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Formation of Cooper Pairs as a Consequence of Exchange Interaction 
 

Abstract: Analyzing the exchange energy of two conduction electrons in a crystal at many-body approach we find that 

the exchange energy may be negative and, thus, the singlet state may be favorable. A full overlap in the real space of the 

wave functions of two conduction electrons leads to a deeper exchange energy. Thus the exchange interaction causes a 

bond between two conduction electrons in the real space. The singlet bond is possible because the singlet electrons are 

in average closer to positive ions than single electrons. If conduction electrons, before the pairing, are put on the Fermi 

surface in the momentum space, then every pair may exist permanently in time. The motion of conduction electrons in 

the crystal may prevent the formation of Cooper pairs, because the kinetic energy of the motion is usually larger than 

the binding energy in the pair. Conduction electrons as standing waves have zero momenta, hence their momenta are 

synchronous; therefore the formation of Cooper pairs is more probable than in case of non-zero momenta. The approach 

of standing waves explains the inverse isotope effect and many other facts about superconductors. Considering the 

electronic pairs as bosons we find that a further necessary condition for superconductivity is a non-zero temperature of 

the Bose-Einstein-Condensation. 
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1. Introduction and motivation. 

The knowledge of root causes of superconductivity (SC) would explain many mysterious facts about all classes of 

superconductors. However, a unified solution remains still an open question, current theories are not universal and 

explain many effects ambiguously [1]. The mainstream theories assume that SC is a result of the electron pairing at a 

mean-field approximation, the spin ordering plays a part for the pair formation [2], [3], [4]. Every spin ordering is 

related with the exchange interaction, which influences the total energy of the electrons interacting with every particle 

of the crystal. Moreover the exchange interaction may in itself cause binding states in quantum systems at a many-body 

approach [5], [6]. Therefore the many-body approach is more appropriate to define the electron states than the mean-

field approximation, and the role of the exchange interaction seems to be crucially important for the pair formation. In 

the work is shown that the Pauli Exclusion Principle and its associated exchange interaction may in principle lead to 

binding states of conduction electrons, which under certain conditions become superconducting. 

 

2. Formation of superconducting pairs. 

Normally the spins of conduction electrons in a crystal are unordered because the thermal fluctuations and own motion 

of electrons destroy the spin ordering. Thus the spin of every conduction electron e1 is random to spins of all other 

electrons. This state of electron e1 is designated as unpaired or single. If the spins of electrons e1, e2 form a singlet in 

their overlap area in the real space, then the state of the electrons is designated as paired. 

Every unpaired conduction electron has its accurate spatial wave function describing the position of the electron in the 

crystal. Knowing the accurate wave functions of unpaired electrons e1, e2 we can compute their exchange energy. 

If two electrons 21,ee  form a singlet, then their overall position-space wave function ),( 21 rr


 is symmetric: 
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where )( 11 r


, )( 22 r


 are accurate wave functions of unpaired 21,ee ; 1r


, 2r


 are radius-vectors of 21,ee .  

The sum of the direct and exchange energies (D+J ) we find substituting ),( 21 rr


 from Eq. (2.1) into the integral with 

an overall energy operator ),(ˆ 21 rrO


: 
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If the exchange interaction of electrons e1, e2 is very weak, then their spins remain unpaired and fully random. In this 

case the exchange energy is negligible and the overall energy of the unpaired electrons is equal to the direct term D as it 

should be for the unpaired electrons with accurate wave functions )( 11 r


, )( 22 r


: 
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The exchange energy J from Eq. (2.2) is 

 

)4.2()()(),(ˆ)()( 1221212211 rrrrOrrJ


 

 

If the exchange interaction of electrons e1, e2 is not negligible, then their exchange term J is not zero. A singlet state of 

e1, e2 is favorable, if their exchange energy J is negative [7]. J takes into account the modification of the initially 

unpaired wave functions resulting from the pairing. This wave function modification influences all interactions of e1, e2 

in the crystal; hence we must compute the exchange energy J for ),(ˆ 21 rrO


 as a sum of all interactions of e1, e2 

including their kinetic energy, repulsion of e1, e2 from every conduction electron and attraction of e1, e2 to every ion. 

