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Figure 9-6 The zero-order Bessel function Jp(r).

of electrical and mechanical systems that are both linear and time invariant, so the Bessel
function will be found in higher dimensionalitics where linearity and space invariance exist
and where circular boundary conditions are imposed.

THE HANKEL TRANSFORM

To obtain the Fourier transform of a function that is constant over a central circle in the
(x, y)-plane and zero elsewhere, or which, while not being constant, is a function of
r = (x2 + y})!/2 only, one may of coursc use the standard transform definition in cartesian
coordinates. Let the function f(x, y) be F(r). Then

0o poo ,
Flu,v) = f f f(rye U dx dy.
—G Y 00

Some comments should be made about the limits of integration. They may certainly
be written as above, provided it is understood that f(r) covers the whole plane 0<r <o
In the example mentioned, where the function is a constant K overa central circular region
C of radius a and zero elsewhere, there would be a simplified alternative

F(u,v):Kffe‘jzn("x“L”y)dxdy.
<

Of course, the boundary of a circle does not lend itself to the simplest kind of
representation in rectangular coordinates. Nevertheless, it is possible to do so, 10 which
case we could write
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21

a (az—y .
Fu,v) = K[ dy[ eIt gy
—da

,(GZA}.Z)UZ
Sometimes this kind of integration over elaborate boundaries works out painlessly;
let us try to proceed in this case.

2)1,’2

a (@ -y :
Flu,v) = Kf eﬂZTrvydyf e—xlnux dx

—a (a2 y1)1i2

(a2-yhyt2

a —i2mux .
K / e—t’Zn vy € dy
- —i2mu —(a?—y1)1i2

a vy e—iZJ’ru(azﬁyz)“"2 _ ‘,',1'21'1&1(az—yz)l"f2
K e” 1d
[_a —i2mu 4

1l

K ¢ _.
= — e 2TV i [2:11':4(512 — yz)”z] dy
T f g

K a
=) f cos(2mvy) sin [Zm,c(a2 — y2)1/2] dy.
T Jo

This is the maximum simplification that we can hope to make before turning to lists
of integrals for help. We find the integral on p. 399 as entry 3.711 in GR (1965). The
answer is

J1(2maq)
a——,

Fu,v) = Ka@® + v}~ [2”“1&«:2 +vH)!2] = k
q

where J| is the first-order Bessel function of the first kind and ¢ = +/u? + v2.

As an alternative approach, consider making use of the circular symmetry of the
exercise rather than forcing rectangular coordinates upon it. Let (7, #) be the polar coor-
dinates of (x, y). Then

oo p2r
Fu,v) = f [ f(r)e 27+ gy dy = f f f(r)e 2 arcos0=®rgrqg,
C 0 [\]

We are now integrating from 0 to oo radially and through 0 to 27 in azimuth, and,
because of the independence of azimuth, the latter integral should drop out. The new
symbols g and ¢ are polar coordinates in the (u, v)-plane. Thus

q2 =u?+v* and tan¢ = v/u.

Then the new kernel exp [—i2mwgr cos(8 — ¢)] arises from recognizing ux -+ vy as
the scalar product of two two-dimensional vectors. Thus

ux + vy = R[(x + iv)(u — iv)] = Rlre'qe™¢) = gr cos(6 — ¢).

Removing the integration with respect to ¢,
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o0 2
Flu,v) = f f(r) l:[ e""sz'msw'mdﬁ] rdr
0 0
o] n
= [ f(r) [[ cos(2mgr Cose)d(J]rdr.
0 0

Since u and v, and therefore g and ¢, are fixed during the integration over the (x, y)-
planc, we may drop ¢, because il metely represents an initial angle in an integration that
will run over one full rotation from 0 to 27. Thercfore, the result of the integration will be
the same regardless of the value of ¢; take it 1o be zero. Again, the sine component of the
imaginary exponential may be dropped, because it will integrate to zero; to see this, make
sketches of cos (cos #) and sin {cos g)for0 < 6 < 2m.

