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Abstract: Conventional approaches to self-adaptive
software architectures require human experts to specify
models, policies and processes by which software can
adapt to its environment. We present REX, a complete
platform and online learning approach for runtime emer-
gent software systems, in which all decisions about the as-
sembly and adaptation of software are machine-derived.
REX is built with three major, integrated layers: (i) a novel
component-based programming language called Dana,
enabling discovered assembly of systems and very low
cost adaptation of those systems for dynamic re-assembly;
(ii) a perception, assembly and learning framework (PAL)
built on Dana, which abstracts emergent software into
configurations and perception streams; and (iii) an online
learning implementation based on a linear bandit model,
which helps solve the search space explosion problem in-
herent in runtime emergent software. Using an emergent
web server as a case study, we show how software can
be autonomously self-assembled from discovered parts,
and continually optimized over time (by using alternative
parts) as it is subjected to different deployment conditions.
Our system begins with no knowledge that it is specifi-
cally assembling a web server, nor with knowledge of the
deployment conditions that may occur at runtime.

1 Introduction
Modern software systems are increasingly complex,

and are deployed into increasingly dynamic environ-
ments. The result is systems comprising millions of lines
of code that are designed, analyzed and maintained by
large teams of software developers at significant cost. It is
broadly acknowledged that this level of complexity is un-
sustainable using current practice [15]. In recent years this
has driven research in autonomic, self-adaptive and self-
organizing software systems [26, 31, 14], aiming to move
selected responsibility for system management into the
software itself. While showing promise, work to date re-
tains a very high degree of human involvement – either in
creating models to describe systems and their adaptation
modes [10, 13], policies to control adaptation at runtime
[20], or designing and running courses of offline training
with available historical data [12]. These are human-led
approaches to the above complexity problem, designed to
fit well with current software development practice.

We push these concepts to their limits with a novel
machine-led approach, in which a software system au-
tonomously emerges from a pool of available building
blocks that are provided to it. We demonstrate the first
such example of a software system able to rapidly self-
assemble into an optimal form, at runtime, using online
learning. This is done with no models or architecture
specifications, and no policies for adaptation. Instead,
the live system learns by assembling itself from needed
behaviors and continually perceiving their effectiveness,
such as response time or compression ratio, in the envi-
ronments to which the system is subjected. The build-
ing blocks of our approach are based on micro-variation:
different implementations of small software components
such as memory caches with different cache replacement
strategies or stream handlers that do or do not use caching.
As we use relatively small components, this kind of im-
plementation variant is easy to create. By autonomously
assembling systems from these micro-variations, and their
various combinations, we then see emergent designs to
suit the conditions observed at runtime.

Implemented as a development platform called REX,
we present three major integrated contributions, each a
key part of the solution to emergent computer software:

• An implementation platform: We present the key
features of Dana, a programming language with
which to create small software components that can
be assembled into emergent software systems. Dana
offers a uniform way to express systems in these
terms, and near-zero-cost runtime adaptation.

• A perception, assembly and learning framework:
We present the details of PAL, a framework built with
Dana that controls the dynamic discovery and assem-
bly of emergent software, perceives the effectiveness
and deployment conditions of that software (such as
input patterns and system load characteristics), and
feeds perception data to an online learning module.

• An online learning approach: We present an appli-
cation of statistical linear bandits, using Thompson
sampling, as an effective online learning algorithm
that helps to solve the search space explosion inher-
ent in emergent software. This is done by sharing
beliefs about individual components across the con-
figurations in which they can appear.
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Using a prototype emergent web server as an exam-
ple, we show how a system can be autonomously as-
sembled from discovered parts, and how that system can
subsequently be optimized to its task by seamlessly re-
assembling it from alternative parts. We evaluate our ap-
proach by subjecting our web server to various usage pat-
terns, demonstrating how different designs rapidly emerge
over time as conditions change. This emergence occurs
through online learning, based on perception streams that
indicate the internal well-being of the software and the ex-
ternal conditions to which it is currently being subjected.
We also show how a simple classifier adds “memory” to
the system, avoiding re-learning of environmental change.
In our current implementation this classifier is manually
defined; further automation here is a topic of future work.

Our work paves the way to: (i) significantly reducing
human involvement in software development, thereby re-
ducing the scale of modern development processes; and
(ii) creating systems that are far more responsive to the
actual conditions that they encounter at runtime, therefore
offering higher performance in those conditions.

The remainder of this paper is structured as follows. In
Sec. 2 we discuss our approach in detail, presenting the
above three contributions and how they integrate into a
complete platform for emergent computer software. In
Sec. 3 we then evaluate the system in terms of its ability
to continuously (and rapidly) assemble optimal software
compositions as external stimulus changes. In Sec. 4 we
discuss related work and we conclude the paper in Sec. 5.

2 Approach
Our approach has three major contributions that build

on each other to provide an integrated solution for emer-
gent software. An overview is shown in Fig. 1.

At the bottom layer is our implementation platform
(Dana) for creating software components that can be as-
sembled / re-assembled in various ways into different sys-
tems. This layer provides an API to control the loading,
unloading and interconnection of these components. The
upper two layers then contain our perception, assembly
and learning (PAL) framework. Specifically, at the middle
layer are our assembly and perception modules, respon-
sible for assembling entire systems from available com-
ponents and perceiving the state of those systems. To-
gether these two modules offer an API to control the way
in which the system is currently assembled, and to view
the perception streams that the system is emitting. The
top layer contains our learning module, which uses the
assembly and perception API. This module learns corre-
lations between particular assemblies of behavior and the
way that the system perceives its own well-being, under
different external stimuli of input patterns or deployment
environment conditions such as CPU load.

Our overall approach uses dynamic micro-variation of
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Figure 1 – Overview of our approach.

behavior: the ability to continually discover and configure
components in and out of a live system that perform the
same overall task but do so in different ways. By experi-
menting with these variations, and their combinations, we
see the ideal system emerging over time for the current
usage pattern and deployment environment conditions1.

In the following sections we present Dana; our PAL
framework; and the online learning approach used in PAL.

2.1 Dana: An implementation platform for
runtime adaptive micro-variation

A platform for emergent software must enable us to
build small units of behavior, and to express the interre-
lationships between them, such that we can create micro-
variations of these units that can be autonomously assem-
bled, and seamlessly re-assembled, in a live system. To
do this we started from the component-based software
development paradigm [29], well-established in forging
adaptive systems. We designed a programming language
around this, in which all elements of a system (from ab-
stract data types to GUI widgets) are runtime-replaceable
components. Our language is called Dana2 and is freely
available [1], with a large standard library of components.
It is currently used across a range of ongoing projects.

Dana is a multi-threaded imperative programming lan-
guage, but one that frames these concepts in a component-
based structural paradigm. In these terms, Dana has three
novel features for our needs that we now present in detail,
along with the API that Dana provides to higher layers of
REX for assembling and perceiving emergent software.

1Throughout this paper we use the simplifying assumption that all
possible assemblies of an emergent system are valid; in reality an auto-
mated unit testing system could potentially provide this validation before
particular assemblies are made available for use in the live system.

2Dynamic Adaptive Nucleic Architectures: named for its highly dy-
namic systems of small components with linked internal sub-structures.

334    12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



interface File {

  transfer char path[]

  transfer int pos, mode

component provides App requires File {

  int App:main(AppParam args[]) {

     File ifd = new File(args[0].str, File.READ)

     File ofd = new File(args[1].str, File.WRITE)

     while (!ifd.eof()) ofd.write(ifd.read(128))

     ofd.close()

     ifd.close()

     return 0

  }

}

  File(char path[], int mode)

  byte[] read(int numBytes)

  int write(byte data[])

  bool eof()

  void close()

}

Figure 2 – Example interface to open, read and write files (top);
and a component that uses this interface to copy a file (bottom).