If two electrons form a triplet, then their overall position-space wave function is antisymmetric. The triplet state of e1, e2 

is favorable, if their exchange energy J is positive. 

We assume that )( 11 r


, )( 22 r


 have an overlap in the real space and contain similar atom orbitals (for sample s- 

orbitals); momenta of e1, e2 along the crystal are equal or zero. In this case )(1 r


, )(2 r


 are not orthogonal as 

orbitals of the ground state in H2-molecule or in Helium atom; hence the overlap integral )()( 21 rr


 appearing in 

Eq. (2.4) is not zero: 
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The wave functions of conduction electrons fade out slowly with the distance and can cover many points of lattice, thus 

the wave functions of many electrons may overlap in a shared real space, so we consider at first the limiting case that 

)(1 r

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

 almost coincide in the real space, i.e.:  
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Below we will see that this assumption is true because a maximal overlap in the real space of two paired wave functions 

is energetically favorable in comparison to a partial overlap. 

Using Eq. (2.6) and non-orthogonality of )(1 r


, )(2 r


 in Eq. (2.5) we can use for Eq. (2.4): 
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Substituting Eq. (2.7) into (2.4) we obtain: 
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We see that Eq. (2.8) is equal to Eq. (2.3), i.e. in the case of the full overlap of non-orthogonal wave functions )(1 r


, 

)(2 r


 the exchange energy of two singlet electrons is equal to the overall energy of two initially unpaired electrons: 
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We may define that the electron energy outside of the crystal is zero. Then the electron energy ),( 21 rrE


 inside the 

crystal should be negative, otherwise the states of single electrons in the crystal are instable. Thus the exchange energy 

J of e1, e2 is also negative and the paired state is favorable in comparison to the unpaired state. 

This conclusion has a clear physical meaning. The exchange term takes into account that the average distance between 

two singlet electrons decreases [8], [9], what increases the repulsion between electrons. Consider a small area around 

one of ions in the overlap area of e1, e2 in the real space; due to the Exclusion Principle two singlet electrons are located 

in this small area with a probability higher than two electrons with parallel spins, because the electrons with parallel 

spins avoid each other and cannot be put into a small area (i.e. the probability that 21 rr


 is little). If two electrons are 

unpaired, then their spins are equiprobably parallel or antiparallel, hence the electrons avoid each other, but do it weaker 

than the electrons with parallel spins. Thus the probability to observe in this small area two unpaired electrons is larger 

than this probability for two electrons with parallel spins, and smaller than this probability for a singlet. Therefore the 

singlet electrons are in average closer to the ion than two unpaired electrons. In simple words two singlet electrons are 
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closer to each other, the ions are located somewhere between electrons, therefore the singlet electrons are unavoidably 

closer to ions. The exchange term takes into account this decrease in distance between electrons and ions. 

Consider that the overlap area of e1, e2 in the real space is negligible (i.e. integral )()( 21 rr


 is small), then the 

exchange energy in Eq. (2.4) is negligible. In this case there is no advantage of the singlet state, since the electrons are 

separated in the real space. Thus the larger the overlap, the greater the energy advantage of the pairing. Consequently 

two paired wave functions tend to a full coincidence in the real space and remain together in equilibrium. Thus the 

assumption in Eq. (2.6) is justified. Finally two electron waves stay together because the singlet state with a full overlap 

in the real space reduces their total energy. 

It is possible to show that the singlet pairing of some conduction electrons is favorable for the whole crystal. We define 

all parts of the overall energy of two unpaired conduction electrons ),( 21 rrE


: 

1. The kinetic energies of electrons 1e  and 2e , )( 1eK , )( 2eK ; 

2. The potential energy of repulsion of electron 1e  from all conduction electrons in the crystal, ),( 1 eeP ; 

3. The potential energy of repulsion of electron 2e  from all conduction electrons in the crystal, ),( 2 eeP ; 

4. We must correct double counting the repulsion between e1, e2, so we subtract the potential energy of repulsion 

between electrons e1, e2, ),( 21 eeP ; 

5. The potential energy of attraction of electron 1e  to all ions in the crystal, ),( 1 IeP ; 

6. The potential energy of attraction of electron 2e  to all ions in the crystal, ),( 2 IeP . 

The exchange energy of e1, e2 in Eq. (2.9) is a sum of the points 1-6: 
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The points 1-6 are a list of the crystal energy terms, which contain the paired electrons e1, e2.  If the crystal has many 

singlet pairs, then the energy of each pair ),( 1 ii ee  contains the points 1-6 (however, we must again correct double 

counting the repulsion between electrons of different pairs).  

