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Abstract— Collecting grasp data for learning and bench-
marking purposes is very expensive. It would be helpful to
have a standard database of graspable objects, along with a set
of stable grasps for each object, but no such database exists.
In this work we show how to automate the construction of
a database consisting of several hands, thousands of objects,
and hundreds of thousands of grasps. Using this database, we
demonstrate a novel grasp planning algorithm that exploits
geometric similarity between a 3D model and the objects in the
database to synthesize form closure grasps. Our contributions
are this algorithm, and the database itself, which we are
releasing to the community as a tool for both grasp planning
and benchmarking.

I. INTRODUCTION

Dexterous robotic grasping has been an active research

subject for decades, and many grasp planning algorithms

have been proposed. However, very few grasp planning

algorithms are data driven, as collecting training data for

robotic grasping is difficult. In this paper we introduce the

Columbia Grasp Database, a freely available collection of

hundreds of thousands of form closure grasps for thousands

of 3D models. Our primary interest is in using an object’s

3D geometry as an index into the database. Given a new

3D object, we can find geometric neighbors in the database,

and the accompanying stable grasps for these similar objects.

If the number of objects to be grasped in the database is

very large and comprehensive then robotic grasping becomes

a pre-computed database lookup. While we have not yet

achieved this level of performance it is our directional goal.

The most direct way to construct a grasp database is

to collect grasping data from human volunteers. We could

gather a large set of example objects, outfit an army of

graduate students with grasp-capture devices such as data-

gloves, and record the results. Unfortunately, this approach is

prohibitively time consuming for large scale data acquisition.

More importantly, data collection from humans can only

produce grasps with the human hand. Since many popular

robotic hands cannot be easily mapped to the human hand,

a useful database should include grasps with multiple hands.

The Columbia Grasp Database was created using GraspIt!,

a publicly available grasp planning and analysis tool devel-

oped by our group [12]. The database is intended to be used

in conjunction with GraspIt! or a similar simulation tool; as

we have shown in previous work [10], [3], planning results

obtained in simulation can be successfully applied to real

robotic hands performing grasping tasks.
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Even for grasp planning algorithms that do not rely on

simulation, an environment such as GraspIt! is an important

tool for evaluation, as grasp quality measures are generally

impossible to compute in physical experiments. Part of our

motivation in producing a grasp database was to provide

a benchmark for robotic grasping tasks. Using a common

benchmark will make it possible to directly compare grasp

planning algorithms, which is currently difficult to do.

Another contribution of this paper is a database-backed

grasp planning algorithm based on the data we have col-

lected. Using this algorithm, we illustrate the usefulness of

a database for grasping, and highlight some of the lessons

learned during its construction. We also provide execution

results over the entire set of objects in the database at

their primary scale. We believe this to be one of the most

comprehensive tests found in the grasp planning literature,

demonstrating the use of the database as a benchmarking

tool.

In sum, our grasp database provides a number of new tools

for the general robotics community, including:

• baseline grasps for a very large number of objects.

• a set of scaled 3D models for grasp benchmarking.

• a large labeled dataset for machine learning of robotic

grasping.

We are not aware of any previous attempt to construct

a large scale grasp database, or of any commonly used

benchmarks for evaluating robotic grasping. However, re-

searchers have investigated grasp planning approaches that

assume such a database already exists. Bowers and Lumia

[2] collected grasps for a small number of planar objects

and used fuzzy logic to extrapolate grasping rules. Morales

et al. [14] used GraspIt! to compute offline grasps for a small

database of graspable objects, and successfully identified

and executed those grasps on real objects in a complex

environment. Unlike the planner we present in this paper,

their approach requires an exact model of every possible

graspable object.

Other researchers have experimented with different forms

of precomputed grasp knowledge. Li and Pollard [11] col-

lected a database of 17 hand poses, and used shape matching

to match poses to graspable objects. Their work highlighted

the difficulty of automatically generating grasps that are

both stable and plausibly humanlike. Aleotti and Caselli

demonstrated grasp synthesis using examples acquired with

a dataglove [1]. Saxena et al. [18] generated 2D renderings

of a large set of example objects, and learned a model-

free mapping from images to graspable features. Their work

uses a two fingered gripper and does not have an obvious

extension to dexterous hands.



