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Abstract: Feynman proposed searching for −α1/2 = −0.08542455 with the ± sign on
the α1/2 for the positive and negative charge, and may be related to π, e, 2 and 5. We
found α1/2 ≈ ± log e

Φπ = ±0.0854372 where Φ = 1
φ

= 2 cos(π5 ). I/FQHE Rxy = ±Z0/2νiα
unveils α1/2 = log e±φ/Kπ where F− φ− e− π in Euler Identity and K ∼ {3, 37, 61} from
2(p−1)(p− 1)! ∈ 2nn! are linked to Quantum theories. The energy-mass formula E = mc2

and special relativistic mass m = γm0 established the particle rest-mass m0, mass-ratio
mi/me, mass-defect4m. The rest-mass of a particle can be quantized by the fine structure
constant and the proton-electron mass ratio βp/e = (α−3/2−2α1/2 +α2/πφ2−ηα3) ln π. The
hydrogen atomic rest-mass is m1H = mp+ +me(1−α2 ln 10) in the Quantum Gravity. The
high-energy W± boson α

1/2
W = ± logF

Φπ (1 − α · sin2 θw), where Fransén-Robinson constant
F =

´∞
0

dt
Γ(t) = 2.80777 . . . replaced e =
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1 Brief History of the α Math Formulas

1-1 Introduction of the Fine Structure Constant
The elementary charge of electron e was proposed by Stoney in 1894 and discovered
by Thomson in 1896, [1, 2] then Planck introduced the energy quanta hν in 1901 and
explained as photon ε = hν by Einstein in 1905. [3, 4]

Planck first noticed in 1905 that e2/c and h have the same dimension. [5] In 1909,
Einstein found that there are two fundamental velocities in physics: c and e2/h requiring
explanation. He said, “It seems to me that we can conclude from h = e2/c that the
same modification of theory that contains the elementary quantum e as a consequence,
∗Email: XK6771@gmail.com
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will also contain as a consequence the quantum structure of radiation.” [6] Later
on, Einstein noticed that “three decimals are missing.” He prompted hc/e2 ∼ 879 (i.e.,
α−1 = 140(5)), which was subsequently rejected by Lorentz since “900 seems too much.” [6]
His guesswork was before Millikan’s oil-drop experiment to measure the elementary charge
e and Avogadro Constant NA. [7]

In 1913, Jeans suggested h/2π = (4πe)2/c, i.e., α−1 = hc/2πe2 = (4π)2 = 157.91367.
[8] In 1914, two American electrochemists, Lewis and Adams proposed that “all universal
constants involve only integral numbers and π”, and presented [9]

h = e′2

c

(
8π5

15

)1/3

= 4 (4πe)2

c

(
π5

5!

)1/3

(1.1)

where e′ = 4πe. From (1.1)

α−1 = ~c
e2 = 32π

(
π5

5!

)1/3

= 137.348 (1.2)

which is derived from Stefan-Boltzmann law εT = aT4. They noticed that the dimension
of the radiation constant a = k4(ε/θ4) is (energy × length)−3 while e′2 is (energy ×
length). 8π5/15 in (1) can be obtained from the dimensionless integration in 3D blackbody
radiation

8π · J = 8π
∞̂

0

x3dx

ex − 1 = 8πΓ(4)ζ(4) = 8π5

15 = 43π5

5! (1.3)

where zeta-function ζ(4) was solved by Euler using Wallis products. Lewis applied
a cube root to (1.3) since it involves a 3D volume. In 1915, Allen rewrote (1.1) as
α = (15/π2)1/3/(4π)2. [10] Therefore, the study of an α math formula came before Som-
merfeld’s fine structure constant formula of relativistic discrete H-spectra in 1916, which
gives the experimental value α2 = 5.30 × 10−5 (i.e., α−1 = 137.360563948). Sommerfeld
was the first to pin-down the approximate value of α and also point out that α serves as
a bridge in the quantum h to electricity e, relativity c. [11]

1-2 Early Exploration and Wyler’s formula
Since (1) involves blackbody radiation, people believed that α may be linked to tem-
perature. In 1931, T0 = −(2/α − 1) = −273 [K] was erroneously published in Natur-
wissenschaften. [12] The Lewis–Adams conjecture was discussed among physicists. In
1935, Heisenberg wrote to Dirac: “I do not believe at all any more in your conjecture
that the Sommerfeld fine-structure constant may have something to do with the concept
of temperature; that is, neither do I any more believe in the Lewis value”. Indeed, Lewis’
value is wrong, but his idea lead to another dimensionless constant αR = 2

π

(
π5

5!

)1/3
α =[

ζ(4)
ζ(2)

]1/3
α = 1

157.555 , involving the continued spectra of blackbody radiation. [13] Heisen-
berg wrote to Bohr with a joke formula suggested by Lunn in 1922

α−1 = 2433/π = 137.50987 (1.4)

Bohr replied with the golden angle (2π/Φ2)(180/π) = 360φ2 = 137.5077643o for studying
phyllotaxis in 1909

α−1 = 360/Φ2 = 137.5077643 (1.5)
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Pauli worked hard in 1935, and once suggested that five-dimensional relativity theory
might help to understand the problem. [14]

Following Pauli, Wyler’s formula in 1969 exposed a similar pattern with the Lewis
formula (2), but in 4th root and in the reciprocal way [15]

α = 9
16π3

(
π
5!

)1/4
= 9

16π4

(
π5

5!

)1/4
=
(

3
4π2

)2 (
π5

5!

)1/4
(1.6)

= 1/137.0360824 = 0.00729734813

Wyler used Hua’s result in “Harmonic analysis of functions of several complex variables
in the classical domains”, [16] without discussing the physical dimensional analysis, and
proposed a new assembling formula according to the 5D Dirac relativistic equation

V (Dn) = πn

2n−1n! ; V (Sn−1) = 2πn/2
Γ(n/2) ; V (Cn) = π2πn/2

Γ(n/2) ← Hua (1.7)

α = 8π·[V (Dn)]1/(n−1)

V (Sn−1)V (Cn) ← Wyler

let n = 5 in (1.7), then

V (D5) = π5

245! ; V (S5−1) = 8π2

3 ; V (C5) = 8π3

3 ← Hua (1.8)

α = 8π(π5/245!)1/4

(8π2/3)(8π3/3) = 9
16π3

(
π
5!

)1/4
← Wyler

The puzzling Wyler formula in (1.6) has many variations, such as

α−1 = 4

√
10·40·51·80·90

219·37·60·70·00
π11 = 2−19/4 · 3−7/4 · 51/4 · π11/4 (1.9)

He also reported β = mp/me = 3 × 2π5 = 6!(π5/5!) = 1836.1181. Unfortunately, he
failed to provide an origin for his ideas or an explanation of their use. In 1925, Rice
suggested 2πα−1 = hc/e′2 = (8π3

3 )(Rρ/r2). [17] Born suggested α3 = ( 2
π
)(8π2

3 )(e2ν/mec
3)

and tested α = e2

~c
= 2πγ

1.236 = Φπγ in 1935, and proposed the reciprocity principle in 1939.
[18] In 1951, Lenz suggested that mp/me = 6π5. [19] Wyler’s formula came after these
works. The above history shows that this line of study is a combination of the n-space
dimensionless volume and blackbody radiation with Pauli’s idea. Obviously, 3D (x-y-z),
4D (x-y-z-t) or 5D (x-y-z-t-E) is based on the experimental data 137. In 1989, Bailey and
Ferguson used a supercomputer to check Wyler’s formula, and automatically produced
several “other relations of comparable complexity with even better accuracy.” One example
is α−5 = 150π(6552π3)8 (i.e., α−1 = 137.036048362143). [20] This clearly showed that a
Wyler-type formula could not be the unique answer for the fine structure constant. Wyler’s
formula is later discussed in the E8 lie groups. In 2006, Castro reviewed the coupling
constant with the Complex Domains. [21]

1-3 More Debating Formulas
Wyler’s work made people devise simpler ways to obtain the magic number, with no more
care given to physical dimensional analysis. Here are some popular examples:
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A formula with 4π in 1971 [22]

α−1 = π + π2 + 4π3 = π(1 + π(1 + 4π)) = 137.03630037758 (1.10)
A Wyler-type formula in 1971 [22]

α−1 = 25/3 · 3−8/3 · 55/2 · π7/3 = 137.036006449 (1.11)
From Aether Theory in 1972 [23]

α−1 = 108π(8/1843)1/6 = 137.03591484 (1.12)
From Pythagorean theorem in 1975 [24]

α−1 = (1372 + π2)1/2 = 137.0360157199 (1.13)
From N = 42 invariance groups in 1976 [25]

α−1 = N(N − 1)/4π = 137.032406 (1.14)

In 2004, Stoyan proposed α = 2
(n2+2π2)1/2+n , and α

−1 = 137+
√

1372+2π2

2 = 137.03601098839
when n = 137 for the regular Tetrahedron geometry. [26] It is one solution from x2 −
137x − π2/2 = 0 but the other one is ignored. They are all in line with the concept
that ‘all universal constants involve only integral numbers and π’. The 4π in (1.10) was
interesting but went nowhere.1

In 2000, Kosinov suggested the more complex but more accurate formula yielding
α−1 = 137.03600982. [27]

α20 = (πΦ14)1/1310−43 (1.15)
In 2005, Heyrovska proposed [28]

α−1 = 360φ2 − 2φ3 = 137.0356280 (1.16)

In 2006, Naschia suggested a formula in the E-Infinity Cantorian space-time. [29]

α−1 = 20Φ4 = 137.0820393 (1.17)

This type of formula followed Bohr’s thought, involving the golden mean, Fibonacci and
Lucas numbers.

1-4 Recent Fittings by Gilson and others
In order to fit CODATA-2006 α−1 = 137.035999679(94), Gilson developed a well-known
formula in the 1990s, using two primes 29 and 137 in the trigonometric functions

α = cos(π/137)
137

tan(π/(29·137))
π/(29·137) = 1/137.0359997867 (1.18)

which is based on wave capture circling analysis in 2007. [30] However, CODATA-2010
gives α = 1/137.035999074(44). Kirakosyan gives a similar analysis ∑ Im/I = sin4ϕ =
α1/2 and α−1 = 1

sin24ϕ in 2011. [31]2

1First presented by E. D. Reilly, Jr. in 1971. Note β =
2∏
k=0

(4π − k/π) = 4π(4π − 1
π

)(4π − 2
π

) = 1836.1517 and

βn/e ≈ βp/e + ln(4π) = 1838.6827635 link to µ0 = 4π × 10−7[Wb/Am] and ke = 1/4πε0[Nm2C−2]
2Other approximate trigonometric functions include: tan−1(α−1) ' π

2 ; cos−1(α) ' π
2 ; cos(α−1) ' e−1; sin(α) ' α.
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In 2007, Lestone used a blackbody radiation model to get [32]

α−1 = 16π3/3ζ(3)g(σT ) = 137.042999

In 2009, Markovitch suggested [33]

α−1 = Aa−Dd
Bb

+ Cc − Ee = 137.036 (1.19)
= 103−10−3

33 + 102 − 10−3

= 223−2−1

252 + 112 − 1−1

In 2010, Rhodes suggested α−1
Rhodes = 4αswe = 4mνµ/mνe with Precision Cryptographic

Calculation using the prime sequence to obtain the magic number [34]

α−1 = 4 · 2·32·52·7·11·17·19·31·47·53·59·61·73·79·103·109·113·131·149
2·13·23·29·37·41·43·67·71·83·89·97·101·107·127·137·139·151 (1.20)

= 4× 4.44× 1029/1.52× 1031 = 137.0359991047437444154

However, according to the experimental mνµ/mνe = 0.8019meV/27.45meV = 34.2312,
then α−1

Rhodes = 136.9248.
In 2011, Code gives [35]

L(Φ, ψ) = Φlog(ψlog(Φlog(ψlog(Φlog(ψlog(Φlog(ψ))))))) (1.21)

ψ = 4− 137 + 137(Φ + φ)Im

 i
i
. .
.

1+
1

2+ 1
. . .


where Φ = 1.618033, and φ = 0.618033, and 4 = A−1 − 8A−(4−1(4)=33+ 4

137 + 144000
1209485 ) and

A = e
1
12−ζ

′(−1) = 1.28242712 · · · , then α = L(φ, ψ) = 1/137.03599908573 · · · matches
α2008
QED = 1/137.035999084(51).
In 2012, Schonfeld proposed a simple but less accurate formula α−1 = π4√2mqm/me

with the bare charge equal to [36]

α−1 = π4√2 = 137.757 (1.22)

All the precision study on 137 started after Eddington’s adding-one formula based
on matrix theory in the 1930s. He believed (10 × 10) + (6 × 6) = 136 real matrix and
(10 × 6) + (6 × 10) = 120 imaginary matrix existed in spacetime, and also proposed an
additional matrix to match with the experimental value, then obtained a whole number

α−1 = n2(n2+1)
2 + 1 = 136 + 1 = 137 (1.23)

where n = 4. He later proposed α−1 = 137β1/24 = 137.042 in 1948. [37]
We all learned valuable lessons from the early explorers. After countless efforts, Pauli’s

simplest question still remains unanswered: “Why 137?” [38–42] In his Nobel Lecture
delivered in Stockholm on 13 December 1946, Pauli expressed his goal was to establish a
theory “which will determine the value of the fine-structure constant and will thus explain
the atomistic structure of electricity, which is such an essential quality of all atomic
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sources of electric fields actually occurring in nature.” [43] As the initialization,“... from
a physical point of view, that the existence of atomicity, in itself so simple
and basic, should also be interpreted in a simple and elementary manner by
theory and should not, so to speak, appear as a trick in analysis.” [43] His
lifelong search for 137, a millennium puzzle, ended in hospital room 137. [44]

1-5 The Various Experimental Data
The difficulty of finding the correct α formula is partly due to the uncertainty of the
experimental values - approximately 137.036. Some experimental data of the fine structure
constant is listed in the Table 1.1. [45–50]

�
Table 1.1 The history of the experimental Fine Structure Constant Values

DATE 1/α SOURCE DATE 1/α SOURCE

1916 137.360563948 A. Sommerfeld 1973 137.03612(15) CODATA 1973

1929 137.29 ± 0.11 R. Birge 1987 137.0359895(61) CODATA 1986

1930 136.94 ± 0.15 W. Bond 1998 137.03599883(51) T. Kinoshita

1932 137.305 ± 0.005 R. Birge 2000 137.03599976(50) CODATA 1998

1935 137.04 ± 0.02 F. Spedding et al. 2002 137.03599911(46) CODATA 2002

1941 137.030 ± 0.016 R. Birge 2007 137.035999070(98) G. Gabrielse et al.

1943 137.033 ± 0.092 U. Stille 2008 137.035999679(94) CODATA 2006

1949 137.027 ± 0.007 J. DuMond, E. Cohen 2008 137.035999084(51) D. Hanneke et al.

1949 137.041 ± 0.005 H. Bethe, C. Longmire 2010 137.035999037(91) R. Bouchendira

1957 137.0371 ± 0.0005 J. Bearden, J. Thomsen 2010 137.035999132(9)(6)(33) T. Kinoshita et al.

1969 137.03602(21) CODATA 1969 2011 137.035999074(44) CODATA 2010
�

Many people are trying to fit the latest data mathematically, but fail to understand
that CODATA is a statistic of experimental data and keeps changing. The QED calcu-
lation itself is a supercomputer numeral fitting and also keeps changing. The reality of
experimental data is that the fine structure constant measured using different methods
will create slight differences. [46,48–50]

α−1(MuoniumHyperfine) = 137.0359997(84) [61ppb]
α−1(ac Josephson) = 137.0359875(43) [31ppb]

α−1(QuantumHall) = 137.0360030(25) [18ppb]
α−1(NeutronWavelength) = 137.0360077(28) [21ppb] (1.24)
α−1(AtomInterferometry) = 137.0360001(11) [7.7ppb]

α−1(Optical Lattice) = 137.03599883(91) [6.7ppb]
α−1(Electron g/2QED) = 137.035999084(28) [0.37ppb]

Whether α is variable with time or location in the universe is still in debate. Even
stranger, the high-energy W± boson α(mW) is approximately 1/128 compared with the
fermion zero-energy value of approximately 1/137. [47]

The α value obtained by the electron g-2 QED in (1.24) is an experiment dependent
value, not a theoretical value. Therefore, QED can not offer a true explanation for 137.
The true α must have a mathematical underpinning with an applicable physical definition,
otherwise even the best experiments still can not answer “Why 137?”
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1-6 The Clues from Einstein and Feynman
Einstein was a pioneer on searching for an α math formula started in 1909. He said in
1945: “There are two kinds of constants: apparent and real ones. ... I therefore believe
that such number can be only of a basic type, as for instance π or e ...” [51] In 1954, Turing
wrote “Charge= e

π
arg of character of a 2π rotation” without formulation. [53]

In 1985, Feynman in his lecture “QED: The Strange Theory of Light and Matter”
said: [52]

“If electrons were ideal, ... J would be simply be its “charge” (the amplitude for the
electron to couple with a photon). ...

... J - theoretical numbers that are not directly observable anyway; ...
But no such ideal electrons exist. ... a real electron, which emits and absorbs its own

photons from time to time, and therefore depends on the amplitude for coupling, J . ...
... the observed coupling constant e - the amplitude for a real electron to emit

or absorb a real photon.3 It is a simple number that has been experimentally
determined to be close to −0.08542455. (My physicist friends ... remember it as the
inverse of its square: about 137.03597 ...).

... a magic number that comes to us with no understanding by man ...
A good theory world say the e is the square root of 3 over 2 pi squared, or something.

There have been, from time to time, suggestions as to what e is, but none of them has
been useful. ... Every once in a while, someone notices that a certain combination of
pi’s and e’s (the base of the natural logarithms), and 2 ’s and 5 ’s produces the mysterious
coupling constant, but it is a fact not fully appreciated by people who play with arithmetic
that you would be surprised how many numbers you can make out of pi’s and e’s and so
on. ...

Even though we have to resort to a dippy process to calculate J today, it’s possible
that someday a legitimate mathematical connection between J and e will be found. That
would mean that J is the mysterious number, and from it comes e ” [52]

Fig. 1.1: The electron e− and positron e+ as time reversal in the Feynman diagram

Like Pauli and Dirac, Feynman was never satisfied with any math formula for the fine
structure constant, but he certainly investigated some different approaches:

(1) Studying −α1/2 = −0.08542455 or −α−1/2 = −11.70623667 . . . instead of α =
0.007297 . . . or α−1 = 137.036 . . .. (i.e., the ratio ±e/qPlack instead of e2/~c = (e/qPlack)2).

(2) α1/2 is a simple number as a Lorentz invariant scalar quantity, but not a vector or
a complex number.

(3) α1/2 is the physical coupling constant: a real number for a real electron to emit or
absorb a real photon.