2.1.1 Fusing third-party system composition with
first-party instantiation

Our first observation is that state-of-the-art realizations
of the component-based paradigm are almost completely
disjoint from object orientation. Specifically, component
models enable third-party instantiation and (re)wiring
whereby a so-called meta-level controls the composition
of a software system by modelling that system as a graph
of components (nodes) and wirings (edges). However,
within this model they fundamentally lack support for
first-party instantiation and reference passing – i.e., the
ability to instantiate objects with their own private state
and pass references to those objects as parameters. In
our experience with existing runtime component models
(such as OSGi [3], OpenCom [11] and Fractal [8]), this
shortcoming makes it very hard to express many simple
modern programming concepts. By contrast, Dana en-
ables first-party instantiation within a paradigm in which
a meta-level controls software composition as a graph of
components and wirings that can be adapted at runtime.

An example Dana component is shown in the lower
half of Fig. 2. This component provides an App inter-
face and requires a File interface (defined in the top half
of Fig. 2). The component instantiates the File inter-
face twice with different parameters, yielding two File
objects, and copies data from the first file to the second
by reading and writing chunks of data. The full system
is created by a meta-level which first loads the example
component (CA) into memory, queries its required inter-
faces, then loads a desired implementing component of
File into memory and wires CA’s required interface to
the respective provided interface of that component. The
resulting system is illustrated in Fig. 3. At any point dur-
ing program execution, the meta-level can choose to re-
wire the File required interface of CA to point to a corre-

component

required interface
(File)

wiring
proxy object

transfer state
(path, pos, mode)

implementation object

provided interface
(File)

component

component
implementing

App

component
implementing

File

Figure 3 – Internal structure of components and objects. For
each instantiated object, a proxy is created with an internal ref-
erence to the implementing object from the component of the
connected provided interface. Required interfaces maintain a
list of all (proxy) objects that were instantiated through them.

sponding provided interface on a different implementing
component, thereby adapting the system’s behavior.

Formally, the runtime component model that enables
the above is defined as follows. An interface i is a set of
function prototypes, each comprising a function name, re-
turn type and parameter types; and a set of transfer fields,
typed pieces of state that persist across alternate imple-
mentations of the interface during runtime adaptation.

A component c provides one or more such interfaces,
where each such provided interface has an implementa-
tion scope isc. An isc has an implementation of every
function of its provided interface (plus other internal func-
tions) and [0..n] global variables (each of which is private,
i.e., not visible outside c). A provided interface (and its
underlying isc) of a component must be instantiated be-
fore use; we refer to these instances as objects. A compo-
nent c also requires zero or more interfaces, each of which
must be connected to a compatible provided interface on
another component to satisfy the dependency. These inter-
component connections are referred to as wirings.

At an implementation level, a required interface can be
thought of simply as a list of function pointers; when a
required interface r is wired to a provided interface p, r’s
function pointers are updated to point at the corresponding
functions in the component behind p. On top of this basic
mechanism, Dana provides an abstraction of objects such
that a required interface can be instantiated many times.

When the code inside a component instantiates one of
its required interfaces r (using the language’s new oper-
ator), this results in the instantiation firstly of a special
proxy object and secondly an isc instance relative to the
provided interface of the component to which r is wired.
The isc has a fresh copy of any (private) global state fields,
and of its interface’s transfer fields. The proxy object has
an internal link to the corresponding isc. A reference to the
proxy object, initially held by the instantiator, can then be
passed as a parameter to other functions as desired.

The use of proxy objects allows the implementing com-
ponent(s) of those objects to be adapted, resulting in a
change to the internal links within the proxy objects, with-
out affecting any references to the proxy objects.
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2.1.2 A protocol for seamless runtime adaptation
An emergent software system must be able to contin-

ually experiment online with different combinations of
components without disrupting the system’s primary task.
To enable this we need a low-overhead runtime adaptation
protocol that works with our component model.

We have therefore designed a protocol that uses trans-
parent hot-swapping (similar to that proposed by Soules
et al. [28]) for zero down-time; and that supports ob-
ject reference persistence across implementation changes.
In addition, it yields fast adaptation for both stateful and
stateless components by using a modular protocol de-
sign in which different command orderings give differ-
ent semantics for these two cases, as we explain below.
This is much more lightweight than classic ‘quiescence’-
based approaches for coarse-grained component models,
in which potentially large portions of a running system
must be deactivated before adaptation proceeds [21, 32].

Algorithm 1 Adaptation protocol

1: srcCom . Comp. to rewire a required interface of
2: sinkCom . Comp. with provided interface to wire to
3: intfName . Interface name being adapted
4: pause(srcCom.intfName)
5: rob js = getObjects(srcCom.intfName)
6: rewire(srcCom.intfName,sinkCom)
7: resume(srcCom.intfName)
8: for i = 0 to rob js.arrayLength−1 do
9: if pauseObject(rob js[i]) then

10: a = adaptConstruct(sinkCom.intfName, rob js[i])
11: b = rewireObject(rob js[i], a)
12: resumeObject(rob js[i])
13: waitForObject(b)
14: adaptDestroy(b)
15: end if
16: end for

Pseudocode of our protocol is given in Alg. 1. All adap-
tation in Dana is performed by changing a component
srcCom’s required interface r from its current wiring to
instead be wired against a compatible provided interface
of a different component sinkCom.

In simple terms, our two flavours of adaptation proceed
as follows. For stateless objects, any new calls on those
objects are immediately routed to their new implementa-
tion from sinkCom, while any existing calls active in the
old implementation are (concurrently) allowed to finish.

For stateful objects, any existing calls active in their old
implementations are allowed to finish while any new calls
are temporarily held at the point of invocation, allowing
existing calls to finish potential updates to transfer state
fields. When all existing calls finish, all held calls, and
any new calls, are then allowed to proceed and are routed
to the objects’ new implementations from sinkCom.

1:getObjects
2:rewire

for each robjs

3:adaptDestroy

2:rewireObject
1:adaptConstruct

r
robjs

b a

=

robjs

sinkCom

srcCom

Figure 4 – Adaptation sequence overview. A selected required
interface r is rewired, followed by each object in the set rob js.

To achieve these effects, the operations used in our
adaptation protocol are defined in detail as follows.
pause prevents new objects from being instantiated

via r, and prevents any existing instances from being de-
stroyed. Specifically, any Dana language instructions that
attempt to instantiate or destroy an object become held at
the respective language operator, after checking whether
or not r is paused. We call this set of held threads rht .
getObjects acquires a list of all existing objects that

have been instantiated via r, giving the list rob js. Be-
cause r is currently paused, it is assured that rob js contains
all objects whose implementations are (and ever will be)
sourced from the component to which r is currently wired.
rewire changes the current wiring of r to point to the

equivalent provided interface of sinkCom.
resume removes the paused status from r and allows

the set of threads in rht to resume execution, thereby en-
abling any held object instantiation or destruction opera-
tions to proceed. After this point, any instantiation opera-
tors will resolve against the component to which r is now
wired, rather than to its previous wiring.

