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Abstract

Visual understanding of complex urban street scenes is
an enabling factor for a wide range of applications. Ob-
ject detection has benefited enormously from large-scale
datasets, especially in the context of deep learning. For
semantic urban scene understanding, however, no current
dataset adequately captures the complexity of real-world
urban scenes. To address this, we introduce Cityscapes, a
benchmark suite and large-scale dataset to train and test
approaches for pixel-level and instance-level semantic la-
beling. Cityscapes is comprised of a large, diverse set of
stereo video sequences recorded in streets from 50 different
cities. 5000 of these images have high quality pixel-level
annotations; 20000 additional images have coarse anno-
tations to enable methods that leverage large volumes of
weakly-labeled data. Crucially, our effort exceeds previ-
ous attempts in terms of dataset size, annotation richness,
scene variability, and complexity. Our accompanying em-
pirical study provides an in-depth analysis of the dataset
characteristics, as well as a performance evaluation of sev-
eral state-of-the-art approaches based on our benchmark.

1. Introduction

Visual scene understanding has moved from an elusive
goal to a focus of much recent research in computer vi-
sion [27]. Semantic reasoning about the contents of a scene
is thereby done on several levels of abstraction. Scene
recognition aims to determine the overall scene category
by putting emphasis on understanding its global properties,
e.g. [46,82]. Scene labeling methods, on the other hand,
seek to identify the individual constituent parts of a whole
scene as well as their interrelations on a more local pixel-
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and instance-level, e.g. [41,71]. Specialized object-centric
methods fall somewhere in between by focusing on detect-
ing a certain subset of (mostly dynamic) scene constituents,
e.g.[6,12,13,15]. Despite significant advances, visual scene
understanding remains challenging, particularly when tak-
ing human performance as a reference.

The resurrection of deep learning [34] has had a major
impact on the current state-of-the-art in machine learning
and computer vision. Many top-performing methods in a
variety of applications are nowadays built around deep neu-
ral networks [30, 41, 66]. A major contributing factor to
their success is the availability of large-scale, publicly avail-
able datasets such as ImageNet [59], PASCAL VOC [14],
PASCAL-Context [45], and Microsoft COCO [38] that al-
low deep neural networks to develop their full potential.

Despite the existing gap to human performance, scene
understanding approaches have started to become essen-
tial components of advanced real-world systems. A par-
ticularly popular and challenging application involves self-
driving cars, which make extreme demands on system
performance and reliability. Consequently, significant re-
search efforts have gone into new vision technologies for
understanding complex traffic scenes and driving scenar-
ios [4, 16—18,58,62]. Also in this area, research progress
can be heavily linked to the existence of datasets such as
the KITTI Vision Benchmark Suite [19], CamVid [ 7], Leuven
[351, and Daimler Urban Segmentation [61] datasets. These
urban scene datasets are often much smaller than datasets
addressing more general settings. Moreover, we argue that
they do not fully capture the variability and complexity
of real-world inner-city traffic scenes. Both shortcomings
currently inhibit further progress in visual understanding
of street scenes. To this end, we propose the Cityscapes
benchmark suite and a corresponding dataset, specifically
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Figure 1. Number of finely annotated pixels (y-axis) per class and their associated categories (x-axis).

tailored for autonomous driving in an urban environment
and involving a much wider range of highly complex inner-
city street scenes that were recorded in 50 different cities.
Cityscapes significantly exceeds previous efforts in terms of
size, annotation richness, and, more importantly, regarding
scene complexity and variability. We go beyond pixel-level
semantic labeling by also considering instance-level seman-
tic labeling in both our annotations and evaluation metrics.
To facilitate research on 3D scene understanding, we also
provide depth information through stereo vision.

Very recently, [75] announced a new semantic scene la-
beling dataset for suburban traffic scenes. It provides tem-
porally consistent 3D semantic instance annotations with
2D annotations obtained through back-projection. We con-
sider our efforts to be complementary given the differences
in the way that semantic annotations are obtained, and in the
type of scenes considered, i.e. suburban vs. inner-city traf-
fic. To maximize synergies between both datasets, a com-
mon label definition that allows for cross-dataset evaluation
has been mutually agreed upon and implemented.

2. Dataset

Designing a large-scale dataset requires a multitude of
decisions, e.g. on the modalities of data recording, data
preparation, and the annotation protocol. Our choices were
guided by the ultimate goal of enabling significant progress
in the field of semantic urban scene understanding.

2.1. Data specifications

Our data recording and annotation methodology was
carefully designed to capture the high variability of outdoor
street scenes. Several hundreds of thousands of frames were
acquired from a moving vehicle during the span of several
months, covering spring, summer, and fall in 50 cities, pri-
marily in Germany but also in neighboring countries. We
deliberately did not record in adverse weather conditions,
such as heavy rain or snow, as we believe such conditions
to require specialized techniques and datasets [51].

Our camera system and post-processing reflect the cur-
rent state-of-the-art in the automotive domain. Images
were recorded with an automotive-grade 22cm baseline

stereo camera using 1/3in CMOS 2MP sensors (OnSemi
ARO0331) with rolling shutters at a frame-rate of 17 Hz.
The sensors were mounted behind the windshield and yield
high dynamic-range (HDR) images with 16 bits linear color
depth. Each 16 bit stereo image pair was subsequently de-
bayered and rectified. We relied on [31] for extrinsic and
intrinsic calibration. To ensure calibration accuracy we re-
calibrated on-site before each recording session.

For comparability and compatibility with existing
datasets we also provide low dynamic-range (LDR) 8bit
RGB images that are obtained by applying a logarithmic
compression curve. Such tone mappings are common in
automotive vision, since they can be computed efficiently
and independently for each pixel. To facilitate highest an-
notation quality, we applied a separate tone mapping to each
image. The resulting images are less realistic, but visually
more pleasing and proved easier to annotate. 5000 images
were manually selected from 27 cities for dense pixel-level
annotation, aiming for high diversity of foreground objects,
background, and overall scene layout. The annotations (see
Sec. 2.2) were done on the 20" frame of a 30-frame video
snippet, which we provide in full to supply context informa-
tion. For the remaining 23 cities, a single image every 20 s
or 20 m driving distance (whatever comes first) was selected
for coarse annotation, yielding 20 000 images in total.

In addition to the rectified 16 bit HDR and 8 bit LDR
stereo image pairs and corresponding annotations, our
dataset includes vehicle odometry obtained from in-vehicle
sensors, outside temperature, and GPS tracks.

2.2. Classes and annotations

We provide coarse and fine annotations at pixel level in-
cluding instance-level labels for humans and vehicles.

Our 5000 fine pixel-level annotations consist of layered
polygons (a la LabelMe [60]) and were realized in-house
to guarantee highest quality levels. Annotation and quality
control required more than 1.5 h on average for a single im-
age. Annotators were asked to label the image from back to
front such that no object boundary was marked more than
once. Each annotation thus implicitly provides a depth or-
dering of the objects in the scene. Given our label scheme,
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Figure 2. Proportion of annotated pixels (y-axis) per category (x-axis) for Cityscapes, CamVid [7], DUS [

annotations can be easily extended to cover additional or
more fine-grained classes.

For our 20 000 coarse pixel-level annotations, accuracy
on object boundaries was traded off for annotation speed.
We aimed to correctly annotate as many pixels as possible
within a given span of less than 7 min of annotation time per
image. This was achieved by labeling coarse polygons un-
der the sole constraint that each polygon must only include
pixels belonging to a single object class.

In two experiments we assessed the quality of our label-
ing. First, 30 images were finely annotated twice by dif-
ferent annotators and passed the same quality control. It
turned out that 96 % of all pixels were assigned to the same
label. Since our annotators were instructed to choose a void
label if unclear (such that the region is ignored in training
and evaluation), we exclude pixels having at least one void
label and recount, yielding 98 % agreement. Second, all our
fine annotations were additionally coarsely annotated such
that we can enable research on densifying coarse labels. We
found that 97 % of all labeled pixels in the coarse annota-
tions were assigned the same class as in the fine annotations.