II. BUILDING A GRASP DATABASE

Although building a grasp database by direct data collec-

tion is infeasible, the basic strategy of grasping many objects

and recording the grasp poses is still valid. However, it

requires replacing human input with an automated procedure

that does not need user attention. In our own previous

work [13], [8] we have demonstrated the use of a grasp

planner running in a simulation engine. Grasp planning can

be considered an optimization task that can be performed

in simulation without user supervision. However, even when

simulations are performed on a powerful computer, the space

of possible grasps is too large to sample directly. This is

particularly true in the case of dexterous hands with many

intrinsic degrees of freedom (DOFs).

A. Eigengrasp planner

Recently, we have made substantial progress in reducing

the number of DOFs in grasping tasks by defining eigen-

grasps, a low-dimensional grasping subspace that has shown

promise in allowing online computation and sampling of

the high dimensional grasping parameter space. Eigengrasps

can reduce the number of DOFs from over twenty in the

case of multi-fingered anthropomorphic hands to as few as

two. It thus becomes feasible to stochastically sample this

low-dimensional grasping parameter space using simulation

techniques, and determine a wide range of stable, form

closure grasps on complex objects even for dexterous hand

designs.

In previous work we presented a grasp planning algorithm

that optimizes hand posture in a low dimensional eigengrasp

space to find effective pre-grasp postures. These pre-grasps

are then heuristically developed into stable, form closure

grasps. The core of this algorithm is a simulated annealing

optimization, and since this is a stochastic method, we can

use multiple runs to find different form closure grasps for

the same model. For a complete description of this planner

as well as discussion of the eigengrasp concept, we refer the

reader to [4].

Our goal in this paper is to apply this planner to a very

large set of objects, and obtain multiple results for each

object. We therefore use a slightly modified multithreaded

version which takes advantage of multi-core architectures

widely available today on commodity computers. A single

parent thread searches the eigengrasp space for likely pre-

grasps; for each pre-grasp position that crosses a quality

threshold, a separate child thread is created to refine it.

The child thread performs a quick local simulated annealing

search with finer step values, attempting to develop the pre-

grasp into form closure. If the resulting grasp indeed has

form closure, the pre-grasp and grasp are both saved in the

result list.

After creating a child thread for a pre-grasp state, the

parent thread’s state generation function rejects states close to

the child thread’s search area, forcing it to look elsewhere in

the state space for new grasps. The planner can be restarted at

any point by resetting the annealing temperature. The process

continues until either the desired number of grasps are found,

or a pre-set time limit is exceeded.

B. Constructing the Database

One of the main advantages of the grasp planner discussed

above is its flexibility: it can be successfully applied to a wide

range of both object models and robotic hands. As eigen-

grasp definitions encapsulate the kinematic characteristics of

each hand design, the planner can operate on eigengrasp

amplitudes and thus ignore low-level operations and con-

centrate on the high-level task. The reduced dimensionality

framework also enables the use of anthropomorphic models

with more than 20 intrinsic DOFs. The planner can thus

operate identically across different hand models, without

any change or parameter tuning. In addition, the planner

makes no assumptions regarding the nature of the target

object and can operate on a wide range of 3D models. These

characteristics make it a strong candidate for large scale

application: once the desired object set and hand models

have been chosen, the batch execution of the planner over

the chosen set requires little, if any, user attention. For each

hand-object combination, the output is a list of stable grasps,

each with an associated pre-grasp in eigengrasp space. For

each grasp, the planner also computes two widely used

quality metrics that characterize the Grasp Wrench Space

(GWS): the epsilon and volume quality metrics introduced

by Ferrari and Canny [6].

A crucial aspect of the database construction is the running

time required for each hand-object combination. As the

planner has no intrinsic time limit, one has to be imposed

based on the size of the object set and the computing power

available. When building the database described in the next

section, each execution of the planner ran until we found

15 form closure grasps of the target object. In general, this

required about 10 minutes of run time. When dealing with

large datasets and different hand models, a subset of objects

will inevitably prove difficult to grasp using our algorithm.

To prevent these from dominating the computation time we

also set an upper time limit of 20 minutes per model.