The total energy of the many-body crystal contains additional energy terms: 

7. The kinetic energies of single conduction electrons; 

8. The potential energy of repulsion between single conduction electrons; 

9. The potential energy of attraction of single conduction electrons to ions; 

10. The potential energy of repulsion between ions. 

The points 1-10 are a full list of all crystal energy terms. 

The single, remaining unpaired, electrons don’t change their states; hence the crystal energy terms in the points 7-10 

remain unchanged. In the points 1-6 the overall energy of every singlet pair ),( 1 ii ee  is lower than the energy of two 

unpaired electrons ii ee ,1  due to the negative exchange energy J. Thus the singlet pairing of some conduction electrons 

inevitably leads to the energy lowering of the whole crystal, the macroscopic state can exist. 

One can obtain the same result by exploring the many-body crystal Hamiltonian )...( 1 nrrH


 and the total crystal wave 

function as a product of normalized accurate wave functions of every single [10] and paired electron: 
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Where: )(),( 11 iiii rr


 normalized accurate wave functions of paired electrons; )(),( 11 mmmm rr


 normalized 

accurate wave functions of unpaired electrons; nrr


...1  radius-vectors of all electrons and ions. 

The Hamiltonian )...( 1 nrrH


 is a sum of operators for energies: 

1. The kinetic energies of paired and single conduction electrons; 

2. The potential energy of repulsion between all conduction electrons (paired and single); 

3. The potential energy of attraction to ions of all conduction electrons (paired and single); 

4. The potential energy of repulsion between ions. 

All conclusions from Eqs (2.1)-(2.10) are valid if the electrons e1, e2 are two equal running Bloch waves [11]:  
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However, it is a rare event that the momenta k


 of two running waves are equal permanently in time. 

The momenta of electrons may be permanently equal if before pairing each electron is a standing wave, which is a sum 

of two equiprobable Bloch waves propagating in opposite directions: 
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The total momentum of each electron as standing wave is zero, hence the momenta of electrons are synchronous, so the 

pairing is possible despite the fact that the kinetic energy of electrons may be larger than their pairing energy. 

The overall energy of two unpaired electrons ),( 21 rrE


 is usually not arbitrarily small; consequently the exchange 

energy J in Eq. (2.9) is also not arbitrarily small. The sign of the exchange term J is related with the sign of the energy 

increment resulting from the pairing. This energy increment is related with wave function modifications and is not 

necessarily negligible if J is not negligible; therefore the binding energy 2∆ in the singlet pair is also not negligible: 
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Where )(),( 2211 rr


 are normalized accurate wave functions of e1, e2 after pairing; A is a positive material constant. 

Since the binding (pairing) energy 2∆ is not arbitrarily weak, the unpaired (normal) state of e1, e2 is instable. However, 

the paired state of e1, e2 is permanent in time only if external energies (temperature, radiation, magnetic field) are 

weaker than 2∆. The binding energy 2∆ is roughly related to a pairing temperature T*: 2|∆| ≈ kBT*. 

If the wave functions of two conduction electrons in the crystal (for sample two s-electrons) permanently coincide in the 

real space and form a permanent singlet, then the electrons are similar to the electrons in the ground state of Helium. 

The difference is that in the crystal the wave functions cover many ions and the pair can move in an external potential, 

since all crystal areas are equipotential for the pair. In the ground state of Helium the singlet state is favorable despite 

the fact that the repulsion of electrons is maximal; the increase in attraction of the singlet s-electrons to the Helium 

nucleus exceeds the increase in repulsion and in kinetic energy. 

The electronic pair is stable like a valence bond in multi-atom systems, so the pair doesn’t form/lose any bonds in the 

crystal and doesn’t absorb/radiate any chemical energy. 