We now make use of the fundamental integral represemntation for the zero-order
Bessel function Jp(z), namely,

1 2n
Jolz) = r] cos(z cos 8)dD.
2 Jo

This basic relation will be returned to later. Meanwhile, incorporating it into the develop-
ment, we have finally :

Fu,v) =21 f f(r)Jo@mgr)rdr.
0

Here we have the statement of the integral transform that takes the place of the two-
dimensional Fourier transform when f{x,y) possesses circular syminetry and is repre-
gentable by f(r). Tt follows that F{u, v) also possesses circular symmetry (the rotation
theorem is an expression of this) and may be written F(g), depending only on the radial
coordinate g = (2 4 v}/ 2 in the (1, v)-plane and not on azimuth ¢. The transform

Hankel transform.

o4}
Flg) = 21{[ f(rJo2mgrirdr
0

is known as the Hankel transform. It is a one-dimensional transform. The functions, f and
F are functions of one variable. They are not a Fourier transform pair, but a Hankel trans-
form pair, As functions of one variable they may be used to represent two-dimensional
fupctions, which will be two-dimensional Fourier transform pairs.

Hankel Transform of a Disk
Our first example of a Hankel transform pair, obtained directly by integration, was
2
rec[(L) has Hankel transform a—m.
2a q

This is such an important pair that we adopt the special name jinc g for the Hankel
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transform of rect r. Thus

Ji(n
rectr  has Hankel transform  jincg = i Q).

2q

From the integral transform formulation it follows that
o0
jincg =27 / rect r Jo(2mgr)r dr.
0
Likewise, from the reversibility of the two-dimensional Fourier transform, it follows that

o0
rectr =27 f jincg Jo(2mgr) g dg.
0
Frequently needed properties of the jinc function are collected below.
Hankel Transform of the Ring Impulse

As an example of the Hankel transform we used the rectangle function of radius 0.5 and
found by direct integration in two dimensions that the Hankel transform was jinc g. Now

we make use of the Hankel transform formula to obtain another important transform pair.
Let ’

fry=8(r—a)

which describes a unit-strength ring impulse. Its Hankel transform F(g) is given by

o2
F(g) = ZJrf £(r)Jo(2mgr)rdr
0

o0
= ZIr/ 8(r —a)Jo(Rrgryr dr.
)

Apply the sifting property to obtain immediately
F(g} = 2nay(2mag).

From the reciprocal property of the Hankel transform it also follows that

o0
S(r—a)=2n f 2ralo(lnag)o(Crrglg dg
i}

a relationship that can be recognized as expressing an orthogonality relationship between
zero-order Bessel functions of different “frequencies.” Unless the two Bessel functions
have the same “frequency,” the infinite integral of their product is zero, just as with sines
and cosines. Although Jy{wr) is not a monochromatic waveform, nevertheless as ¢ elapses,
the waveform decays away rather slowly in amplitude and settles down more and more
closely to a definite angular frequency @ and a fixed phase, as may be seen from the

asymplotic expression
2 1
Jo(wt) ~ \f —— cos(wt — 3m).
T wt
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Figure 9-7 A circularly symmetrical

function suitable for representing the

distribution of light over a uniformly
illuminated annular stit. By an extraordinary
visual illusion connected with the evolution
of vision, the height and outside diameter

X appear unequal,

Just as jincr can be described as a circularly symmetrical two-dimensional func.
tion that contains all spatial frequencies up to a certain cutoff, ini uniform amount for afj
frequencies and orientations, so also Jo(r) can be seen as a circularly symmetrical two-
dimensional function that contains only one spatial frequency but equally in all orienta-
tions. The jinc function is thus like the sinc function, and Jo 1s like the cosine function,

Annular Slit

We have established the following two Hankel transform pairs:
rectr O jincg
8(r —a) D 2raly(2mag),

and in what follows we need to recall the similarity theorem in its form applicable to
circular symmetry:

Iff(r) D F(g) then f(r/a) > a’Flag).

Note that the sign > may be read “has Hankel transform” if you picture f and F as
one dimensional, but may alternatively be read “has two-dimensional Fourier transform” if
you prefer to think of f and F as functions of radius representing two-dimensional entities.

Both the unit circular patch represented by rect 7 and the ring impulse 8(r — «) are
constantly needed. A third important circularly symmetrical function (Fig. 9-7) is unity
over an annulus. For concreteness of description it may be referred to as an annular slit,
but of course the function is of wider significance.

