CHAPTER 3

Distributed-Lag Models

A distributed-lag model is a dynamic model in which the effect of a regressor x on y occurs
over time rather than all at once. In the simple case of one explanatory variable and a linear
relationship, we can write the model as

yt=0c+[3(L)xt+ut=oc+Zw:Bst+ut, (3.1)
s=0

where u, is a stationary error term. This form is very similar to the infinite-moving-average
representation of an ARMA process, except that the lag polynomial on the right-hand side is
applied to the explanatory variable x rather than to a white-noise process €. The individual
coefficients B, are called lag weights and the collectively comprise the Jag distribution. They
define the pattern of how x affects y over time.

We cannot, of course, estimate an infinite number of B coefficients in (3.1). One practical
method is to truncate the lag in (3.1) to finite length ¢, which is appropriate if the lag distri-
bution is effectively zero beyond g periods. Another approach is to use a functional form that
allows the lag distribution in (3.1) to decay gradually to zero. We saw above that a stationary
autoregressive process can be expressed as an infinite moving average with declining lag
weights, so a form with one or more lags of y on the right-hand side will allow infinite-length
lag distributions while requiring estimation of only a small number of parameters.

One difficulty that is common to all distributed-lag models is choice of lag length,
whether this be choosing the point g at which to truncate a finite lag distribution in (3.1) or
choosing how many lagged dependent variables to include. We defer this question until later
in the chapter, after various distributed-lag models have been introduced.

3.1 Dynamic effects of temporary and permanent changes

In cross-sectional models, we often used econometric methods to estimate the marginal
effect of an independent variable x on the dependent variable y, holding all of the other inde-
pendent variables constant: dy / dx . In time-series models, we must consider not only how

' We assume that y, does not depend on future values of x, thus we exclude negative values of s from
the summation. However, it is theoretically possible to have “negative lags” on the right-hand side, for
example, people might change their behavior now if they know that a law is going to change in the
future. Equation (3.1) can be modified appropriately for such circumstances.
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much effect x has on y, but when it has the effect. Is the effect immediate? Does it emerge
slowly? Is there an initial effect that goes away after a few periods? In order to answer these
questions, we must estimate the lag distribution relating y to x.

Instead of a single expression dy / 0x , the effects of x on y in a dynamic model are a se-
quence of expressions, 0y,,, / 0x,,s=0,1, 2, ..., that describe the effect of a change in x in
period ¢ on the value of y in periods ¢, £ + 1, ¢ + 2, etc. When the model is written in the form
of equation (3.1), the dynamic effects correspond to the lag weights of the (possibly) infinite
moving-average representation:

ayH-S _ ayt — BS . (3.2)

ox ox

t t=s

Note that the first equation in (3.2) requires that the time-series relationship between y and x
be stationary, so we can think of B, either as the effect of current x; on future y, ., or as the
effect of past x,_, on current y,.

When reporting the results of a lag regression it is common to express the lag weights
either in a table, on a graph, or both. Suppose that we estimate a finite distributed lag with
weights of 4, 2, and 0.5. For this example, equation (3.1) becomes

y,=o+4x,+2x,_ +0.5x,_, +u,. (3.3)

We might show the lag weights for equation (3.3) in a graph similar to Figure 3-1.
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Figure 3-1. Graph of lag distribution
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To see the interpretation of the lag weights, we consider two special cases: a temporary
change in x and a permanent change in x. Suppose that x increases temporarily by one unit in
period ¢, then returns to its original lower level for periods ¢ + 1 and all future periods. For
the temporary change, the time path of the changes in x looks like Figure 3-2: the change is
zero except in period ¢, where it is one.
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Figure 3-2. Temporary change in x

In period ¢, x, is increased by one unit but all earlier x values are unchanged. From equa-
tion (3.3), we see that y, increases by 4 when x, goes up by one with x,_i, x,_,, and the dis-
turbance term u, unchanged. We call this immediate effect dy,/0x, = B, the impact effect of x
ony.

In period ¢ + 1, equation (3.3) is advanced one period to become

Vg =0o+4x,,+2x,+0.5x,  +u,,. (3.4)

t+1

Given that x; ., 1, x,_;, and the disturbance are unchanged, the change in y in period ¢ + 1 is 2,
the coefficient on the first lag of x (B,). This is the dynamic marginal effect of x on y at one lag.
By similar analysis, we can see that the effect of the temporary change in x at time £ on y,., is
B,=0.5.

