SLAC-PUB-8732
May 2001

Accelerator Toolbox for MATLAB?

A.Terebilo
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA

Abstract

This paper introduces Accelerator Toolbox (AT) - a collection of tools to
model particle accelerators and beam transport lines in the MATLAB
environment. At SSRL, it has become the modeling code of choice for the
ongoing design and future operation of the SPEAR 3 synchrotron light source.

AT was designed to take advantage of power and simplicity of MATLAB —
commercially developed environment for technical computing and visualization.
Many examples in this paper illustrate the advantages of the AT approach and
contrast it with existing accelerator code frameworks.

Talk presented at the workshop “Performance Issues at Synchrotron Light
Sources”

Advanced Light Source, Lawrence Berkeley Lab, Berkeley CA USA, October 2-4, 2000

* Work supported in part by DOE Contract DE-AC03-76SF00515 and Office of Basic Energy Sciences,
Division of Chemical Sciences.

1. INTRODUCTION

Computational accelerator physics is a mature field. There are many ‘industry-standard’
accelerator codes. Collectively, they cover a wide range of accelerator physics problems
and numerical methods. Development of new codes or frameworks may seem
unnecessary. However, experience shows, that using codes for problems beyond their
intended scope is possible but requires significant programming effort and good
understanding of the code itself. For this reason, it is a common practice to use several
codes for different types of problems in accelerator physidaving to adopt new
accelerator codes on ‘ad hoc’ basis is inefficient. Especially since most of us are
interested in physics of the problem rather than the code itself, command language or the
hierarchy of class libraries. There are other inefficiencies such as differences in input file
formats between different codes, platform dependency, and (ironically) having to export
results to other applications (Mathematica, MATLAB, etc.) for further analysis or
visualization.

The motivation behind Accelerator Toolbox (AT) development is to improve
efficiency andflexibility in interactive accelerator modeling. To achieve this AT takes a
different approach to many aspects of accelerator computing.

AT abandons the idea of being a stand-alone special purpose software package. It
Is a MATLAB toolbox — modeled after commercial toolboxes. Functionally, it becomes a
part of the MATLAB toolbox set so that AT functions can reuse tools from other
toolboxes, for instance optimization and control.

AT is an open-ended collection of tools — MATLAB functions and scripts
arranged in functional groups as opposed to one giant engine. Most of AT is written in

MATLAB programming language. This code structure greatly simplifies the process of

? For example in design of SPEAR3 storage ring [1] we used MAD for optics matching [2] and switched to
LEGO [3] for dynamic aperture studies [4]. We had to use yet another code, BETA [5], to analyze the
impact of a narrow pole insertion device [6]

adding and sharing new tools (for physicists, by physicists). To avoid the speed drawback
of an interpreter environment, computationally intensive routines are written in C/C++
and compiled into MEX-files (binary code executable from within MATLAB).

AT implements only computations specific to accelerator physics. All
‘housekeeping’ tasks and infrastructure such as parsing lattice and commands,
programming language, memory management, interactive graphics and many more are
already built into MATLAB.

Finally, many accelerator facilities extensively use or plan to use MATLAB. AT
can be integrated with such applications to provide an on-line model and useful data

structures for accelerator hardware interface.
2. INTRODUCTORY EXAMPLES

To illustrate statements made in the introduction, we give some examples of accel erator
modeling with AT. MATLAB users will appreciate the syntax and logic of AT,
consistent with other MATLAB toolboxes.

In these and other examples throughout this paper, text that appears in the
MATLAB command window is printed in terminal font. The user input is

preceded by>>" but not the output.

2.1 Loading L attice

We load an accelerator lattice into workspace by typing the name of the lattice file at
MATLAB prompt.

>> spear2

** |oading SPEAR lattice in spear2.m **

** Done **

Each lattice fileisa MATLAB function or script created by the user. It is a sequence of
commands that construct a special variable named THERING® describing a lattice in
MATLAB ‘workspace’. More on THERING and lattice data structures in section 3.1-2
2.2 Viewing and M odifying L attice Parameters

We now can view or manipulate THERING using standard MATLAB syntax. Just like
any other workspace variable we can view its basic properties: size, type, etc.

>> wWwhos THERING

Name Size Bytes Class

FAMLIST 1x29 58796 cell array (global)
GLOBVAL 1x1 274 struct array (global)
THERING 1x271 401552 cell array (global)

Grand total is 19946 elements using 401552 bytes

This output of theWhos’ command tells us that array THERING has 271 elements, each
corresponding to an accelerator lattice element. To inspect the first element, we use the
MATLAB ‘{} operator:
>> THERING{1}
ans =

FamName: 'AP'

Limits: [-0.0500 0.0500 -0.0500 0.0500]

PassMethod: 'AperturePass'

Length: 0

MATLAB tells us that the first element in THERING is an aperture with physical limits

-0.05 to 0.05 m in horizontal and vertical planes

3 AT can handle single pass accelerator structures as well as rings. Variable name THERING is now used
for all types of lattices - lines and rings. This may changein the future.

To modify any physical parameter of an element we only need MATLAB commands and
operators. For example, to change the limits of the aperture, use { 1} to access an element,

and ‘.’ (dot) operator to access a field in that element. The new value or array of values
appear to the right of the assignment operator ‘=".

>> THERING{1}.Limits = [-0.05 0.05 —0.02 0.02];

In addition to MATLAB syntax, AT provides a number of useful functions to manipulate
THERING. AT functionfindcells in the example below finds all elements in the

quadrupole family ‘QF’.

>> QFINDEX = findcells(THERING, 'FamName', 'QF")
QFINDEX =
Columns 1 through 12
31 45 47 59 61 77 79 91 93 107 166 180
Columns 13 through 20

182 194 196 212 214 226 228 242

That is, quadrupoles of the ‘QF family are located in THERING at positions 31, 45, ...

