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Abstract: In this article we present four necessary and sufficient conditions for a
natural number to be prime.

Theorem 1. Let p be a natural number, p>3: p is prime if and only if

-1
(p=3)' ="~ (modp).
Proof:
Necessity: p is prime :>(p—1)!z —1(mod p) conform to Wilson’s theorem. It
results that (p—1)(p—2)(p—3)!=—1(mod p), or 2(p—3)!= p—1(mod p). But p being

-1 ..
P eZ . It has sense the division of

a prime number > 3 it results that (2,p)=1 and
the congruence by 2, and therefore we obtain the conclusion.
. . -1 .
Sufficiency: We multiply the congruence (p-—3)!= pT(mod p) with

(p—D(p—2)=2(mod p) (see [1], pp. 10-16) and it results that (p—1)!=—-1(mod p),
from Wilson’s theorem, which makes us conclude that pis prime.

Lemma 1. Let m be a natural number >4 . Then m is a composite number if and
only if (m—1)!= 0(modm).

Proof:

The sufficiency is evident conform to Wilson’s theorem.

Necessity: m can be written as m=a"...a", where q, are positive prime
numbers, two by two distinct and «; € N°, forany i, 1<i<s.

If s#1 then a" <m, forany i, I<i<s.

Therefore a/"...a)* are distinct factors in the product (m—1)! thus
(m-1)!'=0(modm).

If s=1 then m=a" with ¢ >2 (because m is non-prime). When a =2 we
have a <m and 2a < m because m >4 . It results that a and 2a are different factors in
(m—1)! and therefore (m—1)!=0(modm). When & >2, we have a <m and a*' <m,

and a and a” ' are different factors in the product (m —1)!.
Therefore (m —1)!= 0(modm) and the lemma is proved for all cases.



Theorem 2. Let p be a natural number greater than 4. Then p is prime if and

P +1
only if (p—4)!z(—l)[3} {DTH} (mod p), where [x] is the integer part of x, i.e. the

largest integer less than or equal to x.

Proof:

Necessity: (p—4H)!(p—-3)(p—2)(p—-1)=—-1(mod p) from Wilson’s theorem, or
6(p—4)!=1(mod p); p being prime and greater than 4, it results that (6,p)=1.

It results that p =6k +1, k eN".

A) If p=6k—1,then 61(p+1) and (6, p) =1, and dividing the
congruence 6(p—4)!= p+1(mod p), which is equivalent with the initial one, by 6 we

obtain:
1 [ s l}ﬁnod D).

_p+l
(p-H!= 5 a
B) If p=6k+1, then 61(1-p) and (6,p)=1, and dividing the congruence
6(p —4)!=1- p(mod p), which is equivalent to the initial one, by 6 it results:
p
(p—-4!'= I—Tp =—k= (—1)HH {pTH} (mod p).
Sufficiency: We must prove that p is prime. First of all we’ll show that p = M6 .
Let’s suppose by absurd that p = 6k, k eN". By substituting in the congruence
from hypothesis, it results (6k —4)!=—k(mod6k). From the inequality 6k —5 > k for
keN", it results that kl(6k—5)!. From 221(6k—4), it results that
2k 1(6k—5)!(6k—4). Therefore 2k |1(6k—4)! and 2k |6k, it results (conform with the
congruencies’ property) (see [1], pp. 9-26) that 2k | (—k), which is not true; and therefore
p#M6.
From (p—-1)(p—-2)(p—3)=—-6(modp) by multiplying it with the initial

£ 1
congruence it results that: (p—1)!= (—1)[3}6 . {%}(mod p).

Let’s consider lemma 1; for p >4 we have:
O(mod p), if p is not prime;
(p=Di= {—1(mod p), if p is prime:
a) If p=6k+2=(p-1)!=6k#0(mod p).
b) If p=6k+3=(p—1)!=—-6k# 0(mod p).
c) If p=6k+4=(p—1)!=-6k=#0(modp).
Thus p# M6+ rwith r e {0,2,3,4} .
It results that p is of the form: p=6k+1, k eN" and then we have:
(p—1D!=—-1(mod p), which means that p is prime.



Theorem 3. If p is a natural number >5, then p is prime if and only if
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24

(p—5)=rh+ L (mod p) , where h=[§} and r = p—24h.

Proof:

Necessity: if p is prime, it results that:
(p—3p-4H)(p-3)(p-2)(p—-1=-Imodp) or

24(p—5)!=—1I(mod p).

But p could be written as p=24h+r, with re{l, 5, 7, 11, 13, 17, 19, 23},

=1

because it is prime. It can be easily verified that eZ.

24(p=5)=—1+r(24h+r)=24rh+r* —1(mod p).
Because (24,p)=1 and 241(*—1) we can divide the congruence by 24,

2
r-—

24
Sufficiency: p can be written p=24h+r, 0<r<24, heN.
Multiplying the congruence (p—4)(p —3)(p—2)(p —1) = 24(mod p) with the initial one,
we obtain: (p—1)!=r(24h+r)—1=—-1(mod p).

1
obtaining: (p—5)!=rh+ (mod p) .

Theorem 4. Let’s consider p=(k—1)!h+1, k>2 anatural number.
Then: p is prime if and only if
Jd
h

(r—01= 1 hmod .

Proof: (p—1)!=-1I(mod p) = (p—k)!I(-1)"" (k-1)!= -1(mod p) < (p-k)!(k-1)!
= (-1)(mod p) .

We have: (k—1D!,p)=1 (1)

A) p=k-Dh-1.

a) k is an even number = (p —k)!(k—1)!=1+ p(mod p), and because of the
relation (1) and (k—D!I(1+ p), by dividing with (k—1)! we have: (p — k)!= h(mod p).

b) k is an odd number = (p—k)!(k—1)!=—-1- p(mod p) and because of the
relation (1) and (k—-D!lI(-1-p), by dividing with (k—-1)! we have:
(p—k)!'=—h(mod p)

B) p=(k-1!h+1

a) k 1s an even number = (p—-k)l(k—1)!=1- p(modp), and because
(k—D!'(A-p) and of the relation (1), by dividing with (k—1)! we have:
(p—k)!'=-h(mod p).

b) k is an odd number = (p—-k)!(k—1)!=—-1+ p(modp), and because
(k—D!'(-1+p) and of the relation (1), by dividing with (k—1)! we have
(p—k)!'=h(mod p).



Putting together all these cases, we obtain: if p is prime, p =(k—1)!h =1, with
k>2 and h eN’, then

h+[£}+l
(p—k)'=(=1) I hmod p).
Sufficiency: Multiplying the initial congruence by (k —1)! it results that:

(p—-K)(k—1D= (k-1)h- (—1)[;]” -(=1)*(mod p) .

Analyzing separately each of these cases:
A) p=(k—-1)!h—1 and
B) p=(k—-1)!h+1, we obtain for both, the congruence:
(p =)k =1)!'= (=1)"(mod p)
which is equivalent (as we showed it at the beginning of this proof) with
(p—1!=—-1(mod p) and it results that p is prime.
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