From this example we can see that the pattern of dynamic marginal effects of a tempo-
rary change in x on y is given by the coefficients of the lag distribution B, that are shown in
Figure 3-1.
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Now consider the case of a permanent increase in x at time #: x increases by one unit in
period ¢ and remains higher in all periods after ¢ than it was before ¢. This change is graphed
in Figure 3-3.
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Figure 3-3. Permanent change in x

Once again, from equation (3.3) we see that the effect of the change in x, on y, is 4, be-
cause x, 1, X;_,, and u, are assumed unchanged. Moving forward to period ¢ + 1, the analysis
of equation (3.4) is different from the temporary change because now x;,,; as well as x, is in-
creased by one unit. The cumulative effect on y,,,1s 4 + 2 = B + B, = 6. We call this the cu-
mulate effect of x on y at one lag. At two lags, we advance equation (3.4) one more period for-
ward and now see the effects of the increased levels of x, . ,, x,+ 1, and x, raising y,., by 4 + 2
+ 0.5 = 6.5 units.

Moving one more period into the future, the effect on y,.; will be the same as the effect
on y, ,, because once again all of the x terms on the right-hand side are increased by one unit.
The time path of the cumulative effects is shown in Figure 3-4, with the cumulative effect
staying at 6.5 for all lags starting at 2. The limit of the cumulative effect as the lag length goes
to infinity as called the Jong-run cumulative effect of x on y. It measures how much y will even-
tually change in response to a permanent change in x.
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Figure 3-4. Cumulative effects of x on y

For a distributed lag with a finite moving-average representation of length ¢, equation
(3.1) can be written as

q
52 =oc+ZBSxH +u,. (3.5)
s=0

9
In this case, the long-run cumulative effect is ZB; . If the moving-average representation
s=0

converges to zero slowly as s goes to infinity rather than truncating at finite ¢, then the long-

q 0
run cumulative effect is lim ) B, or D B, .
77720 5=0

The pattern of the dynamic marginal effects and cumulative effects tells us about both
the magnitude and the timing of the effect of x on y. In the example we studied above, per-
manent increases in x lead to permanent increases in y that get larger over the first three peri-
ods of the change. Temporary changes in x, by contrast, lead to temporary changes in y that
die away after three periods.

Another pattern that is plausible for some economic relationships is that permanent
changes in x may lead to only temporary changes in y. For example, standard macroeconom-
ic theory tells us that changes in the rate of monetary growth have only temporary effects on
real output growth. In such a situation, the positive marginal effects at short lags (o, B, and
B,, perhaps) would be offset by negative marginal effects at longer lags so that the long-run
cumulative effect (the sum of all the B coefficients) is zero.
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Is it possible to have a dynamic relationship in which temporary changes in x lead to
permanent changes in y? It is possible, but this creates difficulty for an equation such as (3.1).
For a temporary change in x to have a permanent effect on y, the 3 coefficients in (3.1) could
not approach zero as s gets large. This obviously rules out any finite lag distribution, and in-
deed creates trouble for any specification because the dynamic relationship between the two
variables is effectively non-stationary. To cope with this situation, it is usually best to rede-
fine either x or y to eliminate the problem.

For example, suppose that we are looking at the effect of changing the legal drinking age
on traffic fatalities. If we were to model this relationship with x being the change from year
to year in the drinking age and y being fatalities, then a once-and-for-all increase in the drink-
ing age leads to a positive value of x in the year of the increase and x = 0 in subsequent years
when the drinking age stays high. We might expect a permanent reduction in traffic fatalities
to result, which would mean negative 3 values extending into the indefinite future.

We can solve this problem by redefining x to be the legal drinking age itself, rather than
the change in the drinking age. If we do this, then the once-and-for-all increase leads to a
permanently higher value of x. We saw above that permanent changes in x may have a per-
manent effect on y even if the  coefficients eventually converge to zero.

Another way of resolving this difficulty is by redefining y to be the change in traffic fatali-
ties leaving x as the change in drinking age. In this case, the temporary change in x associat-
ed with the rise in the drinking age would be associated with a temporary (though possibly
lagged) change in y measuring the change in traffic deaths. We would expect the increases in
fatalities eventually to return to zero after the one-time change in drinking age, so again the 3
coefficients would converge to zero over time.

In specifying dynamic econometric models, it is crucial to think very carefully about the
nature of the dynamic relationship among the variables. We must decide how we would ex-
pect y to respond over time to a one-time change in x, then define the variables as levels or
changes in order to represent the expected relationship with a stationary lag function.

