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Learning, Regret minimization, and Equilibria

A. Blum and Y. Mansour

Abstract

Many situations involve repeatedly making decisions in an uncertain envi-

ronment: for instance, deciding what route to drive to work each day, or

repeated play of a game against an opponent with an unknown strategy. In

this chapter we describe learning algorithms with strong guarantees for set-

tings of this type, along with connections to game-theoretic equilibria when

all players in a system are simultaneously adapting in such a manner.

We begin by presenting algorithms for repeated play of a matrix game with

the guarantee that against any opponent, they will perform nearly as well as

the best fixed action in hindsight (also called the problem of combining expert

advice or minimizing external regret). In a zero-sum game, such algorithms

are guaranteed to approach or exceed the minimax value of the game, and

even provide a simple proof of the minimax theorem. We then turn to

algorithms that minimize an even stronger form of regret, known as internal

or swap regret. We present a general reduction showing how to convert any

algorithm for minimizing external regret to one that minimizes this stronger

form of regret as well. Internal regret is important because when all players

in a game minimize this stronger type of regret, the empirical distribution

of play is known to converge to correlated equilibrium.

The third part of this chapter explains a different reduction: how to con-

vert from the full information setting in which the action chosen by the

opponent is revealed after each time step, to the partial information (ban-

dit) setting, where at each time step only the payoff of the selected action

is observed (such as in routing), and still maintain a small external regret.

Finally, we end by discussing routing games in the Wardrop model, where

one can show that if all participants minimize their own external regret, then
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overall traffic is guaranteed to converge to an approximate Nash Equilibrium.

This further motivates price-of-anarchy results.

4.1 Introduction

In this chapter we consider the problem of repeatedly making decisions in an

uncertain environment. The basic setting is we have a space of N actions,

such as what route to use to drive to work, or the rows of a matrix game like

{rock, paper, scissors}. At each time step, the algorithm probabilistically

chooses an action (say, selecting what route to take), the environment makes

its “move” (setting the road congestions on that day), and the algorithm

then incurs the loss for its action chosen (how long its route took). The

process then repeats the next day. What we would like are adaptive algo-

rithms that can perform well in such settings, as well as to understand the

dynamics of the system when there are multiple players, all adjusting their

behavior in such a way.

A key technique for analyzing problems of this sort is known as regret

analysis. The motivation behind regret analysis can be viewed as the fol-

lowing: we design a sophisticated online algorithm that deals with various

issues of uncertainty and decision making, and sell it to a client. Our algo-

rithm runs for some time and incurs a certain loss. We would like to avoid

the embarrassment that our client will come back to us and claim that in

retrospect we could have incurred a much lower loss if we used his simple

alternative policy π. The regret of our online algorithm is the difference

between the loss of our algorithm and the loss using π.

Different notions of regret quantify differently what is considered to be

a “simple” alternative policy. External regret, also called the problem of

combining expert advice, compares performance to the best single action in

retrospect. This implies that the simple alternative policy performs the same

action in all time steps, which indeed is quite simple. Nonetheless, exter-

nal regret provides a general methodology for developing online algorithms

whose performance matches that of an optimal static offline algorithm by

modeling the possible static solutions as different actions. In the context of

machine learning, algorithms with good external regret bounds can be pow-

erful tools for achieving performance comparable to the optimal prediction

rule from some large class of hypotheses.

In Section 4.3 we describe several algorithms with particularly strong

external regret bounds. We start with the very weak greedy algorithm,

and build up to an algorithm whose loss is at most O(
√

T log N) greater

than that of the best action, where T is the number of time steps. That is,
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the regret per time step drops as O(
√

(log N)/T ). In Section 4.4 we show

that in a zero-sum game, such algorithms are guaranteed to approach or

exceed the value of the game, and even yield a simple proof of the minimax

theorem.

A second category of alternative policies are those that consider the online

sequence of actions and suggest a simple modification to it, such as “every

time you bought IBM, you should have bought Microsoft instead”. While

one can study very general classes of modification rules, the most common

form, known as internal or swap regret, allows one to modify the online

action sequence by changing every occurrence of a given action i by an

alternative action j. (The distinction between internal and swap regret

is that internal regret allows only one action to be replaced by another,

whereas swap regret allows any mapping from {1, . . . ,N} to {1, . . . ,N} and

can be up to a factor N larger). In Section 4.5 we present a simple way to

efficiently convert any external regret minimizing algorithm into one that

minimizes swap regret with only a factor N increase in the regret term.

Using the results for external regret this achieves a swap regret bound of

O(
√

TN log N). (Algorithms for swap regret have also been developed from

first principles — see the Notes section of this chapter for references — but

this procedure gives the best bounds known for efficient algorithms).

The importance of swap regret is due to its tight connection to correlated

equilibria, defined in Chapter 1. In fact, one way to think of a correlated

equilibrium is that it is a distribution Q over the joint action space such

that every player would have zero internal (or swap) regret when playing it.

As we point out in Section 4.4, if each player can achieve swap regret ǫT ,

then the empirical distribution of the joint actions of the players will be an

ǫ-correlated equilibrium.

We also describe how external regret results can be extended to the partial

information model, also called the multi-armed bandit (MAB) problem. In

this model, the online algorithm only gets to observe the loss of the action

actually selected, and does not see the losses of the actions not chosen. For

example, in the case of driving to work, you may only observe the travel time

on the route you actually drive, and do not get to find out how long it would

have taken had you chosen some alternative route. In Section 4.6 we present

a general reduction, showing how to convert an algorithm with low external

regret in the full information model to one for the partial information model

(though the bounds produced not the best known bounds for this problem).

Notice that the route-choosing problem can be viewed as a general-sum

game: your travel time depends on the choices of the other drivers as well.

In Section 4.7 we discuss results showing that in the Wardrop model of



Learning, Regret minimization, and Equilibria 7

infinitesimal agents (considered in Chapter 18), if each driver acts to mini-

mize external regret, then traffic flow over time can be shown to approach

an approximate Nash equilibrium. This serves to further motivate price-of-

anarchy results in this context, since it means they apply to the case that

participants are using well-motivated self-interested adaptive behavior.

We remark that the results we present in this chapter are not always the

strongest known, and the interested reader is referred to the recent book

[CBL06] which gives a thorough coverage of many of the the topics in this

chapter. See also the Notes section for further references.

4.2 Model and Preliminaries

We assume an adversarial online model where there are N available actions

X = {1, . . . , N}. At each time step t, an online algorithm H selects a

distribution pt over the N actions. After that, the adversary selects a loss

vector ℓt ∈ [0, 1]N , where ℓt
i ∈ [0, 1] is the loss of the i-th action at time t. In

the full information model, the online algorithm H receives the loss vector ℓt

and experiences a loss ℓt
H =

∑N
i=1 pt

iℓ
t
i. (This can be viewed as an expected

loss when the online algorithm selects action i ∈ X with probability pt
i.) In

the partial information model, the online algorithm receives (ℓt
kt, kt), where

kt is distributed according to pt, and ℓt
H = ℓt

kt is its loss. The loss of the

i-th action during the first T time steps is LT
i =

∑T
t=1 ℓt

i, and the loss of H

is LT
H =

∑T
t=1 ℓt

H .