(4) There is a ± sign on α1/2 for the positive and negative charge distinguished by
Franklin in 1750s, which is clearly presented as the time reversal in the Feynman diagram
(Fig. 1.1).

3where e = α1/2 is related to J - “theoretical numbers that are not directly observable anyway” - assumed by Feynman [52]
p128.
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(5) The “magic number” is for the creation of charge and works forever, so that it
could be a math limitation from the infinite series/products, or continued fraction, etc.

(6) α1/2 may be obtained using a certain combination of π, e, 2 and 5 (e.g., the golden
ratio Φ = 1

φ
= 2 cos(π5 )).

(7) There are many π and e combinations which are not unique solutions to this
important unique physical number.4

(8) The α math formula must be useful for solving physical mysteries, mere arithmetic
is not appreciated.

(9) There may be an unique mysterious theoretical number J for the unique physically
measurable ±α1/2.

(10) No ideal electrons exist. A real electron depends on the coupling, J .
(11) QED calculation is “a dippy process”, and we need to probe a legitimate mathe-

matical connection between J and ±α1/2.
Soon after Feynman’s lecture, we noticed a simple formula,

α1/2 ≈ ± log e
Φπ = log e±φ/π = ±1

Φπ ln 10 = 1/ ln 10±Φπ = ±0.0854372111 (1.25)

which yields α = [φ
π

log e±1]2 = 1
136.995532 , out of range of the experimental values. How-

ever, it is embedded with the ± sign and only involves three basic math constants
Φ − φ − e − π in Euler-type Identity e±iπ + Φ = φ (“the most beautiful equation” -
Feynman (Fig. 1.2)). In this paper, we put this type of formula on debate.

Fig. 1.2: Three-dimensional visualization of Euler’s formula - The circular polarization

4Beyond
√

3/2π2 = 0.0877467, we can also get e/π3 = 0.0876687, tan−1(e, π)/π2 = 0.08688410, e+e−1−3 = 0.0861612,
2/e2π = 0.0861571, arg(e + iπ)/2Φπ = 0.084329, and eπ% = eπ

100 = e
10

π
10 = e

2×5
π

2×5 = e
2
π
2

1
(Φ+φ)4 = 0.08539734222, etc.

The last one is close to α1/2 and α−1
eπ% = 137.1233109 with e =

√
α~c = eπ

100
√
~c = e

100
√

π
2 hc in [esu].
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2 Probing of the Fine Structure Constant

2-1 Maxwell Equations and Charge-Pole Quantization
Dimensionless physical constants such as the fine-structure constant α = e2

2ε0hc = 1
137.036

are not simply mathematical coincidences; their values are governed by the deepest nu-
merical theory. [18,53] The true α must have a mathematical underpinning with an appli-
cable physical definition, otherwise even the best experiments still can not answer Pauli’s
question: “Why 137?” [43, 54] Let’s start from the free-space characteristics of the elec-
tromagnetic wave.

In 1856, Weber and Kohlrausch experimentally discovered that 1/√ε0µ0 was very close
to the light-speed c measured by Fizeau in 1849 and confirmed by Foucault in 1962. [55]
This is finally theoretically approved by the Maxwell equations in 1864. [56]

In the geometric algebra Cln with an orthogonal basis G(p, q) consists of ∑n

k=0

(
n
k

)
=

2n = 2p+q elements, such as G(3, 0) for the 3D Euclidean space with 23 = {1⊕3⊕3⊕1}, [57]

{ 1︸︷︷︸
scalar

, e1, e2, e3︸ ︷︷ ︸
vectors

, e1e2, e1e3, e2e3︸ ︷︷ ︸
bivectors

, e1e2e3︸ ︷︷ ︸
trivector

} (2.1)

the Maxwell four-equations are united into a single equation in the SI system

(∇ · E− ρ
ε0

Gauss(E)
) + Ic(∇ ·B )

Gauss(M)
+ I(∇× E + ∂B

∂t
Faraday

)− c(∇×B− 1
c2
∂E
∂t
− µ0J

Ampère−Maxwell

) = 0 (2.2)

i.e., 0 + 0 + 0− 0 = 0 in the light-cone of 4D Minkowski space {x, y, z, ict}. From (2.2),

[1
c
∂t −∇
�

](E + Iµ0cH
F

)− ( ρ
ε0

+ µ0cJ)
=J

= 0 (2.3)

where ∇X = ∇ ·X + I∇×X for spatial vectors X, the pseudo-scalar I2 = −1 commutes
with all spatial vectors; the electric constant ε0 ≈ 8.854187817 . . .×10−12 [ F

m ] = 107

4πc2 [ F
m ] ≈

10−9

36π [ s
mΩ ] and the magnetic constant µ0 = 1.2566370614 . . . × 10−6 [ H

m ] = 4π × 10−7 [ sΩm ],
ε0µ0c

2 = σ0Z0 = 1 with c = 299792458 [m
s ]. Since Ω and 1

Ω are reciprocals in [ H
m ] = [ sΩ

m ]
and [ F

m ] = [ s
mΩ ], the characteristic impedance or conductance of vacuum is the ratio of

electric and magnetic field strength (E,H) or flux density (D,B)

Z0 = µ0c =
√

µ0
ε0

= |E|
|H| = |B|

|D| = 376.730313461 . . . [Ω] (2.4)

σ0 = ε0c =
√

ε0
µ0

= |H|
|E| = |D|

|B| = 2.6544187× 10−3 [S]

where E = D/ε0 [ V
m ] and H = B/µ0 [ A

m ] are the amplitude of the electric and the magnetic
field; D and B are the electric and magnetic flux densities. The electromagnetic energy
density is u = 1

2(E ·D + B ·H) = 1
2(ε0E2 + µ0H2) and E = cB as the Faraday law. The

intensity of radiation S = E×H is called Poynting vector with the right-hand rule. The
asymmetric electromagnetic field E > H (D < B) in Fig. 2.1 is elliptical but near linear
(the ratio of semi-axis is 376.7 : 1 ≈ 5!π : 1)5

5The asymmetric vacuum properties are eliminated in Heaviside-Lorentz units c = ε0 = µ0 = σ0 = Z0 = 1. If
~ = c = 1 then charge e =

√
4πα = 0.302822, which is used in particle physics with a mystery of symmetric broken. The

Lorentz-Maxwell equations use the micro-fields e and h for the single charged particle.

9



Fig. 2.1: Electromagnetic field with E : H = B : D = 376.730 : 1, it is a near linear polarization.

In the electromagnetic field, an electric elementary charge is accelerated by a Lorentz
force Fl = e[E+ (v×B)] without the radiation of photon hν. The elementary charge e is
defined by the Planck constant h and the fine structure constant α with the electromag-
netic properties of free space in (2.4). [58] The α serves as a bridge in the quantum h to
electricity e, relativity c, and vacuum ε0, µ0, σ0, Z0. [59] e2

h
are particle quanta properties

and ε0c are spacetime properties in the fine structure constant. Experimentally,

e = [2αhε0c]1/2 = [2αh/µ0c]1/2 = [2ασ0h]1/2 = [2αh/Z0]1/2
= G0/KJ = 2/KJRK = G0Φ0 = 2Φ0/RK

(2.5)

where KJ = 2e/h = 1/Φ0 = 483597.870(11) × 109 [HzV−1] is the Josephson constant
for the superconductor quantization and RK = h/e2 = 2/G0

def= 25812.807 [Ω] is the von
Klitzing constant for the quantum Hall quantization, G0 = 2e2/h = 7.7480917346 (25)×
10−5[S] is the conductance quanta and Φ0 = h/2e = 2.067833758 (46)× 10−15 [Wb] is the
magnetic flux quanta. From (2.5), the quantum impedance and conductivity are linked
to (2.4) by the fine structure constant

RK = h
e2 = Z0/2α = σ−1

K = 25812.807 [Ω] (2.6)
σK = e2

h
= 2α · σ0 = R−1

K = 3.8740× 10−5[S]
Charged particles with high quantum impedance RK (or low conductivity σK)
are surrounded by a low impedance of free-space Z0 (or high conductivity
σ0), and the coupling constant between two zones (Fermion/Boson) is the fine
structure constant. In this way, a charged particle becomes a space-time light-trap for
the electromagnetic wave. This is the foundation of the photoelectric effect.

The reality of Ohm’s law on the atomic scale is a memristor [60]

M(q) = V (t)
I(t) = dΦm

dQ
= dΦB

dq
= −dΦB/dt

−dq/dt
(2.7)

A memristor is a functional relationship between the time integral of current (related to
charge) and the time integral of voltage (related to magnetic flux). During the study of
137, Dirac proposed charge-monopole quantization eg = 1

2nhc in cgs unit, which can be
expressed as eg = nh in SI unit with n ∈ Z. Resistance is the ratio of electric and
magnetic properties, i.e., R = M(q) as constant ratio of charge and monopole.

R = M(q) = dΦB

dq
= −BdS/dt
−2edN/dt = 1

2N
h

e2
= Z0

4αN = RK

2N = 1
2N

g

e (2.8)

where the magnetic flux dΦB = BdS and RK = g
e . The magnetic coupling constant is

defined by the monopole as βm = g2

~c = ~c
4e2 = 1

4α = σ0
G0

= 34.259, a magnitude for the
unified strong-electroweak coupling constant is defined as αswe = mνe

mνµ
≈ 34.26−1. [61]

10



2-2 Alpha Formula, Charge-sign and Criterion
Feynman talked about α1/2 ∼ −0.08542455 as the number “my physicist friends won’t
recognize...”, [52] because it is better known as α−1 ∼ 137.036. [11] In this paper, we show
how I/FQHE exposes the physical information formula

|α1/2| ≡ ±Mφ

Kπ
≡ log e±1

KΦπ ≡ log e±φ/Kπ ≡ 1
ln 10±KΦπ (2.9)

where M = log e = 1/ ln 10 is used in the logarithmic information entropy S = log ew or
S = ln 10w in units [ban], [hart], [nat], Φ − φ − e − π each only appear once and can be
presented as continued fractions

Φ = 1 + φ = 1 + 1
1+

1
1+ · · · = 1.61803 . . . (2.10)

e = 2 + 1
1+

1
2+

2
3+

3
4+

4
5+ · · · = 2.71828 . . .

π = 3 + 12

6+
32

6+
52

6+
72

6+
92

6+ · · · = 3.14159 . . .

in the Euler-type Identity
e±iπ + Φ = φ (2.11)

From (2.9), one gets

α ≡ e2

2ε0hc ≡
µ0ce2

2h ≡
(

log e±1

KΦπ

)2
≡ log2

(
e±1/KΦπ

)
= log e±φ2

ln 10±K2π2 (2.12)

There are only two types of elemental charge, e− and e+, or their combination 0, distin-
guished by Franklin. [62] Feynman found the time reversal, but the intrinsic difference be-
tween e− and e+ is still a mystery. The elementary charge is related to α1/2 = log e±1/KΦπ

in (2.9). We know Euler’s number (the infinite series was first published by Newton in
1669)

e+1 = Γ (1,−1) =
∞∑
n=0

(+1)n
n! = 2.71828 · · · (2.13)

e−1 = Γ (1,+1) =
∞∑
n=0

(−1)n
n! = 0.36787 · · ·

The ± sign is auto-formed by log e±1 = ±0.43429, where the stable negatively charged
electron involves an alternating series 1

e
= ∑∞

n=0
(−1)n
n! = ∑∞

2n
1
n!−

∑∞
2n+1

1
n! = 1.543080635−

1.175201194 = 0.367879441. The photon is an energy quanta with light-speed c and the
electron is a slower host (αc) during the photon-electron interaction. It is well known
that Euler’s number e is linked to the time related growth or decay (i.e., time reversal),
and to Fibonacci numbers as (alternating ± at the odd factorial term)6

e±1 =

∞∑
k=0

F (1±k)
k!

∞∑
k=0

F (1∓k)
k!

=
1
0! ±

1
1! + 2

2! ±
3
3! + 5

4! ±
8
5! + 13

6! · · ·
1
0! ∓

0
1! + 1

2! ∓
1
3! + 2

4! ∓
3
5! + 5

6! · · ·
(2.14)

In this way, the elementary charge is frozen in time in the quantum theory and embedded
with the± sign using logarithms (i.e., log lim

n→∞
( n
n√
n!)
±1 = log lim

n→∞
(1+ 1

n
)±n = ± log e ). More

6Note φ = lim
n→∞

Fn
Fn+1

, Φ = lim
n→∞

Fn+1
Fn

= 2 cos(π5 ), and Φn = Φn−1 + Φn−2 = ΦFn + Fn−1.
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importantly, e is statistically an algebraic sum of the arrangement ratio (permutation)
between Bosons (spin-1 for photon) and Fermions (spin-1

2 for electron), which compel a
real electron to emit and absorb a real photon. [52,54]

e±1 = (±1)0

0! + (±1)1

1! + (±1)2

2! + (±1)3

3! + · · ·+ (±1)n
n! · · · (2.15)

=
∞∑
n=0

(±1)n
n! =

∞∑
n=0

(±1)n Arrangement of Bosons
Arrangement of Fermions

Bosons are indistinguishable particles, with only one arrangement no matter how many
photons are in the box, while the n distinguishable Fermions (Pauli Principle) must have
n! arrangement. [64] In (2.15), the negatively charged electron has an alternating series,
while the positively charged particle takes a normal series.

The arbitrary charge sign + or −, given by Franklin in 1750, is interpreted by us-
ing the different intrinsic statistics in (2.13)-(2.15). It self-dictates the ± sign for the
charge conservation, e.g., the annihilation of electron and positron (e− + e+ = 2γ) or the
formation of a Cooper pair (e− + e− = 2e−).

e± + e∓ = (2σ0h)1/2 log e±φ/Kπ∓φ/Kπ = 0 (2.16)
e± + e± = (2σ0h)1/2 log e±2/KΦπ = 2 · e±

(2.16) sets up a simple criterion for the α1/2 math formula. The elementary charge is
a quanta for an electron particle in the point charge model, and the math formula of
α1/2 must allow for an algebraic sum. Charge sign with intrinsic characteristics
and conservation are three simple criterion for approving the α1/2 math formula. This
criterion can be used to exclude those mathematical coincidences of the 137 formulas.

2-3 I/FQHE and Variable Charge-Pole Ratio
The elementary charge changes the vacuum property of an electromagnetic field. In fact,
4α = 0.02918941 = 1/34.259 for the strong interaction is equal to the conductivity ratio

4α = G0

σ0
≡ 2 · e2

σ0h
≡ 2Z0e2

h
≡
(

2
π

log e±1

KΦ

)2

(2.17)

where the conductance quantum G0 = 2e2/h is related to the von Klitzing constant
RK = h/e2 of IQHE in the weak magnetic field. [65] FQHE is still only incompletely
described by the theories of 2DEG, Composite Fermion, Topological Order, Anyon, and
so on. [66–71] The acid test for (2.9) is whether it can give a good interpretation of the
FQHE of GaAs-GaAlAs in the strong magnetic field near 0 K (Fig. 2.2). This long and
hard procedure is absolutely necessary to establish and confirm the basic structure of the
fine structure constant math formula in (2.9).

Quantum Hall conductance σxy = 1/Rxy is equal to eN/B and the variable reciprocal
von Klitzing constant RK/νi, one whole charge e for conducting and another cycling
fractional charge eν for the variable external magnetic field B.

σh/e
xy = 1

Rxy

= ±eN
B

= ±1
RK/νi

= ±e
h/(νie) = ±e

h/eν
= ±e

Φν
(2.18)

where N ∼ 1011 [cm−2] is the 2D charge density; eν = νie is the fractional charge; Φν =
h/eν is a quantized variable linked to the external variable magnetic field B in [Tesla] and
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to the magnetic flux quanta Φ0. Coupling of holes (+) and electrons (−) are found on
InAs/GaSb, and graphene at room-temperature. [72, 73] The existence of quasi-electron
and quasi-hole states carrying fractional charge eν are experimentally confirmed. [74] In
(2.18), the conducting multi-charges eN are treated as a single charge e, and another
cycling charge e is further rearranged as an assembling charge eν , in either Integers or
Fractions. In (2.18), only the divisors (Rxy, B, νi, eν , Φν) are variables. Rxy = 1/σxy is
proportional to Φν and inversely proportional to νi (Fig. 2.2).

Fig. 2.2: I/FQHE resistance plateaus measured in GaAs-GaAlAs with a perpendicular magnetic field
B [T]. Rxy = 1/σxy is linked to a conducting charge and the cycling fractional charge is restructured by
the external magnetic field B [T].

Physically, due to Lorentz force, it is easy to assume that if more cycling electrons
are trapped in higher external magnetic fields B, decreased charge density N makes
Rxy increase. Therefore, the cycling fractional charge eν is not for conducting, but is
rather allied to the variable external magnetic field B. From Dirac monopole-charge
quantization, the elementary conductance σ = e

g
= e2

h
= e

2Φ0
(or the elementary resistance

(i.e., the von Klitzing constant) RK = g
e = h

e2 = 2Φ0
e ) is the ratio of the elementary charge

and the magnetic monopole. From (2.8) and (2.18)

σh/e
xy = 1

Rxy

= ±νie
2

h
= 2νiα

Z0
= 2νiασ0 = ±νi

e
g

= ±pie
qig

(2.19)

In (2.19), if νi = 1/3 then the denominator is 3g. The divisor of the fractional charge
is equivalent to the multi-poles, and the dividend of the fractional charge is the multi-
charge. The filling factor νi is a variable of the charge-pole ratio. Under extremely low
temperature, the Ga-As-Al nucleus in I/FQHE must respond to a high magnetic field.

2-4 Self-generation of Filling Factors
The filling factors νi obtained from many experiments of the IQHE and FQHE are

νI = n, · · · 8, 7, 6, 5, 4, 3, 2, 1 (2.20)

νF = 1
3 ,

2
5 ..

2
3 ,

3
5 ..

p

2mp± 1 ..
1
2 ,

1
4 ..

4
11 ,

6
13 ..

pi
qi
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where n, m, and p are all integers, and pi/qi is a fraction. Current FQHE theories are all
based on the arbitrary fractional filling factors but not self-generated.