Every standing wave is limited in the real space, therefore a stable singlet of two standing waves can be considered as a 

zero-spin boson. Bosons can form the Bose-Einstein-Condensate (BEC) below a certain temperature TBEC. If all 

electronic pairs are in the BEC ground state, then the excitation energy of every pair is roughly related to kBTBEC, which 

is not zero if the bosonic density is not zero. If all external influences are weaker than kBTBEC, then the pairs remain in 

the BEC ground state and cannot absorb/radiate any energy in the crystal; as a result the total energy and momentum of 

all pairs don’t dissipate, the pairs fluctuate without resistance despite the fact that the single electrons were standing 

waves before pairing. Thus the pairing of conduction electrons and BEC of the pairs lead to the zero resistivity 

(likewise works the superfluidity in Helium-4; the pairing energy of electrons kBT* in Helium-4 is huge, whereas kBTBEC 

is small). 

In an external magnetic field H the crystal obtains an additional energy density 
2

05,0 Hw ; the energy of the 

singlet electrons splits. If the magnetic energy split )2( 0 HB  is weaker than the binding energy 2|∆| ≈ kBT* and 

excitation energy ≈ kBTBEC, then the pair fluctuates in the field H as a free particle with a charge -2e and zero spin. 

Consequently there are no obstacles to redistribute the non-dissipative fluctuations of the pairs into non-dissipative 

currents compensating the additional magnetic energy w  (Meissner effect). 

If the binding energy |∆| per one electron in Eq. (2.14) is larger than the insulating band gap Eg of the crystal, then 

electrons can leave the valence band at a temperature *TT , hence the electrons may pair up despite the band gap. A 

doping in the crystal may reduce the band gap and, thus, give rise to SC. This doping effect is observable in cuprates 

[12], in iron-based superconductors [13], in semiconductors [14]. 

A necessary condition for SC in metals is that the electrons, before pairing, are close to the Fermi surface in the 

momentum space. We show this assuming that the pairing occurs when the energy of the single electron has a certain 

value Eλ. If the thermal energy doesn’t exceed the binding energy │∆│ in Eq. (2.14), then the concentration of the pairs 

is not zero and in the energy spectrum of single electrons occurs a gap around the value Eλ. The gap is thin, since │∆│ 

is usually small and the density of electrons with close energies is limited by the Exclusion Principle. If Eλ is notably 

less than the Fermi level EF, then there are single electrons with the energy larger than Eλ. These single electrons may 

drop to the level Eλ due to energy fluctuations and may, thus, form new pairs. The concentration of the paired electrons 

is limited by the thin gap around Eλ; therefore the new pairs replace the already existing pairs, which lose the paired 

state. Thus each electron is not permanently paired, but it becomes periodically unpaired. During every switching of 

states the electron absorbs/loses energy, in the unpaired state the electron is resistive, therefore the momentum of the 

electron and of the pair dissipates. Thus the state with Eλ < EF cannot keep a supercurrent, despite the fact that the 

pairing is possible. If Eλ = EF then every pair may exist permanently in time, because below a temperature Tc the 



5 

 

single electrons cannot overcome the energy gap and cannot reach the pairing level Eλ = EF; as a result the new pairs 

don’t arise and don’t replace the existing pairs. Hence the switching of states doesn’t occur and the total momentum of 

the pairs doesn’t dissipate. Thus the superconducting pairing occurs only for single electrons in an energy gap with EF 

as the upper limit. Only such permanent pairs are superconducting. At a temperature above Tc the thermal energy is 

sufficient to scatter single electrons through the energy gap to the pairing level Eλ, therefore new pairs may arise and 

replace the existing ones, the state becomes dissipative. 

 

3. Pairing of standing waves. 

We found that the binding energy in the singlet pair e1, e2 is maximal if the overlap integral )()( 21 rr


 is maximal, 

i.e. the wave functions coincide in the real space. The energy gap of superconductors has order of magnitude 10-3 eV, 

the Fermi level has order of magnitude a few eV. Consequently the electron motion can split the pair in the real space. 

The energy of very slow electrons is usually much lower than the Fermi level; hence the slow electrons cannot form 

superconducting pairs. Two electrons can form a pair if their momenta are synchronous, but it is a rare event for 

running waves. The electrons as standing waves have zero-momenta, hence their momenta may be synchronous and 

the pairing is possible despite a large kinetic energy. 