The total number of planner executions used to build the

database was approximately 22,000, as described in follow-

ing section. The total computation time was approximately

1 month on 6 multi-core computers.

III. THE COLUMBIA GRASP DATABASE

In this section we describe the contents and structure of the

Columbia Grasp Database. The database is freely available

at grasping.cs.columbia.edu both as a PostgreSQL database

and as flat text files.

A. 3D Models and Scale

The first requirement for a grasp database is a set of

objects to grasp. Rather than distributing a new set of 3D

models, we chose to reuse the models from the Princeton

Shape Benchmark (PSB) [19], which is already in common

use in the shape matching community. We hope that a shared



dataset will encourage increased collaboration between shape

researchers and roboticists.

The disadvantage of this choice is that the PSB models

were not originally selected with an eye towards robotic

grasping, and so some of the models are not obvious choices

for grasping experiments. For example, the database contains

both airplanes and insects, all of which are outside the

normal grasping range of a human-sized hand. We chose

to treat all such “ungraspable” objects as toys, and rescaled

them accordingly. The rescaling factor for each model, as

compared with the “original” scale in the standard PSB, is

included in the database.

Even with all of the models at graspable size, the issue

of scale required further attention. Grasping is inherently

scale-dependent, but most of the models in the PSB might

plausibly exist anywhere within a small range of scales. This

was particularly true for the models rescaled to “toy” size.

To soften the impact of scale, we cloned each object at four

distinct scales, 0.75, 1.0, 1.25 and 1.5, where 1.0 represents

the rescaled size from above. As the PSB contains 1,814

distinct models, this left us with a total of 7,256 models to

grasp.

For each model we store the radius of a ball that ap-

proximately contains the model. We use an approximately

enclosing ball rather than an absolutely enclosing ball to

avoid outlier sensitivity. We assume that all of the points on

a model’s surface are normally distributed around some fixed

radius from the center or mass. The fixed radius is simply

the mean distance from the surface to the center of mass,

and the “approximate radius” stored in the database is the

mean distance to the surface plus two standard deviations of

the distance to the center once the mean has been subtracted.

Along with shape and scale, the space of possible grasps

is influenced by the frictional properties and deformability

of both the hand and the object. Both in the construction the

database and in our experiments we treated all models as

being made of rigid plastic. The properties of the different

hands are described below.

B. Robotic Hands

Grasping is strongly hand-dependent, and so we need to

specify the hands used in our database. For the first version of

the database, we chose to focus on two hands; a human hand

model in order to emphasize the “humanlike” nature of the

grasp selection, and the three-fingered Barrett hand, which

is ubiquitous in robotics research due to its durability and

relatively low cost. The human hand model has 20 degrees

of freedom. The Barrett hand has 4 degrees of freedom, plus

a disengaging clutch mechanism which allows conformance

even when the proximal link of a finger is blocked. Both

models are available for download with GraspIt!.

Frictional forces play an important role in grasping, and so

we must specify the materials for each of our hands. There

is no exact consensus on the friction coefficient of human

skin and so we chose µ = 1.0 as a plausible value for the

friction between the human hand and plastic [20]. The ability

to create stable, encompassing grasps with subsets of fingers

is also increased by using soft fingertips that deform during

contact and apply a larger space of frictional forces and

moments than their rigid counterparts. In order to take into

account such effects, we use a fast analytical model for soft

finger contacts that we have introduced in previous work [5].

The Barrett hand is made of metal, but can be coated with

a higher friction material. We created two versions of the

Barrett hand, one uncoated and one with rubberized fingers,

and computed grasps for then independently, in effect giving

us three hand models. For the metal Barrett hand we used

µ = 0.4 and for the rubber coated version we used µ = 1.0.

As the kinematic models are identical, grasps computed for

either Barrett model can be executed using the other, making

it possible to evaluate the advantage afforded by using the

higher friction material. We note that grasps from the regular

hand can be assumed to be form closure for the rubberized

hand as well, but that this guarantee does not hold in reverse.

In the future we intend to augment these hands with

other models, such as the DLR hand and the Robonaut

hand. We encourage researchers with novel hands to send

us models, both for inclusion with GraspIt! and for use in

future revisions of the database.