A narrow circular slit could be cut in an opaque sheet and, if uniformly illuminated
from behind, would be reasonably represented by a ring impulse. If the mean radius of the
annulus were a, the slit width w, and the amplitude of illumination A, then the distribution
of light would be expressible as

Arect(#) — Arect(%).
{ w od — w
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The “quantity” of light would be 2rawA, and the quantity per unit arc length would be
wA. Therefore, since the ring impulse 8(r — a) has unit weight per unit arc length, the
appropriate impulse representation would be wAS(r — a).

We know the Hankel transforms of both the annulus and the ring deita, and the
transforms will approach equality as the slit width w approaches zero, provided at the
same time the amplitude of illumination A is increased so as to maintain constant the
integrated amplitude over the slit. We are saying that as the slit width w goes to zero while
wA remains constant, then

AQa + w)zjinc{(2a +w)gl — AQa — w)zjinc[(2a —w)g] - (WA)2mato(2raqg).

It follows that
limow_l [(Za + w)? jinc[(2a + w)g] — a — w)?jinc[(2a — w)q]] =2raky(2rag).

The left-hand side is recognizable as a derivative, and therefore the conclusion implies the
identity

5% (4a2jinc 2qa) = 2maty(2mag), .
a resalt that can be deduced independently from properties of Bessel functions.

For computing purposes we may sometimes wish to represent a ring impulse by an
annulus of small but nonzero width, and we may also wish to do the reverse for purposes
of theory—namely, to represent an annular slit by a ring impulse. A slit width equal to 10
percent of the mean radius may seem a rather crude example to take, but with a = 1 and
w = (0.1 let us compare 10[(2.1)2jinc(2.1q) - (1.9)2jinc(1.9q)] with 2 Jy(27 q).

We quickly find from a few test points that the agreement is good.

g 0 038277 —05 1.0
LHS 628318 —0.004  —1.9061 1365
RHS 628318 0 19116 1.384

Thus, as far as the transform is concerned, a 10 percent slit width, which seems far
from a slit of zero width, gives results within 1 percent or so.

It is worthwhile doing numerical calculations of this sort from time to time to de-
velop a sense of how crude an approximation may be and still be useful. Over the whole
range 0 < g < 1 the discrepancy ranges between limits of 0.0192 and —0.0197 or Jjust
under 2 percent of the central value. For less crude approximations the results would, of
course, be even more accurate. An approximate solution to an urgent problem is most
welcome, provided you have the experience to feel confidence in the quality of the ap-
proximation. You gain this feeling for magnitudes by making a habit of comparing rough
approximations with correct solutions. Reference lists of Hankel transforms can be found
in FTA (1986), in Erd (1954), and others occur in GR (1965).
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Table 9-1 Table of Hankel transforms.

£(r) F(q) = 2n f;° f(r)JoQrgr)rdr
far) a~(q/a)

faxg FG

() —V°F

rect r jincg

&(r —a) 2raty2raq)

e’ e 4

Fle—nrt Wl - qz)e—nq2

(1 +rH~172 g le~2ma

(1 + 32 2re~imd

(1- 4r¥yrectr Jz(rrq)/frqz

(1 —4r rectr 22 W f,(mq)/m gt
-1 -1

o q

e’ 2n(dnig? + )32

rler 21r(4Jr2q2 + 12 ' ig,
8(x, y) 1

Theorems for the Hankel Transform

Theorems for the Hankel transform are deducible from those for the two-dimensional
Fourier transform, with appropriate change of notation. For example, the similarity theo-
rem f(ax, by} ’D lab|~VF (u/a, v/b) will apply, provideda = b, a condition that is nec-
essary to preserve circular symmetry. Thus f(ar) has Hankel transform a—2F(g/a). The
shift theorem does not have any meaning for the Hankel transform, since shift of origin
destroys circular symmetry. The convolution theorem, f #* g *D FG, retains meaning
for the Hankel transform on the understanding that f(r) and its Hankel transform F(g) are
both taken as representing two-dimensional functions on the (x, y)-plane. Then f % g has
Hankel transform FG. Some theorems have been incorporated in Table 9-1.