The aim for the external regret setting is to design an online algorithm that

will be able to approach the performance of the best algorithm from a given

class of algorithms G; namely, to have a loss close to LT
G,min = ming∈G LT

g .

Formally we would like to minimize the external regret RG = LT
H − LT

G,min,

and G is called the comparison class. The most studied comparison class G
is the one that consists of all the single actions, i.e., G = X. In this chapter

we concentrate on this important comparison class, namely, we want the

online algorithm’s loss to be close to LT
min = mini LT

i , and let the external

regret be R = LT
H − LT

min.

External regret uses a fixed comparison class G, but one can also envision

a comparison class that depends on the online algorithm’s actions. We can

consider modification rules that modify the actions selected by the online

algorithm, producing an alternative strategy which we will want to compete

against. A modification rule F has as input the history and the current

action selected by the online procedure and outputs a (possibly different)

action. (We denote by F t the function F at time t, including any dependency

on the history.) Given a sequence of probability distributions pt used by an
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online algorithm H, and a modification rule F , we define a new sequence

of probability distributions f t = F t(pt), where f t
i =

∑

j:F t(j)=i pt
j. The loss

of the modified sequence is LH,F =
∑

t

∑

i f t
i ℓ

t
i. Note that at time t the

modification rule F shifts the probability that H assigned to action j to

action F t(j). This implies that the modification rule F generates a different

distribution, as a function of the online algorithm’s distribution pt.

We will focus on the case of a finite set F of memoryless modification

rules (they do not depend on history). Given a sequence of loss vectors, the

regret of an online algorithm H with respect to the modification rules F is

RF = max
F∈F

{LT
H − LT

H,F}.

Note that the external regret setting is equivalent to having a set Fex of N

modification rules Fi, where Fi always outputs action i. For internal regret,

the set F in consists of N(N − 1) modification rules Fi,j, where Fi,j(i) = j

and Fi,j(i
′) = i′ for i′ 6= i. That is, the internal regret of H is

max
F∈F in

{LT
H − LT

H,F } = max
i,j∈X

{

T
∑

t=1

pt
i(ℓ

t
i − ℓt

j)

}

.

A more general class of memoryless modification rules is swap regret de-

fined by the class Fsw, which includes all NN functions F : {1, . . . ,N} →
{1, . . . , N}, where the function F swaps the current online action i with F (i)

(which can be the same or a different action). That is, the swap regret of

H is

max
F∈Fsw

{LT
H − LT

H,F } =
N

∑

i=1

max
j∈X

{

T
∑

t=1

pt
i(ℓ

t
i − ℓt

j)

}

.

Note that since Fex ⊆ Fsw and F in ⊆ Fsw, both external and internal

regret are upper-bounded by swap regret. (See also Exercises 1 and 2.)

4.3 External Regret Minimization

Before describing the external regret results, we begin by pointing out that

it is not possible to guarantee low regret with respect to the overall optimal

sequence of decisions in hindsight, as is done in competitive analysis [ST85,

BEY98]. This will motivate why we will be concentrating on more restricted

comparison classes. In particular, let Gall be the set of all functions mapping

times {1, . . . , T} to actions X = {1, . . . ,N}.

Theorem 4.1 For any online algorithm H there exists a sequence of T loss

vectors such that regret RGall
is at least T (1 − 1/N).
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Proof The sequence is simply as follows: at each time t, the action it of

lowest probability pt
i gets a loss of 0, and all the other actions get a loss of 1.

Since mini{pt
i} ≤ 1/N , this means the loss of H in T time steps is at least

T (1−1/N). On the other hand, there exists g ∈ Gall, namely g(t) = it, with

a total loss of 0.

The above proof shows that if we consider all possible functions, we have a

very large regret. For the rest of the section we will use the comparison class

Ga = {gi : i ∈ X}, where gi always selects action i. Namely, we compare the

online algorithm to the best single action.

Warmup: Greedy and Randomized-Greedy Algorithms

In this section, for simplicity we will assume all losses are either 0 or 1 (rather

than a real number in [0, 1]), which will simplify notation and proofs, though

everything presented can be easily extended to the general case.

Our first attempt to develop a good regret minimization algorithm will

be to consider the greedy algorithm. Recall that Lt
i =

∑t
τ=1 ℓτ

i , namely the

cumulative loss up to time t of action i. The Greedy algorithm at each time

t selects action xt = arg mini∈X Lt−1
i (if there are multiple actions with the

same cumulative loss, it prefers the action with the lowest index). Formally:

Greedy Algorithm

Initially: x1 = 1.

At time t: Let Lt−1
min = mini∈X Lt−1

i , and St−1 = {i : Lt−1
i = Lt−1

min}.
Let xt = min St−1.

Theorem 4.2 The Greedy algorithm, for any sequence of losses has

LT
Greedy ≤ N · LT

min + (N − 1).

Proof At each time t such that Greedy incurs a loss of 1 and Lt
min does

not increase, at least one action is removed from St. This can occur at

most N times before Lt
min increases by 1. Therefore, Greedy incurs loss at

most N between successive increments in Lt
min. More formally, this shows

inductively that Lt
Greedy ≤ N − |St| + N · Lt

min .

The above guarantee on Greedy is quite weak, stating only that its loss is

at most a factor of N larger than the loss of the best action. The following

theorem shows that this weakness is shared by any deterministic online

algorithm. (A deterministic algorithm concentrates its entire weight on a

single action at each time step.)
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Theorem 4.3 For any deterministic algorithm D there exists a loss se-

quence for which LT
D = T and LT

min = ⌊T/N⌋.

Note that the above theorem implies that LT
D ≥ N · LT

min + (T mod N),

which almost matches the upper bound for Greedy (Theorem 4.2).

Proof Fix a deterministic online algorithm D and let xt be the action it

selects at time t. We will generate the loss sequence in the following way.

At time t, let the loss of xt be 1 and the loss of any other action be 0. This

ensures that D incurs loss 1 at each time step, so LT
D = T .

Since there are N different actions, there is some action that algorithm

D has selected at most ⌊T/N⌋ times. By construction, only the actions

selected by D ever have a loss, so this implies that LT
min ≤ ⌊T/N⌋.

Theorem 4.3 motivates considering randomized algorithms. In particular,

one weakness of the greedy algorithm was that it had a deterministic tie

breaker. One can hope that if the online algorithm splits its weight between

all the currently best actions, better performance could be achieved. Specifi-

cally, let Randomized Greedy (RG) be the procedure that assigns a uniform

distribution over all those actions with minimum total loss so far. We now

will show that this algorithm achieves a significant performance improve-

ment: its loss is at most an O(log N) factor from the best action, rather

than O(N). (This is similar to the analysis of the randomized marking

algorithm in competitive analysis).

