
Teaching Programming Using the

Karel the Robot Paradigm

Realized with a Conventional Language

by Roland H. Untch
Department of Computer Science

Clemson University ∗

Abstract

An excellent method for introducing students to com-
puter programming was described by Richard E. Pattis
in his book Karel the Robot. By initially limiting the
student’s language repertoire to easily grasped impera-
tive commands whose actions are visually displayed, the
Karel approach quickly and effortlessly introduces the
student to such concepts as procedures and the major
control structures. However, some who have used the
technique as a “quick-start” introduction to program-
ming have noted some problems in the transition from
using the Karel language to the conventional language
used for the rest of the course (e.g. Pascal). By embed-
ding the Karel programming paradigm in a conventional
language, we have been able to eliminate these tran-
sition problems while retaining the pedagogical merits
and spirit of Karel. This paper provides a brief review of
the Karel the Robot programming paradigm, considers
the transition problems, describes our novel use of Karel
in a conventional language, and informally presents the
results of using our version of Karel.

1 Introduction

Those of us charged with introducing programming to
students do not have an easy task. The ability to an-
alyze and solve problems is a skill not easily learned.
To improve our student’s problem solving and program-
ming skills, we teach them a number of tools and tech-
niques that enable them to “simplify” problems, that
is, manage the complexity and size of the problems. We
teach them about functional decomposition and step-
wise refinement. We explain the concept of structured
programming and discuss the merits of top-down devel-
opment. In the process we introduce a number of tools,
such as hierarchy charts and pseudo-code.

∗This draft: March 1990

Unfortunately too much data and too many data
types confuse the beginning student. Usually the scope
of early programs is restricted in an effort to lessen the
data complexity. The result, unfortunately, is programs
that are often so simple as to be trivial. The early pro-
grams that we have traditionally been forced to assign
(for instance programs to calculate mortgage payments,
determine prime numbers, or compute Fibonacci series)
do not require the use of “modern programming tech-
niques”. It is consequently difficult to establish the need
and practice the use of the work management and design
tools that the students will ultimately need.

Many have wrestled with this difficulty and a few
satisfactory solutions have emerged [1, 2, 3, 7]. A
rather novel solution was developed at Stanford Univer-
sity by Richard E. Pattis and is described in his book
Karel the Robot: A Gentle Introduction to the Art of
Programming [6, 5]. What Pattis did was develop a
robot programming paradigm, called Karel (pronounced
“Carl”) that was entirely imperative. To quote from
the preface of Pattis’ book: “The careful omission of
variables and data structures from Karel’s language ...
allows the immediate exploration of the rich domain of
abstraction and control structures.” Having used this
approach since early 1985, we have found that he was
correct.

Others have reported on their use of Karel.
Lt. Colonel Kenneth L. Krause states that at the United
States Air Force Academy, “Karel proved to be enor-
mously successful, the value of which far exceeded
that of a mere motivator. Students easily grasped
the subtleties of Karel and his language. They dis-
played impressive capabilities to employ top-down de-
sign/stepwise refinement techniques in solving relatively
complex problems. They gained a solid appreciation of
language structure, programming errors, and program
behavior. In short, Karel lived up to all the claims of
the author and represents a powerful pedagogical tool.”
[4]

1

Weaning students from Karel, however, causes some
problems. It is a solution to those problems that we in-
tend to present. In the following sections we will briefly
review the Karel the Robot programming paradigm, de-
scribe the transition (“weaning”) problems, present our
method of using Karel in a conventional language, and
indicate how this method addresses these transition
problems.

2 What is Karel the Robot?

Karel is essentially a programmable cursor that can
move across the flat world of a CRT screen. Shown on
the screen is a gridwork of vertical and horizontal lines
(avenues and streets) that form intersections or street
corners. Karel is restricted to moving from street corner
to street corner, one such move at a time. Additionally,
Karel can pivot 90 degrees to the left when requested.
Karel can only face North, South, East, or West and
can always determine which direction he is facing.

To add variety to Karel’s environment, Pattis
added beepers, flashing symbols that Karel can detect
(“hear”), pick up, carry, and put down. It is possible
to program Karel to locate beepers, transport them, or
place them in some graphic pattern. To bound Karel’s
environment there are wall sections that can be placed
between streets and form impenetrable barriers. Karel
can detect (“see”) wall sections that are immediately to
his front or sides. These wall sections can be used, to
give two examples, to form obstacle courses that Karel
must navigate or to represent hurdles that Karel must
“jump” in a hurdle race.

