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Abstract. In this paper, revisiting work of Rodriguez-Villegas [3], we produce
infinite families of polynomials that satisfy the essential expected properties of
the Riemann zeta-function. We identify natural families of rational functions in x
which are the generating functions for the values of “zeta-polynomials” ZT (s). In
analogy with the zeta-function, these polynomials satisfy a functional equation of
the form

ZT (s) = (−1)tZT (1− s),
and enjoy the additional property that if ZT (ρ) = 0, then Re(ρ) = 1

2 . Namely,
these polynomials satisfy the Riemann Hypothesis.

1. Introduction and Statement of Results

The Riemann zeta-function ζ(s) (for background information, see [1]) is defined
by

ζ(s) :=
∞∑
n=1

1

ns
=
∏

p prime

1

1− p−s
,

where s is a complex number with Re(s) > 1. This function has a pole at s = 1,
which is immediately apparent by the divergence of the harmonic series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

This guarantees the infinitude of primes, because otherwise the zeta-function would
not diverge at s = 1, as it would become a non-vanishing finite product. This
function is central to the study of the distribution of primes.

The Riemann zeta-function also admits an analytic continuation (apart from the
pole at s = 1) to the complex plane. Let

Λ(s) :=
1

2
π−

s
2 s(s− 1)Γ

(s
2

)
ζ(s)

1
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be the completed Riemann zeta-function, where Γ(s) is the Gamma-function as de-
fined by the integral

Γ(s) =

∫ ∞
0

ts−1e−sds.

The Lambda-function has the property that

Λ(s) = Λ(1− s),
known as a functional equation. By making use of the functional equation and the
properties of the Gamma-function, we arrive at the analytic continuation of ζ(s) to
the entire complex plane. Note that the complex Gamma-function has poles at all
non-positive integers. When s is a negative even integer, s

2
would be a negative integer

and would thus be a pole of Γ( s
2
). Therefore, since Λ(s) is well-defined at these values

by the functional equation, all negative even integers are zeros for ζ(s), which we
call trivial zeros. All other zeros of the zeta-function are known as non-trivial zeros.
Although much is known about the Riemann zeta-function, little is known about its
non-trivial zeros.

Conjecture (Riemann Hypothesis). If ζ(ρ) = 0 and ρ is a non-trivial zero, then
Re(ρ) = 1

2
.

A natural question is whether there are infinite families of polynomials Z(s) that
emulate the Riemann zeta-function, which we call zeta-polynomials. To be a zeta-
polynomial, we require that Z(s) = ±Z(1− s) and that if Z(ρ) = 0, then Re(ρ) = 1

2
.

Expanding on work of Rodriguez-Villegas [3], we answer this question by considering
rational functions that generate zeta-polynomials and determining the zeros of the
generating functions of these rational functions.

Define the set
T := {0 < θj < 2 : 1 ≤ j ≤ t}.

Define a rational function FT (x) by

(1.1) FT (x) :=

∏t
j=1(x− eπiθj)
(x− 1)t+1

=
PT (x)

(x− 1)t+1
,

where all the roots of FT (x) lie on the unit circle.
We then define ZT (−s) as a polynomial that is the coefficient of xn generated from

the power series of these rational functions FT (x) in the following theorem.

Theorem 1.1. Assuming the notation above, there is a polynomial ZT (s) of degree
t such that

FT (x) =
∑
n≥0

ZT (−n)xn.

Furthermore, if ZT (ρ) = 0, then Re(ρ) = 1
2
.
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Remark 1. Theorem 1.1 includes the specific property that the degree of the numer-
ator of rational function FT (x) is one less than the degree of the denominator. It
turns out that in order to prove Theorem 1.1, we need to understand the general case
when the degree of the numerator is smaller than the degree of the denominator in
the rational function. Doing so, we re-prove the main theorem in [3] through similar
but different methods. In particular, our proof makes explicit how to obtain the
polynomial ZT (X) from a given set T .

Remark 2. If we relaxed Theorem 1.1 to include roots of the rational function that
do not lie on the unit circle, then not all roots ρ will have the property Re(ρ) 6= 1

2

when ZT (ρ) = 0.

Theorem 1.1 gives infinite families of polynomials that arise from rational functions
whose roots lie on the unit circle. Given that the real part of the roots of ZT (s) is 1

2
,

it is natural to ask when ZT (s) satisfies a functional equation of an analogous form
to the zeta-function’s functional equation.