Randomized Greedy (RG) Algorithm

Initially: p1
i = 1/N for i ∈ X.

At time t: Let Lt−1
min = mini∈X Lt−1

i , and St−1 = {i : Lt−1
i = Lt−1

min}.
Let pt

i = 1/|St−1| for i ∈ St−1 and pt
i = 0 otherwise.

Theorem 4.4 The Randomized Greedy (RG) algorithm, for any loss se-

quence, has

LT
RG ≤ (ln N) + (1 + ln N)LT

min .

Proof The proof follows from showing that the loss incurred by Randomized

Greedy between successive increases in Lt
min is at most 1+ln N . Specifically,

let tj denote the time step at which Lt
min first reaches a loss of j, so we are

interested in the loss of Randomized Greedy between time steps tj and tj+1.

At time any t we have 1 ≤ |St| ≤ N . Furthermore, if at time t ∈ (tj , tj+1] the

size of St shrinks by k from some size n′ down to n′− k, then the loss of the

online algorithm RG is k/n′, since each such action has weight 1/n′. Finally,
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notice that we can upper bound k/n′ by 1/n′+1/(n′−1)+. . .+1/(n′−k+1).

Therefore, over the entire time-interval (tj , tj+1], the loss of Randomized

Greedy is at most:

1/N + 1/(N − 1) + 1/(N − 2) + . . . + 1/1 ≤ 1 + ln N.

More formally, this shows inductively that Lt
RG ≤ (1/N + 1/(N − 1) + . . . +

1/(|St| + 1)) + (1 + ln N) · Lt
min.

Randomized Weighted Majority algorithm

Although Randomized Greedy achieved a significant performance gain com-

pared to the Greedy algorithm, we still have a logarithmic ratio to the best

action. Looking more closely at the proof, one can see that the losses are

greatest when the sets St are small, since the online loss can be viewed as

proportional to 1/|St|. One way to overcome this weakness is to give some

weight to actions which are currently “near best”. That is, we would like

the probability mass on some action to decay gracefully with its distance to

optimality. This is the idea of the Randomized Weighted Majority algorithm

of Littlestone and Warmuth.

Specifically, in the Randomized Weighted Majority algorithm, we give an

action i whose total loss so far is Li a weight wi = (1−η)Li , and then choose

probabilities proportional to the weights: pi = wi/
∑N

j=1 wj . The parameter

η will be set to optimize certain tradeoffs but conceptually think of it as a

small constant, say 0.01. In this section we will again assume losses in {0, 1}
rather than [0, 1] because it allows for an especially intuitive interpretation

of the proof (Theorem 4.5). We then relax this assumption in the next

section (Theorem 4.6).

Randomized Weighted Majority (RWM) Algorithm

Initially: w1
i = 1 and p1

i = 1/N , for i ∈ X.

At time t: If ℓt−1
i = 1, let wt

i = wt−1
i (1 − η); else (ℓt−1

i = 0) let wt
i = wt−1

i .

Let pt
i = wt

i/W
t, where W t =

∑

i∈X wt
i .

Algorithm RWM and Theorem 4.5 can be generalized to losses in [0, 1] by

replacing the update rule with wt
i = wt−1

i (1 − η)ℓ
t−1

i (see Exercise 3).

Theorem 4.5 For η ≤ 1/2, the loss of Randomized Weighted Majority

(RWM) on any sequence of binary {0, 1} losses satisfies:

LT
RWM ≤ (1 + η)LT

min +
ln N

η
.

Setting η = min{
√

(ln N)/T , 1/2} yields LT
RWM ≤ LT

min + 2
√

T ln N .
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(Note: the second part of the theorem assumes T is known in advance. If T is

unknown, then a “guess and double” approach can be used to set η with just

a constant-factor loss in regret. In fact, one can achieve the potentially better

bound LT
RWM ≤ LT

min+2
√

Lmin ln N by setting η = min{
√

(ln N)/Lmin, 1/2}.)

Proof The key to the proof is to consider the total weight W t. What we will

show is that any time the online algorithm has significant expected loss, the

total weight must drop substantially. We will then combine this with the

fact that W T+1 ≥ maxi w
T+1
i = (1 − η)L

T

min to achieve the desired bound.

Specifically, let F t = (
∑

i:ℓt

i
=1 wt

i)/W
t denote the fraction of the weight

W t that is on actions that experience a loss of 1 at time t; so, F t equals

the expected loss of algorithm RWM at time t. Now, each of the actions

experiencing a loss of 1 has its weight multiplied by (1 − η) while the rest

are unchanged. Therefore, W t+1 = W t − ηF tW t = W t(1 − ηF t). In other

words, the proportion of the weight removed from the system at each time

t is exactly proportional to the expected loss of the online algorithm. Now,

using the fact that W 1 = N and using our lower bound on W T+1 we have:

(1 − η)L
T

min ≤ W T+1 = W 1
T

∏

t=1

(1 − ηF t) = N
T

∏

t=1

(1 − ηF t).

Taking logarithms,

LT
min ln(1 − η) ≤ (ln N) +

T
∑

t=1

ln(1 − ηF t)

≤ (ln N) −
T

∑

t=1

ηF t

(Using the inequality ln(1 − z) ≤ −z)

= (ln N) − ηLT
RWM

(by definition of F t)

Therefore,

LT
RWM ≤ −LT

min ln(1 − η)

η
+

ln(N)

η

≤ (1 + η)LT
min +

ln(N)

η
,

(Using the inequality − ln(1 − z) ≤ z + z2 for 0 ≤ z ≤ 1

2
)

which completes the proof.
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Polynomial Weights algorithm

The Polynomial Weights (PW) algorithm is a natural extension of the RWM

algorithm to losses in [0, 1] (or even to the case of both losses and gains, see

Exercise 4) that maintains the same proof structure as that used for RWM

and in addition performs especially well in the case of small losses.

Polynomial Weights (PW) Algorithm

Initially: w1
i = 1 and p1

i = 1/N , for i ∈ X.

At time t: Let wt
i = wt−1

i (1 − ηℓt−1
i ).

Let pt
i = wt

i/W
t, where W t =

∑

i∈X wt
i .

Notice that the only difference between PW and RWM is in the update step.