We defined 30 visual classes for annotation, which are
grouped into eight categories: flat, construction, nature,
vehicle, sky, object, human, and void. Classes were se-
lected based on their frequency, relevance from an applica-
tion standpoint, practical considerations regarding the an-
notation effort, as well as to facilitate compatibility with
existing datasets, e.g. [7, 19, 75]. Classes that are too rare
are excluded from our benchmark, leaving 19 classes for
evaluation, see Fig. | for details. We plan to release our
annotation tool upon publication of the dataset.

2.3. Dataset splits

We split our densely annotated images into separate
training, validation, and test sets. The coarsely annotated
images serve as additional training data only. We chose not
to split the data randomly, but rather in a way that ensures
each split to be representative of the variability of different
street scene scenarios. The underlying split criteria involve
a balanced distribution of geographic location and popula-
tion size of the individual cities, as well as regarding the
time of year when recordings took place. Specifically, each
of the three split sets is comprised of data recorded with the

], and KITTI [19].

#pixels [10°] annot. density [%]

Ours (fine) 9.43 97.1
Ours (coarse) 26.0 67.5
CamVid 0.62 96.2
DUS 0.14 63.0
KITTI 0.23 88.9

Table 1. Absolute number and density of annotated pix-
els for Cityscapes, DUS, KITTI, and CamVid (upscaled to
1280 x 720 pixels to maintain the original aspect ratio).

following properties in equal shares: (i) in large, medium,
and small cities; (ii) in the geographic west, center, and east;
(iii) in the geographic north, center, and south; (iv) at the be-
ginning, middle, and end of the year. Note that the data is
split at the city level, i.e. a city is completely within a sin-
gle split. Following this scheme, we arrive at a unique split
consisting of 2975 training and 500 validation images with
publicly available annotations, as well as 1525 test images
with annotations withheld for benchmarking purposes.

In order to assess how uniform (representative) the splits
are regarding the four split characteristics, we trained a fully
convolutional network [41] on the 500 images in our vali-
dation set. This model was then evaluated on the whole test
set, as well as eight subsets thereof that reflect the extreme
values of the four characteristics. With the exception of the
time of year, the performance is very homogeneous, varying
less than 1.5 % points (often much less). Interestingly, the
performance on the end of the year subset is 3.8 % points
better than on the whole test set. We hypothesize that this
is due to softer lighting conditions in the frequently cloudy
fall. To verify this hypothesis, we additionally tested on
images taken in low- or high-temperature conditions, find-
ing a 4.5 % point increase in low temperatures (cloudy) and
a 0.9 % point decrease in warm (sunny) weather. More-
over, specifically training for either condition leads to an
improvement on the respective test set, but not on the bal-
anced set. These findings support our hypothesis and un-
derline the importance of a dataset covering a wide range of
conditions encountered in the real world in a balanced way.

2.4. Statistical analysis

We compare Cityscapes to other datasets in terms of (i)
annotation volume and density, (ii) the distribution of visual



#humans  #vehicles #h/image #v/image
[10°] [10°]
Ours (fine) 24.4 41.0 7.0 11.8
KITTI 6.1 30.3 0.8 4.1
Caltech 192! - 1.5 -

Table 2. Absolute and average number of instances for Cityscapes,
KITTI, and Caltech (* via interpolation) on the respective training
and validation datasets.

classes, and (iii) scene complexity. Regarding the first two
aspects, we compare Cityscapes to other datasets with se-
mantic pixel-wise annotations, i.e. CamVid [7], DUS [62],
and KITTI [19]. Note that there are many other datasets
with dense semantic annotations, e.g. [2, 56, 65, 69, 70].
However, we restrict this part of the analysis to those with a
focus on autonomous driving.

CamVid consists of ten minutes of video footage with
pixel-wise annotations for over 700 frames. DUS consists
of a video sequence of 5000 images from which 500 have
been annotated. KITTI addresses several different tasks in-
cluding semantic labeling and object detection. As no of-
ficial pixel-wise annotations exist for KITTI, several inde-
pendent groups have annotated approximately 700 frames
[22,29,32,33,58,64,77,80]. We map those labels to our
high-level categories and analyze this consolidated set. In
comparison, Cityscapes provides significantly more anno-
tated images, i.e. 5000 fine and 20 000 coarse annotations.
Moreover, the annotation quality and richness is notably
better. As Cityscapes provides recordings from 50 differ-
ent cities, it also covers a significantly larger area than pre-
vious datasets that contain images from a single city only,
e.g. Cambridge (CamVid), Heidelberg (DUS), and Karl-
sruhe (KITTI). In terms of absolute and relative numbers
of semantically annotated pixels (training, validation, and
test data), Cityscapes compares favorably to CamVid, DUS,
and KITTI with up to two orders of magnitude more anno-
tated pixels, c.f. Tab. 1. The majority of all annotated pixels
in Cityscapes belong to the coarse annotations, providing
many individual (but correlated) training samples, but miss-
ing information close to object boundaries.

Figures 1 and 2 compare the distribution of annotations
across individual classes and their associated higher-level
categories. Notable differences stem from the inherently
different configurations of the datasets. Cityscapes involves
dense inner-city traffic with wide roads and large intersec-
tions, whereas KITTI is composed of less busy suburban
traffic scenes. As a result, KITTI exhibits significantly
fewer flat ground structures, fewer humans, and more na-
ture. In terms of overall composition, DUS and CamVid
seem more aligned with Cityscapes. Exceptions are an
abundance of sky pixels in CamVid due to cameras with a
comparably large vertical field-of-view and the absence of
certain categories in DUS, i.e. nature and object.
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Figure 3. Dataset statistics regarding scene complexity. Only MS
COCO and Cityscapes provide instance segmentation masks.
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Figure 4. Histogram of object distances in meters for class vehicle.

Finally, we assess scene complexity, where density and
scale of traffic participants (humans and vehicles) serve as
proxy measures. Out of the previously discussed datasets,
only Cityscapes and KITTT provide instance-level annota-
tions for humans and vehicles. We additionally compare
to the Caltech Pedestrian Dataset [12], which only contains
annotations for humans, but none for vehicles. Furthermore,
KITTI and Caltech only provide instance-level annotations
in terms of axis-aligned bounding boxes. We use the respec-
tive training and validation splits for our analysis, since test
set annotations are not publicly available for all datasets.
In absolute terms, Cityscapes contains significantly more
object instance annotations than KITTI, see Tab. 2. Be-
ing a specialized benchmark, the Caltech dataset provides
the most annotations for humans by a margin. The major
share of those labels was obtained, however, by interpola-
tion between a sparse set of manual annotations resulting in
significantly degraded label quality. The relative statistics
emphasize the much higher complexity of Cityscapes, as
the average numbers of object instances per image notably
exceed those of KITTI and Caltech. We extend our analysis
to MS COCO [38] and PASCAL VOC [14] that also contain
street scenes while not being specific for them. We analyze
the frequency of scenes with a certain number of traffic par-
ticipant instances, see Fig. 3. We find our dataset to cover a
greater variety of scene complexity and to have a higher por-
tion of highly complex scenes than previous datasets. Using
stereo data, we analyze the distribution of vehicle distances
to the camera. From Fig. 4 we observe, that in compar-
ison to KITTI, Cityscapes covers a larger distance range.
We attribute this to both our higher-resolution imagery and
the careful annotation procedure. As a consequence, algo-
rithms need to take a larger range of scales and object sizes
into account to score well in our benchmark.



3. Semantic Labeling

The first Cityscapes task involves predicting a per-pixel
semantic labeling of the image without considering higher-
level object instance or boundary information.

3.1. Tasks and metrics

To assess labeling performance, we rely on a standard
and a novel metric. The first is the standard Jaccard Index,
commonly known as the PASCAL VOC intersection-over-
union metric IoU = ﬁ [14], where TP, FP, and FN
are the numbers of true positive, false positive, and false
negative pixels, respectively, determined over the whole test
set. Owing to the two semantic granularities, i.e. classes
and categories, we report two separate mean performance
scores: 10U gegory and IoU,i,g. In either case, pixels labeled
as void do not contribute to the score.