AT also provides graphical utilities that allow the user to interactively edit
element properties in THERING. Figure 2.1 shows a graphical utilitglat. The user
can display the layout of the lattice and select elements and parameters to be modified. A
new value typed into a corresponding text box is synchronized with THERING variable
in the workspace. Thentlat tool is written in MATLAB language with the use of
MATLAB GUI tools. It is a good starting point for a user who develops his/her own AT

GUI applications.

i igurs Mo 5 M=

 HiEEisE e s s s e
NN NN, N, NN NN NN, AN
-_|2-'|. . _._\.-
31-}..I|;. .-' L LT T o e e o e e
k- --.--.Ta-__ll T e = e : Farbiama [nom
. Wy e
& ﬂﬁ'-}_ PusMsted [DuslemsPan

o : s {? b ! R e
art b - _’- P | 000 | 0 coo [aom
=i = -] : i - | '] Poboall [oomn | aran | amm
el 0 ; : p ' !
e, |

16 hi:] x sl 24 .] .|

Figure 2.1 Accelerator Toolbox intlat — a graphical utility for

interactive editing of lattice element properties

2.3 Accelerator Physics Computations

Now we want to compute some accelerator parameters for the lattice we have just loaded.

AT function findm44 finds the linear transverse transfer matrix of a storage ring.

>> M = findm44 (THERING,O0)

M =
0.6845 30.7722 0 0
-0.0173 0.6845 0 0
0 0 0.1253 5.6629
0 0 -0.1738 0.1253

This lattice has no x-y coupling which shows as zero off-diagonal blocks in the transfer

matrix. To introduce some coupling we will shift one of the sextupole magnets vertically

—in this case element 15 in THERING.

>> THERING{15}

ans =
FamName: 'SF'
Length: 0.2334
MaxOrder: 3
NumIntSteps: 10
R1: [6x6 double]
R2: [6x6 double]
T1: [0 0 0 0 0 0]
T2: [0 0 0 0 0 0]
PolynomA: [0 0 0 0]
PolynomB: [0 0 1.6769 0]
PassMethod: 'StrMPoleSymplectic4Pass'

‘Fields’ T1 and T2 describe the shift in particle coordinates due to misalignment of a
magnet at entrance and exit. Next two lines effectively move the element vertically by
0.01 m:

>> THERING{15}.T1

[0 0 0.01 0 0 O];

>> THERING{15}.T2 [0 0 -0.01 00 O0];

Now the transfer matrix is no longer block-diagonal

>> findm44 (THERING,0)

ans =
0.6836 30.8164 -0.0686 -1.7660
-0.0172 0.6861 0.0002 0.0066
-0.0026 0.1297 0.1251 5.6837
-0.0046 0.2518 -0.1732 0.1243

Another useful AT function plotbeta plots beta-functions in a MATLAB figure

window and prints tunes in the command window (Figure 2.2):

| Figure No. 4 H=] E3
File Edit Tools “Window Help

SPEAR beta-functions
=t : : : :

0 &0 100 150 200
5 - position [m]

beta ' [m]

0 A0 100 150 200
5 - position [m]

Figure 2.2 AT output of aplotbeta command
>> plotbeta
tunes =
0.1290 0.2308
2.4 Particle Tracking

AT uses 6-dimensional phase space coordinates

H * H
IR
r=0 y O
0 p O
gp_po)/po[|
Cr E

AT function ringpass tracks particles for a specified number of turns: in the example

below we track a particle with initial condition x© = y© =0.01mfor 1000 turns.

>> T = ringpass(THERING,[0.01 0 0.01 0 0 0]"',1000);

The prime symbol in MATLAB denotes a transpose of a vector so that the second
argument to ringpass function is 6-componet column vector. The result is a 1000

column matrix where each column is a 6-dimentional phase space vector after each of

1000 consequent turns.
>> whos T
Name Size Bytes Class
T 6x1000 48000 double array

Grand total is 6000 elements using 48000 bytes

One of the advatages of AT is that smulation results are immediately available in
MATLAB workspace for further analysis or plotting. For example let's use MATLAB
plotting functions to display
a. Horizontal position (first component of each column of T) as a function of turn
number
b. FFT spectrum of the horizontal motion (Remember, we added some transverse

coupling to this lattice - thus multiple lines appear in the spectrum)

>> plot(T(1,:),"'.")

>> plot(abs(fft(T(1,:))))

I [1 s Hen

PR 0 Vil S i Al SN R T e e
;

.
opEl . T i P
1] IO 30 I il B &0 "W Ih W0 DD

Figure 2.3 Display and analysis of tracking results in MATLAB:
Horizontal (left) position and FFT (right)

2.5 M ultiple Particle Tracking and Phase Space Plot

In the style of MATLAB, AT functions can accept vectorized input arguments whenever
it adds flexibility. For example ringpass can track multiple particlesin one call. As an
example we will plot horizontal phase space near the 1/3-integer resonance.

First: reload the lattice and fit the strength of quadrupole elements ‘QF’ and ‘QD’
to the desired linear tune point near resonance. To start with the original lattice, we use
MATLAB ‘clear all' command and reload spear2.m
>> clear all
>> spear2
** |oading SPEAR lattice in spear2.m **

** Done **

>> fittune2([0.345 0.26], 'QF', 'QD');

Using MATLAB syntax we can assemble a multi-column matrix so that each column is a
different initial condition with increasing horizontal amplitude:

>> X0 = [0.001 0 0 0 0 0]'*(1:15);

Now we can pass this matrix of initial conditions as an argument to ringpass and use the
MATLAB function plot to display horizontal phase space (Figure 2.4).

>> XT = ringpassw(THERING,X0,500);

XT array is the result of tracking of 15 particles for 500 turns.

whos XT
Name Size Bytes Class
XT 6x7500 360000 double array

Grand total is 45000 elements using 360000 bytes

The first 15 columns XT (:,1:15) are the positions of 15 particles after the first turn.
The next 15 XT(:,16:30) are after the second turn etc.