Next, let’s see if the filling factor νi can be self-generated by the math formula of α1/2

in (2.9). Since e = (2σ0hα)1/2, the fractional charge | ± eν | = νi| ± e| is proportional
to a fractional fine structure constant |α1/2

ν | = νi|α1/2|. Both νi and α are dimensionless
numbers. Modifying the Wallis products (1656) for the π

2 in (2.17) [75]

π

2 = 2
1

2
3

4
3

4
5

6
5

6
7

8
7

8
9

10
9

10
11 · · · =

∞∏
p=1

124
(

p

2p− 1

)(
p

2p+ 1

)
(2.21)

=
(2

1
2
3 �

6
5

6
7 �

10
9

10
11 � · · ·

)
·
∞∏
p=1

224
(

p

2 · 2p− 1

)(
p

2 · 2p+ 1

)

=
(2

1
2
3

4
3

4
5 �

8
7

8
9

10
9

10
11 � · · ·

)
·
∞∏
p=1

324
(

p

2 · 3p− 1

)(
p

2 · 3p+ 1

)

=
∞∏

n,m,p=1
n24

(
p

2mp− 1

)(
p

2mp+ 1

)

where � shows where the twin-fractions are taken out, and n may or may not be equal
to m. From (2.9)

α−1/2 = KΦπ
M

= 2KΦ
M

∞∏
p=1

n24 ·
(

p

2mp− 1

)(
p

2mp+ 1

)
(2.22)

=
(

p

2mp± 1

)2KΦ
M

∞∏
p=1

n24 · · ·


=
(

p

2mp± 1

) [
α−1/2
ν

]
= νi · α−1/2

ν

or taking out n in (2.22) as the integer n in (2.20), it yields

|α1/2
ν | =

(
n p

2mp+1
p

2mp−1 n

)
·
∣∣∣α1/2

∣∣∣ = νi ·
∣∣∣α1/2

∣∣∣ (2.23)

From (2.17), (2.18) and (2.23), 2D Hall conductivity σxy is linked to the vacuum conduc-
tivity σ0 by the filling factors νi and the fine structure constant α

σxy = ±2α1/2α1/2
ν ε0c = ±2νiασ0 (2.24)

i.e., Rxy = ±Z0/2α1/2
ν α1/2 = ±Z0/2νiα where Z0 = µ0c = 2αh/e2 = 376.730313461 [Ω].

Therefore, a good FQHE theory must expose the details of the α information. This gives
a clue for derivation of the fine structure constant math formula.

Why does the FQHE only choose 4 [p/(2mp− 1)] [p/(2mp+ 1)] or 4nn in the Wallis
formula? This is because a complex product for the real part of two complexes (z1, z2) is
equal to 4Re(z1)Re(z2) = (z1+ž1)(z2+ž2), where z1 = (x1+iy1)eiωt and ž1 = (x1−iy1)e−iωt
are the complex conjugates. It needs 4nn or 4 [p/(2mp− 1)] [p/(2mp+ 1)] in (2.22).
According to Laughlin, the wave function for a filling factor νi = 1/M is [70]

ΨM (z1 · · · zN) =
N∏
j〈k〉

(zj − zk)M exp
−1

4
1
l20

N∑
j

|zj|2
 (2.25)
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where zj = xj + iyj is a complex number representing the position of the jth particle on
the plane, l0 =

√
~/eB =

√
h/2πeB is the magnetic length, and M is an odd integer to

satisfy the Pauli principle. 4 is also in the exponential term in (2.25).

Fig. 2.3: I/FQHE resistance plateaus measured in GaAs-GaAlAs with a perpendicular magnetic field
B [T]. The enlargement shows the FQHE-2, IQHE, RIQHE, VLFF-VLF.

In Fig. 2.3, we have Rxy = 1/ν in [h/e2] unit, where the filling factor νi is arranged
from largest to smallest, when B is increased from 0 to 40 [T]. These filling factors νi
are a summation of many experimental reports, which are grouped as IQHE, RIQHE,
FQHE-1, FQHE-2, Very Low Filling Factors in Very High Field, the even-denominator
fraction, etc.

Charge coupling combines the IQHE and FQHE, i.e., the algebraic sum of νI and νF
in (2.20) and (2.23)

νi = νn,m,p = ±n± p
2m·p±1 = (±2nm±1)·p±n

2m·p±1 ⇒ a·p±b
c·p±d = A · p (2.26)

IQHE FQHE FQHE−1 FQHE−2

where n = 0, 1, 2 . . ., m = 1, 2, 3 . . ., and p = 1, 2, 3 . . .; a = ±2nm± 1, b = n, c = 2m · p
and d = 1. Next, we give some νi examples of (2.26) to compare with Fig. 2.2 and Fig.
2.3.

Let n = m = +1 and p = 1, 2, 3 . . . (the limits are 3
2 and 1

2)

ν1,1
+− = 2, 5

3 ,
8
5 · · ·

(
3p−1
2p−1

)
· · · [5→ 7 [T]] (2.27)

ν1,1
++ = 4

3 ,
7
5 ,

10
7 · · ·

(
3p+1
2p+1

)
· · · [7← 10 [T]]

ν1,1
−+ = 2

3 ,
3
5 ,

4
7 · · ·

(
p+1
2p+1

)
· · · [15→ 20 [T]]

ν1,1
−− = 0

=
, 1

3 ,
2
5 · · ·

(
p−1
2p−1

)
· · · [20← 30 [T]]

Let n = 2, m = 1, and p = 1, 2, 3 . . . gives the RIQHE region between ν = 2 − 3 (the
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limits are 5
2 and 3

2 , at 4→ 10 [T])

ν2,1
+− = 3, 8

3 ,
13
5 · · ·

(
5p−2
2p−1

)
· · · (2.28)

ν2,1
++ = 7

3 ,
12
5 ,

17
7 · · ·

(
5p+2
2p+1

)
· · ·

ν2,1
−+ = 5

3 ,
8
5 ,

11
7 · · ·

(
3p+2
2p+1

)
· · ·

ν2,1
−− = 1, 4

3 ,
7
5 · · ·

(
3p−2
2p−1

)
. . .

Let n = 0 and m = 2, with a limit of 1
4 (30→ 40 [T]) [76]

ν0,2
− = 1

3 ,
2
7 ,

3
11 ,

4
15 · · ·

(
p

4p−1

)
· · · (2.29)

ν0,2
+ = 1

5 ,
2
9 ,

3
13 ,

4
17 · · ·

(
p

4p+1

)
· · ·

Let n = 1 and m = 2, with a limit of 3
4 (10→ 15 [T])

ν1,2
++ = 1, 4

5 ,
7
9 · · ·

(
3p+1
4p+1

)
· · · (2.30)

ν1,2
−− = 2

3 ,
5
7 ,

8
11 · · ·

(
3p−1
4p−1

)
· · ·

For both the IQHE and FQHE, Hall resistance usually increases when filling factor νi de-
creases. RIQHE at n > 1 shows the alternating switch between the IQHE and FQHE. [77]
From (2.27) to (2.30), all neighboring fractions obey a transition rule |piqi+1 − pp+1qi| = 1
(except 0, it is also invalid between the limitations).

The even-denominator in the FQHE should not really exist if it is due to limitations
(e.g., 5 × 108/109 + 1) ≈ 1

2 6=
1
2). [77] However, the even-denominator fraction occurs in

RIQHE and FQHE,7 and works with neighboring νi as |ad− cb| = 1 (e.g., 1
2 with 1

3 or 2
3

will have 3 − 2 = 4 − 3 = 1); they are yielded by Euler’s infinite product rearranged as
same as (2.21) ~ (2.23).

π

2 = 3
2

5
6

7
6

11
10

13
14

17
18

19
18

23
22 · · ·

[
all odd prime

discrete even

]
(2.31)

π

4 = 3
4

5
4

7
8

11
12

13
12

17
16

19
20

23
24 · · · =

(1
2

3
2

)(1
2

5
2

)(1
4

7
2

)(11
2

1
6

)
· · ·

The even-denominators also appear in graphene, and may work for fault-tolerant quantum
computations. [78] In fact, each of the even-denominator fractions are linked to multi-pairs
of approximate boson-like states, where Rxx 6= 0 to form the wide bridge on the H-shaped
minima. Due to this effect, Rxx 6= 0 may occur when B = 0 in the IQHE. They can
be photon-induced to ZRS in a sample with an ultra-high mobility (µ > 107 [cm2/Vs])
or with a long free path (λ > 300µm), which is also the necessary condition for the
FQHE. [79,80]

It is interesting that the pair (1
3 ,

2
5) in (2.27) creates a secondary fraction and generates

several higher order filling factors ( 4
11 and 5

13). [81] It can be 3p±1
8p±3 or 3p±2

8p±5 , both produce a
limit of 3

8 . [82] The pair (2
3 ,

3
5) in (2.27) has fractions 7

11 and 8
13 produced by 5p±2

8p±3 or 5p±3
8p±5

with a limit 5
8 . We can get other secondary fractions in a similar way. Double solutions

in Composite Fermion must have different physical construction for FQHE-2. [67] The
interpretation of the fractional fine structure constant avoids this contradiction.

7 ν(2n±1)/2 = 1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 · · · ; ν(2n±1)/4 = 1

4 ,
3
4 , · · ·

17
4 ,

19
4 · · ·
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2-5 General Criterion of Filling Factors
The geometrical Ford circles on the edge (Fig. 2.4(a)) follow the Pythagoras Theorem.
[83] The general formula of all neighboring fractions a/c and b/d obeys

ν = a · p± b
c · p± d

=
[
a b
c d

]
· p = A · p (p = 0, 1, 2 . . .) (2.32)

It yields a limit of a/c with the initial fraction b/d, where c is an even number; d is the
odd-denominator of the initial neighboring fraction. a, b, c, and d in the 2 × 2 matrix
A must satisfy det A = ad − cb = ±1. The determinant of 2 × 2 Pauli metrics have
the same criteria det(σi) = −1. Equation (2.32) belongs to the special linear group
SL (2,R) and |ad− cb| ≡ 1 is an universal rule wherever the π/2 fraction occurs. The
quantization by using the quantum group SL(2,R), the moduli space of SU(2) connections
(2⊗ 2 = 3⊕ 1) on the 2-dimensional torus, Möbius transformation, Continued Fraction,
Weyl quantization and Lie group GL2(R) are all mathematically connected. [84] In the
continued model, y = (ax ± b)/(cx ± d) is an equilateral hyperbola as shown in Fig.
2.4(b), with the rectangular center point at (−d/c, a/c).

Fig. 2.4: (a) Ford circles for describing the gaskets on edge. Enlargement shows Pythagoras’ Theorem.
(b) The equilateral hyperbola for y = (ax± b) / (cx± d) with a rectangular center G at (−d/c, a/c).

VLFF-VHF and RIQHE states in Fig. 2.3 are a good evidence of this transition rule
det A = ad− cb = |piqi+1 − pi+1qi| = ±1.8 [85–87]

νRIQHE =


4
1

19
5

4
1

(
7
2

)
3
1

16
5

3
1

3
1

8
3

3
1

(
5
2

)
2
1

7
3

2
1

(2.33)

Although a doped semiconductor is not a perfect crystal and may not have all the
fractions in one sample, the 256 inequalities of experimental filling factors νi in many
I/FQHE experiments show that a/c > b/d satisfies

det
(
a b
c d

)
= ad− cb = ±1 (2.34)

8e.g., 4× 5− 1× 19 = 20− 19 = 1. It is also valid in the quantum interference of the 2D electron collision.
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and there is a symmetric pattern of even-denominators in 256 νi, which is graphically
illustrated in Fig. 2.5 on the order from the highest to the lowest filling factor (i.e.,
νn > νn+1).9 [88]

Fig. 2.5: The symmetric pattern of even-denominators in 256 νi

This is the reality, behind all of the confusing fractions of I/FQHE, linked to Euler’s
convergence improvement transformation of π/2 10

π

2 =
∞∑
n=0

n!
(2n+ 1)!! = 1 + 1

3 + 1
3 ·

2
5 + 1

3 ·
2
5 ·

3
7 + 1

3 ·
2
5 ·

3
7 ·

4
9 · · · (2.35)

=
∞∑
n=0

n! [2nn!]
(2n+ 1)! =

∞∑
n=0

n!(2n)!!
(2n+ 1)! = 1 + 1

3�
��@
@@

(
1+2

5
(
1 + 3

7
(
1 + 4

9
(
1 + · · ·

))))
where all neighboring fractions obey |ad− cb| ≡ 1 (e.g., 2× 3− 1× 5 = 1).

Without a doubt, the filling factor νi of 2D fractional charge comes from the 2D
geometrical constant π, due to the nucleon electric field of spherical symmetry being
broken by an external magnetic field. However, the π in ν = 2πl20N is canceled by the π
in l20 = ~/eB = h/2πeB that has no donation to νi, and there is no π in σxy = νe2/h or
e = [2αε0hc]1/2 = [2αh/µ0c]1/2 = [2ασ0h]1/2 = [2αh/Z0]1/2. The I/FQHE experiment
clearly shows that the α1/2 formula must contain log e±1 for ± sign and 1/π for
νi. If there is log e±1 and 1/π in the α1/2 formula, from log e±1

πα1/2 = 1.618273, one can
easily get φ or Φ, then get K ∼= 1. This is a strong authorization of (2.9), a simple
physical explanation of I/FQHE, beyond the current unsatisfactory theories.

Unlike α being the interaction of two-charges, α1/2 is the ratio of elementary charge
e [esu] and Planck charge qP =

√
~c for a single-charge quantization. It has one value

9Any new fractions can be easily added into the table according to (2.25), e.g., possibly 19/8 between 12/5 and 7/3.
102nn! = (2n)!! = 2 · 4 · 6 · · · (2n) even product, (2n+ 1)!! = 1 · 3 · 5 · · · (2n+ 1) odd product
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but many formats, φ− e− π each appear only once naturally in (2.9). Theoretically, the
information entropy requires log e instead of log Φ or log π, so nature takes the minimum
from e1/Φπ < eΦ/π < eπ/Φ < eΦπ to build (2.9). The fact that so many applications involve
φ− e−π, however, prompted nature to adopt another exclusive number from the infinite
natural numbers (1, 2, · · · ,∞) to pin-down K and the value of α1/2 in (2.9). Logically,
an exclusive K ∼= 1 should use the same math format as Φ − φ − e − π in (2.10). From
α−1 ≈ 137.036 · · · , K ≈ 1.00014768 . . . as continued fraction

K(J) = 1 + 1
J+

1
J+

1
J+ · · · = [1, 6771] (2.36)

where J = 3× 37× 61 = 6771 is the “the mysterious numbers” for α1/2 assumed by
Feynman (see 1-6). [52]

2-6 Sphenic Number and Double Factorial
The true α must be a theoretical math solution because even the best experimental data
can not answer the simplest question: why did nature choose this number instead of
other numbers? In order to determine the theoretical value of α, one needs to work
on the J of K(J) in (2.36). The sphenic number J = 6771 = 3 × 37 × 61 is ex-
perimentally safeguarded by 137.03599 ± 0.000125 (137.035865 < α−1 < 137.036115).
Möbius function µ(n) =

gcd(k,n)=1∑
1≤k≤n

ei2πk/n is the sum of the primitive nth roots of unity, with

µ(3) = µ(37) = µ(61) = −1 and µ(6771) = (−1)3 = −1. A set of sphenic numbers
{1, 3, 37, 61, 111, 183, 2257, 6771} obeys

{1, p, q, r, pq, pr, qr, pqr} (2.37)
where a sphenic number J = p×q×r. (2.37) is similar to the standard basis of geometric
algebra in (2.1). Elementary charge is a special relativity invariant and independent of
time. However, where do these 3, 37, 61 come from? How can we link them to the
quantum theory?

The infinite prime double factorial equation

P(p) = 2(p−1)(p− 1)! + 1
p

= 2(p− 1)!! + 1
p

(2.38)

only has three solutions as prime sets P (p) = {�2, 3, 6.9× 1050, 1.5× 1098}11 when
p = {�1, 3, 37, 61}12. (2.38) covers the entire prime set (2, 3, 5, 7, 11 · · · ,∞), and is
similar to the Wilson quotient W (p) = [(p− 1)! + 1] /p. The prime double factorial set
{A} = 2(p−1)(p − 1)! = [2(p− 1)]!! is a subset of set {B} = 2nn! = (2n)!! ({A} ⊆ {B}).
2nn! = (2n)!! is equal to the total permutation Γ(n + 1) = n! times the sum of k-
combination 2n (binomial coefficient of Pascal’s triangle)13

2nn! = (2n)!! = 2 · 4 · 6 · · · 2n (2.39)

= Pn
n∑
k=0

Cn
k = Pn

n∑
k=0

(
n

k

)
= 2nΓ(n+ 1) = 2nnΓ(n)

11P (37) = 6.9× 1050 = 690896939629347629014331483828706966091078572972973

P (61) = 1.5× 1098 = 157269589866163720571999015535562658773483441682104752399411380250726154024406751104419672131147541
12M. Bouayoun, http://oeis.org/A091824 (2004). Note 1 is not prime,
13(2n)!!= (2n)!

(2n−1)!! = (2n+1)!
(2n+1)!! =(2n+1)!!

´ π/2
0 sin2n+1 θdθ=2n( 2

π )sin2(nπ)/2(n−1)!!n!!
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Fig. 2.6: Gamma Function and Hankel contour integral

Since it involves the Gamma function Γ(z) = 1
z

∞∏
n=1

[(1 + 1
n
)z/(1 + z

n
)] (z 6= −n) and

Γ(n + 1) = n! in Fig. 2.6, the graphic pattern of (2n)!! is similar to the Γ(n2 + 1) with
poles at −(2n + 1) < −2 (n = 1, 2, · · · ). The reciprocal Gamma function is a Hankel
contour-integral 1

Γ(z) = 1
2πi
¸
C
et · t−zdt (|argt| < π) starting from t = −∞ and circling

clockwise around the origin 0 before going back to −∞ (similar to an electron absorbing
and emitting a photon), and has a simple pole at z = −n for every natural number and
zero n; the residues are given by Res (Γ,−n) = (−1)n /nΓ(n) = (−1)n /n!, and the sum
of the residues of these poles equals

∞∑
n=0

Res (Γ,−n) =
∞∑
n=0

(−1)n
n! = 1

e
= 1− 1

1+
1

2−
1

3+
1

2−
1

5+
1

2−
1

7+ · · · (2.40)

∞∑
n=0

(−1)n

Γ(n) = ln e×
∞∑
n=0

(−1)n

n! = ln
e 1

0!

e
1
1!

e
1
2!

e
1
3!

e
1
4!

e
1
5!
· · · e

1
(2n)!

e
1

(2n+1)!
· · ·

 = e−1

which is used as Γ (1,+1) = 1/e = 0.367879 . . . for the negative charge electron in (2.13).
There are no poles at z > 0, so e = 2.71828 . . . does not exist (it also must be written
as e+1 = ln(e 1

0! e
1
1! e

1
2! · · · e

1
(2n)! e

1
(2n+1)! · · · )).14 Asymmetry of the Gamma function may

correspond to the absence of Positrons in nature. For the natural numbers n > 0, (2n)!!
yields {2, 8, 48, 384, 3840, 46080, 645120, 10321920, 1.86×108, 3.72× 109, . . .}, where the
subset of [2(p− 1)]!! is shown underlined.

Binomial distributions for p = q = 1
2 involve (2k)!! and [2(n− k)]!!

