
Directed Micro-architectural Test Generation for an Industrial
Processor: A Case Study

Heon-Mo Koo Prabhat Mishra Jayanta Bhadra Magdy Abadir
Computer and Information Science and Engineering Freescale Semiconductor Inc.
University of Florida, Gainesville, FL 32611, USA. 7700 West Parmer Lane Austin, TX 78727, USA

{hkoo, prabhat}@cise.ufl.edu {Jayanta.Bhadra, M.Abadir}@freescale.com

Abstract

Simulation-based validation of the current industrial proces-
sors typically use huge number of test programs generated at
instruction set architecture (ISA) level. However, architectural
test generation techniques have limitations in terms of exer-
cising intricate micro-architectural artifacts. Therefore, it is
necessary to use micro-architectural details during test gener-
ation. Furthermore, there is a lack of automated techniques for
directed test generation targeting micro-architectural faults. To
address these challenges, we present a directed test generation
technique at micro-architectural level for functional validation
of microprocessors. A processor model is described in a tem-
poral specification language at micro-architecture level. The
desired behaviors of micro-architecture mechanisms are ex-
pressed as temporal logic properties. We use decompositional
model checking for systematic test generation. Our experiments
using a processor based on the Power ArchitectureT M Technol-
ogy1 shows very promising results in terms of test generation
time as well as test program length.

1 Introduction

Performance improvement of modern processors is accom-
panied with high design complexity by adopting complicated
micro-architectural mechanisms such as deeply pipelined su-
perscalar, dynamic scheduling, and dynamic speculation. Since
verification complexity is directly proportional to the design
complexity, considerable amount of time and resources are
spent on design verification.

In the current industrial practice [11], random and biased-
random test generation techniques at architecture (ISA) level
are most widely used for simulation-based validation to un-
cover errors early in the design cycle as well as to perform sim-
ulation for the entire processor design. However, as demon-
strated in Section 4, architectural test generation techniques
have difficulty in activating micro-architectural target artifacts
and pipeline functionalities since it is not possible to gener-
ate information regarding pipeline interactions or timing details
using input ISA specification. For example, it is very hard to

1The Power Architecture and Power.org wordmarks and the Power and
Power.org logos and related marks are trademarks and service marks licensed
by Power.org

generate an architectural test program for micro-architectural
design bugs such as a pipeline interaction error (e.g., “decode
stage is not stalled even if Completion Queue is full”), or a
performance error (e.g., “data dependency is not resolved by
forwarding path even if operand is available”). Therefore, it is
necessary to use micro-architectural details during test genera-
tion.

Compared to the random or biased-random tests, the directed
tests can reduce overall validation effort since shorter tests can
obtain the same coverage goal. However, there is a lack of au-
tomated techniques for directed test generation targeting micro-
architectural faults. As a result, directed tests are hand-written
by experts. Due to manual development this process can be
error prone.

Processor Model

Test 
Generation

Test cases

Properties

Property
Decomposition

Model
Decomposition

Architectural
Specification

Processor ModelProcessor Model

Test 
Generation

Test cases

PropertiesProperties

Property
Decomposition

Model
Decomposition

Architectural
Specification

Figure 1. Test Program Generation Methodology

To address these challenges, we present a directed test gen-
eration technique at micro-architectural level for functional
validation of microprocessors. Figure 1 shows our directed
test generation methodology. The input specification contains
both the structure (micro-architectural details) and the behav-
ior (instruction-set) of the processor. The micro-architectural
features in the processor model include pipelined and clock-
accurate behaviors that enable micro-architectural test genera-
tion. Properties can be automatically generated from the input
specification based on a functional fault model such as pipeline
(graph) coverage [9]. Additional properties can be added based
on interesting scenarios such as combined pipeline stage rules
and corner cases. These properties are described in temporal

Seventh International Workshop on Microprocessor Test and Verification (MTV'06)
0-7695-2839-2/06 $20.00  © 2006



logic. For automatic test generation, we use decompositional
model checking where the processor model as well as the prop-
erties are decomposed and the model checking is applied on
smaller partitions of the design using decomposed properties.
We introduce the notion of time steps to enable decomposi-
tion of the properties into smaller ones based on their clock
cycles. We have developed an efficient algorithm to merge the
partial counterexamples generated by the decomposed proper-
ties to produce the global counterexample corresponding to the
original property. We applied this methodology on a processor
based on the Power Architecture Technology to demonstrate
the usefulness of our approach.

The main contribution of this work is to establish a frame-
work for a directed and automated micro-architectural test gen-
eration technique for validation of modern industrial proces-
sors. Since the proposed method is generic, its framework can
be used for validation of any other real processors. The rest
of the paper is organized as follows. Section 2 presents re-
lated work addressing test generation in the context of micro-
architectural validation of pipelined processors. Section 3 de-
scribes our test generation methodology. Section 4 presents a
case study and Section 5 concludes the paper.