Computing the Hankel Transform

It is perfectly feasible to compute the Hankel transform from the integral definition. The
infinite upper limit causes no trouble in practice when the given function either cuts off
or dies away rapidly. To evaluate the Bessel functions needed for all the g values one
uses the series approximation given above for arguments less than 3 and an asymptotic
expansion otherwise. In the following sample program the given function f(r) is defined
to be exp[*rr(r/'l)z], which falls to 3 x 1075 at r = 14, and is integrated from 0 to 14.
The Bessel function appears in the inner loop with three explicit multiplies, but at least
ten more occur in the function definition for Jo(x). Consequently this program is not fast.
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A faster method starts by taking the Abel transform of f(r) (see below) followed by a
standard fast Fourier transform; or, since only the real part of the complex output will be
utilized, some may prefer to call a standard fast Hartley transform, which will give exactly
the same result faster.

HANKEL TRANSFORM
DEF FNf(r)=EXP(-PI*{(r/7)°2 Function definition
dr=0.1 Stepinr
FOR q=0 TO 0.25 STEP 0.05
k=2+#PI*q
s=0

FOR r=dr/2 TO 14 STEP dr
a=s+FNf (r)*FNJO(k*r)+ r
NEXT r
PRINT q;2*PI#s*dr
NEXT g
END

_—
THE JINC FUNCTION S

TJust as in one dimension there is a sinc function which contains all frequencies equally up
to a cutoff, and no higher frequencies, so in two dimensions there is a jinc function (Figs.
9.1, 9-8 and Table 9-1) that has already been referred to. The following material, which is
collected in one place for reference, mentions the Abe! transform, and the Struve function
of order unity, which are discussed later. A table of the jinc function is given as Table 9-4
at the end of the chapter.

Properties of the jinc Function

Definition.

. Ji(mx)
jincx = .
2x

Series Expansion.

3 5 7 9
jincx=£—1x2+Lx4— al x5+ il X2 —
4 2 28.3 2123 216325

— 785398 — .968946x2 + .398463x% — 245792x% + .010108x8 + - ..

Asymptotic Expression, x > 3.

cos[m{x — 3/4)]
N i

Asymptotic Behavior. The slow decay of Jo(r) with r is connected with the fact that
its Hankel transform is impulsive, while the relatively rapid decay of jinc r to small values

jncx ~
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Figure 9-8  The jin¢ function, Hankel transform of the unit rectangle function (heavy

line). The first null is at 1.22, the constant that is familiar in the expression 1.224/D for
the angular reselution of a telescope of diameter D See Table 9-4 for tabulated values.

The jinc? function normalized to unity at the origin (light line) describes the intensity in
the Airy disc, the diffraction patiern of a circular aperturc.

occurs because its transform has only a finite discontinuity. The even greater compactness
of jinc?(r) is associated with the even smoother form of its transform, the chat function,
Thus Jo(r) ~ r~ Y2, jincr ~ r=3/2 jinc® r ~ 3. It appears that, if n derivatives of Fig)
have to be taken to make the result impulsive, then f(r) ~ -+ D The similar theorem
for the Fourier transform is that if the ath derivative of f(x) is impulsive, then F(s) ~
5", However, in the presence of circular symmelry a qualification is necessary, because
there cannot be a finite discontinuity at the origin, and a discontinuity in slope at the origin,
such as chat r exhibits, counts for less.

Zeros. jincx, =0

n 1 2 3 4 5 6 L..oon
x, 12197 22331 32383 4.2411 52428 62439 ... ~n+1/4
Derivative.
. T ] oz
jing' x = E;Jo(rrx) = ;J’](TEX) = -—E;Jp_(nx).

Maxima and Minima.

Location 1.6347 2.6793  3.6987 47097 57168 67217

Value —0.1039 0.0506 —0.0314 00219 -0.0i6 0013

Integral. The jinc function has unit area under it:
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(s o)
[ jincx dx = 1.

oQ

Half Peak and 3 dB Point.
jinc(0.70576) = 0.5jinc 0 = = /8 = 0.39270.

1
jinc g = ~= jinc0 = 0.55536,
ok
where G3gp = 0.51456.

Fourier Transform. The one-dimensional Fourier transform of the jinc function is
semi-elliptical with unit height and unit base. o

o i
j jincx e 1N dx = /1 - (29)? rects.

