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Preface

These notes of my lectures on Complex Analysis at the University of Toronto were written
by Oleg Ivrii on his own initiative, after he took my course in the spring, 2007. The course
is cross-listed as MAT1001S, one of the Core Courses in our Graduate Program, and as
MAT454S, a fourth-year undergraduate course which is the second part of a two-term
sequence in complex analysis in our Specialist Program in Mathematics. Oleg took this
course as a second-year undergraduate.

My lectures were based on the classical textbooks of Lars Ahlfors (Complex Analy-
sis, Third Edition, McGraw-Hill 1979) and Henri Cartan (Elementary Theory of Analytic
Functions of One or Several Variables, Dover 1994). My exposition closely follows these
texts. Oleg has included the problems that I assigned as homework; most of these can be
found in Ahlfors, Cartan or other textbooks. Oleg has added a concluding chapter as an
introduction to several fundamental further results. I have included some of these topics
when giving the course on earlier occasions, and they improve my lectures as presented
here!

During my thirty-five years of teaching at the University of Toronto, I have been truly
fortunate to have had so many inspiring students like Oleg. They are passionate about
mathematics and they care for each other and the world around them. I am grateful to
Oleg that he thought my lectures were interesting enough to want to write them up, and
I give him my warmest wishes for a very happy and fruitful mathematical career.

March 2008 Edward Bierstone
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Chapter 1

Space of Holomorphic Functions

1.1 Topology on the Space of Holomorphic Functions

Suppose Ω is open in C, let C(Ω) be the ring of continuous C–valued functions on Ω and
let H(Ω) be the subring of holomorphic functions.

We can topologize C(Ω): a sequence of functions {fn} converges uniformly on compact
sets if for every compact set K ⊂ Ω, {fn|K} converges uniformly.

Uniform convergence on compact sets defines the so-called compact-open topology.

The fundamental system of open neighbourhoods at 0 is

V (K, ε) = {f : |f(z)| < ε, z ∈ K}.

This is because fn → f uniformly on compact sets if and only if f − fn lies in V (K, ε) for
n large enough for any given K, ε.

In fact, C(Ω) is metrizable (even by a translation-invariant metric).

Write Ω =
⋃
iKi and let d(f) =

∑
i

1
2i ·min(1,Mi(f)) where Mi(f) = maxz∈Ki |f(z)|.

C(Ω) is complete: if {fn} is a sequence of continuous functions which converge uniformly
on compact sets, f = lim fn is continuous.

We give H(Ω) the subspace topology.

Theorem. (1). H(Ω) is a closed subspace. (2). Furthemore, the map f → f ′ is continu-
ous.
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(1) means that if {fn} ⊂ H(Ω) converges uniformly on compact sets, f = lim fn ∈
H(Ω). (2) means that if {fn} ⊂ H(Ω) converges uniformly on compact sets and if f =
lim fn, then {f ′n} converges uniformly on compact sets to f ′.

Proof of (1). We have to show that f(z)dz is closed. By Morera’s theorem, this is
equivalent to showing that

∫
γ f(z)dz = 0 for any small loop γ. As fn(z) are holomorphic,∫

γ fn(z)dz = 0 holds for all n. Then,
∫
γ f(z) = limn→∞ fn(z)dz because fn converges to f

uniformly on the image of γ.

Proof of (2). It is enough to show that f ′n converges to f ′ uniformly on a closed disk
D(z, r) in Ω. Let γ be a positively oriented loop around a disk of slightly larger radius.
By Cauchy’s integral formula,

lim
n→∞

f ′n(z) = lim
n→∞

1
2πi

∫
γ

fn(ζ)
(ζ − z)2

dζ =
1

2πi

∫
γ

f(ζ)
(ζ − z)2

dζ = f ′(z).

The limit above converges uniformly as ζ − z is bounded away from 0.

Corollary. If a series of holomorphic functions
∑∞

n=1 fn(z) converges uniformly on com-
pact sets of Ω, the sum is holomorphic and can be differentiated term-by-term.

Proposition (Hurwitz). If Ω is a domain (i.e connected), if {fn} ⊂ H(Ω) converges
uniformly on compact sets and each fn vanishes nowhere in Ω, then f = lim fn is never 0
or identically 0.

Suppose f was not identically 0. Then its zeros are isolated. In particular around any
point z, there is a small loop γ around z for which f does not vanish on the image of γ.
But as the image of γ is compact, f is bounded away from 0. Then,

lim
n→∞

1
2πi

∫
γ

f ′n(z)
fn(z)

dz =
1

2πi

∫
γ

f ′(z)
f(z)

dz.

The left hand side counts the number of zeros of fn enclosed within γ, which is 0. Hence,
f(z) also does not possess any zeros inside γ, i.e f(z) 6= 0. As z was arbitrary, f(z) vanishes
nowhere in Ω.

Proposition. If Ω is a domain and {fn} ⊂ H(Ω) are one-to-one and converges uniformly
on compact sets, then f = lim fn is either one-to-one or a constant.

Suppose f was not identically a constant, but nevertheless f(z0) = f(z1) = a. Choose
disjoint neighbourhoods U and V of z0 and z1 respectively. Then f(z) − a vanishes at a
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point in U , so we can extract a subsequence of {fn} for which fn(z)−a vanishes at a point
in U . From this subsequence, we extract another subsequence for which fn(z)−a vanishes
at a point in V . But then, fn(z) would fail to be injective.

1.2 Series of Meromorphic Functions

A series of meromorphic functions
∑∞

n=0 fn on an open set Ω ⊂ C converges uniformly on
compact subsets of Ω if for every compact K ⊂ Ω, all but finitely many terms have no poles
in K and form a uniform convergent series.

We define the sum on any relatively compact (precompact) open U as
∑

n<p fn +∑
n≥p fn with each function in the second sum having no pole in U .

Theorem. If
∑∞

n=0 fn is a series of meromorphic functions that converges on compact
subsets of Ω, then the sum f is a meromorphic function on Ω and

∑∞
n=0 f

′
n converges

uniformly on comapct subsets of U .

The poles of f , P (f) are contained are in
⋃
n P (fn).

Example 1

The series f(z) =
∑∞

n=−∞
1

(z−n)2 converges uniformly and absolutely on compact subsets of
C. In fact the series converges uniformly and absolutely in each vertical strip x0 < x < x1

(we write z = x+ iy).

To see this, note that in
∑

n<x0

1
(z−n)2 , each term is bounded by 1

(x0−n) ; while in∑
n>x1

1
(z−n)2 , each term is bounded by 1

(x1−n)2 .

The function f(z) is meromorphic on C and enjoys three properties: (1) it is periodic,
f(z + 1) = f(z), (2) it has poles z = n, each with principal part 1

(z−n)2 and (3) f(z) → 0
as y → ∞ uniformly with repect to x, i.e for all ε > 0, there is a b such that |f(z)| < ε

whenever |y| > b.

The function g(z) =
(

π
sinπz

)2
also enjoys these properties. The first property is obvious.

To check the second property, we first check that sinπz vanishes only on the integers.
By periodicity, it suffices to check that the principal part of g(z) at the origin is 1

z2 ; for a
proof, see the calculation below.
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Easiest way to see property (3) is by means of the identity | sinπz|2 = sin2 πx+sinhπy,
as y goes to ∞, sinπz →∞ and hence g(z)→ 0.

Hence, f − g is holomorphic in C because f and g have the same poles and same
principal parts; f − g is bounded, so f − g is a constant by Liouville’s theorem, and by the
third property, the constant is 0.

We derive the formula
∑∞

n=1
1
n2 = π2

6 .

Consider the function
(

π
sinπz

)2
− 1

z2 =
∑

n6=0
1

(z−n)2 . It is holomorphic in a neighbour-
hood of 0 and as z → 0, it tends to

π2

(πz − 1
6π

3z3 + . . . )2
− 1
z2

=
1

z2(1− 1
3πz

2 + . . . )
− 1
z2

=
π2

3
.

But when z = 0, the function is 2
∑∞

n=1
1
n2 .

Example 2

The series f(z) = 1
z +

∑
n6=0

(
1

z−n + 1
n

)
= 1

z +
∑

n6=0
z

n(z−n) converges uniformly and

absolutely on compact subsets of C by comparison with
∑

n6=0
1
n2 .

Thus f(z) is a meromorphic function with poles z = n and principal parts 1
z−n (i.e

simple poles with residue 1).

We notice:

f ′(z) = − 1
z2
−
∑
n6=0

1
(z − n)2

= −
( π

sinπz

)2
=

d

dz
(π cotπz).

Hence, f(z) − π · cotπz is constant, which is 0 as both functions are odd (to see that
f(z) is odd, group terms with +n and −n). So, 1

z +
∑∞

n=1
2z

z2−n2 = π cotπz.

1.3 The Weierstrass p-function

Let Γ be a discrete subgroup of C with generators e1, e2 linearly independent over R, i.e
Γ = {n1e1 + n2e2 : n1, n2 ∈ Z}.

Vectors e′1, e
′
2 are another set of generators for Γ if and only if e′1, e

′
2 are are linear

combination of e1, e2 with determinant of matrix of coefficients invertible in the ring of
integers, i.e ±1.
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A function f(z) has Γ as a group of periods if f(z+n1e1+n2e2) = f(z) for all n1, n2 ∈ Z.

We define
p(z) =

1
z2

+
∑

w∈Γ,w 6=0

{ 1
(z − w)2

− 1
w2

}
.

Note that the Weierstrass p function depends on the choice of Γ.

We check that it converges uniformly and absolutely on compact subsets, for this we
estimate: ∣∣∣ 1

(z − w)2
− 1
w2

∣∣∣ =
∣∣∣ 2zw − z2

w2(z − w)

∣∣∣ = . . .

We can restrict our attention to the compact subset |z| ≤ r. As finitely many terms don’t
matter, we only need to estimate when w is sufficiently large, say |w| ≥ 2r. We continue:

· · · =
∣∣∣ z(2− z

w )
w3(1− z

w )2

∣∣∣ ≤ ∣∣∣ r · 5
2

w3 · 1
4

∣∣∣ =
10r
|w|3

.

We want to show that
∑

w∈Γ,w 6=0
1
|w|3 <∞. We define

Pn = {n1e1 + n2e2 : max(|n1|, |n2|)}.

We let k be the distance between the origin to the closest point of P1. As the number of
points in Pn is 8n, we see that

∑
w∈Γ,w 6=0

1
|w|3

=
∞∑
n=1

∑
w∈Pn

1
|w|3

<

∞∑
n=1

8n
k3n3

=
8
k3

∞∑
n=1

1
n2

<∞.

We have thus shown that p(z) is a meromorphic function with pole 1
(z−w)2 at w ∈ Γ. Also,

p(z) is even.

The derivative p′(z) = −2
∑

w∈Γ
1

(z−w)3 is doubly periodic. To show that p(z+ei) = p(z)
for i = 1, 2, we consider p′(z + ei)− p′(z) = 0, so p(z + ei)− p(z) is constant.

But as p(z) is even, plugging in z = − ei
2 , we see that the constant is 0, so p(z) also has

Γ as a group of periods.

As p(z) − 1
z2 = g(z) is a holomorphic even function in a neighbourhood of the origin

with g(0) = 0, the Laurent expansion at 0 of p(z) is 1
z2 + a2z

2 + a4z4 + . . .

The 2n-th derivative of 1
(z−w)2 is (2n+ 1)! 1

(z−w)2n+2 . Hence a2n = (2n+ 1)
∑

w 6=0
1

w2n+2 ,
in particular a2 = 3

∑ 1
w4 , a4 = 5

∑ 1
w6 .
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We now find a differential equation for p′(z):

p(z) =
1
z2

+ a2z
2 + a4z

4 + . . .

p′(z) = − 2
z3

+ 2a2z + 4a4z
3 + . . .

p′(z)2 =
4
z6
− 8a2

z2
− 16a4 + . . .

p(z)3 =
1
z6

+
3a2

z2
+ 3a4 + . . .

So, p′(z)2 − 4p(z)3 = −20a2
z2 − 28a4 + . . .

Hence, p′(z)2 − 4p(z)3 + 20a2p(z) + 28a4 is a holomorphic function vanishing at the
origin. As it is periodic, it is bounded and by Liouville’s theorem is constant, so it must
be identically 0.

Thus, (x, y) = (p(z), p′(z)) parametrizes the algebraic equation

y2 = 4x3 − 20a2x− 28a4.

1.4 The Weierstrass p-function II

Suppose Γ is a discrete subgroup of C given by vectors e1, e2 (linearly dependent over R).
Let X ⊂ C2 be the collection of pairs (x, y) satisfying the polynomial equation

y2 = 4x3 − 20a2x− 28a4

with a2 = 3
∑ 1

w4 and a4 = 5
∑ 1

w6 . The goal of this lecture it to show that the RHS has
three distinct roots and any (x, y) ∈ X is given by x = p(z), y = p′(z) for a unique C /Γ.

Proposition. If f(z) is a non-constant meromorphic function having Γ as a group of
periods, then the number of zeros of f(z) in a period parallelogram is equal to the number
of poles (counting with multiplicity).

Let γ be the positively oriented loop around the period parallelogram. The num-
ber of zeros minus the number of poles enclosed with in γ is calculated by the integral

1
2πi

∫
γ
f ′(z)
f(z) dz. However, as γ is doubly-periodic, the opposite sides of γ cancel each other

and the integral reduces to 0.

Proposition. Suppose f(z) is above. Let its zeros inside the fundamental parallelogram
be {αi} and its poles be {βj}. Then,

∑
i αi =

∑
j βj (mod Γ).
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The value
∑

i αi−
∑

j βj is counted by the integral 1
2πi

∫
γ
zf ′(z)
f(z) dz. If γ1 and γ2 are two

sides of γ along the vectors e1 and e2 starting at the origin respectively, then∑
i

αi −
∑
j

βj =
1

2πi

∫
γ

zf ′(z)
f(z)

dz = − 1
2πi

∫
γ1

e1f
′(z)

f(z)
dz +

1
2πi

∫
γ2

e2f
′(z)

f(z)
dz.