A standing wave occurs as a result of reflections of a running wave from a periodic potential. The condition of the 

standing wave in a crystal is the Bragg condition [15]: 

 

 )(R     n 1.32  

 

Where: n  integer;   length of the Bloch wave in Eq. (2.12); R   one of lattice parameters. 

Under Bragg condition the electron becomes a set of standing waves with a zero total momentum [16].  

At n=1 in Eq. (3.1) the length of the standing wave is maximal: R21 . A crystal has some values R (R100, R110, R210 

etc. depending on the crystal axis) and, thus, some values 1 . Each value R21  is linked to the energy RE 2 : 
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Where m is the inertial mass of free electron. 

Not all materials have conduction electrons with short values λ=2R and with its associated RE 2 . If the Fermi level of 

a crystal is low, then λ values are larger than short values 2R and electron energies are lower than corresponding RE 2 ; 

so the states with short λ=2R are empty and short standing waves don’t occur. In some metals RE 2  is close to FE  (it 

is equivalent that λF=2R). Probably in some crystals the formation of pairs is possible at n larger than 1 in Eq. (3.1). For 

sample at n=2 the length of standing waves is λ2=R. 

Every act of the pairing is energetically favorable; hence the energy 2|∆| is emitted. Thus the momentum of each pair 

increases from zero to a value p ≤ (2|∆|·2·2m)0.5. This momentum p should be added to the momenta of paired electrons 

in the momentum space. Therefore the kinetic energies of electrons from different pairs are not equal, but distributed 

into a spectrum with the width ≈ |∆|. For instance, if the kinetic energy of normal electrons was EF before pairing, then 

after the pairing the kinetic energy becomes ≈ EF + |∆|. So the spectrum of paired electrons is above the spectrum of 

single electrons in the momentum space. Note: the same conclusion follows from the exchange energy: the exchange 

term for kinetic energy is positive, i.e. the kinetic energy grows by pairing, whereas the total energy falls (the same 

relation is valid for all singlet bonds in chemistry). Thus the paired electrons can overlap with normal electrons in the 

real space. The density of paired electrons is ≈ S(EF)·|∆|, where S(EF) is the density of states of conduction electrons. 

The spectrum of normal electrons obtains a corresponding gap (E2 -E1) ≈ |∆| around the value Eλ=2R (E1, E2 are limits of 

the gap). The gap is not negligible if the thermal energy is insufficient to destroy the pairs. As shown above a necessary 

condition for SC is that EF is the upper limit of the gap: EF  = E2. 

The energy gap is (EF -E1) , where the gap bottom E1 should be below Eλ=2R  (otherwise new pairs arise and replace the 

existing ones, energy dissipates). The density of the singlet electrons Ns is limited by the energy gap: 

)3.3()(

1

dEESN
FE

E

s  

Thus the energies and states of single electrons below the gap (EF -E1)  stay unchanged as assumed for Eq. (2.11). 

The electrons (before superconducting pairing) must be close to the Fermi surface, i.e. the value RE 2  must be close to 

FE  (i.e. RF 2 ). Really, the energy gap is much less than FE ; therefore if RE 2  is significantly less than FE , 

then the upper gap limit 2E  is also less than FE ; as shown above this case is not superconducting because the pairs are 

not permanent in time. For this reason Au, Ag, Cu (where FR EE 2  significantly [17]) are not superconductors. If 



6 

 

RE 2  is significantly larger than FE , then there are no electrons with R2  and the gap doesn’t occur. For this 

reason in some structures with a low FE  a doping may raise the carrier density and its associated FE  up to the level 

RE 2  (which is constant, if R  doesn't change). Thus the doping may lead to SC, Tc increases. If the crystal is 

overdoped, then FE  is too large; FR EE 2 , Tc vanishes. This doping effect explains the dome form of phase 

diagrams of superconductors [18]. A double dome form is possible due to the fact that the crystal has some lattice 

parameters depending on the crystal structure. Thus a large value 
RF EE 2

 suppresses Tc. If FR EE 2 , then Tc 

corresponds to the pairing energy ∆ in Eq. (2.14); however, the doping influences on both FE  and ∆, so the Tc - 

maximum is not always pinned exactly to FR EE 2 . 