3.2 Finite distributed lag models: Estimation and interpreta-
tion

3.2.1 Unrestricted distributed lags

In cases where the effect of x on y dies out quickly, it may be feasible to estimate equa-
tion (3.5) directly. The finite distributed lag model has several advantages. The coefficients
can be estimated by OLS or GLS, assuming that x is strictly exogenous. Interpretation of the
BB, coefficients is straightforward using the analysis above. Since there are no restrictions im-
posed on the g + 1 lag coefficients, any finite pattern of lag weights can be estimated.
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There are two disadvantages to the finite distributed lag model. The first is multicolline-
arity. Even if x is stationary, it may be highly autocorrelated, meaning that x, and x,_; are
strongly correlated, as are x,_; and x,_,, x,_, and x,_;, etc. High levels of correlation among
the regressors imply multicollinearity, which leads to unreliable coefficient estimates with
large variances and standard errors. Estimation of finite distributed lag models with strongly
autocorrelated regressors often leads to lag distributions in which the sequence of lag coeftfi-
cients bounces around between large and small—and sometimes positive and negative—
values in ways that are not consistent with economic theory. When this happens, econome-
tricians often try to restrict the estimated [ coefficients to satisfy prior assumptions of
smoothness.

The second disadvantage of finite distributed lags is that they are can be problematic
when the lag length is long, especially in small samples. If we have data for observations
from ¢ = 1 through T, then the earliest observation that can be included in the estimating
sample is t = g + 1, because we need to have data for g periods before the beginning of the
estimating sample for the lagged terms on the right-hand side. Thus, we have T — g observa-
tions available to estimate g + 2 coefficients (including the constant, assuming that there is
only one regressor). This affords us T—2¢g — 2 degrees of freedom. Each time we lengthen the
lag by one period, we lose two degrees of freedom—one because we must estimate another
coefficient and one because we must reduce our sample by one period. Unless T is very large
compared to plausible values of g, degrees of freedom can be depleted very quickly as the lag
length increases. Note also that this effect is magnified if there are two or more regressors for
which we must estimate lag distributions.

In summary, the finite distributed lag model is most suitable to estimating dynamic rela-
tionships when lag weights decline to zero relatively quickly, when the regressor is not highly
autocorrelated, and when the sample is long relative to the length of the lag distribution.

3.2.2 Restricted finite distributed lag models

We may believe strongly (perhaps based on economic theory) that the lag weights [,
should be a smooth function of's. If the unrestricted finite distributed lag estimates contradict
this smoothness, we may choose to restrict the model to impose smooth lag weights. Re-
stricting the lag coefficients can not only impose smoothness, but also reduces the number of
parameters that must be estimated. There are many patterns of smoothness that we can
choose to impose a restrictive structure on the weights. We shall discuss a simple example in
detail, then consider other possible restrictions.

One simple restriction on the lag weights is that they decline linearly from an initial posi-
tive or negative impact effect to zero at a lag of length ¢ + 1. [Might want a graph here.] In
other words, each of the lag weights B3, B,, ... B, are linearly declining fractions of the impact
effect B, according to Table 3-1. Each lag weight [, is smaller than its predecessor 3,_; by the
fixed amount 1/(1 + ¢) until the effect dies to zero at s = ¢ + 1. The formula for the lag
weights in Table 3-1 is
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_q+l-s

Bo, s=1,2,..., ¢ (3.6)
g+1

Table 3-1. Linearly declining lag weights

Lags Lag weight B,

0 Bo

1 9/(g+1) Bo

2 (g=1D/(@+1DBo
g-1 2/(g+1)Bo

q 1/(g+1)Bo
g+1 0

To estimate the linear-declining lag model for given ¢, we substitute for each B, from
equation (3.6) into equation (3.5) to get

q q
g+l-—s g+1l-—s
=a+§ X, +u =o-+ E x,_ |+u,. 3.7
yz por q+1 BO t—s t BO|:3—0 q+1 tsi| t ( )

Equation (3.7) has two parameters to be estimated, o and [3,, with the single regressor in the
model being the bracketed term in (3.7). The remainder of the lag distribution is determined
by the choice of ¢ and the linear restriction. Estimation of (3.7) will have only T — g observa-
tions because we still need to exclude the first g data points to construct the weighted-sum
lag variable, but it has only 2 parameters to be estimating, giving 7 — g — 2 degrees of free-
dom. Relative to unrestricted estimation, we have saved ¢ degrees of freedom.

The impact effect is B in this model, and the long-run cumulative effect is

P IEARLIIE o/ RSV

= q+1 g+143

=ﬁ—°[(4+1)+i3}

q+1 s=0

o frosl02)

g+1

- q
_BO(HZJ.