The global IoU measure is biased toward object in-
stances that cover a large image area. In street scenes with
their strong scale variation this can be problematic. Specif-
ically for traffic participants, which are the key classes in
our scenario, we aim to evaluate how well the individual
instances in the scene are represented in the labeling. To
address this, we additionally evaluate the semantic label-
ing using an instance-level intersection-over-union metric
iloU = spipey- Here, iTP, and iFN denote weighted
counts of true positive and false negative pixels, respec-
tively. In contrast to the standard IoU measure, the con-
tribution of each pixel is weighted by the ratio of the class’
average instance size to the size of the respective ground
truth instance. As before, FP is the number of false positive
pixels. It is important to note here that unlike the instance-
level task in Sec. 4, we assume that the methods only yield a
standard per-pixel semantic class labeling as output. There-
fore, the false positive pixels are not associated with any
instance and thus do not require normalization. The final
scores, iloU qegory and iloUgags, are obtained as the means
for the two semantic granularities, while only classes with
instance annotations are included.

3.2. Control experiments

We conduct several control experiments to put our base-
line results below into perspective. First, we count the rela-
tive frequency of every class label at each pixel location of
the fine (coarse) training annotations. Using the most fre-
quent label at each pixel as a constant prediction irrespective
of the test image (called static fine, SF, and static coarse,
SC) results in roughly 10 % IoU,, as shown in Tab. 3.
These low scores emphasize the high diversity of our data.
SC and SF having similar performance indicates the value
of our additional coarse annotations. Even if the ground
truth (GT) segments are re-classified using the most fre-
quent training label (SF or SC) within each segment mask,
the performance does not notably increase.

Secondly, we re-classify each ground truth segment us-
ing FCN-8s [41], c.f. Sec. 3.4. We compute the average
scores within each segment and assign the maximizing la-
bel. The performance is significantly better than the static
predictors but still far from 100 %. We conclude that it is
necessary to optimize both classification and segmentation
quality at the same time.

Thirdly, we evaluate the performance of subsampled
ground truth annotations as predictors. Subsampling was
done by majority voting of neighboring pixels, followed
by resampling back to full resolution. This yields an up-
per bound on the performance at a fixed output resolution
and is particularly relevant for deep learning approaches
that often apply downscaling due to constraints on time,
memory, or the network architecture itself. Downsampling
factors 2 and 4 correspond to the most common setting of
our 3"-party baselines (Sec. 3.4). Note that while subsam-
pling by a factor of 2 hardly affects the IoU score, it clearly
decreases the iloU score given its comparatively large im-
pact on small, but nevertheless important objects. This un-
derlines the importance of the separate instance-normalized
evaluation. The downsampling factors of 8, 16, and 32 are
motivated by the corresponding strides of the FCN model.
The performance of a GT downsampling by a factor of 64 is
comparable to the current state of the art, while downsam-
pling by a factor of 128 is the smallest (power of 2) down-
sampling for which all images have a distinct labeling.

Lastly, we employ 128-times subsampled annotations
and retrieve the nearest training annotation in terms of the
Hamming distance. The full resolution version of this train-
ing annotation is then used as prediction, resulting in 21 %
IoU,ass.  While outperforming the static predictions, the
poor result demonstrates the high variability of our dataset
and its demand for approaches that generalize well.

3.3. State of the art

Drawing on the success of deep learning algorithms, a
number of semantic labeling approaches have shown very
promising results and significantly advanced the state of
the art. These new approaches take enormous advantage
from recently introduced large-scale datasets, e.g. PASCAL-
Context [45] and Microsoft COCO [38]. Cityscapes aims
to complement these, particularly in the context of under-
standing complex urban scenarios, in order to enable further
research in this area.

The popular work of Long et al. [41] showed how a top-
performing Convolutional Neural Network (CNN) for im-
age classification can be successfully adapted for the task
of semantic labeling. Following this line, [9,37,40,63,81]
propose different approaches that combine the strengths of
CNNs and Conditional Random Fields (CRFs).

Other work takes advantage of deep learning for ex-
plicitly integrating global scene context in the prediction



Average over Classes Categories

Metric [%] IoU iloU IoU iloU

static fine (SF) 101 4.7 263 199
static coarse (SC) 10.3 5.0 275 21.7
GT segmentation with SF 10.1 6.3 26.5 25.0
GT segmentation with SC 109 6.3 296 27.0
GT segmentation with [41] 79.4 526 93.3 80.9
GT subsampled by 2 97.2 926 97.6 93.3
GT subsampled by 4 95.2 904 96.0 91.2
GT subsampled by 8 90.7 82.8 92.1 839
GT subsampled by 16 84.6 70.8 874 729
GT subsampled by 32 754 53.7 80.2 581
GT subsampled by 64 63.8 35.1 71.0 39.6
GT subsampled by 128 50.6 21.1 60.6 29.9
nearest training neighbor 21.3 59 39.7 186

Table 3. Quantitative results of control experiments for semantic
labeling using the metrics presented in Sec. 3.1.

- 2 Classes Categories

B35 : .

& >3S & IoU iloU IoU iloU
FCN-32s s 61.3 382 822 654
FCN-16s v v 64.3 41.1 84.5 69.2
FCN-8s v 65.3 41.7 85.7 70.1
FCN-8s s 2 619 336 816 609
FCN-8s v 58.3 374 834 67.2

FCN-8s v 58.0 31.8 782 584

[4] extended Vv 4 56.1 342 798 664
[4] basic v 4 570 320 79.1 61.9
[40] v v v '3 591 281 795 579
[81] v 2 62.5 34.4  82.7 66.0
[9] v v 2 63.1 34.5 81.2 58.7
[48] vV v v 2 648 349 813 587
[37] v 66.4 46.7 828 674
[79] v 67.1 420 86.5 T71.1

Table 4. Quantitative results of baselines for semantic labeling us-
ing the metrics presented in Sec. 3.1. The first block lists results
from our own experiments, the second from those provided by 3
parties. All numbers are given in percent and we indicate the used
training data for each method, i.e. train fine, val fine, coarse extra
as well as a potential downscaling factor (sub) of the input image.

of pixel-wise semantic labels, in particular through CNNs
[4,39,44,67] or Recurrent Neural Networks (RNNs) [8,52].
Furthermore, a novel CNN architecture explicitly designed
for dense prediction has been proposed recently by [79].

Last but not least, several studies [5,11,48-50,53,74,76]
lately have explored different forms of weak supervision,
such as bounding boxes or image-level labels, for training
CNN s for pixel-level semantic labeling. We hope our coarse
annotations can further advance this area.

3.4. Baselines

Our own baseline experiments (Tab. 4, top) rely on fully
convolutional networks (FCNs), as they are central to most
state-of-the-art methods [9, 37, 41, 63, 81]. We adopted
VGG16 [68] and utilize the PASCAL-context setup [41]
with a modified learning rate to match our image resolu-
tion under an unnormalized loss. According to the notation
in [41], we denote the different models as FCN-32s, FCN-
16s, and FCN-8s, where the numbers are the stride of the
finest heatmap. Since VGGI16 training on 2 MP images ex-
ceeds even the largest GPU memory available, we split each
image into two halves with sufficiently large overlap. Ad-
ditionally, we trained a model on images downscaled by a
factor of 2. We first train on our training set (frain) until the
performance on our validation set (val) saturates, and then
retrain on train+val with the same number of epochs.

To obtain further baseline results, we asked selected
groups that have proposed state-of-the-art semantic label-
ing approaches to optimize their methods on our dataset
and evaluated their predictions on our test set. The resulting
scores are given in Tab. 4 (bottom) and qualitative exam-
ples of three selected methods are shown in Fig. 5. Interest-
ingly enough, the performance ranking in terms of the main
IoU,j,s score on Cityscapes is highly different from PAS-
CAL VOC [14]. While DPN [40] is the 2" best method
on PASCAL, it is only the 6™ best on Cityscapes. FCN-
8s [4 1] is last on PASCAL, but 3" best on Cityscapes. Ade-
laide [37] performs consistently well on both datasets with
rank 1 on PASCAL and 2 on Cityscapes.

