has been added.
If Microsoft Visual C++ has been installed in a different location, modify the Include
Directories field accordingly for the sample programs to precompile correctly.

PARSE

The PARSE option has a default setting of NONE. Pro*C/C++ for other operating
systems may have a default setting of FULL.

2-16 Pro*C/C++ Precompiler Getting Started

Using Pro*C/C++ with the Oracle XA Library

Using Pro*C/C++ with the Oracle XA Library

The XA Application Program Interface (API) is typically used to enable an Oracle
database to interact with a transaction processing (TP) monitor, such as:

« BEA Tuxedo
« IBM Transarc Encina
. IBMCICS

You can also use TP monitor statements in your client programs. The use of the XA
APl is also supported from both Pro*C/C++ and OCI.

The Oracle XA Library is automatically installed as part of Oracle9i Enterprise
Edition. The following components are created in your Oracle home directory:

Component Location
oraxa9.lib ORACLE _BASEl ORACLE_HOVE\ r dbns\ xa
xa. h ORACLE _BASE| ORACLE_HOVE\ r dbns\ deno

Compiling and Linking a Pro*C/C++ Program with XA

To compile and link a Pro*C/C++ program with XA:
1. Precompile fil enane. pc using Pro*C/C++ to generate f i | enane. c.

2. Compile fi | enane. c, making sure to include ORACLE BASEl ORACLE
HOVE\ r dbns\ xa in your path.

3. Link fil enane. obj with the following libraries:

Library Location

oraxa9.lib ORACLE _BASEl ORACLE_HOVE! r dbns\ xa

oci.lib ORACLE _BASEl ORACLE HOVE\ oci \ i b\ nsvc
orasqgl9.1ib ORACLE BASEl ORACLE _HOVE\ preconp\ | i b\ nsvc

4. Run fil enane. exe.

Using Pro*C/C++ 2-17

Using Pro*C/C++ with the Oracle XA Library

XA Dynamic Registration

Oracle supports the use of XA dynamic registration. XA dynamic registration
improves the performance of applications that interface with XA-compliant TP
monitors.

For TP monitors to use XA dynamic registration with an Oracle database on
Windows NT, you must add either an environmental variable or a registry variable
to the Windows NT computer on which your TP monitor is running. See either of
the following sections for instructions:

« Adding an Environmental Variable for the Current Session

« Adding a Registry Variable for All Sessions

Adding an Environmental Variable for the Current Session

Adding an environmental variable at the command prompt affects only the current
session.

To add an environmental variable for the current session:
1. Go to the computer where your TP monitor is installed.

2. Enter the following at the command prompt:
C\>set CRA XA REGDO.L = vendor.dl |

where vendor . dl | is the TP monitor DLL provided by your vendor.

Adding a Registry Variable for All Sessions

Adding a registry variable affects all sessions on your Windows NT computer. This
is useful for computers where only one TP monitor is running.

To add a registry variable for all sessions:
1. Go to the computer where your TP monitor is installed.

2. Enter the following at the command prompt:

C\> regedt 32

The Registry Editor window appears.
3. GotoHKEY_LOCAL_MACHI NE\ SOFTWARE\ ORACLE\ HOVE/! D
4. Choose the Add Value option in the Edit menu.

The Add Value dialog box appears.

2-18 Pro*C/C++ Precompiler Getting Started

Using Pro*C/C++ with the Oracle XA Library

5. Enter ORA_XA REG DLL in the Value Name field.
6. Select REG_EXPAND_SZ from the Data Type drop-down list box.
7. Choose OK.

The String Editor dialog box appears.

8. Enter vendor. dl | inthe String field, where vendor. dl | is the TP monitor
DLL provided by your vendor.

9. Choose OK.
The Registry Editor adds the parameter.
10. Choose Exit from the Registry menu.

The registry exits.

XA and TP Monitor Information
Refer to the following for more information about XA and TP monitors:

« Distributed TP: The XA Specification (C193) published by the Open Group.
See the Web site at:

ht t p: / / waw opengr oup. or g/ publ i cati ons/ catal og/t p. ht m

« The Open Group., 1010 EI Camino Real, Suite 380, Menlo Park, CA 94025,
US.A.

= Your specific TP monitor documentation

See Also: For more information about the Oracle XA Library and
using XA dynamic registration, see Oracle9i Application Developer’s
Guide - Fundamentals.