For g = 4, the lag weights would be
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J B

0 Bo

1 (4/5) By

2 (3/5) Bo

3 (2/5) By

4 (1/5) By
Long-run cumu- 3p

lative effect 0

The same procedure we used to estimate the linear-declining lag model can be applied to
other shapes as well. For example, if the lag weights increase linearly to a peak at lag m, then
decline to zero in a symmetric “tent” shape, then we can model 3, as

=]

Bszﬁm(l— j, s=0,1,..., 2m.

m+1

Once again, this formula can be substituted into (3.5) to get an estimating form that allows
B,. to be estimated. The long-run cumulative effect in this model is (m + 1)B,.. For a lag of
length 6 that reaches its maximum effect at 3 lags, the lag coefficients of the tent lag would
be

= Bs

0 (1/4) Bs

1 (1/2) Bs

2 (374) B
3 Bs

4 (374) B

5 (1/2) B5

6 (1/4) Bs
Long-run cumulative 4p
effect 3

A more common application of restricted distributed lags is the polynomial distributed lag
first explored by Shirley Almon (1965). The most common application of the polynomial
distributed lag is restricting the lag coefficients to lie on a quadratic function. This imposes
smoothness on the coefficients, but allows for considerable flexibility in the shapes of the lag
distributions that it permits. Depending on what part of the parabola lies in the range (0, g),
the commonly plausible shapes shown in Figure 3-5 can be estimated. The quadratic lag dis-
tribution also allows linear lags as a special case, including flat lags and the linear-declining
lags discussed earlier.
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Figure 3-5. Quadratic lag distributions

A quadratic lag function restricts the lag coefficients to lie on a parabola:
B, =&, +&s+E,5%, 5=0,1,..., q, (3.8)

where &, &;, and &, are the parameters of the quadratic function describing the lag weights.
Substituting into (3.5) yields

y, = a+2(<‘§0 +§1s+§252)xH +u,

s=

q q q
2
=a+§02xt—s +glzsxz—s +E.\ZZS X tu,
s=0 s=0 s=0

q
0

or
0 2
Y, =0+&yz, +E.>Izt1 +&,2; +u, (3.9
where

q

L 1
Z‘xr—s? Zt

s=0

0
Z,

z 2
stt—s’ z,
s=0

2
sTx, .
0

The z variables can be constructed by simple transformations once you have chosen a value
of g, which allows equation (3.9) to be estimated by standard linear methods. Once we have

obtained estimates for the parameters of (3.9), we can obtain the implied estimates of the lag
weights from (3.8). Since the functions in (3.8) relating the lag weights [ to the quadratic pa-
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rameters & are linear, calculation of the standard errors of the lag weights is straightforward
using the usual procedure for linear functions of coefficients.

Of course, quadratic lag distributions can also come out looking counterintuitive, for ex-
ample with lags that diverge from zero at the far endpoint or that swoop into negative values
in the middle. Implausible estimated lag distributions may be evidence of misspecification of
the model, so they should not be ignored. It is possible to force the quadratic lag distribution
to have certain properties, such as having the weights converge smoothly to a zero value at
lag g + 1 (as we did for the linear-declining lags). For the quadratic case, we want to restrict

B,+1 to have the value zero, so B, =& +§& (g+1)+§&, (q+1)2 =0. This means that the pa-

rameters of (3.9) have the linear restriction &, =—§ (¢+1)-¢, (q+1)2, which can be im-

posed in estimation to assure that the quadratic lag distribution dies to zero smoothly at the
end of the lag.

The method of polynomial distributed lags can be used with cubic or even higher-order
polynomials as well. The higher the order of the polynomial, the less “smooth” the lag dis-
tribution is allowed to be and the more parameters must be estimated. Of course, just as we
can always find a line passing through any two points and a parabola passing through any
three points, any unrestricted lag distribution with ¢ + 1 lag weights lies on a polynomial lag
distribution of order ¢, so a g-order polynomial distributed lag is equivalent to the unrestrict-
ed distributed lag model.

The restrictions implied by a polynomial distributed lag model can always be tested as
linear restrictions on the unrestricted polynomial estimates. This tells us whether the data
can reject the smoothness imposed by the polynomial lag model. If non-smoothness of the
unrestricted lag weights was due to multicollinearity (which makes the point estimates unre-
liable), then the smoothness restrictions may not be rejected. If the restrictions are rejected,
then the data contain strong evidence that the lag distribution does not follow the smoothed
model we have imposed, and we impose the smoothness model at our peril.