P (k) = n!
k!(n− k)!p

kq(n−k) = n!
(2k)!![2(n− k)]!! (2.41)

(2n)!! = 2nn! appears in the spherical Bessel function for electromagnetic waves, and
in the Hermite polynomials for the eigenfunctions of the quantum harmonic oscillator
with an eigenvalue of En = (n+ 1

2)~ω, (n = 1, 2, 3 . . .)

ψn (x) =
(
2nn!
√
π
)−1/2

ex
2/2 d

n

dxn
e−x

2 (2.42)

The orthogonal Hermite polynomials have H(n)
n (x) = 2nn! and

ˆ ∞
−∞

Hm (x)Hn (x) e−x2
dx =

0 (m 6= n)
2nn!
√
π (m = n)

(2.43)

14The Fransén-Robinson Constant for the contentious Gamma function F =
´∞
0

dx
Γ(x) = 2.807772420 does not equal

e =
∞∑
n=0

1
Γ(n) = 2.718281828 for the discrete Gamma function, where 1

Γ(x) = xeγx
∞∏
n=1

{(
1 + x

n

)
e−x/n

}
and F − e =

´∞
0 {e

x[π2 + (lnx)2]}−1dx = 1
π

´ π/2
−π/2 exp(π tan θ− exp(π tan θ))dθ = 0.08948841. We get α−1/2

W′ = Φπ
logF = 11.3372868 and

α−1
W′ = ( Φπ

logF )2 = 128.53407 for the W-boson at high energy scale.
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2nn! also appears in the Rodrigues’ formula as 2ll!

Pl (x) = 1
2ll!

dl

dxl

(
x2 − 1

)l
(2.44)

2ll! =
[
dl

dxl

(
x2 − 1

)l]
x→1

which is linked to the associated Legendre polynomials in spherical harmonic expansion,
to solve the Schrödinger equation (yielding l = 0, 1, 2 . . . (n−1), andm = 0, ±1, . . .± l)

P
|m|
l (x) = (−1)m

2ll!
(
1− x2

)|m|/2 d|m|

dx|m|
Pl (x) (2.45)

= (−1)m
2ll!

(
1− x2

)|m|/2 dl+|m|

dxl+|m|

(
x2 − 1

)l
where (−1)m is the extrinsic parity of the spherical harmonics. The spherical harmonics
are defined by

Y m
l (θ, φ) ≡

√√√√2l + 1
4π

(l −m)!
(l +m)!P

m
l (cos θ)eimφ (2.46)

which obeys Y −ll (θ, φ) = 1
2ll! ·

√
2l+1
4π sinl θe−ilφ, Y 0

l (θ, φ) =
√

2l+1
4π Pl(sin θ) and Y −ml (θ, φ) ≡

(−1)mY m

l (θ, φ). It is used for solving the Schrödinger equation for the atomic electron
configuration (Fig. 2.7). It can be further extended with the Condon-Shortley phase as
Ylm ≡ (−1)mY m

l , and the Spin-weighted spherical harmonics as sYlm =
√

(l∓s)!
(l±s)!ðYlm.

Fig. 2.7: The above illustrations show |Y ml (θ, φ)|2 (lift), Re [Y ml (θ, φ)]2 (middle) and Im [Y ml (θ, φ)]2

(right).

Orthogonal polynomials were initially considered for continued fractions. Their in-
ner products in Hilbert space obey 〈ψn, ψm〉 = δnm and form the quantum numbers
(n, l, m, ms). In the Path-Integral methods of QED, according to Weinberg, 2nn! is
also used in the Gaussian Multiple Integrals.

In reality, they all involve spherical symmetry; the Wallis π/2 formula in 1656
was linked to 2nn! = (2n)!!, and to all odd primes {3, 5, 7, 11, . . .} by Euler in 1737, with
the countless variations
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9
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11 · · · (Wallis−1656) (2.47)

=
[

(2n)!!
(2n+1)!!

]2
=
[

2nn!
(2n+1)!!

]2
{ even
odd
}2

=
∞∏
n=1

2n
2n−1 ·

2n
2n+1 =

∞∏
n,m,p=1

4n2· p
2mp−1 ·

p
2mp+1

π
2 = 3

2
5
6

7
6

11
10

13
14

17
18

19
18

23
22 · · · (Euler−1737)

=
∞∏
n=2

pn
pn+(−1)(pn−1)/2 { odd prime

even
}

where n may or may not equal to m. The infinite product of Wallis has a consecutive
sequence whereas Euler’s has a discrete sequence in (2.47). In this way, Quantum theory
does indirectly involve the discrete prime sequence.

2nn! also appears in a n-dimensional complex spheres, V (Dn) = 2πn/2nn! = 2πn/(2n)!!,
[16] and still exists in the power series of the complete elliptic integral of the first and
second kind. The spherical harmonic field gradually stretches into an elliptic and linear
field if a particle moves at very high-speed or light-speed c: © · · · _ · · · ←→. 15

2nn! disappears in light-speed, therefore, a photon has neither charge nor mass. Spheri-
cal harmonics are fundamental in physics theories and applications, such as the electron
configuration, gravitation or electromagnetic field theories.

Fig. 2.8: In Nature, odd and even numbers are equally distributed, which makes π as the coupling
constant of odd and even numbers in (2.47), i.e., 2(2 · 4 · 6 · · · )2 = π(1 · 3 · 5 · · · )2 or prime~even (2 · 3 · 5 ·
7 · 11 · 13 · · · ) = π(2 · 6 · 6 · 10 · 14 · · · ). The even number double factorial set {(2n)!!} contains a subset
{[2 (p− 1)]!!}. The prime double factorial equation (2.38) yields a odd prime set {3, 37, 61}, making the
unique sphenic number (22 − 12)(43 − 33)(53 − 43) = 3× 37× 61 = 6771 for the exclusive fine structure
constant, where the even/odd numerical symmetry is broken.

Spherical harmonics involve 2nn!, and (2.38) with 2(p−1)(p − 1)! yields an odd prime
set {3, 37, 61} which produces the sphenic number 6771 (Fig. 2.8), where even/odd
numerical symmetry is broken. 6771 = 3× 37× 61 to a sphere is just like the stem on an
apple. It denotes a unique point on an otherwise perfect sphere. The uniqueness of the
fine structure constant is based on this even/odd numerical symmetry breaking. Perhaps
coincidentally, 37×61

2×3 = 376.166 is close to the value of vacuum impedance.
15Special relativity will gradually distort the spherical harmonics. The relativistic Dirac equation can be solved by

symmetric distortion, i.e., the wavefunction of non-Spherical harmonics which involves 2lk! instead of 2ll!. However, charge
only disappears at light speed, i.e., photon. The Dirac equation is for fermions running at very high-speed. In polar
coordinates, a conic section r = l/(1 ± e cos θ) where l = 0 is a point (origin O), if l > 0 then varying e ∈ {0, (0 < e <

1), 1, (1 < e <∞), ∞} gives a circle (e = 0), ellipse (0 < e < 1), parabola (e = 1), hyperbola (e > 1) or line (e→∞).
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Since the dimensionless α is exclusive in physics, is there a corresponding
natural number in math? Here we show J = 6771 is the exclusive number
for the exclusive fine-structure constant.

2-7 Variability of the Fine Structure Constant
We are not looking for a simple numeral solution but an explainable math-physical expres-
sion. The α variability has been discussed using two approaches: (A) In the zero-energy
limitation for fermions, the value is fluctuated around α−1 = 137.036; (B) In the high-
energy running coupling as the electroweak unification in the beta-function, it appears in
different values α−1

W ∼ 128.952 for high-energy W± boson. Let’s first discuss (A).
(2.9) is a physical equation with the information units [ban], [hart], [nat]. In fact,

K = [1, 6771] in (2.36) can be a limitation of the π-form continued fraction K(J,H) =
1 + 1H

J+
3H
J+

5H
J+ · · · when H = 0. The value of K2(J, H) has the same pattern with α−1

(4K2(J,H) = 6.1 × 10−7 in Fig. 2.9). We can get the discrete experimental data by
variation of H (4α/α = 6.1× 10−7 in Fig. 2.9). For example, let H = 2

9π(e+1 + e−1)2 =
4π sin2 θw cosh2(±1) then α−1

6.649 = 137.03599907395 to match α−1
2010 = 137.035999074 (44)

(inside the little green circle in Fig. 2.9). In this way, (2.9) gives the origin and the range
of domain for α, including the values of CODATA.

Fig. 2.9: Plot of K2(J,H) ∼ nairr , α−1 and α vs variable H with the compiled reports.

The values of CODATA come from selective reports based on the statistic average of
discrete data. [48, 89] The CODATA recommended values constantly change and never
exclude other experimental data. There are many real experiments yielding slightly dif-
ferent values of α−1 = K2(J,H) ·Φ2π2 ln2 10 = c

ve
, where ve is the velocity of the electron

in the first “circular” Bohr orbit. Unfortunately, no report has been given on the reasons
for differences arising in controlled experimental conditions.

As we discussed in the section of (2-1), the fine structure constant is the coupling
constant of two zones (electron/space). In the determination of the elementary
charge, the early Millikan oil-drop experiment involved Stokes law with the viscosity of air.

23



[90] In Fig. 2.9, the variable region of K2(J,H) is approximately equal to the refractive
index of air nairr = c

vp
= (εairr ·µairr )1/2 = 1.00029507±2.4985×10−7 (red-bar in Fig. 2.9),

where εairr = 1.00058986±0.00000050 and µairr = 1.00000037 are the relative permittivity
and permeability of air (N2(78.084%) + O2(20.946%) + · · · in e-e covalent bond). [91]
Physically, the effective K(J,H) ∼ n1/2

r = (µe2
r · εe2

r )1/4 is for the single electron. There is
a single peak at 0 ≤ H . α−1 in Fig. 2.9. Therefore, a modified (2.9) can be linked to the
effective electric charge that has been widely discussed in the low-energy physical theory.
According to Feynman, “But no such ideal electrons exist. ... a real electron, which emits
and absorbs its own photons from time to time, and therefore depends on the amplitude for
coupling, J .” [52] The refractive index is equal to the ratio of light-speed in a vacuum and
medium. Charge quantization begins during the photon deceleration of light-speed. It is
logical to think that the gas model of the electron in an atom breaks the vacuum space-
time symmetry. We have proved that electrons are the charged oscillators in blackbody
radiation. [13] We also shown that the fine structure constant is the corner-store in the
quantum theory. [92] However, many factors can make the quantum fluctuation of the
macro-refractive index, such as density (pressure, temperature, ...), impurity absorption
(CO2, H2O, ...), and so on. The refractive index of a solid or liquid is more complicated
as a tensor, which involves a disturbance of the field and the positions and velocities of
the charged particles (electrons) within the material. It is noticed that the monatomic
gas of 133C6S1

s with the single 6S1 electron in the photon-recoil measurement of atom
interferometry yield α−1(AtomInterferometry) = 137.0360003(10), which is close to the
theoretical limitation in Fig. 2.9. [93] We need more precision controlled data for the
solo photon-electron micro-refractive index.

2-8 Information and Physical Reality
Feynman lectured that “the observed coupling constant e - the amplitude for a real

electron to emit or absorb a real photon. It is a simple number that has been
experimentally determined to be close to −0.08542455. . . . a certain combination of pi’s
and e’s (the base of the natural logarithms), and 2 ’s and 5 ’s produces the mysterious
coupling constant...” [52]

Here we propose (2.9), alike Feynman’s hunch, based on Φ− φ− e− π in a modified
Euler identity in (2.11) and 6771 = 3 × 37 × 61 from (2.38), as a simple and physically
understandable unique α math formula, which yields the mystery of 137 as

α−1
0 ≡ (±K0Φπ ln 10)2 ≡ [±K0 · 5 · ln 10 ·

∞∏
n=1

(10n)2

(10n−1)(10n+1) ]
2 (2.48)

= {±[1, 6771] · 10 · tanh−1
(

10−1
10+1

)
·
∞∏
n=1

(10n)2

(10n−1)(10n+1)}
2

= {±[1, 6771] · 2 · 5 · tanh−1
(

2·5−1
2·5+1

)
·
∞∏
n=1

(2·5n)2

(2·5n−1)(2·5n+1)}
2

where ln 10 = ln 2 + ln 5 = 2 tanh−1
(

10−1
10+1

)
, and the infinite product of Φπ is based on

Euler’s infinite product formula sin(πz) = πz
∞∏
n=1

(1− z2

n2 ), i.e.,16

16The sinc-function sinc(πz) = sin(πz)
πz =

∞∏
n=1

(1 − z2

n2 ) = 1
zΓ(z)Γ(1−z) have been used in many physical

applications, such as, the double-slit interference. [92]
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π/k

sin (π/k) ≡
k

k − 1
k

k + 1
2k

2k − 1
2k

2k + 1 · · · (2.49)

=
∞∏
n=1

(nk)2

(nk − 1)(nk + 1)

Since 2 sin (π/10) = φ, let k = 10

2 · (π/10)
2 sin (π/10) ≡

πΦ
5 = 10

9
10
11

20
19

20
21

30
29

30
31 · · · (2.50)

=
∞∏
n=1

(10n)2

(10n− 1)(10n+ 1)

The α is built with continued fractions or infinite products because Nature can’t use
the decimal π = 3.14159 . . . as we do. She can only work with the ratio of integers after the
physical quantity is counted as numbers of quanta. However, as an information entropy,
the logarithmic format should be used, such as, log ew, ln 10w or ln πw. The information
entropy has the basic formula (a− b+ c−d) ln a = ln aa− ln ab + ln ac− ln ad = ln

(
aaac

abad

)
.

Now we can understand the importance of an alternating series to the electron, and by
extension explain the absence of positions in nature (i.e., (2.13)-(2.15) and (2.41)).

This number 137 serves as a bridge in the quantum (h) to electricity (e), relativ-
ity (c), and vacuum (ε0). [59] It is an Universal information number regulating many
physical ratios, such as charge

(
e2

~c

)
, velocity

(
υe
c

)
, energy

(
Ee
Eφ

)
, length

(
re
ňc

= ňc
a0

)
, force(

MPFe(ňc)
m2
eFP

)
, angular momentum

(
e2/c
~

)
, conductivity

(
G0
4σ0

)
, and impedance

(
µoc

e2/h

)
, etc.

As we discussed in the section of (2-1), the fine structure constant is a coupling
ratio between the particle quanta properties and the surrounding spacetime
properties, i.e., the coupling between wave and particles. It frustratingly involves
so many physical areas and holds so many physical mysteries. This paper only serves as
an initial outlook into the mysteries related to the fine structure constant. This section
builds the basic math formula of α by studying I/FQHE, with countless variations of
φ− e− π and the core of J = 6771 is based on {3, 37, 61}, by the principles of spherical
symmetry and asymmetry. The following sections will investigate this α math formula
in other applications. Much more work is needed in the future, including modification,
confirmation, correction, or debating other solutions.17

All physical equations carry math relationships. At root, there must be a magic
group of numbers with basic principles at work in nature, according to which the natural
mysteries can be understood. We usually imagine circles when discussing π without
realizing that it is a coupling of even and odd numbers; we think of beauty when talking
about φ, and don’t grasp its statistic meaning; we use e more often in engineering and
economics, and don’t understand it to be a coupling of boson and fermion; we fixate
on 137, and don’t know the uniqueness of J = 6771 in the infinite natural numbers. We
might be too influenced by our eyes, and poorer at understanding the real logical thinking
in the brain. α−1/2 in (2.48) can be easily converted to the ellipsoid volume V = 4

3πabc,
18

17such as, α1/2 = eπ
2252 = 1

52 · e2 ·
π
2 = 1
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18Let a = 3
4 ln 10; b = Φ; c = K0; then Vellipsoid = 4

3πabc = α−1/2 and x2

a2 + y2

b2 + z2

c2 = 1
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and Φπ can be linked to the golden circle. However, it can also be linked to the number
10 = 2× 5.

We probably need to look at both the number theory and topology, and constantly
check with the physical experiments. Otherwise, we may run into the trap of metaphysics.
There are many α math formulas based on a geometric construction only, the logical
analysis of the number theory has been neglected. If we construct a geometric α, the
elementary charge and spin of the Fermions simply could not be the Lorentz invariant
(e = e0 and ~/2 = ~0/2 v.s. l = l0/γ and m = γm0). We should not refuse to look at the
number theory because it has no conventional physical unit.

Einstein was a pioneer on searching for an α math formula. He said: “It is my
conviction that pure mathematical construction enables us to discover the concept and
the laws connecting them, which gives us the key to understanding of the phenomena of
Nature.” [94]

3 Probing of Proton to Electron Mass Ratio

3-1 Introduction
Einstein considered: “... inertia originates in a kind of interaction between bodies...”
and questioned “Does the Inertia of a Body Depend upon its Energy Content?” [95, 96]
According to the energy-mass equation E = m0c

2 and Planck energy quanta E = hν, if
the energy is quantized as the quantum theory, then it is logical to think the inertia mass
is also quantized. Elementary particle masses are indeed individual values. However, no
formula can calculate the rest-mass of particles, mass-ratio and mass-defect in atomic
construction. Born believed that α ∼ 1/137 and β ∼ 1836 might be related, but no
formula was found. [18] This section explores the α ∼ β relationship, calculation of
particle rest-mass, mass ratio, mass defect, and the law of inertia whose origin as entropy.

As common sense, a physical body is a thing moving in the surrounding nothingness
of geometrical space-time. Kepler found nothing is required for planetary motion (R3/T 2);
[97] Galileo showed nothing is needed to keep a thing at rest or in motion (y = 1

2gt); [98]
Hooke determined an isolated body keeps its speed (v = constant) if there is nothing to
stop it; [99] Newton formulated the law of inertia m when ∑F ≡ 0, an external force
to accelerate its motion F = ma, two opposing actions F2 on 1 = −F1 on 2, and Universal
Gravity action-at-a-distance Fg = −Gm1m2/r

2 as the inverse-square law (G is determined
by Cavendish in 1797), however, “hypotheses non fingo” on gravity and inertia. [100]
Einstein proved the equivalence principle of gravity and inertia mass mG ≡ mI , and
followed Kepler/Galileo geometric study of gravitation, but used the relativistic spacetime
curvature as a tensor equation Rab − 1

2gabR = 8πG
c4 Tab in General Relativity; He also

introduced E = mc2 and m = γm0 in Special Relativity. [101]
In another line of study, Dalton showed all matter consists of atoms; [102] Rutherford

showed that an atom is an almost empty space of nothing, and most of its mass is held by
a tiny nuclei surrounded by cycling electrons; [103] On the fm scale, a lattice of bonding
atoms looks like the frame of nothing. In the Standard Model, the nucleon is made by
quarks (u, d) with QCD strong interaction accounting for 99% of the nucleon mass (see
Table. 3.1). [104] However, what are quarks and gluons made from? Theoretically, these
kind of sub-sub-particle interactions could be an endless game. QCD can not explain
the electron mass, the proton/electron mass-ratio, and mass-defect. In this way, mass or
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inertia will always be “the will of God” as Newton said.
�

Table. 3.1 The development history of mass and inertia
Scientist Space-time Mass Formula Mass* D Year

Kepler absolute no µ = R3/T 2 µ < Gm 2+1 1619

Galileo absolute no g = d/t2 w < mg 1+1 1638

Newton absolute absolute g = µ/r2 F = ma 3+1 1666

Dalton absolute absolute
∑
matom N·matom * 1805

Einstein relativistic relativistic mg ≡ mI m = γm0 4 1905

Rutherford relativistic relativistic e, p, n Amp+Nmn+Zme * 1909

S.M. relativistic relativistic urgb, drgb Quark+Gluon 4 1964
�

The real space of universe is not nothing, it filled with matter/energy such as cosmic
rays (90% proton). For example, the Sun emits huge amounts of energy and matter
(photon and neutrino) into space, which Earth only receives in very tiny parts (estimated
as πr2

earth/4πR2
Sun−earth = 4.5×10−10, on the power of 4 Kg/s radiation equivalent matter).