Karel initially understands only five imperative com-
mands: move, turnleft, pickbeeper, putbeeper, and
turnoff. These are Karel’s so-called primitive in-
structions. When these commands are executed in a
Karel program, the results are depicted on the student’s
screen. A move instruction, for instance, will graphically
show Karel moving from one street corner to the next.
Should a wall section be in the way, however, Karel will
signal the message “Error Shutoff” in protest and ter-
minate execution of the program.

New instructions can be defined to extend Karel’s vo-
cabulary. For example, to define a turnright instruc-
tion one would write:

DEFINE-NEW-INSTRUCTION turnright AS

BEGIN

turnleft;

turnleft;

turnleft

END

This definition must be repeated in each program that
wishes to use a turnright instruction.

Karel is able to respond to the elements in his environ-
ment by testing a fixed set of predicates. The predicates
Karel can evaluate or test are:

front is clear front is blocked

left is clear left is blocked

right is clear right is blocked

next to a beeper not next to a beeper

facing north not facing north

facing south not facing south

facing east not facing east

facing west not facing west

any beepers in beeper bag

no beepers in beeper bag

(Note: Pattis used hyphens as separators within iden-
tifiers; we have changed these to the more commonly
used underscore.)

These predicates are used in Pascal-like control state-
ments. For example, when moving from corner to corner
in a hurdle race, Karel could alter its actions based on
whether a hurdle (wall section) is immediately in front
of him or not. The code for this would resemble the
following:

IF front_is_clear

THEN move

ELSE jump_hurdle

where jump hurdle is presumably some instruction that
the programmer has defined using the mechanism pre-
viously described.

Karel programs are either manually executed or run
under a Karel simulator. The simulator is generally a
simple but complete programming environment contain-
ing both an editor and an interpreter for Pattis’ Karel
language. Thus students using the simulator must first
learn both this special pedagogical language and the
commands of the simulator environment before they can
test their logic.

3 The problems of transition

Once the basic features of Karel are mastered, and the
student is thoroughly acquainted with the programming
techniques mentioned in the introduction above, the

2

student is next taught to program in a conventional pro-
gramming language, such as Pascal or Modula-2. Un-
fortunately this transition can be difficult. Some stu-
dents become frustrated. Comments such as “bring
back Karel” [4] are occasionally expressed. The tran-
sition is difficult because the student is simultaneously
asked to learn a new language and a new operating en-
vironment and is presented with a new domain of prob-
lems.

Although Pascal-like, the Karel language is not Pas-
cal. As such it is fraught with minor syntactic differ-
ences that must be identified and assimilated by those
learning Pascal. This process can be maddening, espe-
cially to students who are still uncertain of their pro-
gramming skills. And, if the language to be learned
is not Pascal, the frustration level mounts. Students
subsequently learning C or Ada, for example, are of-
ten confused by the use of the semicolon as a statement
terminator instead of a separator. Finally, what skill
the student acquired in deciphering error messages pro-
duced by the Karel simulator is of little avail with the
new compiler.

This frustration with mid-course “retooling” is made
worse by the need to learn a new editor and operating
environment. We are all personally familiar with feel-
ings of impatience and frustration when working with an
alien editor or operating system. (Confess—how many
of us run an old-fashioned but familiar editor, like vi

or spf or emacs, on our personal computers?) Such
feelings can be especially disheartening to a beginning
programmer. Moreover neither the student nor the in-
structor can afford to spend much time on delving into
the details of this new environment. At this point in
the course the instructor must use the established mo-
mentum to discuss other topics. Similarly, students who
may have felt free to experiment with an editor at the
beginning of the term now have other demands on their
time.

The greatest problem in the transition, however,
comes from the underlying reason for the transition. Ex-
cept for the implicit data object that is Karel’s world,
the two-dimensional screen, the student has not been
taught how to declare and manipulate any data. Con-
sequently the conventional language is introduced as a
vehicle for teaching about variables, expression evalu-
ation, assignment statements and the like. Alas, the
initial programs assigned in the conventional language
lack the intuitive feel of the Karel programs. For exam-
ple, a student could easily ascertain that a Karel pro-
gram was incorrect when Karel, say, tried running into
a wall. A program to calculate mortgage payments, on
the other hand, is less easily verified. In fact, all too
often students resort to “democracy” to validate their

results; that is, they compare answers and the majority
output wins.

The solution to these transition problems is, of course,
DON’T demand the students learn a different language,
DON’T demand the students learn to use a different en-
vironment, and GRADUALLY switch to other problem
domains. All this can be accomplished by embedding
Karel in an existing conventional language. This is what
we have done.