C. Grasps and Pre-Grasps

Our grasp database is intended to be used in conjunction

with GraspIt! or a similar grasp simulation tool. As such,

we provide the necessary data to recreate each grasp, in

the form of joint angles and hand position, and the contact

points between hand and object, which can be used as a

check to ensure that the grasp was simulated correctly. We

also provide the two measures of grasp quality mentioned in

Section II-B.

Each grasp entry consists of a pre-grasp and the final grasp

pose. A pre-grasp is a pose from the instance before the hand

contacts the object; it represents “pure” grasp information

untainted by conformance to an exact object. Each of our pre-

grasps lies within the two dimensional Eigengrasp subspace,

as described in [4]. In contrast, the grasp poses represent final

positions for form closure. This first version of our database

contains 238,737 distinct form closure grasps, comprising

25,585 grasps with the metal Barrett hand, 132,421 grasps

with the rubber Barrett hand and 80,731 grasps with the

human hand. Along with each grasp we record a pregrasp

pose and the epsilon and volume quality measures of [6].

D. Caveats

Since the grasps in the database were found using an

automated planner, not all of the grasps are truly humanlike

or reliable. There can be cases where a grasp satisfies our

quality metrics, but would require a degree of precision that

cannot be obtained in real-life execution. Aside from the

intrinsic limitations of grasp quality metrics, for which there

is as of yet no firm consensus on which to use, our approach

to grasp planning is purely geometric. This presents problems

for objects that do not match our assumptions. For example,

our assumption that all objects are rigid plastic results in

geometrically correct but unrealistic grasps on objects such



as flowers or leaves. Furthermore, the lack of domain-specific

knowledge means that some of our grasps are semantically

incorrect, such as a mug grasped by placing the fingers

inside, although they are still form closed.

Finally, all of our grasps were obtained from pre-grasps

that sample a low-dimensional subspace of the hand DOF

space. This is for the moment a necessary simplification,

without which the planning problem for dexterous hands

is intractable at this scale. While our choice of subspace

is theoretically justified and shown to be effective [4], we

cannot reasonably claim that the database covers the entire

space of possible grasps. The choice of optimal subspace is

one of our directions for future research.

IV. DATABASED-BACKED GRASP PLANNING

One of our primary motivations of building a grasp

database was to collect enough grasping data to build new

grasp planners based on learning. In this section we present

a grasp planner that uses a k-Nearest-Neighbors approach

to find candidate grasps for a model not in the database. In

general, the relation between hand pose and grasp quality

for a given object is both nonlinear and discontinuous, and

more sophisticated learning methods such as SVMs have so

far been shown to work only for simple objects [16], [2]. We

hope that the data we have collected will facilitate further

research in this direction.

A. Algorithm

Our grasp planning algorithm is based on the intuition that

similar objects are likely to have similar grasps. Therefore, if

we wish to grasp an object not in our database, it makes sense

to look at the most similar objects that are in the database

and to attempt to grasp the new object in the same way.

Given a model to grasp α, we use a shape matching

algorithm to find N = {n1...nk}, the k models in the

database most similar to α under some shape similarity

metric. In this paper we used L2 distances between Zernike

descriptors [15], which we have previously shown to be

scalable to very large libraries of 3D models [7]. Zernike

matching is scale-normalized, but as detailed in Section III-

A, each PSB model exists in our database at 4 distinct scales.

For each ni we consider up to 2 models, n<

i
, the largest

neighbor smaller than α and n>

i
, the smallest neighbor larger

than α, using the scaled approximate radius described in

Section III-A. In the case of α smaller or larger than all

4 versions of the neighbor we only used one model for ni.

We present our grasp planning algorithm here. For sim-

plicity, we have ignored the issue of scale and treated each

ni as a single model.

The entire process, from shape matching through final

output, takes approximately 20 seconds. To illustrate the

behavior of this algorithm, we provide a number of examples

in Fig. 1.

B. Experiments

For our experiments, we removed each PSB model at scale

1.0 from the database one at a time and attempted to grasp it

Algorithm 1 DATABASE-BACKED GRASP PLANNING

Require: Model α to grasp with hand H , using k neighbors

and quality threshold τ .