In particular, it is no longer necessarily the case that an action of total loss

L has weight (1 − η)L. However, what is maintained is the property that

if the algorithm’s loss at time t is F t, then exactly an ηF t fraction of the

total weight is removed from the system. Specifically, from the update rule

we have W t+1 = W t − ∑

i ηwt
iℓ

t
i = W t(1 − ηF t) where F t = (

∑

i wt
iℓ

t
i)/W

t

is the loss of PW at time t. We can use this fact to prove the following:

Theorem 4.6 The Polynomial Weights (PW) algorithm, using η ≤ 1/2,

for any [0, 1]-valued loss sequence and for any k has,

LT
PW ≤ LT

k + ηQT
k +

ln(N)

η
,

where QT
k =

∑T
t=1(ℓ

t
k)

2. Setting η = min{
√

(ln N)/T , 1/2} and noting that

QT
k ≤ T , we have LT

PW ≤ LT
min + 2

√
T ln N.†

Proof As noted above, we have W t+1 = W t(1 − ηF t) where F t is PW’s loss

at time t. So, as with the analysis of RWM, we have W T+1 = N
∏T

t=1(1−ηF t)

and therefore:

ln W T+1 = ln N +
T

∑

t=1

ln(1 − ηF t) ≤ ln N − η
T

∑

t=1

F t = ln N − ηLT
PW.

Now for the lower bound, we have:

ln W T+1 ≥ ln wT+1
k

=
T

∑

t=1

ln(1 − ηℓt
k)

(using the recursive definition of weights)

† Again, for simplicity we assume that the number of time steps T is given as a parameter to
the algorithm; otherwise one can use a “guess and double” method to set η.
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≥ −
T

∑

t=1

ηℓt
k −

T
∑

t=1

(ηℓt
k)

2

(using the inequality ln(1 − z) ≥ −z − z2 for 0 ≤ z ≤ 1

2
)

= −ηLT
k − η2QT

k .

Combining the upper and lower bounds on lnW T+1 we have:

−ηLT
k − η2QT

k ≤ ln N − ηLT
PW,

which yields the theorem.

Lower Bounds

An obvious question is whether one can significantly improve the bound in

Theorem 4.6. We will show two simple results that imply that the regret

bound is near optimal (see Exercise 5 for a better lower bound). The first

result shows that one cannot hope to get sublinear regret when T is small

compared to log N , and the second shows that one cannot hope to achieve

regret o(
√

T ) even when N = 2.

Theorem 4.7 Consider T < log2 N . There exists a stochastic generation

of losses such that, for any online algorithm R1, we have E[LT
R1] = T/2 and

yet LT
min = 0.

Proof Consider the following sequence of losses. At time t = 1, a random

subset of N/2 actions get a loss of 0 and the rest get a loss of 1. At time

t = 2, a random subset of N/4 of the actions that had loss 0 at time t = 1

get a loss of 0, and the rest (including actions that had a loss of 1 at time

1) get a loss of 1. This process repeats: at each time step, a random subset

of half of the actions that have received loss 0 so far get a loss of 0, while

all the rest get a loss of 1. Any online algorithm incurs an expected loss of

1/2 at each time step, because at each time step t the expected fraction of

probability mass pt
i on actions that receive a loss of 0 is at most 1/2. Yet,

for T < log2 N there will always be some action with total loss of 0.

Theorem 4.8 Consider N = 2. There exists a stochastic generation of

losses such that, for any online algorithm R2, we have E[LT
R2 − LT

min] =

Ω(
√

T ).

Proof At time t, we flip a fair coin and set ℓt = z1 = (0, 1) with probability

1/2 and ℓt = z2 = (1, 0) with probability 1/2. For any distribution pt the
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expected loss at time t is exactly 1/2. Therefore any online algorithm R2

has expected loss of T/2.

Given a sequence of T such losses, with T/2+y losses z1 and T/2−y losses

z2, we have T/2−LT
min = |y|. It remains to lower bound E[|y|]. Note that the

probability of y is
( T
T/2+y

)

/2T , which is upper bounded by O(1/
√

T ) (using

a Sterling approximation). This implies that with a constant probability we

have |y| = Ω(
√

T ), which completes the proof.

4.4 Regret minimization and game theory

In this section we outline the connection between regret minimization and

central concepts in game theory. We start by showing that in a two player

constant sum game, a player with external regret sublinear in T will have

an average payoff that is at least the value of the game, minus a vanish-

ing error term. For a general game, we will see that if all the players use

procedures with sublinear swap-regret, then they will converge to an approx-

imate correlated equilibrium. We also show that for a player who minimizes

swap-regret, the frequency of playing dominated actions is vanishing.

Game theoretic model

We start with the standard definitions of a game (see also Chapter 1). A

game G = 〈M, (Xi), (si)〉 has a finite set M of m players. Player i has a set

Xi of N actions and a loss function si : Xi × (×j 6=iXj) → [0, 1] that maps

the action of player i and the actions of the other players to a real number.

(We have scaled losses to [0, 1].) The joint action space is X = ×Xi.

We consider a player i that plays a game G for T time steps using an online

procedure ON. At time step t, player i plays a distribution (mixed action)

P t
i , while the other players play the joint distribution P t

−i. We denote by

ℓt
ON the loss of player i at time t, i.e., Ex∼P t[si(x

t)], and its cumulative loss

is LT
ON =

∑T
t=1 ℓt

ON.† It is natural to define, for player i at time t, the loss

vector as ℓt = (ℓt
1, . . . , ℓ

t
N ), where ℓt

j = Ext

−i
∼P t

−i

[si(x
t
j , x

t
−i)]. Namely, ℓt

j

is the loss player i would have observed if at time t it had played action

xj. The cumulative loss of action xj ∈ Xi of player i is LT
j =

∑T
t=1 ℓt

j, and

LT
min = minj LT

j .

† Alternatively, we could consider xt

i
as a random variable distributed according to P t

i
, and

similarly discuss the expected loss. We prefer the above presentation for consistency with the
rest of the chapter.
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Constant sum games and external regret minimization

A two player constant sum game G = 〈{1, 2}, (Xi), (si)〉 has the property

that for some constant c, for every x1 ∈ X1 and x2 ∈ X2 we have s1(x1, x2)+

s2(x1, x2) = c. It is well known that any constant sum game has a well

defined value (v1, v2) for the game, and player i ∈ {1, 2} has a mixed strategy

which guarantees that its expected loss is at most vi, regardless of the other

player’s strategy. (See [Owe82] for more details.) In such games, external

regret-minimization procedures provide the following guarantee:

Theorem 4.9 Let G be a constant sum game with game value (v1, v2). If

player i ∈ {1, 2} plays for T steps using a procedure ON with external regret

R, then its average loss 1
T LT

ON is at most vi + R/T .

Proof Let q be the mixed strategy corresponding to the observed frequencies

of the actions player 2 has played; that is, qj =
∑T

t=1 P t
2,j/T , where P t

2,j is

the weight player 2 gives to action j at time t. By the theory of constant

sum games, for any mixed strategy q of player 2, player 1 has some action

xk ∈ X1 such that Ex2∼q[s1(xk, x2)] ≤ v1 (see [Owe82]). This implies, in

our setting, that if player 1 has always played action xk, then its loss would

be at most v1T . Therefore LT
min ≤ LT

k ≤ v1T . Now, using the fact that

player 1 is playing a procedure ON with external regret R, we have that

LT
ON ≤ LT

min + R ≤ v1T + R .