Theorem 1.2. Assume the notation above. If ZT (s) ∈ R[s], then

ZT (s) = (−1)tZT (1− s).

Remark 3. If PT (x) ∈ R[x], then ZT (s) ∈ R[s].

Remark 4. Theorem 1.2 is a special case of the corollary in [3]. We offer an original
proof.

To demonstrate the utility of Theorem 1.2, we offer a corollary that provides an
infinite family of polynomials that satisfy the properties of the Riemann Hypothesis.
We can use the equivalence (

n

k

)
=

∏k−1
j=0 (n− j)

k!

to show that the following binomial is a polynomial in s.

Corollary 1.3. Let T = { 1
m
, 2
m
, · · · , 2m−1

m
}. The polynomial ZT (s) is

ZT (s) = (−1)m+1

m−1∑
j=0

(
−s+ j

m− 1

)
.

If ZT (ρ) = 0, then Re(ρ) = 1
2
. Moreover,

ZT (s) = −ZT (1− s).
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It turns out that Corollary 1.3 is a specific case of the following corollary, which
involves cyclotomic polynomials Φn(x). These are defined as [2]

Φn(x) =
∏

1≤j≤n
gcd(j,n)=1

(x− ζjn),

where n ∈ Z+. Note that deg(Φn(x)) = φ(n), where the function φ(n) is Euler’s
totient function. We can choose the PT (x) in equation (1.1) to be a finite product
of an arbitrary number of cyclotomic polynomials to satisfy the properties of the
zeta-function.

Corollary 1.4. Let m1, . . . ,mk be positive integers such that mj ≥ 2 and suppose T
is such that

PT (x) =
k∏
j=1

Φmj
(x).

If ZT (ρ) = 0, then Re(ρ) = 1
2
. Furthermore, ZT (s) = (−1)

∑k
j=1 φ(mj)ZT (1− s), where

φ(n) is Euler’s totient function.

Remark 5. It is straightforward to calculate the sign of ZT (1 − s) in the functional
equation by noting that the value of φ(n) is odd only when n = 2. Therefore, if none
of the mj terms equal 2, then ZT (s) = ZT (1− s).

Example. When m = 3 in Corollary 1.4, the function FT (x) is

FT (x) =
x2 + x+ 1

(x− 1)3
=

(x− e 2
3
πi)(x− e 4

3
πi)

(x− 1)3
.

The zeta-polynomial ZT (s) is

ZT (s) = −3s2 + 3s− 2,

and ZT (1− s) is also

ZT (1− s) = −3s2 + 3s− 2,

so ZT (s) = ZT (1− s). If ZT (ρ) = 0, the roots are

ρ ≈ 0.5± 0.6455i.

The constructions in the paper are based on the coefficients of the reciprocal of
the powers of x−1 forming polynomials that result from the binomial theorem. The
zeros to these polynomials are easily identifiable. Upon increasing the degree of the
numerator of the rational function, other zeros emerge. We focus on locating the
new zeros generated by this process and determine the functional equation satisfied
by the polynomial.
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The paper is organized as follows. In Section 2, we introduce the lemmas needed to
prove that the zeros of ZT (s) have real part 1

2
and determine the functional equation

of ZT (s). In Section 3, we prove Theorem 1.1 and Theorem 1.2. In Section 4, we
illustrate numerical examples of zeta-polynomials.
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2. Preliminaries

To prove Theorem 1.1 and Theorem 1.2, we study the coefficients of the power
series expansions for rational functions FT (x), as defined in Theorem 1.1. It turns out
that the coefficients are special values of polynomials, which we refer to as associated
power series polynomials. In Section 2.1, we construct lemmas that determine the
properties of the zeros of associated power series polynomials. In Section 2.2, we use
the results from Section 2.1 to build functional equations for suitable power series
polynomials.

2.1. Zeros of Zeta-Polynomials. Our proof of Theorem 1.1 relies on understand-
ing zeros of associated power series polynomials, which are studied in Lemmas 2.1-2.4.

We first find the formal power series for the rational function

(2.1) Gm(x) =
1

(x− 1)m
.

We make use of the fact that a binomial containing the variable s is a polynomial
in s due to the equivalence (

n

k

)
=

∏k−1
j=0 (n− j)

k!
.

Lemma 2.1. Let m ∈ Z+ and let

Wm(s) = (−1)m+1

(
s+m− 1

m− 1

)
=

(
1

(m− 1)!

(
m−1∏
j=1

(s+ j)

))
(−1)m+1.