However, 1
2πi

f ′(z)
f(z) dz is an integer because it is a difference between two determinations of

log f(z) with same value of f(z).

Remark. The integral formulae used above may be obtained from the Residue theorem as
follows: suppose ai is a zero; we write f(z) = (z−αi)k(c+. . . ), f ′(z) = k(z−αi)k−1(c+. . . )
and z = αi + (z − αi). Then

f ′(z)
f(z)

=
k

z − αi
(1 + . . . ),

zf ′(z)
f(z)

=
k

z − αi
(1 + . . . )(αi + . . . ).

The considerations for poles {βj} are analogous.

The zeros of p′(z) are e1
2 ,

e2
2 and e1+e2

2 (the points z such that 2z ∈ Γ but z /∈ Γ). The
fact that they actually are zeros follows from p′(z) being doubly-periodic and odd. But as
p′(z) has a unique pole of order 3 inside a period parallelogram, these zeros are simple and
the only ones there.

Now we examine the zeros of p(z) − a (i.e roots of p(z) = a). For any value of a ∈ C,
there are exactly two roots in a period parallelogram. Write a = p(z0). Clearly, z0 /∈ Γ as
Γ is the set of poles of p. We have two possibilities:

(1) If 2z0 ∈ Γ, then p(z)− p(z0) has a unique zero of order 2 as p′(z0) vanishes.
(2) If however 2z0 6∈ Γ, then p(z0) = p(−z0) are the two non-congruent zeros.

With these preparations, we can return back to our equation y2 = 4x3 − 20a2x− 28a4.
If y = 0, we may choose x = p( e12 ), p( e22 ), p( e1+e2

2 ). These are distinct as the values they
take are unique by (1).

If (x, y) ∈ X, but y 6= 0, then x = p(z), y = p′(z) and x = p(−z), y = p′(−z) are the
two points which map to the same value of x by (2), but they map to different values of y
as −p′(z) = p′(−z).
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1.5 Complex Projective Space

The set X ⊂ C2 : y2 = 4x3 − 20a2x − 28a4 is a smooth curve as it is locally a graph
of a function y = f(x) or x = g(y). In other words, X is a one-dimensional complex
submanifold.

If (x0, y0) ∈ X, y0 6= 0, then y = f(x) near (x0, y0), i.e x is a local coordinate.

On the other hand, if y0 = 0, then p′(x0) 6= 0 since p(x) has 3 distinct roots, so X = g(y)
near (x0, y0), i.e y is a local coordinate.

Remark. These statements follow from the implicit function theorem, but in classical form,
the implicit function theorem only gives that locally y = f(x) and x = g(y) are differentiable
as functions of two real variables, whereas we want to imply that the mappings are actually
holomorphic. We return to this subtle point in a later lecture.

The n-dimensional complex projective space Pn(C) is defined to be Cn+1 \{0} modulo
the equivalence relation (x0, . . . xn) ∼ (x′0, . . . x

′
n) if (x′0, . . . x

′
n) = (λx0, . . . λxn) for some

λ 6= 0 in C.

We write [x0, . . . xn] for the equivalence class of (x0, . . . xn). These are called homoge-
nous coordinates for we are using n+1 “coordinates” to represent an n-dimensional object.

The complex projective space may be covered by coordinate charts

Ui = {[x0, . . . xn] ∈ Pn(C) : xi 6= 0}.

Each chart Ui is homeomorphic to Cn by map [x0, . . . xn]→ (x0
xi
, . . . x̂i

xi
, . . . xn

xi
) where the hat

notation as usual means that the variable is omitted. The inverse map is (y1, y2, . . . yn)→
[y1, . . . yi−1, 1, yi, . . . yn].

We thus get a complex (algebraic) manifold structure (actually, we have to check that
the transition maps are analytic, they even turn out to be rational, this is left as an
exercise).

We can think of Pn(C) as the chart U0
∼= Cn together with the set {x0 = 0} ∼= Pn−1(C)

which is “the hyperplane at infinity”.

It is easy to see that P 1(C) is just the Riemann sphere S2. Right now, we are interested
in P 2(C) = [x, y, t]. We compactify X ⊂ C2 to X ′ ⊂ P 2(C) by rewiting y2 = 4x3−20a2x−
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28a4 in homogeneous coordinates(y
t

)2
= 4
(x
t

)3
− 20a2

(x
t

)
− 28a4

and allowing t to be 0. The equation simplifies to y2t = 4x3 − 20a2xt
2 − 28a4t

3.

Thus, X ′ is X together with an added point at infinity: if t = 0, the equation reduces
to 4x3 = 0 from which we see x = 0. The variable y can be any complex number with the
exception of 0, but all these options are equivalent to the point [0, 1, 0].

1.6 The Elliptic Integral

Let Γ ⊂ C be a discrete subgroup and X ⊂ C2 be the set of points y2 = 4x3−20a2x−28a4.
Recall that X ′ ⊂ P 2(C) is the set of points y2t = 4x3 − 20a2xt

2 − 28a4t
3, in which X

naturally embeds by (x, y)→ [x, y, 1]. Then, X ′ = X ∪ [0, 1, 0].

The point [0, 1, 0] lies in the chart {[x, y, t] : y 6= 0}. Let (x′, t′) = (xy ,
t
y ) be the affine

coordinates in this chart. In these coordinates, the equation of X ′ is

t′ = 4x′3 − 20a2x
′t′2 − 28a4t

′3.

The implicit function theorem tells us that in some neighbourhood of (x′, t′) = (0, 0), the
point at infinity, t′ is a holomorphic function of x′.

If we let t′ = c0 + c1x
′ + c2x

′2 + . . . then t′ = 4x′3 − 320a2x
′7 + . . .

Indeed, c0 = 0 as t′(0) = 0. By comparing coefficients, we see that c1 = c2 = 0 as
well and c3 = 4x′3. The next non-zero coefficient comes from the term −20a2x

′t′2 and is
−20a2x

′(4x′3)2 = −320a2x
′7.

In a neighbourhood of the point at infinity, we can take x′ as a local coordinate; this
concludes the proof that X ′ has complex manifold structure.

In Section 1.4, we have seen that the map C /Γ→ X ′ given by

z → [p(z), p′(z), 1]︸ ︷︷ ︸
in usual coordinates

=
[ p(z)
p′(z)

, 1,
1

p′(z)

]
︸ ︷︷ ︸
in coords at infinity

.

is a bijection of sets, but more can be said. The map is holomorphic: if z 6= 0, the coordinate
functions p(z), p′(z), 1 are holomorphic; while near z = 0, the functions p(z)

p′(z) , 1,
1

p′(z) are
holomorphic.
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Thus C /Γ→ X ′ is a holomorphic bijection from a compact space and a Hausdorff space;
so in particular, a homeomorphism. In fact, the inverse function theorem guarantees us
that the inverse is also holomorphic.

From the parametrization x = p(z), y = p′(z), we see that dx = ydz; so dz = dx
y

whenever y 6= 0. Differentiating the equation y2 = 4x3 − 20a2x − 28a4, we find that
(12x2 − 20a2)dx = 2ydy so dx

y = dy
6x2−10a2

.

By “dz” we mean the holomorphic differential form on X ′ which is

dz =
dx√

4x3 − 20a2x− 28a4

on y 6= 0 and
dy

6x2 − 10a2
on y′ 6= 0.

Remark. Thus dz is well-defined on all of X ′: functions y(x) and y′(x) cannot vanish
simultaneously, otherwise y(x) would have multiple roots but we have seen that it is not the
case.

Inverse defines z as a multi-valued holomorphic function on X ′ where 2 branches differ
by a constant in Γ:

z =
∫ z

0
dz︸ ︷︷ ︸

in C

=
∫ p(z)

[0,1,0]

dx√
4x3 − 20a2x− 28a4

.

The form dz is closed but not exact, so a particular value of z not only determines p(z)
but also the choice of path of integration from [0, 1, 0] to p(z).

We say that the Weierstrass p function is given by “inversion” of the elliptic integral.

Trigonometric Functions

For convenience, we repeat our considerations with X ⊂ C2 given by x2 + y2 = 1. We can
parametrize X by (x, y) = (cos θ, sin θ).

We can differentiate the equation x2 + y2 = 1 to obtain xdx+ ydy = 0; so, dy
x = −dx

y .
But, we can also differentiate the parametrization: cos θdθ = d(sin θ) or xdθ = dy to obtain
dθ = dy

x = dy√
1−y2

.

Thus, by “dθ”, we mean the form which is −dx
y when y 6= 0 and dy√

1−y2
when y 6= ±1.

We then invert the integral
∫ dy

x =
∫ dy√

1−y2
by defining sin θ by the formula

θ =
∫ (cos θ,sin θ)

(1,0)

dy

x
=
∫ sin θ

0

dy√
1− y2

.
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The form dθ is closed but not exact, so θ is a multi-valued function with branches whose dif-
ference is a multiple of 2π. Put another way, a particular value of θ determines (cos θ, sin θ)
as well as the winding number of the curve from (1, 0) to (cos θ, sin θ).

1.7 Implicit Function Theorem

We say that a function f(z1, zn, . . . zn) in an open set Ω ⊂ Cn is holomorphic if f ∈ C1 and
df =

∑n
i=1

∂f
∂zi
dzi. This is equivalent to:

(1) f is continuous and holomorphic in each variable separately,
(2) f is analytic (locally represented by convergent power series).

Actually, it is even sufficient just to say “holomorphic in each variable separately,” but
showing that this condition is equivalent to the previous conditions is rather difficult.

We discuss the implicit function theorem for 2 variables: suppose f(x, y) is a holomor-
phic function with ∂f

∂y (x0, y0) 6= 0 and we wish to solve the equations z = f(x, y), z = f(x, y)
for y, y near (x0, y0).

Write x = x1 + ix2, y = y1 + iy2 and z = z1 + iz2. A simple calculation shows that
dx ∧ dx = −2idx1 ∧ dx2 (we will use this equation for variables y and z in place of x).

For a fixed x, dz = ∂f
∂y dy and dz = ∂f

∂y dy = ∂f
∂y dy, so dz ∧ dz =

∣∣∣∂f∂y ∣∣∣2dy ∧ dy. By the

above equation, this is the same as dz1∧dz2 =
∣∣∣∂f∂y ∣∣∣2dy1∧dy2, i.e the Jacobian determinant

det
∂(z1, z2)
∂(y1, y2)

=
∣∣∣∂f
∂y

∣∣∣2 > 0.

By the implicit function theorem (for real-valued functions), we see that we can solve
y1, y2 as C1 functions in terms of z1, z2;x1, x2 near (x0, y0, 0).

The equation dz = ∂f
∂xdx + ∂f

∂y dy shows that that dy is a linear combination of dx, dz
with holomorphic coefficients (here we are using that ∂f

∂y 6= 0). This means the solution is
holomorphic.
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Chapter 2

Interpolation

2.1 Meromorphic functions with prescribed singularities

We now shift gears to constructing meromorphic functions with prescribed singularities,
i.e with given poles and their singular parts.

Over the Riemann sphere, the only meromorphic functions are rational functions; but
over the complex plane, we have a wealth of meromorphic functions such as tan z or sec z
but infinity is a limit of poles.

Theorem (Mittag-Leffler). Suppose {bk} ∈ C are given and distinct with limk→∞ bk =∞
and Pk(z) be polynomials without constant term. Then there is a meromorphic function
in C with poles bk and principal parts Pk( 1

z−bk ). The most general meromorphic function
with these poles and primitives parts is

f(z) =
∞∑
k=1

(
Pk

( 1
z − bk

)
− pk(z)

)
︸ ︷︷ ︸

♦

+g(z)

where pk(z) are polynomials chosen such that the series convergences and g(z) is an entire
function.

We can assume that no bk = 0. The function Pk( 1
z−bk ) is holmorphic in |z| < bk so we

can expand it as a convergent power series in that disk.

Let pk(z) be the sum of the terms of order up to mk where mk is chosen such that∣∣∣Pk( 1
z − bk

)
− pk(z)

∣∣∣ ≤ 1
2k

on |z| ≤ |bk|
2
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We show ♦ converges uniformly and absolutely on |z| ≤ r for any r. Chosen n such that
|bk| ≥ 2r if k > n. It suffices to compare

∞∑
k=n+1

Pk

( 1
z − bk

)
− pk(z)

with
∑ 1

2k . Thus ♦ is meromorphic in C with poles {bk} and principle parts Pk( 1
z−bk ).

Given any other function with prescribed singularities, the difference of it and ♦ is holo-
morphic and conversely, given any holomorphic function g(z), the function ♦ + g(z) also
has the desired singularities.

2.2 Infinite products

We say that
∏∞
n=1 bn converges to p ∈ C if no bn are 0 and the partial products pn =

b1b2 . . . bn have a non-zero limit p. Actually, this is too restrictive: we should allow a finite
number of terms to be 0, but after removing these few terms, the partial products should
have a non-zero limit.

A necessary condition for convergence is bn = pn

pn−1
→ 1. We will instead write the

product as (P )
∏∞
n=1(1 + an), so the condition requires that an → 0. To the product, we

shall associate the sum (S)
∑∞

n=1 log(1 + an) where we take the principal branch of log,
defined on the complement of the negative real ray with log 1 = 0.

Proposition. The product (P ) and the sum (S) converge or diverge simultaneously. Just
as pn is the n-th partial product of (P ), we will write sn for the n-th partial sum of (S).

If sn converges, then so does pn as pn = esn . Conversely, suppose pn converges to
some p 6= 0. Fix a determination of log p = log |p| + i · arg p. Choose determinations of
log pn = log |pn|+ i · arg pn such that arg p− π < arg pn ≤ arg p+ π.

Then sn = log pn + 2πi · kn for integers kn. For sn to converge, we need to know that
kn stabilize. Indeed,

2πi(kn+1 − kn) = log(1 + an+1)− log pn+1 + log pn,

= log(1 + an+1)− (log pn+1 − log p) + (log pn − log p).