Our adaptation protocol uses the above four operations
on lines 4–7. The result is that the wiring graph at the
component level has been adapted, illustrated in the left
half of Fig. 4. The protocol is then left with a set of ob-
jects rob js whose implementations belong to the previous
wiring of r. To complete the adaptation, each such object
must have its implementation updated to be from the cur-
rent wiring of r. This procedure is performed in the loop
from lines 8–16 and is illustrated on the right of Fig. 4.
pauseObject first checks if the given object has

been destroyed by this point (recall that object destruc-
tion was re-enabled by resume). If not, this individual
object’s destruction is prevented by setting a flag on the
object such that a destruction operator will be held until
the flag is unset; pauseObject then returns true. The
remaining set of operations on lines 10–14 can then pro-
ceed in the knowledge that the object they operate on will
not be destroyed in the meantime. A successful invoca-
tion of pauseObject also prevents any new function
calls from being made on the given object, holding any
such calls at their invocation operator in a set oht .
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adaptConstruct dynamically creates a new object
from the component to which r is now wired (by rewire
as described above). This object, a, is specially created in
such a way that it shares the transfer state fields (if any
exist) of rob js[i], instead of having its own fresh copy.
rewireObject changes the internal link of the proxy

object to which rob js[i] refers (recall that all references to
objects actually refer to their proxy object), pointing that
link at a instead of its previous location. As a return value,
rewireObject gives a different proxy object b, the internal
link of which refers to the object implementation to which
the proxy object of rob js[i] used to refer.
resumeObject allows any function calls held in oht

to proceed into the object (whose implementation object is
now one sourced from sinkCom), also allowing all future
calls to immediately proceed into the object.
waitForObject blocks until all function calls cur-

rently operating within the given object complete.
adaptDestroy destroys the given object in such a

way that its transfer state fields are not also destroyed.
For adaptations of stateless objects, used in cases when

the corresponding interface has no state transfer fields, our
adaptation protocol is arranged as in Alg. 1. For state-
ful objects, the waitForObject operator instead ap-
pears just before line 10 and is given rob js[i] as its param-
eter. This ensures that the previous implementation has
finished any potential modifications to an object’s transfer
fields before any logic in the new implementation occurs.
2.1.3 Structuring for discoverable code

An emergent software system must be able to au-
tonomously discover usable components for different
parts of itself. We wanted to support this without any
extra wiring specifications or manifest files, as are com-
mon in many component models [19, 16]. In doing so
we avoid developers having to do any work beyond writ-
ing component functionality. Instead, we chose to make
discoverable code an inherent feature of our platform.

Our solution here is simply to define a fixed structure
for projects. The root folder of a project therefore contains
a ‘resources’ directory tree containing the source code of
all interface types, and a symmetrical directory tree con-
taining all components that implement those interfaces.
For a component that declares a required interface of type
io.File, we then know to look in the directory ‘io’ for
all potential implementation components of this interface.
2.1.4 Interface to higher system layers

To higher layers of REX, Dana provides the following
API: load and unload a component into or out of mem-
ory; get the set of interfaces (provided and required) of a
component; connect a component’s required interface to
another component’s provided interface (for initial system
assembly); and adapt a component’s required interface to
connect to an equivalent provided interface on a different
component (via the above adaptation protocol).

2.2 Perception, Assembly and Learning
Whereas Dana provides the fundamental mechanisms

to build systems, our perception, assembly and learning
framework (PAL) abstracts over entire systems for online
learning. Specifically, PAL assembles sets of discovered
components into working systems; perceives the health
of those systems and the conditions of their deployment
environment; and learns correlations between a system’s
health, its current environment conditions, and its current
assembly. Each of these elements operates at runtime,
while the target emergent software system is executing.
Unlike existing work, we use no models or architectural
representations of software [12, 23], instead enabling sys-
tems to emerge autonomously as a continuous process.

2.2.1 Assembly
The assembly module of our framework is responsible

for discovering the possible units of logic (i.e., compo-
nents) that can form a given system; assembling a particu-
lar configuration of those components to create a working
system; and re-assembling the running system to a differ-
ent configuration using our adaptation protocol.

The assembly module starts with a ‘main component’
of a target software system (such as that shown in Fig. 2).
The required interfaces of this component are read, and all
available components that offer compatible provided in-
terfaces are then discovered. This is done using Dana’s in-
herent structuring for discoverable code: the package path
of each required interface is converted to a local directory
path, which is scanned for any components that provide
this interface type. For each component found, the re-
quired interfaces of those components are read, and fur-
ther components are discovered with corresponding pro-
vided interfaces. This procedure continues recursively un-
til a full set of possible system compositions is discovered,
and can be re-run periodically to detect new components.

We expect there to be multiple different implementa-
tions of each provided interface because there are typi-
cally several ways to solve a given problem, such as the
use of different memory cache replacement algorithms
or different search algorithms. Each such variant offers
equally valid functionality relative to a provided interface,
but implementation differences imply that their respective
performance characteristics will differ according to differ-
ent input ranges or deployment environment characteris-
tics that are encountered by the system.

When the discovery procedure is complete, the assem-
bly module provides a list of strings, each of which is a
full description of one configuration of components. The
assembly module can then be instructed to assemble the
target system into one such configuration. If the system is
not yet assembled, this means simply loading each com-
ponent into memory and connecting the appropriate re-
quired and provided interfaces together, then calling the
main method of the main component to start the system.
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If the target system is already assembled in a particular
configuration, a command to re-assemble it into a differ-
ent one uses our adaptation protocol to seamlessly shift
to the alternative. In detail, starting from the main com-
ponent of the target system, the assembly module walks
through the inter-component wiring graph to discover the
difference points between the current configuration and
the new one. For each such difference, the corresponding
alternative component is loaded into memory, along with
all components (recursively) that it requires, and the adap-
tation protocol is used to adapt to that component. The old
component (and components that it required and that are
not in use by other parts of the system) is then removed.

2.2.2 Perception
The ability to assemble and re-assemble a software sys-

tem into different configurations of components must be
guided in some way. Key to this is an ability to perceive
the way the software ‘feels’ at a given point in time, and
the way the software’s deployment environment ‘looks’ at
correlated points in time. These streams of perception can
then be mapped to the software’s current assembly (i.e.,
the way it is behaving) to understand how different be-
haviors make the software feel in different environments.

This is achieved using our perception module. To en-
able perception throughout a system we use a Recorder
interface. Any component can declare a required interface
of this type and then use it to report one (or both) of two
kinds of data as it sees fit: events and metrics.

Events represent the way individual software compo-
nents are perceiving the outside world – their inputs or de-
ployment environment conditions. Events have a standard
structure, with a name, descriptor, and value. When an
event is reported to a Recorder, a timestamp is added.

Metrics represent the way individual software compo-
nents are perceiving themselves – how they ‘feel’. Metrics
again have a standard structure, including a name, a value,
and a boolean flag indicating whether a high or low value
of this metric is desirable. As with events, a timestamp is
added to a metric when reported to a Recorder.

When a new configuration of the software system is se-
lected via the assembly module, the perception module
uses Dana’s getInterfaces API to check the com-
ponents of that configuration for any with a Recorder
required interface. For all such components, their at-
tached Recorder implementation component is periodi-
cally polled to collect any recently reported events or met-
rics, noting the component from which they originated.

2.2.3 Learning
Finally, our learning module is tasked with understand-

ing the data from the perception module, and exploring
different assembly configurations of the target system to
understand how different behavior sets cause the software
to react to different external stimuli. We describe the full
details of our learning approach in the next section.

2.2.4 Interface to higher system layers
The perception and assembly modules provide the fol-

lowing API to the learning module: setMain(), selecting
a ‘main’ component of a program to assemble; getCon-
figs(), returning a list of strings describing every possible
configuration of components; setConfig(), taking a con-
figuration string to assemble/re-assemble the system to;
and getPerception(), returning all events and metrics that
have been collected since this function was last called.

2.3 Linear bandits for rapid emergence
In this section we describe our approach to efficiently

learning the correlations between perception of internal
state and external environment, and the currently selected
behavior of a system. We first define this problem more
precisely with a case study of an emergent web server, and
then we describe our learning approach in detail.

2.3.1 Problem definition
For our evaluation in this paper we use a web server

as an example emergent software system. A partial struc-
ture of this is shown in Fig. 5, illustrating the set of possi-
ble configurations that each represent a valid system. For
simplicity here we only show components that have vari-
ations – in reality, the set of components used to form this
system is much larger, at over 30 components (of which
only 15 are shown). The components not shown here in-
clude those for file system and socket operations, string
handling utilities, abstract data type implementations, etc.