—0Q

Hankel Transform. The Hankel transform of the jinc function is the unit rectangle
function

o0
[ jincr Jo(2mgr)2rr dr =rectq.
0

Abel Transform. The Abel transform (line integral) of the jinc function is the sinc
function
® jincr r dr

x v‘rz—xz

Two-dimensional Aspect. Regarded as a function of two variables x and y, jinc r
(where r2 = x* + y?) describes a circularly symmetrical hump surrounded by null circles
separating positive and negative annuli.

= §inc x.

The Null Circles. Nulls occur at radii 1.220, 2.233, 3.239, etc. As the radii approach
values of (.25 + integer, their spacing approaches unity.

Two-dimensional Integral. The volume under jinc r is unity:

o0 o0 oG
f / jincy/x2+ y?dx dy = f jinc r2zr dr = 1.
—ou J —00 0

Two-dimensional Fourier Transform. A disc function of unit height and diameter:
oo oo
[ [ jine f x2 4 y2 eI EAYI g0 gy = rect(v u? + v2).
—00 v =00

Two-dimensional Autocorrelation Function of the jinc function is the jinc function

o0 o0
[ [ jine /€2 + 72 jinc\/(Z;' +x)2 + (n + )2 dE dn = jinc\/x2 + y2.
-0 -0
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Figure 9-9 The Chinese hat function, autocorrelation function of rect r.

The Chinese Hat Function (Fig. 9-9) is the Hankel transform of 'jincz r.
o]
chatg = L(cos™!Ig| — Ig1y/1 — ¢?) rect jq = [ jinc? r Jo(2mqr) 2mr dr.
0

q 0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1.0

chatg 0.7854 0.6856 0.5867 04900 0.3963 0.3071 0.2236 0.1477 0.0817 0.0294 0.0

Autocorrelation of the Unit Disk Function is the Chinese hat function of radius 1.

f f rect(‘/m2 + 89 rect(\/(a + )2+ (f + v)?) da dB = chat vV u? + v2.

Two-dimensional Fourier Transform of the jinc? function is the Chinese hat function

o0 o>
f f jinc? /x2 4 y2 e 2T g dy = chat vi2 + v2.
—O0 v — O
See Fig. 9-9.

Abel Transform of jinc? is (See Fig. 9-10.)

e jinczr rdr _ H(2mx)

2 =
A= s A g0

" Fourier Transform of Chat.

oo . H;(2
f chat xe 1275 gy — Jij;_"")
—3) 4ms
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Figure 9-10  The Struve function H; (x).

Abel Transform of Chat.

* chatr rdr

2 ————— = See Fig, 9-12.
x o Art—xl
Fourier Transform of jinc? is
m -
f jine? x e 72T gy —
—00
See Fig. 9-12,

Integrals and Central Values,

>0
f jinc® r 27r dr = chat 0 = 7 /4,
0

0
f chatr 2nr dr = jinc? 0 = 2/16.
0

40

X

50

363

To summarize, we arrange the various functions in groups of four to display their
relationships according to the pattern shown in Fig. 9-11. Each algebraic quartet in the
table can also be illustrated graphically. We have been accustomed to arranging functions
on the left and transforms on the right. A certain convenience accrues from the adoption
of conventions of this sort, which provide a constant framework within which different
cases may be considered. In the graphical version of the new organization proposed, the



364 Rotational Symmetry Chap. g

f(r) ~-— J = 7 {f) e r ~— F == T dslrect
A \ H A A \H A

N N
A{ T} - F = {1} singx —~— F e reclyg
jinc?r —_— F = () rect r -~ J —w  sincs ‘
A \ H A A \ H A

N ™~
H(272)/Am2l=—F —= chaly Vil et v —— F e jincg

Figure 9-11 The jinc function and its relatives arranged in quartets obeying the
relationships specified in the upper teft, The function ®(s) is both the Abel transform of
the chat function and the Fourier transform of the jinc? function.

function f(x,y) (or £(r) in the case of circular symmetry) goes in the northwest and
its two-dimensional Fourier transform F{u, v) [or F(g)] goes in the southeast, giving a
diagonal arrangement on the page, because in this way the left-right juxtaposition of one-
dimensional Fourier transforms can be preserved. In the example where jincr is in the
top lefi-hand comer and rectg in the bottom right-hand comner, the cross section of each
two-dimensional function along the east-west axis can be shown rabatted into the plane.
These one-dimensional functions of x and &, respectively, constitute a Hankel transform
pair. Where circular symmetry happens to exist and f(x, y) 2 F{u, v), then f(x, 0) has
Hankel transform F(u,®). The general situation of no symmetry has more to do with
data than with properties of instruments, which can often be designed with cylindrical
symmetry, and is taken up later in connection with the projection-slice theorem.