Thus, using a procedure with regret R = O(
√

T log N) as in Theorem 4.6

will guarantee average loss at most vi + O(
√

(log N)/T ).

In fact, we can use the existence of external regret minimization algo-

rithms to prove the minimax theorem of two-player zero-sum games. For

player 1, let v1
min = maxz∈∆(X2) minx1∈X1

Ex2∼z[s1(x1, x2)] and v1
max =

minz∈∆(X1) maxx2∈X2
Ex1∼z[s1(x1, x2)]. That is, v1

min is the best loss that

player 1 can guarantee for itself if it is told the mixed action of player 2

in advance. Similarly, v1
max is the best loss that player 1 can guarantee to

itself if it has to go first in selecting a mixed action, and player 2’s action

may then depend on it. The minimax theorem states that v1
min = v1

max.

Since s1(x1, x2) = −s2(x1, x2) we can similarly define v2
min = −v1

max and

v2
max = −v1

min.

In the following we give a proof of the minimax theorem based on the ex-

istence of external regret algorithms. Assume for contradiction that v1
max =

v1
min + γ for some γ > 0 (it is easy to see that v1

max ≥ v1
min). Consider both

players playing a regret minimization algorithm for T steps having external

regret of at most R, such that R/T < γ/2. Let LON be the loss of player 1
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and note that −LON is the loss of player 2. Let Li
min be the cumulative loss

of the best action of player i ∈ {1, 2}. As before, let qi be the mixed strat-

egy corresponding to the observed frequencies of actions of player i ∈ {1, 2}.
Then, L1

min/T ≤ v1
min, since for L1

min we select the best action with respect

to a specific mixed action, namely q2. Similarly, L2
min/T ≤ v2

min. The regret

minimization algorithms guarantee for player 1 that LON ≤ L1
min + R, and

for player 2 that −LON ≤ L2
min + R. Combining the inequalities we have:

Tv1
max −R = −Tv2

max −R ≤ −L2
min −R ≤ LON ≤ L1

min + R ≤ Tv1
min + R.

This implies that v1
max−v1

min ≤ 2R/T < γ, which is a contradiction. There-

fore, v1
max = v1

min, which establishes the minimax theorem.

Correlated Equilibrium and swap regret minimization

We first define the relevant modification rules and establish the connection

between them and equilibrium notions. For x1, b1, b2 ∈ Xi, let switchi(x1, b1, b2)

be the following modification function of the action x1 of player i:

switchi(x1, b1, b2) =

{

b2 if x1 = b1

x1 otherwise

Given a modification function f for player i, we can measure the regret of

player i with respect to f as the decrease in its loss, i.e.,

regreti(x, f) = si(x) − si(f(xi), x−i).

For example, when we consider f(x1) = switchi(x1, b1, b2), for a fixed b1, b2 ∈
Xi, then regreti(x, f) is measuring the regret player i has for playing action

b1 rather than b2, when the other players play x−i.

A correlated equilibrium is a distribution P over the joint action space

with the following property. Imagine a correlating device draws a vector of

actions x ∈ X using distribution P over X, and gives player i the action

xi from x. (Player i is not given any other information regarding x.) The

probability distribution P is a correlated equilibrium if, for each player, it is

a best response to play the suggested action, provided that the other players

also do not deviate. (For a more detailed discussion of correlated equilibrium

see Chapter 1.)

Definition 4.10 A joint probability distribution P over X is a correlated

equilibrium if for every player i, and any actions b1, b2 ∈ Xi, we have that

Ex∼P [regreti(x, switchi(·, b1, b2))] ≤ 0.
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An equivalent definition that extends more naturally to the case of ap-

proximate equilibria is to say that rather than only switching between a pair

of actions, we allow simultaneously replacing every action in Xi with another

action in Xi (possibly the same action). A distribution P is a correlated equi-

librium iff for any function F : Xi → Xi we have Ex∼P [regreti(x, F )] ≤ 0.

We now define an ǫ-correlated equilibrium. An ǫ-correlated equilibrium

is a distribution P such that each player has in expectation at most an ǫ

incentive to deviate. Formally,

Definition 4.11 A joint probability distribution P over X is an ǫ-correlated

equilibria if for every player i and for any function Fi : Xi → Xi, we have

Ex∼P [regreti(x, Fi)] ≤ ǫ.

The following theorem relates the empirical distribution of the actions

performed by each player, their swap regret, and the distance to correlated

equilibrium.

Theorem 4.12 Let G = 〈M, (Xi), (si)〉 be a game and assume that for T

time steps every player follows a strategy that has swap regret of at most R.

Then, the empirical distribution Q of the joint actions played by the players

is an (R/T )-correlated equilibrium.

Proof The empirical distribution Q assigns to every P t a probability of 1/T .

Fix a function F : Xi → Xi for player i. Since player i has swap regret at

most R, we have LT
ON ≤ LT

ON,F + R, where LT
ON is the loss of player i. By

definition of the regret function, we therefore have:

LT
ON − LT

ON,F =
T

∑

t=1

Ext∼P t [si(x
t)] −

T
∑

t=1

Ext∼P t [si(F (xt
i), x

t
−i)]

=
T

∑

t=1

Ext∼P t [regreti(x
t, F )] = T · Ex∼Q[regreti(x, F )].

Therefore, for any function Fi : Xi → Xi we have Ex∼Q[regreti(x, Fi)] ≤
R/T .

The above theorem states that the payoff of each player is its payoff in

some approximate correlated equilibrium. In addition, it relates the swap

regret to the distance from equilibrium. Note that if the average swap regret

vanishes then the procedure converges, in the limit, to the set of correlated

equilibria.
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Dominated strategies

We say that an action xj ∈ Xi is ǫ-dominated by action xk ∈ Xi if for any

x−i ∈ X−i we have si(xj , x−i) ≥ ǫ + si(xk, x−i). Similarly, action xj ∈ Xi

is ǫ-dominated by a mixed action y ∈ ∆(Xi) if for any x−i ∈ X−i we have

si(xj , x−i) ≥ ǫ + Exd∼y[si(xd, x−i)].

Intuitively, a good learning algorithm ought to be able to learn not to

play actions that are ǫ-dominated by others, and in this section we show

that indeed if player i plays a procedure with sublinear swap regret, then

it will very rarely play dominated actions. More precisely, let action xj be

ǫ-dominated by action xk ∈ Xi. Using our notation, this implies that for

any x−i we have that regreti(x, switchi(·, xj , xk)) ≥ ǫ. Let Dǫ be the set of

ǫ-dominated actions of player i, and let w be the weight that player i puts

on actions in Dǫ, averaged over time, i.e., w = 1
T

∑T
t=1

∑

j∈Dǫ
P t

i,j . Player

i’s swap regret is at least ǫwT (since we could replace each action in Dǫ

with the action that dominates it). So, if the player’s swap regret is R, then

ǫwT ≤ R. Therefore, the time-average weight that player i puts on the set

of ǫ-dominated actions is at most R/(ǫT ) which tends to 0 if R is sublinear

in T . That is:

Theorem 4.13 Consider a game G and a player i that uses a procedure of

swap regret R for T time steps. Then the average weight that player i puts

on the set of ǫ-dominated actions is at most R/(ǫT ).