The easiest way to implement the test of the polynomial restrictions is in terms of “dif-
ferences” of coefficients. For the quadratic lag, we difference (3.8) in terms of s to get

B =By = (8 + 85+ 855" ) (8 + & (s - 1)+ & (s-1)')
= +§2[52 —(S—1)2:|=§1 +§2[52 —(S2 —23+1)]
=& +&,(2s-1), s=1,2,..., ¢,

then difference again to get

(BS _BH)_(BH _Bs—Z):[E.!l +E,~2 (25—1)]_[§1 +é2 (2(5_1)_1)}
=&,[2s-1-(25-2-1)]
=2¢,, s=2,3,..,4.
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Thus, the second difference of the lag coefficients (differencing with respect to the lag) is a
constant. That means that we can test the following g — 2 restrictions on 3, B, ..., B, to test
the quadratic restriction:

Bz _2B1 _Bo :Bs _2B2 _BI
B3 _ZBZ _Bl =B4 _2B3 _Bz

qul - Zquz - Bq73 = Bq - Zqul - quz'

3.3 Models with lagged dependent variables

In an earlier chapter we introduced autoregressive-moving-average (ARMA) time-series
processes as a way of modeling univariate time series. The autoregressive component of the
ARMA model involves using one or more lagged values of y as determinants of the current
value y,. We can apply the same method in a distributed-lag context by adding y,_, and pos-
sibly additional lags to the right-hand side. The simplest model is the Koyck lag, which has
one lag of y on the right-hand side with only the current value of x. Adding lagged values of x
in addition to lagged y variables leads to the rational lag model.

3.3.1 Koyck lag

The first-order autoregressive lag model is often called the Koyck lag in recognition of
the seminal application of the model to the macroeconomic investment function by L. M.
Koyck (1954). With a single explanatory variable x, the model is written

Y, =0+, y, , +0,x, +u,. (3.10)

Estimation of equation (3.10) presents challenges because y,_; is by definition not strictly ex-
ogenous and, unless #, is white noise, is not even weakly exogenous. We postpone these es-
timation concerns for the moment and discuss the interpretation of the coefficients in the
Koyck model.

In terms of the lag operator, we can write (3.10) as
(I-,L)y, =8+0,x, +u,.
This suggests solving the model for y, as

8 0, 1
= + X, + u,
1_¢1L 1_¢1L 1_¢1L

Y

which, by methods analogous to those used to examine autoregressive processes, can be
written in an infinite-distributed-lag form as
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o
1-¢,

y, = +0, > dix,_ + > b, (3.11)
s=0 s=0

as long as |¢1| <1.

Equation (3.11) has the form of the infinite distributed lag (3.1), with
3

1-¢,’
B, =6y01,

a

and the disturbance term having an infinite-moving-average form. The dynamic marginal
effects of x on y in the Koyck model are

6 t+s N
;}_: Bs = 9O(I)l‘
% (3.12)

If, as is usually the case, 0 < ¢; < 1, the lag weights decline exponentially to zero from an
initial value of 6,. The long-run cumulative effect of x on y is

This exponentially declining lag distribution seems to fit many economic relationships
well. Moreover, some theoretical models, such as exponential convergence models in eco-
nomic growth and models with quadratic adjustment costs, predict exponentially declining
lag weights.

The Koyck lag model can be used with more than one regressor in the equation, but it
imposes a significant restriction on the lag distributions. Suppose that we have two regres-
sors, x and z:

Y, =0+, y,_ +0x, + Az, +u,.

The dynamic marginal effects of x on y will be as in equation (3.12). The effects of z on y will
be

Wi :
T, ot

t

Both the effects of x and the effects of z decline at the same exponential rate ¢, as s increases,
so with the Koyck lag it is not possible for y to respond more quickly to one explanatory var-
iable than to another. This symmetry of dynamic responses may be appropriate in some ap-
plications. For example, if the reason for lagged response is costs of adjusting y to its optimal
level, then it may be reasonable to expect that the same adjustment costs—and thus the same



48 Chapter 3: Distributed-Lag Models

lag structure—would apply regardless of which variable caused a change in the optimal y. In
other cases, we might expect different patterns of dynamic response to different regressors.
Consumption of asparagus may adjust more (or less) quickly to changes in the price of as-
paragus than to changes in income. The Koyck lag would not allow independent estimation
of the lag structures of the two variables.’

The theoretical and empirical appeal of the Koyck lag has led to its frequent use. How-
ever, consistent estimation of the Koyck-lag model can be problematic. The lagged depend-
ent variable as a regressor on the right-hand side is never strictly exogenous, so the small-
sample assumptions needed for the Gauss-Markov Theorem cannot be satisfied.

