
8. Non-linear filtering.

In this lecture, we consider the following filtering setting.
The signal Xn, n = 0, 1 . . . , forms random sequence, for every n the

random variable Xn takes values in a finite “alphabet”: {x1, . . . , xm},
that is Xn coincides with one of xj’s. The observation

Yn = Xn + ηn,

where (ηn)n≥1 is a random sequence of independent and identically
distributed (i.i.d.) random variables sequence of random variables in-
dependent of (Xn)n≥0. Henceforth, for notational convenience Y n

0 is
referred as (Y0, Y1, . . . , Yn). For every n, the filtering distribution, in
other words conditional distribution for Xn given Y n

0 ,

πn(1) = P (Xn = x1|Y n
0 ), . . . , πn(m) = P (Xn = xm|Y n

0 )

allows completely describes filtering estimate optimal from many points
of view. For instance, the optimal in the mean square sense estimate,
being the conditional expectation, is defined as

X̂n = E(Xn|Y n
0 ) =

m∑
j=1

xjπn(j).

The maximum a’posterior probability, being popular filtering estimate,
is defined by the filtering conditional distribution as well:

X̂n = xjn ; jn = argmax
1≤j≤m

πn(j).

A filtering estimate X̂n, minimizing E|Xn− X̂n|, called the conditional
median, is defined as:

X̂n = min
x∈{x1,...,xn}

{
P (Xn ≤ x|Y n

0 ) ≥ P (Xn > x|Y n
0 )

}
.

Wonham filter

All these examples convince us of an importance to have algorithm
for computing the filtering distribution. We show that such type al-
gorithm is defined by the Wonham filter under assumption that the
signal Xn is Markov chain. The Wonham filter is a typical non-linear
filter. To derive it, we first fix assumptions on the signal Xn.

1. The random sequence (Xn)n=0,1,..., forms the Markov
chain, i.e., corresponding to the finite alphabet values of
Xn, for every n ≥ 1, and j = 1, . . . ,m

P (Xn = xj|Xn−1 . . . , X1, X0) = P (Xn = xj|Xn−1),

where P (Xn = xj|Xn−1) := EI(Xn = xj|Xn−1) and,
similarly, P (Xn = xj|Xn−1 . . . , X1, X0) is defined. The
transition probabilities

λij = P (Xn = xj|Xn−1 = xi), i, j = 1, . . . ,m (8.1)
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are assumed to be known.

2. The initial distribution

p0(j) = P (X0 = xj), j = 1, . . . ,m. (8.2)

is assumed to be known.

Concerning the noise sequence (ηn)n≥1, being i.i.d. sequence of ran-
dom variables independent of the signal (Xn), we assume only that the
distribution function of η1: F (z) = P (η1 ≤ z) possesses density

f(z) =
dF (z)

dz
(8.3)

and the density function f(z) is known.

8.1. Development of filtering distribution formulae. We derive
these formulae in two steps.

8.1.1. (n = 0). Here, we present the filtering distribution for the time
value zero

π0(1) = P (X0 = x1)|Y0), . . . , P (Xm = xm|Y0).

Proposition 8.1.

π0(j) =
f(Y0 − xj)p0(j)

m∑
j=k

f(Y0 − xk)p0(k)
, j = 1, . . . ,m (8.4)

where f is the density function given in (8.3) and p0(j)’s are entries
of the initial distribution (8.2).

Proof. Since π0(j) = E(I(X0 = xj)|Y0), to find π0(j) we apply condi-
tions (i), (ii) (Lect. 7) which completely define the conditional expec-
tation. Notice first that by (i) π0(j) = G(Y0) and by (ii) the function
G(Y0) satisfies

Eg(Y0){I(X0 = xj)−G(Y0)} = 0 (8.5)

for any bounded function g(Y0).
We show now that (8.5) provides (8.4). Substituting Y0 = X0 + η0

in (8.5), we find

Eg(X0 + η0)I(X0 = xj) = Eg(X0 + η0)G(X0 + η0).

Owing to an obvious equality

g(X0 + η0)I(X0 = xj) = g(xj + η0)I(X0 = xj)
2



and the fact that X0 and η0 are independent random variables, we have

Eg(xj + η0)I(X0 = xj)

= p0(j)

∫
R

g(xj + y)f(y)dy

= P (X0 = xj)

∫
R

g(y)f(y − xj)dy. (8.6)

On the other hand, similarly we find

Eg(X0 + η0)G(X0 + η0)

=

∫
R

Eg(X0 + y)G(X0 + y)f(y)dy

=

∫
R

m∑
k=1

Eg(xk + y)G(xk + y)I(X0 = xk)f(y)dy

=

∫
R

g(y)G(y)
m∑

k=1

p0(k)f(y − xk)dy. (8.7)

By (ii), (8.6)≡(8.7). Owing to an arbitrariness of g, the latter identity
is valid not only in the integral form

p0(j)

∫
R

g(y)f(y − xj)dy =

∫
R

g(y)G(y)
m∑

k=1

p0(k)f(y − xk)dy

but also integrands coincide

p0(j)f(y − xj) = G(y)
m∑

k=1

p0(k)f(y − xk).

Hence, G(y) =
p0(j)f(y−xj)

m∑
k=1

p0(k)f(y−xk)
and, since π0(j) = G(Y0), (8.4) holds

true. �

8.1.2. (n > 0). Here, we present the filtering distribution for any time
value n > 0.