From studying these results, we draw several conclu-
sions: (1) The amount of downscaling applied during train-
ing and testing has a strong and consistent negative influ-
ence on performance (c.f. FCN-8s vs. FCN-8s at half res-
olution, as well as the 2" half of the table). The ranking
according to IoUg,g is strictly consistent with the degree
of downscaling. We attribute this to the large scale vari-
ation present in our dataset, c.f. Fig. 4. This observation
clearly indicates the demand for additional research in the
direction of memory and computationally efficient CNNs
when facing such a large-scale dataset with high-resolution
images. (2) Our novel iloU metric treats instances of any
size equally and is therefore more sensitive to errors in
predicting small objects compared to the IoU. Methods
that leverage a CRF for regularization [9, 40, 48, 81] tend
to over smooth small objects, c.f. Fig. 5, hence show a
larger drop from IoU to iloU than [4] or FCN-8s [41]. [37]
is the only exception; its specific FCN-derived pairwise
terms apparently allow for a more selective regularization.
(3) When considering IoUqegory, Dilated10 [79] and FCN-
8s [41] perform particularly well, indicating that these ap-
proaches produce comparatively many confusions between
the classes within the same category, c.f. the buses in Fig. 5
(top). (4) Training FCN-8s [4 1] with 500 densely annotated



Dataset Best reported result  Our result
Camvid [7] 62.9 [4] 72.6
KITTI [58] 61.6 [4] 70.9
KITTI [64] 82.2 [73] 81.2

Table 5. Quantitative results (avg. recall in percent) of
our half-resolution FCN-8s model trained on Cityscapes
images and tested on Camvid and KITTI.

images (750 h of annotation) yields comparable loU perfor-
mance to a model trained on 20 000 weakly annotated im-
ages (1300 h annot.), c.f. rows 5 & 6 in Tab. 4. However, in
both cases the performance is significantly lower than FCN-
8s trained on all 3475 densely annotated images. Many fine
labels are thus important for training standard methods as
well as for testing, but the performance using coarse annota-
tions only does not collapse and presents a viable option. (5)
Since the coarse annotations do not include small or distant
instances, their iloU performance is worse. (6) Coarse la-
bels can complement the dense labels if applying appropri-
ate methods as evidenced by [48] outperforming [9], which
it extends by exploiting both dense and weak annotations
(e.g. bounding boxes). Our dataset will hopefully stimulate
research on exploiting the coarse labels further, especially
given the interest in this area, e.g. [25,43,47].

Overall, we believe that the unique characteristics of our
dataset (e.g. scale variation, amount of small objects, focus
on urban street scenes) allow for more such novel insights.

3.5. Cross-dataset evaluation

In order to show the compatibility and complementarity
of Cityscapes regarding related datasets, we applied an FCN
model trained on our data to Camvid [7] and two subsets of
KITTI [58, 64]. We use the half-resolution model (c.f. 4™
row in Tab. 4) to better match the target datasets, but we do
not apply any specific training or fine-tuning. In all cases,
we follow the evaluation of the respective dataset to be able
to compare to previously reported results [4, 73]. The ob-
tained results in Tab. 5 show that our large-scale dataset
enables us to train models that are on a par with or even
outperforming methods that are specifically trained on an-
other benchmark and specialized for its test data. Further,
our analysis shows that our new dataset integrates well with
existing ones and allows for cross-dataset research.

4. Instance-Level Semantic Labeling

The pixel-level task, c.f. Sec. 3, does not aim to segment
individual object instances. In contrast, in the instance-
level semantic labeling task, we focus on simultaneously
detecting objects and segmenting them. This is an exten-
sion to both traditional object detection, since per-instance
segments must be provided, and semantic labeling, since
each instance is treated as a separate label.

4.1. Tasks and metrics

For instance-level semantic labeling, algorithms are re-
quired to deliver a set of detections of traffic participants
in the scene, each associated with a confidence score and
a per-instance segmentation mask. To assess instance-level
performance, we compute the average precision on the re-
gion level (AP [23]) for each class and average it across a
range of overlap thresholds to avoid a bias towards a spe-
cific value. Specifically, we follow [38] and use 10 different
overlaps ranging from 0.5 to 0.95 in steps of 0.05. The
overlap is computed at the region level, making it equiva-
lent to the IoU of a single instance. We penalize multiple
predictions of the same ground truth instance as false posi-
tives. To obtain a single, easy to compare compound score,
we report the mean average precision AP, obtained by also
averaging over the class label set. As minor scores, we add
AP for an overlap value of 50 %, as well as APO™ and
AP?"™ where the evaluation is restricted to objects within
100 m and 50 m distance, respectively.

4.2. State of the art

As detection results have matured (70 % mean AP on
PASCAL [14, 55]), the last years have seen a rising inter-
est in more difficult settings. Detections with pixel-level
segments rather than traditional bounding boxes provide a
richer output and allow (in principle) for better occlusion
handling. We group existing methods into three categories.

The first encompasses segmentation, then detection and
most prominently the R-CNN detection framework [2 1], re-
lying on object proposals for generating detections. Many
of the commonly used bounding box proposal methods
[28, 54] first generate a set of overlapping segments, e.g.
Selective Search [72] or MCG [1]. In R-CNN, bounding
boxes of each segment are then scored using a CNN-based
classifier, while each segment is treated independently.

The second category encompasses detection, then seg-
mentation, where bounding-box detections are refined to
instance specific segmentations. Either CNNs [23, 24] or
non-parametric methods [10] are typically used, however,
in both cases without coupling between individual predic-
tions.

Third, simultaneous detection and segmentation is sig-
nificantly more delicate. Earlier methods relied on Hough
voting [36, 57]. More recent works formulate a joint in-
ference problem on pixel and instance level using CRFs
[11,26,42,71,78,80]. Differences lie in the generation
of proposals (exemplars, average class shape, direct regres-
sion), the cues considered (pixel-level labeling, depth order-
ing), and the inference method (probabilistic, heuristics).

4.3. Lower bounds, oracles & baselines

In Tab. 6, we provide lower-bounds that any sensible
method should improve upon, as well as oracle-case results



Figure 5. Qualitative examples of selected baselines. From left to right: image with stereo depth maps partially overlayed, annotation,
DeepLab [48], Adelaide [37], and Dilated10 [79]. The color coding of the semantic classes matches Fig. 1.

Proposals Classif. AP AP0%  ApP!OOm  ApSOm
MCG regions FRCN 2.6 9.0 4.4 5.5
MCG bboxes FRCN 3.8 11.3 6.5 8.9
MCG hulls FRCN 4.6 12.9 7.7 10.3
GT bboxes FRCN 8.2 23.7 12.6 15.2
GT regions FRCN 41.3 41.3 58.1 64.9

MCG regions GT 10.5 27.0 16.0 18.7
MCG bboxes  GT 9.9 25.8 15.3 18.9
MCG hulls GT 11.6  29.1 17.7 21.4

Table 6. Baseline results on instance-level semantic labeling task
using the metrics described in Sec. 4. All numbers in %.

(i.e. using the test time ground truth). For our experiments,
we rely on publicly available implementations. We train a
Fast-R-CNN (FRCN) detector [20] on our training data in
order to score MCG object proposals [1]. Then, we use
either its output bounding boxes as (rectangular) segmen-
tations, the associated region proposal, or its convex hull
as a per-instance segmentation. The best main score AP is
4.6 %, is obtained with convex hull proposals, and becomes
larger when restricting the evaluation to 50 % overlap or
close instances. We contribute these rather low scores to
our challenging dataset, biased towards busy and cluttered
scenes, where many, often highly occluded, objects occur
at various scales, c.f. Sec. 2. Further, the MCG bottom-up
proposals seem to be unsuited for such street scenes and
cause extremely low scores when requiring large overlaps.
We confirm this interpretation with oracle experiments,
where we replace the proposals at test-time with ground
truth segments or replace the FRCN classifier with an or-
acle. In doing so, the task of object localization is decou-
pled from the classification task. The results in Tab. 6 show
that when bound to MCG proposals, the oracle classifier is
only slightly better than FRCN. On the other hand, when the
proposals are perfect, FRCN achieves decent results. Over-
all, these observations unveil that the instance-level perfor-
mance of our baseline is bound by the region proposals.

5. Conclusion and Outlook

In this work, we presented Cityscapes, a comprehensive
benchmark suite that has been carefully designed to spark
progress in semantic urban scene understanding by: (i) cre-
ating the largest and most diverse dataset of street scenes
with high-quality and coarse annotations to date; (ii) devel-
oping a sound evaluation methodology for pixel-level and
instance-level semantic labeling; (iii) providing an in-depth
analysis of the characteristics of our dataset; (iv) evaluating
several state-of-the-art approaches on our benchmark. To
keep pace with the rapid progress in scene understanding,
we plan to adapt Cityscapes to future needs over time.