Even the weak exogeneity required for consistency is often dubious. Lagging the model
one period means that y, | =8+¢,y, , +0,x, +u, ;, so y,_; is clearly correlated with u,_;. If u,

is not white noise so cov(u,, #,_,)#0, so is not white noise, then y,_, and u, are correlated

and the lagged dependent variable is not even weakly exogenous and the OLS estimator is
inconsistent. Given the ubiquity of serial correlation in error terms of dynamic models, it is
hard to maintain confidence in the consistent estimation of the Koyck model.

Avoiding inconsistency requires that we make sure that the error term is not serially cor-
related. GLS methods can be used to transform the model into one that is not serially corre-
lated, but only with great caution. Because the OLS estimators are inconsistent, so are all test
statistics and estimators based on the OLS residuals. For example, the Durbin-Watson test
and other tests that rely on the correlation coefficient between #, and 4, , are not valid.
Moreover, we must estimate the disturbance autocorrelation parameter using a method that
does not rely on OLS residuals. Thus, the Hildreth-Lu search procedure is valid for estimat-
ing a model with an AR(1) error and a lagged dependent variable, but the Prais-Winsten and
Cochrane-Orcutt methods are not.

3.3.2 Longer autoregressive lags

The Koyck lag treats y as a first-order autoregressive process. Although one lag of the
dependent variable is often enough to capture the dynamic relationship between y and the
regressors. However, longer autoregressive lags can be included as well. The general auto-
regressive lag model AR(p) would be written

O(L)y, =3+6x, +u, (3.13)

with ¢(L) a p-order polynomial in the lag operator. In order for the relationship between y
and x to be dynamically stable, the roots of ¢(L) must lie outside the unit circle. This general-
izes the condition |[¢;| < 1 from the Koyck lag model. If the stability condition does not

* We shall see below that adding one or more lags of x and/or z could allow differences in the first few
terms of the lag distribution. However, the “tail” of the lag distribution beyond the longest lag of x or z
always depends only on ¢;.
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hold, then a one-time change in x will cause permanent or explosive changes in y, which
suggests differencing y to make the order of integration the same on both sides of the equa-
tion.

The ¢ parameters of the autoregressive lags determine the shape of the lag distribution.
As with the first-order Koyck lag, lag weights can decline smoothly according to an expo-
nential pattern. But with higher-order lags, other patterns are possible. For example, if the
roots of ¢(L) are complex numbers (i.e., have non-zero imaginary terms), then lag weights
may oscillate back and forth like a damped sine function, converging eventually to zero.
(Complex roots on the unit circle would have non-damped oscillations like a pure sine wave;
complex roots inside the unit circle would lead to explosive oscillations.)

For example, suppose that the model is y, =0.8y, , —0.4y, , + x, +u,. The autoregressive

polynomial ¢(L)=1-0.8L+0.4L*, whose roots are 1+1.225i. These roots lie outside the

unit circle because +1° +1.225° > 1, so the lag distribution is stable and converges to zero as
the lag length increases. Evaluating the lag distribution gives the pattern of oscillating con-
vergence of lag weights shown in Figure 3-6. A one-unit temporary increase in x leads to an
initial increase in y. But by the third, fourth, and fifth periods the effect on y has become
slightly negative. The lag weights subsequently approach zero quickly, oscillating between
positive and negative values every three to four periods.
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Figure 3-6. Oscillating convergence in a second-order AR lag

The oscillating pattern of Figure 3-6 may not be realistic for most economic applications,
but there are situations where theory predicts a non-monotonic response with both positive
and negative lag weights. For example, in a simple real-business-cycle model, productivity
shocks may first increase the marginal return to capital (due to higher productivity), then
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lower it (due to increases in the size of the capital stock), with the effect converging to zero in
the long run. ’

3.3.3 Autoregressive distributed lag (ARDL) models

Given the autoregressive lag relationship in equation (3.13), a logical extension is to al-
low lags of x on the right-hand side. The general autoregressive distributed lag (ARDL) model
is written

O(L)y, =5+0(L)x, +u,, (3.14)

where ¢(L) is an order-p polynomial that, for stability, has roots lying outside the unit circle
and O(L) is an order-g polynomial. Expanding the lag polynomials, equation (3.14) can be
written as

Y =040y o0, , +0x, + 0, + 40K, U

With a sample of T observations, this model can be estimated for 7' — max{p, g} observa-
tions.

As we did with univariate ARMA models, we can divide both sides of (3.14) by the au-
toregressive polynomial to get

Yy, = + X, + u

=a+th +v,,

¢(L)

where o and v are the constant and error term defined in (3.15). Because the lag distribution
of the ARDL model cause can be represented by the ratio of two finite lag polynomials, it is
sometimes called the rational lag. (Recall that rational numbers can be represented as the ra-
tio of two integers.)