Theorem 8.2. With π0(j), j = 1, . . . ,m, given in (8.4), filtering dis-
tributions

πn(1), . . . , πn(m), n = 1, 2, . . .

are defined recursively

πn(j) =

f(Yn − xj)
m∑

i=1

λijπn−1(i)

m∑
i,k=1

f(Yn − xi)λikπn−1(k)
. (8.8)
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Proof. Assuming that the filtering distribution πn−1(j), j = 1, . . . ,m
is known we define first “one step predictable distribution“:

πn|n−1(j) = P (Xn = xj|Y n−1
0 ), j = 1, . . . ,m. (8.9)

Since πn|n−1(j) = E
(
I(Xn = xj)|Y n−1

0

)
, by property 8. of the condi-

tional expectation (Lect.7) and the fact that {Y n−1
0 } ⊂ {Xn−1

0 , ηn−1},
we have

πn|n−1(j) = E
(
E

(
I(Xn = xj)|Xn−1

0 , ηn−1
0

)∣∣Y n
0

)
. (8.10)

Further, by property 15. of the conditional expectation (Lect.7) and
the fact that the signal (Xn) and noise (ηn) are independent we also
have

P (Xn = xj|Xn−1
0 , ηn−1

0 ) = P (Xn = xj|Xn−1
0 ). (8.11)

Finally, by Markov property:

P (Xn = xj|Xn−1
0 ) = P (Xn = xj|Xn−1)

=
m∑

i=1

P (Xn = xj|Xn−1 = i)I(Xn−1 = i)

=
m∑

i=1

λijI(Xn−1 = i). (8.12)

Now, applying (8.12)⇒(8.11)⇒(8.10), we find

πn|n−1(j) =
m∑

i=1

λijπn−1(i). (8.13)

The next step consists in the definition of πn(j) = G(Y0, . . . , Yn−1, Yn).
By (ii) (Lect.7) with a taste function g(Y0, . . . , Yn) = g′(Y n−1

0 )g′′(Yn),
we have

E
(
g′(Y n−1

0 )g′′(Yn)
{
G(Y0, . . . , Yn−1, Yn)− I(Xn = xj)

})
= 0. (8.14)

Now, by property 8. of the conditional expectation (Lect. 7), (8.14) is
transformed into

Eg′(Y n−1
0 )E

(
g′′(Yn)

{
G(Y0, . . . , Yn−1, Yn)− I(Xn = xj)

}∣∣Y n−1
0

)
= 0.

Hence, by an an arbitrariness of g′(Y n−1
1 ),

E
(
g′′(Yn)

{
G(Y0, . . . , Yn−1, Yn)− I(Xn = xj)

}∣∣∣Y n−1
0

)
= 0. (8.15)

The equality, given in (8.15), is the main tool in the derivation of πn(j).
Let us rewrite (8.15) as:

E
(
g′′(Yn)I(Xn = xj)

∣∣∣Y n−1
0

)
= E

(
g′′(Yn)G(Y0, . . . , Yn−1, Yn)

∣∣∣Y n−1
0

)
(8.16)
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and compute the conditional expectations for both sides of (8.16).
Write

E
(
g′′(Yn)I(Xn = xj)

∣∣∣Y n−1
0

)
= E

(
g′′(xj + ηn)I(Xn = xj)

∣∣∣Y n−1
0

)
= E

( ∫
R

g′′(xj + y)f(y)dyI(Xn = xj)
∣∣∣Y n−1

0

)
= E

(
I(Xn = xj)

∫
R

g(y)f(y − xj)dy
∣∣∣Y n−1

0

)
= πn|n−1(j)

∫
R

g(y)f(y − xj)dy

and

E
(
g′′(Yn)G(Y0, . . . , Yn−1, Yn)

∣∣∣Y n−1
0

)
= E

(
g′′(Xn + ηn)G(Y0, . . . , Yn−1, Xn + ηn)

∣∣∣Y n−1
0

)
.

= E
( ∫

R
g′′(Xn + y)G(Y0, . . . , Yn−1, Xn + y)f(y)dy

∣∣∣Y n−1
0

)
= E

( ∫
R

m∑
k=1

I(Xn = xk)g
′′(xk + y)G(Y0, . . . , Yn−1, xk + y)

×f(y)dy
∣∣∣Y n−1

0

)
=

m∑
k=1

∫
R

πn|n−1(k)g′′(xk + y)G(Y0, . . . , Yn−1, xk + y)f(y)dy

=

∫
R

m∑
k=1

πn|n−1(k)g′′(y)G(Y0, . . . , Yn−1, y)f(y − xk)dy.

Thus, both sides of (8.16) are presented now of the form which, by an
arbitrariness of g′′, provides the equality for integrands

πn|n−1(j)f(y − xj)

=
m∑

k=1

πn|n−1(k)g(y)G(Y0, . . . , Yn−1, y)f(y − xk),

that is

G(Y0, . . . , Yn−1, y) =
πn|n−1(j)f(y − xj)

m∑
k=1

πn|n−1(i)f(y − xk)
.

This formula, jointly with (8.13), provides the desired result. �

Finally, we give description of (8.8) in the matrix-vector form. Set πn

the vector with entries πn(1), . . . , πn(1), the matrix Λ with entries λji,
and also the vector f(y) with entries f(y − x1), . . . , f(y − xm). Denote
by diag(·) diagonal matrix with the diagonal ·. Then (8.8) possesses
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πn =
diag

(
f(Yn)

)
ΛT πn−1

fT (Yn)ΛT πn−1

. (8.17)

Remark 8.3. The Wonham filter allows to create the optimal (!) in
the mean square sense filter. Obviously, the optimal in the mean square
sense linear filter also exits. In spite of, it is worse than the Wonham
filter (its mean square error is larger), nevertheless sometimes it makes
sense to create a linear filter too. In the case considered the Kalman
filter is applicable. It is given at the end of Lect. 9.

6