We remark that in general the property of having low external regret is

not sufficient by itself to give such a guarantee, though the algorithms RWM

and PW do indeed have such a guarantee (see Exercise 8).

4.5 Generic reduction from swap to external regret

In this section we give a black-box reduction showing how any procedure A

achieving good external regret can be used as a subroutine to achieve good

swap regret as well. The high-level idea is as follows (see also Fig. 4.1).

We will instantiate N copies A1, . . . , AN of the external-regret procedure.

At each time step, these procedures will each give us a probability vector,

which we will combine in a particular way to produce our own probability

vector p. When we receive a loss vector ℓ, we will partition it among the

N procedures, giving procedure Ai a fraction pi (pi is our probability mass

on action i), so that Ai’s belief about the loss of action j is
∑

t pt
iℓ

t
j, and

matches the cost we would incur putting i’s probability mass on j. In the

proof, procedure Ai will in some sense be responsible for ensuring low regret
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Fig. 4.1. The structure of the swap regret reduction.

of the i → j variety. The key to making this work is that we will be able

to define the p’s so that the sum of the losses of the procedures Ai on their

own loss vectors matches our overall true loss. Recall the definition of an R

external regret procedure.

Definition 4.14 An R external regret procedure A guarantees that for any

sequence of T losses ℓt and for any action j ∈ {1, . . . ,N}, we have

LT
A =

T
∑

t=1

ℓt
A ≤

T
∑

t=1

ℓt
j + R = LT

j + R.

We assume we have N copies A1, . . . , AN of an R external regret proce-

dure. We combine the N procedures to one master procedure H as follows.

At each time step t, each procedure Ai outputs a distribution qt
i , where qt

i,j

is the fraction it assigns action j. We compute a single distribution pt such

that pt
j =

∑

i pt
iq

t
i,j. That is, pt = ptQt, where pt is our distribution and

Qt is the matrix of qt
i,j. (We can view pt as a stationary distribution of the

Markov Process defined by Qt, and it is well known such a pt exists and is

efficiently computable.) For intuition into this choice of pt, notice that it

implies we can consider action selection in two equivalent ways. The first is

simply using the distribution pt to select action j with probability pt
j . The
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second is to select procedure Ai with probability pt
i and then to use Ai to

select the action (which produces distribution ptQt).

When the adversary returns the loss vector ℓt, we return to each Ai the

loss vector piℓ
t. So, procedure Ai experiences loss (pt

iℓ
t) · qt

i = pt
i(q

t
i · ℓt).

Since Ai is an R external regret procedure, for any action j, we have,

T
∑

t=1

pt
i(q

t
i · ℓt) ≤

T
∑

t=1

pt
iℓ

t
j + R (4.1)

If we sum the losses of the N procedures at a given time t, we get
∑

i p
t
i(q

t
i ·

ℓt) = ptQtℓt, where pt is the row-vector of our distribution, Qt is the matrix

of qt
i,j, and ℓt is viewed as a column-vector. By design of pt, we have ptQt =

pt. So, the sum of the perceived losses of the N procedures is equal to our

actual loss ptℓt.

Therefore, summing equation (4.1) over all N procedures, the left-hand-

side sums to LT
H , where H is our master online procedure. Since the right-

hand-side of equation (4.1) holds for any j, we have that for any function

F : {1, . . . , N} → {1, . . . , N},

LT
H ≤

N
∑

i=1

T
∑

t=1

pt
iℓ

t
F (i) + NR = LT

H,F + NR

Therefore we have proven the following theorem.

Theorem 4.15 Given an R external regret procedure, the master online

procedure H has the following guarantee. For every function F : {1, . . . ,N} →
{1, . . . , N},

LH ≤ LH,F + NR ,

i.e., the swap regret of H is at most NR.

Using Theorem 4.6 we can immediately derive the following corollary.

Corollary 4.16 There exists an online algorithm H such that for every

function F : {1, . . . , N} → {1, . . . ,N}, we have that

LH ≤ LH,F + O(N
√

T log N) ,

i.e., the swap regret of H is at most O(N
√

T log N).

Remark: See Exercise 6 for an improvement to O(
√

NT log N).
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4.6 The Partial Information Model

In this section we show, for external regret, a simple reduction from the

partial information to the full information model.† The main difference

between the two models is that in the full information model, the online

procedure has access to the loss of every action. In the partial information

model the online procedure receives as feedback only the loss of a single

action, the action it performed. This very naturally leads to an exploration

versus exploitation tradeoff in the partial information model, and essentially

any online procedure will have to somehow explore the various actions and

estimate their loss.

The high level idea of the reduction is as follows. Assume that the number

of time steps T is given as a parameter. We will partition the T time steps

into K blocks. The procedure will use the same distribution over actions in

all the time steps of any given block, except it will also randomly sample each

action once (the exploration part). The partial information procedure MAB

will pass to the full information procedure FIB the vector of losses received

from its exploration steps. The full information procedure FIB will then

return a new distribution over actions. The main part of the proof will be

to relate the loss of the full information procedure FIB on the loss sequence

it observes to the loss of the partial information procedure MAB on the real

loss sequence.

We start by considering a full information procedure FIB that partitions

the T time steps into K blocks, B1, . . . , BK , where Bi = {(i − 1)(T/K) +

1, . . . , i(T/K)}, and uses the same distribution in all the time steps of a

block. (For simplicity we assume that K divides T .) Consider an RK

external regret minimization procedure FIB (over K time steps), which at

the end of block i updates the distribution using the average loss vector, i.e.,

cτ =
∑

t∈Bτ ℓt/|Bτ |. Let CK
i =

∑K
τ=1 cτ

i and CK
min = mini CK

i . Since FIB has

external regret at most RK , this implies that the loss of FIB, over the loss

sequence cτ , is at most CK
min + RK . Since in every block Bτ the procedure

FIB uses a single distribution pτ , its loss on the entire loss sequence is:

LT
FIB =

K
∑

τ=1

∑

t∈Bτ

pτ · ℓt =
T

K

K
∑

τ=1

pτ · cτ ≤ T

K
[CK

min + RK ].

At this point it is worth noting that if RK = O(
√

K log N) the overall

regret is O((T/
√

K)
√

log N), which is minimized at K = T , namely by

having each block be a single time step. However, we will have an additional

† This reduction does not produce the best known bounds for the partial information model (see,
e.g., [ACBFS02] for better bounds) but is particularly simple and generic.
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loss associated with each block (due to the sampling) which will cause the

optimization to require that K ≪ T .

