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t

s HCF cycle

LCF cycle

Also kommt, wie bei der künstlerischen, so bei der naturwissenschaftlichen,
auch bei der mathematischen Behandlung alles an auf das Grundwahre, dessen
Entwickelung sich nicht so leicht in der Spekulation als in der Praxis zeigt; denn
diese ist der Prüfstein des vom Geist Empfangenen, des von dem innern Sinn
für wahr Gehaltenen.

Johann Wolfgang von Goethe
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Abstract

Turbine runners experience start-stop cycles and vibration cycles. Cracks initiated from
service or manufacturing defects and propagated by start-stop cycles become critical when
the stress intensity range due to vibrational loading exceeds the threshold for fatigue crack
growth.

In Francis turbine runners, semi-elliptical surface cracks tend to propagate from the
quarter-circular transition of the welded T-joint transition between the blade and the band
or crown. Assuming a crack to grow under a constant stress amplitude equal to that at
the most highly loaded location at the welded joint between the blade and the band or
crown of a Francis turbine runner yields a conservative estimate of the life of the runner.
A more accurate prediction of fatigue life is obtained by considering the growth of a crack
in the real, inhomogeneous stress field. For an idealised T-joint under pure bending, the
stress field has been determined by means of plane strain finite element analysis.

Finite element models of the entire Francis runner are built with respect to the calcula-
tion of fluid dynamic properties. Since in these models geometry transitions are modelled
as a sharp notch, both a finite and a zero transition radius have been modelled, and the
influence of the mesh size on the maximum stress has been investigated.

For relatively small cracks, it is shown that the structural component geometry does
not remarkably influence the stress intensity factor values, provided that the stress field
in the vicinity of the crack is approximately the same. Therefore, in order to simplify
the stress intensity factor retrieval and to generate a solution of extended applicability,
a cracked finite-thickness plate is examined instead of the actual T-joint geometry. The
stress intensity factors along the front of a semi-elliptical surface crack in such a plate are
determined by means of an analysis using finite quarter-point wedge elements for different
elementary loading conditions that can be employed to model the actual stress field at the
expected crack location in the examined T-joint. By applying the superposition principle
and the power series expansion of the actual stress field due to the load applied to the
T-joint considered, an approximate stress intensity factor for the cracked T-joint has been
obtained.

The growth of semi-elliptic surface cracks in the stress field of the T-joint has been
analysed using stress intensity factors of both own and literature solutions and employing
a two-parameter model based on the Paris law. The theoretical fatigue crack growth pre-
dictions are in acceptable agreement with observations from experimental fatigue testing.

Furthermore, an iterative shape optimisation methodology has been applied to the two
locations of stress concentration that show the highest local stress amplitudes and there-
with are the most critical areas for fatigue of the Francis turbine runner. It is shown that
stress concentration due to bending can be virtually eliminated. Large-scale geometry
changes minimise stress concentration but create shapes that are sensitive to manufactur-
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ing tolerances. Fracture-mechanical fatigue crack growth methodology calculations and
experimental fatigue testing of moderately optimised shapes revealed that the runner’s
fatigue properties could be increased by factors 1.5–1.8 and 2–2.5, respectively.
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Chapter 1

Introduction

Hydraulic turbines exploiting the energy of water in rivers and reservoirs make a substantial
contribution to the generation of electricity worldwide. The advantages of hydroelectric
plants over fossil fuel plants are a higher life time, an efficiency rate twice as high and lower
costs for maintenance and service. Besides being a renewable and non-polluting source of
energy, a hydropower plant can respond instantaneously to changes in the demand for
power of the electric grid. Therefore, hydraulic turbines and, in particular, reversible
hydraulic pump turbines contribute to the supply of clean and reliable electric power.

The worldwide production of hydropower energy of 2650 TWh/year meets 17 % of the
world’s entire electricity demand (iea data for 2001 [1]). The world’s total technically
feasible hydro potential is estimated at 14 500 TWh/year, of which 56 % is currently
considered economically feasible for development. Worldwide 755 GW hydropower is in
operation [2]. Within the oecd countries approximately 80 % of the available large hydro
resource (stations with an energy output >10 MW) is already used, but only 21 % is
exploited worldwide.

Potential technical capacity of the small hydro resource (<10 MW) is estimated at 150–
200 GW worldwide. In North America and Europe, a larger share of the technical potential
of the small hydro resource has already been developed than in developing countries [3].
Still, small-scale hydropower is generally relatively unexploited, and installed capacity is
estimated to grow between 1–6 % per year over the next 20 years.

The nominal output of hydropower installed in Norway sums 27 700 MW and is spread
over 581 hydropower stations of more than 1 MW. In 2003, hydro-electric power stations
generated 99 % of the country’s electric energy production of 119 TWh [4].

1.1 Turbine Design and Classification

Conventional hydropower technologies are technically mature and highly efficient, with
conversion efficiencies up to 95 % achievable. Typically, larger turbines have higher effi-
ciencies.

The turbines and electric generators of hydropower stations are installed either in or
adjacent to dams and use a tunnel or a pipeline – often referred to as the penstock – to
carry the water under pressure from the water reservoir to the powerhouse situated below.
The penstock may be split into several separate penstocks for individual turbines. In the
powerhouse the water is lead to the turbine runner, which transforms the hydraulic energy
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into torque and rotation of the shaft and performs useful work by driving the electric
generator. A general scheme of hydropower stations is given in Figure 1.1.

There are many types of turbines used for hydropower, and they are chosen based on
their particular application and the height of standing water – the so-called water head
– available to drive them. Water heads between three and several hundred metres are
considered to be technically exploitable.

The most common turbine types are:

Francis turbines have a runner with fixed blades, usually between seven and thirteen.
The water enters the turbine in a radial direction with respect to the shaft, and is
discharged in an axial direction. Francis turbines are available for 20 to over 900 m
of head and can be as large as 800 MW.

Kaplan turbines are propeller turbines with all of the three to six blades pivoted for pitch
adjustment. The runner design reminds of a boat propeller and may exceed eight
metres in diameter. Kaplan turbines are suitable for heads from 10–70 m and may
yield more than 250 MW.

Pelton turbines have one or more jets discharging water into an aerated space and impinging
on buckets that are placed circumferentially on the runner disk. With runner wheel
diametres of over 5 m these turbines are used for 200–1500 m high-head sites and
can be as large as 300 MW.

One reason for these three turbines to become today’s predominant types is that they sup-
plement each other so that virtually all water heads and volumes are covered. Generally
spoken, Pelton turbines are chosen for relatively high water heads and small water dis-
charges, in contrast to Kaplan turbines which suit the lowest heads and largest flow rates.
Francis turbines cover the bigger part of the region in between.

One classification of hydraulic turbines is based on the predominant direction of the
fluid flow through the runner. In a radial-flow machine the path of the fluid is mainly
in the plane of rotation. Thus, the fluid enters the rotor at one radius and leaves it at
a different radius. Examples of this type of machine are the Francis and the centrifugal
turbine. In the case of axial-flow machinery like the Kaplan and the propeller turbine the
main flow direction is parallel to the axis of rotation. If both axial and radial fluid flow is
present, the term mixed-flow is used [5].

The categorisation in impulse and reaction turbines is another way of classification.
While the static pressure is constant across the runner of the impulse machine, this pressure
decreases as the fluid flows trough the reaction machine runner. An example for the impulse
machine is the Pelton turbine, whereas the Francis and Kaplan turbines are representative
of the reaction type. In both types the fluid transfers energy to the runner in tangential
direction.

1.2 Francis Turbines
As noted in Section 1.1, Francis units are reaction turbines of the radial-flow type. The

water enters the turbine in a radial direction with respect to the shaft, and is discharged
in an axial direction. As the fluid flows through the runner, the static water head pressure
decreases gradually. Consequently, the Francis runner has to be completely closed and all
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ergy) and Notation.
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its passages are entirely filled with working fluid. As this is typical for the reaction turbine
runners, these turbines are sometimes denoted as full turbines, in opposition to the partial
impulse turbines [6].

For the Francis turbine, the water flows from the penstock into a spiral casing or scroll
case which distributes the fluid evenly onto the blades of the runner, which is mounted on
a common shaft with the generator. The flow of water is hereby first deflected by fixed
stay vanes and subsequently regulated by means of pivoted guide vanes – often called the
wicket gate – which is opened and closed by an oil-hydraulic servomechanism controlled
by a mechanic or electronic governor. From the runner outlet the water flow enters the
draft tube. Here, flow velocity is gradually reduced due to an increase in the draft tube
diameter whereby additional energy is gained. Figure 1.2 gives a schematical overview and
the notation of a Francis turbine.

1.3 Background and Motivation

In the continuous struggle for reduced costs and increased efficiency, designers approach
the limits of the structural integrity of hydropower turbines. Major challenges are fatigue,
corrosion, corrosion fatigue, stress corrosion, cavitation and silt erosion damage. Failure
in engineering structures due to fatigue loading generally occurs in areas of stress concen-
tration. Decades of operating experience have shown hydraulic turbine runners to develop
fatigue cracks in areas where stress concentrations and material defects coincide.

This is the case in the welded areas of high-pressure Francis turbine runners. Here,
fatigue cracks tend to occur either very early in life or after ten to twenty years of oper-
ation. The failure mechanism is considered to be a combination of low-cycle fatigue from
operational start-stop and high-cycle fatigue due to hydraulic load fluctuations. Since the
critical area of stress concentration consists of welded material, it has to be assumed that
crack propagation from single undetected flaws and inclusions takes place as soon as the
runner is taken into service. The following investigations focus on the Francis runner where
the interaction of low-cycle and high-cycle fatigue loading in combination with relatively
high static loads seemed to be the most interesting and challenging area of research.

To strike a balance between the performance and cost of a turbine runner on one hand
and the mechanical integrity of the runner on the other hand, the turbine designer must
have tools available for the reliable prediction of fatigue crack growth. A practical applica-
tion of fatigue crack growth calculation is to investigate how fast a crack is growing from
an assumed initial size to catastrophic failure. Representative results may then be helpful
to estimate failure-free service life and therewith maximise inspection intervals.

The propagation of semi-elliptical surface cracks can be calculated by means of lin-
ear elastic fracture mechanics, provided the stress field and the stress intensity factor are
known during the propagation of the crack. Experimental fatigue testing may substanti-
ate calculational results and provide information about the fatigue properties of complex
geometries.

The Francis runner areas of stress concentration are manufactured with high accuracy
and care. As to date circular transitions prevail, the idea to investigate the benefit of shape
optimisation to the fatigue properties of a Francis turbine runner almost suggested itself.
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1.4 Outline of the Thesis
The remaining part of the thesis is organised as follows:

Chapter 2 gives an overview of how the fatigue phenomenon has been related to geomet-
rical notches from the early beginnings of fatigue research.

Chapter 3 describes the conditions that influence the mechanical integrity of Francis
turbine runners.

Chapter 4 demonstrates a practical fatigue assessment methodology.

Chapter 5 introduces the stress intensity factor with focus on its applicability to notch
fatigue problems. The retrieval of a general stress intensity factor solution is expli-
cated.

Chapter 6 presents optimised shape solutions that lower the local stress level in areas of
stress concentration and thus increase fatigue properties.

Chapter 7 presents experimental fatigue tests performed on standard and shape opti-
mised transition specimens. The specimen’s geometry and the loading applied rep-
resent the conditions that prevail at the two most critical areas of the Francis runner
with respect to fatigue.

Chapter 8 concentrates on local stresses and transition geometries that are initially un-
cracked.

Chapter 9 presents fatigue crack growth calculation employing the stress intensity factor
solution of Chapter 5 and solutions from the literature. The results are compared to
beachmark data from experimental fatigue testing presented in Chapter 7.

Chapter 10 is a summary of the findings in Chapters 4 to 9. Conclusions are drawn and
directions for further work are suggested.





Chapter 2

History of Fatigue and the Notch Effect

Efforts and advancements in research on the fatigue phenomenon ever since have been
closely connected to failure of technical equipment in service. For more than one and a
half centuries, long before the often mentioned de Havilland Comet aircraft crashes took
place in 1953 and 1954, failure of vehicles and machinery leading to major accidents and
loss of human lives has enforced the interest of engineers and scientists in material fatigue.

The fact that today, with the vast amount of investigation of more than 100 000 works
on the field published during the 20th century [7], many questions still remain unanswered,
emphasises the need for further research on fatigue.

The following review of the history of fatigue has its focus on the detrimental effect
of notches to fatigue life. The review comes with no claim for completeness whatsoever.
The aim of it is rather to show the relevance of early works and the contribution of later
milestones in fatigue research to the contemporary knowledge of notch fatigue. Historical
information found in recent review articles [8, 9, 10, 11] has been notably helpful with this
review.

2.1 Early Research on Fatigue
Fatigue is a failure phenomenon that is found in components under fluctuating loads,
which are well below the static design loads of the component. With the beginning of the
industrial revolution, cast and wrought iron took the place of bricks or wood as construction
materials. Thus, components could be designed to withstand tensile forces, which lead to
more complex constructions and resulted in an increasing fatigue problem.

It is reported that Poncelet in his lectures at the military school at Metz described
metallic structures as being “tired” or “worn out” in 1839 [10]. The first time the term
fatigue was employed for cracking of metals under repeated loading was in a publication
of Braithwaite [12] in 1854.

The first fatigue test results known were published in 1837 by the Royal Hannoverian
“Oberbergrat” Albert [13] in Clausthal. Struggling with conveyor chain failures in the
mines of the Oberharz, he performed fatigue tests of whole components. It seems worth
noting that he hereby invented the wire rope.

From the middle of the 19th century, accidents from breaking railway axles regularly
topped the news throughout Europe. In 1842, a major train accident near Versailles
took the lives of 60 people. The cause of this accident was fatigue failure originating in
the locomotive front axle [14]. In the following year the physicist Rankine [15] proposed
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ideas on improved fatigue design of railway axles. Morin in his 1853 book “Résistance des
Matériaux” [16] reports on cracks in mail coach axles that mainly occurred at geometric
discontinuities.

An understanding of the physical fatigue phenomena was hardly present in these early
days. Though it was recognised that those cracks often occurred at section changes, the
events in the material were still in the dark. Due to the absence of visible plastic deforma-
tion, efforts were made to connect fatigue to a mysterious change in the material structure
from a fibrous to a brittle crystalline one.

In 1903, a microscopic investigation of Ewing and Humfrey [17] showed short fatigue
cracks that grew from cyclic slip bands. The discovery of striations – small ridges on the
crack surface that lie perpendicular to the direction of crack propagation – in the late 1950s
by Forsyth [18] and Ryder [19] then proved that fatigue crack growth actually is a cycle-
by-cycle phenomenon. By that, the theory of an increasing strain-hardening mechanism
could be disproved, as it would have lead to jumps of the crack front after a couple of
cycles instead.

This physical phenomenon of material fatigue was unknown to Wöhler, who was Royal
“Obermaschinenmeister” of the “Niederschlesisch-Mährische” Railways in Frankfurt an der
Oder, when he began to monitor the service loads of railway axles with self-developed
zinc-plate strain gauges [20, 21] in 1858. Wöhler then calculated the largest bending
and torsional stresses on the axles, considered how often these largest stresses occured in
service and implicitly suggested design for fatigue life. Due to the lack of fatigue data,
Wöhler had to rely on estimations, but from his fatigue tests on notched and unnotched
specimens he had recognised that the stress amplitude is the decisive parameter for fatigue
life [22]. Besides the realisation of systematic fatigue tests under tensile, bending and
torsional loading conditions and the introduction of the “endurance limit” concept, the
work of Wöhler includes considerations of the statistical scatter in finite life design as well
as (quantified) design suggestions for reduced notch effect.

Wöhler published his fatigue test results in tabular form. The “Wöhler curves” or “sn
curves”, as they are known and still used today, were first drawn by Basquin [23] in 1910.
For the finite life region, Basquin correlates the stress amplitude, σa, and the number of
life cycles, N , in the relation

σk
a ·N = constant (2.1)

which plots a straight line in the graphs he introduced showing a log σa ordinate and a
log N abscissa. Depending on the material and on the notch severity, the exponent k value
varies between k ≈ 10 for smooth steel specimens and k ≈ 3 for specimens containing a
crack or a very sharp notch.

Many results of Wöhler were confirmed by Bauschinger, who was Professor of Mechanics
at the Munich Polytechnical School. In 1881 he discovered what in his own words [24, 25]
was “the change of the elastic limit by often repeated stress cycles”. This effect, which
today is known as the Bauschinger effect, is the basis for the hypotheses of Manson [26]
from 1953 and Coffin [27] from 1954. Independently from each other they investigated
short fatigue lifes due to large cyclic (thermal) deformations and related the macroplastic
strain amplitude, εa, to the number of load cycles to fatigue failure. Fatigue life prediction
in the low-cycle fatigue regime according to the local concept still bases on this so-called
Coffin-Manson relation:

εa ·Nβ = constant (2.2)
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2.2 Stress Concentration

As mentioned above, it was soon recognised that geometrical discontinuities generally lead
to locally elevated stress levels. The first accurate and analytical determination of the
stress concentration factor

Kt =
σmax

σn
(2.3)

was achieved by Kirsch [28] in 1898. Hereby, σmax is the elastically calculated maximum
local stress and σn the stress in the nominal section. Kirsch’s result for the stress concen-
tration of a cylindrical hole in an infinite plate shows that Kt = 3. This was later extended
to the case of an elliptical hole by Inglis [29] who in 1913 found the equation for the notch
stress concentration to be

Kt = 1 + 2

√
D

ρ
(2.4)

where 2D is the major axis and ρ the notch root radius, as shown in Figure 2.1.
Strain measurement at notches was performed by Preuß [30] at the “Materialprüfungs-

anstalt” in Darmstadt in 1913. For this purpose, Preuß developed a mechanical-optical
extensometer with the distance between the measuring edges of either 0.7 or 3.3 mm. This
apparatus allowed strain to be measured at the cross sectional area of flat bars as well as
in the groove of the notch itself. Preuß is considered to be the first to employ the ratio
between maximum (local) stress in the notch groove and an average stress value (today:
nominal stress), for tensile loading at least.

In 1937 Neuber, who held the chair for Mechanics in Munich as Bauschinger before
him, published his book Kerbspannungslehre [31]. The book was translated into English
and published in 1946 with the title Theory of Notch Stresses [32]. In this work, analytical
stress concentration solutions are presented for a large range of notches under different
loading conditions: deep and shallow notches, sharp and blunt ones, single and multiple,
inner and outer notches in plates and bars were considered under tensile, bending, shear
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and torsional loading conditions. At this, Neuber verified Inglis’ solution for the elliptic
hole.

Later, Neuber [33] proposes the relation between the elastic stress concentration factor,
Kt, and inelastic formfactors for stress and strain, Kσ and Kε, to be

K2
t = Kσ ·Kε (2.5)

(cf. Chapter 8). Herewith, Neuber already assumed that his original work [34] from 1961
on the notched body under transverse shear stress and large-scale yielding has extended
validity. Recent publications [35, 36] could prove this assumption of his to be true.