The cross section of f{x, y) along a line x = const has an arca which is the ordinate
of the Abel transform of f(x, y), viz., sinc x. We see that sinc x and its Fourier transform
rect ¢ are arranged left-to-right as planned.

The whole story can now be repeated, since the Hankel transform is reciprocal,
starting in the bottom right-hand corer. Thus the cross section of rectg has an area
equal to the ordinate of (1 — 4u)/ 2 rect w, which in turn is the one-dimensional Fourier
transform of jinc r, the function we began with.

3
A
P
:

et
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Figure 9-12 The Abel transform of jinc? r, This function is also the one-dimensional
Fourier transform of the chat function.

THE STRUVE FUNCTION

The Fourier transform of the chat function, which is the same as the Abel transform of
the Airy diffraction pattern, or jinc? function, both arise naturally in optical systems and
may be expressed in terms of the Struve function H;(x) as H, (27 x)/4mx2. For values
of x up to about 5 the Struve function can be catculated from the Taylor series (2/m)(1 +
x2/3—x*/32.54+x%/32.52. 7 ..}, For larger values of x use the asymptot}c expansion
12.1.31 given in A&S (1964). A graph is shown in Fig. 9-10; the function oscillates with
a period close to 2 about a limiting value of 2/x. The oscillations decay rather slowly in

amplitude, inversely as the square root of x; the only null is the one at x = 0.

THE ABEL TRANSFORM

A two-dimensional function f(r) that has circular symmetry possesses a line integral, or
projection, that is the same in all directions. Call this function f4(x). The subscript A
refers to Abel and the variable x can be thought of as being the abscissa in the (x, y)-
coordinate system to which the radial coordinate r belongs. Thus fa(x) is the projection
in the y-direction, or the line integral in the y-direction. As an example, if £(r) = rect(r),
then fa(x) = (1 — 4x2) /2 rect x (Fig. 9-13). This is because a disk function of unit height
and unit diameter has a cross-section area (1 — 4x2)!/2 on the line x = const, provided
x| < % Where |x| = % the cross-section area is zero, a fact that the factor rect x re-
minds us of. The shape of the Abel transform in this example is semi-elliptical, which
is connected with the fact that the given outline was circular. If you wanted to know what
function of r has a semicircular Abel transform, the answer would be % rectr.

In lieu of these explanatory remarks it would be sufficient simply to introduce the
Abel transform f4( ) of a function f( ) by this definition:

fae) & f 1/x2 + ) dy.
oo

Then if the question arose as to the Abel transform of rect( ), we would evaluate it as
follows:
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' ’ f,(x)

Figure 9-13 The area of the shaded cross section is the Abel transform of the function
of r for the particular value of x chosen. In the case of rect r the Abel transform fa(x) is
the semi-cllipse +/1— 4x%, x| < 1.

—00 b

(1/4—xHt1?
= [ dy rectx
—(l/a—x]1/2

= 2,,:‘7: — x2 rectx
=+ 1—4x? rectx.

The limits of integration were arrived at by noting that points on a line parallel to the y-
axis at abscissa x must lie within y = :l:(% — xHY2 in order for rect(/x2 + y2) 10 be
unity rather than zero. The integration involved is not difficult, but it is obvious that some
geometrical reasoning based on the explanatory introduction is helpful in arriving at the
limits of integration.

An alternative form of the definition can be given in terms of r, which 1s the natural
variable to think of as underlying a circularly symmetrical function f(r) = f(x,y). Thus

oC
fA(x)=[ rect(y/ x2 + y2) dy -

Abel transform definition.
© f(ryrdr
A - —
falx) & 2 ] g

To convert from dy to dr write dr/dy = sin@ = r? —x*/r. Thusdy =r dr/~rf —x*.
To relate this definition to the previous one, note that the minimum value of r is the given

d
value of x. Thus [ ... dy may be replaced by 2 N d_y dr, the factor 2 arising from
r

the equal contributions from above and below the x-axis. From yr=r?— x? we deduce
that dy/dr = r/y at constant x. Alternatively, from Fig. 9-14, we can sce from similar
triangles that dy/dr = r/y.
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- x = const

X

Figure 9-14 A contour map of the plane of f(r) (above) with a diametral cross section
and a graph (below) of the line integral f f(r)dy along the line x = const.