2 Related Work

Several methodologies have been developed for validation
of pipelined processors using finite state machine (FSM) mod-
els [1, 5, 6, 10] where FSM coverage is used to generate test
programs. In modern processor designs, complicated micro-
architectural mechanisms include interactions among many
pipeline stages and buffers that lead the FSM-based approaches
to the state-space explosion problem. To alleviate the state ex-
plosion, Utamaphethai et al. [12] have presented a FSM model
partitioning technique based on micro-architectural pipeline
storage buffers whose entries store data and status. However,
it suffers from targeting complete micro-architectural features
because test programs are generated by design errors from each
buffer, not for combined buffers.

An alternative formal method, model checking [2], has been
successfully used in software and hardware validation as a test
generation engine [3, 9]. The negated version of a desired prop-
erty along with the processor model is applied to the model
checker. The model checker automatically produce a coun-
terexample that contains a sequence of instructions (a test pro-
gram) from an initial state to a failure state. However, this naive
approach is unsuitable for a real processor model due to the
state explosion problem during model checking.

Koo and Mishra [7, 8] have proposed a processor/property
decomposition technique to reduce the search space during
counterexample generation as well as an algorithm for merging
the partial counterexamples to generate architectural test pro-
grams. Their test generation technique is built on a relatively
simple MIPS processor [4] with no renaming buffer, reorder-
ing buffer, or reservation station. They use pipeline path-level
model partitioning to generate a test program for data forward-
ing, but it causes deprivation of memory during model checking

when applying to the industrial processors due to high com-
plexity of even single pipeline path. In addition, they mainly
focus on the data path rather than the control path. While a
data (opcode and operands) is located in a single pipeline stage,
control signals (functional unit status and buffer status) may
spread across multiple pipeline stages and buffers which make
model partitioning and counterexample merging more difficult.
Therefore, it is necessary to improve the decomposition and
merging algorithms for application to the complex industrial
processors.

3 Directed Micro-architectural Test Generation

Today’s test generation techniques and verification methods
are very efficient to find bugs at the unit level. Hard-to-find
bugs arise often from the interactions among many pipeline
stages and buffers of a modern processor design. We primarily
focus on such micro-architectural interface among functional
units in a pipelined processor.

Algorithm 1: Test Generation
Inputs: i) Processor model M

ii) Set of interactions S from fault model and corner cases
Outputs: Test programs
Begin

TestPrograms = f
for each interaction Si in the set S

Pi = CreateProperty(Si)
Pi = Negate(Pi)
testi = DecompositionalMC(M, Pi)
TestPrograms = TestPrograms ∪ testi

endfor
return TestPrograms

End

Algorithm 1 describes our test generation procedure. This al-
gorithm takes the processor model M and desired pipeline inter-
actions S as inputs and generates test programs. The processor
model is described in a temporal specification language such as
SMV [13]. For each interaction Si, the algorithm produces one
test program testi. Si is composed of a set of instruction and
control functionalities at pipeline units and their relations and
it is converted to a temporal logic property Pi. The negation of
Pi is an interaction fault. The processor model M and the fault
Pi are applied to decompositional model checking framework
to generate a test program. The algorithm iterates over all the
interaction faults in the fault model and corner cases.

3.1 Micro-architectural Modeling

Figure 2 shows a functional block diagram of the four-wide
superscalar e500 processor that is based on the Power Architec-
ture Technology [14] with the seven pipeline stages. Pipeline
buffers are highlighted in grey. We have developed a processor
model based on the micro-architectural structure, the instruc-
tion behavior, and the rules in each pipeline stage that deter-
mine when instructions can move to the next stage and when

Seventh International Workshop on Microprocessor Test and Verification (MTV'06)
0-7695-2839-2/06 $20.00  © 2006



Fetch stage 1

Fetch stage 2

Decode stage

Issue stage

MU stage 1

MU stage 2

MU stage 3

MU stage 4

Completion stage

Write-back stage

LSU stage 1

LSU stage 2

LSU stage 3

SU1 SU2

Divide
Post-divide

Execute stage

� 7 pipeline stages
� Superscalar
� Dynamic scheduling
� Dynamic speculation

RS RS

IQ

GIQ

I-cache

Rename
Buffers

Completion
Queue

RS RS

Fetch stage 1

Fetch stage 2

Decode stage

Issue stage

MU stage 1

MU stage 2

MU stage 3

MU stage 4

Completion stage

Write-back stage

LSU stage 1

LSU stage 2

LSU stage 3

SU1 SU2

Divide
Post-divide

Execute stage

� 7 pipeline stages
� Superscalar
� Dynamic scheduling
� Dynamic speculation

RS RS

IQ

GIQ

I-cache

Rename
Buffers

Completion
Queue

RS RS

Figure 2. Instruction Pipeline Flow of e500 processor that is
based on the Power Architecture Technology