Diagrams, tables and exact expressions of the classical solutions of Kt as given by
Kirsch, Inglis and Neuber are continuously being completed. Peterson’s stress concentra-
tion factors of Pilkey [37] is one of the most extensive modern books for the practical use
of stress concentration factors.

2.3 Stress Concentration Factor and Fatigue

However, fatigue tests reveal that the sensitivity of notches to fatigue only approximately
follows the notch stress concentration factor. When Gough [38] in 1924 compared fatigue
test results with photoelastic measurements, he realised that the stress concentration factor
is not fully effective. In 1932 Thum [39] created the fatigue stress concentration factor, Kf,
from the relation between the fatigue limit, σA, of the unnotched, smooth specimen to the
nominal fatigue limit of the notched component, σnA. Here, ND which is the fatigue life
that corresponds to fatigue strength, was settled to 106 . . . 107 load cycles. As a statistically
averaged result of fatigue tests performed at zero mean stress (cf. Equation 3.2)

Kf =
σA(Kt = 1)

σnA(Kt > 1)
, (R = −1) . (2.6)

Material and loading conditions as well as the notch and specimen geometry influence
Kf [40, 41, 42, 43]. Further parameters that affect Kf are the mean stress level [44] and
the surface roughness [38].

Considerable work on the field of stress concentration and fatigue was published by
Peterson [45, 42] at Westinghouse from 1930 on. Frost and Dugdale [46] propose an implicit
assumption of the Kf -Kt relationships of Neuber and Peterson, suggesting the stress needed
to initiate a crack at the notch root would also be sufficient to propagate it to cause failure
of the component. This was stated to be valid in most cases of practical importance, where
the notches involved are not too severe, Kt being typically below 4.

The “Mikrostützwirkung” concept is one explanation for why Kf < Kt, i. e. why the
detrimental effect of a notch to fatigue life is less than it may be estimated from the size
of the stress concentration factor. The presence of a lower Kf value even in the uncracked
infinite life region is explained by plasticity effects. Mikrostützwirkung bases on the fact
that only the initial part in the life of a fatigue crack is characterised by the maximum
notch stress. The stress concentration decreases with increasing distance from the notch.
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Figure 2.2: Spherical cavity in an infinite
body in tension. Stress concentration and
stress gradient.

For a propagating crack the relative stress field gradient, χ, is of significant importance:

χ =
1

σmax

∂σy

∂x


x=x0

(2.7)

with x0 the co-ordinate point in the component where maximum stress is achieved (cf. Fig-
ure 2.2). According to Klesnil and Lukáš [47], the crack grows perpendicularly to the largest
mean stress (for mode I crack surface displacement, cf. Chapter 5) and in the direction of
the largest stress gradient.

In order to account for the stress gradient, Neuber averages the crack initiating stress
over a small volume at the location of the maximum notch stress. The characteristic
length, ρ∗, of this small volume is a material parameter. For steel, ρ∗ = 0.03–0.5 mm [33].
Other attempts to correlate Kt and Kf employ the stress gradient [48, 49] or a certain
material-dependent critical depth, a∗, below the surface, as introduced by Peterson [42].

The notch sensitivity factor, q, was introduced by Thum [39] in 1932:

q =
Kf − 1

Kt − 1
(2.8)

Thum was aware that Kf is not a characteristic material factor and by no means a char-
acteristic factor for the component. He called the factor a “crutch with which one can
limp from the unnotched specimen to the notched component” [8]. As a matter of fact,
fatigue testing of the actual component is still considered to be most reliable way to ensure
sufficient fatigue durability.

2.4 Approaches to Fatigue Design

Parallel to research on the notch stress concentration factor, several guiding principles were
developed to handle the (notch-) fatigue problem in engineering. Graf [50] observed in 1931
that the fatigue strength of riveted and welded joints in structural steels does not depend
on the static strength of the material. Similarly, the Gestaltfestigkeit tenet that Thum and
Bautz [51] established in 1935 emphasises the utmost importance of the component shape
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for a high fatigue strength. The effect of the material itself is ranged second, as is the
magnitude and type of loading.

Like the classical approaches of the cyclic stress (sn curves) and strain range, Gestalt-
festigkeit presupposes that components initially are uncracked. Thus, fatigue life comprises
the number of stress or strain cycles both to initiate a dominant crack (this may represent
up to 90 % of the total fatigue life) and to subsequently propagate this dominant flaw until
catastrophic failure occurs. These approaches are called total fatigue life approaches.

From 1939, Gaßner performed variable-amplitude fatigue tests and developed the doc-
trine of Betriebsfestigkeit [52], what may be translated with “operational fatigue strength”.
By dimensioning a component for finite but sufficient fatigue life under variable loads, an
“allowable” fatigue life is obtained. At this, the form of the service stress spectrum was
measured and extrapolated to the estimated complete in-service spectrum. Here, even the
effect of rare high stress cycles was included. Then, the service spectrum was simulated by
a variable-amplitude test. Throughout this approach, Gaßner strived for a generalisation
and standardisation of the test results in order to obtain generally valid information.

An increasing number of aircraft crashes in the 1950s lead to he safe-life approach. This
implied that once a component has reached its safe-life, it is scrapped – wether a fatigue
damage is present or not. The component’s replacement time was predicted from fatigue
tests and conservative safety factors. From the viewpoints of economy and performance,
such a conservative approach was obviously not desirable.

In the 1960s, safe-life was followed by fail safe which implied a design that to some
extent is defect-tolerant. The idea was that even if an individual member of a large structure
fails, sufficient structural integrity prevails. Safe operation is continued until the failure
is detected. This structural redundancy is natural to components that feature multiple
load paths. One further method of fail safe was to decelerate crack growth. This was
achieved with the help of crack arresters placed in the path of a crack that is likely to
occur. The fail-safe approach requires repeated and methodical inspections and adequate
crack detection techniques.

The damage tolerance method was introduced in the early 1970s and bases on fracture
mechanics techniques. Damage tolerance assumes that every engineering component is in-
herently flawed. The size of an initially present crack is detected or assumed (cf. Chapter 4).
Fatigue life is defined to be the number of cycles that are necessary to propagate this initial
crack to some critical dimension. The crack propagation life is then calculated by means
of empirical crack growth laws based on fracture mechanics.

Chapter 5 of this publication gives a short review on the history of fracture mechanics
and addresses the application of linear elastic fracture mechanics to fatigue crack growth
from notches. The phenomenon of crack closure, which was discovered in 1968, and its
effect on fatigue crack growth is addressed to in Section 8.2.



Chapter 3

Francis Runner

One of the critical parts of a hydraulic turbine is the turbine runner. The runner design
varies widely depending on the available pressure and flow. Francis turbines runners typ-
ically have between seven and thirteen fixed blades [53]. The construction may either be
entirely of cast steel or a welded construction where hot formed blades are welded to the
cast ring and crown. Figure 3.1 gives an schematical overview and the notation of a Francis
turbine runner.

3.1 Material
In most cases the runners are of stainless steels in 12–17 % Cr martensitic-austenitic or
martensitic-ferritic-austenitic grades [54]. While 13Cr-4Ni (DIN GX5CrNi 13-4, stand-
ard no. 1.4313) is favoured for cast runners, 16Cr-5Ni material is frequently used for
both blade plates (DIN X4CrNiMo 16-5-1, standard no. 1.4418) and ring/crown cast-
ings (DIN GX5CrNiMo 16-5, standard no. 1.4405) in welded constructions. The fact that
16Cr-5Ni material may be welded with moderate pre-heating to 50 ◦C to keep the mater-
ial well above the dew point eases manufacturing procedures [55, 6]. Moreover, this steel
shows a somewhat better cavitation resistance [6] and a slightly higher fatigue limit than
lower-alloyed stainless steels [54].

3.2 Manufacturing
The manufacturing process of a high-head Francis turbine runner may proceed as follows:

1. Casting of crown and band. Machining of the weldment areas.

2. Cutting of the blades from rolled steel plates, followed by hot forming, annealing and
five-axis profile milling and/or grinding.

3. Blade assembly using positioning templates. Joining of band and blades by double
fillet welds. Regular testing of the weld seams for pores and inclusions.

4. Machining of the weld seam to smooth transition geometries.

5. Joining of the crown by double fillet welds. Regular testing of the weld seam for
pores and inclusions.

13
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Figure 3.1: Francis turbine runner. Notation. Photography on the right © by Koessler
Ges.mbH. Printed with permission.

6. Machining of the weld seams to smooth transition geometries.

7. Annealing in order to relieve the component from residual stresses after welding.

8. Machining of diameters on vertical boring mills.

9. Surface finishing by grinding and polishing.

3.3 Loading

The operation of a hydroelectric power plant is associated with several transient phenom-
ena. Start-up and shut-down operation, modification of operating point, earth fault, out of
phase synchronisation during start-up and emergency stop induce unsteady loading condi-
tions [56]. In the case of the Francis turbine interactions between the turbine components
are quite common, especially between guide vanes, runner and draft tube [57, 58]. How-
ever, the steady and unsteady service loads a Francis turbine runner experiences shall be
defined as follows:

· The steady fluid pressure and the centrifugal force make up the steady service loading.

· High-frequency pressure fluctuations due to irregular fluid flow make up the unsteady
service loading.

In the following, the start-stop cycle will be referred to as the low-cycle fatigue (lcf) cycle,
the high-frequent load cycles from unsteady fluid flow will be referred to as the high-cycle
fatigue (hcf) cycles.

After a more general definition of [59], lcf appears at high stress amplitudes with
corresponding short fatigue lives up to some 104 cycles. If fatigue covers a large number
of cycles, about 105 cycles and more, it is called hcf. The difference between the two
conditions is that lcf is associated with macroplastic deformation in every cycle.
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A dynamic factor, D, may be introduced to correlate the stress range of the lcf and
hcf cycles in the form

∆σhcf = D ·∆σlcf . (3.1)

The stress ratio, R, is defined as the ratio between the minimum and the maximum stress,
σmin and σmax, respectively:

R =
σmin

σmax
. (3.2)

Further, the expressions stress amplitude, ∆σ, amplitude stress, σa, and the mean stress,
σm, shall be introduced and defined by the relations

∆σ = 2σa = σmax(1−R) , σmax = σm + σa . (3.3)

3.3.1 lcf Loading

During a complete start-stop cycle, the steady lcf loading goes from zero to a maximum
under service conditions and back to zero (cf. Figure 3.2). Most turbines will run for the
largest part of service life at the “design point” of highest efficiency, which for the Francis
turbine is at 85–95 % of rated power. For safe and gentle turbine operation is reasonable
that known regimes of detrimental resonance frequencies are avoided or passed through
quickly. System inertia of the Francis wicket gate typically lies between seven and ten
seconds. In order to avoid “water hammer” – detrimental pressure impulse from a sudden
change in fluid velocity – to occur, start-up and shut-down processes are deliberately
prolongated. Published up-loading rates of 50–200 MW per minute [60] yield start-up
times of several minutes for large stations. Nevertheless, in multiple turbine sites with
several turbines already in service, the start-up of one additional runner may take just 20
seconds [61].

Whereas hydropower stations for pure base-load duty may only see one start-stop
cycle per year, other stations in the function of pumped-storage hydropower stations and
equipped with reversible pump-turbines see up to ten start-stop cycles per day. In the
latter case, the turbine runner would experience more than 50 000 cycles in 20 years of
service.
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The steady fluid pressure on the runner depends on the water head and on the actual
position of the guide vanes. At full load the largest nominal bending stress, σb, on the
blades may be roughly estimated by the equation

σb = 2b2∆p t21 (3.4)

where b is the blade height, i. e. the distance between ring and crown at the trailing edge,
t1 is the blade thickness and ∆p the load range, i. e. the pressure on the blades due to the
water head. For Francis runner dimensions typical for moderate water heads, Equation 3.4
results in stress values of 300–400 MPa.

In this rough calculation uniform loading conditions are presumed and the blade is
modelled as a straight beam between a ring and crown of infinite stiffness [62]. Considering
this simplified geometry it is obvious that the in-service presence of water pressure on one
side of the blade and suction on the other side induces bending loading. The largest
bending stresses appear where the blade is fixed to the band or crown. At this T-joint
geometry, the level of stress and strain is further intensified due to notch effects.

With an outer diameter of up to seven metres and more, centrifugal forces in the Francis
runner may be significant already at low rotational speed. Strain gauge measurements on
a low-head (H = 31 m) Francis turbine with 50 MW in nominal output have shown that
the centrifugal load leads to strain values of same order of magnitude as the effect of the
(static) pressure load [63]. In this investigation the runner outlet diameter is close to
5 metres, the strain gauges are mounted in the suction and pressure side of two different
blades close to the trailing edge and the runner crown.

Further, residual stresses are considered to be present, even though weldments com-
pleted at the workshop are generally stress-relieved by annealing.

At the end of the blade where the T-joint merges with the trailing and the leading edge,
respectively, the stress gradient due to bending loading on the blade is small (cf. Figure 3.3).
Additional (lcf) loading from centrifugal forces on the ring stresses the transition beween
ring and blade. Thus, for the trailing edge transition, tensile loading is considered to be
the predominant loading condition.

3.3.2 hcf Loading

For high-pressure Francis turbine runners, high-cycle fatigue may occur due to transverse
blade vibration induced by hydraulic load fluctuations over a spectrum of frequencies. The
strength of these fluctuations is a function of the hydraulic pressure, the water velocity
and the geometry of the stationary apparatus guiding the water into the runner.
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The spiral casing distributes the water flow through the stay- and guide vanes onto the
runner equally from all sides. Wakes behind the stay vanes and guide vanes expand to
the runner and cause surface pressure pulsations [53]: every time a runner leading edge
passes one of the guide vanes, the water flow is getting interrupted what consequently leads
to fluctuations of forces and torque. Under one complete rotation of the turbine runner,
fluctuations in the water flow as many as there are guide vanes take place in each runner
canal. Typically, the number of guide vanes passages is in the range of 18–24.

The unsteady flow from blades passing the guide vanes is normally assumed to induce
the predominant hcf vibration stresses. It is however clear that there are also other
dynamic forces acting on the runner. For low and medium head Francis runners i. e.,
the draft tube surges – so-called “Rheingans oscillations” [64] – due to interaction between
hydraulic excitation sources (i. e., vortex rope precession) and eigenfrequencies are expected
to induce high frequent loading of considerable size [58].

3.4 Notch Stress Analysis

Notch stresses of two areas of the circular-shaped transition between the blade and the
band or crown of the Francis turbine runner are subject of investigation. Due to stress
concentration, these areas are the runner’s two locations of highest local stress amplitudes
and therewith the most critical locations for fatigue.

One location is the wide-stretched T-joint (2D) transition itself. This T-joint geometry
finally merges with the leading edge and the trailing edge, respectively, where it forms the
second location of stress concentration considered: the trailing edge (3D) transition.

3.4.1 T-joint

fe model

The welded joint between blade and band or crown (cf. Figure 3.1) can be idealised by a
simple T-joint subject to pure bending as shown in Figure 3.4. According to a proposal of
[62], the ratio between the blade thickness, t1 and the ring (or crown) thickness, t2, was
chosen to t1/t2 = 5/6. A finite element analysis (fea) of the T-joint under bending has
been carried out in ansys using eight-node, second order plane strain elements. Bending
loading in the nominal section of the runner blade is hereby introduced by a pressure
distribution on the surface elements at (Y ∗ = 115). Due to a (linear) stress gradient,
the loading condition is zero for (X∗ = −t1/2). Geometry, displacement constraints and
loading conditions of the T-joint fe analysis model are shown in Figure 3.5. Poisson’s ratio
ν = 0.3.

Transition Modeling

The (static) stress distribution of a Francis turbine runner is usually obtained through a
three-dimensional finite element analysis. As a rule, the finite element model is based on
the experience of the designer. To keep modelling and computing times within reasonable
limits, the designer may decide to use a relatively coarse mesh. This generally yields
acceptable results for overall static stresses and deformations as well as for the (lower)
natural frequencies of the runner. However, this coarse model neglects geometrical detail
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Figure 3.4: Simplified model of T-joint between turbine runner blade and band/crown.

such as the (circular) transition arc between blade and band or crown. Therefore, it
will generally underestimate the level of peak stress, which controls the expected fatigue
life. The designer can compensate for this deficiency by applying a stress concentration
factor to the maximum stress of the sharp-notched coarse-mesh analysis. Should he need
information about the detailed stress distribution below the point of maximum stress, a
finer model including the transition arc becomes necessary.

The influence of the finite element model on the local maximum stress of the T-joint
shall be demonstrated. Two sets of models will be used: one, where the (finite radius)
transition arc is explicitly modelled and one, where a sharp right-angle corner has replaced
the arc. In both sets of models, the mesh is varied from coarse to fine. Representative
meshes are shown in Figures 3.6 and 3.7. The stress distribution below the point of
maximum stress will also be calculated and used for the analysis of fatigue crack growth
in Chapter 9.

Circular Transition In the first set of models, the ratio between the transition arc radius
and the blade thickness is given by ρ/t1 = 0.375. The transition radius has been modelled
with mesh densities ranging from two to 38 elements along the quarter-circular transition
arc. This corresponds to hmin/t1 decreasing from 0.287 to 0.016, where hmin denotes the
minimum element side length along the surface of the model. The stress concentration
factor, Kt, of the T-joint is defined as the ratio between the maximum normal stress, σmax,
and the nominal stress, σn, taken as the maximum net section bending stress (= Mb/Wb),
i. e.,

Kt =
σmax

σn

. (3.5)

Figure 3.8 shows that the stress concentration factor obtained from the finite element
analysis converges towards a constant value Kt = 1.32 as the mesh is becoming successively
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Figure 3.6: Quarter-circular T-joint model
fe mesh for hmin/t1 = 0.059.

Figure 3.7: Sharp-transition T-joint model
fe mesh for hmin/t1 = 0.059.
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Figure 3.8: T-joint shoulder fillet transition. Influence of fe mesh density and transition
radius on stress concentration values.

finer. This value is obtained with sufficient accuracy with ten elements along the quarter-
circular transition arc (cf. Figure 3.6). Hereby, the minimum element side length along the
surface of the model, hmin, resulted to hmin/t1 ≈ 0.059.

Based on finite element analyses of T-joints for transition arcs covering a range of ρ/t1
ratios, Rainer [65] proposed an analytical expression for Kt. For ρ/t1 = 0.375, this expres-
sion reproduces Kt = 1.32, as expected. The “Rainer formula” is presented in Section A of
the Appendix and can also be found in “Dubbel” [66].

Sharp Transition In a second set of meshes, a sharp corner has replaced the finite radius
transition arc. This considerably simplified meshing is frequently used in fluid-dynamic fea
models and so even in structural analyses of Francis turbine runners. Using similar mesh
densities as for the smooth transition arc, the stress concentration factor obtained from the
finite element analysis is continuously increasing, as the mesh size is decreasing. Figure 3.8
shows that a nominally “correct” value of Kt is obtained for hmin/t1 ≈ 0.2. This result is
purely accidental, of course. Figure 3.8 also shows that as the mesh becomes coarser, the
stress concentration factor approaches Kt = 1 and Kt = 1.19 for the sharp corner and for
the smooth transition, respectively. In practice, a coarse mesh is likely to be used.