Some Theorems for the Abel Transform

Many theorems for the Fourier transform do not have a counterpart when circular symme-
try is imposed, but a small number of interesting theorems for the Abel theorem can be
mentioned.

Similarity Theorem. If f(r) is contracted by a factor a to f(ar), then clearly fa(x) will
be contracted in the same proportion and, in addition, the values of f4() wil] be reduced
in magnitude by the same factor. Thus

f(ar) has Abel transform a ! falax).

This result is verifiable immediately by substituting ar for r in the definition.
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Linear Superposition. 1f f(r) has Abel transform f4(ax), and g(r) has Abel transform
galax), then

f(r) 4+ g(r) has Abel transform  fa(x) + galx),
for any choice of f and g.
Convolution Theorem. If f{r) and g(r) are convolved in two dimensions, then the Abe]
transform of the result can be obtained as follows. From each of the Abel transforms f, (x)
and g4 (x) construct a circularly symmetrical function with the same radial section. These
two functions are correctly written fa{r) and g4(r). After fa and g4 are convolved two-

dimensionally, the radial section in any direction ¢ is the desired Abel transform. The
theorem is:

f(r) +x g(r) has Abel transform [fA(F) *k SA(T)]

f=const

The derivation of this theorem can be written down starting from the definition integrals,
but such a simple result must have a simple explanation, and it is given in Chapter 14.

Conservation Theorem. As the Abel transform is a simple préjection of a two-
dimensional function, the area integral of £(r) equals the integral of f4(x):

o.¢] o
271[ f(rrdr = f Falx)dx.
0 -0
Central Value Theorem. Putting x = 0 in the defining integral, we see that

fal0) = 2[ f(r)dr,
0

a relation that is useful for normalizing at the end of a computation in which unnecessary
multiplications by constanis are dropped.
Table 9-2 lists a variety of Abel transforms for ready reference.

Inverting the Abel Transform

Inversion of the Abel transform is performed by

ey L [T Saxd
)= T Jr VI2—!‘2-

An important special case is where f4(x) is zero for x greater than some cutoft value ¢
Then

by L [P Sa®dx | falo)
Tt xI-r2 J’r\/rg_rZ

The final term, which might be overiooked, arises from the possibility of fa(x) being
discontinuous at x = rg. Numerical inversion of the Abel transform is important, because
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Table 9-2 Table of Abel transforms. For compactness rect x is written I1(x).

f(r) falx)y =2 f2°(r — xH) V2% (ryr dr

M (r/2a) Disk 2@ — xH121x [2a) Semiellipse
(a? - Iy~ V2(r 2a) aTl(x/2a) Rectangle
(a® — r3Y2M0r /2a) Hemisphere %:rr(a2 - xz)ﬂ(x/Za) Parabola
(a? — rA{r/2a) Paraboloid 4j(a2 - x2)3/2ﬂ(x/2.a)

(a® — rHir2a) 3 (a2 — x%)*H1(x/2a)

(- |FD0/2) Cone f(a® — xHV2 — (x%/a)cosh™L(a /)| (x/2a)
cosh_l(a/r)l'l(r/Za) ma(l — |r/a)T1(r/2a) Triangle
&(r — a) Ring impulse 2a(a? — xz)_l/zﬂ(x/Za) g
exp(—mr?) Gaussian W exp(—7x2/ WhH Gaussian )
BXp(—r2/2{72) Normal T exp(—x2/262) ' Normal

r? cxp(—r2/20rz) SIna(x2 4+ 6 exp(—x%/20%)

r2 — oYy exp(—ri/207) V2Zroxlexp(—x2/26%)

r? T/x

@+l m(a? + x2)~1/2 4.,‘

JoQRrar) Bessel {ra) lcos2mrax "~ Cosine
2rr=3 fy Jotrydr — r=24y(r)] sinc? x

&(r)/m jr &(x) Impulse
2a sinc(2ar) Jo(2max) Bessel
%r‘l.ll (2rar) sinc 2ax

jincr sinc x

line-integrated data can often be obtained in situations where values of f(r) itself are
inaccessible. In such circumstances a formula containing a derivative looks unattractive
if the derivative f}(x) must be formed by differencing, because measurement error is
unfavorable, A numerical inversion procedure is described in FTA (1986) which avoids the
derivative. A different method of inversion is to take advantage of the Fourier-Abel-Hankel
cycle: take the one-dimensional Fourier transform and then take the Hankel transform.