>> plot(XT(1,:),XT(2,:),".");

10

+# Figure No. 1 M=l E3
File Edit Tools Window Help

lpsma xAr/pen
w 10°
2 T

*
1.8} %

_1 " L " L L &4

-0.05 -0.04 -0.02 1] 00z 004 006

Figure 2.4 Display of the results of tracking of 15 initial conditions

inone cal to atracking function ringpass

2.6 Programming with AT

One of MATLAB strengths is its high-level programming language that allows the user

to make functions and scripts, which then can be immediately called from within
MATLAB - just like other MATLAB built-in functions. The following example shows
how AT takes advantage of MATLAB programming capabilities.

Let’s write a short scripf indmcT that finds momentum compaction factor defined as
cL/L
a = 1

%p/p
oL is the path lengthening of an off-momentum orbit with momentum devidtiokve
will make use of AT function§indorbit4, findspos andringpass. We edit and

save a filefindmcf.m. Comments in a MATLAB files start witlh symbol.

11

Filefindmcf.m

% Assign a small dP value (normalized to the design momentum)
dP = 0.00001;

% Find transverse fixed point for this dP

FixedPoint = findorbit4 (THERING,dP);

% Make an initial condition X0 that starts

% on this fixed point and has a momentum deviation dP
X0 = [FixedPoint; dP; 0];

% Track this initial condition for 1 turn

% The sixth component of the phase space vector

% after 1 turn is the path lengthening

X1 = ringpass(THERING, X0) ;

% Find the total length of the ideal orbit

RingLength = findspos(THERING, length(THERING)+1);

% Calculate alpha parameter

alpha = X1(6)/(dP*RingLength)

Now we can cal findmcf asan AT command from MATLAB prompt:
>> findmcf
alpha =

0.01526317086747

2.7 Help for AT functions
MATLAB has a built-in help facility and AT inherits it. Typing help followed by a
function name prints comments contained in the file with that name. For example thisis

how we could learn about the plotbeta function:

12

>> help plotbeta

PLOTBETA(RING) finds and plots beta-functions of RING

It calls FINDOORBI4 and LINOPT which assume a lattice

Wwith NO accelerating cavities and NO radiation

PLOTBETA with no arguments uses THERING as the default lattice

See also PLOTCOD
he1p with directory name prints the first line of comments for each filein that directory:
>> help D:\MATLABR11\Toolbox\accelerator\atphysics
CAVITYOFF Turns Cavities OFF:
CAVITYON Turns Cavities ON:
FINDM44 finds 4-by-4 transfer matrixes
LINOPT performs linear analysis of COUPLED!!! lattices
MCF (RING) calculates momentum compaction factor of RING
PLOTBETA(RING) finds and plots beta-functions of RING
RADIATIONOFF Turns classical radiation OFF:

RADIATIONON Turns classical radiation ON:

3.LATTICETOOLS

In accelerator physics the term lattice commonly refers to the geometrical arrangement of
accelerator elements: magnets, accelerating cavities etc. along with the definition of
physical characteristics of each element. All accelerator codes must have some data
structures to internally represent |attices.

The central question of most computational accelerator physics problems is - how do the
lattice parameters affect the dynamics of individual particles and ultimately, beam

parameters.

13

AT decouples the task of lattice definition from computation of beam parameters
by implementing lattice tools and accelerator physics tools as two separate groups of
MATLAB functions ands scripts.

L attice tools create and manipulate lattice data structures. We discuss lattice tools
in this section. Accelerator physics tools simulate particle dynamics and compute beam
parameters for a given lattice. Accelerator physics tools are discussed in the next section.

3.1. Lattice Data Structures
Accelerator Toolbox uses a combination of built-in MATLAB data types (a ‘cell array’
of ‘structures’) to represent the accelerator lattice.

In MATLAB ‘structure’, data is arranged in ‘fields’ and can be accessed by ‘field’
name. In the example below, QF is a ‘structure’ that describes a simple quadrupole
magnet.
>> QF .Name = ’QF’;
>> QF.Length = 1;
>> QF.K = 0.55
QF =

Name: ’'QF’
Length: 1
K: 0.55
To change quadrupole strength we need to modify the value of the ‘field’ K:
QF .K=0.5;

A ‘cell array’ in MATLAB is similar to a numeric array but the individual ‘cells’

can hold data of different types. If we construct in a similar manner ‘structures’ D1 and

D2 for two drift spaces, and ‘structure’ QD for another quadrupole magnet with negative

* Coincidentally, many common terms in accelerator physics such as cell or structure, also have precise

meaning in MATLAB language. To avoid possible confusion, we use single quotes to indicate when aterm

appears in MATLAB context. For instanogell’ means an element of MATLAB ‘cell’ array, while FODO

cell refers to a period of an accelerator lattice. Some other terms that may appear in quotes are 'global’
‘structure’, ‘field’, ...

14

value of ‘field’ K, we can immediately build a ‘cell array’ to represent one period of a
FODO accelerator lattice.
>> FODO = {D1 QF D2 QD};

Notice how we used MATLAB ‘{}’ syntax for building and indexing cell arrays.

We can further combine several FODO periods into a lattice using the MATLAB array
concatenation operator ‘[]'.
>> FODOLATTICE = [FODO FODO FODO FODO];

This simple example illustrates an important point: MATLAB already has data
types suitable for lattice description - we do not need any special language or any
additional code development besides standard MATLAB syntax.