From this set of components, there are 42 possible as-
semblies in total, each of which results in a functional web
server system but with differing behaviors. As examples,
some such assemblies use a memory cache (of which there
are several variants) while others use a compression algo-
rithm; and some use a thread-per-client approach to con-
currency while others use a thread-pool approach.

We must then establish which of these 42 options best
suits the current external stimuli to which the software is
being subjected. These external stimuli may also change,
invalidating what has been learned to date and requiring
further search iterations. An exhaustive search approach
is clearly undesirable, causing the system to spend too
long in sub-optimal configurations; we therefore need a
way to balance exploration of untested parts of the search
space with exploitation of solutions known to be good.

The components of our web server generate two kinds
of perception data to inform this. RequestHandler im-
plementations report a metric of their average response
time to client requests, providing an internal perception of
self. Implementations of the HTTPHandler interface re-
port events of the resources being requested and their size.
This represents the system’s perception of its deployment
environment. For each set of client request patterns that
are input to the system, there then exists one composition
of components (behavior) that optimizes the reward value
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App <interface>

WebServer

RequestHandler <interface>

RequestHandler RequestHandlerPT

HTTPHandler <interface>

HTTPHandler

HTTPHandlerCMP HTTPHandlerCHCMP HTTPHandlerCH

Compressor <interface>

GZip

Deflate

Cache <interface>

Cache

CacheLFU

CacheLRU

CacheFS

CacheMRU

CacheRR

Thread pool
implementation

Thread per client
implementation Implementation without

caching or compression

Implementation with
compression

Implementation with
caching

Main method: opens a server
socket and accepts client
connetions, each of which is
passed to a request handler.

Takes a client socket,
applies a concurrency
approach, and passes
the socket on to the
HTTP handler.

Takes a client
socket, parses
HTTP request
headers and
formulates a
response.

Implementation with
caching and compression

Figure 5 – The set of components from which our web server
can emerge. Boxes with dotted lines are interfaces, and those
with solid lines are components implementing an interface. Ar-
rows show required interfaces of particular components. The
general purpose of each interface’s implementations is noted by
the interface, and a description of how the available implemen-
tation variations of that interface work is also indicated.

(i.e., minimizes response time) for a given environment.
In future we expect multiple reward values (from different
components) and dimensions of external perception (for
example including resource levels of the host machine),
but for now the above values are sufficient to explore the
concept of runtime emergent software systems.

Our solution to this configuration search and learning
problem is based on the statistical learning approach pro-
posed by Scott [27]. In the remainder of this section we
present the details of how we apply this approach.

We first cast our fundamental problem as a ‘multi-
armed bandit’, for which the learning approach is in-
tended. We then discuss the concept of Thompson sam-
pling and how we use it to simultaneously update perfor-
mance estimates of multiple configurations after experi-
menting with just one of them, and how we use Bayesian
regression to derive beliefs about individual component
performance within a configuration. Besides adapting
the approach for our particular problem, we make two
changes: (i) we use Bayesian linear regression instead of
probit regression, enabling us to handle continuously dis-
tributed results; and (ii) we add a simple classifier system
to provide memory of environment changes over time.

2.3.2 The Multi-armed Bandit Formulation
Online learning must balance the exploration of under-

tested configurations with exploiting configurations al-
ready known to perform well [27]. The canonical form of
this is the multi-armed bandit problem, devised for clin-
ical trials [30, 7], and recently a dominant paradigm for
optimization on the web [27, 9]. A multi-armed bandit
has a set of available actions called arms. Each time an
arm is chosen, a random reward is received, which de-
pends (only) on the selected arm. The objective is to max-
imize the total reward obtained. While short-term reward
is maximized by playing arms currently believed to have
high reward, long-term benefit is maximized by exploring
to ensure that we don’t fail to find the best arm.

In the case of our emergent software, each possible con-
figuration is considered an arm, and the reward given by
playing an arm (i.e., selecting a particular configuration of
the web server) is defined by our metrics (i.e., the average
response time of this configuration to client requests).

One general method for tackling the multi-armed ban-
dit problem is Thompson sampling. Theoretical perfor-
mance guarantees exist for Thompson sampling in general
settings [22, 5, 25], and the technique has been empiri-
cally shown to perform extremely well [9, 27]. The key
feature of Thompson sampling is that each arm is played
with the probability it is the best arm given the informa-
tion to date. This requires the use of Bayesian inference
to produce ‘posterior distributions’ that code our beliefs
about unknown quantities of interest, in this case the ex-
pected values of the arms (see Sec. 2.3.3). With this infer-
ence, it has been shown that Thompson sampling can be
efficiently implemented by drawing a single random sam-
ple from the posterior distribution of all unknown quan-
tities, then selecting the arm which performs best condi-
tional on this sampled value being the truth [22].

For example, suppose our unknown quantities are the
expected value of each arm, and beliefs about these quan-
tities are encoded as (posterior) probability distributions
with densities given by bell curves. The center of the bell
curve is then the average reward seen on that arm to date,
and the spread is our level of uncertainty (with high uncer-
tainty a result of few observations). For an arm to be se-
lected with Thompson sampling, the random sample from
its bell curve must be higher than corresponding samples
from all other arms; to have a non-negligible probability
of being selected, the distribution must be capable of pro-
ducing high samples. This is true if either the center point
is high or if the spread is large, corresponding respectively
to high average observed rewards or high uncertainty.

The effect is that the arms most likely to be played
are those that experience suggests are likely to perform
well, and those that may perform well but we have insuf-
ficient information about. Arms for which we have good
information that they will perform badly are played with
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very low probability. As more information is gained, and
beliefs concentrate on the truth, no arms will remain for
which there is insufficient information. Thus, in the long
term, optimal arms are played with very high probability.

2.3.3 Forming beliefs
Thompson sampling balances exploration and exploita-

tion in the presence of a Bayesian estimate of arm values.
In traditional bandit settings, the value of each arm is esti-
mated independently. However, the combinatorial explo-
sion in the total number of available configurations ren-
ders this approach undesirable since each arm will need to
be experimented with multiple times. Our emergent soft-
ware example described above results in 42 such arms;
and for example introducing just one further caching vari-
ation (see Fig. 5) would increase this to 48. As the com-
plexity of an emergent software system grows, it quickly
becomes undesirable to consider all configurations and
test each one at runtime. Furthermore, estimating the per-
formance of each configuration independently ignores the
fact that many configurations share components, and so
are likely to have related performance characteristics.

We therefore follow and use a regression framework
based on classical experimental design to share informa-
tion across the different arms available to us [27]. The in-
tuition behind this scheme is that the performance of any
configuration using the HTTPHandlerCH component is
in some way informative for any other configuration in-
volving that component. This is formalized by modelling
the expected reward for a given configuration as a function
of the components deployed within that configuration. In
detail, we code each interface as a factor variable, with
number of levels equal to the number of available compo-
nents for that interface. Standard dummy coding is used,
so that each level of the factor is compared to a fixed base-
line level. For our web server example the effect of this is
to model the expected reward of a configuration as

β0+β1IRequestPT

+β2IHttpCMP +β3IHttpCH +β4IHttpCHCMP

+β5IDeflate (1)
+β6ICacheFS +β7ICacheLFU +β8ICacheMRU

+β9ICacheLRU +β10ICacheRR

where βi are unknown real numbers to be estimated, and
indicator functions IX take value 1 if component X is used
in the configuration, and 0 otherwise. Note that coeffi-
cients for RequestHandler, HttpHandler, GZip
and Cache are implicitly coded as baseline levels for the
factors, so the above coefficients are interpreted as devi-
ations from this baseline performance. In other words, if
for example all of HttpCMP, HttpCH and HttpCHCMP
are set to 0, this implies the default HttpHandler is in
use and its reward is encoded in β0. The model in Equa-
tion 1 can be automatically derived by our learning mod-
ule, and has only 11 elements to estimate, instead of 42.

