
1

CSSE 120 Cheat Sheet – Python at a Glance, Part 1 (v. 1, 3-18-2010)

Here are the concepts that you should become comfortable with by the middle of Week 3.

1. The input/compute/output pattern for programs

a. The input function to get input
from the console

b. Using variables for numeric computation

c. The print function to display results
on the console

2. Getting input from the console

a. The input function to get input
from the console

 The inputted value is evaluated
before being returned by input

b. The raw_input function to get input
from the console

 The inputted value is returned “raw”
as a string (i.e., as a sequence of characters)

c. The eval function that relates input
to raw_input

 eval takes a string and evaluates it

 input(…)

 is the same as
eval(raw_input(…))

3. Variables and assignment

a. foo = blah read this as “foo gets blah”
or “foo becomes blah”

 foo = foo + 1 A common pattern that means “increment foo”

 foo += 1 is same as foo = foo + 1

b. Case matters. Style: use
namesLikeThis for variables
and NamesLikeThis for classes
(more on classes later, but Point
 and Rectangle are examples)

c. Variables are references.
See diagram.

d. x, y = blah, foo
does assignment in parallel.

Example:

x = input("Enter a number: ")

y = input("Enter another number: ")

z = x ** y

print x, "raised to the", y, "power is", z

Example:

x = input("Enter a number: ")

y = raw_input("Enter a string: ")

z = y * x

print z

v = raw_input("Something to evaluate: ")

print eval(v)

Sample run of above (red italic for what user typed:

Enter a number: 3

Enter a string: ok, now what?

ok, now what?ok, now what?ok, now what?

Something to evaluate: 7 * x

21

Example:

x = 47

x = x + 1

a, b = 10 * x, x ** 2

print x, a

print b

Output from the above:

48 480

2304

2

4. Arithmetic operators

a. + - * / are as you would expect
** for exponentiation (raising to a power)
% for remainder
// for integer division (discard the fractional part)

5. Printing on the console, strings

a. print blah, blah, …, blah

 Comma at end means don’t do a newline

b. Expressions in quotes (single, double or triple quotes)
are strings; printing them prints the string literally

6. Calling (invoking) functions

a. Function name, open parenthesis, arguments to the function (separated by commas), close parenthesis.

b. Calls (executes) the function, then returns control
to the statement following the function call. The
called function can return a value if it wishes.

c. Don’t try to memorize all the functions! Instead:

 Use autocomplete: pause after typing a dot and
see what functions you can apply (sometimes you
have to backspace over the dot and retype it)

 Keep a Cheat Sheet of common functions

 Hovering over parts of a program gives you help

 In an interactive shell (e.g. in IDLE), use help(…)

7. Defining functions, parameters

a. The def keyword lets you define your own functions.
See the example to the right for the notation.

b. Functions can have parameters that are used
in the body of the function.

 When the function is called, actual values are
substituted for the formal parameters.

 The parameter names are local to the function
definition; the same name used outside of a
function has no relationship to the parameter name.

c. Functions can return values, per the example to the right.

d. Indentation denotes the body of the function
(i.e., where the function definition begins and ends)

e. You can put a documentation string as a string
immediately after the def statement. Such strings are
displayed by the help function. For example, typing
 help(factorial) produces the documentation
string shown in the example to the right.

Here are some functions that we have seen:

max min sum abs factorial

math.sqrt math.cos math.sin

int float str round

time.sleep type

help help(__builtins__)

See below for sequence and list functions, as
well as zellegraphics classes and functions.

Example:

def factorial(n):

 """Returns n! (n factorial)"""

 product = 1

 for k in range(2, n + 1):

 product = product * k

 return product

print factorial(8)

print factorial(4)

print factorial(factorial(4))

Output from the above:

40320

24

620448401733239439360000

Example: Output

x, y = 9, 2.5 from example

a = x / y

b = x // y

print a, b 3.6 3.0

c = x ** y

d = 19 % 4

print “c, d are”, c, d

 c, d are 243.0 3

3

8. Modules and import

a. Some functions are built-in, others aren’t

b. import blah lets you refer to functions in the module blah

 e.g., import math lets you say math.sin(…)

c. from foo import * lets you refer to all the public

functions in the module foo, without needing to precede
the function name with the module name

 e.g. from zellegraphics import *
lets you say Point(…, …)

 Use with caution, as this “pollutes” your namespace with all the names in the module.