Then we have

Gm(x) :=
1

(x− 1)m
=
∑
n≥0

Wm(−n)xn,
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Proof. This can be proven by induction on m by differentiating the power series.
Our base case is when m = 1, which yields

1

x− 1
= −

∑
n≥0

xn

by the classical geometric series. Differentiating both sides and simplifying, we get

d

dx

[
1

x− 1

]
=

d

dx

[
−
∑
n≥0

xn

]
−1

(x− 1)2
= −

∑
n≥0

nxn−1

−1

(x− 1)2
= −

∑
n≥1

nxn−1,

since when n = 0, the first term of the sum is 0. Shifting the exponent of x back to
n results in

−1

(x− 1)2
= −

∑
n≥0

(n+ 1)xn

1

(x− 1)2
=
∑
n≥0

(n+ 1)xn.

The base case is found to be true. Suppose the equation in the lemma is true for
m ≤ k where k ∈ Z+. Then

(2.2)
1

(x− 1)k
= (−1)k+1

∑
n≥0

1

(k − 1)!

(
k−1∏
j=1

(n+ j)

)
xn.

Differentiating both sides of equation (2.2) results in

(2.3)
d

dx

[
1

(x− 1)k

]
=

d

dx

[
(−1)k+1

∑
n≥0

1

(k − 1)!

(
k−1∏
j=1

(n+ j)

)
xn

]
.

After simplifying and shifting the summation index, the equation above becomes

(2.4)
1

(x− 1)k+1
= (−1)k+2

∑
n≥0

1

k!

( k∏
j=1

(n+ j)
)
xn,

which is our formula but with k replaced with k + 1. This means that the inductive
step holds, so for all m ∈ Z+, the equation in the lemma is true. �
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Note that the function Wm(−n) has zeros at−1,−2, · · · ,−(m−1). In analogy with
the zeta-function, we call these zeros of Wm(n) trivial zeros. Notice that the previous
lemma demonstrated that these zeros result from factorials, which is reminiscent of
the Gamma-function and how it creates trivial zeros for the Riemann zeta-function.

The next lemma shows that one of the trivial zeros is eliminated and a complex
root appears when Gm(x) is multiplied by the factor x− eπiθ.

Lemma 2.2. If we let ∑
n≥0

Y1(−n)xn := Gm(x)(x− eπiθ),

then Y1(−s) has trivial zeros at −1,−2, · · · ,−(m − 2) and a complex root with real
part −m−1

2
.

Proof. Let H1(x) = (x−eπiθ)Gm(x). Then, we can express the associated power series
polynomial of H1(x) using Wm(n) = 1

(m−1)!
∏m−1

j=1 (n+j), the power series polynomial

of Gm(x), as

Gm(x) = −
∑
n≥0

1

(m− 1)!

(
m−1∏
j=1

(n+ j)

)
xn.

Multiplying by x− eπiθ, we get

(x− eπiθ)Gm(x) = −

(∑
n≥1

1

(m− 1)!

(
m−2∏
j=0

(n+ j)

)
xn+1

)

+ eπiθ

(∑
n≥0

1

(m− 1)!

(
m−1∏
j=1

(n+ j)

)
xn

)

(x− eπiθ)Gm(x) =

(
− 1

m− 1!

m−2∏
j=1

(n+ j)

)(
n− eπiθ(n+m− 1)

)
.

This means that H0(x) has m − 2 trivial zeros and one complex root. Define g1(n)
as

g1(n) =
(
n− eπiθ(n+m− 1)

)
.

If g1(n) = 0, then
n− eπiθ(n+m− 1) = 0.

Solving for n in the above equation returns

n =
(m− 1)eπiθ

1− eπiθ
.



8 DEAN CURETON AND CATHERINE YEO

Then, we multiply both the numerator and denominator by the complex conjugate
of 1− eπiθ, which is 1− e−πiθ, to get

n =
(m− 1)eπiθ

1− eπiθ
· 1− e−πiθ

1− e−πiθ
=

(m− 1)eπiθ −m+ 1

2− eπiθ − e−πiθ
.

The substitution of trigonometric identities simplifies n to be

n =
(m− 1) cos(πθ) + (m− 1)i sin(πθ)−m

2− 2 cos(πθ)

=
m−1
2

cos(πθ) + m−1
2
i sin(πθ)− m−1

2

1− cos(πθ)

=
−m−1

2
(1− cos(πθ)

1− cos(πθ)
+

m−1
2

sin(πθ)

1− cos(πθ)
i.