Even so, the expanding universe is so vast that space still looks like nothing is there.
Newtonian gravity tells us how masses interact but not how mass is created. Einstein
considered that the spacetime curvature is caused by mass, but where does the original
mass come from? [105] A gravitational theory without a particle mass formula is like a tree
without roots. Mass or inertia is the most fundamental concept of physics. Understanding
and calculating the masses of the elementary particles are the prime mystery.

Considering that the particle mass and charge are created simultaneously,
the fine structure constant in defining the elementary electric charge should
also play a role in particle mass creation. The fine-structure constant α and the
proton-to-electron mass ratio β are governed by the deepest Quantum theory. [106] We
have proposed

|α1/2| ≡ ±Mφ
Kπ
≡ log e±1

KΦπ ≡ log e±φ/Kπ ≡ 1
ln 10±KΦπ (3.1)

where K = [1, 6771]. From (3.1), we get α = 0.007297352499996 = 1/137.036000385133,
matching α = 1/137.0360003(10) from the photon recoil (atom interferometer). [93] As a
new approach, here we discuss a fine structure constant interpretation of the mass-energy
equation E = mc2.

A charged particle in the electromagnetic field is accelerated by a Lorentz force Fl =
e[E + (v×B)], which can also be described by Newton’s law F = ma = mdv

dt
. Therefore,

m = dt
dve[E + (v × B)]. In the universe, only two charged individual free particles do

not decay: electron e− and proton p+. The confinement neutron n0 is stable inside the
nucleus and a freed neutron will decay n0 → p++e−L +ν̄Re after 881.5(15) s. Three fermions
e−, p+, n0 (spin-1/2) construct atoms, such as H and He, but their rest-mass and mass-
ratio are still unaccountable. There is one electron surrounding a proton in 1H, and two
electrons surrounding a nucleus of 2p2n in 4He. The mass-defect in the construction of
the nucleus of atoms obeys 4E = 4mc2, let’s start on these simple particles and atoms.

3-2 Relationship of α and β

Eddington and Born both believed that the proton-to-electron mass-ratio β ∼ 1836 and
the fine structure constant α ∼ 1/137 are related, [18, 107] but the link has never been
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found.19 Physically, sincemp = h/cλpc andme = 2R∞h/cα2, we can get α2β−1 = 2λpcR∞ =
2.9001594 × 10−8. Therefore, β = α2/2λpcR∞ = 2πα1a0/λ

p
c = 2πre/αλpc . These compli-

cated physical relations could not establish a math relationship between α and β.
From CODATA-2010 α = 1/137.035999074(44) and β = 1836.15267245(80), we find

α3β2 u ln2 π =
[´ π

1
dt
t

]2
= −Li21(1− π) = [2 ln Γ( 1

2)]2 (3.2)
= [2 coth−1(π+1

π−1)]2 = [2 tanh−1(π+1
π−1)]2

It similar to the Kepler’s third law a3n2 = C, where a is a semi-major axis, n = 2π/T is
a mean motion. [97] If α = re

ňec
and T ic = ňic

c
= ~

mic2
, β = T ec /T

p
c and ni = 2π/T ic , then the

ratio of (a1
a2

)3(n1
n2

)2 = c1
c2

is dimensionless. Next, let’s try to give a physical picture of (3.2)
(i) Since the mass ratio is linked to the Compton wavelength ratio β = mp

me
= λec

λpc
and

the charge ratio is linked to the length ratio α = ( e
qP

)2 = re
ňec
, the ratio of mass and charge

in (3.2) are linked by the length ratio.

α3 · β2 = (2πre)3

λec·(λ
p
c )2 = r3

e

ňec·(ňpc )2 = r2
e

(ňpcα−1/2)2 u ln2 π (3.3)

Fig. 3.1: (a) the volume ratio of sphere and ellipsoid, and (b) the surface ratio between
proton and electron.

In (3.3), the volume ratio of Sphere/Ellipsoid VS/VE = 4π
3 r

3
e/

4π
3 ňecň

p2
c u ln2 π (Fig.

3.1(a)), or the surface ratio Sre/Sňpc/α = πr2
e/π(ňpc/α)2 u ln2 π (Fig. 3.1(b)), where

re = 2.8179403267×10−15 m, ňec = 3.86159268×10−13 m, and ňpc = 2.1030891047×10−16 m.
(ii) From (3.1), (3.3) can be

α2 · β2 = r2
e

(ňpc )2 = r2
e

ňe2c

m2
p

m2
e

= ňe2c
a2

0
(mp
me

)2 u ln2 π
α

= (KΦπ ln 10 ln π)2 (3.4)

where α · β = re/ňpc = 13.3990534229 and re/ ln(π)ňpc = 11.70499136 ≈ Φπ ln(10)).
Physically, it can be a mass balance as Fig. 3.2

α · β = re
(ňpc ) = re

ňec

mp
me

= ňec
a0

mp
me

u lnπ
α1/2 (3.5)

19Perles got α−1 = β/[2π(π − 1)] where α = 1/137 and β ∼ 1843 in 1928, Haas got βα = 3/2π
√

2 in 1938, Lenz got
β = 6π5 in 1951 and Wyler got α =

(
3/4π2

)2 (
π5/5!

)1/4 in 1969, and Aspden got α−1 = 108π(8/1843)1/6 in 1972
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Fig. 3.2: The mass balance of α · β = re
(ňpc ) = re

ňec

mp
me

= ňec
a0

mp
me

Since ln(a) ln(b) = 4 coth−1(a+1
a−1) coth−1( b+1

b−1), (3.5) is equal to

α · β u KΦπ ln 10 · ln π = 4KΦπ coth−1(11
9 )coth−1(π+1

π−1) (3.6)

(iii) Physically, it is impossible for the different types of particles to act at the same
distance. (3.3) can also explained as a gravity force ratio between two protons and two
electrons at different distances (Fig. 3.3(a)).

α3 · β2 = α1 · α2 · β2 = re
ňec
· re
a0
·(mp
me

)2 · G
G

= Gm2
p/[(a0ňec)1/2]2
Gm2

e/r
2
e

= F protong

F electrong
(3.7)

where (a0ňec)1/2 = a0α
1/2 = a0 log eφ/Kπ = re · α−3/2 = re · (KΦπ ln 10)3 = 4.5204721480×

10−12 m is about the extended length of the hydrogen bond X · · ·H. If we use two distances
R−1
∞ /4π = a0/α = 7.2516327786× 10−9 m and re = 2.8179403267× 10−15 m, then we get

the ratio of work or Torque rFg = Gm2/r (Fig. 3.3(b))

α3 · β2 = α re
a0
· (mp

me
)2 · G

G
= Gm2

p/α
−1a0

Gm2
e/re

= (α−1a0)F protong

reF electrong
= τproton

τelectron
u ln2 π (3.8)

Fig. 3.3: (a) the particle force ratio between proton and electron; and (b) The torsion
balance of α3 · β2 = τproton

τelectron
≈ ln2 π as Cavendish

(iv) The electrostatic force also obeys the inverse-square law, and p+ · · · e− should
also work with Kepler motion. (3.2) can also expressed as the Coulomb’s force ratio
between the electron charge and Planck charge

α3 · β2 = α1 · α2 · β2 = ( e
qP

)2 · ( reňec
)2 · ( ňec

ňpc
)2 · ke

ke
= kee2/[ňpc ]2

keq2
p/r

2
e

= F electrone

FPlancke
(3.9)

where β = mp
me

= λec
λpc

= ňec
ňpc
, α = ( e

qP
)2 = re

ňec
, e = 1.602176565 × 10−19 C, and qP =

1.8755459× 10−19 C. Therefore, (3.2) is the unified expression for Newtonian gravity and
the Coulomb electrostatic force ratio, and can be converted to other physical ratios.

α3 · β2 = re
a0

( e
qP

)2( ňec
ňpc

)2 ke
ke

= re
a0

kee2/[ňpc ]2
keq2

p/[ňec]2
= reF electrone

a0FPlancke
= τelectron

τPlanck
(3.10)
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3-3 Proton to Electron Mass Ratio
Following the above physical discussion, we find β = 1836.15267247 as an approximate
function of α−1/2 in (3.1) (Fig. 3.4)

β = mp
me

≈ α−3/2 ln π = (KΦπ ln 10)3 ln π = 1836.348197739 (3.11)

(3.11) may not be a numeral coincidence (e.g.,
2∏
k=0

(4π − k/π) = 1836.1517 or 6π5 =
1836.1181). From β = mp

me
≈ (qP

e )3 ln π, physically, e3mp ≈ q3
Pme · ln π. Protons and

Neutrons are proportional to the cubical α−1/2 that relates to three color charged quarks
with eight-gluons. The gluon is a spin-1 vector boson, like the photon. The mass of
Baryons are composed primarily of gluons but not quarks, where α−1/2 = KΦπ ln 10 =
11.706237669941 is related to the Dirac magnetic monopole g ≡ ~c

2e = 1
2

qP
α1/2 . [108, 109]

Since g
e = 1

4α2 ≈ 4692, Dirac noticed that the electron is much easier to generate than the
monopole.

Fig. 3.4: Graphic solution of α and β, the error is due to β = α−3/2 ln π.

We can get β ′ with α1/2 = e/qP electric modification by the two charges of proton +e
and electron −e

β
′
w

(
α−3/2 − 2α1/2

)
ln π = 1836.1526216852 (3.12)

or β ′′ with α2 = re/a0 geometrical modification for H-atom construction (πφ2 is the area
of golden circle). The golden ratio φ = 0.618 plays a significant role in atomic physics
where it governs what is known as the Bohr radius [110]

β
′′ u

(
α−3/2 − 2α1/2 + Φ2

π
α2
)

ln π = 1836.152672484 (3.13)

and α4 = (re/a0)2 is an additional modification to match with β2010 = 1836.15267245(75)
as well as β2006 = 1836.15267247(80)
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βp/e = (α−2+ 1
2 − 2α0+ 1

2 + Φ2

π
α2 − 9

2α
4)
´ π

1
du
u

(3.14)
= (α−3/2 − 2α1/2 + Φ2

π
α2 − ηα3) ln π

1836
Mag >

.1526
Ele >

724
Geo >

7000
EW

= ln(πα−3/2 · π−2α1/2 · πα2/πφ2 · π−ηα3)
= 1836.1526 724 7000

where α3 = 4πR∞re, and η = 9
2α = α/ sin2 θw is an electroweak coupling constant that is

discussed in the next section.
Since (a − b + c − d) ln a = ln aa − ln ab + ln ac − ln ad = ln

(
aaac

abad

)
, (3.14) is written

as βp/e = ln
(
πa·πc
πb·πd

)
, where a = α−3/2, b = 2α1/2, c = 1

πφ2α
2 = 1

π3K2 ln2 10 and d = 9
2α

4 =
ηα3. The function βp/e(α) = 1836.15267247 in (3.14) yields an exclusive solution of
α = 0.00729735249999671, i.e, α−1 = 137.0360003851329 (Fig. 3.5).

Fig. 3.5: β = ln[πα−3/2 · π−2α1/2 · πα2/πφ2 · π−ηα3 ] = 1836.15247247 and α = log e1/KΦπ

ln 10KΦπ =
0.0072973524999967 (α−1 = ln 10KΦπ

log e1/KΦπ = 137.036000385133)

In (3.14), the cubical α−1/2 = 2g/qp = KΦπ ln 10 is related to the strong interaction
with 3 color charged quarks and 8 gluons; 2α1/2 is the electric correlation of the two
charges of proton and electron; α2 = re/a0 is the geometrical quantization for the H-
atom construction (a0 is the Bohr radius and πφ2 is the area of a golden circle); and
9
2α

4 = ( re
a0 sin θw )2 is an electroweak interaction. The physical expression of (3.14) is

βp/e = (8 g3

q3
p
− 2 e

qp
+ 1

πφ2
re
a0
− ( re

a0 sin θw )2) ln π (3.15)

Gluon>Charge>Atom > EW

= ln(π8g3/q3
p · π−2e/qp · πre/a0πφ2 · π−(re/a0 sin θw)2)

= 1836.15267247000

where the mysteriousmagnetic monopole g defined by Dirac is inside the nucleon,
which is related to the magnetic-strong coupling and the quantum gravity. In the opinion
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of Feynman and Wheeler, the proton may hiding 1836/2=918 paired e+e− to justify the
missing positron. [111] This energy equivalence of a e+e− pair could be true at least for
the gluon. In the standard model, due to the quark confinement, no individual quark
or magnetic monopole can be found. [108] In (3.14) and (3.15), the factors of Mag >
Ele > Geo > EW, i.e., Gluon > Charge > Atom > EW are separated by > 103.
Therefore, each term of the alternating series will improve 3~4 digits in the data fitting.
This extremely high precision data matching is one of the strongest justifications for the
correctness of the theoretical value of α yielded by (3.1). (3.14) and (3.15) not only gives
a mathematical solution but also has a clear physical definition. In (3.15), cubical g

qp
=

1
2α1/2 = 5.853118 and the spherical radius r = 7.261970. Using Ee = 0.510998928 MeV,
g

qp
ln πEe = 3.4238 MeV and r ln πEe = 4.247931 MeV, matching the experimental quark

mass (i.e., mu = 1.7 ∼ 3.3 MeV and md = 4.1 ∼ 5.8 MeV). The experimental limit mass
of the gluon < 20 MeV, we get ( g

qp
)2 = 1

4α = 34.25899 and ( g
qp

)2 ln πEe = 20.03999 MeV.
Note ( g

qp
)3 = 1

8α3/2 = 200.5219 and ( g
qp

)3 ln πEe = 117.2964449 MeV matches the mass of
the Strange quark.20 (3.14) and (3.15) are expressed from the viewpoint of stable atoms,
and the particle mass creation of the quark model will be discussed in a separate paper.

3-4 Mass of Neutron and Electron
Feynman noticed that the charge and g-factor are different between the proton and neu-
tron. [111] The decaying free neutron has a lifetime τn = 885.5 ± 0.1 s, the two-steps of
β-decay: n0 → p+ + W− → p+ + e−L + ν̄Re , with the kinetic energy of a proton and an
electron Q = T ek + T pk ≈ 0.7823329(5) MeV. The kinetic energy of a proton and electron
released from neutron β-decay obeys 4E = 4mc2 = 4n−p−eEe, as the neutron binding
energy

4n−p−e = 5e ln 2 ln 3 lnπ
−3π2 gn = 1.530899254 (3.16)

u −7
22 ln 3 ln π · gn = −2

5gn = −(
√

2
Φ+φ)2gn

The mass ratio of neutron/electron β2010
n/e = 1838.6836605(11) is linked to βn/e = βp/e +

4n−p−e + 1 = 1838.683660515. |gn| = ∓3.826085 is the neutron/anti-neutron g-factor,
which is also a function of the fine structure constant. [111] In (3.14) to (3.16), the Gravita-
tional mass of proton and neutron are constructed from Strong-Electro-Weak interactions.
Since each particle has unique S-E-W interactions, no elementary mass is the natural mass
unit (Table 3.2).

�

Table 3.2. The natural mass units
Units Mass Values Conversion Factor

Particle Physics eV/c2 1.78× 10−36 kg

Atom me 9.10938291(40)× 10−31 kg β

QCD mp 1.672621777(74)× 10−27 kg

Stoney
√
kee2/G 1.85921× 10−9 kg

√
α

Planck
√

~c/G 2.17645× 10−8 kg
�

20α2 lnπEe ∼ 3.115 eV is in the electron neutrino range; α lnπEe ∼ 4.2 KeV; α1/2 lnπEe ∼ 49.96 KeV; α−1/2 lnπEe ∼
6.85 MeV is in the quark range; α−1 lnπEe ∼ 80.16 MeV; α−1.5 lnπEe ∼ 938.37 MeV; α−2 lnπEe ∼ 10.98 GeV;
α−2.5 lnπEe ∼ 128.69 GeV is in the exploring Higgs boson range; α−3 lnπEe ∼ 1.5053 TeV.
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In nature, electrons and protons are generally paired as atoms, or as neutrons through
electron capture (the inverse β-decay). If me ≡ logπ e · ln π = 1 as the mass unit, then
mp ≡ βp/e [me] and vice-versa. Physically, we always measure the mass ratio by defining
a mass unit. Beyond the compared masses, there is no other way to account for the mass.

Experimentally, the electron and positron can be created by γ-ray photon ωe =
7.763440×1020 s−1. In the Planck massmPlanck = (~c/G)1/2 = 2.17651(13)×10−8 Kg where
G with ur = 1.2 × 10−4, [112] the mass of electron or positron |me| = 9.10938291(40) ×
10−31 Kg is formulated by (3.1) as

|me| = ln πη ·mPlanck · π
2

5 · e
−φ2/α

= ln πη ·mPlanck · 3 ζ(4)
ζ(2) · e

−φ2/α

= ln πη ·mPlanck · 3
∏
p

P2
P2+1
· e−φ2/α (3.17)

= ln πη ·mPlanck · 3α
3
R

α3 · e−φ
2/α

= ln πη ·mPlanck · ( π
Φ+φ)2e−(Kπ ln 10)2

= ±9.109118× 10−31 Kg

where η = ±1 represents the intrinsic parity, and αR = 1/157.555 is the Blackbody
radiation constant. [13] In this way, nature creates charge by using logarithms and mass by
using exponents. Their ratio must involve the very large numbers. Since e = (α~c/ke)1/2,
the electron charge-mass ratio is given as

e

me

= −e
φ2/α

ln π

(
Φ + φ

π

)2

·
√
αG

ke
(3.18)

= −1.758820× 1011 C
kg

In the Planck scale, the gravity and electric force are equal for the Planck mass particle.