3.4.2 Trailing Edge

fe model

For fe stress calculations of the 3D transition, 20-node second order solid elements were
used. In the vicinity of the transition, the minimum element side lenght hmin/t1 ≈ 0.06
along the surface of the model gives converging results, yielding Kt = 1.678.
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Symmetric displacement constraints to the fe eighth-model have been introduced at
the complete model’s two symmetry planes that point in X and Z direction, respectively.
Y -displacement of nodes attached to the model’s bottom plane, (Y = −40), was set to
zero and a uniform (negative) pressure loads plane (Y = 92). These boundary conditions
differ from the setup in fatigue testing where the test force charges the bottom (clamping)
plane, (Y = −40), and (Y = 50) is a symmetry plane (cf. Figure 7.11). However, the effect
of the changed boundary conditions to the scf should be marginal since the Y -dimension
of the bottom (clamping) part of the specimen is large. In fea the maximum difference in
Y -displacement of nodes attached to the plane (Y = 92) is 0.55 percent.

Geometry, displacement constraints and loading conditions of the analysis model are
shown in Figure 3.9. Poisson’s ratio ν = 0.3. fe mesh and stress plot of the largest
principal stress, σ1, are given in Figure 6.12.

The 3D transition fe model described is limited as it represents the dimensions of the
test specimens that will be presented in Chapter 7. In fact, the model dimensions around
the transition have a major impact to the resulting stress concentration. This discussion
is continued in the following.

Transition Radii and Stress Concentration

The two radii defining the circular transition of the standard 3D specimen were modified
systematically in a series of fe stress calculations. The resulting graph of Figure 3.10
reveals the transition radius, R, to be by far the more decisive parameter regarding stress
concentration, compared to the influence of blade edge radius, r. Stress concentration
values in the present calculation are somewhat higher compared to the results presented
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above. The difference lies in the fe model blade dimensions which in the present cal-
culation are larger and thus more representative for the real blade. Blade dimensions in
the calculations presented above (cf. Figure 3.9) are representative for the test specimen
geometry presented in Chapter 7.

It can be shown that the fe model dimensions around the transition are of eminent
influence to the stress concentration. Even for the amply dimensioned blade in this present
fea series, values of stress concentration still rise for larger blade dimensions.

In a further fea series performed for R = 10 mm and r = 5 mm, the influence of
varying combinations of length and width of the blade, l1 and b, to stress concentration
is investigated. It shall be emphasised that set-up conditions like mesh size, transition
geometry, loading and all other geometrical dimensions are left unchanged throughout
the investigation. For blade heights l1 = 100, 250 and 500, stress concentration values
approach asymptotical values for b/h1 > 3 . . . 3.5. Up to this point, stress concentration
rises for increasing sizes of the blade area, b× l1 (cf. Figure 3.11).
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Figure 3.10: Influence of trailing edge transition radii on fe stress analysis.
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Chapter 4

Fatigue Design Methodology

In Francis turbine runners, fatigue cracks tend to occur either very early in life or after
decades of operation. The failure mechanism is considered to be a combination of low-
cycle (lcf) and high-cycle (hcf) fatigue (cf. Figure 3.2). Provided that loads are high
enough, the start-stop (lcf) cycles may propagate fatigue cracks (cf. Section 9.1.1) from
manufacturing defects or even initiate fatigue cracks at areas of stress concentration.

With rotational runner speeds up to a several hundred revolutions per minute, the
number of vibrational or high cycle fatigue cycles due to wakes behind the stay- and guide
vanes (cf. Section 3.3.2) amounts to several millions per day. Therefore, once a crack has
reached the for fatigue crack growth (fcg) critical size with respect to hcf loading, it may
grow and cause catastrophic failure in a very short time compared to the design life of the
turbine runner.

4.1 Stress-Life Approach

4.1.1 sn Curves

The stress-life (sn) approach to fatigue life assessment considers initially uncracked speci-
mens or components. sn curves or “Wöhler curves” (cf. Chapter 2) represent the fatigue
life results of a number of fatigue tests at different stress levels. The curves are sensitive to
the specimen material, size and surface roughness, type and frequency of loading, R-ratio,
as well as temperature and chemical properties of the environment.

An example of such curves is given in Figure 4.1 which displays the results from [54]
for a typical Francis runner material. The specimens were taken from either the core
or near the surface of a 500 mm thickness 17 % Cr-4 % Ni martensitic-austenitic-ferritic
stainless cast steel member that shows an ultimate tensile strength, Rm = 910 MPa and the
yield limit of 0.2 % plastic strain, Rp0.2 = 661 MPa. The test specimens (cf. Figure 4.2)
show a semi-circular surface notch placed centrically across the thinnest edge. Fatigue
testing was performed at a frequency of 20–25 Hz at stress ratio R = 0 in sweet water
environment. The test rig arrangement provided cyclic mode I crack surface displacement
loading (cf. Chapter 5) of the notch root. Here, the nominal stress field is composed of
bending and 4 % membrane stress. A stress concentration factor at the circular notch of
Kt = 1.36 was measured by means of strain gauges.

25
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Figure 4.1: Fatigue load regimes in sn curves of 17Cr-4Ni cast material for R = 0, f = 20–
25 Hz, bending loading of notched specimens with Kt = 1.36, cast member thickness 500 mm.
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Figure 4.2: Notched test specimen of [54] for a combination of tensile and bending fatigue
loading. Kt = 1.36. Geometry and loading.
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Figure 4.1 demonstrates that the near-surface specimens have a higher fatigue strength
than specimens cut out of the cast member core. Specimens that were cut (centrically)
out of 150 mm thickness cast members show fatigue test results that are almost identical
to the near-surface specimen results of the 500 mm thickness series. This effect can be
explained by an increasing number and size of cast defects with increasing distance from
the cast member surface. The sn curves displayed base on averaged test results (eleven
and eight tests for core and peripheral zone, respectively) for N = 106, 107 and 108 and on
the ultimate material strength [59].

Both sn curves of Figure 4.1 lack the characteristic fatigue limit, σm ± σA, as it is
frequently reported from fatigue testing of stainless steel in dry air at N ≈ 106 cycles [54].
Moreover, a further decrease of the endurance limit for increasing N due to the given
corrosive environmental conditions has to be assumed. At least for the investigated range
up to N = 108 a fatigue limit is not visible.

Generally, for static or lcf loading the detrimental effect of sweet water to stress
corrosion cracking in stainless steel is of little importance. Based on comparative fatigue
tests with un-notched round specimens performed both in air and sweet water, [54] reports
this detrimental effect to be ≤ 10 %. The situation changes totally for hcf loading as here
the fatigue limit of virtually any material may be affected by any corrosive medium.

From Section 3.3 we recall that lcf appears at high stress amplitudes with corres-
pondingly short fatigue lives up to some 104 cycles, whereas hcf covers a large number
of cycles, about 105 cycles and more. The boundary between lcf and hcf is not exactly
defined by a certain number of cycles. The difference is rather that lcf is associated with
macroplastic deformation in every cycle, in contrast to hcf which is more related to elastic
behaviour on a macro scale of the material [59].

It is a clear disadvantage of the sn approach that true stress-strain behaviour is ignored
and all the strains are treated as elastic. Consequently, the sn approach should not be
used to estimate fatigue lives below 1000 cycles where the applied strains have a significant
plastic component due to high load levels [59]. For rather moderate amounts of plasticity,
local strains and stresses may be obtained by means of the Neuber correction for local
plasticity according to Equation (2.5), as demonstrated later in Chapter 8.

4.1.2 Fatigue Life Approach

Since all the parameters of the fatigue tests described in this section are representative
for the T-joint transition of Chapter 3, the sn curves from [54] presented in the previous
section are now applied to a fatigue life approach of the Francis runner:

lcf regime: For σmax = 400 MPa and R = 0, the lcf stress amplitude, σa,lcf, yields
200 MPa. The corresponding lcf life for thin plates according to Figure 4.1 is 5 ·104

cycles.

hcf regime: For the configuration of 24 guide vanes, five runner rotations per second and
an average service time of 6000 hours per year, the number of hcf cycles sums 2.6·1010

in ten years of service. With a representative value of the dynamic factor (3.1),
D = 0.1 assumed to be constant, σa,hcf = 20 MPa. Thus, even in a low-corrosive
medium like sweet water a crackless runner will hardly suffer failure from hcf fatigue
only.
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In the initially uncracked specimen under cyclic loading, fatigue crack initiation consumes
up to 90 % of fatigue life. If fracture-mechanically long cracks are present, the transition
from sn curves approach to fatigue crack growth (FCG) simulation by means of lefm is
indicated. FCG simulation investigates the remaining fatigue life as a number of cycles
that is necessary to propagate the crack to some critical dimension.

The following section introduces a fracture mechanical damage tolerance criterion which
is subsequently applied in fatigue crack growth simulation.

4.2 Damage Tolerance Criterion
The critical area of stress concentration of the Francis runner consists of welded material.
It has therefore to be assumed that crack propagation from single undetected flaws and
inclusions takes place as soon as the runner is taken into service.

Fatigue life of a component is now calculated as crack propagation life by means of
lefm and an empirical crack growth law. First, the simplified case of a semi-circular
surface crack growing by fatigue in a semi-infinite body under homogeneous stress shall be
considered. Later, in Chapter 9, finite element stress analysis will be used to predict fatigue
crack growth in the critical area of a Francis turbine runner. The growth of a semi-elliptic
fatigue crack in the stress field of the T-joint (cf. Section 3.4.1) will then be analysed and
results will be compared with those of the simplified calculation of this present section.

The definition of failure described at the beginning of this chapter shall now be re-
formulated in a fracture-mechanical way: If a crack is propagated by lcf load cycles, the
crack size becomes critical when the stress intensity range, ∆K, associated with vibration
stresses due to unsteady flow, ∆σhcf, exceeds the threshold value ∆Kth. The stress intensity
factor, K, quantifies the crack tip stress field and is treated extensively in Chapter 5. The
critical crack size for hcf crack growth, ac, is given by

∆Khcf = G ·∆σhcf
√

ac = ∆Kth (Rhcf) . (4.1)

For a semi-circular surface crack [67], the geometry factor at the bottom of the crack is
G = 1.17. In order to simplify the analysis, the variation of the geometry factor along the
crack front has been neglected. The threshold stress intensity range, ∆Kth, is a function
of the stress ratio of the hcf cycle,

Rhcf =
∆σlcf −∆σhcf

∆σlcf
= 1−D . (4.2)

Granted that the crack growth during the lcf cycle obeys Paris’ law, Equation (9.2),
integration between the initial crack size, ai, and the critical crack size, ac, yields, after
some rearrangement,

ai = ac/

[
1 +

(m

2
− 1
)
·Nlcf ·

rc

ac

]1/(m
2
−1)

. (4.3)

Nlcf denotes the number of lcf cycles available for the crack to reach its critical size, rc

the lcf crack growth rate for a = ac, i. e.,

rc =
da

dN

∣∣∣∣∣
a=ac

= C[G∆σlcf
√

ac]
m

= rth/D
m , (4.4)
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where

rth ≡ C [∆Kth(Rhcf]
m . (4.5)

Thus, for a given lcf and hcf loading, ai signifies the allowable initial crack size which
just grows to become critical within the number of lcf cycles available.

A conservative upper limit of fatigue crack growth data for martensitic-ferritic (16Cr-
5Ni) and austenitic (18Cr-8Ni) stainless turbine runner steels [68, 69] for stress ratios
between R = 0.05 and 0.7 is given by

da

dN
= 10−11∆K3 (4.6)

with da/dN expressed in m/cycle and ∆K in MPa
√

m. From the same investigation, the
lower bound threshold stress intensity range as a function of the stress ratio [70], R (3.2),
was estimated to be

∆Kth = 6− 4R MPa
√

m . (4.7)

4.3 Simplified Fatigue Crack Growth
Using the data of the previous section, the growth of a semi-circular fatigue crack in a
large, homogeneously loaded body was analysed. For design lives of N = 0, 10 000 and
50 000 cycles, Figure 4.3 shows the allowable initial crack depth as a function of the lcf
stress range. The critical crack size, which corresponds to N = 0, has been based on the
“full load” loading condition where the dynamic factor, D, of Equation (3.1) is assumed to
be D = 0.1 and constant. The definitions of stress ranges for lcf and hcf loading, ∆σlcf

and ∆σhcf, are such that the respective maximum stress values are identical, as visualised
in Figure 3.2.

This simplified design calculation yields a conservative estimate of the allowable crack
size if the lcf and hcf stress ranges are set equal to those at the most highly loaded point
of the turbine runner. The estimate is expected to be in fair agreement with a more precise
analysis as long as stress gradients are small, i. e. for thick sections and generous (notch or
transition) radii.

In an attempt to compare the two approaches to fatigue life presented in this chapter,
the sn curve lcf life of 50000 cycles (cf. Section 4.1) results in a corresponding initial crack
or defect size of 0.12 mm, if the stress concentration of Kt = 1.36 is taken into account.
It has to be regarded that in the sn approach lcf-hcf interaction is not considered. As
discussed above, this interaction shortens the runners fatigue life. This means that the size
of a corresponding initial defect in the cast material becomes larger and therewith much
the same the typical size of pores in cast steel material.
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Figure 4.3: Francis turbine runner. Allowable initial crack depth.



Chapter 5

Stress Intensity Factors

5.1 Basics and History

The 1913 publication of Inglis [29] was a pioneering work in fracture mechanics. Inglis
extended the work of Kirsch [28] (cf. Section 2.2) and used complex potential functions to
describe the stress field in a plate in the vicinity of an elliptical hole. As Inglis’ solution
allows crack-like geometries to be treated by making the minor axis of the ellipse (and so
the notch root radius, ρ, cf. Figure 2.1) small, the work implies a description of the stress
field ahead of the crack tip.

Griffith [71] bases his energy concept idea on Inglis’ work in 1920. He formulated the
concept that a crack in an ideally brittle component will propagate if the total energy of
the system is lowered with crack propagation. In 1957, Irwin [72, 73] extended the theory
of Griffith to ductile materials by including the energy dissipated by local plastic flow and
introduced the concept of the stress intensity factor (sif), K,

K = Fσ∞
√

πa = Gσ∞
√

a (5.1)

as an expression for static loading of a cracked body. Here, σ∞ is the nominal stress in the
gross section, a denotes the crack length. F and G are dimensionless geometry factors and
are influenced by both the crack shape and the specimen geometry around the crack. If K
exceeds the material-dependent fracture toughness, Kc, unstable crack growth and instant
fracture occurs.

The development of what was meant to be a scale factor to define the magnitude of
the crack tip stress field turned out to be the foundation stone of linear elastic fracture
mechanics (lefm).

5.1.1 Different Types of Crack Surface Displacement

Fracture mechanics distinguishes between three basic modes of crack surface displacement:
opening, sliding and tearing mode (cf. Figure 5.1), denoted by indices I, II and III, re-
spectively. Any other deformation is a superposition of these basic modes. Since mode I
applies for the most cases of practical interest, the subscript on K is often dropped, and
K without such a subscript is understood to represent KI.

31
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Figure 5.1: The three basic modes of crack surface displacement. (a) Tensile opening
(mode I). (b) In-plane sliding (mode II). (c) Antiplane shear (mode III).

5.1.2 sif Definition

Stress Field

As mentioned above, a crack can be considered to be an elliptical hole of zero height.
An exact solution of the crack tip stress field is available for a crack in an infinite plate.
However, the concept of the sif has extended validity and encloses components of finite
dimensions [72]. If the attention is restricted to the area around the crack tip, i. e. r � a
(cf. Figure 5.2), the crack tip stress field can be described with polar co-ordinates as follows:


σx

σy

τxy

 =
KI√
2πr

cos
θ

2


1− sin θ

2
sin 3θ

2

1 + sin θ
2

sin 3θ
2

sin θ
2

cos 3θ
2

 (5.2)

The stress distribution at the crack tip shows a stress singularity as all stress components
go to infinity for r → 0, for all values of θ.

In fatigue crack growth calculations presented in Chapter 9 the crack tip stress field
singularity is of special interest. A more detailed discussion of the stress singularity problem
is therefore included in Sections 5.2.1 and 5.2.2.

Considering Equation (5.1), the R relationship (3.2) between minimum and maximum
stress, σmin and σmax, is consistent with the ratio between the extreme values of the stress
intensity factor, K:

R =
σmin

σmax
=

Kmin

Kmax
. (5.3)

Displacements and Crack Opening

A cracked plate under tensile loading as presented in Figure 5.2 will show a crack that is
open. The crack edge displacements in y direction, uy, are of special interest since they
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Figure 5.2: Mode I crack in an infinite plate for r � a. Stress field and displacement
co-ordinates.

usually represent the largest deformations of the crack and indicate the crack opening [59].
At the centre of the crack, the crack opening displacement (cod) for plane stress conditions
is

cod = 2uy = 4
σn

E
a = 4aεn (5.4)

where σn/E = εn denotes the nominal strain in the plate.
Considering Equation (5.2), the displacements ux and uy in x and y-direction, respec-

tively, become{
ux

uy

}
=

KI

2E

√
r

2π

{
(1 + ν)

[
(2κ− 1) cos θ

2
− cos 3θ

2

]
(1 + ν)

[
(2κ + 1) sin θ

2
− sin 3θ

2

] } (5.5)

where, for plane stress,

κ =
3− ν

1 + ν
(5.6)

and, for plane strain,

κ = 3− 4ν . (5.7)

Unlike the character of the stress field, the displacement behaviour is characterised by
r+0.5, what means the displacements ui go to zero for r → 0. According to Equation (5.5)
the displacements increase for increasing values of r, but is has to be recalled that r � a.

For θ = π, the displacement in y-direction at the crack tip is obtained. With ν = 0.3,
Equation (5.5) gives
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uy =
4K

E

√
r

2π
(plane stress) (5.8)

uy =
4K (1− ν2)

E

√
r

2π
(plane strain). (5.9)

5.2 sif Retrieval
A large number of methods has been developed for the determination of stress intensity
factors [74]: the method of complex stress function by Muskhelishvili [75], the method of
conformal mapping by Bowie [76], extrapolation of stress concentration factors of notched
components (e. g., of [31]) to vanishing notch radius, the boundary collocation method
by Gross et al. [77], the J-integral by Rice [78], the boundary element method (bem) by
Cruse [79], the integral transformation method by Sneddon and Löwengrub [80], the weight
function method by Bueckner [81] and Rice [82], the method of asymptotic interpolation
by Benthem and Koiter [83], the finite element method (fem) by Wilson [84], and the
element-free Galerkin method by Belytschko et al. [85].