4 A method of using Karel in a
conventional language

Instead of viewing the five Karel primitives as state-
ments in a language, we elect to view the Karel primi-
tives as invocable procedures that manipulate the screen
data object. When thought of this way, it is a relatively
straightforward matter to implement them as such. (If
you wish, you may consider the screen as an abstract
data type. The Karel primitives are operations on this
data type.) These procedures are stored in a library
where they can be referenced by (linked with) the stu-
dent’s program code.

We then simply use the constructs and syntax of the
underlying conventional language to build our Karel
programs. To extend Karel’s vocabulary, we use pro-
cedures. For example, to define turnright in Pascal,
we would write:

(* Pivot KAREL 90 degrees to right *)

procedure turnright;

begin

turnleft;

turnleft;

turnleft

end; (* turnright *)

Similarly, the Karel predicates can be viewed as pa-
rameterless Boolean functions that return screen state
information. Rather than implement them as such, it
is advantageous to implement them as global Boolean
variables whose values are set by the primitive proce-
dures as they are executed. Not only is this some-
what more efficient, but some compilers demand that
functions with no parameters nonetheless be invoked
with an empty argument list. Thus instead of sim-
ply writing front is clear we would have to write
front is clear() which adds a useless, and potentially
confusing, set of parentheses. Using these Boolean pred-
icates in conventional control statements, we are able to
write code like the following Pascal example:

3

procedure sparse_harvest_to_wall;

begin

if next_to_a_beeper then

pickbeeper

while front_is_clear do

begin

move;

if next_to_a_beeper then

pickbeeper

end;

end; (* sparse_harvest_to_wall *)

It is convenient to add a sixth Karel primitive,
turnon, to initialize the screen. The turnon primitive
reads from an external file the information necessary
to initialize the encapsulated screen data structure, ini-
tializes the Karel predicates, causes the screen to be
displayed on the terminal, and returns. After that, ex-
ecution proceeds much as it would under a Karel simu-
lator.

Any necessary declarations of external variables and
procedures can be hidden from the student by placing
them in a text file that is included by some standard
compiler directive. This “include statement” is accepted
by the students as a given. This inserted code is not
visible on the student’s source listing. An example of
a complete Karel program, as prepared by a student,
follows.

(* An expanded version of the Stair Cleaning *)

(* Task program from Chapter 3 of Pattis. *)

PROGRAM stairs (INPUT,OUTPUT,SITUATION,REPORT);

%INCLUDE ’KAREL:KAREL(PASCAL)’

(* Pivot KAREL 90 degrees to right *)

procedure turnright;

begin

turnleft;

turnleft;

turnleft

end; (* turnright *)

(* Climb on to next step *)

procedure climb_stair;

begin

turnleft;

move;

turnright;

move

end; (* climb_stair *)

(* Attempt to remove a beeper *)

procedure pickbeeper_if_present;

begin

if next_to_a_beeper then

pickbeeper

end; (* pickbeeper_if_present *)

begin (* main *)

turnon;

while front_is_blocked do

begin

climb_stair;

pickbeeper_if_present

end;

turnoff

end. (* main *)

For the student’s earliest assignments, the two lines

PROGRAM progid (INPUT,OUTPUT,SITUATION,REPORT);

%INCLUDE ’KAREL:KAREL(PASCAL)’

are given and used without explanation. The student
is simply asked to change the program identifier name
from assignment to assignment.

The following is a snapshot of the student’s screen
midway through the execution of the above program.
(It has been edited slightly to fit on the page.)

MOVE

CORNER FACING BEEP-BAG BEEP-CORNER

(4, 5) EAST 2 0

ST.+-----------------------------------

9 |

|

8 |

|

7 |

|

6 |

|

5 | 1 . . .

| +---+

4 | > | . | . . .

| +---+ |

3 | | . . | . . .

| +---+ |

2 | . . . | . . . | . . .

| +---+ |

1 | . . | | . . .

+-------+---------------+-----------

1 2 3 4 5 6 7 8 9 AVE.

4

5 Teaching with this version of
Karel

Let us now examine how to introduce programming to
students using this version of Karel. In addition to dis-
cussing course objectives and administration, the first
lecture gives an overview of the computer system the
students will be using. The students are assigned ac-
counts, taught how to log on and off the system, and
given a command that lets them execute a sample Karel
program. Asking them to use the system prior to next
lecture ensures some familiarity of the operating en-
vironment (lab locations, usage procedures, terminals,
etc.) prior to the detailed presentation of that envi-
ronment. Also, seeing Karel skitter across the screen
rouses their curiosity. If, as occasionally happens, the
accounts are not ready for the first lecture, a prelimi-
nary look at Karel is substituted instead. As the lec-
tures continue with discussions of Karel programming,
the labs can concentrate on teaching the students how to
use the operating system, the hardware, and, especially,
the editor. Exercises where the students enter and exe-
cute an existing Karel program are particularly helpful
in building confidence and providing practice. Some of
these programs are subsequently modified to illustrate
new concepts. For instance, the use of procedures is in-
troduced very early—at the end of the second lecture
or the beginning of the third. To nail down this con-
cept, the students are asked to define turnright and
turnaround procedures. They then take a practice pro-
gram and replace sequences of turnleft instructions
with turnright and turnaround procedure calls as ap-
propriate.