Using Pro*C/C++ 2-19

Using Pro*C/C++ with the Oracle XA Library

2-20 Pro*C/C++ Precompiler Getting Started

3

Sample Programs

This chapter describes how to build Oracle database applications with Pro*C/C++
using the sample programs that are included with this release.

This chapter contains these topics:
« Sample Program Descriptions
« Building the Demonstration Tables

« Building the Sample Programs

Sample Programs 3-1

Sample Program Descriptions

Sample Program Descriptions

When you install Pro*C/C++, Oracle Universal Installer copies a set of Pro*C/C++
sample programs to the ORACLE BASE| ORACLE HOVE\ pr econp\ deno\ pr oc
directory. These sample programs are listed in Table 3-1, "Sample Programs" and
described in subsequent section.

When built, the sample programs that Oracle provides produce . exe executables.

For some sample programs, as indicated in the Notes column of the table, you must

run the SQL scripts in the sample directory before you precompile and run the
sample program. The SQL scripts set up the correct tables and data so that the
sample programs run correctly. These SQL scripts are located in the ORACLE

BASEl ORACLE_HOVE\ pr econp\ deno\ sql directory.

Oracle recommends that you build and run these sample programs to verify that
Pro*C/C++ has been installed successfully and operates correctly. You can delete

the programs after you use them.

You can build the sample program using a batch file called pcnake. bat or using
Visual C++ 6.0. See "Building the Sample Programs" on page 3-9 for further

information.

Table 3-1 Sample Programs

Sample Pro*C/C++ GUI MSVC Compiler

Program Source Files Project File Project File Notes

ANSI DYNL ansi dynl. pc ansi dynl. pre ansi dynl. dsp

ANSI DYN2 ansi dyn2. pc ansi dyn2. pre ansi dyn2. dsp

COLDEMOL col denpl. h col denol. pre col denpl. dsp Run col denpl. sql and the
col denol. pc Obiject Type Translator before
col denpl. sql building col denol.
col denpl. typ

CPPDEMOL cppdenol. pc cppdenol. pre cppdenol. dsp

CPPDEMO2 cppdeno?2. pc cppdenp?2. pre cppdenn?2. dsp Run cppdenn?2. sqgl before
enpcl ass. pc building cppdeno?2.
cppdenn?2. sql
enpcl ass. h

CPPDEMX>3 cppdeno3. pc cppdenn3. pre cppdenp3. dsp

CVDEMO cv_deno. pc cv_deno. pre cv_deno. dsp Run cv_deno. sql before

cv_denv. sql

building cv_deno.

3-2 Pro*C/C++ Precompiler Getting Started

Sample Program Descriptions

Table 3-1 Sample Programs

Sample Pro*C/C++ GUI MSVC Compiler

Program Source Files Project File Project File Notes

EMPCLASS cppdeno?2. pc enpcl ass. pre enpcl ass. dsp Run cppdenm?2. sqgl before
enpcl ass. pc building enpcl ass.
cppdenn?2. sql
enpcl ass. h

LOBDEMOL | obdenol. h | obdenol. pre | obdenol. dsp Run| obdenpl. sqgl before
| obdenol. pc building | obdenol.
| obdenol. sql

M_.TTHRD1 m tthrdl. pc mtthrdl. pre m tthrdl. dsp Runm tthrdl. sgl before
m tthrdl. sql buildingm tt hrd1.

NAVDEMOL navdenol. h navdenol. pre navdenol. dsp Run navdenol. sql and the
navdenol. pc Obiject Type Translator before
navdenol. sql building navdenol.
navdenol. typ

OBJDEMOL obj denpl. h obj denpl. pre obj denpl. dsp Run obj denpl. sql and the
obj denpl. pc Obiject Type Translator before
obj denpl. sql building obj denol.
obj denpl. typ

ORACA oraca. pc oraca.pre oraca. dsp Runoracatst. sqgl before
oracat st. sql building or aca.

PLSSAM pl ssam pc pl ssam pre pl ssam dsp

SAVPLE sanpl e. pc sanpl e. pre sanpl e. dsp

SAVPLEL sanpl el. pc sanpl el. pre sanpl el. dsp

SAVPLE2 sanpl e2. pc sanpl e2. pre sanpl e2. dsp

SAVPLE3 sanpl e3. pc sanpl e3. pre sanpl e3. dsp

SAVPLE4 sanpl e4. pc sanpl e4. pre sanpl e4. dsp

SAMPLES sanpl e5. pc sanpl e5. pre sanpl e5. dsp Run exanpbl d. sql , then run
exanpbl d. sql exanpl od. sql , before
exanpl od. sql building sanpl e5.