3.2 ‘Global’ Lattice Variables

‘Global’ variables in MATLAB are variables that are shared between functions that use
or modify them. It is convenient to use ‘global’ variables for some of the lattice data. To
see some of the ‘global’ lattice variables, let's again load an example lattice and inspect
the workspace witilhos command

>> spear2

** |oading SPEAR lattice in spear2.m **

** Done **

>> Whos
Name Size Bytes Class
FAMLIST 1x29 58796 cell array (global)
GLOBVAL 1x1 274 struct array (global)
THERING 1x271 401552 cell array (global)

Grand total is 22551 elements using 460622 bytes

15

3.2.1 THERING

At any given time there can be any number of lattices in the workspace. AT uses
one specia name THERING for the lattice it is currently working with. THERING is
created during the execution of the lattice file.

Many AT functions use this ‘global’ variable THERING as default argument — for
instanceplotbeta and intlat in our introductory examples. The use of ‘global’
variables also ensures that all changes of lattice parameters made with graphical lattice
tools or optics fitting tools are synchronized to the same copy of the lattice.

3.2.2 GLOBVAL
In AT, a ‘global’ variable GLOBVAL is a ‘structure’ designed to hold physical
parameters that have to be available to AT functions such as design energy E
GLOBVAL is created an initialized during lattice declaration.
>> GLOBVAL
GLOBVAL =
E0: 3.0000e+009

LatticeFile: 'spear2.m'
3.2.3 Other AT ‘global’ variables
LOSSFLAG stores information about particle lost during numerical tracking.
FAMLIST is a ‘cell array’ that holds a list of families, i.e. groups of elements that share
some design properties such as length.
3.3 Latticefiles
Commonly, lattice files in accelerator codes are text files in a format thatlatiece
parser/interpreter of that particular code can understand. The parser becomes an
inextricable part of the code. This traditional approach has disadvantages for both user
and developer. The user needs a new lattice definition language for each new accelerator
code or a translator program. The developer, often an accelerator physicist, becomes

responsible for maintaining the parser module that has nothing to do with physics.

16

AT takes a different approach. A lattice file in AT is a MATLAB function or

script. When executed from command prompt, it creates lattice variables in the
MATLAB ‘workspace’ (THERING and GLOBVAL). There is no strict format
specification for a lattice file as long as it correctly produces these lattice vatiables
An example spear2.m lattice file for SPEAR storage ring is discussed in appendix A.1.
3.4 Element types
Many applications require from an accelerator code the ability to handle many different
types of elements and field models. To meet this requirement, an accelerator code has to
either include all thinkable element types from the beginning or allow users to define new
types with minimum programming. There are several steps involved in including or
adding a new element type to an accelerator code:

1. Implement a new data type in the code to hold data for the new element type

2. Modify the lattice parser to recognize new element type in the lattice file

3. Implement accelerator physics routines with correct numerical integration

methods for the new element type

AT uses MATALB ‘structures’ to store element data. Physical parameters of an element
are stored in separate ‘fields’ of a ‘structure’ and can be accessed by the ‘field’ name.
This design makes it easy to create new element types. Consider the following example.
3.4.1 Harmonic Cavity Example
AT models RF cavities assuming a single frequency. Let's make a new type for a
harmonic cavity [7]. Load an example lattispear2rad that contains a cavity.
>> clear all
>> spear2rad

** | opading SPEAR lattice in spear2rad.m **

® It is even possible, although awkward, in alattice file to build THERING element-by-element, ‘field’-by-
‘field” as we did in section 3.1. AT provides tools that automatically create ‘structures’ for elements with
consistent ‘field' names during the execution of a lattice file.

17

Thelast element of THERING is RF cavity with one fundamental frequency. It now has a
field ‘Voltage’ that stores the amplitude of the fundamental harmonic.
>> THERING{end}
ans =

FamName: 'CAV1'

Length: 0
Voltage: 1600000
Frequency: 3.585329802858105e+008
HarmNumber: 280
PhaseLag: 0
PassMethod: 'ThinCavityPass'

We wish to modify this ‘structure’ to model a harmonic cavity instead. We need to
specify the total number of harmonics and their amplitudes. We pick meaningful names
for two new fields NumOfHarm and HarmVoltage:
>> THERING{end}.HarmVoltage = [1600000 0 800000 0 400000];
>> THERING{end}.NumOfHarm = 5;
To change the way AT propagates particles through this new type we also change the
field’ PassMethod from ThinCavityPass to a new function
ThinHarmCavityPass®. This new function we have to write ourselves.
>> THERING{end}.PassMethod = ‘ThinHarmCavityPass’;

Now view the changes made to the element:

® It is the PassMethod ‘field’ of an element that controls the low-level physics used by AT to propagate
particles through that element. We will discuss PassMethod and low-level physics functions in section 4.1

18

>> THERING{end}
ans =
FamName: 'CAV1'
Length: 0
Voltage: 1600000
Frequency: 3.585329802858105e+008
HarmNumber: 280
PhaselLag: 0
PassMethod: 'ThinHarmCavityPass'
HarmVoltage: [1600000 0 800000 0 400000]

NumOfHarm: 5
It should be clear from the example that AT does not strictly define element types.
Instead, each element has a set of ‘fields’ that store parameters. Making new types in AT
only requires adding new ‘fields’ to the element ‘structure’ to store additional parameters.
This can be done either from command line or in the lattice file. The new physics,
specific to this new type of element, is implemented in a separate function. Mpasson
methods in 4.1.1.

There are a few ‘fields’ that must be the common to all existing element types and
newly created ones in order to integrate the new types smoothly into AT. For example all
elements must have fields ‘Length’ and ‘PassMethod'.

3.5 Lattice manipulation tools

Any lattice parameter can be modified using MATLAB syntax for ‘cell arrays’ and
‘structures’. AT also provides higher-level lattice tools that modify a group of parameters
in several elements in one call.