In order to perform most accurate crack growth simulation that takes into account an
arbitrary stress field, computational methods seem to become more and more inevitable.
A large number of stress intensity factor solutions for semi-elliptical surface cracks under
mode I loading, mostly obtained numerically, are published in the frequently updated Stress
Intensity Factors Handbook [86] edited by Y. Murakami.

5.2.1 Crack Tip Stress Singularity

For mode I crack opening displacement it was shown in Section 5.1.2 that the near crack
tip stress field can be expressed by

σ =
KI√

r
G(θ), r → 0 (5.10)

with the origin of r on the crack tip and the angle θ according to Figure 5.3. This inverse
square root stress singularity at the interior border of a sharp crack is an elementary
phenomenon in the theory of linear elastic fracture mechanics. For the idealised case of
the completely embedded crack in an infinite body, Equation (5.10) remains valid at every
point of the crack border. In Section 5.2.2 one common way is explained how this 1/

√
r

singularity may be modelled in finite and boundary element calculations.
Singularities that are different from 1/

√
r arise where the crack border meets a free

surface, as shown for point C in Figure 5.3. In this case, the near stress field may be
written as

σ =
K̃I

rλ
G1(λ, θ, δ), r → 0 . (5.11)

An absence of the 1/
√

r character at the free surface is described in several publications [87,
88, 89]. For the case of the crack front meeting a free surface perpendicularly, i. e. β = 90 ◦,
Benthem [90] computed λ in the surface layer as a function of Poisson’s ratio ν to values
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Figure 5.3: Notation of quarter-infinite crack y = 0,
xC > 0 and z < 0 in the half space xC > 0.

Table 5.1: Computed λ values
in Equation (5.11) [90]

ν λ

0.0 0.5
0.15 0.4836
0.3 0.4523
0.4 0.4132
0.5 0.3318

shown in Table 5.1. Here, λ is less than 0.5 except when ν = 0, the theoretical case of
a material that is completely incompressible. Thus, for engineering materials the stress
intensity factor concept does not hold at the corner or intersection of three free surfaces [91],
the classical stress intensity factor vanishes and tends to zero [92].

For steel with ν = 0.3 the dominant near-corner singularity r−0.4523 does in practical
terms not represent a dramatic deviation from the idealised 1/

√
r-singularity. Pook [93]

even comes to the conclusion that

“Corner point singularities do not normally have to be taken into account in
the consideration of mode I fatigue crack growth, but may affect the numerical
derivation of stress intensity factors for three-dimensional configurations”.

For mixed mode loadings, he suggests the use of a symmetrical part-elliptical crack shape
that realises the critical intersection angles, which for ν < 0.5 are different from β = 90 ◦,
cf. Figure 5.3. For mode I loading and ν = 0.3, the critical angle is β = 100.4 ◦ [88].

However, for the practical application of stress intensity factors it should be considered
that the zone of non-reliable results is confined to a small region near the intersection
point, C, between the crack front and an external free surface [92, 94]. The size of this
small region is considered to be a function of geometry, Young’s modulus and the type of
loading [95].

Yngvesson and Nilsson [96] account for the free surface by employing constant KI-values
within a distance of approximate 10 % of the crack length from a free surface.

5.2.2 Quarterpoint Finite Elements

To account for the 1/
√

r singularity of the crack tip stress field away from the free outer
surface of Section 5.2.1, in both finite and boundary element modeling of discrete cracks the
application of quarter-point elements at the crack tip has become a standard procedure.
The quarter-point element was developed simultaneously by Henshell and Shaw [97] in
1975 and by Barsoum [98] in 1976. It has significantly improved the accuracy of stress
intensity factor calculations, albeit the prediction of stress intensity factors for sliding and
twisting mode, KII and KIII, is not nearly as accurate as for mode I.
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Figure 5.4: Triangle finite element. (a) Common second order element. (b) Natural quarter-
point element.

A quarter-point element is created by moving the mid-side node of a standard quadratic
or isoparametric finite element to the position one quarter of the way from the crack tip to
the far end of the element. By this, a singularity is introduced into the mapping between
the element’s parametric co-ordinate space and cartesian space.

In Figure 5.4(b) the natural triangle quarter-point element is shown, with node no. 1
situated on the crack tip. The shape of this element is similar to the shape of the collapsed
quadrilateral quarter-point element, which places each of the three nodes of the collapsed
edge on the crack tip position, “1”.

5.2.3 Superposition Principle

For an arbitrarily cracked body, each loading condition has its own characteristic stress
intensity solution. Any loading condition may be composed of single load components
that act simultaneously on the body. In this case, the resulting overall stress intensity can
be obtained as the sum of the contributions to K from the individual load components.
According to this principle of superposition, the two load cases of

1. an arbitrary crack-opening loading on the nominal body section and

2. the same geometry showing stresses of the same magnitude that act solely on the
crack faces

result in the same stress intensity. This shall be visualised in Figure 5.5 for the case of a
central crack in a plate under uniform tension:

The stress intensity factor of the uncracked plate under tension in (a) is zero
since no crack is present. Now in (b) the crack is present but its crack faces
are loaded by internal stresses of the same magnitude as the nominal stress,
S0, with signs opposite. As this keeps the crack just closed, a singular stress
distribution at the crack tip is not present and the fracture mechanical state of
(b) is identical to the one of the uncracked plate in (a). Thus, for (b) K = 0.

Due to the principle of superposition, the two load cases the (b) loading
condition is composed of may be separated from each other as shown in (c) and
(d) for the nominal and the internal load case, respectively. The crack in (c) is
now open and shows a stress intensity of value greater than zero. The addition
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Figure 5.5: The superposition principle.
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of the stress intensity factor of cases (c) and (d) results in the solution of (b)
which is K = 0. Thus, load cases (c) and (d) show identical absolute values
of stress intensity. It should be mentioned here that the resulting negative
stress intensity factor in (d) is of notional character. Once a crack is closed and
K = 0, any further closure with K < 0 is imaginary.

Inverting the internal stresses on the crack faces of (d), the two load cases
are arranged on either side (e) and (f) of the equation.

5.3 Solutions for Fatigue Crack Growth Calculation

Solutions for the stress intensity factor are available for many different crack geometries
(cf. Tada et al. [99]), but are often restricted to a few simple stress fields. More complex
stress fields are encountered in many engineering structures due to residual stress fields,
thermal or contact stresses and at notches.

Notches, as a collective term for holes, shoulders, weld seams, clearance grooves and
other geometrical discontinuities, are generally areas of stress concentration. As already
mentioned in Chapter 2, fatigue cracks tend to form at stress concentrations due to the
here elevated stresses. Along with the stress concentration comes a gradient stress field.
In most engineering cases, the stress gradient, χ, of Equation (2.7) is not constant. The
largest stress gradient as well as the largest change of the stress gradient is typically found
at the notch root.

Stress conditions at the crack front of a propagating crack are influenced by the stress
gradient of the nominal stress field. Hence, for accurate calculation of fatigue crack
propagation from notches it is required to readjust stress and geometry conditions more
often for larger stress gradients, preferably after every single crack propagating load cycle.
The determination of both the stress field around the crack and the geometry factor, F , is
the main challenge in the fracture mechanical approach to fatigue in notched areas.

Standard stress intensity factor solutions mostly address bodies under tensile loading
that contain trivial crack shapes, e. g. the through crack or the circular embedded crack.
When applied to crack growth calculation, these standard solutions imply the assumption
of a crack shape of the propagating crack that remains unchanged.

Other recommendations assume surface flaws with a constant aspect ratio [100] or
drive the crack into a semi-circular shape which then is maintained during subsequent
propagation, as it is recommended in the 1991 British Standard PD 6493. This standard
was replaced in 1999 by BS 7910 [101] which favours linear substitutes of the real stress
distributions. Here, any linearised distribution of stress is considered to be acceptable
“provided that it is greater than or equal to the magnitude of the real distribution over the
flaw surface”.

The assumption that a growing surface crack under mode I loading conditions forms
and keeps the shape of a (plane) semi-ellipse or grows as an elliptical-arc surface flaw has
proved to yield reliable results for different geometrical bodies and is frequently made in
the literature. Several studies have been carried out on such surface cracks in plates [102,
103, 104, 105], round bars [104, 106, 107, 108, 109, 110, 111, 112, 113], pipes [114, 115, 116,
117, 118, 119, 120], and shells [121, 122] to evaluate the mode I sif, KI, and the fatigue
crack growth under different loading conditions.

In crack growth calculation even numerical methods are highly time-consuming since a
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high frequency in the application of the computational analysis is needed. Solutions that
are available in terms of a set of empirical equations or in tabular form offer significant
savings of time and resources, provided that such a tool exists for the relevant geometries
and loading conditions. A suitable empirical solution covers the entire range of crack
sizes and aspect ratios that the crack is likely to show under crack growth calculation.
Furthermore, an analytical way to define the stress field with sufficient accuracy should be
provided.

The confinement to semi-elliptical crack shapes significantly reduces the computational
efforts for two reasons: first, the number of possible crack shapes to be considered in a set
of equations is minimised. Secondly, the number of points on the crack shape for which the
sif and the propagation increment has to be calculated is reduced. With a given centre,
the ellipse is completely defined by two points on the crack front.

5.3.1 Internal Pore

First, an introduction to the problem of sif retrieval for fcg calculation purposes shall
be given by applying a standard sif solution to an engineering problem, considering a
crack that grows from a material defect. Fatigue cracks often form at inclusions by one
of three mechanisms: inclusion cracking, debonding of the interface between the inclusion
and the matrix, or cracking at lines of slip in the surrounding matrix. Assuming Poisson’s
ratio ν = 0.3, the stress concentration factor for an internal spherical pore with radius ρ
(cf. Figure 2.2) is 2.05 [31]. For a small crack around the pore, Equation (5.1) for the stress
intensity factor forms

K = 1.12 · 2.05 · σ
√

aπ (5.12)

as long as a � ρ, and so the mechanical behaviour of the crack is the one for a plane
surface crack in an infinite body. As a increases, K gradually becomes the solution of an
embedded circular (penny-shaped) crack:

K =
2

π
· σ
√

(a + ρ) π (5.13)

Thus, for long cracks the pore radius acts as a part of the crack depth.

5.3.2 Newman and Raju

One of the most well-known stress intensity factor solutions for a surface crack in infinite
and finite plates under membrane stress or bending has been presented by Newman and
Raju [67, 123, 102, 114, 124]. The equations from [102] were derived from fea for the
finite plate under a combination of tensile and bending loading containing a semi-elliptical
surface crack. Here, both the thickness and the width of the plate are finite. It is claimed
that the ratios of crack length to plate thickness, a/t, and the ratios of crack depth to
crack length, a/c, range from 0 to 1.0 in this solution. The set of equations is presented in
Section B.1 of the Appendix.

5.3.3 Pommier, Sakae and Murakami

Using the body force method [125], Pommier et al. [113] have derived numerical solutions
for the stress intensity factor of a short semi-elliptic mode I surface crack in the z-x plane
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of a semi-infinite plate (cf. Figure 5.6). The “undisturbed” normal stress in the y-direction
is assumed to vary as

σy(x, z) =
3∑

i=0

3∑
k=0

σik(x/a)i(z/c)k (5.14)

for all y, where the double sum is taken over all ten pairs (i, k) satisfying i + k ≤ 3. As
shown in Figure 5.6, a and c are the lengths of the semi-axes of the crack along the x- and
z-axes, respectively. The axis ratio is limited to the interval 0.5 ≤ a/c ≤ 2.

By fitting the correction factors Gik(φ; a/c) to the numerical solutions, Pommier et al.
managed to estimate the stress intensity factor along the front of the semi-elliptic crack
(0 ≤ φ ≤ π) within 2 % of the numerical results by the equation

K(φ; a/c) =
3∑

i=0

3∑
k=0

σik ·Gik(φ; a/c)
√

a . (5.15)

The “engineering” [113] set of equations for the geometry factors are given in Section B.2
of the Appendix.

The advantage of this solution is that it allows the modelling of the (uncracked) stress
field by a 3rd order polynomial equation. This should be sufficient for most applications
in engineering. In difference to the Newman-Raju formulae, this solution is confined to
component dimensions much larger than the crack.

5.3.4 Carpinteri, Brighenti, Huth and Vantadori

This solution has been created during the author’s visit at the Department of Civil Engin-
eering, Environment and Architecture of the University of Parma, and has been published
in the International Journal of Fatigue [126]. The work presents tabular values of the
stress intensity factor of a finite-thickness plate containing a semi-elliptical surface crack.
Thickness ratios of 0.1 ≤ a/t ≤ 0.7 and axis ratios of 0.1 ≤ a/c ≤ 1.2 are covered, where t
denotes the plate thickness.

Finite element analysis with 20-node isoparametric solid elements was employed. The
stress singularity was obtained by quarter-point wedge elements arranged in rings around
the crack front. Nodal displacement results were employed to obtain the stress intensity



5.3. SOLUTIONS FOR FATIGUE CRACK GROWTH CALCULATION 41

c
z

x

y

a
t

A
B

C
z

wN J L

CO
Figure 5.7: Finite plate with semi-elliptical
surface crack: geometrical parameters.

factor. Employing Equation (5.9) for plane strain conditions, K was calculated according
to

KI =
E
√

2π

4 (1− ν2)

uy[l/4]√
l/4

(5.16)

where uy[l/4] denotes the displacement orthogonal to the crack faces, i. e. along the y-
direction (cf. Figures 5.1 and 5.6), measured at the quarter-point position, i. e. with a
distance equal to l/4 from the crack front (cf. Figure 5.4).

As shown in Section 5.2.3, the stress intensity factor for a cracked body subjected to
stresses (external or self-equilibrating) can be computed as the stress intensity factor due
to stresses acting solely on the defect faces, with the same magnitudes but signs opposite
to those of the corresponding stresses in the uncracked body.

In order to obtain the stress intensity factors for arbitrary loading conditions, six dif-
ferent elementary mode I stress distributions on the crack faces are considered: constant,
linear, quadratic, cubic, quartic and quintic stress distribution, σI(n), with n = (0, . . . , 5).
Note that the subscript I stands for mode I, whereas n indicates the order of the polyno-
mial which describes the n-th elementary stress field. Each stress distribution n > 0 is
characterised by a zero value at the deepest point A of the surface crack and a unit value
in correspondence to the outer surface of the plate (along the segment COC in Figure 5.7).

For each of these elementary loading conditions the values of K were obtained at five
points A, L, J, N and B along the crack front. The elementary loadings can then be
combined according to a power series expansion of the actual arbitrary (e. g. T-joint)
stress field at the expected crack location. So, by applying the superposition principle
of Section 5.2.3, an approximate sif solution is generated (cf. Section 5.4).

As shown in Figure 5.7 the deepest point A is at ζ/c = 1, with the co-ordinate ζ
starting at the the crack front surface points, C. Points L, J, N and B are positioned at
ζ/c = 0.75, 0.5, 0.25 and 0.10, respectively. As symmetrical conditions of geometry and
loading are assumed, only one half of the semi-ellipse is regarded.

Due to singularity conditons (cf. Section 5.2.1) that exist for the surface point, C,
calculations have been omitted here. One way to cope with the missing surface point
value under the crack growth calculation of a semi-ellptical surface crack is presented in
Chapter 9.

The elementary stress distributions σI(n) can be expressed as

σI(n) = (w/a)n = ηn n = (0, . . . , 5) (5.17)
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where η = w/a is a dimensionless co-ordinate and w has its origin at the deepest point,
A, on the crack front (cf. Figure 5.7). For the n-th elementary stress distribution, the
dimensionless mode I stress intensity factor is defined as

K∗
I(n) = KI(n)/

(
σref(n)

√
πa
)

(5.18)

where σref(n) represents the reference stress, which is assumed to be equal to unity; the stress
intensity factor KI(n), related to the n-th load case, is obtained from the displacement field
determined through a three-dimensional finite element analysis, by using quarter-point
singular elements (cf. Section 5.2.2) to model the crack front.

An arbitrary stress distribution, σI(L)(w) (where the subscript (L) indicates the arbit-
rary loading condition), acts on the crack faces and can be approximated through a power
series expansion as follows:

σI(L)
∼=

5∑
n=0

1

n!

[
∂(n)

∂w(n)

(
σI(L)

)]
wn =

5∑
n=0

An(L) wn (5.19)

By recalling the expression η = w/a, Equation (5.19) becomes

σI(L)
∼=

5∑
n=0

An(L) (aη)n =
5∑

n=0

anAn(L) ηn =
5∑

n=0

Bn(L) ηn (5.20)

where the n-th coefficient, Bn(L), is equal to the following expression:

Bn(L) = an

[
1

n!

∂(n)

∂w(n)

(
σI(L)

)]
(5.21)

According to the first and last members of Equation (5.20) the arbitrary opening stress dis-
tribution σI(L) is approximately equal to a combination of the elementary stresses σI(n) = ηn

through the coefficients Bn(L), with n = (0, . . . , 5) (superposition principle). Therefore,
since KI(n) is the stress intensity factor related to ηn, the approximate mode I stress inten-
sity factor for the actual (arbitrary) stress distribution can be obtained as follows:

KI(L)
∼=

5∑
n=0

Bn(L)KI(n) . (5.22)

Dividing both members of Equation (5.22) by σref(L)

√
πa and recalling Equation (5.18),

the dimensionless approximate stress intensity factor, defined as K∗
I(L) = KI(L)/σref(L)

√
πa,

along the front of a surface crack is given by

K∗
I(L)

∼=
1

σref(L)

5∑
n=0

Bn(L)K
∗
I(n) (5.23)

where σref(L) represents the reference stress for the arbitrary stress distribution, L.
Note that when a closed-form expression of the stress field in the vicinity of the crack

is not available, the coefficients An(L) (and therefore Bn(L), cf. Equation (5.21)) can nu-
merically be obtained by a polynomial fitting of the considered stress distribution.
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5.3.5 Further Solutions

Nilsson

In 1992, Nilsson [127] presented a stress intensity factor solution based on approximated
successive crack configurations with a family of curves for which KI values are known. A
fatigue crack growth code [128] prepared in 1998 uses the K values of [129]. The in [128]
presented sif solution for semi-elliptical surface cracks in very wide finite-thickness plates
subjected to arbitrary stress states originate in the work of [127].

The stress state on the crack surface can be approximated with a 3rd grade polynomial.
Crack aspect ratio a/c values from 0.0625 to 4.0, and values of the relative crack depth,
a/t, between 0.1 and 0.8 are covered. For a loading that varies linearly along the crack
length, c, a 1999 publication [96] of the work group showed good agreement between (a)
fatigue crack growth data derived from [128], (b) results generated by franc3d software
and (c) experimental fatigue testing.

franc3d

The freely distributed franc3d [130, 131, 132, 133] software package allows the simulation
of non-planar fcg and is not limited to semi-elliptical surface crack shapes. sif values for
plane strain conditions are calculated for arbitrary component geometries, loading con-
ditions and crack shapes by means of the Boundary Element Method (bem) for several
points along the crack front. In order to limit the extensive calculational work, constant
sif values are used over a propagation step that represents several fatigue load cycles.
franc3d chooses a propagation step size in which the number of cycles is less than 0.5 %
of total life. The crack front shape is then automatically adjusted after each increment of
crack growth.