We can specify the energy cBTkC  (C is a material specific constant) as a minimum thermal energy, which is necessary 

to scatter single electrons from the bottom of the superconducting gap to the pairing level RE 2 , where new pairs arise 

and replace the old ones. So we know about the Tc tuning: 

)4.3(0 2RFc EEifT  

)5.3(22 FRRFcB EEandEEifTkC  

)6.3(222 FRRFRFcB EEandEEifEETkC  

 

Thus CkBTc  is an energy area between the SC - gap bottom and Eλ=2R. A growing T closes continuously the area CkBTc by 

putting there single (normal) electrons. At T=Tc the area CkBTc is covered by single electrons. Knowing the density of 

single states S(Eλ) around the SC-gap, we can calculate Tc and C - parameter in CkBTc. 

The pairing energy ∆ in Eq. (2.14) is to find by investigating the wave function modifications resulting from the singlet 

pairing and leading consistently to experimental ∆-values. The SC - gap bottom E1 is to find from Eqs (3.5), (3.6): 
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The single-electron-distribution on the SC-gap bottom E1 is the Fermi-Dirac function f(Eλ, T). The single-electron-

concentration N(Tc) at T just below Tc is: 
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At T=0 the single-electron-concentration N(0) is: 
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New pairs don’t arise at T ≤Tc, so N is independent of T. Hence N(0)=N(Tc) and Eq. (3.9) is equal to Eq. (3.10): 
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E1 is calculable from Eqs (3.7) or (3.8), Eλ=2R  is known from crystal structure; hence, knowing S(Eλ), we can calculate Tc 

from Eq. (3.11). 

C parameter in CkBTc we find from Tc and using CkBTc=(Eλ=2R - E1). Calculations with Eq. (3.11) show: 

A. For Fermi liquids S(Eλ) is proportional to 
5,0E , then C depends slightly on the level E1 and Tc. Substituting the 

ranges E1=(0.25 - 3) eV and Tc=(0.1 - 50) K into Eq. (3.11) we find Eλ=2R and the range C  ≈ (4.5 - 10) units; 

B. C depends on the S(Eλ)-slope around the level E1: the larger dS/dEλ, the smaller C. On the zone edge (λ=2R) dS/dEλ 

may be larger than the 
5,0E -slope, therefore C may be smaller than (4.5 - 10) by a few units, i.e. C ≈ (3 - 7). These C - 

values are consistent with experiments. 

The isotope substitution is a way to tune Tc by tuning EF to Eλ=2R based on the fact that EF depends on the effective mass 

of electron m* and electron density N [19], whereas Eλ=2R in Eq. (3.2) depends only on the lattice parameter R. 

)12.3(
3

8
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*

2 N

m

h
EF  



7 

 

The isotope effect is a consequence that the energy of phonons is proportional to M -0,5 (M - mass of ion). The decrease 

in M raises the energy of phonons; therefore the electron-ion interaction and its associated reflection of electrons from 

ions may intensify. This intensification is equivalent to the increase in the effective mass m* and, thus, to the decrease 

in EF, whereas R is almost unchanged. If the initial value EF is larger than Eλ=2R (it is usual for metals), then the decrease 

in M pulls EF down closer to Eλ=2R; hence Tc grows (the isotope coefficient α>0). If the initial value EF is less than Eλ=2R, 

then the decrease in M pulls EF down away from Eλ=2R; hence Tc may vanish (α<0). One can conclude that in case 

RF EE 2  the isotope effect may be weak (│α│<0,5). Thus the different values and sign of α [20] are a result of the 

different initial positions EF to Eλ=2R. 

Other ways to tune Tc by tuning EF to Eλ=2R are: electric field [21] since EF depends on the electronic density; film 

thickness [22], [23], [24], [25] since the mutual EF of layered structures depends on layer thicknesses; the high pressure 

[26], [27], [28] since EF depends on the distance between atoms. 