For example to displace a quadrupole magnet longitudinally by some distance
we need to change the ‘Length’ field of two drifts adjacent to this magned laynd—d

and also (good AT programming style) check that this operation does not move the

19

guadrupole to a place already occupied by other magnets. AT function mve lem does just
that. For example we can move the fifth element in THERING by 1 cm downstream:
>> findspos(THERING,5)
ans =
3.20480000000000
This is the current longitudinal position of the magnet in meters. Now move it with
mvelem:
>> mvelem(5,0.01)
>> findspos(THERING,5)
ans =
3.21480000000000

Here are some other lattice manipulation tools with examples:

cavityon, cavityoff turnon and off al RF cavitiesin THERING if there are any.
>> clear all

>> spear2rad

** |Loading SPEAR lattice in spear2rad.m **

** Done **

>> cavityoff

Cavities located at index [272] were turned OFF

findcells searches cell arrays of structures such as THERING for elements with

specified fields or field values. The next command finds all elements whose ‘FamName’

equal to ‘QF

20

>> qfindex = findcells(THERING, 'FamName', 'QF'")
gfindex =
Columns 1 through 12
31 45 47 59 61 77 79 91 093 107 166 180
Columns 13 through 20

182 194 196 212 214 226 228 242

settilt, setshift misaign aspecified element or a group of elements

>> xerror 0.0001*randn(1,length(gfindex));

>> yerror 0.0001*randn(1,length(gfindex));

>> setshift(gfindex, xerror, yerror);

The first two commands in the above example generate random vectors of horizontal and
vertical displacements with 100 um standard deviation and zero mean for all ‘QF

guadrupoles. Thersetshift writes these misalignment values to THERING.

4. ACCELERATORPHYSICSTOOLS
These tools simulate particle dynamics and compute beam parameters for a given lattice.
They use AT lattice data structures in the workspace created by AT lattice tools.
4.1 Low-level Physics Tools
Structurally, most accelerator codes are built around a physics engine based on
symplectic integration or differential algebra (DA). In the case of symplectic integration,
the engine computes trajectories of individual particles element by element — this
approach is known as patrticle tracking or ray tracing. In case of DA the engine computes
and analyzes numerical maps of elements or sequences of elements.

AT does not have a single physics engine. Instead, the low-level physics is

contained in separate MATLAB functions. The purpose is to make the code structurally

21

simpler so that the end user can add new physics functionality with minimum knowledge
about the rest of the code.

4.1.1 Pass Methods

Specia low-level functions that play an important role in AT are the element pass
methods. Each pass method is implemented in a MATLAB function that numerically

propagates particles through an element.

B B g*g 0
P, 0 0 0P, O O
Dy[] O Dy[] O
0’0 = F%IementData,D O O
Up, O Op, O O
DJ] B D5 g B
E:T ﬁnil F @FT ﬁmrance F

The format for caling pass methods from MATLAB is illustrated in the following
example. In our spear?2 lattice, the fifth element in THERING is a quadrupole. We use
pass method QuadLinearPass to numericaly propagate a particle with initial
condition x =y =1cm.
>> QuadLinearPass(THERING{5},[0.01 0 0.01 0 0 0]")
ans =

0.00929616821488

-0.00103587716282

0.01072074183297

0.00108625252093

0

0.00000050393612

The first argument passed to QuadLinearPass is a ‘structure’ containing physical

parameters of the magnet: length, strength, misalignment data etc.

22

>> THERING{5}

ans =
FamName: 'Q2'
Length: 1.34274000000000
K: 0.07900900000000
MaxOrder: 3
NumIntSteps: 10
PolynomA: [0 0 0 0]
PolynomB: [0 0.07900900000000 0 0]
R1: [6x6 double]
R2: [6x6 double]
T1: [0 0 0 0 0 0]
T2: [0 0 0 0 0 0]
PassMethod: 'QuadLinearPass'

The second argument is a six-dimensional column vector of initial conditions. The output
Isavector of six phase space coordinates at the el ement exit.

4.1.2 Vectorized MATLAB Calling Syntax

The second argument of any pass method can also be an N-column matrix where each
column represents a different initial condition or a different particle. For example, let X0

be amatrix of 3 different initial conditions:

23

>> X0 = [0.01 00O OOO; 00 0.010O0O0; 00OGOUO0.01O0]"

X0 =
0.01000000000000 0 0
0 0 0
0 0.01000000000000 0
0 0 0
0 0 0.01000000000000
0 0 0

We can pass X0 as an argument to a pass method the same way we did a single particle.
In the answer, each column is the result of tracking of the corresponding column in X0.

>> QuadLinearPass(THERING{5},X0)

ans =
0.00929616821488 0 0
-0.00103587716282 0 0
0 0.01072074183297 0
0 0.00108625252093 0
0 0 0.01000000000000
0.00000024479153 0.00000025914459 0

4.1.3 Pass Methods and Element Models

The computational procedure in each pass method assumes some physical model of an
element. AT includes a number of different model-specific pass methods. The user can
independently choose a model for each accelerator element by using one of the available
pass methods. Here are some examples of using different models in the case of a
quadrupole.

QuadLinearPass is based on the exact solution of the Hamiltonian with vector

potential A, proportional to x* - y?.

24

>> quadlinearpass(THERING{5}, [0.01 0 0.01 0 0 0]"')
ans =
0.00929616821488
-0.00103587716282
0.01072074183297
0.00108625252093
0

0.00000050393612

DriftPass assumes a model with no magnetic field. This, obvioudly, is not a great

model for a quadrupole with non-zero gradient.

>> driftpass(THERING{5}, [0.01 0 0.01 0 0 0]")
ans =
0.01000000000000
0

0.01000000000000

Notice that the coordinates did not change.

StrMPoleSymplectic4Pass implements a fourth-order symplectic integrator [8].
This is equivalent [9] to modeling a quadrupole (or any element with purely transverse
magnetic field) as a sequence of transverse kicks and drifts. Notice that the answer isvery

close but different from the one given by the linear model.