The next step in developing the partial information procedure MAB is to

use loss vectors which are not the “true average” but whose expectation is

the same. More formally, the feedback to the full information procedure

FIB will be a random variable vector ĉτ such that for any action i we have

E[ĉτ
i ] = cτ

i . Similarly, let ĈK
i =

∑K
τ=1 ĉτ

i and ĈK
min = mini Ĉ

K
i . (Intuitively,

we will generate the vector ĉτ using sampling within a block.) This implies

that for any block Bτ and any distribution pτ we have

1

|Bτ |
∑

t∈Bτ

pτ · ℓt = pτ · cτ =
N

∑

i=1

pτ
i c

τ
i =

N
∑

i=1

pτ
i E[ĉτ

i ] (4.2)

That is, the loss of pτ in Bτ is equal to its expected loss with respect to ĉτ .

The full information procedure FIB observes the losses ĉτ , for τ ∈ {1, . . . ,
K}. However, since ĉτ are random variables, the distribution pτ is also a

random variable that depends on the previous losses, i.e., ĉ1, . . . ĉτ−1. Still,

with respect to any sequence of losses ĉτ , we have that

ĈK
FIB =

K
∑

τ=1

pτ · ĉτ ≤ ĈK
min + RK

Since E[ĈK
i ] = CK

i , this implies that

E[ĈK
FIB] ≤ E[ĈK

min] + RK ≤ CK
min + RK ,

where we used the fact that E[mini Ĉ
K
i ] ≤ mini E[ĈK

i ] and the expectation

is over the choices of ĉτ .

Note that for any sequence of losses ĉ1, . . . , ĉK , both FIB and MAB will use

the same sequence of distributions p1, . . . , pK . From (4.2) we have that in

any block Bτ the expected loss of FIB and the loss of MAB are the same,

assuming they both use the same distribution pτ . This implies that

E[CK
MAB] = E[ĈK

FIB] .

We now need to show how to derive random variables ĉτ with the desired

property. This will be done by choosing randomly, for each action i and block

Bτ , an exploration time ti ∈ Bτ . (These do not need to be independent over

the different actions, so can easily be done without collisions.) At time ti
the procedure MAB will play action i (i.e., the probability vector with all

probability mass on i). This implies that the feedback that it receives will

be ℓti
i , and we will then set ĉτ

i to be ℓti
i . This guarantees that E[ĉτ

i ] = cτ
i .
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So far we have ignored the loss in the exploration steps. Since the max-

imum loss is 1, and there are N exploration steps in each of the K blocks,

the total loss in all the exploration steps is at most NK. Therefore we have:

E[LT
MAB] ≤ NK + (T/K)E[CK

MAB]

≤ NK + (T/K)[CK
min + RK ]

= LT
min + NK + (T/K)RK .

By Theorem 4.6, there are external regret procedures that have regret RK =

O(
√

K log N). By setting K = (T/N)2/3, for T ≥ N , we have the following

theorem.

Theorem 4.17 Given an O(
√

K log N) external regret procedure FIB (for

K time steps), there is a partial information procedure MAB that guarantees

LT
MAB ≤ LT

min + O(T 2/3N1/3 log N) ,

where T ≥ N .

4.7 On convergence of regret-minimizing strategies to Nash

equilibrium in routing games

As mentioned earlier, one natural setting for regret-minimizing algorithms

is online routing. For example, a person could use such algorithms to select

which of N available routes to use to drive to work each morning in such

a way that his performance will be nearly as good as the best fixed route

in hindsight, even if traffic changes arbitrarily from day to day. In fact,

even though in a graph G, the number of paths N between two nodes may

be exponential in the size of G, there are a number of external-regret min-

imizing algorithms whose running time and regret bounds are polynomial

in the graph size. Moreover, a number of extensions have shown how these

algorithms can be applied even to the partial-information setting where only

the cost of the path traversed is revealed to the algorithm.

In this section we consider the game-theoretic properties of such algo-

rithms in the Wardrop model of traffic flow. In this model, we have a

directed network G = (V,E), and one unit flow of traffic (a large population

of infinitesimal users that we view as having one unit of volume) wanting

to travel between two distinguished nodes vstart and vend. (For simplicity,

we are considering just the single-commodity version of the model.) We

assume each edge e has a cost given by a latency function ℓe that is some

non-decreasing function of the amount of traffic flowing on edge e. In other
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words, the time to traverse each edge e is a function of the amount of con-

gestion on that edge. In particular, given some flow f , where we use fe to

denote the amount of flow on a given edge e, the cost of some path P is
∑

e∈P ℓe(fe) and the average travel time of all users in the population can be

written as
∑

e∈E ℓe(fe)fe. A flow f is at Nash equilibrium if all flow-carrying

paths P from vstart to vend are minimum-latency paths given the flow f .

Chapter 18 considers this model in much more detail, analyzing the rela-

tionship between latencies in Nash equilibrium flows and those in globally-

optimum flows (flows that minimize the total travel time averaged over all

users). In this section we describe results showing that if the users in such a

setting are adapting their paths from day to day using external-regret min-

imizing algorithms (or even if they just happen to experience low-regret,

regardless of the specific algorithms used) then flow will approach Nash

equilibrium. Note that a Nash equilibrium is precisely a set of static strate-

gies that are all no-regret with respect to each other, so such a result seems

natural; however there are many simple games for which regret-minimizing

algorithms do not approach Nash equilibrium and can even perform much

worse than any Nash equilibrium.

Specifically, one can show that if each user has regret o(T ), or even if just

the average regret (averaged over the users) is o(T ), then flow approaches

Nash equilibrium in the sense that a 1−ǫ fraction of days t have the property

that a 1 − ǫ fraction of the users that day experience travel time at most ǫ

larger than the best path for that day, where ǫ approaches 0 at a rate that

depends polynomially on the size of the graph, the regret-bounds of the

algorithms, and the maximum slope of any latency function. Note that this

is a somewhat nonstandard notion of convergence to equilibrium: usually

for an “ǫ-approximate equilibrium” one requires that all participants have

at most ǫ incentive to deviate. However, since low-regret algorithms are

allowed to occasionally take long paths, and in fact algorithms in the MAB

model must occasionally explore paths they have not tried in a long time

(to avoid regret if the paths have become much better in the meantime), the

multiple levels of hedging are actually necessary for a result of this kind.

In this section we present just a special case of this result. Let P denote

the set of all simple paths from vstart to vend and let f t denote the flow on

day t. Let C(f) =
∑

e∈E ℓe(fe)fe denote the cost of a flow f . Note that

C(f) is a weighted average of costs of paths in P and in fact is equal to

the average cost of all users in the flow f . Define a flow f to be ǫ-Nash if

C(f) ≤ ǫ + minP∈P

∑

e∈P ℓe(fe); that is, the average incentive to deviate

over all users is at most ǫ. Let R(T ) denote the average regret (averaged
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over users) up through day T , so

R(T ) ≡
T

∑

t=1

∑

e∈E

ℓe(f
t
e)f

t
e − min

P∈P

T
∑

t=1

∑

e∈P

ℓe(f
t
e).