(3.15)

The analysis of ARDL models parallels that of univariate ARMA processes; the differ-
ence is that the lag structure on the right-hand side of (3.15) is applied to an explanatory var-
iable x rather than to a white-noise error term & as in equation
Error! Reference source not found.. As in the ARMA models, the coefficients of the order-p
polynomial 6(L) affect only the first g lags of the dynamic lag distribution of the effect of x on
y. The behavior of the “tail” of the lag distribution beyond g depends entirely on the auto-
regressive polynomial ¢(L). The property that the dynamic effect is stable only if the roots of
d(L) lie outside the unit circle carries over from the autoregressive lag model of the previous
section.

’ See Chapter 5 of Romer (2012).



Chapter 3: Distributed-Lag Models 51

3.3.4 Autocorrelated errors and distributed-lag models

It is easy to confuse models in which y is autocorrelated and models in which # is auto-
correlated—and not just for students, but for statistical procedures as well. Consider the fol-
lowing ARDL(1,0) model:

.yt :6+¢1yt—1 +90xz +uu

u, =pu,  +g,.

We assume that both ¢, and p are between —1 and 1 for stability and stationarity and that ¢ is
white noise. Solving for u, from the first line, u, =y, -8—¢,y, , —0,x,, so lagging once yields
u,_,=y,_,—-0-y,,—06,x,_, . Substituting this into the second line and then plugging the re-
sulting expression for #, into the first line yields

Y, =840, +00x, +p(y, —5-0,3,, 0%, ) +e,

3.16
(1= p)5-+ (b, +P) 7, s — POy, 2 + By, — POy, 5. (319

Equation (3.16) shows that the ARDL(1,0) model with a first-order autoregressive error can
be reduced to an ARDL(2,1) model with a white-noise error. Given this apparent equiva-
lence, how could we determine which is the appropriate model?

The equivalence is not quite perfect because there is one nonlinear restriction on the co-
efficients of (3.16). The ARDL(2,1) model in (3.16) has 5 linear coefficients (the constant,
two lagged y coefficients, and two coefficients on current and lagged x), but they depend on
only 4 underlying parameters: o, ¢, 0, and p. Thus, if we needed to, we could estimate the
general ARDL(2,1) model (3.16) and test the nonlinear coefficient restriction:

coef (y,.,)
coef (x,_,)

_ coef(x,,)

coef (y,,)= coef (x,) (3.17)

coef (x,)

If the model is truly a Koyck lag with AR(1) error, then it is true that we can save one
degree of freedom and thus gain a marginal bit of efficiency by imposing restriction (3.17) on
the estimation of (3.16) (or by doing this implicitly through a two-step procedure such as
Hildreth-Lu). However, in practice, it is much easier to estimate the unrestricted ARDL(2,1)
model, which accounts (though not fully efficiently) for the possibility of an AR(1) error in
the simpler Koyck model.

This example shows that lengthening the lags in the ARDL model can eliminate serial
correlation in the error term. It is fairly straightforward to determine how many lags need to
be included. In (3.16), if p = 0 then the coefficients of y,_, and x,_, are both zero, so testing
the last lag terms and eliminating them if they are near zero will assure that we do not in-
cluded an unneeded correction for autocorrelated disturbances. Testing the residuals for au-
tocorrelation should reveal whether the remaining error term is white noise. If it is not, then
adding more lags might be appropriate. Adding lags until the residual seems to be white
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noise is the most common way that modern time-series econometricians deal with the possi-
bility of serial correlation in the disturbance. Two-step GLS estimation using the Prais-
Winsten or Hildreth-Lu procedures is used much less frequently.

3.4 Choosing the Lag Length

In all of the models we have studied, we must specify the length of the lag prior to esti-
mation. Economic theory rarely gives us information about the lag length, so this must usu-
ally be determined empirically. Several methods are available to econometricians to gain in-
formation about the appropriate lag length, though they do not always give the same answer.
There is no “right way” to identify the length of a lag. We are usually forced to make a
judgment after looking at the evidence from several methods.

The methods we discuss for choosing lag length can apply either to the lagged x terms on
the right-hand side—the lag length that we have been calling ¢—or to the number of lagged
dependent variables to include in an autoregressive-lag or ARDL model—what we have
called p. However, most of these methods cannot be applied in a straightforward way to de-
termining the length of restricted lag models such as the linearly-declining lag or the poly-
nomial distributed lag.