SAVPLEG6 sanpl e6. pc sanpl e6. pre sanpl e6. dsp

SAVPLE7? sanpl e7. pc sanpl e7. pre sanpl e7. dsp

SAMVPLES sanpl e8. pc sanpl e8. pre sanpl e8. dsp

SAVPLE9 sanpl €9. pc sanpl €9. pre sanpl €9. dsp Runcal | deno. sqgl before

cal | deno. sql

building sanpl e9.

Sample Programs 3-3

Sample Program Descriptions

Table 3-1 Sample Programs

Sample Pro*C/C++ GUI MSVC Compiler
Program Source Files Project File Project File Notes
SAVPLEL10 sanpl el10. pc sanpl e10. pre sanpl e10. dsp
SAVPLE11 sanpl ell. pc sanpl ell. pre sanpl ell. dsp Run sanpl ell. sqgl before
sanpl ell. sql building sanpl ell.
SAVPLE12 sanpl el2. pc sanpl el2. pre sanpl el2. dsp
SQLVCP sql vep. pc sql vep. pre sql vcp. dsp
W NSAM resource. h Wi nsam pre Wi nsam dsp
wi nsam h
wi nsam i co
W nsam pc
Wi nsamrc

The following subsections describe the functionality of the sample programs.

ANSIDYN1

Demonstrates using ANSI dynamic SQL to process SQL statements that are not
known until runtime. This program is intended to demonstrate the simplest
(though not the most efficient) approach to using ANSI dynamic SQL.

ANSIDYN2
Demonstrates using ANSI dynamic SQL to process SQL statements that are not

known until runtime. This program uses the Oracle extensions for batch processing
and reference semantics.

COLDEMO1
Fetches census information for California counties. This program demonstrates
various ways to navigate through collection-typed database columns.

CPPDEMO1

Prompts the user for an employee number, then queries the enp table for the
employee’s name, salary, and commission. This program uses indicator variables (in
an indicator struct) to determine whether the commission is NULL.

CPPDEMO2

Retrieves the names of all employees in a given department from the enp table
(dynamic SQL Method 3).

3-4 Pro*C/C++ Precompiler Getting Started

Sample Program Descriptions

CPPDEMO3
Finds all salespeople and prints their names and total earnings (including
commissions). This program is an example of C++ inheritance.

CVDEMO
Declares and opens a ref cursor.

EMPCLASS

The EMPCLASS and CPPDEMO2 files were written to provide an example of how to
write Pro*C/C++ programs within a C++ framework. EMPCLASS encapsulates a
specific query on the enp table and is implemented using a cursor variable.
EMPCLASS instantiates an instance of that query and provides cursor variable
functionality (that is: open, f et ch, cl ose) through C++ member functions that
belong to the emp class. The enpcl ass. pc file is NOT a standalone demo
program. It was written to be used by the cppdenp2 demo program. To use the
emp class, you have to write a driver (cppdenp2. pc) which declares an instance of
the emp class and issues calls to the member functions of that class.

LOBDEMO1

Fetches and adds crime records to the database based on the person’s Social
Security number. This program demonstrates the mechanisms for accessing and
storing large objects (LOBs) to tables and manipulating LOBs through the stored
procedures available through the DBMS_L OB package.

MLTTHRD1

Shows how to use threading in conjunction with precompilers. The program creates
as many sessions as there are threads. See "Multithreaded Applications” on

page 2-15.

NAVDEMO1
Demonstrates navigational access to objects in the object cache.

OBJDEMO1
Demonstrates the use of objects. This program manipulates the object types person
and address.

ORACA
Demonstrates how to use ORACA to determine various performance parameters at
runtime.

Sample Programs 3-5

Sample Program Descriptions

PLSSAM

Demonstrates the use of embedded PL/SQL blocks. This program prompts you for
an employee name that already resides in a database. It then executes a PL/SQL
block, which returns the results of four SELECT statements.

SAMPLE

Adds new employee records to the personnel database and checks database
integrity. The employee numbers in the database are automatically selected using
the current maximum employee number +10.

SAMPLE1

Logs on to an Oracle database, prompts the user for an employee number, queries
the database for the employee’s name, salary, and commission, and displays the
result. The program continues until the user enters 0 as the employee number.