25

>> strmpolesymplectic4pass(THERING{5}, [0.01 0 0.01 0 0 0]")
ans =
0.00929616840160
-0.00103587695038
0.01072074163725
0.00108625228456
0

0.00000050393603

StrMPoleSymplectic4RadPass assumes the same type magnetic field as in
StrMPoleSymplectic4Pass but adds classica radiation. Notice a small change in
the fifth component of the phase space vector due to the radiative energy loss
>> strmpolesymplectic4radpass(THERING{5}, [0.01 0 0.01 0 0 0]"')
ans =

0.00929616840131

-0.00103587695025

0.01072074163756

0.00108625228446

-0.00000000063811

0.00000050393603
4.1.4 Element Data — Pass Method Compatibility
Examplesin section 4.1.3 show flexibility of AT in defining elements and using different
physics models. There is a small price to pay for such flexibility - the user becomes
responsible for supplying all necessary element model parameters. The ‘field’ names in
the element ‘structure’ must be consistent withphss method used for that element. A
pass method looks for a set of model parameters in ‘fields’ with specific names. For

example:

26

DriftPass expects to find a ‘field’ named ‘Length’ in the element ‘structure’.
QuadLinearPass requires, in addition to ‘Length’, ‘fields’ named: ‘K’ — quadrupole
strength, ‘R1’, ‘R2’, ‘T1’, ‘T2’ — element misalignment parameters.
StrMPoleSymplecti4Pass expects to find ‘PolynomA’, ‘PolynomB’ which store
the coefficients of multipole field expansions and the field ‘NumintSteps’ - the number
of integration steps for the symplectic integrator. [fags method can not find a field

with the exactly matching name, execution stops and MATLAB displays error messages.

4.1.5 Tracking through Sequences of Elements

When tracking through sequences of elements or tracking multiple turns in rings we want
to loop over elements and set in advance which the pass method to use for each element.
For this purpose each element ‘structure’ has a ‘field’ named ‘PassMethod’. For example:
>> THERING{2}.PassMethod

ans =

DriftPass

>> THERING{3}.PassMethod

ans =

QuadLinearPass

One easy way to make a loop over elements is to write a simple function in MATLAB
language usin@feval command.

File: testloop.m

function xout = testloop(xin)
global THERING

xout = xin;

for i = 1:1ength(THERING)

METHOD = THERING{i}.PassMethod;

27

xout = feval (METHOD,THERING{i}, xout);

end

This function tracks one or several initial conditions for one turn through THERING.
We again use amatrix with three different initial conditions X0.
>> X0 =1 0.0100000; 000.01000; 0000 0.010]";

Now type from MATLAB command line:

>> testloop(X0)
ans =
0.00686446690158 -0.00008290570276 0.01229027878633

-0.00017504919046 0.00000283372661 0.00068644957948

0 0.00134432591088 0
0 -0.00172434135644 0
0 0 0.01000000000000

0.00072108772832 -0.00011909976543 0.03383980184588

This is a good example to illustrate the use of the ‘PassMethod’ field. It is not the most
efficient: MATLAB loops that are inherently slow since it is an interpreter environment.
Accelerator Toolbox has a few tools for fast tracking through sequences. These tools
were written in C and compiled into mex-files to achieve native execution speed.
RingPass tracks through a ring for a number of turns. We used it in one of the
examples in section 2.4.

LinePass tracks through a sequence of elements only once but it can return
intermediate results at specified points. For example if we were interested in particle’s

coordinates when it entered elements 1, 100 and 200 we would use:

28

>> linepass(THERING,[0.01 0 0.01 0 0 0]',[1 100 200])

ans =

0.01000000000000 -0.00181470789175 0.00149615901159

0 0.00101651176382 -0.00070670061099

0.01000000000000 0.02536745801686 0.00890811778247

0 0.00449985303116 0.00434806288090

0 0 0

0 -0.00046794511453 0.00013252083694

4.2 High-L evel Physicstools

Using MATLAB scripting features, AT builds a hierarchy of high-level accelerator

physics tools. These functions and scripts compute accelerator and beam parameters.

They are built on top of low-level pass methods that hide the details of individual

particles dynamics through elements. High-level tools make use of other functionsin AT

and MATLAB’s own toolboxes. Most high-level tools are written in MATLAB

programming language.

An example in this section further illustrates the structure of AT as an open-ended

collection of interacting MATLAB functions and scripts. A common problem of fitting

optics parameters (such as tunes) may involve a number of intermediate steps.

Q

Q

Define a lattice

Find closed orbit

Find a transfer matrix — a linear approximation to the full one turn map of a
storage ring near closed orbit

Compute tunes from (possibly coupled) transfer matrix

Numerically invert the relationship between free parameters such as strength of

two or more quadrupole families and the target parameters — tunes.

29

Separate AT tools can accomplish these tasks. Figure 4.1 shows the functions involved
and their dependencies. We have aready seen command line examples of most of these

high-level toolsin 2.3-2.5.

FindOrbit4 |« > FindM44 < > LinOpt < > FitTune2
v ™
RingPass DriftPass
QuadLinearPass
Low Level
StrMPoleSymplectic4Pass Pass Methods
J

Figure 4.1 AT functions used in linear tunes fitting example

5.DEVELOPMENT AND DISTRIBUTION
5.1 Availability
Accelerator Toolbox is publicly available for download from the AT web page

http://www-ssrl.slac.stanford.edu/at/

It requires MATLAB version 5 or higher.
5.2 Code Development
Developing and maintaining large-scale, non-commercial scientific software is a
demanding task. Historically it has been a challenge for physicists and programmers who
wrote accelerator codes. One of the key ideas of AT is to outsource most of this work -
everything that is not physics.

From the beginning, AT meant to simplify code development and user
participation. MATLAB language and open-ended, modular toolbox structure allow users

to independently contribute to any of the AT tool groups discussed in this paper:

30

o Lattice Toolsand GUIs

o Pass methods for new element models
o High-level physicstools

o Modeling and control applications

New user-developed tools that fit into existing AT framework can be shared and later

included in the code distribution.