Thus, for larger propagation steps computational efforts are reduced at the expense of
accuracy. Furthermore, the general assumption of plane strain might not always suit the
given stress conditions, e. g. near a free surface (cf. Section 5.2.1).

For larger changes of the crack geometry during propagation simulation it may be
necessary to model a new crack element mesh between two propagation steps as the initial
meshing remains and is not adjusted by the program automatically. Further, the author
encountered difficulties analysing cracks growing from the curved surface of a notch.

beasy

beasy [134] is a commercial fcg simulation software. Like franc3d the code bases on
bem and shows similar features like multiple crack growth. In addition, beasy promises
automatic remeshing of the crack and component surface what enables the simulation of
component surface intersection and extension of the crack to adjacent structures.

5.4 Component Geometry Influence

In the strict sense of fracture mechanics, each cracked structure geometry asks for its very
“own” empirical equations set of the stress intensity factor. However, it can be shown that
for a relatively small crack the structural component geometry has only minor effect on
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the stress intensity factor value, provided that the stress field in the vicinity of the crack
is approximately the same.

A review of mode I stress intensity factor solutions related to a semi-elliptical surface
crack is presented in Table 5.2 for different structural components under approximately the
same uniform opening stress field. In particular, sif solutions are reported for the relative
crack depth, ξ, (defined as the ratio between the crack depth, a, and the characteristic size
of the component) equal to 0.1, 0.2, 0.5 and 0.8, whereas the crack aspect ratio, α, (defined
as the ratio of crack depth and length, a/c, cf. Figures 5.6 or 5.7) is assumed to be equal
to 0.2, 0.5 and 1.0.

The stress intensity factor values shown are related to the deepest point, A (ζ/c = 1),
and the surface point, C (ζ/c = 0) or the near-surface point, B (ζ/c = 0.1), on the crack
front (cf. Figure 5.7), for a cracked finite-thickness plate under tension [102, 103, 105], a
shaft under tension [106], a thin/thick-walled pipe under pressure [120, 122] and a semi-
infinite body under remote tension [113].

Analysing the stress intensity factor values related to a given crack configuration and
different component geometries (see the K∗

I values on a certain row of Table 5.2), it can
be deduced that they are similar to one another when the relative crack depth is not too
large. Therefore, the boundary effects seem to be negligible for small cracks embedded in a
given stress field, while boundary effects become significant for large values of the relative
crack depth.

Pommier et al. [113] apply their set of equations for the semi-infinite body (cf. Sec-
tion 5.3.3) to “mechanically short” cracks in a cylindrical axle. Härkegård and Huth [135]
employ these equations of [113] for cracks emanating from the quarter-circular trans-
ition of a T-joint and find experimental data to be consistent with the calculated results
(cf. Chapter 9). For “relatively small” cracks Carpinteri et al. [126] apply their solution for
the finite thickness plate to the T-joint of [135].

Thus, the application of engineering-code stress intensity factor solutions that consider
un-notched geometries to fatigue crack growth calculation from notches may be acceptable,
especially for shallow notches and for low relative crack depths, a/t.
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Table 5.2: Dimensionless mode I stress intensity factor K∗
I = KI/σ0

√
πa at deep-

est point, A, and surface (or near-surface) point, C (or B), of a semi-elliptical surface
crack (cf. Figure 5.7) for different structural components under approximately the same
uniform opening stress field.

Reference [102] [103] [105] [106] [120, 122] [113]
Geometry Finite Finite Finite Shaft Thin/thick Semi-infinite

plate plate plate pipe body

ξ = 0.1 α = 0.2 A 1.075 1.131 1.095 - 0.873/0.942 -
B or C 0.531 0.595 0.545 - 0.542/0.564 -

α = 0.5 A 0.902 0.886 0.927 0.908 0.755/0.815 0.877
B or C 0.704 0.695 0.717 - 0.588/0.633 0.727

α = 1.0 A 0.664 0.666 0.691 0.676 0.554/0.623 0.659
B or C 0.733 0.706 0.729 - 0.601/0.640 0.753

ξ = 0.2 α = 0.2 A 1.123 1.097 1.186 - 1.035/1.074 -
B or C 0.559 0.616 0.561 - 0.607/0.615 -

α = 0.5 A 0.920 0.898 1.019 0.994 0.852/0.889 0.877
B or C 0.725 0.708 0.732 - 0.670/0.689 0.727

α = 1.0 A 0.668 0.667 0.812 0.723 0.635/0.654 0.659
B or C 0.744 0.711 0.732 - 0.660/0.680 0.753

ξ = 0.5 α = 0.2 A 1.431 1.415 1.763 - 1.540/1.603 -
B or C 0.760 0.751 0.720 - 0.831/0.764 -

α = 0.5 A 1.029 0.989 1.636 - 1.018/1.157 0.877
B or C 0.864 0.806 0.861 - 0.797/0.857 0.727

α = 1.0 A 0.691 0.688 1.662 - 0.678/0.747 0.659
B or C 0.820 0.752 0.761 - 0.699/0.782 0.753

ξ = 0.8 α = 0.2 A 1.885 2.291 2.443 - 2.278/2.481 -
B or C 1.116 - 1.200 - 1.262/0.929 -

α = 0.5 A 1.161 1.314 2.683 - 1.174/1.560 0.877
B or C 1.087 - 1.201 - 1.001/1.091 0.727

α = 1.0 A 0.718 0.788 3.178 - 0.717/0.852 0.659
B or C 0.950 - 0.841 - 0.782/0.919 0.753





Chapter 6

Shape Optimisation

6.1 Introduction

Failure due to fatigue loading in notched engineering structures generally occurs in areas
of stress concentration. Fatigue strength is sensitive to the size of amplitude and mean
(surface) stresses. Modifications of the component shape at areas of stress concentration
may lower the elevated stress level, thus improving the fatigue properties of the mechanical
component.

The basic concept of structural optimisation refers to size, topology and shape. Size
optimisation determines optimum section properties, such as thickness or diameter. Topo-
logy optimisation allows the introduction of holes in structures and is generally applied to
problems that focus on savings in weight and improved structural characteristics. In shape
optimisation only the boundary shape of a two- or three-dimensional structural component
is investigated.

This chapter is addressed to the practical application of shape optimisation to the
Francis runner fatigue problem (cf. [136]). Shape optimisation theory and methods that
were employed in order to improve the design of notches are presented with no claim for
completeness whatsoever.

Two representative areas of the quarter-circular transition between the blade and the
band or crown of a Francis turbine runner are subject of investigation. As mentioned
before, these areas are the runner’s two locations of highest local stress amplitudes due to
stress concentration and therewith the most critical locations for fatigue. One area is the
wide-stretched T-joint (2D) transition itself. This T-joint geometry finally merges with
the leading and the trailing edge where it forms the second area considered: the trailing
edge (3D) transition (cf. Section 3.4).

In general, a decrease in stress concentration is gained by a smoother design of the
geometric discontinuity such as increasing the transition radius of a shoulder fillet. Modi-
fications of an unsufficient part of the shape may easily generate new, even more severe
stress concentrations in direct vicinity to the optimised area. The optimisation target is
rather to stress the material equally in the complete area of elevated stresses with the aim
of avoiding unnecessary high stresses in one region while material elsewhere lies fallow.

This approach is in analogy with the growth behaviour of biological structures where
material is enforced or added to regions of high stress and removed where the stresses
are low. Such behaviour has been found e. g. for bone material in contact with implants.
Another example for this growth behaviour is the hyperbolic Y-junction shape of tree trunk

47
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forks.
The conclusion is that the most optimal designed structural shape shows a completely

constant stress distribution at the lowest possible stress value when loaded. This finding of
Baud [137] from 1934 was substantiated by Neuber [138] and comprises the conclusion of
Schnack [139] from 1979, that after successful optimisation the constant tangential stress
value has to be the largest stress to be found on the optimised shape.

As this ideal shape rarely exists for technical solutions, the application of shape optim-
isation to engineering problems has the aim to maximise the area of constant tangential
stress within given technical and economical limits.

Shape Optimisation and Fatigue in the Literature

In order to find the notch geometry that implies the lowest stress concentration, shape
optimisation has been applied in numerous publications of the last decades. Already in
1941, Lehr [44] describes the optimum shape for hollow crankshafts. The 1955 publication
of Lansard [140] presents fillets without stress concentration. In 1962, Heywood [141] pub-
lished his work about designing against fatigue. In tests for Rolls Royce aircraft engines
he found out that an optimal fillet in the region of stress concentration significantly in-
creases the life of mechanical engineering structures. He successfully applied this concept
to aircraft engines and verified the results by photo-elastic experiments. Around 1970
Neuber, who made major contributions to the research on the stress concentration factor
(cf. Chapter 2) proposed analytical solution methods for shape optimisation of notched
flat bars [138, 142].

Schmit [143] proposed a general approach to structural optimisation and non-linear
mathematical programming in 1960. Francavilla et al. [144] solved a fillet shape opti-
misation problem to minimise stress concentration by defining the nodal co-ordinates of
the discrete finite element model as design variables in 1975. As in the early 1980s com-
putational power was still a limiting factor in three-dimensional analysis, Schnack [145]
developed a gradient-free algorithm that controlled shape optimisation calculations and
minimised stress concentrations. In 1990, Radaj and Zhang [146] introduced a multipara-
meter design optimisation with respect to stress concentration. In the same year, Mattheck
and Burkhardt [147] state that it is possible to design notches without notch stresses em-
ploying a biological growth fe method.

Schnack and Weikl [148] differentiate between the minimisation of maximum stresses,
which they call “static shape optimisation” and a “dynamical shape optimisation” which
considers a time-dependent behaviour of the shape of structures under fatigue loading. In
their two-level loading experiments with photo-elastic specimens, they report non-linear
material behaviour at different points along the “statically” optimised shape after 15 000
load cycles. However, they state that

“The differences between the classical static optimization and the dynamical
optimization are really very small; the difference can be found in the oscillation
of the stress functions, and this is probably due to the local effects (. . . ) on the
micro-level.”

Obviously, these local effects strongly depend on loading conditions and material properties.
Since this approach has not been followed up by other authors since is was published in
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2002, the “static” procedure of minimising the notch stresses still seems to be state-of-the-
art in shape optimisation of structures under fatigue loading.

Although it has proved to have large beneficial effect to the fatigue phenomenon, the
challenge of employing shape optimisation and to realise the resulting non-trivial geometries
is rarely met. Applications reported are most frequently connected to the automotive and
aviation industry.

6.2 Basic Theory

In mathematical terms, shape optimisation of continuum structures improves a given topo-
logy by minimising an objective or target function that is subjected to certain constraints
on geometry and structural responses such as stress, displacements and natural frequencies.
All functions are related to design variables that represent co-ordinates of some points in
the structure boundary called design nodes.

Two kinds of models have to be considered [137]: the analysis model, as represented by
the finite element model, and the parameterised geometric model of the variable structure
which is termed the design model. This design model consists of design elements [149]
which may be defined by lines or curves of almost any character. So, even complicated
boundary shapes can be defined and generated with the help of only a few points on the
boundary, the so-called key points. Some key points are design nodes, which means that
their position is re-considered under the optimisation process. Thereby the shape of the
design model is modified. Other expressions frequently used for design nodes are “master
nodes”, “control nodes”, “control points” and “master points”.

6.2.1 Steps in Shape Optimisation

Shape optimisation is processed in the following steps (cf. Figure 6.1):

1. Prior to the optimisation, the geometry of the structure under investigation has to
be defined. Key points are set up to span the structure boundaries. These structure
boundaries may be modelled by means of lines, curves or splines. By moving some
of the key points at least one structure boundary will be modified under the optimi-
sation process. Some of the co-ordinates of the moving design nodes are chosen to
be the design variables. In this manner the design variables directly affect the shape
alteration. Dependencies between the design variables may be established.

2. An automatic mesh generator is used to create the finite element model. Then, a
finite element analysis is carried out and the displacements and stresses are evaluated.

3. If a gradient-based optimiser is used, the sensitivities of the constraints and the
objective function are computed to small changes of the design variables. For this,
either the finite difference or the semi-analytical method may be employed.

4. The design variables and therewith the shape of the structure are being optimised.
If the convergence criteria for the optimisation algorithm are satisfied, the optimum
solution has been found and the process is terminated. Else, a new geometry is
defined and the procedure is repeated from step 2.
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Figure 6.1: The general process of shape optimisation.

6.2.2 Gradient based Optimisation

Gradient based optimisation procedures are computationally expensive due to the sensit-
ivity analysis step. The calculation of the sensitivity coefficients follows the application
of a relatively small perturbation to each design variable. Several techniques have been
developed. The discrete methods for sensitivity analysis may be classified as follows [150]:

· Global finite difference method : A full finite element analysis has to be performed for
each design variable, the accuracy of the method depends strongly on the value of
the perturbation of the design variables.

· Semi-analytical method : The stiffness matrix of the initial finite element solution is re-
tained during the computation of the sensitivities. This provides an improved ef-
ficiency over the finite difference method by a relatively small increase in the al-
gorithmic complexity. The accuracy problem involved with the numerical differenti-
ation can be overcome by using the exact semi-analytical method.
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· Analytical method : The finite element equations, the objective and constraint functions
are differentiated analytically.

6.2.3 Surface Generation by B-splines

One task in the engineering design of machines, tools and vehicles is the generation of
smooth surfaces from a number of nodes or vertices placed through measurement or cal-
culation. In order to connect these vertices by a smooth surface curve, an n-th order
polynomial interpolation

Mn(x) = a0 · xn + a1 · xn−1 + a2 · xn−2 + . . . + an−1 · x + an (6.1)

may be employed, where the coefficient a0 6= 0. However, a polynomial order of higher
than three easily results in a curve of unacceptable high waviness already when applied to
surface curves of only average complexity. On the other hand, polynomials of order less
than the number of nodes involved might lack the capability to reach and represent every
single node.

It is shown in the literature [149, 151] that in shape optimisation, B-spline curves are
well suited to the definition of design elements. Complex geometries can be described in
a very compact way by a small set of design variables and a few design elements. Splines
represent the shape of an elastic beam in its state of lowest bending energy as it touches
points in arbitrary locations in 3D space. Thus, the spline is the continuous connection
between chosen points that keeps the minimal bending radius all along the curve at its
largest value possible. Since we in general have a decrease in stress concentration for larger
notch radii, a spline-modelled design boundary seems to be the most adequate design
element for shapes of low stress concentration. The following mathematical definition of
splines and B-splines was taken from [152].

Splines

For centuries designers and engineers employed physical splines to draw smooth surface
lines [153]. Small weights were attached at the vertices for proper adjustment of the thin
wooden or, more recently, plastic beams on the drawing board. In the course of the
development of computer aided design (cad), a mathematical spline definition became
necessary. For small deflections, y ′ � 1, the bending strain energy

W = 0.5

∫
M2(x)

EI
y ′′dx (6.2)

for the spline in Figure 6.2 is at its minimum value. This problem is frequently solved for
third-order polynomials that define curve segments of cubic character between the vertices
Pj and Pj+1, for j = 0, 1, 2, . . . , n. The interpolating spline function of order k consists of
stepwise mounted k-th order polynomials. The spline function is (k−1) times continuously
differentiable and touches all the vertices.

The first derivative is the slope of the curve. If the slope is continuous, the curve has
no angles, that is, no sudden changes in direction. The second derivative is related to the
radius of curvature.
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Figure 6.2: Physical spline and mathemati-
cal analogue (after Dubbel [152]).

Cubic splines (k=3) are preferred as they are the splines of the lowest possible order k
featuring an inflection point. In this case, the polynomial takes the form

S(e) = a3 · e3 + a2 · e2 + ae · e + a0 = (x(e), y(e), z(e))T . (6.3)

The four coefficients a0 . . . a3 are vectors aj = (ajx, ajy, ajz)
T which can be obtained from

the co-ordinates of two points and the respective derivatives. Consequently, any further
stepwise adjointed curve part will connect to S(e) continuously differentiable [154].

With the boundary conditions

S(0) = P 0 = (x0, y0, z0)
T = a0,

S(1) = P 1 = (x1, y1, z1)
T = a3 + a2 + a1 + a0,

S′(0) = P ′
0 = (x′0, y

′
0, z

′
0)

T = a1,

S′(1) = P ′
1 = (x′1, y

′
1, z

′
1)

T = 3a3 + 2a2 + a1.

(6.4)

becomes

a0 = P 0, a1 = P ′
0, a2 = −3P 0 − 3P 1 − 2P ′

0 − P ′
1, a3 = 2P 0 − 2P 1 + P ′

0 + P ′
1

and finally

S(e) = P 0(2t
3 − 3t2 + 1) + P 1(−2t3 + 3t2) + P ′

0(t
3 − 2t2 + t) + P ′

1(t
3 − t2). (6.5)

B-splines

For B-spline curves only piecewise defined polynomials, the so-called Basis-splines (“basis-
functions” and “blending-functions” are other common expressions) bridge between the
vertices. Such a basis function Nk

j (g) is (k − 2) times continuously differentiable and
covers the interval [j; j + k]. The parameter g interval is now divided into an integer
number of segments g ∈ [j; j + 1] = [gj; gj+1]. The expression for the B-spline polynomial
becomes

S(g) =
n∑

j=0

Pj · Sk
j (g) . (6.6)
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B-spline curves are described by basis-splines in a polygon showing n + 1 corners Pj.
Higher orders of the polygon result in a more rigid curve behaviour. In difference to the
“common” spline described above, B-splines feature a more individual curve design at the
polygon corners with less influence of the local design to the overall curve shape (cf. [152]).

B-spline curves form the basis of a popular approximation technique for curves and
surfaces and are frequently implemented in modern cad software and numerical ana-
lysis preprocessors. Bèzier curves and surfaces share the mathematical expression, Equa-
tion (6.6), of B-spline curves and surfaces but employ so-called “Bernstein-functions” as
basis-functions instead.

In the following, the two Francis runner areas that are most critical to fatigue will be
re-designed employing B-splines.

6.3 Optimisation of the T-joint Transition

Engineering solutions of shape optimisation are connected to given technical and econom-
ical limits. For any of the modifications considered under shape optimisation of the T-joint
transition between blade (Y ∗-axis) and ring or crown (X∗-axis) of the Francis runner it was
an essential requirement to leave the hydromechanical properties of the runner untouched
to the greatest possible extent. Turbulent flow is unlikely to be generated as long as the
new design was continuously smooth and is applied to the entire T-joint transition, from
the leading edge down to the trailing edge.

As explained in Chapter 3, far from the trailing edge the T-joint experiences cyclic
nominal bending loading due to hydraulic forces that act on the Francis runner blade. The
resulting bending stress concentration will be lowered in the following shape optimisation
process.