The significance of Cityscapes is all the more apparent
from three observations. First, the relative order of perfor-
mance for state-of-the-art methods on our dataset is notably
different than on more generic datasets such as PASCAL
VOC. Our conclusion is that serious progress in urban scene
understanding may not be achievable through such generic
datasets. Second, the current state-of-the-art in semantic la-
beling on KITTI and CamVid is easily reached and to some
extent even outperformed by applying an off-the-shelf fully-
convolutional network [41] trained on Cityscapes only, as
demonstrated in Sec. 3.5. This underlines the compatibil-
ity and unique benefit of our dataset. Third, Cityscapes will
pose a significant new challenge for our field given that it is
currently far from being solved. The best performing base-
line for pixel-level semantic segmentation obtains an IoU
score of 67.1 %, whereas the best current methods on PAS-
CAL VOC and KITTI reach IoU levels of 77.9 % [3] and
72.5% [73], respectively. In addition, the instance-level
task is particularly challenging with an AP score of 4.6 %.
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A. Related Datasets

In Tab. 7 we provide a comparison to other related
datasets in terms of the type of annotations, the meta infor-
mation provided, the camera perspective, the type of scenes,
and their size. The selected datasets are either of large scale
or focus on street scenes.

B. Class Definitions

Table 8 provides precise definitions of our annotated
classes. These definitions were used to guide our labeling
process, as well as quality control. In addition, we include
a typical example for each class.

The annotators were instructed to make use of the depth
ordering and occlusions of the scene to accelerate labeling,
analogously to LabelMe [60]; see Fig. 6 for an example. In
doing so, distant objects are annotated first, while occluded
parts are annotated with a coarser, conservative boundary
(possibly larger than the actual object). Subsequently, the
occluder is annotated with a polygon that lies in front of the
occluded part. Thus, the boundary between these objects is
shared and consistent.

Holes in an object through which a background region
can be seen are considered to be part of the object. This al-
lows keeping the labeling effort within reasonable bounds
such that objects can be described via simple polygons
forming simply-connected sets.

C. Example Annotations

Figure 7 presents several examples of annotated frames
from our dataset that exemplify its diversity and difficulty.
All examples are taken from the frain and val splits and
were chosen by searching for the extremes in terms of the
number of traffic participant instances in the scene; see
Fig. 7 for details.

D. Detailed Results

In this section, we present additional details regarding
our control experiments and baselines. Specifically, we
give individual class scores that complement the aggregated
scores in the main paper. Moreover, we provide details on
the training procedure for all baselines. Finally, we show
additional qualitative results of all methods.

D.1. Semantic labeling

Tables 9 and 11 list all individual class-level IoU scores
for all control experiments and baselines. Tables 10 and 12
give the corresponding instance-normalized iloU scores. In
addition, Figs. 8 and 9 contain qualitative examples of these
methods.

Basic setup. All baselines relied on single frame, monocu-
lar LDR images and were pretrained on ImageNet [59], i.e.

Figure 6. Exemplary labeling process. Distant objects are an-
notated first and subsequently their occluders. This ensures the
boundary between these objects to be shared and consistent.

their underlying CNN was generally initialized with Ima-
geNet VGG weights [68]. Subsequently, the CNNs were
finetuned on Cityscapes using the respective portions listed
in Tab. 4. In our own FCN [4 1] experiments, we addition-
ally investigated first pretraining on PASCAL-Context [45],
but found this to not influence performance given a suffi-
ciently large number of training iterations. Most baselines
applied a subsampling of the input image, c.f. Tab. 4, proba-
bly due to time or memory constraints. Only Adelaide [37],
Dilated10 [79], and our FCN experiments were conducted
on the full-resolution images. In the first case, a new ran-
dom patch of size 614 x 614 pixels was drawn at each it-
eration. In our FCN training, we split each image into two
halves (left and right) with an overlap that is sufficiently
large considering the network’s receptive field.

Own baselines. The training procedure of all our FCN ex-
periments follows [41]. We use three-stage training with
subsequently smaller strides, i.e. first FCN-32s, then FCN-
16s, and then FCN-8s, always initializing with the parame-
ters from the previous stage. We add a 4" stage for which
we reduce the learning rate by a factor of 10. The train-
ing parameters are identical to those publicly available for
training on PASCAL-Context [45], except that we reduce
the learning rate to account for the increased image reso-
lution. Each stage is trained until convergence on the val-
idation set; pixels with void ground truth are ignored such
that they do not induce any gradient. Eventually, we retrain
on train and val together with the same number of epochs,
yielding 243 250, 69 500, 62550, and 5950 iterations for
stages 1 through 4. Note that each iteration corresponds to
half of an image (see above). For the variant with factor
2 downsampling, no image splitting is necessary, yielding
80325, 68 425, 35 700, and 5950 iterations in the respective
stages. The variant only trained on val (full resolution) uses
train for validation, leading to 130 000, 35 700, 47 600, and
0 iterations in the 4 stages. Our last FCN variant is trained
using the coarse annotations only, with 386 750, 113 050,
35700, and O iterations in the respective stage; pixels with
void ground truth are ignored here as well.

3"d_party baselines. Note that for the following descrip-



Dataset Labels Color  Video Depth Camera Scene #images #classes
[59] B v X X Mixed Mixed 150k 1000
[14] B,C v X X Mixed Mixed 20k (B), 10k (C) 20
[45] D v X X Mixed Mixed 20k 400
[38] C v X X Mixed Mixed 300k 80
[69] D,C v X Kinect Pedestrian Indoor 10k 37
[19] B, D¢ v v Laser, Stereo Car Suburban 15k (B), 700 (D) 3 (B), 8 (D)
[71 D v v X Car Urban 701 32
[35] D v v Stereo, Manual Car Urban 70 7
[61] D X v Stereo Car Urban 500 5

[2] D v X X Pedestrian Urban 200 2
[65] C v X Stereo Car Facades 86 13
[56] D v X 3D mesh Pedestrian Urban 428 8
[75] D v v Laser Car Suburban 400k 27
Ours D, C v v Stereo Car Urban 5k (D), 20k (C) 30

“Including the annotations of 3™ party groups [22,29,32,

5

,64,77,80]

Table 7. Comparison to related datasets. We list the type of labels provided, i.e. object bounding boxes (B),
dense pixel-level semantic labels (D), coarse labels (C) that do not aim to label the whole image. Further, we
mark if color, video, and depth information are available. We list the camera perspective, the scene type, the
number of images, and the number of semantic classes.

tions of the 3"-party baselines, we have to rely on author-
provided information.

SegNet [4] training for both the basic and extended vari-
ant was performed until convergence, yielding approxi-
mately 50 epochs. Inference takes 0.12 s per image.

DPN [40] was trained using the original procedure, while
using all available Cityscapes annotations.

For training CRF as RNN [81], an FCN-32s model was
trained for 3 days on train using a GPU. Subsequently an
FCN-8s model was trained for 2 days, and eventually the
model was further finetuned including the CRF-RNN lay-
ers. Testing takes 0.7 s on half-resolution images.

For training DeepLab on the fine annotations, denoted
DeepLab-LargeFOV-Strong, the authors applied the train-
ing procedure from [9]. The model was trained on train
for 40000 iterations until convergence on val. Then val
was included in the training set for another 40 000 itera-
tions. In both cases, a mini-batch size of 10 was applied.
Each training iteration lasts 0.5 s, while inference includ-
ing the dense CRF takes 4s per image. The DeepLab
variant including our coarse annotations, termed DeepLab-
LargeFOV-StrongWeak, followed the protocol in [48] and
is initialized from the DeepLab-LargeFOV-Strong model.
Each mini-batch consists of 5 finely and 5 coarsely anno-
tated images and training is performed for 20 000 iterations
until convergence on val. Then, training was continued for
another 20 000 iterations on train and val.

Adelaide [37] was trained for 8 days using random crops
of the input image as described above. Inference on a single
image takes 35s.