ACKNOWLEDGEMENTS

An important piece of work that has preceded AT in systematically using MATLAB for

accelerator modeling was TRACY ML [10] by H. Nishimura, LBNL. Symplectic

integrator pass methods such as StrMPoleSymplectic4Pass use C trandations of

PASCAL routines used in the accelerator ssmulation code TRACY [11] by J. Bengtsson,

E. Forest and H. Nishssmura. TRACY was also used as a benchmark for AT testing. The

author thanks J.Corbett, SLAC, for helpful feedback that results from his work on AT

and MATLAB applications for SPEAR3 light source. The author aso thanks the
accelerator physics group at Advanced Light Source, LBNL: H. Nishimura, G. Portman,

D. Robin, C. Steier, for the ongoing collaboration in using AT and contributions made to

the code.

REFERENCES

1. R. Hettel, et al “Design of the SPEAR 3 Light Source”, Proc. of European Particle
Accelerator Conference, EPAC2000, Vienna, Austria (2000).

2. J. Corbett, et al, "Design of the SPEAR 3 Magnet Lattice", Proc. of European Particle
Accelerator Conference, EPAC98, Stockholm, Sweden, June 22-26, 1998. See also
SLAC-PUB-7882 (1998).

3. Y. Cai, et al “LEGO: a Modular Accelerator Design Code”, IEEE Proc. of Particle
Accelerator Conference PAC97, Vol.2, p.2583 (1998)

31

10.

11.

J. Corbett, Y. Nosochkov, J. Safranek, "Dynamic Aperture Studies for SPEAR 3",

Proc. of Particle Accelerator Conference PAC99, (1999). SLAC-PUB-8232. See also
SLAC-PUB-7965 (1999).

L. Farvacque, JL. Laclare, A. Ropert, “BETA User’s Guide”, ESRF-SR/LAT-88-08,
(1989).

J. Safranek, et al “Nonlinear Dynamics in SPEAR Wigglers”, Proc. Of European
Particle Accelerator Conference, EPAC2000, Vienna, Austria (2000).

A. Hofmann and S. Myers, “Beam Dynamics in a double RF system”, In Proc. Of the
11-th International Conference on High Energy Accelerators, pp 610-614, (1980)
R.D. Ruth, “A Canonical Integration Technique,” IEEE Trans. Nuclear Science, NS-
30, p2669 (1983).

See discussion (section 3.3.1) in E. Forest, “Beam Dynamics, New Attitude and
Framework”, Harwood Academic Publishers (1998)

H. Nishimura,"Introduction to TracyML", LBNL ALS/LSAP-246 (1998). See also H.
Nishimura, “Matlab-like environment for accelerator modeling and simulation”,
Presented at International Computational Accelerator Physics Conference ICAP98
Monterey, CA, USA (1998).

H. Nishimura, "TRACY, a Tool for Accelerator Design and Analysis”, Proc. Of

European Particle Accelerator Conference EPAC 88, p803 (1989)

32

APPENDIX A.1
This appendix explains the |attice definition convention in Accelerator Toolbox.

A lattice filein AT isa MATLAB function or script written by the user. When
executed, it creates lattice data structures in the MATLAB workspace. By convention,
the array that describes a lattice is a ‘cell array’ where each ‘cell’ represents a lattice
element. Each ‘cell’ is a ‘structure’ with a set of consistent ‘field’ names. Some ‘fields’
such as ‘Length’ are common to all element types. Some are specific to a physical model

chosen for that element. For example:

Length - physical length [m]

K - quadrupole strength for quadrupole and dipole magnets
BendingAngle - bending angle in dipole magnets

Limits - physical aperture limits, a 4-component vector
PassMethod - name of the function to be used for numerical tracking

The advantages of this convention are:
o No need for a special-purpose language to define lattices
o No need for lattice file parser/interpreter program — MATLAB interpreter serves
this purpose

o Flexibility to define additional element parameters with minimum programming
Note, that we could create data structures like this using a few built-in MATLAB

commands. For example, we could write a lattice file that declares elements one-by-one

like this:

33

THERING{1} = struct('FamName','AP','Length',0,...
"Limits',[-0.05 0.05 -0.02 0.02], 'PassMethod', 'AperturePass');

THERING{2} = struct('FamName', 'DR01','Length',1.3448,...
'PassMethod', 'DriftPass');

THERING{3} = struct('FamName','QF3','Length', . . .);

A lattice created in this way would have to contain an entry for each element and may get
too long for practical use. The solution is to group elements that are similar by design and
function, into families. Families are declared first. The lattice is than constructed from
representatives of different families using MATLAB array syntax ‘{}' and ‘[]'.

The following example lattice definition filepear2.m uses this approach. Its
format is similar to lattice file formats of many other accelerator modeling codes. We will

now analyze its parts:

File spear2.m (beginning)

function spear2

% Simplified lattice definition file for SPEAR-II storage ring
% Created 11/21/99

global FAMLIST THERING GLOBVAL

GLOBVAL.EO0 = 3e9;
GLOBVAL.LatticeFile = 'spear2.m';

FAMLIST = cell(0);

disp(' ');
disp('** Loading SPEAR lattice in spear2.m **');

The first line with MATLAB keyword ‘function’ identifies this file as a function with no
arguments and no return values — meaning all variables created during its execution are
‘local’ unless explicitly declared ‘global’. VariablessMLIST THERING GLOBVAL are
‘global’. Lines preceded by % are comments. MATLAB will display the top comment

lines when ‘help’ is called. The next block is a description of different element families.