The three terms log(1 + an+1), log pn+1 − log p, log pn − log p are small when n is large.
As the left hand side can take upon a discrete set of values, it must be 0.
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We say that the product (P ) converges absolutely if (S) does, but the latter is equivalent
to (S′)

∑∞
n=1 an converging absolutely as limz→0

log(1+z)
z = 1.

Now, suppose that fn(z) are continuous complex-valued functions defined on an open
set Ω ⊂ C. We say that the product

∏∞
n=1 fn(z) converges uniformly (or absolutely) on a

compact set K ⊂ Ω if
∑

log fn(z) does.

Theorem. Suppose fn(z) are holomorphic in Ω and
∏∞
n=1 fn(z) converges uniformly and

absolutely on compact subsets of Ω. Then f(z) =
∏∞
n=1 fn(z) is holomorphic on Ω and

f = f1f2 . . . fq
∏
n>q fn(z).

If Z(f) denotes the zeros of function f , then Z(f) =
⋃
Z(fn). Additionally, the

multiplicity of a zero of f is the sum of that of fn.

Corollary. Under the same hypothesis, the series of meromorphic functions
∑∞

n=1
f ′n
fn

con-

verges uniformly on compact subsets of Ω and limit is f ′

f .

Let U be a relatively compact subset of Ω and gq(z) = exp
(∑

n>q log fn(z)
)
. By the

product rule:
f ′(z)
f(z)

=
q∑

n=1

f ′n(z)
fn(z)

+
g′q(z)
gq(z)

=
q∑

n=1

f ′n(z)
fn(z)

+
∑
n>q

f ′n(z)
fn(z)

.

The latter equality is justified as logn>q log fn converges uniformly to a (branch of) log gq
and thus can be differentiated term-by-term (take q large enough so that fn have no zeros
in U for n > q).

Example

We develop an infinite product for sinπz. The product f(z) = z
∏∞
n=1(1 − z2

n2 ) converges
uniformly and absolutely on compact subsets of C (because

∑ z2

n2 does).

Differentiating logarithmically, we find that

1
z

+
∞∑
n=1

− 2z
n2

1− z2

n2

=
1
z

+
∑ 2z

z2 − n2
= π cotπz =

sin′ πz
sinπz

by Example 2 in Section 1.2. It follows that f(z) = c sinπz. But as limz→0
f(z)
z = 1 and

limz→0
sinπz
z = π, we see that c = 1

π . Hence, sinπz = πz
∏∞
n=1(1− z2

n2 ).
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2.3 Entire functions with prescribed zeros

An entire function f(z) with no zeros is of the form eg(z) for some entire function g(z).
Indeed, the form f ′(z)

f(z) dz counts the number of zeros, but since there aren’t any, it is exact.
So, it is the derivative of an entire function g(z). Then

d

dz

(
f(z) · e−g(z)

)
= f ′(z) · e−g(z) − f(z) · f

′(z)
f(z)

e−g(z) = 0,

so f(z) = const · e−g(z) but the constant can be absorbed into g(z).

An entire function with finitely many zeros {ak} (these not be necessarily distinct) can
be written as

f(z) = zmeg(z)
n∏
k=1

(
1− z

ak

)
.

Here, we put the zeros at z = 0 separately in the factor zm. Now, we examine the case
when an entire function has infinitely many zeros.

Theorem (Weierstrass). Suppose {ak} ∈ C, limk→∞ ak = ∞, ak not necessarily distinct.
There exists an entire function with prescisely {ak} as zeros. Any such function is of the
form

f(z) = zmeg(z)
∞∏
k=1

[(
1− z

ak

)
· pk(z)

]
.

Here, pk(z) are factors which guarantee that the product converges. The product
converges if the sum of logarithms of its terms converge, so we look at the expansion

log
(

1− z

ak

)
= − z

ak
− 1

2
· z

2

a2
k

− 1
3
· z

3

a3
k

− . . .

Thus, a good form for

pk(z) = exp
( z
ak

+
1
2
· z

2

a2
k

+ · · ·+ 1
mk
· z

mk

amk
k

)
.

We need to show we can choose integers mk to make that the product converge, i.e we

need to make
∑

k

{
log
(

1 − z
ak

)
+ z

ak
+ 1

2 ·
z2

a2
k

+ · · ·+ 1
mk
· zmk

a
mk
k

}
converge. We denote the

general term of this sum by gk(z).

Actually, we would need that −π < Im gk(z) < π, so we know that we took the principal
branch of logarithm and not some other branch (this would be automatic because we need
gk to tend to 0 for convergence).
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Suppose r > 0, for |z| ≤ r, we consider terms with |ak| > r:

gk(z) = − 1
mk + 1

( z
ak

)mk+1
− 1
mk + 2

( z
ak

)mk+2
− . . .

Thus,

|gk(z)| ≤
1

mk + 1

( r

|ak|

)mk+1(
1− r

|ak|

)−1

It suffices to choose {mk} so that
∑

( r
|ak|)

mk+1 converges for every r > 0 (note; however,
that the sum has less terms with greater r); then the product converges uniformly and
absolutely in |z| ≤ r. Clearly, mk = k suffices.

Corollary. Every meromorphic function F (z) defined on the entire complex plane is a
quotient of entire functions.

Indeed, let g(z) be the entire function with the poles of F (z) as its zeroes. Then,
F (z)g(z) is an entire function f(z), so F (z) = f(z)

g(z) .

Corollary. Suppose ak ∈ C, limk→∞ ak =∞, bk ∈ C, mk ∈ N. Then there exists an entire
function f(z) such that ak is a root of order mk of f(z) = bk.

Let g(z) be an entire function with zero of order mk at ak. Write:

f(z) = g(z)h(z) = bk + g(z) ·
(
h(z)− bk

g(z)

)
Now choose h(z) to be a meromorphic function with poles {ak} such that at each ak, the
principal part of h(z) was the principal part of bk

g(z) .

At z = ak, g(z) has a zero of order mk, h(z) − bk
g(z) is holomorphic which shows that

f(z) = bk has a root of order at least mk at ak.

To make sure that f(z) = bk has a root of order exactly mk at ak, we make two changes:
(1) we change the order of g(z) at ak from mk to mk + 1 and (2) we change the principal
part of h(z) at ak to be bk

g(z) + 1
z−ak

.
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2.4 The Gamma Function

Consider the infinite product:

g(z) = z(1 + z)︸ ︷︷ ︸
f1(z)

∞∏
n=2

[ (
1 +

z

n

)(
1− 1

n

)z
︸ ︷︷ ︸

fn(z)

]
.

We want to show it converges uniformly and absolutely on compact subsets of C. For this
purpose, we examine the sum of

log fn(z) = log
(

1 +
z

n

)
+ z log

(
1− 1

n

)
.

=
( z
n
− z2

2n2
+

z3

3n3
− . . .

)
+ z(− 1

n
− 1

2n2
− 1

3n3
− . . .

)
If |z| ≤ r and n > 2r, we have the estimate∣∣∣log fn(z)

∣∣∣ ≤ 2 · r
2

n2
·
(

1− r

n

)−1
< 4r2 · 1

n2
.

Hence the associated sum converges by comparison with
∑ 1

n2 .

Let gn(z) =
∏n
k=1 fk(z). As

(
1− 1

2

)(
1− 1

3

)
. . .
(

1− 1
n

)
= 1

2 ·
2
3 · · ·

n−1
n = 1

n , we see

gn(z) = z(1 + z)
(

1 +
z

2

)
. . .
(

1 +
z

n

)
· n−z =

z(z + 1) . . . (z + n)
n!

n−z

The function g(z) has zeros at 0,−1,−2, . . . , all of which are simple.

Also, g(z)
g(z+1) = z. Indeed, gn(z + 1) = (z+1)···(z+n+1)

n! n−z−1, so gn(z)
gn(z+1) = zn

z+n+1 → z as
n→∞. Additionally, g(1) = limn→∞ gn(1) = limn→∞

n+1
n = 1.

Define the Euler gamma function Γ(z) as 1
g(z) . It is meromorphic with simple poles at

0,−1,−2, . . . and satisfies Γ(z+1) = zΓ(z), Γ(1) = 1, from which we can see Γ(n+1) = n!.

We now prove the identity Γ(z)Γ(1− z) = π
sinπz :

gn(z)gn(1− z) =
{z(z + 1) . . . (z + n)

n!
· n−z

}{(1− z)(2− z) . . . (n+ 1− z)
n!

· nz−1
}

=
n+ 1− z

n
· z

n∏
k=1

(
1− z2

k2

)
.

By the Example in Section 2.2, as n → ∞, the infinite product converges to sinπz
π and

n+1−z
n → 1, hence g(z)g(1− z) = sinπz

z .
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We now give an alternate infinite product for 1
Γ(z) . We write

gn(z) = z

n∏
k=1

{(
1 +

z

k

)
e−

z
k

}
ez(1+ 1

2
+···+ 1

n
−logn).

This suggests that

g(z) = z
∞∏
k=1

{(
1 +

z

k

)
e−

z
k

}
· ezγ .

The convergence of the infinite product can be established as before (we can again compare
with

∑ 1
n2 ). This alternate expansion shows that 1+ 1

2 + · · ·+ 1
n − log n converges; its limit

is γ, the Euler gamma constant.

The logarithmic derivative of Γ(z) is

Γ′(z)
Γ(z)

= −1
z
− γ +

∞∑
n=1

{ 1
n
− 1
z + n

}
.

Taking derivatives again, we find d
dz

(
Γ′(z)
Γ(z)

)
=
∑∞

n=0
1

(z+n)2 . This is positive when z is real
and positive, so log Γ(z) is convex.

A theorem of Bohr and Mollerup says that Γ is the only meromorphic function which
is logarithmically convex on the positive real axis which satisfies the functional equation
Γ(z + 1) = zΓ(z) and Γ(1) = 1.

2.5 Normal families and compact subsets of C(Ω)

Suppose Ω ⊂ C is open. We have seen that C(Ω) is metrizable and that H(Ω) is a closed
subset of C(Ω) with the induced metric.

Recall that a metric space is compact if and only if every sequence has a convergent
subsequence.

We say that S ⊂ H(Ω) is a “normal family” if every sequence in S has a subsequence
that converges uniformly on compact subsets of Ω; in other words, S is normal if its closure
is compact.

A set S ⊂ H(Ω) or of C(Ω) is bounded uniformly on compact subsets of Ω if for every
compact K ⊂ Ω, there is a constant M(K) such that |f(z)| ≤ M(K) when z ∈ K for all
f ∈ S.
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Proposition. If S ⊂ H(Ω) or of C(Ω) is compact, then S is closed and bounded uniformly
on compact sets.

The fact that S is closed follows from H(Ω) being Hausdorff. For a fixed compact set
K, the map H(Ω) → R : f → maxz∈K |f(z)| is continuous and hence it takes K to some
bounded set of R.

The converse is only true in H(Ω). It follows from the following theorem:

Theorem (Montel). A set of functions S ⊂ H(Ω) is a normal family if and only if it is
bounded uniformly on compact sets.

We prove it using two lemmas.

Lemma. The mapping H(Ω) → H(Ω) : f → f ′ takes a subset that is bounded uniformly
on compact sets to another subset bounded uniformly on compact sets.

It suffices to show that for any z0 ∈ Ω, there is a small disk D ⊂ Ω centered at z0

such that S ′ is bounded uniformly on D. Choose D with radius r/2 such that the disk D̃
centered at z0 with radius r is contained in Ω. Let γ be the positively oriented boundary
of D̃.

Suppose z ∈ D. By Cauchy’s integral formula, f ′(z) = 1
2πi

∫
γ

f(ζ)
(ζ−z)2dζ. Suppose M is

such that |f(z)| ≤M on γ for all f ∈ S. As |ζ − z| ≥ r/2, |f ′(z)| ≤ M
2π ·

4
r2 · 2πr = 4M

r .

Lemma. Let D be the open disk with center z0 and radius R and S ⊂ H(Ω) be bounded
uniformly on compact subsets of D. Then a sequence {fn} ⊂ S converges uniformly on
compact sets if and only if for every k, the sequence of derivatives at z0, {f (k)

n (z0)} con-
verges.

For the “only if” direction, we simply need to know that the map f → f ′ is continuous
(we don’t need the hypothesis).

Now we prove the “if” direction. It suffices to show that for any z0 ∈ Ω, there is a
small disk D centered at z0 such that for any f ∈ S, {fn} converges uniformly on D. Let
D(z0, R) be a closed disk in Ω. We pick D = D(z0, r) with radius r < R.

Let r < r0 < R. Choose M so that |fn(z)| ≤ M for all n whenever |z − z0| ≤ r0. We
can write fn(z) as

∞∑
k=0

f
(k)
n (z0)
k!

· (z − z0)k.
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If we let the coefficients f
(k)
n (z0)
k! be ank, then by Cauchy’s estimate, |ank| ≤ M

rk
0

. It follows
that

|fn(z)− fm(z)| ≤
l∑

k=0

|ank − amk| · rk + 2M
∑
k>l

( r
r0

)k
.

As the geometric series converges, we can choose l large enough so the second term is small.
We then choose n0 large so that when m,n > n0, |ank − amk| are simultaneously small for
all 0 ≤ k ≤ l. Then {fn(z)} converges uniformly as desired.

We are now ready to prove Montel’s theorem. Suppose S ⊂ H(Ω) is bounded uniformly
on compact sets and {fn} ⊂ S. We wish to show {fn} has a convergent subsequence.

Take a countable cover of Ω by disks D(zi, ri) ⊂ Ω. Let λji : H(Ω) → C take f →
f (k)(zi). It suffices to find a subseqence N ⊂ N such that limn∈N λ

k
i (fn) exists for all k, i.

We construct N as follows: We reindex λki as µl. By the first lemma, for each l, µl(fn)
is bounded. Then we diagonalize, i.e we first choose N1 ⊂ N so that the limn∈N1 µ1(fn)
converges; next we choose N2 ⊂ N1 so that limn∈N2 µ2(fn) converges, then N3 ⊂ N2 so
limn∈N3 µ3(fn) converges and so on.