Since only a small subset of the language is being used
at this point, the error messages produced are similarly
constrained. Students rapidly learn to associate certain
types of messages with certain mistakes. (On an indul-
gent day, we might say they “learn how to read the error
messages”.) As their language repertoire increases, they
become increasingly adept at identifying the source of
any lexical or syntactic errors.

By the fourth week of instruction the students have
authored and run at least four or five complete pro-
grams (not to mention the exercise programs given to
them). Not only does practice indeed make perfect,
but this early amount of activity sets a pattern of work
that continues throughout the rest of the term. In fact,
our students typically complete 12 to 14 programs in
a semester, with the next to last program being a file
handling program of approximately 1100 lines.

Even more importantly, the Karel programs by their
very nature are well structured. Thus, when it comes
time to formally discuss such issues as, say, stepwise

refinement, the students already have an intuitive grasp
of these issues.

Once procedures and flow control structures are well
understood, it is time to discuss variables, expression
evaluation, parameter passing, and the like. Since
we are using a conventional language, we can imme-
diately give illustrations of these concepts to our stu-
dents. Moreover, graphic, Karel-style programming as-
signments using variables and numerical expressions are
easily developed. For example, the following Pascal
subroutine is part of an assignment where Karel needs
to count the number of beepers on the current corner.
The routine is invoked by count beepers on corner(

number);

procedure count_beepers_on_corner

(var number : integer);

var i : integer;

begin

number := 0;

while next_to_a_beeper do

begin

pickbeeper;

number := number + 1

end;

for i := 1 to number do

putbeeper

end; (* count_beepers_on_corner *)

Not only are such assignments still easily understood
by the student and the results readily apparent, but
these problems retain the important element of being
“big”. By that, we mean they need a lot of subrou-
tines. This is important! How else can we motivate the
need for parameters and functions and top-down devel-
opment?

Even long after the Karel section of the course has
been completed, Karel examples come in handy. When
discussing hierarchy charts, for example, it is easier to
demonstrate with some relatively compact yet mean-
ingful Karel-style modules rather than some contrived
conventional ones. Certain types of exam questions are
easier to write given the student’s Karel background and
the ability to thus make certain implicit assumptions
about a problem.

All of the above illustrate the primary pedagogical
advantage of using Karel in this way. The students
always add to their stock of knowledge and never
need to relearn (or even unlearn) something.
Nothing is wasted (almost).

5

6 Summary

Karel is extremely useful in introducing students to
computer programming. When implemented1 and
taught as described above, certain pedagogical problems
inherent in the simulator approach do not arise. Stu-
dents do not experience as much frustration. Moreover,
by eliminating certain extraneous issues, this approach
is more efficient.

References

[1] Adams, J. Mack, Philippe J. Gabrini, and Barry L.
Kurtz, An Introduction to Computer Science with
Modula-2, D. C. Heath and Company: Lexington,
Massachusetts, 1988.

[2] Drew, Mark S. and Shane D. Caplin, “Batch Logo
– A Strategy for Introducing PL/I and Structured
Programming to Gifted High School Students”,
SIGCSE Bulletin, vol. 16, no. 2, June 1984, pp. 13-
16.

[3] Harvey, Brian, Computer Science Logo Style, The
MIT Press: Cambridge, Massachusetts, 1985.

[4] Krause, Kenneth L., Robert E. Sampsell, and
Samuel L. Grier, “Computer Science in the Air Force
Academy Core Curriculum”, SIGCSE Bulletin, vol.
14, no. 1, February 1982, pp. 144-146.

[5] Miller, Phillip L. and Lee W. Miller, Programming
by Design: A First Course in Structured Program-
ming, Wadsworth Publishing Company: Belmont,
California, 1987.

[6] Pattis, Richard E., Karel the Robot: A Gentle Intro-
duction to the Art of Programming, John Wiley and
Sons: New York, 1981.

[7] Tomek, Ivan, The first book of Josef: An Introduc-
tion to Computer Programming, Prentice-Hall, Inc.:
Englewood Cliffs, New Jersey, 1983.

1This paper describes our older VAX-based, Pascal version of
Karel. Currently we are using a PC-based, Logitech Modula-2
version of Karel.

6