Finally, let Tǫ denote the number of time steps T needed so that R(T ) ≤ ǫT

for all T ≥ Tǫ. For example the RWM and PW algorithms discussed in Section

4.3 achieve Tǫ = O( 1
ǫ2 log N) if we set η = ǫ/2. Then we will show:

Theorem 4.18 Suppose the latency functions ℓe are linear. Then for T ≥
Tǫ, the average flow f̂ = 1

T (f1 + . . . + fT ) is ǫ-Nash.

Proof From the linearity of the latency functions, we have for all e, ℓe(f̂e) =
1
T

∑T
t=1 ℓe(f

t
e). Since ℓe(f

t
e)f

t
e is a convex function of the flow, this implies

ℓe(f̂e)f̂e ≤
1

T

T
∑

t=1

ℓe(f
t
e)f

t
e.

Summing over all e, we have

C(f̂) ≤ 1
T

∑T
t=1 C(f t)

≤ ǫ + minP
1
T

∑T
t=1

∑

e∈P ℓe(f
t
e) (by definition of Tǫ)

= ǫ + minP
∑

e∈P ℓe(f̂e). (by linearity)

This result shows the time-average flow is an approximate Nash equilib-

rium. This can then be used to prove that most of the f t must in fact be

approximate Nash. The key idea here is that if the cost of any edge were to

fluctuate wildly over time, then that would imply that most of the users of

that edge experienced latency substantially greater than the edge’s average

cost (because more users are using the edge when it is congested than when

it is not congested), which in turn implies they experience substantial regret.

These arguments can then be carried over to the case of general (non-linear)

latency functions.

Current Research Directions

In this section we sketch some current research directions with respect to

regret minimization.
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Refined Regret Bounds: The regret bounds that we presented depend

on the number of time steps T , and are independent of the performance

of the best action. Such bounds are also called zero order bounds. More

refined first order bounds depend on the loss of the best action, and second

order bounds depend on the sum of squares of the losses (such as QT
k in The-

orem 4.6). An interesting open problem is to get an external regret which

is proportional to the empirical variance of the best action. Another chal-

lenge is to reduce the prior information needed by the regret minimization

algorithm. Ideally, it should be able to learn and adapt to parameters such

as the maximum and minimum loss. See [CBMS05] for a detailed discussion

of those issues.

Large actions spaces: In this chapter we assumed the number of actions

N is small enough to be able to list them all, and our algorithms work in

time proportional to N . However, in many settings N is exponential in the

natural parameters of the problem. For example, the N actions might be all

simple paths between two nodes s and t in an n-node graph, or all binary

search trees on {1, . . . , n}. Since the full information external regret bounds

are only logarithmic in N , from the point of view of information, we can

derive polynomial regret bounds. The challenge is whether in such settings

we can produce computationally efficient algorithms.

There have recently been several results able to handle broad classes of

problems of this type. Kalai and Vempala [KV03] give an efficient algorithm

for any problem in which (a) the set X of actions can be viewed as a subset

of Rn, (b) the loss vectors ℓ are linear functions over Rn (so the loss of

action x is ℓ · x), and (c) we can efficiently solve the offline optimization

problem argminx∈S [x · ℓ] for any given loss vector ℓ. For instance, this

setting can model the path and search-tree examples above.† Zinkevich

[Zin03] extends this to convex loss functions with a projection oracle, and

there is substantial interest in trying to broaden the class of settings that

efficient regret-minimization algorithms can be applied to.

Dynamics: It is also very interesting to analyze the dynamics of regret min-

imization algorithms. The classical example is that of swap regret: when all

the players play swap regret minimization algorithms, the empirical distribu-

tion converges to the set of correlated equilibria (Section 4.4). We also saw

convergence in two-player zero sum games to the minimax value of the game

† The case of search trees has the additional issue that there is a rotation cost associated with
using a different action (tree) at time t + 1 than that used at time t. This is addressed in
[KV03] as well.



28 A. Blum and Y. Mansour

(Section 4.4), and convergence to Nash equilibrium in a Wardrop-model

routing game (Section 4.7). Further results on convergence to equilibria

in other settings would be of substantial interest. At a high level, under-

standing the dynamics of regret minimization algorithms would allow us to

better understand the strengths and weaknesses of using such procedures.

For more information on learning in games, see the book [FL98].

Exercises

4.1 Show that swap regret is at most N times larger than internal regret.

4.2 Show an example (even with N = 3) where the ratio between the

external and swap regret is unbounded.

4.3 Show that the RWM algorithm with update rule wt
i = wt−1

i (1− η)ℓ
t−1

i

achieves the same external regret bound as given in Theorem 4.6 for

the PW algorithm, for losses in [0, 1].

4.4 Consider a setting where the payoffs are in the range [−1,+1], and

the goal of the algorithm is to maximize its payoff. Derive a modi-

fied PW algorithm whose external regret is O(
√

QT
max log N + log N),

where QT
max ≥ QT

k for k ∈ Xi.

4.5 Show a Ω(
√

T log N) lower bound on external regret, for the case

that T ≥ N .

4.6 Improve the swap regret bound to O(
√

NT log N). Hint: use the

observation that the sum of the losses of all the Ai is bounded by T .

4.7 (Open Problem) Does there exist an Ω(
√

TN log N) lower bound

for swap regret?

4.8 Show that if a player plays algorithm RWM (or PW) then it give ǫ-

dominated actions small weight. Also, show that there are cases

where the external regret of a player can be small, yet it gives ǫ-

dominated actions high weight.

Notes

Hannan [Han57] was the first to develop algorithms with external regret

sublinear in T . Later, motivated by machine learning settings in which N

can be quite large, algorithms that furthermore have only a logarithmic

dependence on N were developed in [LW94, FS97, FS99, CBFH+97]. In

particular, the Randomized Weighted Majority algorithm and Theorem 4.5

are from [LW94] and the Polynomial Weights algorithm and Theorem 4.6

is from [CBMS05]. Computationally efficient algorithms for generic frame-

works that model many settings in which N may be exponential in the
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natural problem description (such as considering all s-t paths in a graph or

all binary search trees on n elements) were developed in [KV03, Zin03].

The notion of internal regret and its connection to correlated equilib-

rium appear in [FV98, HMC00], and more general modification rules were

considered in [Leh03]. A number of specific low internal regret algorithms

were developed by [FV97, FV98, FV99, HMC00, CBL03, BM05, SL05]. The

reduction in Section 4.5 from external to swap regret is from [BM05].

Algorithms with strong external regret bounds for the partial information

model are given in [ACBFS02], and algorithms with low internal regret

appear in [BM05, CBLS06]. The reduction from full information to partial

information in Section 4.6 is in the spirit of algorithms of [AM03, AK04].

Extensions of the algorithm of [KV03] to the partial information setting

appear in [AK04, MB04, DH06]. The results in Section 4.7 on approaching

Nash equilibria in routing games are from [BEL06].
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