The best performing baseline, Dilated10 [79], is a convo-
lutional network that consists of a front-end prediction mod-
ule and a context aggregation module. The front-end mod-
ule is an adaptation of the VGG-16 network based on dilated
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convolutions. The context module uses dilated convolutions
to systematically expand the receptive field and aggregate
contextual information. This module is derived from the
“Basic" network, where each layer has C' = 19 feature
maps. The total number of layers in the context module
is 10, hence the name Dilation10. The increased number of
layers in the context module (10 for Cityscapes versus 8 for
PASCAL VOC) is due to the higher input resolution. The
complete Dilation10 model is a pure convolutional network:
there is no CRF and no structured prediction. The Dila-
tion10 network was trained in three stages. First, the front-
end prediction module was trained for 40 000 iterations on
randomly sampled crops of size 628x628, with learning rate
10~%, momentum 0.99, and batch size 8. Second, the con-
text module was trained for 24 000 iterations on whole (un-
cropped) images, with learning rate 10~%, momentum 0.99,
and batch size 100. Third, the complete model (front-end +
context) was jointly trained for 60 000 iterations on halves
of images (input size 1396 x 1396, including padding), with
learning rate 10~°, momentum 0.99, and batch size 1.

D.2. Instance-level semantic labeling

For our instance-level semantic labeling baselines and
control experiments, we rely on Fast R-CNN [20] and pro-
posal regions from either MCG (Multiscale Combinatorial
Grouping [1]) or from the ground truth annotations.

We use the standard training and testing parameters for
Fast R-CNN. Training starts with a model pre-trained on
ImageNet [59]. We use a learning rate of 0.001 and stop
when the validation error plateaus after 120 000 iterations.

At test time, one score per class is assigned to each object
proposal. Subsequently, thresholding and non-maximum
suppression is applied and either the bounding boxes, the
original proposal regions or their convex hull are used to



generate the predicted masks of each instance. Quantitative
results of all classes can be found in Tables 13 to 16 and
qualitative results in Fig. 12.
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Category

Class

Definition

Examples

human

person

rider’

1

All humans that would primarily rely on their legs
to move if necessary. Consequently, this label in-
cludes people who are standing/sitting, or other-
wise stationary. This class also includes babies,
people pushing a bicycle, or standing next to it
with both legs on the same side of the bicycle.

Humans relying on some device for move-
ment. This includes drivers, passengers, or riders
of bicycles, motorcycles, scooters, skateboards,
horses, Segways, (inline) skates, wheelchairs,
road cleaning cars, or convertibles. Note that a
visible driver of a closed car can only be seen
through the window. Since holes are considered
part of the surrounding object, the human is in-
cluded in the car label.

vehicle

car’

truck’

bus

train’

This includes cars, jeeps, SUVs, vans with a con-
tinuous body shape (i.e. the driver’s cabin and
cargo compartment are one). Does not include
trailers, which have their own separate class.

This includes trucks, vans with a body that is sepa-
rate from the driver’s cabin, pickup trucks, as well
as their trailers.

This includes buses that are intended for 9+ per-
sons for public or long-distance transport.

All vehicles that move on rails, e.g. trams, trains.

! Single instance annotation available.

2 Not included in challenges.

iv

Table 8. List of annotated classes including their definition and typical example.



Category Class Definition Examples

This includes motorcycles, mopeds, and scooters
vehicle motorcycle’  without the driver or other passengers. The latter
receive the label rider.

This includes bicycles without the cyclist or other

. 1
bicycle passengers. The latter receive the label rider.

Vehicles that (appear to) contain living quarters.
caravan’? This also includes trailers that are used for living
and has priority over the trailer class.

Includes trailers that can be attached to any vehi-
trailer’? cle, but excludes trailers attached to trucks. The
latter are included in the truck label.

Trees, hedges, and all kinds of vertically grow-
ing vegetation. Plants attached to build-

nature vegetation ings/walls/fences are not annotated separately,
and receive the same label as the surface they are
supported by.

Grass, all kinds of horizontally spreading vegeta-
tion, soil, or sand. These are areas that are not
meant to be driven on. This label may also in-

terrain clude a possibly adjacent curb. Single grass stalks
or very small patches of grass are not annotated
separately and thus are assigned to the label of the
region they are growing on.

! Single instance annotation available.
2 Not included in challenges.

Table 8. List of annotated classes including their definition and typical example. (continued)



Category Class

Definition

Examples

construction

building

wall

fence

guard rail?

bridge?

tunnel’

Includes structures that house/shelter humans,
e.g. low-rises, skyscrapers, bus stops, car ports.
Translucent buildings made of glass still receive
the label building. Also includes scaffolding at-
tached to buildings.

Individually standing walls that separate two (or
more) outdoor areas, and do not provide support
for a building.

Structures with holes that separate two (or more)
outdoor areas, sometimes temporary.

Metal structure located on the side of the road to
prevent serious accidents. Rare in inner cities,
but occur sometimes in curves. Includes the bars
holding the rails.

Bridges (on which the ego-vehicle is not driving)
including everything (fences, guard rails) perma-
nently attached to them.

Tunnel walls and the (typically dark) space en-
cased by the tunnel, but excluding vehicles.

! Single instance annotation available.

2 Not included in challenges.

Table 8. List of annotated classes including their definition and typical example. (continued)
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Category Class Definition Examples

Front part of signs installed by the state/city au-
thority with the purpose of conveying information

object traffic sign to drivers/cyclists/pedestrians, e.g. traffic signs,
parking signs, direction signs, or warning reflec-
tor posts.

The traffic light box without its poles in all orien-
tations and for all types of traffic participants, e.g.
regular traffic light, bus traffic light, train traffic
light.

traffic light

Small, mainly vertically oriented poles, e.g. sign
poles or traffic light poles. This does not in-

pole clude objects mounted on the pole, which have a
larger diameter than the pole itself (e.g. most street
lights).

Multiple poles that are cumbersome to label indi-
pole group?  vidually, but where the background can be seen in
their gaps.

sky sky Open sky (without tree branches/leaves)

I Single instance annotation available.
2 Not included in challenges.

Table 8. List of annotated classes including their definition and typical example. (continued)
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Category Class Definition Examples

Horizontal surfaces on which cars usually drive,
including road markings. Typically delimited by

flat road curbs, rail tracks, or parking areas. However, road
is not delimited by road markings and thus may
include bicycle lanes or roundabouts.

Horizontal surfaces designated for pedestrians or
cyclists. Delimited from the road by some obsta-
cle, e.g. curbs or poles (might be small), but not
only by markings. Often elevated compared to the
road and often located at the side of a road. The

sidewalk curbs are included in the sidewalk label. Also in-
cludes the walkable part of traffic islands, as well
as pedestrian-only zones, where cars are not al-
lowed to drive during regular business hours. If
it’s an all-day mixed pedestrian/car area, the cor-
rect label is ground.

Horizontal surfaces that are intended for parking
and separated from the road, either via elevation
or via a different texture/material, but not sepa-
rated merely by markings.

parking?

Horizontal surfaces on which only rail cars can
normally drive. If rail tracks for trams are embed-
ded in a standard road, they are included in the
road label.

rail track®

! Single instance annotation available.
2 Not included in challenges.

Table 8. List of annotated classes including their definition and typical example. (continued)
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Category Class Definition Examples

All other forms of horizontal ground-level struc-
tures that do not match any of the above, for ex-
ample mixed zones (cars and pedestrians), round-

void ground? abouts that are flat but delimited from the road by
a curb, or in general a fallback label for horizon-
tal surfaces that are difficult to classify, e.g. due to
having a dual purpose.

Movable objects that do not correspond to any of
the other non-void categories and might not be in

dynamic? the same position in the next day/hour/minute, e.g.
movable trash bins, buggies, luggage, animals,
chairs, or tables.

This includes areas of the image that are diffi-
cult to identify/label due to occlusion/distance, as
well as non-movable objects that do not match
any of the non-void categories, e.g. mountains,
street lights, reverse sides of traffic signs, or per-
manently mounted commercial signs.

static?

Since a part of the vehicle from which our data
was recorded is visible in all frames, it is assigned
to this special label. This label is also available at
test time.

ego vehicle’

unlabeled? Pixels that were not explicitly assigned to a label.

Narrow strip of 5 pixels along the image borders
out of roi’ that is not considered for training or evaluation.
This label is also available at test-time.