We then take N to be the diagonal sequence: N11, N22, N33, . . .
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Chapter 3

Automorphisms

3.1 Local Geometry of Holomorphic functions

We say that a function f is conformal (biholomorphic) if f is holomorphic and has a
holomorphic inverse. If f is a holomorphic function not identically constant, either of the
two possibilities hold:

(1) Suppose w0 = f(z0) and f ′(z0) 6= 0. By the inverse function theorem, f−1 exists
and is holomorphic in a neighbourhood of w0 and so f is conformal at z0.

(2) Suppose instead f ′(z0) = 0. We may assume z0 = 0, f(z0) = 0; otherwise we work
with f(z + z0)− f(z0). We may write w = zpf1(z) with f1(0) 6= 0 for some p ≥ 2. Then,
w = (zg(z))p where g(z) is some determination of the p-th root of f1. Then w = ζp where
ζ = zg(z) is a holomorphic coordinate change, i.e a map of type (1).

Thus up to a conformal change of coordinates, every holomorphic function is of form
ζp + f(z0). The number p− 1 is called the ramification index of f at z0.

Lemma. A non-constant holomorphic mapping is open.

We know that in a small neighbourhood of f(z0), every value sufficiently close to f(z0)
appears exactly p times (as this is true for ζp + f(z0)), so f is open.

Corollary. If f ∈ H(Ω) and injective, then f is a homeomorphism. Furthermore, f−1 is
holomorphic.

Since (2) cannot be injective, (1) must always be the case, hence f is a local homeo-
morphism. But as f is injective, it is a genuine homeomorphism.
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Remark. Even if f ′(z) 6= 0 for all z ∈ Ω, this not guarantee that f is injective. For
instance, f(z) = ez is one-to-one on any strip a < Im z < b with b− a < 2π.

Remark. While the complex plane C and the unit disk D = {z : |z| < 1} are homeomor-
phic; they are not biholomorphic, for any function f : C → D is constant by Liouville’s
theorem.

Notice that if f, g : Ω → Ω′ are two biholomorphic maps, then g−1 ◦ f : Ω → Ω is
biholomorphic. Hence all biholomorphic maps Ω → Ω′ are given by composing a fixed
holomorphic map with an automorphism of Ω.

Examples

The automorphisms of the Riemann sphere are the fractional linear transformations z →
az+b
cz+d . The automorphisms of the complex plane are affine maps z → az + b.

The automorphisms of the upper half plane are fractional linear transformations with
real coefficients and ad− bc > 0.

3.2 Automorphisms

We classify automorphism groups of some domains in C.

Theorem. Aut C are affine maps w = az + b with a 6= 0.

Suppose w = f(z) is an automorphism of C. Either, (1) f(z) has an essential singularity
at infinity, or (2) it is a polynomial (being a rational function with only pole at infinity).

The first case cannot happen: on one hand, Im{|z| < 1} and Im{|z| > 1} should be
disjoint (as f(z) is injective), but as f is open, the first set is open; but the essential
singularity at infinity implies the second set is dense which is impossible.

We investigate the second case further. Suppose f is a polynomial of degree n. Then,
f(z) = w has n distinct roots except for special values of w (namely, when f ′(z) = 0). As
f is injective, we see that n = 1.

We conclude f(z) = az + b. Obviously, a 6= 0. If a = 1, f(z) is a translation; if a 6= 1,
f has a unique fixed point z = b

1−a .
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Theorem. AutS2 are fractional linear transformations w = az+b
cz+d , ad−bc 6= 0 (the inverse

is z = dw−b
−cw+a). (Note: w takes infinity to a

c if c 6= 0 and to infinity if c = 0).

Obviously, the fractional linear transformations form a subgroup of G ⊂ AutS2. We
want to show that actually G = AutS2.

The subgroup of AutS2 which fixes the point at infinity is precisely Aut C. As fractional
linear transformations act transitively on the Riemann sphere, for T ∈ AutS2, we could
consider a fractional linear transformation S which takes T (∞) → ∞. Then S ◦ T must
be affine which shows that T is a fractional linear transformation.

Let H+ be the upper half-plane and D the unit disk. The two are biholomorphic:
indeed, the map z → z−i

z+i which takes H+ to D: it maps i to the origin and points 0, 1,∞
to −1,−i, 1 respectively.

Theorem. AutD are fractional linear transformations of the form

w = eiθ · z − z0

1− z0z

with |z0| < 1.

The above transformations are automorphisms, they take the unit disk into itself and
their inverse is of the same form. We now show that there are no other automorphisms.

Suppose T ∈ AutD. Let S = eiθ · z−z01−z0z with z0 = T−1(0) and θ = arg T ′(z0). Let
f(z) = S ◦ T−1(z). Then f(0) = 0 and |f(z)| < 1 when |z| < 1. By Schwarz’s lemma,
|f(z)| ≤ |z|.

Applying the same argument to the inverse of f , we see that z ≤ |f(z)|, so |f(z)| = |z|.
By the equality condition of Schwarz’s lemma, we see that f(z) = eiα ·z, so S(z) = eiα ·T (z).
We now differentiate and set z = z0: S′(z0) = eiα · T ′(z0); from which follows that α = 0
or S = T as desired.

Theorem. Aut H+ are fractional linear transformations with real coefficients and positive
determinant.

Conjugation by z → z−i
z+i shows that Aut H+ is composed solely of fractional linear

transformations. If a fractional linear transformation w(z) is to take the real axis to itself,
it takes 1, 0,∞ to three real numbers z1, z0, z∞; so w(z) = z−z0

z−z∞ ·
z1−z∞
z1−z0 .
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3.3 Riemann Mapping Theorem

Our next goal is to show that any simply-connected subset Ω of C (except for C itself) is
biholomorphic to the unit disk D = {|z| < 1}.

We first reduce to the case of bounded domain. If Ω isn’t the entire complex plane,
then there is some point a 6∈ Ω. As Ω is simply-connected, 1

z−a has a primitive g(z) in Ω.
Then, z − a = eg(z).

As G(Ω) is open, it contains a disk E centered at g(z0). As eg(z) is injective, E and
its translate E + 2πi are disjoint. Then, 1

g(z)−[g(z0)+2πi] is a biholomorphism of Ω onto a
bounded domain.

By translating and scaling if necessary, we can assume that Ω contains the origin and
lies inside the unit disk.

Let A = {f ∈ H(Ω) : injective, f(0) = 0, |f(z)| < 1}.

Lemma. Then g(Ω) = D if and only if |g′(0)| = supf∈A |f ′(0)|.

Assuming the lemma, it suffices to show that supf∈A |f ′(0)| is attained. For this pur-
pose, we introduce B = {f ∈ A : |f ′(0)| ≥ 1}. B is non-empty as f(z) = z is in it. It
suffices to show that B is compact.

By Montel’s theorem, B is normal as it is bounded uniformly on compact sets (its
actually bounded everywhere by 1). To show that B is closed, suppose f = lim fn with
fn ∈ B (as usual, we assume that the sequence converges uniformly on compact sets).

We know that f(0) = lim fn(0) = 0, clearly |f ′(0)| ≤ 1. Injectivity follows from
Hurwitz’s theorem (see Section 1.1), the functions are non-constant as |f ′n(0)| ≥ 1 (from
which follows that |f ′(0)| ≥ 1, recall that the map f → |f(0)| is continuous).

It is easy to see that |f(z)| ≤ 1, but if the value 1 is attained, by the maximum-modulus
principle, f reduces to a constant which is impossible.

The remaining lemma follows from Schwarz lemma which says that if f ∈ H(D), f(0) =
0, |f(z)| < 1 then |f(z)| ≤ |z| for all z ∈ D. Indeed, applying the maximum-modulus
principle to g(z) = f(z)

z , we see |g(z)| ≤ 1
|z| ≤ 1 and |f ′(0)| ≤ 1.

If additionally |f(z0)| = |z0| for some z0 ∈ D, then f(z) = λz with |λ| = 1: by the
maximum-modulus principle, g must be constant; and at z0, λ has absolute value 1.
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3.4 Riemann Mapping Theorem II

We defined family A = {f ∈ H(Ω) : injective, f(0) = 0, |f(z)| < 1}. We want to show
that g(Ω) = D if and only if |g′(0)| = supf∈A |f ′(0)|.

The “only if” direction is quite clear: suppose g ∈ A with g(Ω) = D and f ∈ A is
some other holomorphic map. Then h = f ◦ g−1 takes the disk to f(Ω) and takes the
origin to itself. By Schwarz’s lemma, |h′(0)| ≤ 1, differentiating f = g ◦ h, we see that
|f ′(0)| ≤ |g′(0)|.

Suppose f ∈ A and a is some point in the disk but not in f(Ω). We want to show that
there is some g ∈ A with |g′(0)| > |f ′(0)|.

Let ϕ(ζ) = ζ−a
1−aζ be an automorphism of the disk which sends a to 0. Then, ϕ ◦ f(z) =

f(z)−a
1−af(z) is non-vanishing. Since Ω is simply-connected, it has a single-valued holomorphic
square root F (z), i.e if θ(w) = w2, we may write ϕ ◦ f(z) = θ ◦ F (z).

Then
f = ϕ−1 ◦ θ ◦ F = ϕ−1 ◦ θ ◦ ψ−1︸ ︷︷ ︸

h(z)

◦ ψ ◦ F︸ ︷︷ ︸
g(z)

where ψ(η) = η−F (0)

1−F (0)η
. Then h take the disk to itself and fixes the origin.

This allows us to apply Schwarz’s lemma: |h′(0)| ≤ 1. We don’t win unless we see that
|h′(0)| is actually less than 1. But if |h′(0)| = 1, the equality condition of Schwarz would
imply that h is a rotation, but it isn’t.

Boundary Behaviour

Having shown that any two simply connected domains in the complex plane are biholo-
morphic, we wish to see if the mapping extends a homeomorphism of closed domains. We
will do this in the special case of a polygon (although a theorem of Carathéodory shows
that this is true for any domains with Jordan curve boundary).

Suppose Ω is a simply-connected open set whose boundary is a polygonal curve with
vertices z1, z2, . . . zn; zn+1 = z1. Let αk be the inner angle at zk, so 0 < αk < 2 (more
precisely, αk is the value of the argument of zk−1−zk

zk+1−zk
between 0 and 2).

Let βkπ be the outer angle at zk, so βk = 1−αk, i.e −1 < βk < 1 and β1 + · · ·+βn = 2.
It is easy to see that Ω is convex if and only if all βk > 0.
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We will need a non-standard version of the Schwarz reflection principle:

Lemma (Schwarz). Suppose Ω = Ω+ ∪Ω− is a domain symmetric about the real axis and
f(z) is a holomorphic function defined on Ω+ whose imaginary part tends to zero as z
approaches the real axis. Then f(z) can be completed to a holomorphic function defined on
all of Ω by setting f(z) = f(z).

The difficulty here is that a priori the real part of f(z) may not extend continuously to
the real axis. We prove that this is indeed the case. For this purpose, we assume that Ω is
simply-connected (this is a local question, if x ∈ R, we can restrict to a small disk centered
at x).

The function v(z) = Im f(z) is harmonic. We can extend it to a function on Ω by
setting v(z) = −v(z). It is harmonic as it satisfies the mean value principle. We take
u(z) to be the “harmonic conjugate” which agrees with Re f(z) on Ω+. Then u + iv is
an extension of f(z). But if f(z) is to admit any extension beyond the real axis, it must
extend continuously up to the real axis.

We now know that the formula f(z) = f(z) defines a function which is holomorphic
on Ω+ ∪ Ω− and is continuous on the real axis. By a corollary of Morera’s theorem, f(z)
must be holomorphic on the real axis as well.

We now return to the question of boundary behaviour of conformal mapping of a
polygon Ω. Suppose f : Ω → D is conformal. We first show that f extends continuously
at the sides of Ω. We even show more: namely that f extends beyond each side as a
holomorphic function.

This is easy. Simply compose f with the fractional linear transformation from ϕ : D →
H+ given by ϕ(w) = w−i

w+i and apply the Schwartz reflection principle (exercise: ϕ does
extend to a continuous map from D → H).

At the angles, the situation is a little more tricky. We straighten the angle at vertex
zk of Ω. For this purpose, we consider the function g(ζ) = f(zk + ζαk) defined in the
neighbourhood of the origin in the upper half plane (see picture).

By arguments with the Schwartz reflection principle, g(ζ) extends to a holomorphic
function in small disk centered at the origin and as f |∂Ω = g|R, f extends continuously at
the angles as well.
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Thus we have shown that the map f : ∂Ω → ∂D is continuous. The above reasoning
also allows us to conclude that f is locally one-to-one. However, we really want to see that
f is genuinely one-to-one on the boundary.

For this purpose, take a positively oriented curve γ ⊂ Ω which is close and homotopic
to ∂Ω. Then f(γ) is a simple closed curve which goes around the origin with winding
number +1. So f(∂Ω) must wind around once counter clockwise around the origin (details
are left as an exercise).

3.5 Christoffel-Schwarz Formula

We can even find an explicit formula of a Riemann mapping from a polygon to the unit
disk. Actually, the formula is not for f(z), but rather its inverse, which we denote F .

Theorem (Christoffel-Schwarz). F is of the form F (w) = c
∫ w

0

∏n
k=1(w − wk)−βkdw + c′

where are c, c′ are constants.

We denote the image of zk under f by wk. Any 3 of the wk’s can be picked arbitrarily
but the remainder are uniquely determined (exercise).
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Remark. The formula always takes {|z| = 1} to a closed polygonal curve, but the curve
may have self intersections. If the curve does not have self-intersections, then F takes the
unit disk biholomorphically onto the interior of the curve.

Fix a vertex zk of Ω and consider its associated function g(ζ) constructed previously.
As w = g(ζ) is locally one-to-one at the origin, it is invertible and so exists a power series
expansion ζ =

∑∞
m=1 bm(w − wk)m with b1 6= 0.