6.3.1 Optimisation Process

The originally circular shape of the T-joint transition was modelled by a B-spline in the
design model. The B-spline was defined by n design nodes Dj with j ∈ [1, 2, . . . , n].
The origin of the Dj co-ordinate system (X∗; Y ∗) coincides with the virtual sharp fillet
corner between the blade and ring or crown surface lines. In order to implement a smooth
transition from all B-spline shapes applied, the spline end slopes in D1 and Dn go parallel
with the flanking plane surfaces.

The wide range of possible variations of the spline character and length was minimised in
a first optimisation process. Iterative improvements of the shape were carried out manually
to approximate what might be an improved design. At this, the effect of random changes of
design node positions and inter-nodal dependencies to finite element analysis (fea) stress
results was investigated. Soon it turned out that the expansion of the transition area
somehow had to be constrained since large-scale shape changes would be suggested by an
automated optimisation routine.

Figure 6.3 shows the four different transition shapes considered. In case A a large-scale
change of the shape is allowed. Case B unconventionally extends the transition shape at
the expense of the runner ring. Cases C and D represent more realisable approaches as the
length of the B-spline is kept small. The corresponding co-ordinates of the design nodes,
D, are given in Table 6.1. All D movements are confined to follow straight lines: in case A,
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Table 6.1: 2D shape optimisation strategy.

Shape optimisation Number of Design nodes Dj

approach case design nodes n co-ordinates X∗;Y ∗

j = 1 j = n

A 4 15;0 0;6 39
B 6 15;0 0;15
C 2 6 15;0 0;15
D 2 6 15;0 0;18
Not optimised (2) 15;0 0;15

Table 6.2: Shape optimisation appoaches. Stress concentration in the final shapes.

Optimisation shape approach case Stress concentration factor, Kt

A 1.02
B 1.12
C 1.16
D 1.12
Not optimised, circular 1.32

Dn moves on Y ∗, whereas in cases C and D, the only movement performed is D1 sliding
in X∗ direction. Furthermore, all inner Dj for 1 < j < n move in radial direction to the
original quarter-circular transition.

Then, for the automated analysis, a gradient-based optimisation procedure implemen-
ted in the fe code ansys was applied. The procedure implies automated re-meshing of
the analysis model. As in the first manual optimisation process, the objective function was
to minimise the largest principal stress, σ1, on the B-spline design boundary.

6.3.2 Results

The resulting stress concentration factors after the four different optimisation strategies
are given in Table 6.2. Figures 6.4–6.7 present plots of the calculated maximum prin-
cipal stresses, the fe mesh and the final shapes of the optimised design boundaries A–D.
Figure 6.8 shows the stress plot of the circular shape for comparison with the standard
solution.

Figure 6.9 reveals that the stress slopes of the different design solutions coincide at
x/t1 = 0.075. Here, x is the distance from the location of highest stress concentration in
negative X∗-direction. To what extent these stress gradient slopes influence fatigue crack
growth is a matter of discussion in Chapter 9.

The large-scale shape change of optimisation approach case A shows the most ho-
mogenous stress distribution. The remaining stress concentration Kt = 1.022 is of only
rudimentary character.

The B-spline length of shape approach B is second after the spline in approach A.
However, the relatively low stress concentration of Kt = 1.12 is the same as in approach D,
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which shows a B-spline length that is even less than that of the quarter-circle of the
standard transition.

Shape approach cases C with Kt = 1.16 and D base on the most simple design boundary
definitions regarded. They realise the most effective minimisation of stress concentration if
a shorter B-spline length is considered to be advantageous. The fact that in these two cases
only external B-spline design nodes were employed is in accordance with the theoretical
assumptions on the B-spline shape made above. An expression for the optimisation effi-
ciency as a function of the transition curve length and fatigue life is proposed in Table 9.2
on page 87.

6.4 Optimisation of the Trailing Edge Transition

In the same way as for the T-joint transition, the primary requirement to avert the devel-
opment of turbulent water flow due to shape optimisation applies now for the trailing edge
transition.

As the T-joint geometry meets the trailing edge at the end of the blade, a concave-
convex geometry is formed. Tensile fatigue loading is considered to load the resulting
convex-concave “trailing edge (3D) transition” (cf. Chapter 3). Due to the symmetry of
loading and geometry conditions prevailing, the following simplification shall be estab-
lished: only one quarter-cylindrical shoulder fillet transition geometry shall be considered
from now on.

The standard circular-shaped transition at the trailing edge is defined by two radii
(cf. Figures 3.9–3.11). A systematic series of fe stress calculations presented in Sec-
tion 3.4.2 reveals the transition radius, R, to be clearly the more decisive parameter re-
garding stress concentration, compared to the influence of the blade edge radius, r.
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Figure 6.3: Stress concentration in T-joint
optimisation approaches.
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Figure 6.4: Optimised T-joint shape A. fe
mesh and maximum principal stress, σ1.

Figure 6.5: Optimised T-joint shape B. fe
mesh and maximum principal stress, σ1.

Figure 6.6: Optimised T-joint shape C. fe
mesh and maximum principal stress, σ1.

Figure 6.7: Optimised T-joint shape D. fe
mesh and maximum principal stress, σ1.
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Figure 6.8: Standard circular T-joint shape.
fe mesh and maximum principal stress, σ1.
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Figure 6.9: Standard circular T-joint shape. Stress gradients at the locations of largest
principal stress, σ1.
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6.4.1 Optimisation Process

In the first step of shape optimisation the trailing edge transition design model was es-
tablished with the help of B-splines. Five B-splines that follow the shape approach D
of Section 6.3 build the longitudinal framework base of the standard quarter-cylindrical
shoulder fillet. In approach D the transition geometry is extended by 20 % on the
“blade” side of stress concentration. Thus, the upper spline co-ordinates were moved from
(θ;Y = 10;Z = 15) to (θ;12;15) in the cylindrical co-ordinate system shown in Figure 6.10.

The transition surface is then rendered by latitudinal quarter-circles that meet each of
the five longitudinal splines perpendicularly. These quarter-circles again are modeled by
splines. In their two extreme positions, as they connect the five framework splines end
design nodes at the upper and lower surface edge, we shall term them “headspline” and
“footspline”, respectively, as denoted in Figure 6.10.

All splines employed show fixed end slopes that guarantee a smooth transition from
the curvature to the flanking surfaces, as described above in Section 6.3 for the T-joint
transition design model. Since the series of fe calculations presented in Section 3.4.2
revealed that modifications of the blade edge radius, r, have only a minor effect on the
stress concentration, the upper design nodes remain untouched on their slightly elevated
positions (Y = 12) on the blade edge further on. Then, the θ-co-ordinates of the five
longitudinal basic framework splines were arranged to θ = 0, 21, 50, 76 and 90 degrees.
Now, alternating designs of the 3D transition could be easily controlled by five design
variables, which are the footspline design nodes’ radial Z-co-ordinates. Nodal movements
are denoted by the arrows in Figure 6.10.

6.4.2 Results

First, the footspline design nodes were allowed to move independently from each other.
Design limits individually chosen for each design node provided for reasonable design al-
terations. The somewhat sturdy shape defined by the red footspline in Figure 6.11 yields a
local minimum of stress concentration. Here, the stress concentration factor, Kt, is lowered
to 1.36 from 1.68 in the standard circular transition. Figure 6.13 presents the plot of the
calculated maximum principal stress, the fe mesh and the shape of the optimised “red”
design. Figure 6.12 shows the stress plot of the circular shape for comparison with the
standard solution.

q Z

Y

foot-spline

head-spline

Figure 6.10: Trailing edge transition shape
optimisation strategy.
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Figure 6.11: Stress concentration in trailing edge optimisation approaches.

Figure 6.12: Circular trailing edge trans-
ition shape. fe mesh and maximum principal
stress, σ1.

Figure 6.13: Optimised trailing edge trans-
ition shape. fe mesh and maximum principal
stress, σ1.



60 CHAPTER 6. SHAPE OPTIMISATION

In Figure 6.11 the shape of the initial 3D transition prior to any shape modifications
is represented by the circular black footspline. The respective Kt value of 1.62 is slightly
lower than Kt = 1.68 which is for the standard transition defined by two radii, R and r.
This change in stress concentration is due to the elevated position of the headspline nodes
at Y = 18 mm according to the implemented shape approach D (cf. Section 6.3).

For the lowest stress concentration found, the foot-spline follows the shape of an ellipse.
Here, only two design variables are necessary as the elliptical shape is completely defined
by the length of the ellipse’s two semi-axes, a and b. The positions of the inner design
nodes of the footspline are derived from the equation of the ellipse

Z2(θ)

(
sin2 θ

a2
+

cos2 θ

b2

)
= 1 . (6.7)

The absolute design optimum found in the yellow footspline ellipse lowers Kt from 1.68 in
the standard circular transition down to 1.31.

The 2D and 3D transition geometries meet at θ = 90 ◦. A practical solution that
smoothly connects the 3D footspline to the 2D transition design optimum found in the
previous chapter is represented by the violet footspline. Here, at (X∗ = 7.77 mm) ≡ (Z =
12.77 mm), the Kt values are 1.12 and 1.33 for the 2D and 3D transition, respectively. The
other way round, in the case of the 2D transition design joining the (yellow) 3D transition
design optimum in (Z = 12 mm) ≡ (X∗ = 7 mm), the stress concentration factors Kt

become 1.19 and 1.31 for the 2D and 3D transition, respectively.



Chapter 7

Fatigue Testing

Two categories of fatigue specimens have been considered. The 2D bending load specimen
describes the T-joint between Francis runner blade and ring or crown, far from the trailing
edge. The geometrical shape of the T-joint meeting the trailing edge is represented in the
3D specimen for tensile fatigue loading.

In addition to the 2D and 3D specimens showing (quarter-)circular shape of the trans-
itions as it is specified in General Electric Energy (gee) standards, a series of shape
optimised specimens for each of the two categories (2D and 3D) has been designed and
tested. Test specimen specifications are given in Table 7.1 and in Figures 7.3 and 7.11.
Test results are presented in Chapter 8 on the “local approach” to fatigue.

Load levels derived from present fatigue data were chosen to obtain Nf values between
104 and 2 · 105. The use of the resulting statistical parameters might be open to question.
Nevertheless, this proceeding provides fatigue data of the most interesting Nf range seen
from a practical hydropower-engineering point of view (cf. Section 3.3.1). The disregarded
range of fatigue life remains to be verified by subsequent experimental testing.

Beach Marking Procedure

In order to visualise the location of the crack front of propagating fatigue cracks for sub-
sequent fatigue crack growth calculation, the so-called “beach marking” technique has been
employed. At this, a deliberate reduction of the crack growth rate leads to a different ap-
pearance of the crack surface striations that are generated cycle-by-cycle at the crack tip,
as described in Chapter 2. After a certain period, which may be defined by voltage fluc-
tuation under monitoring with “potential drop” equipment or simply by a number of load
cycles, the intrinsic fatigue loading is resumed. According to Schwarze and Schubert [155],
the critical parameters for beach mark visibility are:

· cyclic stress intensity range ∆K,

· frequency f (for Ni-alloys at elevated temperatures),

· mean stress σm,

· stress ratio R .

Steel at room temperature is considered to be insensitive to fatigue loading frequencies
0–1000 Hz [156]. The influence of the beach mark cycles on the intrinsic load cycles has to
be minimised.

61
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Table 7.1: Experimental fatigue testing. Specimen properties and loading conditions.

Specimen T-joint – 2D Trailing edge – 3D
Material

Symbol (DIN 17440) X4CrNiMo 16-5 34CrNiMo 6
Standard Number 1.4418 1.6582
Product Form quenched and tempered quenched and tempered
Heat Treatment hot rolled plate material hot rolled bar stock

tensile data
Yield strength Rp0.2 850 MPa 680 MPa
Ultimate tensile strength Rm 945 MPa 860 MPa

fcg data [K] = MPa
√

m, R = 0.1

Paris factor C 6.67 · 10−13

Paris exponent m 3.22
Number of test specimens 7 standard, 7 optimised 4 standard, 4 optimised
Stress concentration factor Kt 1.32 , 1.12 1.68 , 1.36
Fatigue loading bending tensile

Min. load / max. load RL 0.1 0.1
Nom. elastic stress range ∆σn 765 and 820 MPa 500 and 550 MPa
Frequency f 3 Hz 1.5–2.5 Hz
Temperature T 23 ◦C 23 ◦C
Humidity (rel.) 50 % 50 %

7.1 T-joint Test

The geometry investigated in Section 3.4.1 was scaled 1:2 for fatigue testing (cf. Figure 7.3).
The optimised design of the T-joint transition (2D) specimen is given by transition shape D
(cf. Section 6.3 and Figure 7.2).

7.1.1 Specimen Manufacturing

The specimens were produced according to the standard manufacturing process for com-
mercial turbine runners at the gee workshop in Sørumsand, Norway. Moreover, cnc
milling was employed in order to realise accurate shaping of the welded transition. No
undergrinding was visible at the transition between the curvature and the straight blade.

Manufacturing process:

1. Joining of two plates (t1 = 20 mm, t2 = 24 mm) of X4CrNiMo 16-5-1 rolled steel by
a double fillet weld. Testing of the weld seam.

2. Machining of the weld seam: cnc milling to obtain the standard quarter-circular
ρ = 7.5 mm and shape optimised transition geometries of the two test series.

3. Annealing (stress relieving) of the plates at 580 ◦C.
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4. Cutting of the welded plates into T-joint specimens of width b = 50 mm. Surface
finishing by grinding and polishing.

7.1.2 Fatigue Testing

The thicker member was fixed to the frame of the fatigue-testing machine, as shown in
Figure 7.4. A cyclic bending moment was applied to the thinner, cantilever member by a
transverse force. The cylinder force, F , (cf. Figure 7.3) which is necessary to induce the
nominal surface stress from bending, σb, is given by

F =
2 · σb · IZ

t · lF
(7.1)

where the specimen thickness, t1 = 20.3 mm, and the specimen width, b, are considered
in the geometrical moment of inertia IZ = bt31/12. The width of the specimens varied
betweeen 48 and 56 mm.

It has to be mentioned that the single force in Figure 7.3 does not induce a state of
pure bending. However, the shear stress, τ0, induced by F is less than 2 % of the largest
nominal bending stress, σb, and may therefore be disregarded.

The mechanical test rig proved to induce reliable stresses in the nominal blade section
in similar tests performed by Hallingstad [157] in 1999. In this work, strain gauges returned
erroneous data only when attached to the quarter-circular transition. Stress results from
strain measurements in the nominal section of the specimen agreed with stress values
obtained from load values measured at the hydraulic test cylinder.

In the investigation by Hallingstad [157], fatigue cracks invariably initiated at grinding
defects. The initiating defect was frequently situated outside the quarter-circular transition
arc and subsequent crack growth took place in a region of pure bending. Consequently,
grinding defects have been removed in the present test specimens in agreement with com-
mon practice for commercial high-head Francis turbine runners.

In analogy to [157], failure was defined by an increase of the “blade” deflection at
Fmax, ∆uX∗(Fmax) = 2 mm, measured at the point of force application, lF = 200 mm
(cf. Figure 7.3). At this condition, surface cracks showed relative crack depths, a/t1,
between 0.3 and 0.4.

7.1.3 Beach Marking

The growth of fatigue cracks starting at stress concentrations has been monitored. In order
to make the position of the crack front visible, the crack surface was altered by temporarily
propagating the crack at a lower growth rate, as described above. More precisely, the
load sequence consists of two consecutive blocks. The first one is the effective constant
amplitude cyclic bending block containing 4–5000 cycles, characterized by R = 0.1, f =
3 Hz and sinusoidal shape: this fatigue loading produces crack propagation. The second
cyclic loading block is the marker block. Here, R of the nominal stresses has been increased
from 0.1 to 0.7. With the maximum stress left unchanged, this setup was maintained over
4–5000 cycles of sinusoidal shape. The flaw size grows just a little during this loading block
and, therefore, the crack growth can be neglected. For this reason, the number of cycles of
the “marker” block is not taken into account when evaluating fatigue life of the specimen
in Chapter 9.
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Figure 7.1: T-joint specimen. Standard
quarter-circular transition.

Figure 7.2: T-joint specimen. Shape optim-
ised transition (case D).
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Figure 7.3: T-joint fatigue test specimens.
Geometry and loading.

Figure 7.4: T-joint test mounted.
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Table 7.2: Data of fatigue crack growth monitored.

Beach mark Quarter-circular transition specimen 1.7 Shape optimised transition specimen 2.7

a c N a c N

1 1.57 3.28 23 600 2.45 3.01 90 500
2 2.51 4.24 27 600 3.30 4.20 95 500
3 3.53 6.38 31 600 4.34 5.85 100 500
4 5.13 9.48 35 600 6.00 8.21 105 500

Fatigue cracks were discovered by the application of petroleum spirit to the area of stress
concentration. This procedure has proved to track down surface cracks from 2c = 1 mm
in length (cf. Figure 5.6). However, the smallest cracks that were discovered in the 2D
test specimens showed a length of 6 mm. It seems possible that some of the monitored
surface cracks grew from a sub-surface defect and propagated rapidly as they penetrated
the surface (cf. [158]). Another possibility is the coalescence of two or more in-plane cracks.

7.1.4 Results

At the end of experimental tests, beach marks have been identified and measured. The
quarter-circular transition of specimen 1.7 (cf. Table C.1) and the shape optimised specimen
2.7 yield the most interesting beach mark results (cf. Figures 7.5 and 7.6) as they show
the largest number and smallest dimensions of beach marks created. The respective crack
growth data are summarised in Table 7.2: for each of the four beach marks related to
specimens 1.7 and 2.7, the crack depth, a, the crack length, c, and the number of load
cycles, N , is reported. These data are visualised in Figure 9.12.

As mentioned before, after welding the specimens underwent stress-relieving annealing
treatment. Nevertheless, the coarse and inhomogeneous crack surfaces of Figure 7.7 attest
to the sustained influence of the welding.

In both the standard quarter-circular and in the shape optimised T-joint specimens
tested, all cracks that developed into a dominating fatigue crack initiated at the location
of largest stress concentration at the transition. In two of the quarter-circular and in one
of the shape optimised specimens, the main fatigue cracks grew as a corner crack from one
or both of the specimen edges.

The test results are shown in Figure 7.8. The sn curves are defined by the Basquin
Equation (2.1) and are created by means of linear regression curve fit. In this curve fit
the sum of the squares of the vertical distances of the result points from the sn curve are
minimised.

7.2 Trailing Edge Transition Test

7.2.1 Specimen Manufacturing

The specimens were cnc-milled from 34CrNiMo 6 rolled bar stock and manually polished
with emery cloth, all performed by “Ranger Modellbau GmbH” in Neckarsulm, Germany.
The specimens show the following specifications:
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Figure 7.5: Beach marks in standard T-joint specimen 1.7: ∆N = 4000, Nbm = 4000.

Figure 7.6: Beach marks in optimised T-joint specimen 2.7: ∆N = 5000, Nbm > 5000.

Figure 7.7: T-joint specimen 1.3: coarse and inhomogeneous crack surface in the weld zone
(Photograph stitched).
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Figure 7.8: sn curve from T-joint specimen fatigue testing.