9. Using variables and number types

a. Numbers can be of type:

 int – fixed-length whole numbers
(typically 32 bits, in which case they range from
-231 to 231-1, i.e., from about -2 billion to 2 billion)

 float – fixed-length numbers stored in a form of
scientific notation. Allows a far greater range than int,
but values are only approximate (although the precision
is very high – typically about 10 digits)

 long – unbounded-length whole numbers
(as big as you need them!) Python switches
from int to long whenever a long is needed

b. Operations on int’s always yield int’s (or long if necessary).
Operations that mix int’s and float’s yield float’s.

c. You can attempt to force a conversion
with the functions int, float and str.

10. Comments and help

a. If you put a # in your code, everything to the
right of that # symbol is a comment

 Comments are ignored by the compiler
(hence play no role in what the program
does), but are critical for human readers
of the code.

b. Documentation strings document functions,
modules, classes, etc.

c. You can do help(blah) to get help
on blah.

Example:

import math

print math.sin(0.4), math.pi

from zellegraphics import *

win = GraphWin()

p = Point(45, 32)

p.draw(win)

Example: Output

x, y = 9, 5 from example

a = x / y

b = float(x) / y

print a 1

print b 1.8

print int(5.8) 5

print float(3) 3.0

z = 10 ** 16

print z 10000000000000000

print type(z) <type 'long'>

Example:

def truncate(x):

 """Returns a float that is the argument

 truncated to a whole number"""

 return float(int(x)) # x should be a number

print truncate(3.9)

help(truncate)

Output from the above:

3.0

Help on function truncate in module __main__:

truncate(x)

 Returns a float that is the argument

 truncated to a whole number

4

11. Sequences

a. Sequences can be strings, tuples, or lists
(see below for details)

 There are other types of sequences too.

b. Use x[k] to refer to the kth element in the sequence x

 0-based, so x[0] is the beginning element

of the sequence, etc.

 x[-1] is the last element in the sequence x,
x[-2] is the next-to-last, etc.

c. x[m:n] is a new list with elements from the mth
element of x up to but not including the nth element of x

 So x[:s] is a new list with the elements of x up to

but not including the sth entry

 And x[r:] is a new list with the elements of x
from the rth entry to the end of the list

d. x[m:n:k] is a new list with every kth element in x,
starting at the mth element of x up to but not including
the nth element of x

e. Important functions/operations include:

 len index + *

12. Strings

a. Notation: elements in quotes (single or double),
separated by commas

b. Immutable
(can’t change the characters after the string is constructed)

c. Important string functions include:

 capitalize lower upper count

 find replace split join lots more!

13. Tuples

a. Notation: elements in parentheses, separated by commas

b. Immutable

14. Lists

a. Notation: elements in square brackets,
separated by commas

b. Mutable – can change elements and add or remove elements

c. Important functions include:

 range append reverse sort count

d. List comprehension – constructs a list from a list, see example

Example:

>>> list = [10, 20, 30, 40, 50]

>>> list[0]

10

>>> list[1]

20

>>> list[-1]

50

>>> list[1:3}

[20, 30]

>> list[3:4]

[40]

>>> list[0:5:2]

[10, 30, 50]

>>> len(list)

5

>>> list.index(30)

2

>>> list.index(900)

Error message

>>> list + [9, 7]

[10, 20, 30, 40, 50, 9, 7]

>>> list[1:3] * 4

[20, 30, 20, 30, 20, 30, 20, 30]

All the above works the same way with
strings and tuples.

>>> s = “this is a string”

>>> t = (“this”, “is”, “a tuple”)

List comprehension example:

>>> list = [2, 4, 6]

>>> [k **3 for k in list]

[8, 64, 216]

Split/Join example:

>>> s = “What is this stuff?”

>>> list = s.split()

[„What‟, „is‟, „this‟, „stuff?‟]

>>> “ “.join(list)

„What is this stuff?‟

5

15. Loops

a. Definite loops are loops with a for statement

b. Counted loops when loops over a range

c. Accumulator pattern, typical example:

 total = 0

 for k in range(100):

 total = total + math.sin(k)

d. Looping through a list, with a range statement:

 list = ...

 for k in range(len(list)):

 ... list[k] ...

e. Looping through a list, without a range statement:

 list = ...

 for element in list:

 ... element ...

16. zellegraphics