A further sample of the FE  tuning is the alkali metals (Li, Na, K, Rb, Cs). Only Lithium is superconductor at ambient 

pressure [29] and only Lithium has RE 2 =3,09 eV (calculated by Eq. (3.2) in bcc-structure, R100=3,49 Å) relatively 

close to FE ≈3,2 eV [30] at ambient temperature. The next candidate in superconductors after Lithium is Cesium: 

RE 2 =1,33 eV (calculated by Eq. (3.2) in bcc-structure, 32,52314,6111R ), FE ≈1,54 eV calculated by 

Eq. (3.12); Cesium is really superconductor under high pressure [31]. The high pressure increases the density of ions, so 

m* rises and FE  drops to RE 2 ; therefore Tc grows both in Li and in Cs. The other alkali metals are not 

superconductors and their values FE  are larger than RE 2  more significantly than in Li and in Cs (table 1). We note 

that FE  and RE 2  are equally proportional to 
2R , hence without the modification of m* an isotropic R-reduction 

increases both FE  and RE 2 . 

 

Table 1. Comparison of energies EF and Eλ=2R  for alkali metals. Eλ=2R are calculated by Eq. (3.2) for lattice parameters 

R100 and R111 in bcc crystals. Larger R-values are not considered, since they correspond to smaller Eλ=2R values. For Li 

is used the experimental value EF at ambient temperature; for other alkali metals are used EF values calculated by Eq. 

(3.12) corresponding roughly to the experimental values. 

 
FE   

RE 2  

for R100 

FE - RE 2  

for R100 

 
RE 2  

for R111 

FE - RE 2  

for R111 

 eV  eV eV  eV eV 

Li 3.2  3.09 0.11  4.12 -0.92 

Na 3.16  2.05 1.11  2.73 0.43 

K 2.04  1.32 0.72  1.76 0.28 

Rb 1.78  1.15 0.63  1.54 0.24 

Cs 1.54  1.0 0.54  1.33 0.21 

 

The described approach explains the combined isotope and high pressure effect in lithium [32]. In lithium-6 the high 

pressure and light isotope pull EF below the level Eλ=2R, so Tc starts to diminish at a certain pressure p0. In heavy 

lithium-7 EF remains above Eλ=2R at p0, hence the increasing pressure continues to pull EF down toward Eλ=2R; Tc 

continues to grow. As a result the sign of dTc /dp above the pressure p0 is different for 6Li and 7Li. 

A perfect conductor cannot form the Cooper pairs, because the electrons pass through the lattice without reflection, the 

standing waves don’t arise, the electronic wave packets are unlimited in the real space, hence a correlation of wave 

functions in accordance with Eq. (2.1) is impossible because of a finite speed of electron-electron interaction; so the 

exchange energy and Tc tends to zero. Thus the exchange energy and the associated pairing energy should be related 

with the strength of the electron-ion reflection via the potential energy of electrons in Eq. (2.10). A deeper potential 

energy of electrons leads to a deeper J in Eq. (2.10) and, thus, to a stronger pairing energy in Eq. (2.14). On the other 

hand, a deeper potential energy means a deeper potential on each ion, which interacts/reflects conduction electrons 

more strongly. So the singlet bond is stronger if the reflection of the unpaired electrons is stronger; hence Tc may also 

be larger, but under the condition that RF EE 2  is kept. 

The described approach is consistent with the fact that the high temperature superconductors are layered structures and 

poor conductors in the normal state. In some layered structures is possible to combine two poorly compatible things: a 

large effective mass m* (related to the strong electron-ion interaction/reflection) and a large EF (up to the value Eλ=2R). 

This is because EF in thin films is larger than in bulk [33], whereas the electron reflection and m* in-plane may remain 

almost unchanged. In a 3-dimensional structure is difficult to combine a large m* (> 5·m) and RF EE 2  (a few eV). 

Thus Tc in quasi 2-dimensional systems can be higher. 

The pairing energy in the proposed model is related rather to the lattice potential than to the carrier density. This enables 

SC at relatively low carrier densities. A sample is superconducting bismuth at ambient pressure, a semimetal with a low 



8 

 

carrier density, N ≈ 3·1017 /cm3 [34]. EF of bismuth is ≈ 25 meV, hence corresponding λF = h·(EF2m)-0.5 ≈ 0.78·10-8 m. 