· Fatigue loading direction and the direction of rolling coincide.

· The design of the specimen showing a circular transition geometry imitates a simpli-
fied trailing edge transition of a commercial turbine runner.

· For determination of the size of the test specimens geometry realisation, loading
capabilities and manufacturing costs were considered in descending order of priority.
Thus, the specimens were scaled as large as possible, limited only by the properties
of the test rig available.

· Symmetrical design with respect to membrane loading, cf. Figure 3.9.

· A net section of relatively large height and length to minimise the interaction of
notch stress fields.

fe analysis showed that “ring” material absent in the test specimens due to the presence
of ∅33 mm fastener holes has only a minor effect on the stresses at the transition. In
the fe model for the optimised 3D transition specimen showing the respective bore, stress
concentration went down from Kt = 1.364 to 1.358. The realisation of fea that is more
consistent with the boundary conditions of the fatigue tests would have led to immoderate
computing time in shape optimisation calculations.
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Figure 7.9: Circular-shaped trailing edge
transition specimen.

Figure 7.10: Shape optimsed trailing edge
transition specimen.

7.2.2 Fatigue Testing

Axial loading of the trailing edge specimen of Figure 7.10 leads to

F = σ · A (7.2)

where the net cross-sectional area A = 879 mm2.
Four strain gauges were attached to the net section of each specimen. Figure 7.13 shows

the placement of the strain gauges equidistant to the areas of stress concentration, with
their vertical centre lines 10 mm away from the trailing edge curvature.

Eight M30 bolts, each of them fastened by 1100 Nm torque, fixed the specimens to the
test rig. For the given dimensions of the test specimen and loading conditions, calculation
according to [159] and VDI 2230 standard [160] resulted in a safety factor of 1.6 for fatigue
failure in the bolts.

With the yield limit σ0.2 = 680 MPa and maximum nominal stresses up to 661 MPa,
plasticity appears at the transitions. Even in the nominal section plasticity was monitored.
However, after some 1000 load cycles, constant strain amplitude and mean values were
established in the nominal section, as visualised in Figure 7.15. In this diagram, a detailed
view of the F– εn curves shows increasing values of Fcyl. in the very first cycles of the fatigue
test. The function of these so-called “envelope cycles” is to lower the initial impact on the
test rig.

Failure was defined by an increase of the specimen elongation at Fmax, ∆uY (Fmax) =
1 mm (cf. Figure 7.11). At this condition, 20–30 % of the specimen “blade” cross section
was cracked.
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Figure 7.11: Trailing edge transition fatigue
test specimens. Geometry and loading.

Figure 7.12: Trailing edge transition test
mounted.

Figure 7.13: Strain gauge placement. Figure 7.14: Trailing edge test specimen RI.
Failure due to crack growing from stress con-
centration.
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Figure 7.15: Fcyl.– εn curves recorded from 3D specimen RIII, strain gauge 2.

7.2.3 Results

Cast Steel Specimens

Previous fatigue testing of 3D specimens made of a GX4CrNi 13-4 cast steel slab (200 ×
300 × 1500) revealed a low fatigue strength of the cast material. Inclusions and pores
of up to 3 mm in size and of all kind of shapes were distributed throughout the volume
(cf. Figure 7.16). These defects showed to have a more detrimental effect on fatigue life
than the stress concentration of the shape optimised transition. Fatigue cracks leading to
failure in the circular shaped specimens grew from the area of stress concentration.

In the shape optimised specimens, multiple fatigue crack growth occurred simultan-
eously at various locations in the “blade” section.

With 5 of 12 specimens tested, the cast steel series has been abandoned. Hereupon,
specimens of rolled steel 34CrNiMo 6 were ordered. Nevertheless, the results of the cast
steel specimens with circular transition shape are shown in Figure 7.20.

Rolled Steel Specimens

Crack surfaces of both fatigue crack propagation and of final fracture are smoother and
more homogeneous in 34CrNiMo 6 specimens, as shown in Figure 7.17. Both in specimens
which show the standard circular and the shape optimised transition, the initiation of
fatigue cracks took place at the locations of maximum stress concentration.

The specimens were cut centrically from a rolled steel slab with the longitudinal axis,
Y , placed on the axis of symmetry of the cylindrical slab. It turned out that along the axis
of symmetry a line of defects are present. These defects lead to fatigue failure in two of
the four shape optimised specimens. In the remaining two shape optimised specimens, the
dominant cracks initiated at the location of largest stress concentration of the transition.

All of the four specimens with the standard circular transition showed failure from
cracks that grew from the location of largest stress concentration. In one case the inner
central line defect and a geometrical stress concentration crack propagated simultaneously.

The 3D specimen fatigue test results are shown in Figure 7.20. Again, the sn curves
displayed are obtained by linear regression, as described for the 2D specimen test results
in Section 7.1.4.
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Figure 7.16: Cracked surface of cast steel GX5CrNi 13-4 standard transition shape specimen
R5.

Figure 7.17: Cracked surface of rolled steel 34CrNiMo 6 standard transition shape specimen
RII.

1 mm

Figure 7.18: Three beach marks of surface
crack growing from stress concentration in
circular transition shape trailing edge speci-
men RI.

1 mm

Figure 7.19: Centrical material defect in
specimen RIV.
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Figure 7.20: sn curve from trailing edge specimen fatigue testing.



Chapter 8

Local Stress Approach

In service life, Francis runners experience low cycle fatigue loading conditions from start-up
and shutdown manoeuvres that induce gross-section stresses of the order of the material
yield strength. Local plasticity effects have therefore to be taken into account in areas of
stress concentration. In fatigue testing, the realisation of these high-level loading conditions
kept the number of load cycles to failure, Nf, within practicable limits.

In order to improve the applicability of the results of the T-joint and the trailing edge
transition fatigue tests presented Chapter 7, a more general presentation of the sn curves
in Figures 7.8 and 7.20 is now provided. Local plasticity effects are accounted for by
applying the Neuber rule. In a further step the data are “transformed” to stress ratio
R = 0. Figure 8.3 presents the adjusted fatigue test data. Each of the three sn curves
shown are based on one specimen material respectively, and have been obtained by linear
regression.

8.1 Neuber Notch Stress

As already mentioned in Chapter 2, Neuber [34] established the relation between the elastic
stress concentration factor, Kt, and the inelastic concentration factors for stress and strain,
Kσ and Kε (the ratio of the maximum local strain to the nominal strain),

Kt =
√

KσKε . (8.1)

For elastic conditions at the notch root, the factors of stress and strain concentration
coincide. Once the notch material yields, Kσ and Kε take different values. Nevertheless, the
geometrical mean of both values remains equal to the theoretical elastic stress concentration
factor.

The relation is frequently used in a simple analysis method to predict local notch
root stress-strain (σ, ε) conditions from nominal stress-strain (σn, εn). With εn = σn/E,
Equation (8.1) yields

σε = (Ktσn)
2/E = constant, (8.2)

for constant values of σn, the so-called “Neuber-hyperbola”.
The values of local stress, σ, and local strain, ε, at the notch root are obtained by the

intersection of the two following curves in the σ – ε diagram (cf. Figure 8.1):

73
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Figure 8.1: Neuber ana-
lysis of local stress and
strain. Graphical method.

1. the Neuber hyperbola that contains point Kt · σn on Hooke’s straight line of linear
elasticity,

2. the cyclic stress–strain curve.

Neuber’s rule may be extended to account for load reversals. Equation 8.2 then forms:

∆σ∆ε = (Kt∆σn)
2/E = constant. (8.3)

In the present experimental fatigue tests the amount of cyclic plastic strain, ∆εpl, is either
marginal or non-existent. This can be stated from the Neuber correction procedure for the
3D test specimen that shows the largest values of stress concentration and load amplitude.
This graphical procedure is displayed in Figure 8.2. Thus, the application of the static
(tensile) σ – ε curve of the specimens material (cf. Appendix D) seemed to be feasible in
plasticity correction procedures of the fatigue test results displayed in Figure 8.3.

For “mild” notches that show a plastic strain below 5 percent, a modification proposed
by Sonsino [161] cuts the amount of plastic strain by half (cf. Figure 8.1). However, given
the excellent accordance of Neuber’s rule and recent investigations on sharp and shallow
notches with Kt in a range from 12 down to 1.35 [36], the Sonsino suggestion will not be
considered here. As shown in Figure 8.2, local stress is quite insensitive to the amount of
local plastic strain in the present investigation anyway.

The experimental fatigue tests described in Chapter 7 have been carried out at a load
ratio RL = 0.1. Corrected for plasticity effects, the eight test configurations (combina-
tions of specimen shape and loading) show local stress ratios, R, between 0.41 and 0.02
(cf. Table C.1).

In fatigue crack growth calculation later in Chapter 9, the plasticity adjusted values
will present the notch root surface stresses, whereas the stress conditions in the depth are
considered to be unchanged from the nominal conditions with R = RL = 0.1.

8.2 Effect of Stress Ratio
In 1968, Elber [162, 163, 164] discovered that a crack is closed for a considerable portion
of the tensile load cycle. Since a fatigue crack only propagates as long as it is open, the
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Figure 8.2: Trailing edge specimen fatigue test. Neuber stress and strain correction and
hysteresis loop. Kt = 1.678, RL = 0.1, σan = 410 MPa. R = −0.41, σa = 493 MPa.

crack closure phenomenon is a primary parameter to fatigue crack growth. For constant-
amplitude loading, Elber introduced an effective stress intensity factor, ∆Keff, as the dif-
ference between the maximum stress intensity factor at σmax, Kmax, and the crack opening
stress intensity factor, Kop:

∆Keff = Kmax −Kop . (8.4)

Several experimental techniques to determine Kop have been developed. By an optical
measurement method which is in use since 1976, the crack opening load is obtained from the
load vs. differential displacement curve. The so-called linear fitting and offset compliance
technique uses microgauge crack opening values. It is recommended by the American
Society for Testing and Materials [165] due to its experimental simplicity.

In 1997, Donald [166, 167] showed that crack tip activity affects growth rates already
below the opening load, most significantly near the threshold value ∆Kth. Paris et al. [168]
suggest correction factors for the “apparently overstated” crack opening stress intensity
factor. At this, they assume partial crack closure to be present due to crack surface
roughness at a small distance behind the crack tip.

As experimental methods require vast amounts of time and resources, empirical meth-
ods are always welcome. The Walker Equation (8.5) estimates the effect of the stress ratio,
R, on the crack growth rate with an empirical fit [169]. For constant amplitude loading it
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is reasonable to assume that the compressive portion of the load cycle does not contribute
to fatigue crack growth. Walker introduces an effective stress, σ, that “predicts the effect of
the stress ratio [169]”, thus results in the same crack growth rate as any actual combination
of σmax and R:

σ = σmax(1−R)γ (8.5)

where γ is a material dependent correction factor. For AISI 4340 (DIN 40NiCrMo 6 -
1.6565) annealed steel, γ takes the values 0.42 and 0 for R ≥ 0 and R < 0, respectively [170].
With Kmax = ∆K(1−R)−1 derived from equations (3.3) and (5.3), the Paris Equation (9.2)
becomes

da

dN
= C0

(
∆K

(1−R)1−γ

)m0

(8.6)

where C0 and m0 denote the material constants for R = 0.
It can be shown that the resulting da/dN vs. ∆K curves on a log-log plot are parallel

straight lines of slope m0 [171]. After some rearrangement becomes (8.6)

da

dN
=

C0

(1−R)m1(1−γ)
(∆K)m0 . (8.7)

Thus, constants C and m of the Paris equation (9.2) become

C =
C1

(1−R)m1(1−γ)
, m = m0. (8.8)

This means that the slope m is unaffected by the stress ratio, R.
The solution of Smith, Watson and Topper [172] proposes γ = 0.5 for metallic materials,

independently of R.
The sn data of the present investigation displayed in Figure 8.3 have been transformed

to R = 0 by applying the Walker Equation (8.5). The γ values of [170] introduced above
apply to fatigue crack growth only. In the present fatigue tests, the most part of fatigue
life may be considered to be governed by fatigue crack growth. Adjustment of stresses due
to these γ values is therefore of tentative character.
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Figure 8.3: sn curves for R = 0 according to Walker [169], corrected for local plasticity
after Neuber [34].





Chapter 9

Fatigue Crack Growth Analysis

9.1 Introduction

9.1.1 Regimes of Fatigue Crack Growth

The application of linear elastic fracture mechanics (lefm) methods to structural fatigue
life prediction problems has gained widespread acceptance since the pioneering work of
Paris and co-workers [173, 174, 175] starting in 1961. They were the first to relate the in-
crement of fatigue crack propagation per stress cycle to the range of Irwin’s stress intensity
factor, K (5.1),

∆K = Kmax −Kmin = ∆σ∞F
√

πa (9.1)

in the power law function

da

dN
= C(∆K)m (9.2)

where the constants C and m are dependent on the material microstructure, environment,
temperature and the stress ratio, R (3.2).

Paris’ law (9.2) describes fatigue crack growth with a linear variation of log da/dN
vs. log ∆K. This stable crack growth behaviour characterises regime B of the fatigue
resistance curve in Figure 9.1. At extreme values of ∆K, crack growth rates change and
the fatigue resistance curve becomes sigmoidal for most engineering alloys.

Below the threshold value for fatigue crack growth, ∆Kth, the behaviour of short cracks
may be different from the fatigue resistance curve of Figure 9.1. One of the outstanding
characteristics of a short crack is that it stays open [176],[177],[178],[179]. Thus, the plastic
zone of the small crack lacks the protective effect crack closure gives to long cracks. This
is valid even if Rmin < 0. The transition from closure-free short-crack behaviour to the
closure-influenced long-crack behaviour was studied and documented by Blom and co-
workers [180]. Journet et al. [178] and Nicholls et al. [179] have observed that in the large
majority of cases, small-crack propagation rates exceed those of long cracks based on the
development of crack closure with increasing crack length.

The average growth increment of long cracks however becomes smaller as the fatigue
resistance curve approaches ∆Kth in regime A for decreasing crack growth rates.

79
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Figure 9.1: Different regimes in fatigue crack propagation. Near-threshold regime A, Paris
regime B, high growth rate regime C.
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Figure 9.2: Plastic superposition for unloading. Adding (b) for load −∆L with a doubled
yield stress to (a) gives solution (c) that results after unloading from L to L−∆L. Reloading,
L−∆L to L restores (a). Adapted from Rice [181].
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66a Figure 9.3: Plastic zone size and lefm

requirements. Characteristic lengths of the
semi-elliptic surface crack due to Irwin [72].

9.1.2 Size of plastic Zone

The application of lefm to fatigue crack growth calculation presumes that the size of the
plastic zone at the crack tip, 2r0, is much smaller than characteristic lengths of the crack.
For static loading, Irwin [72] estimates

2r0 =
1

3π

(
KI

σ0

)2

(9.3)

for plane strain conditions. σ0 is the tensile yield stress of the material. For plane stress
this is noted to be three times as large.

According to Rice [181], KI and σ0 may be substituted by ∆KI and 2σ0, respectively,
for cyclic loading, ∆L. This is due to the occurrence of reverse plastic flow in the plastic
crack tip region with the first increment of load reduction, L−∆L. As shown in Figure 9.2,
plastic superposition for unloading adds twice the negative yield stress to the monotonic
plastic zone which is restored under reloading, L − ∆L to L. The resulting stress range
becomes ∆σ = 2σ0 for cyclic loading, ∆L.

For a semi-elliptic surface crack, Irwin suggests the characteristic lengths to be (a) the
depth at the quarter points of the crack surface length, which is 0.866a and, (b) the semi-
axis c of the ellipse, which is the crack length (cf. Figure 9.3). In the cases investigated and
presented in this publication, the described characteristic lengths exceed the cyclic plastic
zone size for plane stress conditions (derived according to Rice [181]) by a factor > 12.
Thus, the required condition 2r0 ≤ c/10 proposed by Irwin [182] for lefm is fulfilled.

Another criterion for the application of lefm to fatigue crack growth is defined in
ASTM E 647 [165]. Here it is required that any significant dimension, d, satisfies the
relation

d ≥ 4

π
(KI/σ0)

2 . (9.4)

For a semi-elliptical surface crack e. g., d would be the in-plane size of the specimen’s
uncracked ligament. In other words, plasticity limitations on lefm are satisfied if the
distance of the crack tip to any of the specimen’s surfaces ahead of the crack tip is four
times the size of the plastic zone, 2r0.

9.1.3 Application of sif Solutions

As already mentioned in Chapter 5, for accurate calculation of fatigue crack propagation
at notches it is required to consider variations in stress and geometry conditions as the
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Figure 9.4: Geometric notation for semi-elliptical surface crack at location of highest stress
concentration in T-joint under nominal bending loading.

crack grows. Thus, for crack growth calculation it is necessary to adjust the stress intensity
factor range, ∆K (9.1), for every single crack propagating load cycle.

However, in some cases blocks of constant stress cycles (fixed increments of crack
growth) or constant crack growth rate (finite crack growth increments) for approximate
but conservative approaches seem to be reasonable ([101] chapter S.2). The crack growth
simulation code franc3d (cf. Section 5.3.5) propagates cracks in increment blocks with
constant values of ∆K. Here, cycle-by-cycle calculation of the sif by means of bem would
be too time-consuming.

Solutions for the cycle-by-cycle determination of both the stress field around the crack
and the geometrical factor, F , of the stress intensity factor for semi-elliptical surface cracks
in plates and semi-finite bodies are presented in Chapter 5. It could be shown that the
application of such solutions to notched areas seems to be feasible.

In the following, some of the sif solutions presented in Chapter 5 shall be implemented
and their application to Paris-type fcg simulation shall be demonstrated.

9.2 Pommier et al. sif Code Implementation
In Chapter 4, the growth of a semi-circular fatigue crack in a homogeneous stress field
was studied. Now, the more general case of the growth of a semi-elliptic fatigue crack in
a (spatially) variable stress field will be analysed, employing stress intensity factors of the
Pommier et al. [113] engineering code presented in Section 5.3.3.

In particular, the stress field below the surface of the T-joint transition arc shall be
considered. It is assumed that the fatigue crack will initiate somewhere along the line of
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maximum principal stress and propagate on a plane defined by this line (z-axis) and the
direction of the steepest stress descent (x-axis). In the standard quarter-circular shaped
T-joint transition of Figures 3.4 (page 18) and 9.4, the zx-plane is at an angle γ ≈ 10 ◦ to
the horizontal ZX-plane.

In the present case, the largest principal stress, σ1, varies with the x-co-ordinate only
and can be written as

σ1(x) = k (x/t1) · σn , (9.5)

where, by definition,

k(0) ≡ Kt . (9.6)

If x/t1 � 1, the dimensionless function k(x/t1) is well approximated by the polynomial

kn (x/t1) =
n∑

i=0

δi · (x/t1)
i . (9.7)

If kn were an exact representation of k, then δ0 ≡ Kt .