If is conventional in dynamic analysis that if we determine the appropriate lag length to
be ¢, we usually include all lags between 0 and ¢. It would be very unusual to encounter an
economic model in which, for example, x,_; and x,_; would affect y, but x,_, would not.
Therefore we would not usually omit x,_, as a regressor even if its coefficient is not statisti-
cally significant. The only common exception to that rule is with seasonal data, where we
might augment a short lag of 3 or 4 periods with a lag-12 coefficient when using monthly
data to capture the effect of the same month in the preceding year.

3.4.1 Determining lag length by statistical significance

An obvious way to choose the length of a lag is to start with a long lag test the statistical
significance of the coefficient at the longest lag—the “trailing lag”—and shorten the lag by
one period it if we cannot reject the null hypothesis that the effect at the longest lag is zero.
We continue shortening the lag until the trailing lag coefficient is statistically significant.

Although this method has appeal, there are dangers as well. Remember that an insignifi-
cant ¢ statistic on the trailing lag only fails to reject the hypothesis of a zero coefficient; it does
not prove that the coefficient is zero! It is therefore quite possible that this procedure will
choose a lag length that is too short.

An alternative that also relies on statistical tests of significance is to start with a very
short lag and successively add lag terms, continuing to add lags that are statistically signifi-
cant and stopping when the marginal lag coefficient is not. This method is similar to the one
above and often, though not necessarily always, leads to a similar choice of lag length. To
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see why they are not identical, consider what would happen if the first, second, and fourth
lags were (always) statistically significant but the third lag and all lags longer than four are
not. Starting from a long lag and working downward you would stop at four lags, eliminat-
ing the insignificant fifth lag but retaining the third lag by convention. Starting from a short
lag length and working upward you would stop at two lags; you would never discover the
significant fourth lag.

3.4.2 Determining lag length by information criteria

Information criteria are designed to measure the amount of information about the de-
pendent variable contained in a set of regressors. They are goodness-of-fit measures of the
same type as R’ or R?, but without the convenient interpretation as share of variance ex-
plained that we give to R* in an OLS regression with an intercept term. The two most com-
monly used criteria are the Akaike information criterion (AIC) and the Schwartz/Bayesian in-
formation criterion (SBIC). They are usually calculated in log form by the formulas

(3.18)

T
2 KInT
SBIC=In| = |+ 22
T T

In equation (3.18), 7T'is sample length, K is the total number of estimated coefficients, and #,

are the residuals.

The “main ingredient” in both information criteria is the sum of squared residuals,
which we want to make as small as possible. Thus, we want to minimize the criteria and
choose the model with the smallest AIC or SBIC value.

When using the information criteria to choose lag length, we must be very careful to
make sure that all candidate models among which we are choosing are estimated over exact-
ly the same sample period. This requires particular caution in lag models because there will
usually be more observations available for models with shorter lags (because with fewer lags
we “lose” fewer observations at the beginning of the sample). Passively allowing Stata to set
the sample by using all available observations will result in samples with different 7" for mod-
els with lags of different length, thus the information criteria calculated from them cannot be
compared. You should always use an in or 1T clause in your estimation command to keep
the sample the same across regressions being compared with AIC or SBIC, then verify that
all of the observations being compared have identical sample lengths.

The first term of the information criteria (common to both) is the log of the standard er-
ror of the estimate (SEE), uncorrected for degrees of freedom. This measures how well the
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model explains the dependent variable. The second term is a “penalty term” that depends
positively on the number of estimated parameters K. Increasing lag length will lower the first
term by marginally improving the fit, but will also increase the second term because the
number of parameters will be larger. The information criteria provide alternative ways of
“trading off” improved fit against more parameters to estimate.

From (3.18), the SBIC penalizes additional parameters more strongly than the AIC (as-
suming, plausibly, that In 7 > 2). Thus, the SBIC always chooses a lag length that is shorter
than (or the same length as) the one that minimizes the AIC. Neither is “better,” so one
might consider the AIC as a lower bound and the SBIC as an upper bound for the appropri-
ate lag length. In the case that they happen to agree, the choice is clear.

3.4.3 Determining lag length by residual autocorrelation

As discussed above, adding lags of x and/or y to the right-hand side of a distributed-lag
regression usually lessens the degree of autocorrelation in the error term. Estimators of some
models (especially those with lagged dependent variables) are sensitive to autocorrelated er-
rors, so another criterion that is sometimes used for choosing lag length is the elimination of
autocorrelation in the residuals.

When using residual autocorrelation to determine lag length, one adds lags until the re-
siduals appear to be white noise. After running the distributed-lag regression, one extracts
the residuals and uses a Breusch-Godfrey LM test or a Box-Ljung Q test to test the null hy-
pothesis that the residuals are white noise. Rejecting the white-noise null hypothesis means
that more lags should be added to the regression according to this criterion.
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