Raising to αk-th power we see that ζαk = F (w) − zk = (w − wk)αkG(w) where G(w)
is holomorphic and non-zero near wk. Differentiating, we find that F ′(w)(w − wk)βk =
αkG(w) + (w − wk)G′(w) is holomorphic and non-zero at wk. We can now forget the
auxiliary functions g and G.

Set H(w) = F ′(w)
∏n
k=1(w − wk)βk . By the discussion above, it is holomorphic in the

unit disk, extends continuously to the boundary and does not vanish in the closed unit
disk. We claim that in fact H(w) is constant.

As H(w) does not vanish, it suffices to show that argH(w) is constant on {|w| = 1}
(recall arg is the imaginary part of log). To this end, we show that argH(w) is constant
for w = eiθ with argwk < θ < argwk+1 and by continuity, argH(w) will be constant on
the whole unit circle.

Taking arguments, we see that

argH(w) = argF ′(w) + βk
∑

arg(w − wk)

The chain rule tells us that argF ′(w) = arg(F ◦ w)′(θ) − argw′(θ). The argument of
(F ◦ w)′(θ) measures the direction of the tangent to the graph of F which is constant as
F traces a side of Ω. On the other hand, w′(θ) represents the direction of the tangent to
circle at w = eiθ, i.e w′(θ) = θ + π/2 = θ + const.

By elementary geometry, we see that arg(w − wk) = θ/2 + const (exercise, hint: by
rotation, we can assume that wk = 1). Continuing our calculation, we see that

argH(w) = −θ +
(∑

βk

)θ
2

+ const = const.

If H(w) = c (identically), then F ′(w) = c
∏n
k=1(w − wk)−βk and we obtain the Schwarz-

Christoffel formula by integration.
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Chapter 4

Complex Geometry

4.1 Complex Manifolds

A manifold is a paracompact Hausdorff topological space locally homeomorphic to Rn, i.e
we can cover M by open sets Ui for which exist homeomorphisms (charts) ϕi : Ui → Vi

with Vi open in Rn.

For complex structure, we replace Rn with Cn and insist that the transition maps
ϕj ◦ ϕ−1

i : Vi → Vj be holomorphic for all i, j. A complex manifold is a manifold with
complex structure.

A function on a complex manifold M is holomorphic if it is holomorphic in local coor-
dinates (that is, for any coordinate chart ϕ : Ui → Vi, f ◦ ϕ−1

i is holomorphic on Vi).

A one-dimensional complex manifold is called a complex curve or an abstract Riemann
surface.

Example: the Riemann sphere. As charts, we take U = S2 \ {N} with ϕU : (x, y, t)→
x+iy
1−t (stereographic projection) and V = S2 \ {S} with ϕV : (x, y, t)→ x−iy

1+t (stereographic
projection followed by conjugation).

The transition map ϕU ◦ ϕ−1
V : C \{0} → C \{0} takes z to 1

z . In local coordinates,
zU = z ◦ φU , zV = z ◦ φV , we have zUzV = 1. It is an exercise to the reader to verify that
S2 is biholomorphic to P 1(C).

Given two complex manifolds M and N , a function f : M → N is holomorphic if it is
in local coordinates, i.e if ψj ◦ f ◦ ϕ−1

i is holomorphic for all coordinates charts ϕi of M
and ψj of N .
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Given manifolds M and N with complex structures we say that f : M → N is an “iso-
morphism” (or a biholomorphism) if f is a homeomorphism of the underlying topological
spaces and f, f−1 are holomorphic.

Two complex structures on M are equivalent if the identity mapping is an isomorphism.
Thus a complex manifold is really a paracompact Hausdorff space with an equivalence class
of complex structures.

Properties of holomorphic functions extend to manifolds

(1) If M and N are complex manifolds with M connected and f, g : M → N are holomor-
phic and coincide on a set with a limit point, then f = g on M .

Consider the set of points in which f, g coincide in a neighbourhood. It is open (auto-
matic). It is closed (given a sequence {zk}, its tail lies in one chart). It is not empty, for
it contains the limit point; so f, g must coincide everywhere on M .

(2) Suppose M is connected and f is holomorphic on M , if |f | has a relative maximum,
it is constant.

If |f | has a relative maximum, in a neighbourhood, it coincides with the constant
function, use part (1). In fact, any holomorphic function on a compact connected manifold
is constant.

4.2 Complex Manifolds II

We have seen that holomorphic functions on compact complex manifolds are constant.
We are more interested in meromorphic functions; these are holomorphic maps into the
Riemann sphere.

For example, p : C → C /Γ : f → f ◦ p is a bijection between meromorphic functions
on C /Γ and meromorphic functions on C with Γ as a group of periods.

Suppose f : M → N is holomorphic, a ∈ M and b = f(a). Choose local coordinates
z, w vanishing at a, b respectively. We define the ramification index to be the multiplicity
of the root of w ◦ f ◦ z−1.

The multiplicity does not depend on the choice of local coordinates, for coordinates
charts are homeomorphisms; in particular, they are locally one-to-one.
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If the ramification index is k, we can choose local coordinates in which w = zk.

A holomorphic differential form ω on manifold M with atlas (Ui, zi) is a set of forms
ω = fi(zi)dzi which transform properly, i.e dzi = f ′ij(zj)dzj .

In a neighbourhood of any point, a holomorphic differential form has a primitive g, i.e
a holomorphic function for which ω = dg (by definition dg is the form g′(zi)dzi). If M is
simply-connected, then ω has a global primitive.

Complex manifolds have a natural orientation as the transition maps are orientation-
preserving. This allows us to consider the oriented boundary of compact set. In particular,
if ω is a holomorphic differential form and Γ is the oriented boundary of a compact set
then

∫
Γw = 0.

Let ω be a differential form holomorphic in the complement of a discrete set E. If a ∈ E
and z is a local coordinate in a neighbourhood of a, we may write ω = ω1 +( c1z + c2

z2 + . . . )dz
where ω1 is a differential form holomorphic near a.

We define Res(ω, a) = 1
2πi

∫
γ ω where γ is a small closed curved around a with winding

number 1. The Residue theorem carries over to manifolds (with same proof):

Theorem. Given a compact set K ⊆M with piecewise smooth oriented boundary Γ, with
Γ containing no points of E, we have 1

2πi

∫
Γ ω =

∑
a∈K Res(ω, a).

Let Y be a complex curve. By a Riemann surface over Y , we mean a connected complex
curve X together with a non-constant holomorphic map ϕ : X → Y whose ramification
points are isolated and the fibers ϕ−1(y) are discrete.
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4.3 Examples of Riemann Surfaces

Example 1: y = log x

Let Y = C∗ be the complex plane without the origin. The map log z : Y → C is multi-
valued. We consider X = C, ϕ : X → Y given by ϕ(t) = et. Then t is a holomorphic
function on X which is locally a branch of log, i.e t = log ◦ϕ.

We made the function log z single-valued by introducing the Riemann surface.

Here ϕ : X → Y is a covering space or an unramified covering space, i.e any point of
Y has an open neighbourhood V such that ϕ−1(V ) is a disjoint union of open sets Ui each
mapped homeomorphically onto V .

Example 2: y = x1/2

We now construct a Riemann surface for the function y = x1/2 over Y = C. Let X ⊂ C2

be the points (x, y) for which y2 = x.

The origin is a ramification point: X lies in two sheets over Y everywhere except at
the origin.

To construct a model of X, take two copies of the complex plane, cut out their positive
real rays and glue the top of one to bottom of the other and vica versa.

Example 3: y = (1− x3)1/3

Let X ⊂ C2 be the set of points (x, y) for which x3 + y3 = 1. It is a complex manifold,
near (x0, y0) with y0 6= 0, we may take x as a local coordinate, x→ (x, 3

√
1− x3) with the

branch of cube root corresponding to (x0, y0). Similarly, at x0 6= 0, y → ( 3
√

1− y3, y) is a
local coordinate.

To see that the two charts are compatible, if x0 6= 0 and y0 6= 0, 3
√

1− x3 has a branch
equal to y0 at x = x0 and 3

√
1− x3 has a branch equal to x0 at y = y0.

As functions on X, both x and y are holomorphic: e.g to see that x is holomorphic,
near (x0, y0) with y0 6= 0, x is the local coordinate, x = x, the identity map; near (x0, y0)
with x0 6= 0, y is the local coordinate, x = 3

√
1− y3.

X has 3 points over every point of C except at the cube roots of unity, 1, j, j2 where
j = e2πi/3.
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Consider the differential form ω = dx
(1−x3)1/3 = dx

y on X. The equation defines ω when
y 6= 0. Differentiating the equation x3 + y3 − 1 = 0, we see that 3x2dx + 3y3dy = 0 or
dx
y = − y

x2dy when both x 6= 0 and y 6= 0. Thus, ω is implicitly defined to be − y
x2dy when

x 6= 0.

We made the differential form dx√
1−x3

single-valued by introducing the Riemann surface.

We can extend X to a Riemann surface over S2 = P 1(C). Let X ′ ⊂ P 2(C) be the set
of points [x, y, z] given by x3 + y3 = z3 formed by homogenizing (xz )3 + (yz )3 = 1.

X ′ is composed of X together with 3 points at infinity (i.e where z = 0), namely
[1,−1, 0], [j,−1, 0] and [j2,−1, 0].

4.4 Example: y =
√

P (x)

Let P (x) = (x − a1)(x − a2) . . . (x − ad) be a polynomial with distinct roots. Suppose
X ⊂ C2 is the set of points (x, y) for which y2 = P (x). We complete it to a Riemann
surface X ′ ⊂ P 2(C) over P 1(C) by homogenizing the equation:

y2zd−2 = (x− a1z)(x− a2z) . . . (x− anz).

We now investigate this in detail, paying attention to the branch points and behaviour at
infinity.

Case d = 1:

The set X : {y2 = x− a} is a parabola and hence a manifold; so X ′ : {y2 = xz − a1z
2} is

smooth at least in the finite part of P 2(C). At infinity, X ′ has one point: if we plug z = 0
into the equation for X ′, we get y2 = 0 yielding the point [1, 0, 0].

The equation for X ′ has multiple roots at a and infinity, which are the branch points.
One can form a model of X ′ by taking two copies of the Riemann sphere, making cuts in
each of them between a and ∞, gluing the top bank of the first sphere to the bottom bank
of the second sphere and vica versa. This construction shows that X ′ is topologically a
sphere.
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Case d = 2:

The equation for X is {y2 = (x − a)(x − b)}. Homogenizing, we obtain the equation for
X ′: {y2 = (x− az)(x− bz)}. If we set z = 0, we get the equation y2 = x2, so X ′ has two
points at infinity, namely [1, 1, 0] and [1,−1, 0]. In coordinates (y, z) at infinity,

y = ±(1− az)1/2(1− bz)1/2.

So, X ′ is a manifold and has branch points are a and b. Actually, this case is pretty much
the same as the previous case: if we take the equation y2 = (x− az)(x− bz) and perform
a linear change of coordinates to make it y2 = uv, after we dehomogenize with respect to
v, we are left with the equation y2 = u.

Case d = 3:

Now, the equation forX is y2 = (x−a)(x−b)(x−c) and forX ′, y2z = (x−az)(x−bz)(x−cz).
If we set z = 0, we obtain the equation x3 = 0, so there is one point at infinity, namely
[0, 1, 0].

X ′ has four branch points: a, b, c,∞. To form a model for X ′, we take two copies of
the Riemann sphere, pair up the points, say a, b and c, d, make cuts between a and b and
between c and d in both spheres and glue the banks of a− b and c− d to each other. This
shows that X ′ is topologically a torus.

Case d ≥ 4:

The equation for X ′ is y2zd−2 =
∏d
i=1(x−aiz). There is only one point at infinity, [0, 1, 0].

We must choose (x, z) to be the coodinates at infinity:

zd−2 =
∏

(x− aiz).

Unfortunately, this is not smooth at the origin, for it is not true that either ∂
∂x = 0 or

∂
∂z = 0, so the implicit function theorem does not apply.
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4.5 Abel’s Theorem

Let X ⊂ C2 be given by the equation y2 = P (x) with P (x) = 4x3− 20a2x− 28a4 having 3
distinct roots. Let X ′ ⊂ P 2(C) be given by the equation y2t = 4x3− 20a2xt− 28a4. Then,
X embeds into X ′ ⊂ P 2(C) by taking (x, y) to [x, y, 1].

We have seen that X ′ has one point at infinity, namely [0, 1, 0]. If (x′, t′) → [x′, 1, t′]
are the coordinates at [0, 1, 0], then t′ = 4x′3 − 20a2x

′t′2 − 28a4t
′3. This tells us that

t′ = 4x′3 − 320a2x
′7 + ... (see Section 1.6 for details).

The projection map ϕ : X → C given by ϕ(x, y) → x gives X the structure of a
Riemann surface over C. We extend it to ϕ′ which makes X ′ a Riemann surface over
P 1(C) ∼= S2:

ϕ′ : [x, y, 1]→ [x, 1], ϕ′ : [x′, 1, t′]→ [x′, t′] in P 1(C),

i.e to x′

t′ ∈ C in coordinates at 0 or to t′

x′ in coordinates at infinity.

The form ω = dx
y = dy

6x2−10a2
has a primitive in a neighbourhood of each point of X;

globally the primitive is a multi-valued holomorphic function z = z(x, y). Each branch of
z in the neighbourhood of any point (x0, y0) ∈ X is a local coordinate:

(1) if y0 6= 0, using dz = dx
y , we see that dz

dx = 1
y 6= 0,

(2) if y0 = 0, using dz = dy
6x2−10a2

, we see that dz
dy = 1

6x2−10a2
6= 0.

Near the point at infinity in X ′, [0, 1, 0], we have [x, y, 1] = [x
′

t′ ,
1
t′ , 1], so

ω =
dx

y
= t′ · d

(x′
t′

)
= dx′− x

′

t′
dt′ = dx′− 12x′2 − 2240a2x

′6 + . . .