F P
g = Gm2

Planck

r2
Planck

= F P
e = ~c

r2
Planck

= F P = c4

G
(3.19)

In the real world however, after the electron mass is defined by the fine structure constant
in (3.17)

Fg = G
m2
e

r2 ≪ Fe = ke
e2

r2 (3.20)

Therefore, Fe
F eg

= kee2

Gm2
e

= [ −1
lnπ (Φ+φ

π
)2 ·eφ2/α]2 ·α ≈ 4.166×1042 or Fe

F epg
= kee2

Gmemp
= [ −1

lnπ (Φ+φ
π

)2 ·
eφ

2/α]2 · α
β
≈ 2.26895 × 1039 = 1/4.40732 × 10−40 must be due to the elementary charge

and particle mass quantization by the fine structure constant in (3.14) to (3.17). We
can get the gravity coupling constant αeG = Gm2

e

~c = (π2·lnπ
5 )2e−2φ2/α = 1.75158 × 10−45

or αpG = Gm2
p

~c = β2αeG = 5.90539 × 10−39. In this way, the Dirac Large Number is
accountable. [113,114]

3-5 Quantum-gravity of Mass-Defect
In the standard model, the gravity of mass is explained by the strong interaction between
quarks and gluons. However, where do the quarks and gluons come from? In this deadlock,
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the gravitational mass can become an endless mystery. (3.15) and (3.16) shows that not
only is mass involved in the strong interaction, the electromagnetic and weak interactions
are also involved. Any interaction with the energy difference will affect the measurement
of a particle mass, which is based on the quantization of 4E = 4m · c2 by fine structure
constant α. Next, we give some examples of the calculation.

Mass depending on the various interactions can be confirmed by the electron-positron
annihilation e− + e+ = 2γ (1.02 MeV) in the matter/anti-matter interaction, and the
mass of a hydrogen atom in the quantum interaction. The mass of a hydrogen atom is
measured as m1H = 1.0078250321(4) u, i.e., βexp1H = 1837.152550166470.21 It shows that
m1H 6= mp +me but involves the fine structure constant in (3.1)

m1H = mp +me(1− α2 ln 10) (3.21)
= mp +me(1− α·log e

(KΦπ)2 )

i.e., β1H = βp + 1− ln 10 · α2 = 1837.152549854230 with ur = 1.699× 10−10. It gives

E1H = Ep + Ee(1− α2 ln 10) (3.22)
= Ep + Ee − ln 10 · Eh

where the Hartree energy Eh = mee4

~2 = 2 · Ry= 2hcR∞ = me(αc)2 = 27.21138505(60) eV.
The mass-defect in the atomic construction is mainly due to the electromagnetic inter-
action. That is why Schrödinger’s equation with the electric potential e2/r can describe
the atomic electron configuration. The quantum fluctuation exist on all types of matter
that will make δm = ε0µ0~ · δω . It may be a mysterious link between the gravity and
quantum theory. The gravity and quantum theory have the same mystery of superpo-
sition or action-at-a-distance. E = mc2 could be the linked reality for both the gravity
and quantum theory. In fact, E = mc2 is not a continuous function, it only works for the
particle mass and the nuclear fission/fusion. Therefore, E = mc2 must be a quantization,
which is not yet completely understood or formulated.

�
�

Table 3.3. The Compare of experiment and equation (3.23)
Atom N k βexp βcalc Ur × 10−10 Abundance

1H 1 1 1837.1525501665 1837.1525498542 1.69959 99.985%
2D 1 2 3671.4827473946 3671.4827199685 74.7003 0.015%
3T 1 1/2 5497.9214757955 5497.9214653921 18.9223 Trace
3He 2 3/2 5497.8850949517 5497.8850914763 6.32120 0.000137%
4He 2 1 7296.2993684301 7296.2994138842 -62.2975 99.999863%

�

The atomic construction can be formulated as

βatom = βnuclear + βelectron(N − kα2 ln 10) (3.23)
where k is about 1~2. The calculation from (3.23) and experimental data on a few atoms
are listed in Table 3.3. In Table 3.3, the stable atom of H and He obeys

matom = mnuclear +melectron(N − α2 ln 10) (3.24)

the eigenvalue of electrons in hydrogen-like atoms involves E = −Ry/n2 = −Eh/2n2 =
−13.60569 eV/n2. This may lead to a progression of quantum theory. Einstein always

21http://www.webelements.com/hydrogen/isotopes.html and βu/e = 1822.88839
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believed the quantum theory was not completed, and the current theory still does not
represent the reality. Feynman also said that quantum theory can’t be taught as simply
as Newton’s law since it hasn’t been dug deep enough. However, the small mass-defect
for the atom and molecule are often being ignored, the effective mass correlation is only
needed in solid-state physics. If E = mc2 can be quantized by the fine structure constant,
both the quantum theory and relativity theory will progress. With E = mc2 linked to
the fine structure constant, the atomic mass-defect is quantized. [115] This may be the
reality of quantum gravity theory.

The Deuterium/electron ratio β2010
D/e = 3670.48296520, as nuclear p+ + n0 → D+ + γ,

i.e., mD = mp +mn +mbinding, we get
βD/e = βp/e + βn/e + (gn + 1

4α
1/2 + 1

4α) ln π (3.25)
= 3670.482983

The mass-defect in (3.25) is related to

4p++n0→D+ ≈ (−gn − 1
4α

1/2 − 1
4α) ln π (3.26)

= 4.353298979
where the binding energy is Eb = mbc

2 = 4p++n0→D+ · Ee = 2.22456 MeV, and mainly
due to the magnetic g-factor of neutron. This is a direct link between the fusion and
magnetic effect. The magnetic confinement of fusion has been confirmed by experiments
using Tokamaks and Stellarators. Experimentally, the 2.2 MeV γ-ray line of solar neutron
capture has been found (Fig. 3.6). [116, 117] This process does not involve the neutrino
emission, which could explain the missing solar neutrino.

Fig. 3.6: 2.2 MeV γ-ray line on the Solar photon fluxes.

3-6 Quantization of E = mc2

Einstein explained E = m0c
2 and the relativity energy-momentum equation as (m0c

2)2 =
E2 + ||Pc||2. However, he worried about how the particle mass is quantized. In 1948, he
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said that, “It is not good to introduce the concept of the mass M = m/(1− v2/c2)1/2 of a
moving body for which no clear definition can be given. It is better to introduce no other
mass concept than the ’rest mass’ m. Instead of introducing M it is better to mention
the expression for the momentum and energy of a body in motion.” [118] The relativistic
mass M ⇒∞ when v = c,

M = γm0 = m0/
√

1− ( v
c
)2 = m0/

√
1− v2 · ε0µ0 (3.27)

i.e., there is a speed-limitation for a physical body moving in the vacuum v2 ·ε0µ0 < 1. In
(3.27), the relativistic massM does not work with gravity constantG and changes with the
particle’s relativistic velocity. The Lorentz transformation γ was originally an modification
on the electromagnetic property of space-time, as a hyperbolic rotation of Minkowski
space. [119] The more general set of transformations that also includes translations is
known as the Poincaré group. Poincaré wrote the M = S/c2 in 1900, where M = mc is
“momentum of radiation” and S = Ec is “flux of radiation.” [120] The Poincaré formula
M = S/c2 is almost identical with Einstein’sm = L/c2 in 1905, however, Einstein directly
addressed mass m and energy L. [96] The quantization of E = m · c2 will lead to the real
particle rest-mass definition in the vacuum

mi
0 = Ei · ε0µ0 (3.28)

= βi · Ee · ε0µ0

= βi · νe · hε0µ0

where the vacuum permeability µ0 and the vacuum permittivity ε0 with ε0µ0 = c−2. In
(3.28), hε0µ0 = 7.37249668× 10−51 Kg · s, νe = 1.23559× 1020 Hz ≈ exp(92

22
1

αe4 ln 3) Hz and
Ee = Eh/α

2 eV. The gravitational or inertial mass is created by trapping the
electromagnetic energy, and vice-versa.

The Poincaré group is a semi-direct product of the translations and the Lorentz trans-
formations: R1,3 oO(1, 3). It has 10 symmetric basic-shifts, which are 1 time+ 3 space+
3 rotation + 3 boost in 2-rank tensor. Einstein also used a similar stress-energy tensor in
general relativity, which has 10 independent components in a 4-dimensional space. In the
Einstein equation Rab − 1

2Rgab = 8πG
c4 Tab, the left-side is the Einstein tensor, a specific

divergence-free combination of the Ricci tensor Rab, the metric tensor gab, the curvature
scalar R; and the right-side, Tab is the energy-momentum tensor. The components of the
stress-energy tensor is

Tab =


T00 T01 T02 T03
T10 T11 T12 T13
T20 T21 T22 T23
T30 T31 T32 T33

 (3.29)

where the matrix terms are Energy density T00, Energy flux T01, T02, T03, Momentum
density T10, T20, T30, and Momentum flux (three components of pressure T11, T22, T33 and
six components of shared stress T12, T13, T23, T21, T31, T32). However, it is often necessary
to work with the covariant form Tab = gaαgbβT

αβ, where the stress-energy tensor is a
diagonal matrix

Tαβ =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (3.30)
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The stress-energy tensor is the source of the gravitational field in the Einstein field equa-
tions of general relativity. The Einstein equation in the weak gravity field became the
Newton-Guass gravity field equation as ∇2Φ(r) = 4πG · ρ(r) where the scalar potential
Φ(r) = −Gm/r. The object mass m is a sum of the particle mass. Therefore, the general
relativity theory is also quantized after the particle mass quantization.

3-7 Discussion
In his third letter to Bentley in 1693, Newton wrote, “Gravity must be caused by an
agent acting constantly according to certain laws; but whether this agent be material or
immaterial, I have left to the consideration of my readers.” [121] His view that light is
a particle was overturned by Maxwell into an electromagnetic wave. Einstein used ε = hν
as a Photon to explain the photoelectric effect, and E = mc2 to address whether the
Inertia depends on its Energy Content. Then, we are running into the paradox of Wave-
Particle duality. In this way, the physical picture becomes clearer as scientific history
cycles. Newton did not know about atoms, the nucleus, quarks, ..., which have been
proved as the building blocks of the material universe and described by the quantum
theory. In other words, the inertia or mass of elementary particles are physically
quantized by the fine structure constant, which is the basic idea of this paper.

Can the structure of physical reality be inferred by a pure mathematician? As Einstein
posed: ‘Did God have any choice when he created the universe?’ Here we show how
to use the fine structure constant to calculate the particle mass-ratio and mass-defect,
which makes the E = mc2 quantization. Mass appears to be the harmonic motion of
charged particles “trapped” within an electromagnetic energy cavity. This is why the
most convenient and most often used unit expresses mass in terms of energy: the eV
related to the fine structure constant α.

Our calculation is based on the experimental data, “hypotheses non fingo,” while the
formula of the fine structure constant (3.1) is governed by Euler’s identity in a continued
fraction, Feynman assumed J = 6771 = 3 × 37 × 61 is a unique solution of the infinite
prime double factorial equation P(p) = {[2 (p− 1)]!! + 1} /p. The proton/electron mass
ratio βp/e = ln(πα−3/2 ·π−2α1/2 ·πα2/πφ2 ·π−ηα3), and other mass-ratio or mass-defect are all
in logarithmic format as the information entropy S = k ln Ω. Imitating the osmotic ray,
the artificial generation of particles (both particles and anti-particles) has been achieved
in laboratory conditions. In Nature, however, whether the particles are created by Black-
holes, Supernovas or the Big Bang remains a question. [122, 123] We may need to search
for the energy-mass cycle as well as infinity mechanism to address this question. Again,
it should be simple according to Pauli. [43]

4 Probing of the g-factors of Leptons and Baryons

4-1 Spin and the Fine Structure Constant
The particle’s magnetic moment is µi = gi

2
e·s
mi

where e, mi, s and gi are the particle’s
charge, mass, spin and g-factor. We have discussed charge and mass with α. Next, we
are going to discuss spin and g-factor of the particles.

The spin and g-factor of particles are also related to α. However, no general formula
can calculate the g-factor of particles. We will discuss these issues with the formula of
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the fine structure constant

|α1/2| ≡ ±Mφ

Kπ
≡ log e±1

KΦπ ≡ log e±φ/Kπ ≡ 1
ln 10±KΦπ (4.1)

where K(J,H) = 1 + 1H
J+

3H
J+

5H
J+

7H
J+ · · · , J = 6771, 0 ≤ H < α−1/2, and Φ − φ − e − π in

Euler-type Identity e±iπ + Φ = φ.
Pauli suggested the connection between spin and statistics with odd-even numbers. [63]

The Bose-Einstein distribution is derived from [124]
∞∑
n=0

(+1)n (n+ 1)xn+1

∞∑
n=0

(+1)n xn
=

∞∑
n=0

(+1)n nenhν/kT
∞∑
n=0

(+1)n ehν/kT
= 1
ehν/kT − 1 (4.2)

where x = exp (−E/kT ) , i.e., E = hν = −kT ln x for the boson with spin s = n
2~

(n = even), such as photon or phonon. Fermi-Dirac distribution is derived from [125,126]
∞∑
n=0

(−1)n (n+ 1)xn+1

∞∑
n=0

(−1)n xn
=

∞∑
n=0

(−1)n ne±nhν/kT
∞∑
n=0

(−1)n e±hν/kT
= 1
ehν/kT + 1 (4.3)

where x = exp (±E/kT ) , i.e., E = mc2 = ±kT ln x for the fermion with spin s = n
2~

(n = odd), such as electron or positron. Unlike the boson in Bose-Einstein distribution
which always has a negative chemical-potential, a fermion in Fermi-Dirac distribution can
have both + or − chemical-potential. Combining (4.2) and (4.3), we have

∞∑
n=0

(±1)n (n+ 1)xn+1

∞∑
n=0

(±1)n xn
= x

1∓ x = 1
eE/kT ∓ 1 (4.4)

where (±1)n gives the + for Bose-Einstein distribution and − for Fermi-Dirac distribution;
and odd-n terms have the alternative ± sign and even-n terms only have + sign. Since
x = exp (±E/kT ), we have log x = log[exp (±E/kT )]. This is same format as α1/2 =
log[exp (±φ/Kπ)].

The spin n
2 distinguishes between fermions (n = odd) and bosons (n = even). An

elemental charge in [esu] is given by (4.1)

e = ± (α~c)1/2 = ±
√
α·qP = ±

(
~
2
c
2

)1/2
M
KΦ

[
1·3·5···
2·4·6···

]2
(4.5)

The fermion with half-integral spin ~/2 is based on e · e interaction

e2

c
= ±α~ = ±~

2 (1 · 3 · 5 · · · )
√
α M(2n+1)!!
KΦ[(2n)!!]2 = ±~

2 (1 · 3 · 5 · · · )C (4.6)

(4.6) shows that a particle with charge e± defined by α1/2 in (4.1) is a spin-half Fermion.
Pauli proposed, “The spin value 1/2 is discriminated through the possibility of a defi-
nite charge density, and the spin values 0 and 1 are discriminated through the possibility
of defining a definite energy density.” [63] This is confirmed by calculating the proton-
electron mass ratio β ∼ 1836, where the Dirac monopole g is the major contributor for
the mass/energy of a proton. The Dirac magnetic monopole g obeys 2eg = ~c, which is
a boson in scalar field, and has never been found experimentally [108,109]
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g = 1
2

qP√
α

= ±qP
[

(2n)!!
(2n+1)!!

]2
K
Mφ

= ±(~c)1/2 K
Mφ

[
2·4·6···
1·3·5···

]2
(4.7)

It has [esu] dimension but is not an electric charge, qP = (~c)1/2 is a Planck charge.
Therefore, α+1/2 is related to electric charge and α−1/2 is related to magnetism (e.g. Rxy =
±Z0

2α1/2
ν α1/2 in I/FQHE). The magnetic coupling is βm = g2

~c = 1
4α = σ0

G0
= 34.259. In

SU(3)C⊗SU(2)L⊗U(1)Y , the strong-electroweak coupling is αswe = mνe/mνµ ≈ 34.26−1.
[33] From (4.5)~(4.7), Fermions and Bosons can be easily discerned by flipping the even
and odd consecutive sequences, Φ = 1/φ and log e = 1/ ln 10. The link between Spin-
Statistics and odd/even numbers in the α math formula may be what Pauli was looking
for. [63]

4-2 The Electron g-factor
The electron magnetic moment is µe = ge

2
e·s
me

where e, s and me are the electron’s charge,
spin, and mass, |ge| = 2 given by the Dirac equation (i∂µ − eAµ)γµψ = mψ in 1928
is not accurate. In 1941, Pauli added a term ae

e
2meσµνF

µνψ to the Dirac equation and
redefined |ge| = 2(1 + ae) where ae is the electron anomaly (ge < 0) calculated by the
perturbation theory of QED. [63] Pauli thought that the value of fine structure constant
should determine the QED perturbation calculation of ae, not vice versa.

The Harvard group QED α calculation, based on the measurement of g/2, reached
0.70 ppb in 2006, allowing 5.91 < H < 6.16 in K(J,H) = 1 + 1H

J+
3H
J+

5H
J+

7H
J+ · · · . [127, 128]

In 2008, α−1
HV08 = 137.035999084 (51), ur = 0.37 ppb, [130] which is matched by one

of the BO-Interferometer experiments α−1
BO10 = 137.035999037 (91), ur = 0.66 ppb in

2010. [89] Then, we have H = 37+3
3+3 and α−1

6.666 = 137.035999048781; or H = 2
9π(e +

e−1)2 = (4π) sin2 θw cosh2(±1) and α−1
6.64828 = 137.03599907395 to match the CODATA-

2010 α−1
2010 = 137.035999074 (44). (4.1) can easily fit with new incoming data, however,

those so-called most reliable QED calculations perpetually change.22 [131] Current values
of the fine structure constant were calculated using supercomputer numeral fitting (“the
hand of God”). This best measured ge/2 from a single-electron in a magnetic Penning
trap yields two real roots (4-red in Fig. 4.1) when calculating the electron (positron)
anomaly ae = (|ge| − 2)/2 up to x5 (x = α/π = 1/430.511) [130]

aQEDe = c2(α
π
) + c4(α

π
)2 + c6(α

π
)3 + c8(α

π
)4 + c10(α

π
)5 (4.8)

+ · · ·+ aµτ + ahadronic + aweak

where c2 = 0.5, c4 = −0.328478965, c6 = 1.181241456, c8 = −1.7283(35) and estimated
c10 = 0.0 (4.6) are built by Schwinger-Sommerfield-Remiddi-Kinoshita. [132–135] QED
calculation claim reached the sub-ppb level (< 10−12), however, aµτ = A2(me

mµ
)+A2(me

mτ
)+

A3(me
mµ
, me
mτ

) · · · used in (4.8) are poorly measured lepton mass ratios.23 Using (4.8), only
the odd-powers (1 , 3 , 5 ) with the alternate sign have a solitary solution for (α

π
) (Fig.