SAMPLE2

Logs on to an Oracle database, declares and opens a cursor, fetches the names,
salaries, and commissions of all salespeople, displays the results, and closes the
cursor.

SAMPLE3
Logs on to an Oracle database, declares and opens a cursor, fetches in batches using
arrays, and prints the results using the pri nt _r ows() function.

SAMPLE4
Demonstrates the use of type equivalencing using the LONG VARRAWexternal
datatype.

SAMPLES

Prompts the user for an account number and a debit amount. The program verifies
that the account number is valid and that there are sufficient funds to cover the
withdrawal before it debits the account. This program shows the use of embedded
SQL.

SAMPLESG
Creates a table, inserts a row, commits the insert, and drops the table (dynamic SQL
Method 1).

SAMPLE7
Inserts two rows into the enp table and deletes them (dynamic SQL Method 2).

3-6 Pro*C/C++ Precompiler Getting Started

Sample Program Descriptions

SAMPLES
Retrieves the names of all employees in a given department from the enp table
(dynamic SQL Method 3).

SAMPLE9

Connects to an Oracle database using the scott/ti ger account. The program
declares several host arrays and calls a PL/SQL stored procedure (GET_EMPLOYEES
in the CALLDEMO package). The PL/SQL procedure returns up to ASI ZE values.
The program keeps calling GET_EMPLOYEES, getting ASI ZE arrays each time, and
printing the values, until all rows have been retrieved.

SAMPLE10

Connects to an Oracle database using your username and password and prompts
for a SQL statement. You can enter any legal SQL statement, but you must use
regular SQL syntax, not embedded SQL. Your statement is processed. If the
statement is a query, the rows fetched are displayed (dynamic SQL Method 4).

SAMPLE11
Fetches from the enp table, using a cursor variable. The cursor is opened in the
stored PL/SQL procedure open_cur, in the EMP_DEMO PKG package.

SAMPLE12
Demonstrates how to do array fetches using dynamic SQL Method 4.

SQLVCP
Demonstrates how you can use the sql vep() function to determine the actual size
of a VARCHAR struct. The size is then used as an offset to increment a pointer that
steps through an array of VARCHARS.

This program also demonstrates how to use the SQLSt nt Get Text () function to
retrieve the text of the last SQL statement that was executed.

WINSAM

Adds new employee records to the personnel database and checks database
integrity. You can enter as many employee names as you want and perform the SQL
commands by selecting the appropriate buttons in the Employee Record dialog box.
This is a GUI version of the sample program.

Sample Programs 3-7

Building the Demonstration Tables

Building the Demonstration Tables

To run the sample programs, you must have a database account with the username
scot t and the password t i ger. Also, you must have a database with the sample
tables enp and dept . This account is included in the starter database for your
Oraclegi server. If the account does not exist on your database, create the account
before running the sample programs.

See Oracle9i Database Administrator’s Guide for Windows for more information. If your
database does not contain enp and dept tables, you can use the denobl d. sql
script to create them.

To build the sample tables:
1. Start SQL*Plus

2. Connect as username scot t with the password ti ger.
3. Runthedenobl d. sql script:
SQA> @RAAQLE BASA RAALE HOVA sl pl us\ deno\ denobl d. sql ;

3-8 Pro*C/C++ Precompiler Getting Started

Building the Sample Programs

Building the Sample Programs
You can build the sample programs two ways:
« Using the pcnake. bat file provided
« Using Microsoft Visual C++ 6.0

Using pcmake.bat
The pcnake. bat file for compiling Pro*C/C++ demos is found in the following
location:

C(RACLE_BASE\ CRACLE_HOMA\ pr econp\ deno\ pr oc

This batch file is designed to illustrate how Pro*C/C++ applications can be built at
the command prompt.

In order to use this batch file, Microsoft Visual Studio must be installed. The
environment variable MSVCDi r must be set. Pro*C/C++ command line options and
linker options vary depending on your application.

You can use this file to build a demo, to build sanpl el for example:

1. Navigate to the location of the demo file and enter the following at the
command prompt:

C\> (D RAQ.E_BASHl GRAALE_HOMA pr econp\ deno\ pr oc\ sanpl el

2. Enter the following:

% pcnake sanpl el

Using Microsoft Visual C++

Microsoft Visual C++ 6.0 project files have an extension of . dsp. The . dsp files in
the ORACLE BASE| ORACLE HOVE\ pr econp\ deno\ pr oc directory guide and
control the steps necessary to precompile, compile, and link the sample programs.