Areas close to the image border that contain ar-
rectification  tifacts resulting from the stereo pair rectification.
border? This label is also available at test time.

! Single instance annotation available.
2 Not included in challenges.

Table 8. List of annotated classes including their definition and typical example. (continued)
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Largest number of instances and persons

Largest number of buses
T
k

a

Largest number of motorcycles

Large spatial variation of persons " Fewest number of instances

Figure 7. Examples of our annotations on various images of our frain and val sets. The images were selected based on criteria overlayed
on each image.
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static fine (SF) 80.0 13.2 40.3 0.0 0.0 0.0 0.0 0.0 12,5 0.0 22.1 0.0 0.0 23.4 0.0 0.0 0.0 0.0 0.0 10.1
static coarse (SC) 80.1 9.5 395 0.0 0.0 0.0 0.0 0.0 16.4 0.0 24.3 0.0 0.0 26.2 0.0 0.0 0.0 0.0 0.0 10.3
GT segmentation with SF 80.8 11.1 44.5 0.0 0.0 0.0 0.0 00 42 0.0 179 00 0.0 329 0.0 0.0 0.0 0.0 0.0 10.1
GT segmentation with SC 79.6 5.1 46.6 0.0 0.0 0.0 0.0 0.0 11.8 0.0 29.2 0.0 0.0 34.1 0.0 0.0 0.0 0.0 0.0 10.9

GT segmentation with [41]  99.3 91.9 94.8 44.9 62.0 66.1 81.2 84.3 96.5 80.1 99.1 90.6 69.2 98.0 59.0 66.9 71.6 66.8 85.8 79.4

GT subsampled by 2 99.6 98.1 98.6 97.8 97.4 90.4 94.1 95.2 98.7 97.6 98.3 96.5 95.7 98.9 98.9 99.1 98.9 96.5 95.8 97.2
GT subsampled by 4 99.4 96.8 98.0 96.1 95.5 83.1 89.7 91.6 98.0 96.0 97.9 94.1 92.5 98.2 98.1 98.5 98.1 94.1 93.0 95.2
GT subsampled by 8 98.6 93.4 95.4 92.3 91.1 69.5 80.9 84.2 95.5 92.1 94.5 88.9 86.1 96.2 95.9 96.7 96.1 88.7 86.8 90.7
GT subsampled by 16 97.8 88.8 93.1 86.9 84.9 50.9 68.4 73.0 93.4 86.5 93.1 81.0 76.0 93.5 93.0 94.4 93.4 80.8 78.0 84.6
GT subsampled by 32 96.0 80.9 88.7 77.6 75.2 30.9 51.6 56.8 89.2 77.3 88.7 69.4 62.3 88.0 87.4 89.8 88.5 68.6 65.6 75.4
GT subsampled by 64 92.1 69.6 83.0 65.5 61.0 14.8 32.1 37.6 83.3 65.2 81.6 55.1 46.4 78.8 78.9 82.4 80.2 54.2 50.7 63.8
GT subsampled by 128 86.2 55.0 75.2 51.3 45.9 5.7 13.6 17.9 75.2 51.6 69.9 41.1 31.5 67.3 66.3 70.1 68.3 36.0 33.3 50.6

nearest training neighbor 85.3 35.6 56.7 15.6 6.2 1.3 0.5 1.0 54.2 23.3 36.5 4.0 0.4 42.0 9.7 183 129 0.3 1.7 21.3

Table 9. Detailed results of our control experiments for the pixel-level semantic labeling task in terms of the IoU score on the class
level. All numbers are given in percent. See the main paper for details on the listed methods.

GT segmentation with SF 0.0 0.0 50.3 0.0 0.0 0.0
GT segmentation with SC 0.0 0.0 50.8 0.0 0.0 0.0 0.0

GT segmentation with [41] 68.3 44.4 92.8 32.3 38.7 41.5 39.5 63.1 52.6
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static fine (SF) 0.0 0.0 38.0 0.0 0.0 0.0 0.0 0.0
static coarse (SC) 0.0 0.0 39.8 0.0 0.0 0.0 0.0
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GT subsampled by 2 91.4 91.9 95.1 93.3 94.1 94.3 91.4 89.6 92.6
GT subsampled by 4 88.1 86.4 94.4 91.8 93.1 93.0 88.9 87.2 904
GT subsampled by 8 78.4 75.6 89.7 85.7 87.8 88.8 79.4 76.8 82.8
GT subsampled by 16 63.5 58.5 82.6 73.4 78.2 81.5 66.4 62.3 70.8
GT subsampled by 32 45.5 38.0 71.0 57.7 62.1 66.0 46.2 43.5 53.7
GT subsampled by 64 28.4 19.1 51.0 37.0 42.0 51.4 27.6 244 35.1
GT subsampled by 128 19.1 10.5 41.9 18.9 24.5 30.7 11.0 11.8 21.1

nearest training neighbor 3.6 05 327 19 40 28 03 15 5.9

Table 10. Detailed results of our control experiments for the pixel-level semantic
labeling task in terms of the instance-normalized iloU score on the class level.
All numbers are given in percent. See the main paper for details on the listed
methods.
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FCN-32s v v 97.1 76.0 87.6 33.1 36.3 35.2 53.2 58.1 89.5 66.7 91.6 71.1 46.7 91.0 33.3 46.6 43.8 48.2 59.1 61.3
FCN-16s v v 97.3 77.6 88.7 34.7 44.0 43.0 57.7 62.0 90.9 68.6 92.9 75.4 50.5 91.9 35.3 49.1 45.9 50.7 65.2 64.3
FCN-8s v v 97.4 78.4 89.2 34.9 44.2 47.4 60.1 65.0 91.4 69.3 93.9 T77.1 51.4 92.6 35.3 48.6 46.5 51.6 66.8 65.3
FCN-8s v v 2 97.0 75.4 87.3 37.4 39.0 35.1 47.7 53.3 89.3 66.1 92.5 69.5 46.0 90.8 41.9 52.9 50.1 46.5 58.4 61.9
FCN-8s v 95.9 69.7 86.9 23.1 32.6 44.3 52.1 56.8 90.2 60.9 92. 73.3 42.7 89.9 22.8 39.2 29.6 42.5 63.1 58.3
FCN-8s v 95.3 67.7 84.6 35.9 41.0 36.0 44.9 52.7 86.6 60.2 90.2 59.6 37.2 86.1 35.4 53.1 39.7 42.6 52.6 58.0
[4] ext. v 4 95.6 70.1 82.8 29.9 31.9 38.1 43.1 44.6 87.3 62.3 91.7 67.3 50.7 87.9 21.7 29.0 34.7 40.5 56.6 56.1
[+4] basic v 4 96.4 73.2 84.0 28.5 29.0 35.7 39.8 45.2 87.0 63.8 91.8 62.8 42.8 89.3 38.1 43.1 44.2 35.8 51.9 57.0
[40] v v v 3 96.3 71.7 86.7 43.7 31.7 29.2 35.8 47.4 88.4 63.1 93.9 64.7 38.7 88.8 48.0 56.4 49.4 38.3 50.0 59.1
[51] v 2 96.3 73.9 88.2 47.6 41.3 35.2 49.5 59.7 90.6 66.1 93.5 70.4 34.7 90.1 39.2 57.5 55.4 43.9 54.6 62.5
91 v v 2 97.3 77.7 87.7 43.6 40.5 29.7 44.5 55.4 89.4 67.0 92.7 T1.2 49.4 91.4 48.7 56.7 49.1 47.9 58.6 63.1
[48] v v v 2 97.4 78.3 88.1 47.5 44.2 29.5 44.4 55.4 89.4 67.3 92.8 T1.0 49.3 91.4 55.9 66.6 56.7 48.1 58.1 64.8
371 v 97.3 78.5 88.4 44.5 48.3 34.1 55.5 61.7 90.1 69.5 92.2 T72.5 52.3 91.0 54.6 61.6 51.6 55.0 63.1 66.4
[79] v 97.6 79.2 89.9 37.3 47.6 53.2 58.6 65.2 91.8 69.4 93.7 78.9 55.0 93.3 45.5 53.4 47.7 52.2 66.0 67.1