4.1), which needs 3.8 > c10 > 0.002046 for (α/π)5 (12672 Feynman diagrams). There is
no limitation for the fine structure constant in Fig. 4.1

22The latest reported values by Kinoshita are c8 = −1.9108(25), c10 = 4.364(733), α−1
K10 = 137.035999132(9)(6)(33) on

Nov. 2 (2011)
23e.g., me

mµ
= 1

3477.48(57) and me
mτ

= 1
3477.48(57) . A

(4)
2 (me

mµ
) = 5.19738771(12)×10−7 and A(4)

2 (me
mτ

) = 1.83763(60)×10−9;

A
(6)
2 (me

mµ
) = −7.37394158(28)× 10−6 and A(46)

2 (me
mτ

) = −6.5819(19)× 10−8. [129]
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Fig. 4.1: Perturbation theory calculation of the fine structure constant by (4.8) with two
solutions in 4-red. Enlargement shows that there is no limitation.

According to Feynman and Dyson, Feynman diagrams are for e2, e4, · · · , e2n (i.e.,
αn = (e2

~c )
n = ( 1

137)n) but not e2

π
, e4

π2 , · · · , e2n

πn
(i.e., (α

π
)n = (2e2

hc
)n = ( 1

430)n). [52,136] It looks
strange in Feynman diagrams (e/

√
π ⇒

√
α/π instead of e⇒

√
α). Schwinger originally

proposed ae = ( 1
2π )α ∝ 1

137 but not (1
2)(α

π
) ∝ 1

430 . [132] According to Sommerfeld, α
2π = Ee

Eφ

is the energy ratio of interactions between the electron and the photon, where Ee = e1e2
λc

is the energy needed to bring two electrons from infinity to a distance of λc against their
electrostatic repulsion, and Eφ = hc

λc
is the energy of a single photon with a wavelength

λc. The α yielded by (4.8) on the base of α
π
needs a basic theoretical explanation. [137]

Feynman even called the “renormalization” of QED as “a dippy process”, which “is not
mathematically legitimate,” and “It’s one of the greatest damn mysteries of physics: a
magic number that comes to us with no understanding by man.”. [52] The α value obtained
by the g-2 measurement is an experimentally dependent value, not a theoretical value.
Therefore, QED can not answer the question of “Why 137?”

Recently, many people try to calculate the electron anomaly without the perturbation
theory. We also get a simple approximate formula based on Schwinger theory

ae = α
2π

ln3 π
tanh−1( 7

9 )·ζ2(3) = α
2π

lnπ
tanh−1(cos2 θw)

ln2 π
ζ2(3) (4.9)

= α
π
( lnπ

ln 8 )( lnπ
ζ(3))

2 = 0.00115965217523

To test if α = 0.0072973524999966932 from (4.1) can create an understandable per-
turbation formula, ae is built as a quintic function in the αn alternating series, to fit
aHV08
e = 0.00115965218073 (28) and a2010

e = 0.00115965218076(27) up to 0.15 ppb, [130]
then multiplying ln e = 1

ae =
5∑

n=1

(−1)n−1 c2nα
n = 1

2πα
1 − 1

3π2α
2 + 1

3πα
3 − 1

π2α
4 + π−2

2 α5 (4.10)

= ln e ·
5∑

n=1

(−1)n−1 c2nα
n = ln

(
exp[α

3
2π (α−2+ 2

3 )]
exp[α2

π2 (α+2+ 1
3 )]
· exp[E(0)α5]

exp[E(1)α5]

)

=
4∑

n=1

(−1)n−1 c2nα
n +Oe(α5) = ln

(
exp[α

3
2π (α−2+ 2

3 )]
exp[α2

π2 (α+2+ 1
3 )]
· eOe

)
= 0.00115965216891 + 1.181× 10−11 = 0.00115965218072

where Oe(α5) = 1.181 × 10−11 is within range of the Lamb shift and Hyperfine splitting,
and both are sensitive to the magnetic field. (4.10) does not oppose QED and returns to
its principle ae = ∑ (−1)n−1 c2n( 1

137)n. The c2 = 1
2π in (4.8) by Schwinger is kept, the rest
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follow the same pattern (c2 ∼ c8 involves the electroweak coupling which will be discussed
in the next section).24 (4.10) is the equivalent of a virtual sphere with an additional spin
magnetic moment R = δµ

µ
= α

2π = re
λec

= e2

hc
(Fig. 4.2), and can be expressed as25

ae(α0) = R− 2V
L

+ LV

R
− S2 + (π2 − 1)L5 (4.11)

= R− 4
3R

2 + 8π2

3 R3 − (4π)2R4 + (π2 − 1)(2π)5R5

Fig. 4.2: A virtual spherical sketch in (4.11)

In (4.10), the physical definition of αn is governed by the Rydberg constant (1 [Ry] =
hcR∞ = 1

2mec
2α2 = 13.60569253 (30) [eV])

4πR∞ ≡
α

a0
≡ α2

ňc
≡ α3

re
≡
(
α4

a0re

) 1
2

≡
(
α5

ňcre

) 1
2

≡
(

α6

a0ňcre

) 1
3

(4.12)

where a0 = e2/mec
2α2 is the Bohr radius, ňc = λc/2π = ~/mec = e2/mec

2α is the
reduced Compton wavelength, and re = e2/mec

2 is a classical electron radius. (4.10) can
be expressed as a nested series of α in the first order

ae(α) = 1
2πα

(
1− 2

3πα
(

1− πα
(

1− 3
π
α

(
1− π3/2α

))))
(4.13)

in a coupling of the classical electron radius and Compton wavelength (re/λc)

ae

(
re
λc

)
= re
λc

(
1− 4

3
re
λc

(
1− 2π2 re

λc

(
1− 6 re

λc

(
1− 2π5/2 re

λc

))))
(4.14)

This extremely high precision data matching in (4.10)-(4.14) is a strong justification of
the theoretical α yielded by (4.1). From α2 ≡ re/a0, α ≡ re/ňc ≡ ňc/a0 and µs ≡ µBge/2,

24c4 = 1
3π2 was considered Relativistic Symmetry without the vacuum polarization. [138] c2 = 1/2Γ2(1/2); c4 =

1/18ζ(2); c6 = 1/3Γ2(1/2); c8 = 1/6ζ(2); c10 = π
2 −1 = E(0)−E(1), where E(k) is a complete elliptic integral of the second

kind (note c10 ' 1
3 (e−1) ∼= 2

3 (4−π) ∼= lnπ
2
∼= 9

5π
∼= 2π

11 ). In (10), we may also express Oe(α) = α5

2 + 3
π
α4

β
= 1.18213×10−11,

which is within the range of Lamb shift ∝ α5 = 2.069× 10−11 and Hyperfine splitting ∝ α4/β = 1.544× 10−12, and both
are very sensitive to the magnetic field. We also get Oµ(α) = mµ

me

10βα5

3(2+π ln 2) ≈
5βα4

2+π ln 2 , so aµ(α0) = 0.001165920797 to
match with a2010

µ = 0.00116592091(63)
25From (2.35), π2−1=

∞∑
n=1

n!
(2n+1)!! = 1

3 + 1
3 ·

2
5 + 1

3 ·
2
5 ·

3
7 + 1

3 ·
2
5 ·

3
7 ·

4
9 · · · =

1
3
(
1 + 2

5
(
1 + 3

7
(
1 + 4

9
(
1 + · · ·

))))
, 8π2

3 = 24ζ(2) = 16
∞∑
k=1

1
k2 and (4π)2 = 3 · 25ζ(2) = 96

∞∑
k=1

1
k2
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Bohr magneton µB ≡ (~/2)(e/me) is working with α on the reciprocity in Fig. 4.3,
where the measurable reduced Compton wavelength serves as the unity.

2µB
c·e

1
a0

= α =
(

log e±1

2KΦ
1·3·3·5·5·7···
2·2·4·4·6·6···

)2

2µB
c·e

1
ňc

= α · α−1 = 1 (4.15)
2µB
c·e

1
re

= 1
α

=
(

2KΦ
log e±1

2·2·4·4·6·6···
1·3·3·5·5·7···

)2

Fig. 4.3: Bohr magneton µB ≡ (~/2)(e/me) is working with α on the reciprocity

The electron g-factor ge/2 = 1+ae can be presented as a finite alternative power series
of αn using the gamma function to fit CODATA-2010

|ge|
2 = 1 + α1

2π −
α2

3π2 + α3

3π −
α4

π2 + π−2
2 α5 = ln

(
e1 · exp[α

3
2π (α−2+ 2

3 )]
exp[α2

π2 (α+2+ 1
3 )]

eE(0)α5

eE(1)α5

)
(4.16)

= 1 + α1

Γ(3)Γ2( 1
2 ) −

Γ(3)α2

Γ(4)Γ4( 1
2 ) + Γ(3)α3

Γ(4)Γ2( 1
2 ) −

α4

Γ4( 1
2 ) +

(
Γ2( 1

2 )
Γ(3) − 1

)
α5

4-3 Electroweak and Chirality e−iπα1/2

The β− decay (n0 → p++e−L +ν̄Re ) involves the weak interaction. The electroweak interac-
tions have been merged by SU(2)L⊗U(1)Y with the coupling of charge Q, isospin IW and
hyper-charge YW, linked to the Fermi coupling constant GF

∼=
√

2g2/8m2
w, by defining

e = g sin θw = g′ cos θw (g ∼W± and g′ ∼ Z0),26 and the Weinberg angle cos θw = mw/mz
or tan θw = g′/g have to be measured experimentally. [139–141] The pair production of
W± bosons in electron-positron annihilation shows α−1

W
∼= 128.952(49). [142] We get

α1/2
W = ± logF

Φπ (1− 2
9α) = ± logF

Φπ [1− 2
9(± log e

Φπ )2] = logF±1

Φπ (1− 1
9
RK
Z0

) (4.17)
= ± logF

Φπ (1− α · sin2 θw) = ± logF
Φπ {1− (± log e

Φπ )2[1− (mw
mz

)2]}

= logF±1

Φπ (1 +QdQuα) = α
1/2
W′ (1− α sin2 θw) = ±0.0880614

and α−1
W = 128.9519596, where Fransén-Robinson constant F =

´ ∞
0

dt
Γ(t) = lim

α→0
α
∞∑
n=0

1
Γ(αn) =

lim
α→0

αEα,0(1) = 2.807772420 27 as the continued gamma function integral for the time
interval 4t → 0, vs. e =

∞∑
n=0

1
Γ(n) = 2.71828 as the infinite sum of the discrete gamma

function (see the footnote 14). (4.17) further approves the correctness of the fine structure
constant formula based on α1/2 ≈ ± log e

Φπ .
26GF = 1.166364(5)× 10−5[GeV−2], g, g′, αem = e2

4π = 1
137 and e = 0.302822119 are in the natural unit. The one-loop

beta-function in QED is β(e) = e3

12π2 or β(α) = 2α2

3π , then c4α2 = α2

3π2 = β1(α)
2π , it is proportional to the energy scale.

27The Mittag-Leffler function Eα,β(z) =
∞∑
n=0

zn

Γ(αn+β) = 1
2πi
¸
C
tα−βet

tα−z dt is the contour starts and ends at −∞ and

circles around the singularities of the integrand (Fig. 2.6), for the Continuous Time Random Walk-CTRW. [143]
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Fig. 4.4: The charge and mass relationship in the electroweak interactions SU (2)L⊗U (1)Y

The anomalous electron will couple with the weak force in the nucleus as the elec-
troweak coupling (per Pythagorean theorem in Fig. 4.4). In the ae(α) equation (4.10),
c2 = 1/2π is originally given by Schwinger, [132] c4 = 1/3π2, c6 = 1/3π and c8 = 1/π2

follow a similar pattern. Here we propose that the electroweak coupling may be directly
linked to α by c2 ∼ c8 (or c2α

1 ∼ c8α
4) in the electron anomaly formula (4.10)

η = α

sin2 θw
= g2

4π = c2 · c8

c6 · c4
· α = 9

2
α = α

0.22222 = 1
30.452 (4.18)

η′ = α

cos2 θw
= g′2

4π = c2 · c8 · α
c2 · c8 − c6 · c4

= α

0.77777 = 1
106.583

i.e., ηW = αW/ sin2 θw = 28.656 and η′W = αW/ cos2 θw = 100.296.28 So, GF
∼= ηπ/

√
2m2

W =
9πα/

√
8m2

W. (4.18) yields a reciprocal sum formula α−1 = η−1+η′−1 similar to the type of
the reduced mass, the equivalent parallel resistance/serial capacitors, or the geometrical
optics.29 Compare it to a concave mirror formula 1

s
+ 1

s′
= 1

f
(neglecting aberrations).

However, the only possible solution for {α, η, η′} is R = ∞, i.e., a flat mirror (no space-
time curvature or the general relativistic correlation for the quantum theory). From (4.1),

η−1 + η′−1 = α−1 (4.19)(√
2 · KΦπ

log e3
)2

+
(√

7 · KΦπ
log e3

)2
=

(
KΦπ
log e

)2

(
Kπ sin θw

log eφ
)2

+
(
Kπ cos θw

log eφ
)2

=
(
KΦπ
log e

)2

i.e., 30.4524444 + 106.5835557 = 137.0360003 or 1
0.032838 + 1

0.0093823 = 1
0.007297352 . It obeys

Pythagoras Theorem A2+B2 = C2 or the trigonometric identity sin2 θw+cos2 θw = 1, and
fits with Glashow-Weinberg-Salam theory. It is the angle by which spontaneous symmetry
breaking rotates the original W0 and B0 vector boson plane, producing as a result the Z0

boson (m2
Z = m2

W +m2
B), and the γ photon.(

γ
Z0

)
=
(

cos θw sin θw
− sin θw cos θw

)(
B0

W0

)
(4.20)

In this way, the weak-mixing angle is also linked to the ae(α) equation (4.10)

sin2 θw = α

η
= c6α

3

c2α1

c4α
2

c8α4
= c6

c2

c4

c8
= 2π

3π
π2

3π2 (4.21)

= s2
W = 1− (mW

mZ
)2 = 2

3 ×
1
3 = 2

9 = 0.22222

28GUT’s expersions are α1 = 5
3

α
cos2 θw

∼ 1
63.95 ; α2 = α

sin2 θw
∼ 1

30.45 ; α3 = αs ∼ 1
8.54 and running.

29They all involve
∑n

i
1
Xi

= 1
Xeq

, e.g., Gauss thin lens/concave mirror formula 1
s

+ 1
s′ = 1

f
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where 2/9 is expressed as the electric charge of u-quarks 2/3 times d-quarks 1/3. The
values of 1

3 and 2
3 had appeared in the electron anomaly in (4.10). In the Feynman

diagram of the β− decay (Fig. 4.5(a)), W− → e−L + ν̄eR, the d− 1
3
quark changes into

a u 2
3
quark, also changes flavor. (4.21) works with CODATA-2010 sin2 θw = 0.2223 (21)

with ur = 9.5× 10−3, and requires further experimental confirmation.

Fig. 4.5: (a) Weak Feynman diagram of β−decay (α1/2and α
1/2
W ); (b) Reformed Euler

identity and the right- and left-handed helix.

In the β− decay
(
n0 → p+ + e−L + ν̄eR

)
, a neutron emits a proton, and a left-handed

electron with a right-handed electron anti-neutrino. Chirality projection operators are
P± = 1

2(1 ± γ5) where the gamma matrices γ5 = iγ0γ1γ2γ3, satisfy P+ + P− = 1; P 2
+ =

P+; P 2
− = P−; P+P− = P−P+ = 0. Where does this hand ψRL = 1

2(1±γ5)ψ originally come
from? According to Salam, the physical picture is that “a photon right circular polarised
is 2 neutrinos traveling together and a photon left circular polarised is 2 antineutrinos
traveling together.” [141] In the Euler identity e±iπ = φ−Φ = −1, regardless of iπ having
+ or − sign, e±iπ ≡ −1. In the unit-circle (Fig. 5(b)), however, two-types of helicities
H = ±1 represent the different rotational directions (“−” clockwise and “+” counter-
clockwise). The “−” clockwise spin becomes a 3D left-handed helix rotating around
the electron traveling vector (out of paper), and the negatively charged electron has the
alternate series for 1/e. From e±iπ = −1, since ν̄eR takes e+iπ, α1/2 in weak interaction
has the format of e−iπα1/2, due to Landau CP conservation. [144] From (4.1)∣∣∣α1/2

∣∣∣ ≡ e−iπ
[
∓Mφ

Kπ

]
≡ e−iπ log e∓1/KΦπ (4.22)

= − log e∓1/KΦπ = log eη/KΦπ

where η = ±1 represents the intrinsic parity of the particle. Parity violation theory
in weak interactions was confirmed by 60Co experiments. [145] However, the cause of
the parity violation is not theoretically grounded. It is noticed that (4.22) temporally
changes e±1/KΦπ to e∓1/KΦπ, i.e., the reverse statistic. Since this could only happen
with the electronic antineutrino of right-handed helicity, the parity violation may only
be found in the weak interaction. It also explains why there is no CP violation for
the strong interaction in QCD. Fig. 4.6 shows that a positron (red) emerging from an
electron-positron pair seems to change charge to the electron in a very short time.
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Fig. 4.6: A positron (red) emerging from an electron-positron pair, produced by a gamma
ray, curves round through about 180 degrees. Then it seems to change charge: it begins
to curve in the opposite direction (blue).

Not only the electron is left-handed, in fact, all leptons and quarks found in Nature
are left-handed, and their anti-particles are right-handed.

quarks

(
+2
3 e
−1
3 e

) (
u
d

)
L

(
c
s

)
L

(
t
b

)
L

leptons

(
−e
0

) (
e−

νe

)
L

(
µ−

νµ

)
L

(
τ−

ντ

)
L

(4.23)

This must be due to the spacetime properties of the electromagnetic wave discussed in
section (2-1). The electromagnetic field must obey the right-handed rule, and oppositely,
the particle properties must obey the left-handed rule. The fundamental natural phi-
losophy is based on the principle of symmetry/asymmetry.30 We have derived the fine
structure constant formula based on this principle. That is why and how we have the
beautiful universe.

4-4 Topology of Quark Charge and Confinement
There are two mysteries surrounding quark charge in the strong interaction: (a) triplets
and (b) confinement. [146–150] They involve geometric topology in the form of a vector
bundle. A non-trivial fiber bundle (e.g., the Möbius strip) is a line bundle over the 1-sphere
S1. The electromagnetic wave in 4D space-time can be polarized and twisted to form a
Möbius strip in the particle generation, with a reverse process as the particle annihilates
(Fig. 4.7). This is a physical picture for the conversion between the photon and particle.