Pro*C/C++, SQL*Plus, and the Object Type Translator have been integrated into the
Microsoft Visual C++ sample project files. You do not have to run Pro*C/C++,
SQL*Plus, and the Object Type Translator separately before compilation. See
Appendix A, "Integrating Pro*C/C++ into Microsoft Visual C++" for more
information.

See Also: For more information on OTT, see the Pro*C/C++
Precompiler Programmer’s Guide.

Sample Programs 3-9

Building the Sample Programs

To build a sample program:
1. Open a Visual C++ project file, such as sanpl el. dsp.

2. Check the paths in the project file to ensure that they correspond to the
configuration of your system. If they do not, change the paths accordingly. Your
system may produce error messages if the paths to all components are not
correct. See "Setting the Precompiler Options" on page 2-8 and "Setting the Path
for the Sample .pre Files" on page 3-10.

Note: All of the sample programs were created with
C: \ or acl e\ or a90 as the default drive.

3. Choose Build > Rebuild All. Visual C++ creates the executable.

Setting the Path for the Sample .pre Files

By default the sample . pr e files search for their corresponding . pc files in the
C:\ or acl e\ or a90 directory where C: \ is the drive that you are using, and

or acl e\ or a90 represents the location of the Oracle home. If the Oracle base and
Oracle home directories are different on your computer, you must change the
directory path to the correct path.

To change the directory path for a sample . pr e file:
1. InPro*C/C++, open the. pr e file.

2. Double-click the filename in the Input File area to display the Input File dialog
box.

3. Change the directory path to the correct path.
4. Click Open.

3-10 Pro*C/C++ Precompiler Getting Started

A

Integrating Pro*C/C++ into Microsoft Visual
C++

This appendix describes how to integrate Pro*C/C++ into the Microsoft Visual C++
integrated development environment.

This appendix contains these topics:
« Integrating Pro*C/C++ within Microsoft Visual C++ Projects

« Adding Pro*C/C++ to the Tools Menu

Integrating Pro*C/C++ into Microsoft Visual C++ A-1

Integrating Pro*C/C++ within Microsoft Visual C++ Projects

Integrating Pro*C/C++ within Microsoft Visual C++ Projects

This section describes how to fully integrate Pro*C/C++ within Microsoft Visual
C++ projects.

All the precompiler errors and warnings are displayed in the output box where
Microsoft Visual C++ displays compiler and linker messages. You do not have to
precompile a file separately from the Microsoft Visual C++ build environment.
More importantly, Microsoft Visual C++ maintains the dependencies between . ¢
and . pc files. Microsoft Visual C++ maintains the dependency and precompile files,
if needed.

All of the procedures in this section are performed within Microsoft Visual C++.

Specifying the Location of the Pro*C/C++ Executable

For Microsoft Visual C++ to run Pro*C/C++, it must to know the location of the
Pro*C/C++ executable. If Microsoft Visual C++ was installed before any Oracle
Release 9.0.1 products were installed, then you must add the directory path.

To specify the location of the Pro*C/C++ executable:
1. Choose Options from the Tools menu. The Options dialog box appears.

Ophons EHE I

Editar I Tabs I Debug | Cornpatibility | Build Directories | a EE

Platform: Show directories for:

fwin32] |Exscutabie fies =l

Directories: R T ¥
cmzofficeercel ﬂ

o hmzoffice\powerpnt
chmeofficehschedule
C:haratzthbin
CAMTRESKIT
CAMTRESKITYPerl

D hOraclehOral8l vorbhbin
IC:\oracIe'\oraElD'\hin

Ok | Cancel |

2. Click the Directories tab.

A-2 Pro*C/C++ Precompiler Getting Started

Integrating Pro*C/C++ within Microsoft Visual C++ Projects

Select Executable files from the Show directories for list box.
Scroll to the bottom of the Directories box and click the dotted rectangle.
Enter the ORACLE BASE| ORACLE HOVE\ bi n directory. For example:

C\oracle\ora90\bin

Click OK.

Specifying the Location of the Pro*C/C++ Header Files

To specify the location of the Pro*C/C++ header files:

1.

2
3
4.
5

Choose Options from the Tools menu. The Options dialog box appears.
Click the Directories tab.