This reduces to

n = −m− 1

2
+

m−1
2

sin(πθ)

1− cos(πθ)
i,

which shows that when we multiply Gm(x) by x − eπiθ, a complex root of Y1(n)
emerges and has real part −m−1

2
. �

Lemma 2.2 is generalized in the following two lemmas, where we multiply Gm(x)
by more x − eπiθj factors. Furthermore, H1 and Y1 from the previous lemma are
extended to Hk and Yk, where k is the number of x− eπiθj factors in the numerator
of the rational function.

Lemma 2.3. Let the set T be defined as

T := {0 < θj < 2 : 1 ≤ j ≤ t}.
Suppose m = t+ 1. For 1 ≤ k < m, let

Hk(x) :=

∏k
j=1(x− eπiθj)
(x− 1)m

.

Then there is a polynomial Yk(s) such that Hk(x) =
∑

n≥0 Yk(−n)xn. The trivial
zeros of Yk(−s) are −1,−2, . . . ,−(m− k − 1). Moreover, Yk(−s) factors as

Yk(−s) = (−1)m+1 1

(m− 1)!

 −1∏
`=−(m−k−1)

(s− `)

 · gk(s),
where gk(s) is a polynomial of degree k and the relationship between gk(n) and gk−1(n)
is

gk(n) := −eπiθk(n+m− k)gk−1(n) + gk−1(n− 1)n.
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Proof. We can prove this lemma by inducting on k. By Lemma 2.2, we know that
our base case is true. To begin our inductive step, we assume the lemma is true for
some k < m. Then we have that∏k

j=1(x− eπiθj)
(x− 1)m

= (−1)m+1 1

(m− 1)!

∑
n≥0

 −1∏
`=−(m−k−1)

(n− `)

 · gk(n)xn.

Multiplying by x− eπiθk+1 , we obtain∏k+1
j=1(x− eπiθj)
(x− 1)m

= (−1)m+1 1

(m− 1)!

(∑
n≥0

 −1∏
`=−(m−k−1)

(n− `)

 · gk(n)xn+1

− eπiθk+1

∑
n≥0

 −1∏
`=−(m−k−1)

(n− `)

 · gk(n)xn

)
,

which simplifies to∏k+1
j=1(x− eπiθj)
(x− 1)m

= (−1)m+1 1

(m− 1)!

(∑
n≥1

 −2∏
`=−(m−k−2)

(n− `)

 · gk(n− 1)xn

− eπiθk+1

∑
n≥0

 −1∏
`=−(m−k−1)

(n− `)

 · gk(n)xn

)
.

Again, we can factor out (−1)m+1 1
(m−1)!

∏−2
`=−(m−k−1)(n− `) to get∏k+1

j=1(x− eπiθj)
(x− 1)m

=

(−1)m+1 1

(m− 1)!

−2∏
`=−(m−k−1)

(n− `)


·

(∑
n≥1

(n−m+ k + 2) · gk(n− 1)xn − eπiθk+1

∑
n≥0

(n+ 1)× gk(n)xn

)
.

Then Yk+1(n) equals

Yk+1(n) = (−1)m+1 1

(m− 1)!

 −2∏
`=−(m−k−1)

(n− `)

 ((n−m+ k + 2)gk(n− 1)

− eπiθk+1(n+ 1)gk(n)).
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Therefore, Yk+1(n) simplifies to

Yk+1(n) = (−1)m+1 1

(m− 1)!

 −2∏
`=−(m−k−1)

(n− `)

 (gk+1(n)),

as desired. The inductive step is now complete. �

The following lemma builds on the previous lemma to show that Re(ρ) = −m−k
2

when Yk(−ρ) = 0.

Lemma 2.4. Assuming the notation above, if 1 < k < t and gk(ρ) = 0, then
Re(ρ) = −m−k

2
.

Remark 6. This lemma, together with Lemma 2.3, should be compared with the
lemma in [3], which provides a similar inductive step.

Remark 7. Let m− k = 1. If Yk(ρ) = 0, then Re(ρ) = 1
2
.

Proof. The base case is found true by Lemma 2.2. Suppose that if gk−1(ρ) = 0, then

Re(ρ) = −m−(k−1)
2

.

To find the roots ρ to gk(ρ) = 0, we set the recursive form of gk(ρ) to 0:

gk(ρ) = −eπiθk(ρ+m− k)gk−1(ρ) + gk−1(ρ− 1)ρ = 0,

which we found in Lemma 2.3. Moving the left term to the righthand side and taking
the norms on both sides of the equation, we get

(2.5) |gk−1(ρ− 1)||ρ|= |eπiθk ||ρ+m− k||gk−1(ρ)|.