One can take the Hankel transform without the need to invoke Bessel functions, by
first taking the Abel transform and then taking the one-dimensional Fourier transform, as
displayed in the following diagram.

) s FO)
Al Ta
f1x) < H()

It follows that f(r) can be recovered from f4(x) as indicated by
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Figure 9-15 Staggering the samples of an

integrand to avoid the infinite sample at the
5 10 15 X discontinuity.

f=FATF fa.

-

Implementation of this sequence of operations numerically is strﬁightforward.
Computing the Abel Transform

A rather interesting item of numerical analysis arises when one is called on to evaluate

/‘ o dx

, o

since the integrand is infinite at the left edge. For example, if we wanted / = 1105(x2 =
10%)~1/2 dx, there would be trouble at x = 10, even though the full integral is finite. A
way around this would be to stagger the samples (Fig. 9-15). Let (x2 — 10%)71/2 = ¢(x);
then if one computes 3133 s #(j), where j = 10.5, 11.5, ... 14.5, the result is 0.827, but
the exact integral is I = (0.962. Obviously the approximation is crude, and fine subdivision
of the interval might be needed to achieve desired accuracy. The correct approach is to note
that f{ 7" ¢ (x) dx = Cy(10 + 0.5wdw and that fie12* = C2(10 + 1.5w)w, where
Cy and (7 are coefficients and w is the sampling interval. As w — 0, €} and C3 assume
definite values 1.414 and 1.015 that may be used for general-purpose integration in cases
such as this, where the integrand diverges inversely as the square root of distance from the
pole. Thus

f{rydx

= |:1.414f(r+0.5w)+ LOISf(r + 15wy + 3 f(r+jw)]w.
¥ xXe —r

i=23
With w = |, which is rather coarse, the approximation to the correct value 0.962 is 0.959,

which is already better than 1 percent. A similar approach works with integrands that go
infinite as the inverse three-halves power.
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With this useful background, the reader may enjoy the following complete program
for the Abel transform in which I avoid the pole at x = r. This application assumes that the
function of radius is expressible in algebraic form and that the abscissa is scaled so that the
function is zero where r > 1. The example applies to £ (r) = 1 — r, whose Abel transform
is known to be v/1 — x2 — x2cosh~I (1 /x). The program can readily be modified for data
given at equal intervals.

ABEL TRANSFORM

DEF FNf(r)=i-r Define given function as cone
d=0.1 Step in x

dy=0.01 Step in y

FOR x=d/2 TO 1 STEP d
s=0.b*FNf (x)
FOR y=dy TO SQR(1-x?) STEP dy
s=s+FNf (SQR{x%+y%))
NEXT y
PRINT x;2+*s*dy
NEXT x

The results are as follows:

r 05 15 25 35 45 .55 .65 5 .85 95

S{r) 098952 093053 0.83928 0.72718 0.6@210 0.47067 0.33909 0.21404 0.10363 0.02071

Comparison with the theoretical expression shows that the largest error is one digit in
the fifth decimal place. Whether the value of dy is too coarse can be checked empirically.

SPIN AVERAGING

A function f(x) may be spin averaged to obtain a new function Ss(r) defined by

2n
fs(r) = L frecosa)de.
2 0

If f(x) is an even function, as in all that follows here, we may evaluate fs(r) from

2 w2
fs(r) = —[ f(rcose) da.
T Jy

Two ways of viewing spin averaging will now be described.

Imagine a function defined on the (x, y)-plane so that at any point (x,'y) the value is
f(x),i.e., independent of y. If the function value represented the height of a surface above
the (x, y)-plane, the surface would be a cylindrical ridge running in the y-direction. Then
if we traveled on the surface of this ridge so that our track projected onto the (x, y)-plane
was a circle of radius r, then our average height would be f(r), as given by either of the