Select Include Files from the Show directories for list box.

Scroll to the bottom of the Directories box and click the dotted rectangle.

Enter the ORACLE BASEl ORACLE _HQOVE pr econp\ publ i ¢ directory. For
example:

C \ oracl e\ ora90\ preconp\ publ i c

Click OK.

Integrating Pro*C/C++ into Microsoft Visual C++ A-3

Integrating Pro*C/C++ within Microsoft Visual C++ Projects

Adding .pc Files to a Project

After you create a project, you need to add the . pc file(s).

To add a .pc file to a project:

1. Choose Add To Project from the Project menu, and then choose Files. The Insert
Files into Project dialog box appears.

Insert Files into Project I

Lookin: |2 Sample =l =

File name: I ok, I
Files of ype: |I:++ Files [.cooppecssstizh;thzrc) j Cancel |

Ingert into: ISamp|E j

2. Select All Files from the Files of type list box.
3. Select the. pc file.
4. Click OK.

Adding References to .c Files to a Project

For each .PC file, you need to add a reference to the .C file that will result from
precompiling.

To add a reference to a .c file to a project:

1. Choose Add To Project from the Project menu, and then choose Files. The Insert
Files into Project dialog box appears.

2. Type the name of the . c file in the File Name box.

A-4 Pro*C/C++ Precompiler Getting Started

Integrating Pro*C/C++ within Microsoft Visual C++ Projects

3. Click OK. Because the . c file has not been created yet, Microsoft Visual C++
displays the following message: “The specified file does not exist. Do you want
to add a reference to the project anyway?”

4. Click Yes.

Adding the Pro*C/C++ Library to a Project
Pro*C/C++ applications must link with the library file or asql 9. 1'i b.

To add the Pro*C/C++ library to a project:
1. Choose Add To Project from the Project menu, and then choose Files.

The Insert Files into Project dialog box appears.
2. Select All Files from the Files of type list box.

3. Selectorasql 9.1i b fromthe ORACLE BASE| ORACLE
HOVE\ pr econp\ | i b\ msvc directory.

4. Click OK.

Integrating Pro*C/C++ into Microsoft Visual C++ A-5

Integrating Pro*C/C++ within Microsoft Visual C++ Projects

Specifying Custom Build Options

To specify custom build options:

1. InFileView, right-click a . pc file and choose Settings. The Project Settings
dialog box appears with the Custom Build tab displayed.

Project Settings EFHE
Seftings For: I,.f_-.,|| Configurations j General Custom Build |
E‘" Sample It file: <multiple selection:
Ea Source Files
SAMPLE = Deszcnption: IF'erfurming Cuztom Build Step
: CAMPLE PC =
EE U i 2

“-(Z7 Header Files Build cormand(s]:

----- (L3 Resource Files

Dutput filefz); Fi I O S 2

[irectan) Rl | Degendencies_._l

ok | Cancel I

2. Inthe Build command(s) box, on one line, set the build to use the same
hardcoded path as that of the $ORACLE_HOVE setting.

3. Inthe Output file(s) box, enter one of the following:

If You Are Generating... Enter...
.Cfiles $(ProjDir)\$(I nput Name) . ¢
.CPP files $(Proj Di r)\ $(1 nput Name) . cpp

$(Proj Di r) and $MSDEVDI Rare macros for custom build commands in
Microsoft Visual C++. When the project is built, Microsoft Visual C++ will check
the date of the output files to determine whether they need to be rebuilt for any

A-6 Pro*C/C++ Precompiler Getting Started

Adding Pro*C/C++ to the Tools Menu

new modifications made to the source code. See the Microsoft Visual C++
documentation for more information.

4. Click OK.

Adding Pro*C/C++ to the Tools Menu

You can include Pro*C/C++ as a choice in the Tools menu of Microsoft Visual C++.

To add Pro*C/C++ to the Tools menu:

1. From within Microsoft Visual C++, choose Customize from the Tools menu. The
Customize dialog box appears.

Customize

Commands | Toolbars | Tools | K.eyboard | Add-inz and Macro Files |

Lategony: — Buttons
I Dl gl ddaS
Dezcription:

Hint: Select a category. Click a button to zee its dezcription,
or drag it ko a toolbar,

Show Menus for:
IEunentEditor vl HedityEeection = | Reset all Menus |

Cloze

2. Click the Tools tab.
3. Scroll to the bottom of the Menu contents box and click the dotted rectangle.
4. Enter the following text:

Pro*d G+

5. In the Command box, type the path and filename of the graphical Pro*C/C++
executable, or use the Browse button to the right of the box to select the file
name. For example:

C \oracl e\ ora90\ bi n\ procui . exe

Integrating Pro*C/C++ into Microsoft Visual C++ A-7

Adding Pro*C/C++ to the Tools Menu

6.