By the inductive hypothesis, we can factor the function gk−1(ρ) =
∏k−1

j=1(ρ − αj),
where αj = −m−k+1

2
+ cji for real number cj. Substituting ρ = a+ bi, equation (2.5)

can be expressed as

(2.6)

(
k−1∏
j=1

|ρ− 1− αj|

)
|ρ|=

(
k−1∏
j=1

|ρ− αj|

)
|ρ+m− k|.

After computing and squaring the norms, as well as substituting all variables, the
lefthand side of equation (2.6) becomes

(2.7)

(
k−1∏
j=1

(a+ m−k−1
2

)2 + (b− cj)2
)

(a2 + b2).
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Likewise, the righthand side of equation (2.6) can be expressed as

(2.8)

(
k−1∏
j=1

(a+ m−k+1
2

)2 + (b− cj)2
)(

(a+m− k)2 + b2
)
.

Let a = −m−k
2

+ ε. To prove that Re(ρ) = −m−k
2

when gk(ρ) = 0, we want to show
that ε = 0. Define the polynomial p(ε) to be the righthand side of equation (2.6), so
the lefthand side would be p(−ε).

Thus, p(ε) is expressed as

(2.9)

(
k−1∏
j=1

(ε+ 1
2
)2 + (b− cj)2

)(
(ε+ m−k

2
)2 + b2

)
and p(−ε) is expressed as

(2.10)

(
k−1∏
j=1

(ε− 1
2
)2 + (b− cj)2

)(
(ε− m−k

2
)2 + b2

)
.

Let dj = b − cj and r = m−k
2

, then substitute in dj and r into p(ε) and p(−ε)
in expressions (2.9) and (2.10). This results in the terms of p(ε) all having positive
coefficients. For p(−ε), the odd-degree terms have negative coefficients. Let

q(ε) := p(ε)− p(−ε),
so q(ε) has all the odd-degree terms with positive coefficients. Note that ε divides
q(ε). Then, we can factor q(ε) as

q(ε) = ε · q(ε)
ε
.

Since q(ε) has positive coefficients and each term in q(ε)
ε

has an even power, q(ε)
ε

is non-

zero. Thus the only solution to q(ε) = 0 is when ε = 0. Therefore, Re(ρ) = a = −m−k
2

when gk(ρ) = 0, as desired and the proof by induction is complete. �

2.2. Functional Equation. Our proof of Theorem 1.2 requires us to determine the
functional equation for the zeta-polynomial ZT (s). We start with a more general
observation about polynomials, all of whose zeros have real part 1

2
.

Lemma 2.5. Let X(s) be a polynomial of degree d such that X(s) ∈ R[s] such that
if X(ρ) = 0, then Re(ρ) = 1

2
. Then we have that

X(s) = (−1)dX(1− s).

Remark 8. In fact, the functional equation can only hold if X(s) ∈ R[s], as is
apparent in the proof of the lemma.
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Proof. We will first prove that when d ≡ 0 (mod 2), X(s) = X(1− s). Then, we will
use that to further prove that X(s) = −X(1− s) when d ≡ 1 (mod 2).

Let X(s) be expressed as

X(s) =
d∏
j=1

(s− ρj),

where ρj represents the roots of X(s). Then X(1− s) can be written as

X(1− s) =
d∏
j=1

(1− s− ρj) =
d∏
j=1

−(s− (1− ρj)).

When d is an even integer, the negative signs from each term of X(1 − s) cancel
out, so

X(1− s) =
d∏
j=1

(s− (1− ρj)).

Since X(s) ∈ R[s], the roots of X(s) form complex conjugate pairs. By assump-
tion, we know that the real parts of the roots are equal to 1

2
, so the sum of each

complex conjugate pair is 1. Without loss of generality, let ρ1 and ρ2 be a conjugate
pair. This means that ρ1 + ρ2 = 1, so

s− ρ1 = s− (1− ρ2).
Additionally,

s− ρ2 = s− (1− ρ1)
is also true. Continuing this on for every conjugate pair, it results that

d∏
j=1

(s− ρj) =
d∏
j=1

(s− (1− ρj)),

which is equivalent to
X(s) = X(1− s).