The standard linear regression model assumes observed
rewards are equal to expected rewards (1) plus a ‘noise’
term for un-modelled variability. If we denote the vector
of binary indicator variables for a given configuration as

xconf = (1,IRequestPT,IHttpCMP,IHttpCH,IHttpCHCMP,

IDeflate,ICacheFS,ICacheLFU,ICacheMRU,

ICacheLRU,ICacheRR),
3

with the vector of unknown coefficients denoted as β =
(β0,β1, . . . ,β10), and observed reward as y, the assumed
model of linear regression is then that

y = xconfβ + ε,
where ε is a zero-mean Gaussian random value indepen-
dent of all other observed quantities, with unknown vari-
ance σ2. After observing multiple configurations and
their rewards, we have a list of (xconf,y) pairs; regression
then finds the single β value which makes all xconfβ val-
ues as close as possible to their relative observed y values.

The Bayesian approach to regression is used so that
we can support Thompson sampling for action selection;
specifically the Bayesian approach produces a posterior
probability distribution over β and σ2 as its output from
which to then sample [24]. We use the standard conju-
gate prior distribution, with σ2 having an inverse-gamma
prior with parameters a0 and b0, and β having a multi-
variate Gaussian prior conditional on σ2 with parameters
β̃ and σ2Λ

−1
0 . The parameters of the prior are specified

in Sec. 2.3.4. The posterior distribution of σ2 is again an
inverse-gamma distribution with parameters updated by
the data, and the posterior for β conditional on σ2 is a
multivariate Gaussian distribution dependent on the data.

2.3.4 Implementation
The above approach is implemented in our learning

module. This maintains information about the history of
selected configurations and the rewards obtained. It also
stores an m× k ‘action matrix’, where m is the number
of valid configurations (in our case 42), and k is the num-
ber of unknown regression coefficients βi (in our case 11).
Each row corresponds to a valid configuration, and con-
sists of the vector xconf of indicators for the configuration.
Multiplying this action matrix by a vector of coefficients
β returns a vector of xconfβ values, and thus simultane-
ously evaluates Equation 1 for all valid configurations.

This action matrix is used when selecting which config-
uration to deploy. A single β and σ2 are sampled from the
posterior distribution resulting from linear regression and
β is then multiplied by the action matrix to get Thompson-
sampled values for each arm. The configuration corre-
sponding to the row with the highest resulting value is
then chosen and deployed. After a ten second observa-
tion window, the resulting reward y is observed, and the
(xconf,y) pair is stored. The posterior distribution is then

3The initial 1 is included as the intercept term which multiplies β0
and is present for all configurations.
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updated before repeating the process. Pseudocode for this
is given in Alg. 2, in which the formulae for sampling
from the posterior is given in lines 8–13.

When initializing the system, appropriate values must
be chosen for the prior parameters so that the algorithm
explores sufficiently without immediately dismissing con-
figurations. We choose a0 = 1 to give a weakly infor-
mative prior distribution. b0 is then chosen so that the
range of values supported by the inverse-gamma(a0,b0)
distribution includes the reward variance in the data; we
choose b0 such that the a priori most likely standard de-
viation,

√
b0/2, is approximately equal to the expected

standard deviation of reward. For β , we use a prior mean
β̃ with all values except the first equal to zero, as it is un-
known how each component affects the performance of
the web server. The value of β0 encodes the base per-
formance of the server; optimistic prior beliefs that β0 is
higher than rewards we actually observe encourages ini-
tial exploration as, before a lot of data has been observed,
the belief will remain that unexplored configurations have
higher rewards than those that have been observed. Thus
we take β̃0 (the first component of β̃ ) to be slightly higher
than the reward level we actually expect from the system.
For Λ0, the inverse of the prior covariance, we take a de-
fault weakly informative prior and set Λ0 to be the identity
matrix multiplied by a small constant value, equal to 0.1
throughout this article. The particular values of β̃0 and b0
used for our experiments are reported in Sec. 3.

2.3.5 Handling deployment environment changes
In a traditional multi-armed bandit problem the reward

distributions of each arm, while unknown to the player,
do not change their distribution over time. Thus, if the
optimal arm is found, playing that arm forever carries no
disadvantage. In a software system, however, the rewards
of the respective arms (i.e., configurations) may change
over time as the deployment environment of the system
changes. In our example, if the request pattern experi-
enced by the web server changes, then the effectiveness of
a given configuration may diverge from current estimates.
Without accommodating for this, when the request pattern
changes the system must take time to first ‘unlearn’ what
it knows about the effectiveness of the available configu-
rations and their constituent components, and then learn
new estimates. If the request pattern then reverts back to
its old form, the entire procedure must be repeated.

To optimize this, we augment our algorithm with the
ability to categorize request pattern features, and to update
its estimates accordingly. However, automatically deriv-
ing such categorizations in real-time is itself a challenging
problem. For this paper we manually define two features,
based on how we presume they will affect the web server.

The first feature is entropy, describing the number
of different resources requested in a given time frame.
High entropy indicates many different resources, while

Algorithm 2 Learning Algorithm

1: //matrix of all available xconf vectors (configurations)
2: actionMatrix = assembly.getConfigs()
3: X = new Matrix() //list of observed xconf’s to date
4: y = new Vector() //list of rewards seen for each X
5: n = 0
6: while running do
7: //do linear regression & sample from posterior
8: Λ = XT X +Λ0
9: β = Λ−1(Λ0β̃ +XT y)

10: a = a0 +(n/2)
11: b = b0 +(yT y+ β̃ T Λ0β̃ −β T Λβ )×0.5
12: σ2 = new InverseGamma(a,b).sample()
13: sample = new Normal(β ,σ2Λ−1).sample()
14:
15: //select the new configuration to use
16: i = argmax(actionMatrix∗ sample)
17: assembly.setConfig(i)
18:
19: //wait for 10 seconds, then record observations
20: result = 1/perception.getAverageMetric()
21: add row i of actionMatrix as new row of X
22: add result as new element of y
23: n++
24: end while

zero entropy indicates a single resource requested re-
peatedly. A pattern with low entropy, where many re-
quests are the same, may benefit from configurations us-
ing a caching component, while for high entropy patterns
caching would not help, and may even be detrimental.

The second feature is text volume, describing how much
of the content requested in a given time frame was textual
(i.e., HTML, CSS or other text-based content). A request
pattern with high text content will likely be served better
by a configuration that makes use of a compression com-
ponent, as text is highly compressible, whereas a request
pattern with high image or video content would waste re-
sources by using compression and achieve little as a result.

We have implemented a simple pattern-matching mod-
ule that observes the stream of events from our perception
module and classifies them as follows: if one type of re-
quest (video, text, or image) makes up more than half of
the requests in an observation window, it is assumed the
request pattern has ‘low’ entropy, and otherwise ‘high’.
If more than half of the requests made in an observation
window are for text items, it is assumed that the request
pattern currently is ‘high’ text, otherwise ‘low’.