4x′2 − 320a2x′6 + . . .
· dx′ = −2dx′(1 + g(x′)).

with g(x′) holomorphic near x′ = 0 and g(0) = 0.

Suppose that a2, a4 come from a discrete subgroup Γ, i.e a2 = 3
∑

w 6=0
1
w4 , a4 =

5
∑

w 6=0
1
w6 . We have seen that the meromorphic transformation x = p(z), y = p′(z) defines

a biholomorphism from C /Γ → X ′. Recall that the inverse map is z(p) =
∫ p

[0,1,0] ω where
the integral is determined only modulo Γ.

We are interested in the converse:

Theorem (Abel). Given a2, a4 such that p(x) = 4x3 − 20a2x− 28a4 has 3 distinct roots,
there is a discrete subgroup Γ of C generated by e1, e2 linearly independent over R such
that a2 = 3

∑
w 6=0

1
w4 , a4 = 5

∑
w 6=0

1
w6 .
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We will prove it using two lemmas:

Lemma (1). The difference of two branches of z belongs to some discrete group Γ.

We can then consider the elliptic curve associated to Γ, i.e X ′′ given by equation
y2 = 4x3 − 20b2x− 28b4 where b2 = 3

∑
w 6=0

1
w4 and b4 = 5

∑
w 6=0

1
w6 . We can consider the

composition:

X ′
? // C/Γ

∼= // X ′′

[x, y, 1] z [(p(z), p′(z), 1]

Abel’s theorem says that this composition is in fact the “identity mapping” , i.e [p(z), p′(z), 1]
is nothing but the coordinate mapping [x, y, 1]. And therefore we must have a2 = b2 and
a4 = b4. It will turn out necessary to show first the weaker statement first:

Lemma (2). The map z is a biholomorphism.

4.6 Abel’s Theorem II

Lemma 1

Let p0 = [0, 1, 0] be the point at infinity, then z(p) =
∫ p
p0
ω is globally well-defined up to a

period of ω, i.e to π(γ) =
∫
γ ω where γ is a loop.

We can extend π to 1-cycles by linearity. By Stokes theorem, the map π vanishes on
boundaries:

∫
∂σ ω =

∫
σ dω = 0, so π descends to a map from H1(X ′,Z)→ C.

We now need two facts not from this course: first, X ′ is a torus, say by the degree
genus formula g = (d−1)(d−2)

2 = (3−2)(3−1)
2 = 1 and secondly, H1(X ′,Z) = Z⊕ Z.

We claim that Γ is lattice. If not, Γ is contained within a straight line. Take α so that
<(απ(γ)) = 0. But then <(αz) defines a single-valued function harmonic on X ′. As X ′

is compact, by maximum-modulus, we see that it is constant. But z is not constant as ω
does not vanish identically.

Lemma 2

First, we establish that z is surjective: as branches of z are local coordinates at each point
of X ′, z is a local homeomorphism, in particular open, so has open image. But the image
is also closed as X ′ is compact.
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Thus X ′ is a covering space of C /Γ and so it must be biholomorphic to C /Γ′ for some
subgroup Γ′ of Γ (and z is just the quotient map). We show that in fact Γ = Γ′, i.e we
need to prove the other inclusion.

The universal covering space of C /Γ is X̃ ′ ∼= C. The map z : X ′ → C /Γ lifts to a map
z̃ between the covering space X̃ ′ and C /Γ. We have the following commutative diagram:

X̃ ′ ∼= C
p

��

z̃ // C
qΓ

��

X ′ ∼= C /Γ′ z // C /Γ

We explain the map z̃. Let q0 ∈ X̃ ′ be a point above p0. Given a point q ∈ X̃ ′, let γ̃ be
an arbitrary path joining q0 to q. If γ = p(γ̃) then z̃(q0) =

∫
γ ω. Note that it is no longer

necessary to quotient out by Γ to make the map well-defined.

Clearly z̃ takes Γ′ into Γ for if q ∈ Γ′, when we project the path connecting q0 to q on
X ′, it becomes a loop and we know periods of ω lie in Γ. Denote the restriction z̃|Γ′ by I.

As every element of Γ is a periodic, the map I is surjective. This forces I to be injective
(its a map from Z2 → Z2) and therefore bijective so the covering map z : C/Γ′ → C/Γ is
trivial, i.e z is a biholomorphism.

Conclusion

The function x is meromorphic on X ′ with a pole of order 2 at infinity; indeed

x =
x′

t′
=

x′

4x′3 − 320a2x′7 + . . .
.

By lemma 2, we can think of x as a meromorphic function on C of z with Γ being the
group of periods and having a double pole at z = 0. Write:

x(z) =
c

z2
+
d

z
+ e+ fz + . . .

x′(z) = −2c
z3
− d

z2
+ f + . . .

As dz = dx
y , x′(z) = y i.e x′(z)2 = y2 = 4x3 − 20a2x− 28a4. Equating coefficients, we see

that 4c2 = 4c3, 4cd = 12c2d and d2 = 12c2e+ 12cd. It follows c = 1, d = 0, e = 0.

Hence x(z) = p(z) as the difference is holomorphic and doubly periodic and vanishing at
the origin. Differentiating, we also see that y(z) = p′(z). Abel’s theorem is now completely
proved.

41



Chapter 5

A Modular Function

5.1 Analytic Continuation

Given a holomorphic function f defined on a domain U , we wish to find the largest con-
nected open set V ⊇ U to which we can extend f .

Suppose (f0, D0) is a function element, that is f0 is a holomorphic function defined on
the disk D0. We say that (f0, D0) may be analytically continued along a chain of disks
C = {D0, D1, . . . Dn} (Di ∩ Di+1 6= ∅) if there exist function elements (fi, Di) such that
fi = fi+1 on Di ∩Di+1.

We say that (fn, Dn) is an analytic continuation of (f0, D0) along C and that (fi, Di),
(fi+1, Di+1) are direct analytic continuations of each other.

Suppose that f ∈ H(D) where D is a disk centered at a. Suppose γ : [0, 1] → C is a
curve with f(0) = a. We say that (f,D) can be analytically continued along γ if it can be
continued along a chain of open disks {D = D0, D1, . . . Dn} which covers γ.

This means we have a partition 0 = t0 < t1 < · · · < tn+1 = n such that γ([ti, ti+1]) ⊂ Di

and γ(1) being the center of the last disk.

Lemma. A function element (f,D) has at most one analytic continuation along γ.

Suppose we can continue (f,D) along chains C1 = {D = D0, D1, . . . Dm} and C2 =
{D = E0, E1, . . . , En} covering γ to (gm, Dm) and (hn, En) respectively, we need to show
that gi = hj in Di ∩ Ej whenever Di and Ej intersect.
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Suppose not, consider the indices (i, j) with the smallest i + j for which this fails.
Without loss of generality, we can assume that si ≥ tj .

The functions gi−1 and gi agree in Di−1 ∩Di while gi−1 and hj agree on Di−1 ∩Ej . It
follows that gi = hj in Di−1 ∩ Di ∩ Ej which is not empty, so then gi = hj continues to
hold in Di ∩ Ej .

More generally, suppose U ⊂ C is a domain and f ∈ H(U). We wish to find an
unramified Riemann surface (X, `) over C and a biholomorphing mapping σ which takes
U onto an open subset of X such that:

(1) ` ◦ σ is the inclusion map of U into C,
(2) f extends to a holomorphic function g on X (i.e g ◦ σ = f),
(3) (X, `) is the “largest” Riemann surface satisfying (1) and (2).

We explain condition (3). If (X ′, `′, σ′) also satisfy (1) and (2), we require that there
is a unique holomorphic map h : X ′ → X such that `′ = ` ◦ h and σ′ = σ ◦ h. In this case,
g′ = g ◦ h as they coincide on σ(U) = σ′(U) (g′ ◦ σ′ = f = g ◦ h ◦ σ).

We shall not address this more general question.

5.2 Monodromy Theorem

Theorem (Monodromy). Suppose (f,D) can be analytically continued along any curve in
Ω starting at a (the center of D). Then (1) If γ0, γ1 are homotopic curves in Ω from a

to b, then continuations of (f,D) along γ0 and γ1 coincide. (2) If Ω is simply-connected,
then there is a holomorphic function g on Ω such that g = f on D.

Proof of (1). Let γs, s ∈ [0, 1] be a homotopy with endpoints a, b. Then (f,D) may
analytically continued along each γs to (γs, Ds). Need to show that g0 = g1 (in D0 ∩D1).

Fix s. Let C = {D = E0, E1, . . . En} be a chain of disks covering γs. This means that
there is a partition 0 = t0 < t1 < · · · < tn+1 = 1 with γ([ti, ti+1]) ⊂ Ei for i = 0, 1, . . . n.
We will find a δ > 0 such that if |s′ − s| < δ, then C covers γs′ as well.

By the uniqueness of analytic continuation, it would follow that g′s = gs for |s− s′| < δ.
By compactness of [0, 1], we would have g0 = g1.

Choose ε to be less than the distance from γs[0, 1] to C \Ei. Since γ is uniformly
continuous, we have a δ > 0 such that |γs(t) − γs′(t)| < ε for all t ∈ [0, 1] whenever
|s− s′| < δ.
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Proof of (2). To define g near b ∈ Ω, choose any chain of disks C = {D = E0, E1, . . . En}
with En containing b and analytically continue (f,D) to obtain the function element
(gb, En). By part (1), the construction of the function element (gb, En) does not depend
on the choice of C.

From the construction, it is clear various gb’s patch together: we have to check that if
b′ ∈ En is some other point, then the analytic continuation of (f,D) near b′ matches up
with (gb, En). But we can just use precisely the same chain of disks!

5.3 Modular Function

We will introduce the modular function to show the following results:

Theorem (Little Picard). A non-constant entire function f(z) omits at most one value
(it is possible that one value is omitted, for instance f(z) = ez omits 0).

Theorem (Big Picard). If f has an essential singularity at z = a, then in any neigh-
bourhood of a, f takes every complex value, with one possible exception, infinitely many
times.

The Little Picard theorem is a special case of the Big Picard theorem: if f is entire,
at infinity, either f has a pole (in which case, it is a polynomial) or it has an essential
singularity (so f(1

z ) has an essential singularity at the origin).

The modular group G = SL(2,Z) acts on the upper half-plane H+: if ϕ ∈ G given by
the matrix (a, b; c, d) with ad− bc = 1 then ϕ(z) = az+b

cz+d .

Exercise: G is generated by z + 1, −1
z .

Losely speaking, a modular function is a holomorphic or a meromorphic function defined
on H+ which is invariant under the action of G (or a subgroup of G).

To prove the Little Picard Theorem, we will construct a modular function invariant
under the subgroup Γ ⊂ G generated by σ(z) = z

2z+1 and τ(z) = z + 2.

Suppose z = x + iy. Let ∆ ⊂ C be the region: y > 0, −1 ≤ x ≤ 1, |2z + 1| ≥ 1,
|2z−1| > 1 (draw this region carefully, note that some boundary components are contained
and some are not).
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10−1

∆

Theorem. (1) If ϕ1, ϕ2 ∈ Γ with ϕ1 6= ϕ2, then the images ϕ1(∆) and ϕ2(∆) are disjoint.
(2) The union

⋃
ϕ∈Γ ϕ(∆) = H+ (∆ is the “fundamental domain” for the action of Γ).

(3) Let Γ1 be the subgroup of G of elements ϕ(z) = az+b
cz+d with a, d odd and b, c even. Then

Γ = Γ1.

Clearly, Γ is a subgroup of Γ1 as σ, τ are in Γ1. Let (1′) be the statement (1) with Γ1

in place of Γ. It thus suffices to prove (1′) and (2).

Proof of (1′)

If ϕ(z) = az+b
cz+d ∈ G and z ∈ H+ then Imϕ(z) = Im az+b

cz+d ·
cz+d
cz+d = Im z(ad−bc)

|cz+d|2 = Im z
|cz+d|2 .

To show (1′), it is suffices to show that ∆ and ϕ(∆) are disjoint for id 6= ϕ ∈ Γ1. If
c = 0, ad = 1, so a = d = ±1 and thus ϕ(z) = z + 2n in which case the conclusion is
obvious.

Suppose instead c 6= 0. We claim that |cz + d| ≥ 1 for z ∈ ∆. If not, ∆ intersects the
interior of the circle D = {w : |cw + d| ≤ 1} centered at −d

c with radius 1
|c| .

If a circle with center on the real axis is to intersect ∆, it must contain at least one of
the points −1, 0, 1. So, at least one of the points −1, 0, 1 lies in the interior of D. But if
w = −1, 0, 1, cw + d is an odd integer, so |cw + d| cannot be less than 1 (i.e these three
points are possibly on the boundary, but definitely are not in the interior of D).

So Imϕ(z) ≤ Im z for z ∈ ∆. Suppose both z0 and ϕ(z0) are in ∆ (this is where we
need to find a contradiction). Applying the above to ϕ−1, we obtain the reverse inequality
Im z0 ≤ Imϕ(z0), so |cz0 + d| = 1, i.e z0 lies on the boundary of D.

45



Then D must be the circle centered at −1
2 with radius 1

2 , i.e c = 2, d = 1, so

ϕ(z) =
az + b

cz + d
=

(1 + 2b)z + b

2z + 1
=

z

2z + 1
+ b = τnσ(z).

But then ϕ(z0) cannot possibly be in D (σ takes the semicircle {w ∈ H+ : |2w + 1| = 1}
to the semicircle {w ∈ H+ : |2w − 1| = 1}; more precisely σ(−1

2 + 1
2e
iθ)→ 1

2 + 1
2e
i(π−θ)).

Proof of (2)

Let Σ be the union
⋃
ϕ∈Γ ϕ(∆) ⊂ H+. Claim: Σ includes all z ∈ H+ such that |2z− (2m+

1)| ≥ 1 for all m ∈ Z. This is almost trivial, up to some boundary components, this region
is just

⋃
n∈Z τ

n∆ – but these components belong to
⋃
n∈Z τ

nσ∆.