N ← NEARESTNEIGHBORS(α, k)
R← {} {The resulting form closure grasps.}
for all ni ∈ N do

Align α and ni using PCA.

Co-locate the centers of mass of α and ni.

G← the precomputed pre-grasps on ni.

for all g ∈ G do

Transform g to α’s coordinate system.

Place H in the position and configuration of g.

repeat

Move H backwards.

until NOCOLLISIONS(PALM(H), α)
for all finger ∈ FINGERS(H) do

repeat

Open finger.

until NOCOLLISIONS(finger, α)
end for

repeat

Move H forwards.

until INCONTACT(H,α)
CLOSEFINGERS(H)
if EPSILONQUALITY(H,α) > τ then

R← R ∪ g

end if

end for

end for

return R

using only the known grasps from the remaining models. To

isolate the effects of shape matching, we used three methods

of choosing similar models. In each case we used k = 5
neighbors for every model.

Our first method used the ground-truth labels provided

with the PSB. For each model, we chose neighbors within the

same shape category, starting with the finest categorization

and moving up to coarser categories if fewer than k neighbors

were available. Within the same category the choice of

neighbors was arbitrary. We designated the chosen models as

the ‘PSB classes’ neighbors. This method of indexing, while

not usable for arbitrary unclassified models, approximates the

performance of a theoretical ideal1 shape matching algorithm

that has perfect precision and recall over the PSB.

Our second method used L2 distances between Zernike

descriptors [15]. For each model, we designated the k models

with the smallest L2 distance in Zernike descriptor space as

the ‘zernike’ neighbors. These descriptors are computed on

voxel grids and are quite robust, making them suitable for

use in matching newly acquired objects into the database.

1Even with perfect precision and recall, this theoretical algorithm may
not truly be ‘ideal’, as the categories in the PSB are semantic rather
than purely geometric. Nevertheless, since shape matching algorithms are
regularly evaluated using these categories as a ground truth, we adopt the
same convention.
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Fig. 1. Three example models and their grasps, using the database-backed planner with Zernike neighbors. For each model α (left), the top row of
images shows a neighbor nk from the database, the value of k, and a pre-computed grasp on that neighbor. Directly below each neighbor is the same
grasp executed on α, along with its GWS epsilon quality measure.

For our third method, we randomly selected k models from

the database and designated them as ‘unordered’ neighbors.

We emphasize that these are not random grasps in any sense;

α has been translated and axis-aligned with some model of

a similar scale. Furthermore, the pre-grasps applied to it are

pointed in the right direction, with joint angles drawn from

a high quality eigengrasp subspace and known to produce

form closure on another model with aligned principal axes.

We therefore expect that some of the pregrasps taken from

unordered neighbors will result in form closure grasps. Our

aim in using the unordered neighbors is to isolate the

performance gains based on shape matching while holding

constant the performance due to the overall high quality of

all of the grasps in the database.

We ran the experiment separately for each type of neighbor

selection and averaged the grasp quality of the nth best

grasp on each model over all 1,814 models in the database

at scale 1.0. As mentioned in the introduction, we believe



Barrett hand Human hand

Fig. 2. The nth best grasp from database-backed grasping with 3 neighbor selection methods and from the eigengrasp planner, averaged over the 1,814
models in the database at scale 1.0. As can be seen, the information provided by shape matching is more important for the complex human hand than it
is for the clawlike Barrett hand. This figure is best viewed in color.

this to be one of the most comprehensive grasp planning

experiments in the literature, as it consists of thousands of

runs on a highly varying set of objects. We can analyze these

results from a number of different perspectives: the absolute

performance of database-backed grasp planning, the relative

behavior of different neighbor selection methods and finally

the performance compared to running the eigengrasp planner

of Section II-A directly on the target object. Fig. 2 shows

these results for the human hand and the Barrett hand.

Although Zernike descriptors do not have perfect preci-

sion and recall over the PSB, their performance for our

grasp planner is nearly identical to the ground truth PSB

classification. This is likely because the PSB classification

is partially semantic, whereas our grasp quality measures

are purely geometric; a ‘poor’ neighbor for semantic shape

matching may still be geometrically close enough to share

high quality grasps.