8.

In the Arguments box, enter the following text.
$(Tar get Nane)

When you choose Pro*C/C++ from the Tools menu, Microsoft Visual C++ uses
the $(TargetName) argument to pass the name of the current development
project to Pro*C/C++. Pro*C/C++ then opens a precompile project with the

same name as the opened project, but with a .PRE extension in the project
directory.

In the Initial directory box, enter the following text:
$(WkspDir)

The Customize dialog box should now look like the following graphic
(although the Oracle home directory may be different on your computer).

Cosomze |
Caommands | Toolbars | Tools | Feyboard | Add-inz and Macra Files |
Menu contents: ERLEP G S
OLE/COM Object &viewer :I
-+
bsflali_ljg&ﬁacer _I
ProC/C++ -
Command; |c::'mracle'\nraSD'\bin'\prucui.e:-:e J
Arguments: |${TargetName] ﬂ
Initial directony: |$[wkspDir] ﬂ

[T Use Output'window [Prompt for arguments [Close window an exiting

Cloze

Click Close. Microsoft Visual C++ adds Pro*C/C++ to the Tools menu.

A-8 Pro*C/C++ Precompiler Getting Started

Numerics

16-bit code, not supported, 1-2

A

add_newl.bat, 2-13
adding

files, 2-8
ANSI compliance, 1-2
ANSI dynamic SQL, 3-4

C

CODE option, 2-16

command line, precompiling from, 2-13

configuration files, 2-16
location, 2-16

Connect dialog box, 2-11

connect string, 2-10

D

database connect string, 2-10
DBMS option, 2-16
Default Output
C File Name command, 2-6
C++ File Name command, 2-6
deleting
files, 2-8
directory structures, 1-3
.dsp files, 3-9
Dynamic Link Libraries (DLLs), 2-15
dynamic SQL

method 1, 3-6
method 2, 3-6
method 3, 3-4, 3-7
method 4, 3-7

E

Index

Edit menu, 2-3
embedded SQL, 3-6

F

features,new, Xxix
File menu, 2-3

G

generic documentation references
default values for options, 2-16
demo directory, 1-3
header files, location of, 2-14
linking, 2-15
Oracle XA, 2-17

graphical user interface, 2-2to 2-5

H

header files
location of, 2-14
oraca.h, 2-14
sql2oci.h, 2-14
sqlapr.h, 2-14
sglca.h, 2-14
sqlcpr.h, 2-14

Index-1

sglda.h, 2-14

sglkpr.h, 2-14

sqlproto.h, 2-14
Help menu, 2-3

INCLUDE option, 2-16
Input File dialog box, 2-8

L

large objects, 3-5

linking, 2-15

Listing/ZErrors dialog box, 2-10
LOBs, 3-5

M

menu bar, 2-3
Microsoft Visual C++

integrating Pro*C/C++ into, A-1to A-8
mod_incl.bat, 2-13
msvcrt.lib runtime library, 2-15
multi-threaded applications, 2-15, 3-5

N

new features, Xix
New toolbar button, 2-6

O

Object Type Translator (OTT), 3-9
objects
demonstration program, 3-5
Open toolbar button, 2-6
Options dialog box, 2-9
oraca.h header file, 2-14
Oracle Net, 1-2
Oracle XA, 2-17
Oracle XA Library
additional documentation, 2-19
orasql9.lib, A-5
orasql9.lib library file, 2-15
OTT (Object Type Translator), 3-9