To incorporate these environment features in our learn-
ing approach, we add terms to Equation 1 corresponding
to these features, and also interaction terms between en-
vironmental indicators and components we believe to be
relevant. In particular, we expect text volume to affect the
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benefit of compression, and entropy to affect the benefit of
caching. Equation 1 is therefore modified to consist of the
following indicators, each with a regression coefficient βi:

(1,IRequestPT,IHiEnt,IHiTxt,IHttpCMP(LowTxt),

IHttpCMP(HiTxt),IHttpCH(LowEnt),IHttpCH(HiEnt),

IHttpCHCMP(LowTxt,LowEnt),IHttpCHCMP(HiTxt,LowEnt),

IHttpCHCMP(LowTxt,HiEnt),IHttpCHCMP(HiTxt,HiEnt),

IDeflate,ICacheFS,ICacheLFU,ICacheMRU,

ICacheLRU,ICacheRR). (2)
Adding the environment indicators, and splitting the in-

dicators for different HTTP handlers by the environment,
adds 7 extra regression coefficients. It also increases the
number of possible ‘configurations’ to 42× 4 = 168, as
each configuration can now be observed in 4 environment
states. After a configuration is deployed, the resulting
vector xconf of an observation window includes the envi-
ronment indicators and interaction indicators (i.e., all the
indicators in Equation 2). The linear regression proceeds
as before, but with k increased so that we still have one
regression coefficient per indicator (in this case k = 18).

When it is time to select an action, we sample a β value
from our posterior distribution as before, and multiply the
action matrix by β to give the predicted value. However,
not all configurations are available to us, since some are
determined by the environment. We make the simplifying
assumption that the environmental context in the current
time period will be the same as in the previous period, and
restrict our configuration to those that correspond to that
environment. It is plausible that a model of the evolution
of the environment could be built and used to improve the
prediction of values, but is beyond the scope of this paper.

The effect of this enhancement is that components’ per-
formance levels in different environments may be updated
without having to forget information when the environ-
ment changes. We see the benefit of this in Sec. 3.3.

3 Experimental Evaluation
The goal of our evaluation is to investigate whether op-

timal designs of a software system emerge rapidly using
real-time learning. Specifically, we evaluate our approach
in three key ways. We first examine the speed with which
runtime adaptation occurs. This helps to show the via-
bility of emergent software at runtime, which may fre-
quently adapt in exploration periods. Second, we man-
ually analyze the different possible compositions of our
web server as a baseline, demonstrating that different op-
timals exist in different operating environments as a result
of micro-variation. This validates our emergent software
approach. Third, we examine REX in operation, particu-
larly the effectiveness of our online learning approach to
discover optimal compositions of behavior in real time.

Our evaluation is conducted using a real, live im-
plementation of the emergent web server described in

Average Maximum Minimum 

setConfig (idle) 509.60 ms 615.00 ms 397.00 ms 

setConfig (busy) 1350.32 ms 5811.00 ms 510.00 ms 

pause/resume (idle) 8.50 µs 9.94 µs 7.81 µs 

pause/resume (busy) 13.22 µs 31.21 µs 8.51 µs 

pauseObject/resumeObject (idle) 4.51 µs 5.34 µs 3.84 µs 

pauseObject/resumeObject (busy) 28.54 µs 387.17 µs 4.35 µs 

components adapted in setConfig() 1.22 3.00 1.00 

Table 1 – Adaptation speed measured in different ways, from
full configuration changes to individual component adaptations.

Sec. 2.3.1, orchestrated by REX. We run our system on
commodity rackmount servers, hosted in a production dat-
acenter, of a similar design to many datacenters around
the world. In particular we used servers with Intel Xeon
Quad Core 3.60 GHz CPUs and 16 GB of RAM, run-
ning Ubuntu Server 14.04. Similar machines were used as
clients when generating workloads for our system, where
client machines were situated on a different subnet (in a
different physical building) to the server machines.

All of our source code, with instructions on how to re-
produce all results reported here, is available online at [4].

3.1 Adaptation characteristics
We use our highly adaptive Dana programming lan-

guage (see Sec. 2.1) to support low-cost adaptation. This
is a key enabler of emergent software systems, which
must be able to experiment with various configurations
and adapt to those configurations when appropriate dur-
ing program execution. In this section we evaluate the
time taken to perform runtime adaptation in detail.

We consider two factors in performing runtime adap-
tation: the overall time taken by REX to move from one
complete configuration to another; and the time taken to
perform a single adaptation between two components. For
each test we perform 100 configuration changes (moving
to each of our 42 configurations at least twice) with a 5
second gap between each configuration change. Across
all tests we assume that any components needed are al-
ready loaded into memory and ready for use.

The first of the factors we consider, moving from one
complete configuration to another, involves parsing a con-
figuration string passed to setConfig(), verifying the
validity of a configuration, and performing the staged
adaptation procedure for each point at which the new
configuration differs from the current one. The first two
rows in Table 1 show the average, maximum and mini-
mum time taken to do this across 100 tests. The first row,
marked ‘idle’, shows results when the web server is given
no workload, while the second row marked ‘busy’ shows
results when the web server is given a workload that
causes it to use 100% CPU capacity. This indicates that
the use of setConfig() is generally slower when the
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web server is busy. There are two reasons for this: first,
setConfig() is processed on the same physical ma-
chine as the system under its control and so is given less
CPU time when that system is busy; and second, when
more requests are in progress at the web server, the adap-
tation protocol must wait longer for in-progress cross-
component calls to finish (i.e., at waitForObject).

We now examine the time taken to perform a single
adaptation between two components, using the adaptation
protocol described in Sec. 2.1.2. This reveals the time that
a part of the web server is actually paused and will there-
fore delay performance of one or more of its tasks. This
can happen for two reasons: the pause operation on a re-
quired interface, which temporarily prevents new objects
from being instantiated until resume is called, or the
pauseObject operation on a particular object, which
temporarily prevents any new function calls being made
into that object until resumeObject is called. For these
results we first note the difference in time unit compared
to the above: pause durations are on the order of microsec-
onds. With an idle web server, pause durations are higher
across pause/resume as the base complexity of these
instructions is higher (in particular building the object list
rob js). Under load, however, pause durations are domi-
nated by pauseObject/resumeObject, as the list of
held inter-object threads oht grows quickly and must then
be iterated over to release each one (see Sec. 2.1.2).

The final row in Table 1 shows the average, maximum
and minimum number of adaptations made during one
setConfig() operation, indicating how many of the
above microsecond pauses will occur for our web server
during a configuration change. This is very low in our sys-
tem, with a maximum of just three adaptations. This indi-
cates that system configuration changes during emergent
software exploration – which occur at 10 second intervals
under our learning algorithm – will be of low impact.

3.2 Manual analysis of divergent optimality
Our approach to emergent software uses small software

components, with differing implementations of the same
features such as varied cache replacement algorithms, to
enable optimal software to emerge by trying differing
combinations of these components at runtime.

In this section we validate this approach, in particular
showing that there are different configurations of our web
server with different performance profiles under different
operating environment ranges – necessitating the need to
switch between them in order to maintain optimality over
time. We refer to this property as divergent optimality. To
understand whether or not divergent optimal configura-
tions exist for our web server, we run every possible con-
figuration against various client workload patterns. We
then examine the resulting performance of each configu-
ration, measured at the server as the time between receiv-
ing a request and sending the last byte of the response.

Request 
pattern 

File size (b) 
[GZ] Default Caching 

Caching & 
compression 

Text 
low entropy 

156,983  
[12,757] 11.94 ms 9.56 ms 0.70 ms 

Text 
low entropy 

82,628 
[11,949] 4.05 ms 0.60 ms 0.66 ms 

Text 
low entropy 

3,869 
[1,930] 1.18 ms 0.59 ms 0.63 ms 

Image 
low entropy 

1,671,167 
[1,667,464] 160.81 ms 150.72 ms 154.42 ms 

Image 
low entropy 

84,760 
[66,914] 4.02 ms 0.66 ms 0.74 ms 

Image 
low entropy 

4,001 
[3,895] 1.22 ms 0.55 ms 0.62 ms 

Text 
high entropy 

156,983 
[12,757] 19.27 ms 19.66 ms 3.04 ms 

Text 
high entropy 

82,628 
[11,949] 4.61 ms 3.27 ms 3.07 ms 

Text 
high entropy 

3,869 
[1,930] 1.25 ms 2.93 ms 2.52 ms 

Image 
high entropy 

1,671,167 
[1,667,464] 156.50 ms 156.64 ms 157.66 ms 

Image 
high entropy 

84,760 
[66,914] 4.48 ms 3.19 ms 2.94 ms 

Image 
high entropy 

4,001 
[3,895] 1.30 ms 2.90 ms 2.67 ms 

Table 2 – Results of different configurations under different re-
quest patterns, showing average response times. The standard
deviation throughout these results is low, at around 0.2.