they cannot. The micro-architectural features in the processor
model include pipelined and clock-accurate behaviors such as
multiple issue for instruction parallelism, out-of-order execu-
tion and in-order-completion for dynamic scheduling, register
renaming for removing false data dependency, reservation sta-
tions for avoiding stalls at Fetch and Decode pipeline stages,
and data forwarding for early resolution of RAW data depen-
dency. By representing them in a model checking language, we
can achieve the automatic test generation goal.

In order to use model checking as a test generator, the proces-
sor model needs to be verified beforehand. Since it is infeasible
to verify the entire model as a single unit due to the state ex-
plosion during model checking, we have partitioned the entire
processor model into multiple modules based on the functional
units shown as rectangles in Figure 2. Each partitioned module
has been verified using the requirements and rules described in
the specification. For verification of module interface, we inte-
grated neighboring modules and verified their interface. These
modules are basic units in processor model decomposition for
test generation.

3.2 Property Generation and Decomposition

We generate a property for each pipeline interaction from the
specification. Since interactions at a given cycle are semanti-
cally explicit and our processor model is organized in structure-
oriented modules, the interactions can be converted into prop-
erties. The generated properties are expressed in LTL (Linear
Temporal Logic) [2]. Each property consists of temporal oper-
ators (G, F, X, U) and Boolean connectives (∧, ∨, ¬, and →).
Most pipeline interactions can be converted in the form of a
property F(p1 ∧ p2 ∧ . . .∧ pn) that combines activities pi over
n modules using logical AND operator. The atomic proposition
pi is a functional activity at a module i such as operation exe-
cution, stall, exception or NOP. The property is true if (p1 ∧ p2

∧ . . .∧ pn) becomes true at any time step.
Since we are interested in counterexample generation, we

need to generate the negation of the property first. The negation

of the properties can be expressed as:

¬X(p) = X(¬p) ¬G(p) = F(¬p)
¬F(p) = G(¬p) ¬pRq = ¬pU¬q

For example, the negation of the interaction property is
G(¬p1 ∨ ¬p2 ∨ . . .∨ ¬pn) that becomes true if any of p1, p2,
. . . , or pn is not true over all time steps. In the remainder of
this section, we describe how to decompose these properties
(already negated) for efficient model checking. There are var-
ious combinations of temporal operators and Boolean connec-
tives where decompositions are not possible e.g., F(p∧ q) 6=
F(p)∧F(q) and G(p∨q) 6= G(p)∨G(q). In certain situations,
such as pUq, F(p → F(q)), or F(p → G(q)), decompositions
are not beneficial compared to traditional model checking. The
following combinations allow simple property decompositions.

G(p∧q) = G(p)∧G(q) F(p∨q) = F(p)∨F(q)
X(p∨q) = X(p)∨X(q) X(p∧q) = X(p)∧X(q)

Introducing the notion of clock (time step) in the property
allows more decompositions for counterexample generation as
shown below2. Note that the left and right hand side of the de-
composition are not logically equivalent but they produce func-
tionally equivalent counterexamples.

G((clk 6= ts)∨ (p∨q))≈ G((clk 6= ts)∨ p)∨G((clk 6= ts)∨q)

Although we only use a few decomposition scenarios, it is
important to note that these scenarios are sufficient for gener-
ating the properties where interactions are considered. In ad-
dition to these interaction properties, we created many micro-
architectural properties based on real experiences of industrial
designers.

3.3 Test Generation using Model Checking

The basic idea of DecompositionalMC( ) in Algorithm 1 is to
apply the decomposed properties (sub-properties) to appropri-
ate modules and compose their responses to construct the final
test program. Model checker is used to generate partial coun-
terexamples for the partitioned modules. Integration of these
partial counterexamples is a challenge due to the fact that the
relationships among decomposed modules and sub-properties
are not preserved at whole design level in general. We propose
clock-based integration of partial counterexamples.

For example, if two sub-properties are applied at the same
clock cycle (clk = ts) to two modules sharing a parent module,
then two counterexamples are generated and merged into the
output property of the parent module for generating the coun-
terexamples at the previous clock cycle (clk = ts− 1). In Fig-
ure 2, four reservation station (RS) modules share the parent
module Issue. Counterexamples generated from multiple RS at
the cycle k are merged for creating the output property of Is-
sue stage. The negated version of this property is applied to

2The clk variable is used to count time steps, and ts is a specific time step.