File spear2.m (continued)

% Begin Element Families

AP = aperture('AP', [-0.05, 0.05, -0.05, 0.05], 'AperturePass');

DRO1 = drift('DRO1"' ,1.344800, 'DriftPass');
DRO2 = drift('DR02' ,0.860000, 'DriftPass');
DR03 = drift('DR03' ,6.413180, 'DriftPass');
DR04 = drift('DR04' ,0.611890, 'DriftPass');
DR04A = drift('DR04A',0.617123,'DriftPass');
DR05 = drift('DR05' ,2.823700, 'DriftPass');
DRO6A = drift('DRO06A',0.151205, ' 'DriftPass');
DR06B = drift('DR06B',0.229935, 'DriftPass');
DRO7A = drift('DRO07A',0.229948, 'DriftPass');
DRO7B = drift('DR07B',0.151205, ' 'DriftPass');
DROBA = drift('DRO08A',0.151205, ' 'DriftPass');
DR08B = drift('DR08B',0.227335, ' 'DriftPass');
DR09 = drift('DR09' ,2.981660, 'DriftPass');
Q3 = quadrupole('Q3' , 1.00000, 0.000000, 'QuadLinearPass');
Q2 = quadrupole('Q2' , 1.34274, 0.079009, 'QuadLinearPass');
Q1 = quadrupole('Q1' , 0.51834,-0.259585, 'QuadLinearPass');
QFA = quadrupole('QFA' , 0.51834, 0.793115, 'QuadLinearPass"');
QFAH = quadrupole('QFAH', 0.25917, 0.793115, 'QuadLinearPass');
QDA = quadrupole('QDA' , 0.51834,-0.654627, 'QuadLinearPass"');
QFB = quadrupole('QFB' , 0.51834, 0.516968, 'QuadLinearPass"');
QF = quadrupole('QF' , 0.51834, 0.449896, 'QuadLinearPass');
Qb = quadrupole('QD' , 0.51834,-0.669244, 'QuadLinearPass');

SF = sextupole('SF' , 0.23335, 1.67687, 'StrMPoleSymplectic4Pass');
SDA = sextupole('SDA', 0.23335,-1.29030, 'StrMPoleSymplectic4Pass');

SDB = sextupole('SDB', 0.23335,-1.29030, 'StrMPoleSymplectic4Pass');
BB = rbend('BB' ,2.35785400, .

0.1848, 0.0924, 0.0924, 0, 'BendLinearPass');
B = rbend('B' ,1.17766900,

0.0924, 0.0462, 0.0462, 0, 'BendLinearPass');

In this block, aperture, drift, quadrupole, sextupole and rbend are
functions implemented in AT to create element families and initialize their data fields.
Each function updates the list of declared families FAMLIST and returns an integer index
by which this family is entered in FAMLIST.

35

The next block creates an ordered list of elements ELIST. Elements in this list
are integer references to families in FAMLIST declared in the previous block. In this
example ELIST is built from pieces (sub-lines) SWSE, NENW and AP using MATLAB
concatenation syntax ‘[J’. It is easy to symbolically handle sub-line repetitions and order

iInversion using standard syntax or additional AT tools sucteagrse.

File spear2.m (continued

% Begin Lattice

SWSE =[DR01 Q3 DR02 Q2 DR03 Q1 DR04 BB DR04A BB DR05 QFA DROG6A ...
SF DR06B B DR07A SDA DR07B QDA DROS8A ...
SDA DR08B BB DR08B SF DR08SA QFB DR09 ...
QF DR04 BB DR08B SDB DR08BA QD DRO8SA SDB DR08B BB DRO08B ...
SF DR08BA QF DR09 QF DR04 BB DR08B SDA DROSA QD ...
DR08BA SDA DR08B BB DR04 QF DR09 QF DRO8S8A SF DR08B BB ...
DR08B SDB DRO8S8A QD DR0O8A SDB DR08B BB ...
DR08B SF DRO8SA QF DR09 QF DR04 BB DR08B SDA DRO8SA QD ...
DR0O8BA SDA DR08B BB DR04 QF DR09 QF DRO8S8A SF DR08B BB ...
DR08B SDB DRO8S8A QD DR08A SDB DR08B BB DR04 QF DR09 QFB DROSA ...
SF DR08B BB DR08B SDA DR08SA QDA DR07B SDA DRO7A B DRO6B ...
SF DR06A QFA DR05 BB DR04A BB DR04 Q1 DRO3...
Q2 DR02 Q3 DRO1];

NENW = [DRO1 Q3 DR02 Q2 DR03Q1 DR04 BB DR04A BB DR05 QFA DROG6A ...
SF DR06B B DR07A SDA DR07B QDA DROS8A ...
SDA DR08B BB DR08B SF DR08A QFB DR09 ...
QF DR04 BB DR08B SDB DR08BA QD DRO8SA SDB DR08B BB DRO08B ...
SF DR08A QF DR09 QF DR04 BB DR08B SDA DROSA QD ...
DR08BA SDA DR08B BB DR04 QF DR09 QF DRO8S8A SF DR08B BB ...
DR08B SDB DR0O8S8A QD DR08A SDB DR08B BB ...
DR08B SF DR08A QF DR09 QF DR04 BB DR08B SDA DROS8A
QD DR0O8BA SDA DR08B BB DR04 QF DR09 QF DRO8A SF DR08B BB ...
DR08B SDB DR0O8S8A QD DR08A SDB DR08B BB DR04 QF DR09 QFB DROSA ...
SF DR08B BB DR08B SDA DR08SA QDA DR07B SDA DRO7A B DRO6B ...
SF DR06A QFA DR05 BB DR04A BB DR04 Q1 DRO03
Q2 DR02 Q3 DRO1],;

ELIST = [SWSE NENW AP];
ELIST = reverse(ELIST);

36

File spear2.m (end)

buildlat (ELIST);
evalin('caller', 'global THERING FAMLIST GLOBVAL');
disp('** Done **');

AT function buildlat builds ‘cell array’ THERING from integer indexes BLIST.
Theevalin('caller','global THERING FAMLIST GLOBVAL') command ensures that
lattice variables remain and are declared global in the main workspace after the

execution ofspear2 stops.

37