The performance of the ‘unordered’ neighbors is as ex-

pected; good, due to the general quality of grasps in the

database and the axis-alignment between α and the un-

ordered neighbor, but not as good as the shape matching

methods. Although the improvement due to shape matching

is small for the Barrett hand, for the human hand the

difference is quite significant. We attribute this difference to

the many additional DOFs of the human hand, which creates

a need for careful pre-grasping. The Barrett hand, with its

4 degrees of freedom, has a far simpler configuration space,

and the importance of pre-grasping is correspondingly less.

Of special interest is the comparison between the database-

backed methods and the eigengrasp planner. For the first

few grasps, the performance of the shape matching methods

is essentially identical to that of the eigengrasp planner.

However, for subsequent grasps the quality quickly diverges,

with the advantage going to the database-backed methods.

This is even more impressive when we recall that the eigen-

grasp planner ran for approximately 10 minutes per model,

whereas the database-backed planners ran for about 20

seconds. The database-backed approach can take advantage

of pre-computed grasp data from multiple objects, essentially

extracting the useful information obtained from several runs

of the eigengrasp planner.

C. Planning for Real Objects

The ultimate goal of our database-backed planner is to

grasp new objects that are not in our database using sensor

data. While a comprehensive evaluation using such acquired

data is left for future work, we present here our preliminary

results. Using a commodity desktop 3D scanner, we acquired

a range image of a plastic toy. Due to the intrinsic limitations

of the acquisition method, the range image was both noisy

and incomplete, with several occlusions. We computed the

Zernike descriptor of the scan, found the nearest neighbors

in the database, and ran the planner as before for both the

Barrett and human hands. We found 88 form closure grasps

using the human hand and 112 form closure grasps using

the Barrett hand. Some of these results are shown in Fig.

3. In the future we intend to experiment with more scanned

objects, and to validate the planner output by executing the

grasps with a physical hand on the real object.

V. CONCLUSIONS AND FUTURE WORKS

We have created the Columbia Grasp Database, a large

collection of scaled models (n = 7, 256) and grasps (n =
238, 737) for several hands which we are making available

to the robotics community. Building the database was a

non-trivial exercise, and at present, no other grasp database

of comparable scale is available. We believe this to be an

important first step in building a valuable tool for researchers

developing grasp synthesis algorithms, particularly those

pursuing machine learning approaches to grasping.

In addition to providing this data, we also demonstrated

its application as both a back-end and benchmark tool for

a novel, data-driven grasp planner. Our experiments showed

this approach to be efficient at obtaining good form closure

grasps. In the process, we gained some new insights into

grasp planning. We found that a good choice of grasp

subspace, combined with axis-alignment, produced grasps
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Fig. 3. Some of the grasps planned for an acquired object with holes and occlusions, using the database-backed planner with Zernike neighbors. In total
88 form closure grasps were found for the human hand and 112 for the Barrett hand.

that could often be transferred to new objects even in

the absence of strong geometric correlation. As expected,

however, using geometric neighbor selection produced better

results, particularly in the case of the high DOF human hand.

Furthermore, the database approach outperformed the single

object planner of [4], showing that the database is effective

at distilling planning results from multiple objects into a

compact form.

In many cases the geometric similarity provided by the

Zernike and PSB classes neighbors was not fully exploited

due to poor alignment between a model and its neighbors.

We believe that the shape matching approach would benefit

from using an alignment method more powerful than global

PCA, which is known to be suboptimal for aligning 3D

models [9]. Better alignment might be obtained using a

different global transform, such as the Principal Symmetry

Axes transform [17] or by using a pairwise alignment method

such as Iterative Closest Point.

Our database consists predominantly of complete 3D mod-

els. However, in real-life applications 3D sensor data such

as laser scans or stereo reconstructions often exhibits holes

or occlusions. Our preliminary results showed the database-

backed approach to be applicable to acquired scan data, as

an imperfect model can still be matched against the models

in the database. In future work we intend to evaluate the

performance of our planner more fully on sensed data and

real robotic grasping applications with real hands. We also

intend to augment the grasp database with additional hands

and additional 3D models.
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