Seventh International Workshop on Microprocessor Test and Verification (MTV'06)
0-7695-2839-2/06 $20.00  © 2006



Table 1. Test Cases and Code Length

Test Cases Test Code Length

1 Instruction dual issue 15
2 Renaming src1 operand 12
3 Read operand from forwarding path (RAW) 9
4 Reservation station reads operand from forwarding path (RAW) 7
5 Read operand from renaming reg. (RAW) 10
6 Read operand from GPR (RAW) 11

the model checker along with Issue module to generate a coun-
terexample at the cycle k−1 that is used to produce the output
properties of Decode, GIQ, and Rename buffer. Merging par-
tial counterexamples continues until we obtain the primary in-
put assignments for all the sub-properties. These assignments
contain fetched instruction data from I-cache and they are con-
verted into assembly instruction sequences.

4 Experiments

We applied our methodology on a superscalar processor
based on the Power Architecture Technology. We performed
various test generation experiments for validating the pipeline
interactions and corner cases. Table 1 shows a subset of the
directed test cases that we generated and their corresponding
length in terms of number of instruction sequences. For exam-
ple, test programs for case 3 through 6 exercise operand read
from four different resources as shown in Figure 3, which can
be generated at micro-architecture level but very difficult at ISA
level. In terms of efficiency, only several seconds were spent on
test generation.

Issue Execute Complete Write-Back

Reservation
Station

3 5 6

4 Instruction flow

Forwarding data

Issue Execute Complete Write-Back

Reservation
Station

3 5 6

4 Instruction flow

Forwarding data

Figure 3. Four Different Data Forwarding Mechanisms

To validate these test cases, we converted the test programs
into the input format of RTL simulation and monitored instruc-
tions in pipeline stages at every clock cycle during simulation
to ensure that the generated test program activates the actual
micro-architectural fault.

5 Conclusions

Architectural test generation techniques have limitations to
achieve micro-architectural coverage goal. This paper pre-
sented a directed test generation technique based on decom-
position of both processor model and properties for validation
of performance as well as functionality of the modern micro-
processors. Our experimental results using e500 processor that
is based on the Power Architecture Technology demonstrate

the efficiency of our method by generating complicated micro-
architectural tests. Since the proposed technique is generic,
its framework can be used for validation of industrial-strength
processors. Our future work includes extension of the proces-
sor model for dynamic speculation and other features. Since
the number of interactions (directed tests) can be still extremely
large, we plan to develop a test compaction technique to reduce
the number of test programs.

References

[1] D. Campenhout, T. Mudge, and J. Hayes. High-level test gener-
ation for design verification of pipelined microprocessors. DAC,
pages 185–188, 1999.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking.
MIT Press, Cambridge, MA, 1999.

[3] A. Gargantini and C. Heitmeyer. Using model checking to gen-
erate tests from requirements specifications. In ACM SIGSOFT
Software Engineering Notes, volume 24, pages 146–162, 1999.

[4] J. Hennessy and D. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, 2002.

[5] H. Iwashita, S. Kowatari, T. Nakata, and F. Hirose. Automatic
test pattern generation for pipelined processors. ICCAD, pages
580–583, 1994.

[6] K. Kohno and N. Matsumoto. A new verification methodology
for complex pipeline behavior. DAC, pages 816–821, 2001.

[7] H.-M. Koo and P. Mishra. Functional test generation using
property decompositions for validation of pipelined processors.
DATE, pages 1240–1245, 2006.

[8] H.-M. Koo and P. Mishra. Test generation using SAT-based
bounded model checking for validation of pipelined processors.
GLSVLSI, 2006.

[9] P. Mishra and N. Dutt. Graph-based functional test program gen-
eration for pipelined processors. DATE, pages 182–187, 2004.

[10] J. Shen and J. A. Abraham. An RTL abstraction technique for
processor microarchitecture validation and test generation. Jour-
nal of Electronic Testing: Theory and Applications, 16(1-2):67–
81, 2000.

[11] K. Shimizu, S. Gupta, T. Koyama, T. Omizo, J. Abdulhafiz,
L. McConville, and T. Swanson. Verification of the cell broad-
band engine processor. DAC, pages 338–343, 2006.

[12] N. Utamaphethai, R. D. S. Blanton, and J. P. Shen. Effectiveness
of microarchitecture test program generation. IEEE Design &
Test, 17(4):38–49, 2000.

[13] www-cad.eecs.berkeley.edu/ kenmcmil/smv. Cadence SMV.

[14] www.freescale.com/files/32bit/doc/refmanual/e500CORERMAD.pdf.
Freescale PowerPc e500 core family reference manual.

Seventh International Workshop on Microprocessor Test and Verification (MTV'06)
0-7695-2839-2/06 $20.00  © 2006