Our results are shown in Table 2, which lists the fastest
configuration from each group of configurations (i.e., the
fastest configuration that uses neither caching nor com-
pression, the fastest that uses caching, and the fastest that
uses both caching and compression). We do not show re-
sults for configurations that only use compression, as they
reliably perform worst across all of our experiments.

First we subject all configurations to client request pat-
terns with low entropy. We divide this into two sub-
categories: text-dominated and image-dominated. The
results are shown in the top half of Table 2, which
also shows the general size of the files being requested
along with the compressed size of these files using the
GZip algorithm. For almost all of these low entropy re-
quest patterns, configurations with caching perform best –
marginally better than those with both caching and com-
pression. On investigation, this is because our configura-
tions that use both compression and caching actually use
slightly more instructions to check if a compressed ver-
sion of a file is in the cache (i.e., they append ‘.gz’ to the
resource name before checking if that resource is in the
cache). In most cases this slight delay is larger than the
added network delay of sending the uncompressed ver-
sion of the file. When the compression win is big enough,
however, as in the first row of Table 2, the reverse is true
and the caching plus compression solution is faster.

Next we subject all configurations to client request pat-
terns with high entropy; specifically patterns that cycle
through a set of 20 popular files. The corresponding re-
sults are shown in the lower half of Table 2, again divided
into text-dominated and image-dominated requests. Here
we see a different picture: in half of the tests, configu-
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rations without caching or compression are fastest. This
is because, in these cases, reading from the local disk is
very slightly faster than searching the cache. On investi-
gation, in cache implementations that use a hash table this
is caused by collisions in the hash function which then
result in a linear search of a hash table bucket, adding la-
tency. However, this result is reversed for the other half of
these results, when the average compression ratio of the
files being requested is sufficiently high that the network
bandwidth saving overtakes the cache search latency.

These results confirm there are different optimal config-
urations of components that can form our target system in
different environments. Low entropy and high text condi-
tions favor configurations with caching and compression;
low entropy and low text conditions favor configurations
with caching only; and high entropy conditions favor a
mixture of configurations. The subtleties within these re-
sults, and the fact that issues such as disk/memory latency
will vary across machines, further motivate a real-time,
machine-learning-based solution to building software.

3.3 Learning evaluation
We now examine the efficacy of REX at discovering the

above results, on a live system, starting from no informa-
tion. While some of these results may be obvious to a
human observer, we provide the first example of an au-
tonomous system able to rapidly assemble a correspond-
ing solution at runtime. Our learning system uses only
events and metrics reported by components of the live web
server (Sec. 2.3.1), alongside the ability to dynamically
assemble different configurations of discovered compo-
nents, to find the best course of action over time.

By default our learning approach tries to maximize
1/responseTime. Accordingly, we configure our learning
algorithm with β̃0 = 1, which is larger than the reciprocal
of the response times in Table 2. The standard deviations
in this data are on the order of 0.2, and we thus set b0 = 0.1
so these are on a similar scale to

√
b0/2.

As a theoretical baseline learning comparison, consider
an approach that tests each configuration once before se-
lecting the one that performed best. This takes 42 testing
iterations before there is a chance of reaching optimal-
ity (as there are 42 available configurations), even with-
out any noise in the observations whereby a configuration
may need to be tested multiple times. Assuming each such
test takes 10 seconds to get an average response time, this
means a total of 420 seconds (7 minutes) to reach opti-
mality. If successful, our approach should perform signif-
icantly better than this baseline in most cases.

We use a range of request patterns to evaluate our
emergent software system, starting with simpler patterns.
Each experiment is repeated 1,000 times and the in-
terquartile ranges plotted. Each graph is plotted as re-
gret, which is calculated as (1/responseTime)chosenAction−
(1/responseTime)optimalAction for each point in time
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Figure 6 – Learning using response times to small text files.
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Figure 7 – Learning using response times to large text files, with
adjusted prior values for β̃0 and b0.

(where knowledge of the optimal actions over time is
based on our manual analysis of these request patterns).
Specifically, the shaded boxes on these graphs show the
size of the interquartile range from the distribution of re-
gret results at each time step across all 1,000 experiments.
The horizontal line dividing each shaded box is the me-
dian value. The whiskers above / below the shaded boxes
show the highest / lowest results across all experiments.

Fig. 6 shows results for request patterns of small HTML
files with low entropy. Here we see a dramatic reduction
in regret after only a few iterations (where one ‘iteration’
represents a 10-second observation window). Although
high regret is occasionally seen after this point, this is an
inevitable artefact of continual exploration. Very good re-
sponse times are learned here after just 50 seconds, which
is significantly faster than the baseline described above.
This demonstrates that our learning approach, based on
estimating individual component contribution and then
sharing information across all potential configurations, is
very effective at avoiding exhaustive experimentation.

In Fig. 7 we show results for request patterns of large
HTML files with low entropy. Here we see that the scale
of our rewards has changed – i.e., the average response
time for larger files is higher (almost 10 times) and as
such our prior parameters were observed not to match
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Figure 8 – Learning without (left) and with (right) categorization on a request pattern that changes every ten iterations.
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Figure 9 – Learning using response times to a realistic (and
highly varying) request pattern, using the NASA server trace [2].

the data. For this experiment we therefore used adjusted
prior parameters β̃0 and b0 that were each divided by 10
compared to the previous test. Again we see rapid con-
vergence on an optimal software assembly, this time at
around 20 iterations of the learning algorithm (roughly
200 seconds). The longer convergence time here is due to
there being fewer samples from which to draw informa-
tion (i.e., serving each request takes longer, providing less
data per observation time window). Note that good prior
values can easily be chosen automatically by sampling re-
sponse times and calculating their mean and variance.

In Fig. 9 we show results from a real-world web server
workload of highly mixed resource requests, taken from
the publicly available NASA server trace [2]. This is a
challenging request pattern due to its high variance over
time, in which different kinds of resource are requested in
very different volumes. As a result our learning approach
finds it more difficult to compare like-for-like results as
different configurations are tested. Initially regret here is
generally high, but decreases steadily up to the 40th iter-
ation mark. Overall the system still shows increased per-
formance at least as well as our baseline.

Finally, we examine situations in which request pat-
terns change between different characteristics of entropy

and text volume, showing the ability of our platform to
adjust to new external stimuli and remember historical in-
formation. This is demonstrated in Fig. 8, showing the
results of tests in which the request pattern is alternated
every ten iterations. When the system operates without
categorization, shown on the left of Fig. 8, there is no clear
change in regret as it must constantly ‘forget’ and ‘re-
learn’ estimates due to the shifting performance of config-
urations that it observes. However, with categorization the
system exhibits learning behavior for the first two changes
in request pattern, and then consistently makes low-regret
choices despite the alternation between patterns. There
is a brief increase in regret each time the request pat-
tern changes, caused by the learning algorithm needing
one observation window in which to observe the changes.
This demonstrates that our addition of a simple pattern-
matching system achieves the desired effect.