Fig. 4.7: The electromagnetic wave can be polarized into a Möbius strip. Notice the
spin-1 (h/2π) changing to spin-1

2 (h/4π), and the cardioid section in the middle.
30Antimatter are producible in any environment with a sufficiently high temperature, and the matter/antimatter are

balance existed at Big Bang.
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The topological illustration of the electric charge is linked to the Möbius strip, either
as a twisted cylinder or a lemniscate belt, depending on the length of the strip. There
are two types of Möbius strips depending on the direction of the half-twist: clockwise
and counterclockwise. It is therefore chiral, i.e., “handed”. The Möbius strip is related
to the fiber-bundle and the “Zitterbewegung” mathematically. The term “gauge” is more
often used in Particle physics. Since its surface is not orientable, a round trip must take
two cycles (4π) to return to the starting point. This verifies the particles with spin-1/2
(~/2 = h/4π).

In cylindrical polar coordinates (r, θ, h), an unbounded Möbius strip is

log(r) tan( θ2) = h (4.24)
�

Let h = α1/2 = log(e±1/KΦπ) in (4.1) and at θ = ±π/2, we naturally get

log(r) = log(e±1/KΦπ) (4.25)
�

i.e. r±π/2 = e±1/KΦπ. In R3 − t (4D), a Möbius strip can be presented as a group of
parametric equations with α1/2 (or α1/2

W in high energy scale)

x(u, v, t) =
(
α1/2 ± u

2 cos
(
v
2

))
cos(v + ω0t± 2nπ) (4.26)

y(u, v, t) =
(
α1/2 ± u

2 cos
(
v
2

))
sin(v + ω0t± 2nπ)

z(u, v, t) = u
2 sin

(
v
2 + ω0t± 2nπ

)
where −α1/2 ≤ u ≤ +α1/2, 0 ≤ v ≤ 2π, ω0=constant, and 0 < t < ∞; “+” for right-
handed or “–” for left-handed. This creates two types of live-rotating Möbius strips of
width α1/2, whose immobile central circle lies on the x−y plane and is centered at (0,0,0)
with radius α1/2. The angle parameter u runs around the strip while v moves from one
edge to the other. (4.26) is a torus in 4D space-time when ω0t is turning. However, charge
is timeless as sin(θ) = sin(2nπ ± θ),31 so it can be plotted in 3D as Fig. 4.8. Therefore,
a particle with linear speed αc, charge e = (α~c)1/2 and spin ~/2 can be illustrated as a
left-handed Möbius strip. Obviously, its mirror image is right-handed.

Fig. 4.8: The α1/2 illustration of equation (4.26) in 3D: (a) XOZ, (b) YOZ, (c) XOY, (d)
Isometric view shows R-G-B flipped on the edge, and 4D torus.

31Mach’s principle that a rotation leaves no trace at all, which also works for the creation of mass.
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If we cut this Möbius strip at 1/3 width of α1/2, we get two conjoined rings in Fig.
4.9: one immobile ring in the middle equal to -1/3 and another equal to +2/3 in a limited
range motion (the sign alternates in each cycle of the Möbius strip, so (−1)2 = +1).

Fig. 4.9: Cutting 1/3 of a Möbius strip into triplet charge: one immobile middle ring
(blue) and another confinement ring.

Fig. 4.10: Quark-antiquark pair of u, d, s, c, b makes Mesons in extended SU(3)∗c =
(|u〉, |d〉, |s〉)⊕ (|c〉, |b〉, |t〉) (a) spin-0; (b) spin-1.

This is similar to the quark charge, and the conjoined or paradromic rings also illustrate
why there are no free quarks (color confinement-asymptotic freedom).

In the group theory, SU(3)c = (|u〉, |d〉, |s〉) organizes mesons in octets: 3⊗3 = 8⊕1,
and baryons in octets or decuplets: 3⊗ 3⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A. The algebraic sum
of two spin-1/2 becomes spin-0 or 1. This model fits the Mesons (Fig. 4.10(a)-(b)) as a
valence quark-antiquark pair (e.g., π+ = d̄+u⇒ 1

3 + 2
3 = +1; π− = d+ ū⇒ −1

3−
2
3 = −1;

π0 =
(
dd̄± uū

)
/
√

2 ⇒ 0). These pions form the unstable transformation center of
Mesons, Baryons and Leptons. In weak interactions, heavier Mesons and Baryons decay
to pions, then pions decay to Leptons or γ-rays. The decay rate from a vector meson to
leptons is proposed by van Royen-Weisskopf [151]

Γγ = 16π(α2
em/MV )2|

∑
i

aiQi|2|ψ(0)|2 (4.27)

From (4.1), (4.27) can be linked to the vacuum conductivity in a beautiful square format

Γγ = G0
σ0

(αem · e
MV

)2|
∑
i

aiQi|2|ψ(0)|2 (4.28)

=
[

2
π

log e±1

KΦ

]2 [
αeme
MV

]2
|
∑
i

aiQi|2|ψ(0)|2

where αem = e2/4π = 1/137, MV is the mass of the vector meson, Q is the charge of
the quarks, and ψ(0) is the wavefunction for the two quarks to overlap each other. (4.28)
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shows that the meson decay involves the vacuum/quantum conductivity ratio G0/σ0 = 4α
and the charge/mass ratio e/MV . Note that b quarks make B-mesons and t quarks only
decay to W-bosons and a b quark.

Fig. 4.11: Combinations of three u, d, s, c, b quarks make baryons in extended SU(3)∗c (a)
spin-1⁄2 octet where the stable p and quasi-stable n make atoms; (b) spin-3⁄2 decuplet.
Note b quark makes Λ ∼ Ξ Baryons.

Fig. 4.12: Cutting the Möbius strip into three paradromic rings (a) p+− uud 2× (2/3)−
1/3 = 1, (b) n0 − ddu 2 × (−1/3) + 2/3 = 0, (c) ∆−-ddd 3 × (−1/3) = −1 or ∆++-uuu
3× (2/3) = 2.

Baryons in Fig. 4.11(a)-(b) are made by three quarks with spin-1/2 or 3/2, and their
electric charge can be 0,±1, 2 (e.g., proton as uud⇒ 2× (2/3)− 1/3 = 1 and neutron as
ddu ⇒ 2 × (−1/3) + 2/3 = 0). They can also be illustrated by cutting the Möbius strip
into three paradromic rings (2× (2/3)− 1/3 or 2× (−1/3) + 2/3) in Fig. 4.12(a)-(c)).
Note that only Fig. 4.12(a) is a regularly cut Möbius strip symbolizing a stable proton,
and (b)-(c) are made of composite Möbius strips, symbolizing the unstable particles.

4-5 Proton and Neutron g-factors
The particle’s g-factor is given as gi = 2µi/µN . The quark model was proposed after the
g-factors confirmation of proton gp = 5.585 and neutron gn = −3.826, which indicates
they are composite nucleons made by sub-particles. Quark model SU(6) = (|u〉, |d〉, |s〉)⊗
(|12〉, | −

1
2〉) only gives a scalar explanation for the ratio of neutron and proton magnetic

moments [147]

µp
µn

= gp
gn

= 〈ψp|µ|ψp〉
〈ψn|µ|ψn〉

=
〈P, 1

2 |Qσ3|P, 1
2〉

〈N, 1
2 |Qσ3|N, 1

2〉
= 36/36
−24/36 = −3

2 (4.29)

In SU(6) {6⊗6⊗6 = 56S⊕70M ⊕70M ⊕20A}, µpµn = 33
12 = −2.75 is also discussed. [147]

In CODATA-2010, many experimental data point to the same number
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µp
µn

= 1.410606743(33)×10−26[JT−1]
−0.96623647(23)×10−26[JT−1] (4.30)

= γp
γn

= 2.675222005(63)×108[s−1T−1]
−1.83247179(43)×108[s−1T−1]

= γp/2π
γn/2π = 42.5774806(10)[MHz·T−1]

−29.1646943(69)[MHz·T−1] =
µp/µB
µn/µB

= gp/2β
gn/2β = 1.521032210(12)×10−3

−1.04187563(25)×10−3 =
gp
gn

= 2µp/µN
2µn/µN = 5.585694713(46)

−3.82608545(90) =
gp/2
gn/2 = µp/µN

µn/µN
= 2.792847356(23)

−1.91304272(45)

= −1.45989806(34)

Since the g-factor of an electron with a whole Möbius strip is about |ge|/2 = 1+ae, we as-
sume that the g/2 of those immobile ring or rings is also close to ±1, and the g/2-factor of
a cut confinement ring with about two cycles is close to 1.8<2 (Fig. 4.12(a)-(b)). In fact,
all lepton gi values are negative (ge = -2.00231930436153(53); gµ = -2.0023318418(13) and
gτ = −2.008), which is often ignored (noted in section (4-2)). The negative sign means
that the particle has a tendency to align anti-parallel to a magnetic field. The neutron
gn/2 = −1.91304272(45) is also negative, and only the proton gp/2 = 2.792847356(23)
is a strange positive. From this simple quark toy-model of p+(uud) and n0(udd) in Fig.
4.12(a)-(b), [146,148] we get [147]

|µp| = +2
3µu + 2

3µu −
1
3µd = 1

3(4µu − 1µd) = |gp|
2 ·|µ0| (4.31)

|µn| = +2
3µu −

1
3µd −

1
3µd = 1

3(2µu − 2µd) = |gn|
2 ·|µ0|

where µp is the same as SU(6) and µn uses the same concept. Let |µ0| ≡ 1, (4.31) yields

µu/ |µ0| = gu/2 = +1.836325994 ∼= +2− 6
π
α1/2−

√
7
π
α3/2 (4.32)

µd/ |µ0| = gd/2 = −1.033238094 ∼= −1− 11
9πα

1/2−2π
7 α

5/2

where
√

7 appears in the electroweak coupling (4.19). The first and second correlation is
proportional to αn+1/2. The αn+1/2 series used here for QCD has been ignored by QED as
a divergent perturbation series. In the strong-electroweak coupling, the baryon anomaly
is aB(αn+1/2) = ∑ (−1)n+1 cnα

n+1/2. From (4.31) and (4.32)
|gp|
2 = 3 + 1

π
[1

3(1+2
9)− 23]α1/2−2

3 ·
2
√

7
π
α3/2 + 1

3 ·
2π
7 α

5/2 (4.33)

= 3 + [11
27 − 8]α1/2

π
+Op = ln

(
e3 · exp[ 1

3 ( 11
9πα

1/2+ 2π
7 α

5/2)]
exp[ 1

π
(8α1/2+ 4

√
7

3 α3/2)]

)
= 2.792847578

|gn|
2 = 2 + 1

π
[2

3(1+2
9)− 22]α1/2−1

3 ·
2
√

7
π
α3/2 + 2

3 ·
2π
7 α

5/2

= 2 + [22
27 − 4]α1/2

π
+On = ln

(
e2 · exp[ 2

3 ( 11
9πα

1/2+ 2π
7 α

5/2)]
exp[ 1

2π (8α1/2+ 4
√

7
3 α3/2)]

)
= 1.913042844

where αn+1/2 involves the odd number charge interaction e1, e3, e5, · · · (e.g., p+(uud) and
n(udd) in three charged quarks, plus W− and e− in the neutron decay as Fig. 4.5(a)).
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It is noted that 1
3 and 2

3 appeared in (4.10), (4.16), (4.21), (4.31) and (4.33), also 2
9 in

(4.17), and (4.21). From (4.32) and (4.33)[
|gp|

2
|gn|

2

]
=

[
3
2

]
+

{[ 11
2722
27

]
−

[
8
4

]}
1
π
α1/2−

[
2
31
3

]
2
√

7
π
α3/2+

[
1
32
3

]
2π
7 α

5/2 (4.34)

=
[

3
2

]
+ 1

π
·

{(
1 + 1

3 ·
2
3

)[ 1
32
3

]
−
[

23

22

]}
·α1/2 +

[
Op
On

]

= ln

exp

[
3
2

]
·

exp

{
11
9π

[ 1
32
3

]
α1/2

}

exp

{
1
π

[
8
4

]
α1/2

} ·exp

[
Op
On

]=
[

2.792847578
1.913042844

]

There is (3,8) for the stable proton and (2,4) for the decaying free neutron in (4.34).
It may be related to the gluons represented by the 8 Gell-Mann matrices. (4.34) can be
physically expressed as[

|gp|
2
|gn|

2

]
=
[

3
2

]
+ e
πqp

{
sin2 θw

[ 11
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3
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−

[
23

22
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]
√
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πqp
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]
tan2 θw
qp/π

re
a0
(4.35)

= ln
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exp
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]
· exp

{
e
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exp
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√
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π
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

=
[

2.792847578
1.913042844

]

where the quark charges are Qu = +2
3e and Qd = −1

3e. (4.35) is comparable to the
beta-function in QCD. Since SU(6) = SU(3)× SU(2) has the total number of generators
8 + 3 = 11 on 6 dimensional tensor product space, the beta-function of the asymptotic
freedom β1(αs) = α2

s

π
(−11N

6 + nf
3 ) = α2

s

3π (−11N
2 + nf ). [148,149]32

The toy-model of the asymptotic freedom in Fig. 4.12(a)-(b) requires gp and gn in
different signs, i.e., gp/2 = 2.7928 and gn/2 = −1.9130 for particle (gp/2 = −2.7928
and gn/2 = 1.9130 for anti-particle). This gives the ratio in (4.30)

µp
µn

= gp/2
gn/2

= gp
gn

= 4µu − 1µd
2µd − 2µu

= −1.459898082 (4.36)

The g-factors of proton and neutron gp and gn have a different signs. Neutrons with
negative gn will decay after leaving the nuclear quark confinement.

In the atomic Periodic table, the experimental ratio Np/Nn = 1/1 ∼ 1/1.6. Using the
toy-model of the Möbius strip, we can illustrate how Nn > Np and Nn/Np = 1 ∼ 1.6 < Φ
in the heavy nucleus makes it more stable. Nn > Np means Nd > Nu or N− 1

3
> N 2

3
,

i.e., the number of immobile rings is more than that of the confinement rings in the cut
Möbius strip in Fig. 4.12. The neutron’s two immobile central rings act like one, and
a free neutron’s decay behavior is alike a boson. The nucleus is more stable if there are
more immobile central rings.

32In the asymptotic freedom, alike QED, the one-loop beta-function with nf flavors in QCD SU (3)c is β1(g) =
g3

(4π)2 (−11 + 2nf
3 ) or β1(αs) = α2

s
2π β0 = α2

s
2π (−11 + 2nf

3 ) = α2
s
π

(−11N
6 + nf

3 ), where SU(3) give N = 3, αs(Q2) = g2

4π =
4π

β0 ln[Q2/Λ2] and g is a color charge, Λ ≈ 217MeV is QCD scale. If nf < 16, the coupling is inversely proportional to the
energy scale. Because of asymptotic freedom, no free quark with the asymmetry of fractional charge is found in nature.
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The g/2-factors of Leptons and Baryons in (4.10) and (4.35) have a similar logarithmic
format, and can be uniformly expressed as the information entropy( |ge|

2
|gp|
2

|gµ|
2

|gn|
2

)
=
(

1.0011596521807 2.792847578
1.0011659207972 1.913042844

)
(4.37)

=
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3 )]
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3 )] · e
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ln
(
e2 · exp( 2
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exp( 1

2B) · e
On
)
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where A = 1
2πα

3, B = 1
π2α

2 for the Leptons and A = 11
9πα

1/2, B = 8
π
α1/2 for the Baryons.

Of course, there is a lot of theoretical work, which is beyond the focus of this paper.

4-6 Running alpha?
From |α1/2| ≡ ±Mφ

Kπ
≡ log e±1

KΦπ ≡ log e±φ/Kπ, the electric charge sign of electrons and
positrons are given by log e∓, the particle topology of electrons and positrons are linked to
the left-handed Möbius strip and its mirror image, the proton and neutron are illustrated
by the cut Möbius strip for the color charge. Particles are generated when photons
become trapped in Möbius topology, and annihilated as photons are released. After all,
the particle-photon conversion obeys Einstein E = hν = mc2, which is also quantized by
the fine structure constant.

It is well-known that only 5 Fermat primes {3, 5, 17, 257, 65537} satisfy Fn = 22n +1.
Here we show the prime double factorial equation (2.38) only has 3 solutions {3, 37, 61},
which initialize the fermion charge quantization (K(3, 37, 61) ≈ 1), α1/2

naked = log e/Φπ =
1/Φπ ln 10, associated by countless variations of Φ− φ− e− π to constitute the Universe
Information. For W± boson, α1/2

W = logF±1

Φπ (1− α sin2 θw). Euler constant e and Fransén-
Robinson constant F can be unified as the limitation of the Riemann sum In [152]

In = 1
n
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n=0

1
Γ( k

n
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=
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1
Γ(n) =2.718281828...

1√
4π+ e

2 ·erfc(−1)=2.7865848321

⇓

F=
´∞
0

dx
Γ(x) =2.8077702420285...

n=1

n=2

⇓

n→∞

(4.38)

where the complementary error function

erfc(x) = 2√
π

´ ∞
x
e−t

2
dt = 1− erf(x) (4.39)

= e−x
2

x
√
π
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(−1)n · (2n−1)!!
(2x2)n
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or as a continued fraction

erfc(x) = 2√
π

´ ∞
x
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dt = 1− erf(x) (4.40)

= xe−x
2
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π
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where a1 = 1, am = m−1
2 (m ≥ 2). The standard normal distribution, described by the

probability density function φ(t) = 1√
2πe
−t2/2, then the cumulative distribution function

of the normal Gaussian distribution Φ(x) is

Φ(x) =
´ x
−∞
φ(t)dt = 1

2erfc(− x√
2) (4.41)

This explains the statistic character of the electric charge at the high-energy scale.
(4.38) can make alpha running from the starting points of SM or SUSY as Fig. 4.13

[153,154] Experimentally, the strong coupling constant αs(mZ) = 0.112 ∼ 121 and world
average αs(mZ)1 loop = 0.1171 ∼ αs(mZ)3 loop = 0.1184. [155] It is too early to tell whether
relate to f(0) = 1

eπ
= 0.117099 of the F − e integral in Fig. 4.14

Fig. 4.13: α−1
1 = 3

5α
−1 cos2 θw ∼ 60 and α−1

2 = α−1 sin2 θw ∼ 30 calculated from (4.38)
and α−1

3 = α−1
s ∼ 8.5 running from the starting points of SM or SUSY.

Fig. 4.14: F − e integral has a maximum of f(0) = 1
eπ

= 1
4 ( 1

2 )3/2( 3
2

3
4 )5/4( 5

4
5
6

7
6

7
8 )9/8 · · · =

0.1170996630

We present the dimensionless physical constants with the basic math constants, which
is formulated as the beautiful Euler Identity e±iπ + Φ = φ. As Einstein opined, “In a
reasonable theory there are no (dimensionless) numbers whose values are only empirically
determinable.” [156] “Dimensionless constants in the laws of nature, which from the purely
logical point of view can just as well have different values, should not exist. To me, with
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my ’trust in God’ this appears to be evident, but there will be few who are of the same
opinion.” [157]

�
Acknowledgment: The Author thanks Bernard Hsiao for discussion.
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