Fix w ∈ H+. Choose a ϕ0 ∈ Γ which minimizes |cw + d|. Such a ϕ0 exists: the
imaginary part of cw + d comes from cw, so c cannot be too big. Then d cannot be too
big either for otherwise the real part cw+ d is large; so we really take minimum over finite
amount of terms.

Let z = ϕ0(w). Thus z has the largest imaginary part out of all {Γw}. Noting that
σ−1(z) = z

−2z+1 , we consider:

(στ−n)z = σ(z − 2n) =
z − 2n

2z − 4n+ 1
, (σ−1τ−n)z = σ−1(z − 2n) =

z − 2n
−2z + 4n+ 1

Hence |2z − 4n + 1| ≥ 1, |2z − 4n − 1| ≥ 1 for all integers n, i.e |2z − (2m + 1)| ≥ 1 for
integral m. So z ∈ Σ implies w ∈ Σ.

5.4 Modular Function II

Last time, we considered a group Γ acting on H+ generated by σ(z) = z
2z+1 and τ(z) = z+2.

Theorem. The exists a holomorphic function λ(z) defined on the upper half-plane such
that (1) λ(z) is invariant under the action of Γ, (2) λ is injective on the fundamental
domain ∆, (3) λ(∆) = C \{0, 1} and (4) R is the natural boundary of λ.

Condition (4) means that λ cannot be extended to a holomorphic function beyond the
real axis.

Let ∆0 = ∆ ∩ {y > 0}. The Riemann mapping theorem tells us that there exists a
biholomorphism h : ∆0 → H+ which extends continuously to a homeomorphism of closed
domains such that h(0) = 0, h(1) = 1, h(∞) =∞.
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We could try to use methods of Section 3.4 to argue that h extends continuously to
∆0 (although inventiveness is needed to argue continuously of h near 0, 1,∞). Its best
just to note that ∆0 is simply-connected and has Jordan curve boundary and appeal to
Carathéodory’s theorem.

The Schwartz reflection principle allows us to continue h to all of ∆ by h(−x + iy) =
h(x+ iy). Then h extends continuously to the ∂∆ and takes all possible values exactly
once on ∆.

Suppose z ∈ H+ and λ(z), let ϕ ∈ Γ be the automorphism for which ϕ(z) ∈ ∆. Define
λ(z) = h(ϕ(z)).

As boundary values of h on ∂∆ are real, we have h(−1+iy) = h(1+iy) = h(τ(−1+iy))
and h(−1

2 + 1
2e
iθ) = h(1

2 + 1
2e
i(π−θ)) = h(σ(h(−1

2 + 1
2e
iθ)). This tells us λ is continuous

on H+ and holomorphic possibly except on
⋃
ϕ∈Γ ϕ(∂G). A corollary to Morera’s theorem

tells us that actually λ is holomorphic on
⋃
ϕ∈Γ ϕ(∂G) and thus holomorphic on H+.

To show (4), recall h(ϕ(0)) = h(0) = 0 for any ϕ ∈ Γ. If ϕ(z) = az+b
cz+d , we see that

λ(ac ) = h(0) = 0 for all even a and odd b. Hence zeros of λ are dense on the real line and
thus no holomorphic extension past the real line can be made.

5.5 Little Picard Theorem

We finally have all the tools to prove Picard’s Little Theorem. Suppose f omits the values
a 6= b. We may assume that a = 0 and b = 1 by replacing f by f−a

f−b if necessary.

Last time we have constructed the modular function λ : H+ → Ω = C \{0, 1} and
showed that it is a covering map.

Suppose D0 ⊂ Ω is a disk with center f(0). We can choose a disk E0 ⊂ C such that
f(E0) ⊆ D0. Next choose V0 ∈ H+ so that λ|V0 is a biholomorphism onto D0.

Let g0 = (λ|V0)−1 ◦ f |E0 . We will show that (g0, E0) has unrestricted analytic contin-
uation to C. Indeed if γ : [0, 1] is any curve starting at 0, cover γ by a chain of disks
E0, E1, . . . En so that f(Ej) lies within some disk Dj ⊂ Ω.

For each disk Dj , choose a Vj so that that λ|Vj is a biholomorphism onto Dj and Vj

intersects Vj−1. Then (λ|Vj )−1 ◦ f |Ej : Dj → H+ is the desired analytic continuation.
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The Monodromy theorem gives us a holomorphic function g : C → H+. But such a
function must be constant (composing with z−i

z+i , we get a map from the complex plane to
the unit disk). Hence f itself must be constant.

Corollary. If f(z) is an entire function, then f◦f has a fixed point unless f is a translation
f(z) = z + a (f need not have a fixed point itself, e.g f(z) = z + ez).

Suppose f ◦ f has no fixed points. Then f has no fixed points either. Define g(z) =
f(f(z))−z
f(z)−z . It is entire and omits values 0, 1 and hence constant, so g(z) = c with c 6= 0, 1,

i.e f(f(z)) = c(f(z)− z).

Differentiating, we see that f ′(f(z))f ′(z)−1 = c(f ′(z)−1) so f ′(z)(f ′(f(z)−c) = 1−c.
As c 6= 1, f ′(z) 6= 0 hence f ′(f(z)) omits the values 0, c and hence is constant, i.e f ′(z) is
constant, so f(z) = az + b. For f not to have fixed points, a must equal 1.

Corollary. Any entire periodic function has a fixed point.

Suppose f has period p, i.e f(z) = f(z + p). If f has no fixed points then f(z) − z
omits the value 0. But it also omits the value p, otherwise f(z + p) = f(z) = z + p. By
Picard’s theorem, f(z) = z + c but such functions are not periodic.

Lemma. Let f, g be entire functions such that f2 +g2 = 1. There exists an entire function
h(z) so that f = cos(h(z)) and g = sin(h(z)).

The equation factors (f + ig)(f − ig) = 1. The function f + ig, f − ig are entire without
zeros, so f + ig = eϕ(z) and f − ig = e−ϕ(z), i.e f = eϕ+e−ϕ

2 = cos ◦h with h = ϕ
i and

similarly, g = sin ◦h.

48



Chapter 6

Problems

1. Show the identities

(a)
∞∑

n=−∞

(−1)n

(z − n)2
=

π2

(sinπz)(tanπz)
.

(b)
1
z

+
∞∑
n=1

(−1)n
2z

z2 − n2
=

π

sinπz
.

(c)
∞∑

n=−∞

1
(z + n)2 + a2

=
π

a
· sinh 2πa

cosh 2πa− cos 2πz
.

2. Prove the identity by taking logarithmic derivatives of both sides:

πx

∞∏
n=1

(
1 +

x2

n2

)
= sinh(πx).

3. Let F be the family of holomorphic functions in the unit disk satisfying |f (n)| ≤ n!
for all n ≥ 0. Show that F is a normal family.

4. Suppose f is an entire function. Show that f has an n-th root if and only if all zeros
of f have multiplicity divisible by n.
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5. Suppose f(z) is a holomorphic function defined on the unit disk with |f(z)| ≤ M .
Let the zeros of f are a1, a2, . . . an counted with their multiplicities. Show that

|f(z)| ≤M
∣∣∣ n∏
k=1

ak − z
1− akz

∣∣∣.
In particular, |f(0)| ≤M

∏n
k=1 |ak| and if f(0) = 0 then |f(z)| ≤M |z|.

6. (Blaschke product) Suppose f(z) is a holomorphic function defined on the unit disk
with a zero at 0 of order s and the other zeros {ak} satisfying

∑
k(1− |ak|) <∞ (or

equivalently
∑

k log |ak| > −∞). It then admits a nice factorization f = BG where
B is a product of

B(z) = zs
∞∏
k=1

|ak|
ak
· ak − z

1− akz

and G(z) is a holomorphic functions without zeros. Show that B(z) is holomorphic.

7. Show that a bounded holomorphic function admits a Blaschke product, i.e that the
sum

∑
k log |ak| converges (Hint: use the first corollary of Problem 5).

8. (Jensen’s formula) Suppose f(z) is a holomorphic function in the unit disk without
zeros. As log |f(z)| is harmonic, we have log |f(0)| = 1

2π

∫ 2π
0 log |f(reiθ)|dθ for 0 <

r < 1. But what if f(z) has zeros in the unit disk? Suppose that f(0) 6= 0 and denote
its zeros by {ak}. In this case,

log |f(0)| = 1
2π

∫ 2π

0
log |f(reiθ)|dθ −

∑
|ak|<r

log
( r

|ak|

)
Here log |f(0)| is not equal to, but is actually less than the mean value. Such functions
are called subharmonic. Prove the above formula (Hint: first consider r for which no
{ak} lie on |z| = r, also show that RHS is continuous).

9. (Canonical Product) Look back at the proof of Weierstrass’ theorem (Section 2.3) and
observe the following: Suppose f(z) is an entire function with zeros {ak} satisfying∑

k
1

|ak|m+1 <∞ for some integer m. Then it is possible to choose all mk = m.
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10. Prove that
sinπz
πz

=
∞∏
n=1

(
1− z2

n2

)
Hint: The Weierstrass theorem implies that

sinπz = zeg(z)
∏
n6=0

(
1− z

n

)
ez/n

To find g(z), take the logarithmic derivative and use Example 2 from Section 1.2.

11. (Wedderburn’s lemma) Suppose f, g are entire functions without common zeros.
Show that there exists entire functions a, b such that af + bg = 1.

12. Find the residues at the poles of the Γ function (Hint: use the functional equation).

13. (Bohr-Mollerup theorem) Suppose f : R+ → R+ is a logarithmically convex function
satisfying f(x+ 1) = f(x) and f(1) = 1. Then necessarily, f(x) = Γ(x) for all x > 0.

Hint: Show that for all natural n ≥ 2 and positive x

(n− 1)x(n− 1)! ≤ f(x+ n) ≤ nx(n− 1)!

and
nxn!

x(x+ 1) · · · (x+ n)
≤ f(x) ≤ nxn!

x(x+ 1) · · · (x+ n)
· x+ n

n
.

14. Show that the automorphisms of the upper half-plane which preserve i are given by

w(z) =
z + tan(θ/2)

1− z tan(θ/2)
.

Write the formula for θ = π.

15. Find the automorphism group of C \{0}.

16. Show that two annuli are biholomorphic if and only if the ratio of their radii are the
same (complete the proofs below).

(a) Use the previous problem.

(b) Use the uniqueness of solution of the Dirichlet problem: suppose that f :
A(0; 1, r) → A(0; 1, R) is the biholomorphism and that f takes {z : |z| = 1}
to itself. Then log |f(z)| = logR

log r · log |z|. Treating it as an equation in variables
z, z, differentiate with respect to z.
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(c) Given an annulus, Ar = A(0; 1, r), we can consider its universal covering space
fr : H+ → Ar with fr given by

f(z) = exp
(
−2πi · log z

log λr

)
where λr > 0 depends on r. The fundamental group of the annulus (which is
Z) acts on H+, with generator acting by multiplication by λr. If two annuli Ar
and AR are biholomorphic, then these actions must be conjugate.

17. Show that two tori C /Γ1 (with Γ1 generated by e1, e2) and C /Γ2 (with Γ2 generated
by f1, f2) are biholomorphic if and only if there is a fractional linear transformation
with integer coefficients and determinant 1 which takes (e1, e2) to (f1, f2).

18. (Schwarz-Christoffel formula) Show that the mapping F (w) : H+ → Ω (where Ω is a
polygon) given by the formula

F (w) = C

∫ w

0

n−1∏
k=1

(w − wk)−βkdw + C ′

is conformal for some distinct real numbers wk and
∑
βk = 2.

19. Show that F (w) =
∫ w

0 (1−wn)−2/ndw maps the unit disk onto the interior of a regular
polygon with n sides.

20. Find the image of the unit disk under the mapping F (z) = 1
z

∏n
k=1(z − ak)λk where

λk are positive with
∑n

k=1 λk = 2.

21. Prove the addition theorem:

p(z1 + z2) = −p(z1)− p(z2) +
1
4

(
p′(z1)− p′(z2)
p(z1)− p(z2)

)2

.

22. Another form of the addition theorem: if u+ v + w = 0 in C /Γ then

det

∣∣∣∣∣∣∣
1 1 1

p(u) p(v) p(w)
p′(u) p′(v) p′(w)

∣∣∣∣∣∣∣ = 0.
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23. Suppose that f(z) is a even doubly periodic function (let the group of periods be Γ).
There exists points a1, a2, . . . an; b1, b2, . . . bn ∈ C /Γ such that

f(z) = c
n∏
k=1

p(z)− p(ak)
p(z)− p(bk)

.

24. Show that a doubly periodic function is a rational function of the p and p′ (Hint: use
the previous problem).

25. Show that while the function f(z) =
∑

n z
2n

is holomorphic in the unit disk, it does
not extend holomorphically to any larger open set (Hint: f(z2) = f(z)− z).

Remark. This problem is a special case of the Hadamard Gap theorem.

26. Find the radius of convergence of f(z) =
∑

k≥1
z2k

k+1 . Find a maximal domain of
existence (a maximal open set in C to which f(z) may be analytically continued).

27. The set of solutions (z, w) of w2 − 2wz + 1 = 0 can be completed to a compact
Riemann surface over P 1(C). Find the residues of the differential form dz√

z2−1
points

at infinity.

28. Prove ∫ 1

0

dx
3
√

1− x3
=

2π
3
√

3
.

by integrating over a lift of γ in the Riemann Surface X ⊆ P 2(C) given by the
equation x3 + y3 = z3 (show that the form being integrated is meromorphic and
apply the Residue theorem).

γ

1

j

j2

0
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29. Prove Picard’s theorem for meromorphic functions: if a meromorphic function defined
on the entire complex plane omits three values, it is necessarily constant.

30. Show that a non-constant holomorphic function defined on C \{0} omits at most 1
value.

31. Show that the function f(z) = zez attains every value from C.

32. Suppose f, g are meromorphic functions such that f3 + g3 = 1. Show that actually
f and g are constant functions. Is result still true if 3 is replaced by a larger positive
integer?