Overall, our results show rapid convergence on optimal
software which emerge from online experimentation with
different available configurations, with very little informa-
tion about the nature of the target software system and the
deployment conditions that it may experience. REX can
be deployed on any hardware configuration (which may
change the effects seen in Sec. 3.2), and in any deploy-
ment environment conditions, and will continually find
the most effective system design. More broadly, REX can
also show the rationale behind its choices to human devel-
opers, potentially leading to new development directions.

4 Related Work
While autonomic, self-adaptive and self-organizing

computing are now well established, there is relatively
little work at the level of autonomous runtime software
composition (compared to a much larger body of work
on autonomous parametric tuning). The majority of this
work is model-driven – relying on substantial human-
specification or offline training cycles, or using simple
online heuristic search algorithms over carefully specified
models. We survey the most closely related work below.
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Grace et al. propose the use of human-specified adap-
tation policies to select between different communication
interfaces in a river-monitoring scenario [17]. While the
use of such adaptation policies is viable in simpler archi-
tectures, this becomes infeasible in more complex config-
urations where the set of component interactions is much
larger. We therefore use an online learning approach to
effectively discover the adaptation policy at runtime.

Chen et al. propose a weighted decision graph of ser-
vice levels to generate model transformations in an online
shopping system [10]. Wang et al., meanwhile, propose
a framework that exploits variability of software config-
urations for self-repair, using a goal model based on for-
mal requirements [33]. By contrast we use a model-free
approach in which components report their own current
status from which we then infer global properties.

Bencomo et al. propose dynamic decision networks (a
form of state machine), alongside a models-at-runtime
approach to software composition, to decide at runtime
between different network topologies for a remote data
mirroring system based on perceived resilience levels [6].
This requires pre-specification of the decision network to
determine configuration selection, rather than the online
learning approach we take for emergent software.

Kouchnarenko and Weber propose the use of
temporally-dependent logic to control software con-
figuration, with a domain-specific notation to model
temporal dependencies between adaptation actions in
a self-driving vehicle control system [20]. While such
temporal models may be a useful addition to constrain
adaptation, they are again specified by human developers
at design time rather than learned at runtime.

In FUSION [12], a feature-model framework is pre-
sented that uses offline training combined with online tun-
ing to activate and deactivate selected feature modules at
runtime (such as security or logging). Dynamic Software
Product Lines [18] generalize the feature model approach
as part of the software development process, typically us-
ing a pre-specified set of rules to trigger feature activation
/ deactivation at runtime. Our approach does not use a
feature model, instead emerging a working system from a
pool of components using online learning.

In SASSY [23], a self-adaptive architecture framework
for service-oriented software is presented, using a set
of models to describe software architecture and its QoS
traits. Further work by Ewing and Menascé [13] applies
a set of runtime heuristic search algorithms to the config-
uration search problem, including hill climbing and ge-
netic algorithms. Our work differs in two ways: first
we use a model-free approach, in which system compo-
sition is autonomously driven from a ‘main’ component;
and second we apply a statistical machine learning ap-
proach to configuration search, based on sharing inferred
per-component performance data across configurations.

Finally, we note that Thompson sampling with regres-
sion was first proposed by Scott [27] to select likely high
performing versions of websites (i.e., with high vs. low
quality images), updating beliefs on similar versions with-
out needing to try each individually. We have applied this
concept to runtime emergent software, but using Bayesian
linear regression (rather than probit regression) to han-
dle continuously distributed results, and a simple pattern
matching approach to account for distinct workload pat-
terns that cause different optimal software configurations.

5 Conclusion
Current approaches to self-adaptive software architec-

tures require significant expertise in building models,
policies and processes to define how and when software
should adapt to its environment. We have presented
a novel approach to runtime emergent software which
avoids all such expertise, using purely machine-driven de-
cisions about the assembly and adaptation of software.
The result is to almost entirely remove human involve-
ment in how self-adaptive systems behave, making this
machine-led; and to produce systems that are responsive
to the actual conditions that they encounter at runtime, and
the way they perceive their behavior in these conditions.

Our approach has three major contributions that form
our REX platform: a programming language for highly-
adaptive assemblies of behaviors; a perception, assembly
and learning framework to discover, monitor and control
available assemblies; and a learning approach based on
linear bandits that solves the resulting search space explo-
sion by sharing information across assemblies.

Our results show that our approach is highly effective
at rapidly discovering optimal compositions of behavior
in a web server example, balancing exploration with ex-
ploitation, and is also highly responsive to changes in the
software’s deployment environment conditions over time.

In our future work we will broaden our approach to
other types of application, and will also explore the auto-
mated generation of component variants, and further au-
tomation in environment classification. In the longer term
we will continue to work towards shifting the system de-
sign paradigm even further into software itself – making
software a leading member of its own development team.
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[23] D. Menascé, H. Gomaa, S. Malek, and J. Sousa.
SASSY: A Framework for Self-Architecting
Service-Oriented Systems. Software, IEEE,
28(6):78–85, Nov 2011.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation    347

http://www.projectdana.com/
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
https://www.osgi.org/
http://research.projectdana.com/osdi2016porter


[24] A. O’Hagan. Kendall’s Advanced Theory of Statis-
tics: Bayesian inference. vol. 2B. Number v. 2, pt.
2 in Kendall’s library of statistics. Edward Arnold,
1994.

[25] D. Russo and B. Van Roy. Learning to optimize via
posterior sampling. Mathematics of Operations Re-
search, 39(4):1221–1243, 2014.

[26] M. Salehie and L. Tahvildari. Self-adaptive soft-
ware: Landscape and research challenges. ACM
Transactions on Autonomous and Adaptive Systems
(TAAS), 4(2):14, 2009.

[27] S. L. Scott. A modern bayesian look at the multi-
armed bandit. Applied Stochastic Models in Busi-
ness and Industry, 26(6):639–658, 2010.

[28] C. Soules, J. Appavoo, K. Hui, R. Wisniewski,
D. Da Silva, G. Ganger, O. Krieger, M. Stumm,
M. Auslander, M. Ostrowski, B. Rosenburg, and
J. Xenidis. System support for online reconfigura-
tion. In Proceedings of the USENIX Annual Techni-
cal Conference, pages 141–154, June 2003.

[29] C. Szyperski, D. Gruntz, and S. Murer. Compo-
nent Software: Beyond Object-Oriented Program-
ming. Acm Press Series. ACM Press, 2002.

[30] W. R. Thompson. On the Likelihood that one un-
known probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4):285–
294, 1933.

[31] S. Tomforde, J. Hähner, and C. Müller-Schloer. In-
cremental design of organic computing systems -
moving system design from design-time to runtime.
In Proceedings of the 10th International Conference
on Informatics in Control, Automation and Robotics,
pages 185–192, 2013.

[32] Y. Vandewoude, P. Ebraert, Y. Berbers, and
T. D’Hondt. Tranquility: A low disruptive alter-
native to quiescence for ensuring safe dynamic up-
dates. IEEE Transactions on Software Engineering,
33(12):856–868, 2007.

[33] Y. Wang and J. Mylopoulos. Self-repair through
reconfiguration: A requirements engineering ap-
proach. In Proceedings of the 2009 IEEE/ACM In-
ternational Conference on Automated Software En-
gineering, pages 257–268. IEEE Computer Society,
2009.

348    12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association


	Introduction
	Approach
	Dana: An implementation platform for runtime adaptive micro-variation
	Fusing third-party system composition with first-party instantiation
	A protocol for seamless runtime adaptation
	Structuring for discoverable code
	Interface to higher system layers

	Perception, Assembly and Learning
	Assembly
	Perception
	Learning
	Interface to higher system layers

	Linear bandits for rapid emergence
	Problem definition
	The Multi-armed Bandit Formulation
	Forming beliefs
	Implementation
	Handling deployment environment changes


	Experimental Evaluation
	Adaptation characteristics
	Manual analysis of divergent optimality
	Learning evaluation

	Related Work
	Conclusion