This proof has shown that the functional equation must exchange a pair of roots
that sum to 1. The only way for two roots with real parts 1

2
to sum to 1 is when

they form a conjugate pair. This implies the remark.
When d is an odd integer, we can express X(s) as

(2.11) X(s) = −(s− ρ1)
d∏
j=2

(s− ρj),

where ρ1 is the only root that does not form a complex conjugate pair with any other
root of X(s), so ρ1 is a real number. However, by the hypotheses of the lemma, we
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know that ρ1 must have real part 1
2
. Hence ρ1 = 1

2
. Substituting in ρ1 = 1

2
and

shifting the product index to start at 1, we can rewrite equation (2.11) as

(2.12) X(s) = −
(
s− 1

2

) d−1∏
j=1

(s− ρj).

Let X̃(s) =
∏d−1

j=1(s− ρj). Then equation (2.12) becomes

X(s) = −
(
s− 1

2

)
X̃(s).

Likewise, X(1− s) can be expressed as

(2.13) X(1− s) = −
(

1− s− 1

2

)
X̃(1− s) =

(
s− 1

2

)
X̃(1− s).

Since d − 1 is an even integer, we know by the first part of this proof that X̃(s)

already satisfies the functional equation X̃(s) = X̃(1−s). By use of equation (2.13),

X(s) = −
(
s− 1

2

)
X̃(s)

= −
(
s− 1

2

)
X̃(1− s)

= −X(1− s).

Therefore, when d is an odd integer, the functional equation for X(s) is X(s) =
−X(1− s). This completes the proof. �

3. Proof of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. By Lemma 2.4, we know that Re(ρ) = −m−k
2

when gk(ρ) = 0.

Remark 7 illustrates the specific case that when m − k = 1, then Re(ρ) = 1
2

if
Yk(ρ) = 0. Define the set T := {0 < θj < 2 : 1 ≤ j ≤ t}. Take Ht(x) to be FT (x)
and Yt(s) to be ZT (s) in Lemma 2.4. Then, when

FT (x) =

∏t
j=1(x− eπiθj)
(x− 1)t+1

=
∑
n≥0

ZT (−n)xn,

we know that Re(ρ) = 1
2

if ZT (ρ) = 0, as desired. �

Proof of Theorem 1.2. If Z(s) ∈ R[s], then by Lemma 2.5, we know that

Z(s) = (−1)tZ(1− s).
�
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4. Numerical Examples

In this section, we first demonstrate an example that illustrates only Theorem 1.1.
Then, we show an example that illustrates both Theorem 1.1 and Theorem 1.2.

Example. Define T := { 3
17
, 4
17
, 10
17
}. Then let

FT (x) :=
(x− e3iπ/17)(x− e4iπ/17)(x− e10iπ/17)

(x− 1)4
.

Then the zeta-polynomial ZT (s) is

ZT (s) =
1

6
(6− (13 + e3iπ/17 + e4iπ/17 + e10iπ/17 + 2e7iπ/17 + 2e13iπ/17 + 2e14iπ/17)s

+ 3(1 + e7iπ/17 + e13iπ/17 + e14iπ/17)s2

− (2− e3iπ/17 − e4iπ/17 − e10iπ/17 + e7iπ/17 + e13iπ/17 + e14iπ/17)s3).

Consequently by Theorem 1.1, if ZT (ρ) = 0, then Re(ρ) = 1
2
. It turns out the roots

are ρ ≈ 0.5 + 7.87057i, 0.5− 0.144324i, and 0.5 + 2.26175i (graphed below).

By the remark following the statement of Lemma 2.5, it is apparent that the
functional equation ZT (s) = −ZT (1− s) does not hold.

Example. Define T := {1
9
, 2
9
, 4
9
, 5
9
, 7
9
, 8
9
}. Then the rational function FT (x) can be

expanded and simplified to become

FT (x) =
x6 + x3 + 1

(x− 1)7
.
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Then

ZT (s) =
−240− 552s− 634s2 − 165s3 − 85s4 − 3s5 − s6

240
.

If ZT (ρ) = 0, the roots are ρ ≈ 0.5 ± 8.6255i, 0.5 ± 2.5758i, and 0.5 ± 0.46583i.
Furthermore, Z(1− s) is equal to

−240− 552(1− s)− 634(1− s)2 − 165(1− s)3 − 85(1− s)4 − 3(1− s)5 − (1− s)6

240
.

This simplifies to

ZT (1− s) =
−240− 552s− 634s2 − 165s3 − 85s4 − 3s5 − s6

240
,

so the functional equation Z(s) = Z(1− s) holds true.
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