Index-2

output file names, 2-6

P

PARSE option, 2-16
paths

checking, 3-10

checking the .pre files, 3-10
PCC-S-02014 error, 2-13
pcmake.bat, 3-9
pcscfg.cfg configuration file, 2-16
.pre files, 2-6

checking the paths, 3-10
precompiling

steps involved, 2-5to 2-13
Preferences menu, 2-3,2-6
Pro*C/C++

command-line interface, 2-13

configuration files, 2-16

features, 1-2

graphical user interface, 2-2to 2-5

integrating into Microsoft Visual

C++, A-l1toA-8

introduction, 1-1

library file, A-5

linking, 2-15

overview, 1-2

starting, 2-2
project files, 2-6, 3-9

R

reentrant functions, 2-15

S

sample programs
ANSIDYN1, 3-2,3-4
ANSIDYNZ2, 3-2,3-4
building, 3-9
COLDEMO1, 3-2,3-4
CPPDEMO1, 3-2,3-4
CPPDEMO2, 3-2,3-4
CPPDEMO3, 3-2,3-5
CV_DEMO, 3-2,3-5

default drive, 3-10
described, 3-4to0 3-7
EMPCLASS, 3-3,3-5
INCLUDE path, 2-16
LOBDEMO1, 3-3,3-5
location of, 1-3, 3-2
MLTTHRD1, 3-3,3-5
NAVDEMO1, 3-3,3-5
OBJDEMO1, 3-3,3-5
ORACA, 3-3,3-5
PLSSAM, 3-3,3-6
SAMPLE, 3-3,3-6
SAMPLE1, 3-3,3-6
SAMPLE10, 3-4,3-7
SAMPLE1l, 3-4,3-7
SAMPLE12, 3-4,3-7
SAMPLE2, 3-3,3-6
SAMPLE3, 3-3,3-6
SAMPLE4, 3-3,3-6
SAMPLE5, 3-3,3-6
SAMPLES6, 3-3,3-6
SAMPLE7, 3-3,3-6
SAMPLES, 3-3,3-7
SAMPLEY, 3-3,3-7
setting the path, 3-10
setting the path for the .pre files, 3-10
SQLVCP, 3-4,3-7
WINSAM, 3-4,3-7
sample tables
building, 3-8
Save As command, 2-13
SQL (Structured Query Language), 1-2
sqgl2oci.h header file, 2-14
sglapr.h header file, 2-14
sglca.h header file, 2-14
sqlcpr.h header file, 2-14
sglda.h header file, 2-14
sqlkpr.h header file, 2-14
sqlproto.h header file, 2-14
SQLStmtGetText() function, 3-7
sqglvep() function, 3-7
starting
Pro*C/C++, 2-2
status bar, 2-5
Structured Query Language (SQL), 1-2

T

threads
defined, 2-15
title bar, 2-3
toolbar buttons
New, 2-6
Open, 2-6
transaction processing monitor
additional documentation, 2-19

Index-3

Index-4

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	What’s New in Pro*C/C++?
	Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++

	1 Introducing Pro*C/C++
	What is Pro*C/C++?
	Features
	Restrictions
	Directory Structure
	Known Problems, Restrictions, and Workarounds

	2 Using Pro*C/C++
	Using the Graphical User Interface
	Title Bar
	Menu Bar
	Toolbar
	Information Pane
	Status Bar

	Creating and Precompiling a Pro*C/C++ Project
	Opening a Project
	Setting the Default Extension of Output Files
	Changing the Name of an Existing Input or Output File
	Adding Files to the Project
	Deleting Files from the Project
	Setting the Precompiler Options
	Specifying Database Connection Information
	 Precompiling a Pro*C/C++ Project
	Checking the Results
	Fixing Errors
	Exiting Pro*C/C++

	Using Pro*C/C++ at the Command Line
	Header Files
	Library Files
	Multithreaded Applications
	Precompiler Options
	Configuration File
	CODE
	DBMS
	INCLUDE
	PARSE

	Using Pro*C/C++ with the Oracle XA Library
	Compiling and Linking a Pro*C/C++ Program with XA
	XA Dynamic Registration
	Adding an Environmental Variable for the Current Session
	Adding a Registry Variable for All Sessions

	XA and TP Monitor Information

	3 Sample Programs
	Sample Program Descriptions
	Building the Demonstration Tables
	Building the Sample Programs
	Setting the Path for the Sample .pre Files

	A Integrating Pro*C/C++ into Microsoft Visual C++
	Integrating Pro*C/C++ within Microsoft Visual C++ Projects
	Specifying the Location of the Pro*C/C++ Executable
	Specifying the Location of the Pro*C/C++ Header Files
	Adding .pc Files to a Project
	Adding References to .c Files to a Project
	Adding the Pro*C/C++ Library to a Project
	Specifying Custom Build Options

	Adding Pro*C/C++ to the Tools Menu

	Index