Table 11. Detailed results of our baseline experiments for the pixel-level semantic labeling task in terms of the IoU score on the
class level. All numbers are given in percent and we indicate the used training data for each method, i.e. train fine, val fine,
coarse extra, as well as a potential downscaling factor (sub) of the input image. See the main paper and Sec. D.1 for details on
the listed methods.
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FCN-32s v 46.9 32.0 82.1 21.2 28.8 21.9 26.0 47.1 38.2
FCN-16s v v 53.6 33.5 84.2 21.3 32.8 25.8 28.9 48.6 41.1
FCN-8s v v 55.9 33.4 839 22.2 30.8 26.7 31.1 49.6 41.7
FCN-8s v v 2 42.8 22.3 79.3 16.6 27.3 22.2 20.0 38.5 33.6
FCN-8s v 51.8 31.0 80.6 17.0 23.9 24.5 23.7 47.3 37.4

FCN-8s v 43.2 18,9 725 18.2 24.2 20.1 209 36.2 318

[4] extended v 4 49.9 27.1 81.1 15.3 23.7 18.5 19.6 384 34.2
[4] basic v 4 443 227 784 16.1 24.3 20.7 158 33.6 32.0
[40] v v v 3 389 128 78.6 134 240 19.2 10.7 272 28.1
[81] v 2 50.6 17.8 81.1 18.0 25.0 30.3 22.3 30.1 344
[9] an's 2 405 233 78.8 20.3 31.9 248 21.1 352 34.5
[48] v v v 2 40.7 231 78.6 214 324 276 20.8 34.6 349
[37] v 56.2 38.0 77.1 34.0 47.0 33.4 38.1 49.9 46.7
[79] v 56.3 34.5 85.8 21.8 32.7 27.6 28.0 49.1 42.0

Table 12. Detailed results of our baseline experiments for the pixel-level semantic
labeling task in terms of the instance-normalized iloU score on the class level. All
numbers are given in percent and we indicate the used training data for each method,
i.e. train fine, val fine, coarse extra, as well as a potential downscaling factor (sub) of
the input image. See the main paper and Sec. D.1 for details on the listed methods.
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Proposals Classifier 2 E 8 g 2 E g 2 E
MCG regions FRCN 19 10 62 40 31 28 15 06 26
MCG bboxes FRCN 05 01 78 64 103 45 09 0.2 3.8
MCG hulls FRCN 1.3 0.6 105 6.1 9.7 59 1.7 05 4.6
GT bboxes FRCN 76 0.5 175 10.7 157 84 2.6 29 8.2
GT regions FRCN 65.540.6 65.9 21.1 31.9 30.2 28.8 46.4 41.3
MCG regions GT 3.7 44 119 199 215 124 7.8 26 10.5
MCG bboxes GT 20 2.0 109 182 22.1 159 6.0 22 9.9
MCG hulls GT 34 4.1 134 204 24.1 16.0 83 2.8 11.6

Table 13. Detailed results of our baseline experiments for the instance-level se-
mantic labeling task in terms of the region-level average precision scores AP on
the class level. All numbers are given in percent. See the main paper and Sec. D.2
for details on the listed methods.
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Proposals Classifier g E B g 8 g g 2 £
MCQG regions FRCN 6.7 54 19.3 103 119 76 7.8 3.0 9.0
MCG bboxes FRCN 27 06 233 154 27.2 152 48 14 11.3
MCG hulls FRCN 56 39 26.0 13.8 26.3 15.8 86 3.1 129
GT bboxes FRCN 354 4.3 449 19.3 299 26.7 11.9 16.7 23.7
GT regions FRCN 65.540.6 65.9 21.1 31.9 30.2 28.8 46.4 41.3
MCG regions GT 12.318.1 29.6 439 44.6 31.4 259 10.0 27.0
MCG bboxes GT 9.2 11.5 29.0 41.8 46.0 36.0 23.3 9.6 25.8
MCG hulls GT 12.018.4 314 46.1 46.3 40.7 27.7 10.7 29.1

Table 14. Detailed results of our baseline experiments for the instance-level seman-
tic labeling task in terms of the region-level average precision scores AP*°” for an
overlap value of 50 %. All numbers are given in percent. See the main paper and
Sec. D.2 for details on the listed methods.
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Proposals Classifier 2 E 8 g 2 E E 2 £
MCQG regions FRCN 3.7 1.6 102 6.8 54 42 22 1.1 4.4
MCG bboxes FRCN 09 01 129 11.3 185 69 1.3 0.3 6.5
MCG hulls FRCN 26 1.1 175 106 174 9.2 26 09 7.7
GT bboxes FRCN 88 0.8 25.3 184 27.1 13.0 3.9 3.6 126
GT regions FRCN 79.166.0 78.9 33.6 53.9 47.1 42.6 63.5 58.1
MCG regions GT 6.8 6.8 18.9 28.7 32.7 19.0 10.5 4.3 16.0
MCG bboxes GT 3.5 29 173 273 345 249 82 3.7 153
MCG hulls GT 6.1 6.2 21.4 299 372 24.7 11.4 4.7 17.7

Table 15. Detailed results of our baseline experiments for the instance-level se-
mantic labeling task in terms of the region-level average precision scores AP19™
for objects within 100 m. All numbers are given in percent. See the main paper
and Sec. D.2 for details on the listed methods.
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Proposals Classifier g2 E 8 g 2 g g 5 £
MCQG regions FRCN 40 1.7 120 90 78 64 24 1.1 5.5
MCG bboxes FRCN 1.0 0.1 15.5 14.9 27.7 100 14 04 8.9
MCG hulls FRCN 27 1.1 21.2 140 252 142 2.7 1.0 103
GT bboxes FRCN 85 0.8 26.6 23.2 372 17.7 4.1 3.6 15.2
GT regions FRCN 79.1 68.3 80.5 429 69.4 67.9 46.2 64.7 64.9
MCG regions GT 72 7.0 21.7 324 424 236 11.1 4.5 18.7
MCG bboxes GT 3.7 3.0 199 33.0 46.0 329 86 3.8 18.9
MCG hulls GT 6.5 6.4 24.8 354 49.6 31.8 12.2 49 214

Table 16. Detailed results of our baseline experiments for the instance-level se-
mantic labeling task in terms of the region-level average precision scores AP°™
for objects within 50 m. All numbers are given in percent. See the main paper and
Sec. D.2 for details on the listed methods.
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Image Annotation

static fine (SF) static coarse (SC)

GT segmentation w/ SF GT segmentation w/ SC

GT segmentation w/ [41] GT subsampled by 2

GT subsampled by 8 GT subsampled by 32

GT subsampled by 128 nearest training neighbor

Figure 8. Exemplary output of our control experiments for the pixel-level semantic labeling task, see the main paper for details. The image
is part of our fest set and has both, the largest number of instances and persons.
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FCN-32s

FCN-8s half resolution FCN-8s trained on coarse

1.1

SegNet basic [4]

CRF as RNN [81] DeeplLab LargeFOV StrongWeak [48]

Adelaide [37] Dilated10 [79]

Figure 9. Exemplary output of our baselines for the pixel-level semantic labeling task, see the main paper for details. The image is part of
our test set and has both, the largest number of instances and persons.
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Annotation

static fine (SF) static coarse (SC)

GT segmentation w/ SF GT segmentation w/ SC

GT segmentation w/ [41] GT subsampled by 2

GT subsampled by 8 GT subsampled by 32

GT subsampled by 128 nearest training neighbor

Figure 10. Exemplary output of our control experiments for the pixel-level semantic labeling task, see the main paper for details. The
image is part of our test set and has the largest number of car instances.
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SegNet basic [4]

CRF as RNN [81] DeeplLab LargeFOV StrongWeak [48]
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Adelaide [37] Dilated10 [79]

Figure 11. Exemplary output of our baseline experiments for the pixel-level semantic labeling task, see the main paper for details. The
image is part of our test set and has the largest number of car instances.




81
i e L

FRCN + MCG bboxes

/

- -
e e Q&D!ﬂmiﬂ il

FRCN + GT bboxes

Largest number of cars Annotation

FRCN + MCG bboxes FRCN + MCG regions

S = U G A

FRCN + GT bboxes FRCN + GT regions

Figure 12. Exemplary output of our control experiments and baselines for the instance-level semantic labeling task, see the main paper for
details.
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