33. Suppose f, g are entire functions satisfying ef + eg = 1. Show that f, g are actually
constant functions.
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Chapter 7

Further Results

7.1 Big Picard Theorem

To prove Big Picard Theorem, we need the concept of normal families of meromorphic
functions. A family of meromorphic functions S ⊂ M(Ω) is normal if it is every sequence
in S has a subsequence that converges uniformly in the spherical metric on compact subsets
of Ω.

Instead of using geodesic spherical distance, it is easier to use the equivalent metric
|z − z′|S2 = min(|z − z′|, |1z −

1
z′ |). Notation: We will always write S2 as a subscript when

dealing with spherical distance.

Theorem. Suppose {fn} ⊂M(Ω) which converges uniformly in the spherical metric to f .
(1) Then either f is meromorphic or identically infinite. (2) Furthermore, if each fn is
holomorphic, the limit function f is also holomorphic or identically infinite.

Remark. The functions fn(z) = n converge to the identically infinite function, so the
holomorphic functions do not form a closed subspace of continuous functions C(Ω, S2)
taken with the compact-open topology. But if we do add the identically infinite function,
the above theorem implies that we really do get a closed subspace.

Proof of (1): Case I. Suppose a ∈ Ω is such that f(a) 6= ∞. There is an ε for which
|f(a)− fn(a)| < ε when n > N is sufficiently large. In particular, |fn(a)| < |f(a)|+ ε = M

for some constant M .

As {fn}n>N ∪{f} is compact, by the Arzela-Ascoli theorem, we see that it is uniformly
S2-equicontinuous. Let δ < dS2(M,∞). There exists an r such that for z ∈ D(a, r),
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|fn(z) − fn(a)|S2 < δ simultaneously for all n > N . It follows that {fn(z)} is bounded
uniformly in D(a, r). This means that near a, f(z) is a holomorphic function.

Case II. Now consider the case a ∈ Ω where f(a) = ∞. Let gn(z) = fn(1
z ) and

g(z) = f(1
z ). Then g(a) = 0 and gn converges in C(Ω, S2) to g. By Case I, we see

that there exists a ball D(a, r) on which gn are holomorphic (for n sufficiently large) and
converge uniformly on compact subsets to g.

We have two cases. Either g is identically 0, in which case f is identically infinite or
the zeros of g are isolated and so 1

g = f is a meromorphic function with a pole at a.

Proof of (2): Now suppose that {fn} are actually holomorphic functions. To see that
the limit f is holomorphic, we must show that Case II implies that f is identically infinite.
Suppose a ∈ Ω is such that fn(a) tends to infinity. In this case, gn(z) never vanishes but
g(a) = 0, so by Hurwitz’s theorem, g(z) must vanish identically, i.e f is identically infinite.

Theorem (Montel-Carathéodory). If a family of functions S ⊂ H(Ω) avoids two values
(say 0 and 1), it is normal.

Notation: D will denote the unit disk and λ : D → C \{0, 1} will be a holomorphic
covering map (compose the modular function constructed in Sections 5.3 and 5.4 with a
fractional linear transformation).

As normality is a local property, it suffices to treat the case when Ω is a disk (let the
center be a). Suppose {fn} ⊂ S. Passing to a subsequence, we may assume fn(a) → α.
First suppose that α 6= 1, 0,∞. This allows us to consider U , a small ball centered at α
within C \{0, 1}.

As λ is a holomorphic covering map, we can lift each fn : Ω→ C \{0, 1} to gn : Ω→ D

so that gn(a) ∈ U . Since |gn(z)| ≤ 1, we can extract a subsequence gnk
which converges

uniformly on compact sets to a function g : Ω→ D.

But actually g is a function from Ω to D – otherwise, the maximum-modulus prin-
ciple implies that g(z) = c is constant (of absolute value 1). But this would imply that
(λ|U )−1(α) = limn(λ|U )−1(fn(a)) = limn gn(a) = c which is absurd.

Suppose K ⊂ Ω is compact. On K, |g(z)| is bounded by some constant M < 1. As gnk

converges to g uniformly, there is a constant M ′ < 1 such that |gnk
(z)| < M ′ on K. But

the set λ(D(0,M ′)) is bounded, so {fnk
} bounded uniformly on K. Since this is true of all

K, by Montel’s theorem, {fnk
} is normal.
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Now we deal with the three special values of α:

Suppose α = 1. As fn don’t vanish, we choose gn =
√
fn : Ω→ C so that gn(a)→ −1.

But then gn(Ω) ⊂ C \{0, 1} and normality of fn is equivalent to normality of gn; so we
have reduced the case α = 1 to the general case.

If α = 0, let gn = 1− fn; this reduces the case when α = 1.

If α = ∞, let gn = 1
fn

. Again gn are analytic and functions into C \{0, 1}; so have a
subsequence gnk

which converges uniformly on compact sets of Ω to some function g. But
gnk

have no zeros, so by Hurwitz’s theorem, g is identically 0; and thus f is identically
infinite.

Proof of the Big Picard Theorem

Without loss of generality, we may assume that f has an essential singularity at the origin.
Suppose in some disk D(0, R), f(z) omits values 0, 1. Let Ω = D(0, R) \ {0}. Define
fn(z) = f(z/n). The Montel-Carathéodory theorem implies that fn is a normal family of
meromorphic functions.

This means that some subsequence {fnk
} converges to g uniformly on |z| = R

2 . If
{fnk
} genuinely converges uniformly, then f(z/n) ≤ M for all integers nk. Now consider

the annulus A(0; 1
nk+1

, 1
nk

). On its boundary, f ≤ M , by maximum-modulus, f must be
bounded by M in its interior. Hence f is bounded near 0, so we actually have a removable
singularity.

The other possibility is that g is identically infinite. But this means that limz→0 f(z) =
∞ meaning that f really has a pole at 0.

7.2 Runge’s Theorem

Proposition. Suppose K ⊂ Ω is compact. Then there exists line segments σ1, σ2, . . . σn

lying in Ω\K such that f(z) = 1
2πi

∑n
k=1

∫
σk

f(ζ)
ζ−z dζ for all z ∈ K. Furthemore, the σk may

taken of the same length and parallel to the coordinate axis.

For this purpose, we can cover K by a grid of squares of side length less than d(K, ∂Ω)
– see diagram. Let {Qj} be the squares which intersect K (then by hypothesis, the {Qj}
lie inside Ω).
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K

Consider the sum
S(z) =

1
2πi

∑
j

∫
∂Qj

f(ζ)
ζ − z

dζ

If z ∈ K, we are tempted to evaluate S(z) = 1
2πi

∑
j f(z)χQj (z) = f(z). This calculation

has the slight problem that z may lie on a boundary of one of the Qj ’s.

However, the sum in S(z) has a great many cancellations: if two squares in {Qj} are
adjacent then their common side will cancel out (due to opposite orientation). In fact, the
only segments of ∂Qj that will remain will lie outside of K. These are our σk.

Exercise: One can arrange the σk into finitely many disjoint cycles.

Lemma. Suppose K ⊂ C is compact. We can approximate any function f holomorphic
on a neighbourhood K uniformly by rational functions with poles lying outside K.

Suppose f is a holomorphic function defined on Ω ⊃ K. By the above proposition, we
can choose segments {σk} such that f(z) = 1

2πi

∑n
k=1

∫
σk

f(ζ)
ζ−z dζ holds for all z ∈ K.

Each integral
∫
σ
f(ζ)
ζ−z dζ may be approximated by its Riemann sum 1

n

∑n
j=1

f(ζj)
ζj−z (here

ζk lie on σ). By compactness of K and σ, this approximation is in fact uniform on K.

More precisely, as σ is compact, for a fixed z ∈ K and any ε > 0, if the partition in
the Riemann sum is fine enough, then the integral differs from the Riemann sum by less
than ε. But the integrand is continuous in z (at least while z ∈ K) so by compactness of
K, we can make the partition so fine to make Riemann sum ε-approximate the integral
simultaneously for all z ∈ K.
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Theorem (Runge). Suppose K ⊂ C is compact and E is a set containing a point from
every bounded component of C \K. Then any function f holomorphic on a neighbourhood
of K can be uniformly approximated by rational functions having poles in E.

To obtain the theorem from the lemma, it suffices to prove the following: if a, b are in
the same component of C \K then 1

z−a can be approximated uniformly by polynomials of
1
z−b . If we prove this claim we can “push” poles from bounded components of C \K to E
and poles lying in the unbounded component to infinity.

By transitivity of uniform approximation by polynomials, it suffices to show if b ∈
D(a, r) then 1

z−b can be uniformly approximated by polynomials in 1
z−a on C \D(a, r).

Proof is left as an exercise for the reader.

7.3 Prescribing Zeros in Arbitrary Domains

Recall that to construct an entire function with zeros {ak} we took the product of Gmk

(
z
ak

)
where Gm(w) = (1−w) · exp

(
w+ 1

2w
2 + · · ·+ 1

mz
m
)
. Let Ω ⊂ C be a domain and let {ak}

be points accumulating only at the boundary of Ω.

Suppose {bk} is a sequence of points outside Ω such that |bk − ak| → 0 (a satellite
sequence). Exercise: Such a sequence exists if {ak} is bounded.

We propose the product f(z) =
∏
Gmk

(
ak−bk
zk−bk

)
. Suppose r > 0, for we work in

Ω1/r = {z ∈ Ω : d(z, ∂Ω) > 1/r and consider terms with r|ak − bk| < 1:

gk(z) = − 1
mk + 1

(ak − bk
zk − bk

)mk+1
− 1
mk + 2

(ak − bk
zk − bk

)mk+2
− . . .

Thus,

|gk(z)| ≤
1

mk + 1

(
r|ak − bk|

)mk+1(
1− r|ak − bk|

)−1

Just like in the proof of the regular Weierstrass theorem, we need to choose mk so that∑
(r|ak − bk|)mk+1 converges for every r > 0. Again, mk = k suffices.

Remark. Unfortunately, if {ak} is unbounded, it is not always possible to choose a satellite
sequence. For instance, let Ω = H+ and ak = ik. For this {ak} a satellite sequence does
not exist.
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We continue the construction when {ak} happens to be unbounded. Pick a point a ∈ C
which happens not to be one of the designated ak, nor is one of their accumulation points.
The mapping h(z) = 1

z−a will ensure that {h(ak)} is bounded.

Let f̃(z) be a holomorphic function with {h(ak)} as zeros. By construction f(z) =
f̃(h(a)) has the desired zeros; trouble is that it may not be a holomorphic at a (and it may
not be possible to choose a outside of Ω). But actually, it is holomorphic at a!

But limz→∞Gm

(
ak−bk
zk−bk

)
= 1 and as product converges absolutely and uniformly near

infinity, we see that actually f̃(∞) = 1, i.e f(a) = 1.

Corollary. For any domain Ω ⊆ C, there exists a holomorphic function f(z) ∈ H(Ω)
which cannot be continued analytically to any larger domain.

Let f(z) be a function whose zeros accumulate to every boundary point of Ω (actually,
this is easier said than done).

It is even true that any domain Ω ⊆ C is a domain of holomorphy which means that
there is a holomorphic function f(z) ∈ H(Ω) such that for any point z0, the power series
expansion of f(z) converges only inside Ω.

For instance, the principal branch of log z (which is defined on C without the negative
real ray) cannot be extended anywhere on this ray, but power series expansions do converge
beyond this ray.

7.4 Prescribing Singularities in Arbitrary Domains

We wish to construct a function f(z) meromorphic in a domain Ω with poles {bk} (accu-
mulating only at the boundary of Ω) and principal parts Pk( 1

z−bk ).

Plan: write Ω =
⋃
iKi as the increasing union of compact sets. Let Li = Ki+1 \Ki and

Bi be the bk’s which lie inside Li. By Runge’s theorem, exists a rational function pk(z)
with poles lying outside Ki+1 such that |Pk( 1

z−bk )− pk(z)| < ε/2i on Ki. We want to take

f(z) =
∑
k

1
#Bi

{
Pk

( 1
z − bk

)
− pk(z)

}
.

The contribution from the bk’s on Lj to Ki with j > i is less than ε/2j , hence the series
converges uniformly and absolutely implying that f(z) is meromorphic.
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We have to insure that application of Runge’s theorem is valid; for this we need to
take K1 “large enough” so that each bounded component of C \K1 contains a bounded
component of C \Ω (then this will also be true of Kj , j ≥ 2).

Lemma. Given a compact subset K ⊂ Ω, it is possible to choose a compact K1 ⊂ Ω
containing K such that every hole (compact component) of K1 contains a hole of Ω.

If Ω = C, we can let K1 be giant ball, so in what follows we consider Ω 6= C.

Let Ωr = {z ∈ Ω : d(z,Ω) ≤ r} where r is some number less than d(K,Ω). Alternatively,
we may describe the complement of Ωr:

C \Ωr =
⋃

z∈C \Ω

D(z, r).

In particular, Ωr is closed. We would take K1 = Ωr, but Ωr may not be compact; so we
take be a giant ball B containing K and set K1 = Ωr ∩B.

Let Z be a bounded component of C \K1. As C \B is a connected and unbounded
chunk of C \K1, it cannot intersect Z; for if Z has common points with C \B, Z would
have to contain C \B which is absurd. Hence Z ⊂

(
C \K1

)
\
(
C \B

)
= C \Ωr.

Each D(z, r) which makes up C \Ωr is connected; so is either contained or disjoint from
Z (that is why we have shown Z ⊂ C\Ωr), this tells us that Z is the union of disks D(z, r)
which have center in Z, i.e

Z =
⋃

z∈Z∩(C \Ω)

D(z, r) =
⋃

z∈Z\Ω

D(z, r).

As Z is non-empty, the above representation tells us that Z intersects C \Ω, but then we
are done: suppose Z intersects C \Ω at a point p and if S is the connected component of
p in C \Ω, then as C \K1 ⊃ C \Ω, then Z would have to contain all of S as desired.
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