Thus in bismuth are working the long values of R = 0.5 λF ≈ 0.39·10-8 m (i.e. R810, R910 and similar). These long standing 

waves exist only due to the high crystal purity, where the electronic mean free path is much larger than λF. Thus SC-

pairs emerge from the long standing waves on the Fermi level. Since the electron's waves are long range, the mean 

distance between electrons in one pair may be larger than the electron's wave length λF ≈10-8 m, so the pairing is 

possible at a carrier density less than (λF)-3  ≈ 1018 /cm3. 

For Fermi metals we can estimate the relation between BEC-temperature and pairing temperature, TBEC/T*. 

Assuming )( Fs ESN  and *5.3 TkB
, using the well-known equations )(2)( 322/12/32/1 FF EmES  for 

Fermi liquid and )2()2/(3125.3)( 3/22

BssBEC kmNNT   for bosonic gas we obtain: 

)13.3(
*

3/1

FBEC E

T

T
 

For Fermi metals usually EF>>|∆|, hence TBEC >T* and SC depends rather on T* than on TBEC, i.e. Tc=T*<TBEC. For 

strongly correlated systems EF may be order of magnitude |∆|, so BEC may define SC, i.e. Tc=TBEC<T*. 

If the pairing temperature T* is larger than TBEC (i.e. T*>TBEC), then at T above TBEC the electronic pairs may be 

permanent but non-superconducting. The non-superconducting pairs are observed in [35]. 

Consider EF is close to the SC-gap bottom E1 and notable below Eλ=2R (that is possible, for example, in underdoped 

cuprates). Then the gap (EF - E1) in Eq. (3.3) is small and the singlet density Ns is also small. Hence the 

corresponding TBEC may be lower than the pairing temperature T*, because T* depends rather on the lattice potential 

than on Ns. If the BEC is a necessary condition for SC and TBEC<T*, then Tc = TBEC; so Tc is also lower than T*. Thus 

at T between Tc and T* there are permanent pairs without SC. This may be related with the pseudogap in some 

superconductors. 

 

4. Conclusion and discussion. 

The above argumentation shows that the exchange interaction may in itself cause the electronic pairing in a crystal. 

Thus the non-zero pairing (binding) energy is a result of the Pauli Exclusion Principle. 

Further necessary conditions for SC: the permanency in time of every electronic pair (provided with pairing of standing 

waves on the Fermi surface); the non-zero temperature of the BEC ground state of the electronic pairs. 

The approach of the exchange energy is clearly applicable when the waves )( 11 r


, )( 22 r


 contain s-orbitals, because 

the s-orbitals envelop each ion and the singlet pairing leads to a convergence of electrons to ions. In case of p-, d-, f-

orbitals the described approach works if the orbitals envelop nearest neighbor ions. In this case the singlet pairing 

depends on the orbital orientation and on factors influencing the distance between ions (pressure, doping etc.) 

The approach of standing waves is related with the Bragg-reflection, which may form diffraction patterns in the crystal. 

This explains why the charge density order pre-exists the superconductivity in cuprates [36], [37], [38]. 

Following the proposed approach we can define main ways to a higher Tc in new superconductors: 

A. The value EF should be tunable close to Eλ=2R (i.e. λF is tunable to short 2R). The tuning is possible by doping, 

pressure, film thickness, electric field etc. 

B. The material should have a large value m*, since m* is related to deeper lattice potentials in Eq. (2.10) causing a 

deeper exchange energy. However, the condition EF = Eλ=2R  should be kept. A possible way to combine large 

values EF and m* is the low dimensionality; 

C. The material should be homogeneous microscopically, because impurities/defects suppress Tc by scattering the 

regular standing waves and values 
RF EE 2

 and ∆. 

The approach of standing waves is not applicable to systems with heavy fermions, where EF is much smaller than Eλ=2R. 

But in this case the kinetic energy of electrons on the Fermi surface may be smaller than the binding energy in the pair; 

hence the pair may arise and exist permanently in time causing SC. One can write roughly for narrow band systems: 

 

)1.4(FcB ETkC  

 

Therefore a tuning of EF down may cause a higher Tc in systems with heavy fermions (observed in [39]). 
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