In order to determine the relevant stress distribution of the current T-joint with suffi-
cient accuracy, a particularly fine mesh was used which is not necessarily representative of
a standard design calculation. The circles in Figure 6.9 on page 57 show the normalised
nodal stresses along the x-axis, k(x/t1) ≡ σ1/σn for the standard quarter-circular shaped
T-joint transition. For 0 ≤ x/t1 ≤ 0.25, the nodal stresses are well fitted by the 3rd order
polynomial (the respective full line in Figure 6.9)

k3 (x/t1) = 1.3133− 8.0947 · (x/t1) + 30.021 · (x/t1)
2 − 48.898 · (x/t1)

3 . (9.8)

In the problem of the T-joint, stresses do not vary in z-direction. Thus, Equation (5.14)
from page 40 becomes

σ1(x) =
3∑

i=0

σi0 (x/a)i . (9.9)

By comparing Equation (9.9) with Equations (9.5) and (9.7), we obtain

σi0 ≡ δi · (a/t1)
i · σn , i = 0 . . . 3 . (9.10)

Combining Equations (5.15) and (9.10) yields the following equations for the stress intensity
factors at points A(a;0) and C(0;c) (cf. Figure 9.4)

KA = GA(a/c) · σn ·
√

a (9.11)

KC = GC(a/c) · σn ·
√

a (9.12)

where the geometry factors

GA =
3∑

i=0

δi · (a/t1)
i ·Gi0 (φ = π/2; a/c) (9.13)
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Table 9.1: Number of lcf cycles
(
∆σ1(x = 0) = 500 MPa, m = 3, C = 10−11

)
required for

an initially semi-circular surface crack to become critical with respect to vibrational loading
(D = 0.1).

Stress field and type of crack growth analysis ai = ci [mm] ac [mm] cc [mm] N

Membrane stress field (simplified analysis) 0.5 1.44 1.44 14 550
Membrane stress field (Pommier analysis) 0.5 1.45 1.69 15 900
T-joint stress field (Pommier analysis) 0.5 2.81 4.67 35 700
Membrane stress field (simplified analysis) 1.0 1.44 1.44 4 180
Membrane stress field (Pommier analysis) 1.0 1.51 1.69 5 370
T-joint stress field (Pommier analysis) 1.0 2.85 4.72 22 150

GC =
3∑

i=0

δi · (a/t1)
i ·Gi0 (φ = 0; a/c) (9.14)

As mentioned before in Section 5.3.3, it has been assumed that the influence of the finite
blade thickness, t1, can be neglected for low relative crack depths, a/t1.

9.2.1 fcg in the Stress Field of the quarter-circular T-joint Trans-
ition

Now the equations of Pommier et al. [113] are applied to the growth of a semi-elliptic
fatigue crack in the zx-plane below the surface of the T-joint. Based on Equation (9.2),
the growth of the semi-axes of the crack is determined by

da

dN
= C · (∆KA)m (9.15)

da

dN
= C · (∆KC)m (9.16)

where the stress intensity ranges are given by Equations (9.11) and (9.12) with the nominal
stress range, ∆σn, substituted for σn.

In particular, the growth of an initially semi-circular surface crack shall be considered,
i. e.

a(N = 0) = c(N = 0) = ai . (9.17)

This case was investigated in Chapter 4 for a homogeneous stress distribution with the
stress range equal to that at the most highly loaded location of the T-joint. The semi-
circular crack was then assumed to retain its shape (GC = GA) as it grew under the
start-stop lcf cycle. The initial crack size was determined such that the stress intensity
range along the crack front under the vibrational hcf cycle remained below the threshold
value for a given number of lcf cycles.
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For the sake of completeness, the growth of similar initial cracks in a homogeneous stress
field has also been analysed taking Equations (5.14), (5.15) and (9.11)–(9.16) into account.
For ∆σ1(x = 0) = 500 MPa, D = 0.1 and t1 = 20 mm, the crack growth equations (9.15)
and (9.16), with C and m taken from Equation (4.6), have been integrated by means of a
5th order Runge-Kutta-Fehlberg scheme [183]. The step-wise integration is continued until
∆Khcf ≥ ∆Kth(Rhcf) is satisfied everywhere along the crack front, which is the definition
of failure introduced in Chapter 4.

The history of crack development, a(N) and c(N), is shown in Figure 9.5. The number
of cycles required for the initially semi-circular crack to become critical (with respect to the
vibrational loading) is somewhat higher than that obtained by the preceding, simplified
analysis (cf. Table 9.1).

Using the same assumptions, crack growth in the spatially variable stress field of the
T-joint was also analysed. As can be seen from Table 9.1, the number of cycles required
for the crack to become critical is larger than that predicted for the membrane stress field.
Since the crack is growing into an area of reduced stress, the in-depth growth rate, da/dN ,
becomes lower than that at the surface, dc/dN , i. e. c > a as shown in Figure 9.5. Since
the model’s range of validity (0.5 ≤ a/c ≤ 2) is only violated in the final phase of crack
propagation, this is considered to have only a minor influence on the number of cycles
predicted.

9.2.2 Shape Optimisation and fcg Methodology

A number of shape optimised T-joint transitions have been presented in Chapter 6. For
different shapes of the transition, the maximum stress concentration is found at different
locations on the transition surface (cf. Figures 6.4–6.8, 6.12 and 6.13). Consequently,
fatigue cracks in the optimised T-joint specimen are likely to initiate and propagate from
a location different from the γ ≈ 10 ◦ location which is for the standard quarter-circular
shaped T-joint transition (cf. Figure 9.4).

In analogy to the procedure described above in the beginning of Section 9.2 for the
quarter-circular shaped T-joint transition, the crack propagation path 3rd-order stress field
polynomials of the optimised T-joint shape solutions A–D, kopt(x/t1), have been found to
be

k
opt(A)
3 (x/t1) = 1.0212− 2.2894 · (x/t1) + 0.7415 · (x/t1)

2 − 0.4529 · (x/t1)
3 (9.18)

k
opt(B)
3 (x/t1) = 1.1159− 3.7001 · (x/t1) + 4.8760 · (x/t1)

2 − 3.4065 · (x/t1)
3 (9.19)

k
opt(C)
3 (x/t1) = 1.1618− 4.6886 · (x/t1) + 8.5251 · (x/t1)

2 − 6.7884 · (x/t1)
3 (9.20)

k
opt(D)
3 (x/t1) = 1.1215− 3.9855 · (x/t1) + 5.6386 · (x/t1)

2 − 3.2532 · (x/t1)
3 (9.21)

for 0 ≤ x/t1 ≤ 0.35.
For conditions similar to the calculations of Section 9.2.1, fcg of initially semi-circular

cracks in the stress fields described by Equations (9.18)–(9.21) produce Figure 9.6. As
shown in Table 9.2, the crack that propagates from shape A allows the largest number of
lcf fatigue cycles before hcf occurs and therewith Nf is reached. The development of the
crack front in the case the quarter-circular and the shape D optimised transition is shown
in Figure 9.7(a) and (b), respectively, in fixed increments of ∆N = 5000.

Fatigue life of the standard quarter-circular shape is exceeded by a factor up to 1.8.
With an increase by factor 1.5, shapes B and D still show a significant increase in life cycles.
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Figure 9.5: Growth of semi-elliptical surface cracks in zx-plane of the T-joint shown in
Figure 9.4 for t1 = 20 mm, ∆σ1(x = 0) = 500 MPa, m = 3, C = 10−11.
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Figure 9.6: Growth of semi-elliptical surface cracks in T-joint zx-plane. Standard quarter-
circular and shape optimised transition geometries, t1 = 20 mm, ∆σ1(x = 0) = 500 MPa,
m = 3, C = 10−11.
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Table 9.2: Optimisation efficiency, ηopt (9.22), for ι = 0.3. The influence of different
optimised shapes on stress concentration and fatigue life.

Optimisation shape approach case Kt Nf
Nopt
Ncirc

Lopt
Lcirc

ηopt

A 1.022 64 730 1.813 1.99 1.47
B 1.119 53 240 1.491 1.28 1.38
C 1.162 50 500 1.415 0.76 1.54
D 1.121 55 000 1.541 0.91 1.58
Not optimised 1.322 35 700 (1) (1) (1)
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Figure 9.7: Shapes of semi-elliptical fatigue cracks. Propagation in steps of ∆N = 5000 to
failure (red shape) in stress field of (a) quarter-circular, (b) shape optimised (case D) T-joint
transition for t1 = 20 mm, ∆σn = 500/1.322 MPa, m = 3, C = 10−11.

Fatigue life in Shape C is still enhanced by a factor 1.4, and it seems to be noteworthy that
this increase in life was achieved with a transition curvature length, Lnc, which is shorter
than the respective dimension in the standard quarter-circular transition.

In an attempt to assess the optimised shapes with respect to the favoured effects of
(i) life increase and (ii) lower manufacturing costs due to a shorther length of the transition
curvature (i. e. reduced welding and machining), an optimisation efficiency factor, ηopt, shall
be introduced with

ηopt =
Nopt

Ncirc
·
(

Lnc,circ

Lnc,opt

)ι

(9.22)

where the cost influence may be reduced by choosing 0 ≤ ι < 1. With ι = 0.3, Table 9.2
reveals that shape D is the most efficient shape solution with regard to increased life at
low manufacturing costs.

9.3 Carpinteri et al. sif Code Implementation

Now, the sif solution of Carpinteri et al. [126] will be employed. Similar to the work of
Pommier et al., the procedure presented in Section 9.3.1 solves general 3D fatigue crack
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growth problems with crack sizes small with respect to the structural component. The
procedure consists of the following steps:

1. Calculation of the sifs by means of fea for a finite thickness plate under elementary
stress distributions applied to the crack faces.

2. Evaluation of the uncracked stress field in the structural component.

3. Approximate sif evaluation for the real cracked structural component by employing
the results deduced in step 1, and by applying the superposition principle and the
power series expansion of the actual stress field determined in the previous step 2.

4. Fatigue crack growth analysis by applying Paris’ crack propagation law [175].

9.3.1 sifs for T-joints

Again, growth of a semi-elliptic fatigue crack in the zx-plane below the surface of the T-joint
(cf. Figure 9.4) shall be considered. As mentioned in Section 7.1.2, the loading condition
of the experimental tests performed consists of a transversal force, F . In addition to a
bending moment that causes mode I crack surface displacement, F induces a shear stress
into the blade which results in (sliding) mode II crack surface displacement of the surface
crack in Figure 9.4.

The work of Carpinteri at al. [126] employs an equivalent sif, Keq = Keq(KI, KII),
where KII is computed according to a solution of [184].

In the experimental fatigue tests performed, the shear stress, τ0, is less than 2 % of the
largest nominal bending stress, σbn. As mentioned above in Section 7.1.2, τ0 shall therefore
not be subject of further considerations. Moreover, ignoring τ0 maintains comparability
between the Pommier et al. [113] and Carpinteri et al. [126] sif values and fcg results.

For the T-joint transition, the distribution of the largest principal stress in the x-
direction beneath the location of the highest stress concentration of the uncracked speci-
men, σ1(x), (cf. Figure 9.4 and Section 9.2) can be described by the 5th-order polynomial

k5 (x/t1) = 1.3077− 7.8008 · (x/t1) + 28.836 · (x/t1)
2 − 63.878 · (x/t1)

3 +

+70.766 · (x/t1)
4 − 30.092 · (x/t1)

5 (9.23)
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Table 9.3: Coefficients Bn(b) obtained from a numerical interpolation of the actual stress
distribution at the location of largest principal stress in the T-joint under bending load, for
relative crack depths, ξ = a/t1, in the range 0 ≤ ξ ≤ 0.7. (a) Quarter-circular transition.
(b) Shape optimised (case D) transition. (c) Nominal section (pure bending).

(a) Coefficient Bn(b,circ) , n = 0, . . . , 5

B0(L) = 1.3077− 7.8008 · ξ + 28.836 · ξ2 − 63.878 · ξ3 + 70.766 · ξ4 − 30.092 · ξ5

B1(L) = 7.8008 · ξ − 57.672 · ξ2 + 191.634 · ξ3 − 283.064 · ξ4 + 150.46 · ξ5

B2(L) = 28.836 · ξ2 − 191.634 · ξ3 + 424.596 · ξ4 − 300.92 · ξ5

B3(L) = 63.878 · ξ3 − 283.064 · ξ4 + 300.092 · ξ5

B4(L) = 70.766 · ξ4 − 150.46 · ξ5

B5(L) = 30.092 · ξ5

(b) Coefficient Bn(b,opt) , n = 0, . . . , 5

B0(L) = 1.1215− 3.9659 · ξ + 5.1553 · ξ2 − 0.004 · ξ3 − 8.149 · ξ4 + 6.3835 · ξ5

B1(L) = 3.9659 · ξ − 10.3106 · ξ2 + 0.012 · ξ3 + 32.596 · ξ4 − 31.9175 · ξ5

B2(L) = 5.1553 · ξ2 − 0.012 · ξ3 − 48.894 · ξ4 + 63.835 · ξ5

B3(L) = 0.004 · ξ3 + 32.596 · ξ4 − 63.835 · ξ5

B4(L) = −8.149 · ξ4 + 31.9175 · ξ5

B5(L) = −6.3835 · ξ5

(c) Coefficient Bn(bn) , n = 0, 1

B0(L) = 1− 2ξ

B1(L) = 2ξ

for the quarter-circular T-joint transition. In the case of the case D shape optimised
transition, σ1(x) yields

k
opt(D)
5 (x/t1) = 1.1215− 3.9659 · (x/t1) + 5.1553 · (x/t1)

2 − 0.004 · (x/t1)
3 −

−8.149 · (x/t1)
4 + 6.3835 · (x/t1)

5 (9.24)

for 0 ≤ x/t1 ≤ 0.7.
The coefficients Bn(L) (cf. Table 9.3) are then determined by applying Equation (5.21),

where the terms d(n)σb(w)/dw(n) can be approximated by a polynomial fitting of the stress
distribution σ1(w). The in-crack-plane co-ordinate, w, has its origin at the deepest point
on the crack front, A, and is directed in the opposite direction of x (cf. Figure 9.8). The
approximate dimensionless sif (5.18), K∗

I(b), is obtained from Equation (5.23).

K∗
I vs. Crack Depth

The dimensionless stress intensity factor K∗
I(b,circ) for a cracked plate with the crack loaded

by the stress distribution σ1(x) = σb,circ(x) of the quarter-circular transition is plotted in
Figure 9.9(a) against the relative crack depth, ξ = a/t. σb,opt(x) represents the stress field
in the case D type shape optimised T-joint transition. The related sif K∗

I(b,opt) is given
in Figure 9.9(b). K∗

I(bn) for a cracked plate subjected to stresses σbn(X) (cf. Figure 9.4),
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Figure 9.9: Dimensionless sif against ξ for different values of the crack aspect ratio,
α = a/c, and stress distributions from nominal bending load at three T-joint locations.
(a) Quarter-circular transition, σb,circ. (b) Shape optimised transition, σb,opt. (c) Nominal
section, σbn.

where the subscripts b and n stand for “bending” and “nominal”, respectively, is displayed in
Figure 9.9(c). The nominal case corresponds to that of the T-joint under bending loading,
with the surface crack located in the nominal section, far from the geometrical transition.

For the lowest relative crack depths, stress intensity factors for the surface-cracked
quarter-circular T-joint geometry show decreasing values at both the near-surface point,
B, and the deepest point, A (cf. Figure 9.9(a)). For higher values of ξ, K∗ values at point B
increase again but recover entirely only for α = a/c = 0.2. All K∗ values at point A show
an increase for ξ ≥ 0.4. For higher ξ values, the high-α curves almost recover up to values
which they show for the lowest values of ξ. The α = 0.2 curve exceeds the initial, low-ξ
K∗ values for ξ > 0.6.

For the case of the shape optimised transition (cf. Figure 9.9(b)), K∗ values are generally
lower than for the crack in the quarter-circular transition. The dimensionless sif K∗

I(b,opt)
at points A and B monotonically decreases for increasing ξ values. Only for α = 0.2, K∗

values at both points show an increase for higher relative crack depths.
In the nominal bending stress field (cf. Figure 9.9(c)) the trend is similar to that dis-

cussed for the crack in the shape optimised transition, with K∗ values generally lower. For
all the considered values of the crack aspect ratio, α, the dimensionless sif K∗

I(bn) at the
deepest point, A, monotonically decreases by increasing the relative crack depth. At the
near-surface point, B, the behaviour is different only for low values of the crack aspect
ratio: for α = 0.2, it can be observed a monotonic increase of K∗ for increasing values of
the relative crack depth, ξ.

Variation of K∗
I along the Crack Front

The stress concentration effect on the sif is analysed for different points along the crack
front. For different values of ξ = a/t and α = a/c, results are plotted in Figure 9.10 for a
cracked plate under the stress distribution σb,circ(w) (cases (a)–(c), Kt = 1.32), the stress
distribution σb,opt(w) (cases (d)–(f), Kt = 1.12) and the stress distribution σbn(w) (cases
(g)–(i), Kt = 1.00).
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Figure 9.10: Dimensionless sif along the crack front for different values of ζ and α, in
different T-joint stress fields. (a)–(c) Quarter-circular transition. (d)–(f) Shape optimised
transition. (g)–(i) Nominal section far from the transition.
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Table 9.4: Dimensionless stress intensity factors for different opening stresses: Constant
(K∗

I(0)) elementary stresses; σbn(w) bending stresses (K∗
I(bn)), σb,circ(w) local stresses at

quarter-circular transition (K∗
I(b,circ)) and σb,opt(w) local stresses at shape optimised trans-

ition (K∗
I(b,opt)).

K∗
I(b,circ) K∗

I(b,opt) K∗
I(bn) K∗

I(0)

α ξ 0.1 0.4 0.7 0.1 0.4 0.7 0.1 0.4 0.7 0.1 0.4 0.7
0.2 A 0.958 0.777 1.260 0.911 0.722 0.775 0.886 0.750 0.630 1.009 1.333 1.920

B 0.693 0.599 0.745 0.630 0.590 0.684 0.588 0.608 0.706 0.625 0.804 1.232
0.6 A 0.733 0.462 0.649 0.702 0.418 0.276 0.687 0.437 0.149 0.790 0.871 0.928

B 0.734 0.552 0.554 0.673 0.547 0.501 0.632 0.573 0.520 0.679 0.790 0.983
1.0 A 0.561 0.322 0.476 0.542 0.285 0.148 0.535 0.298 0.032 0.622 0.661 0.647

B 0.702 0.491 0.437 0.646 0.489 0.391 0.609 0.516 0.408 0.657 0.727 0.816

For ξ = 0.4, the dimensionless stress intensity factor K∗ values are quite similar for all
stress fields considered (e. g., see (b), (e) and (h)), while the values are significantly lower
for the shape optimised transition and yet lower for the nominal section, compared to the
values for the quarter-circular stress field if high values of ξ are examined (for example, see
(c), (f) and (i)). The same tendency is shown for ξ = 0.1, with differences in values just
marginal.

Furthermore, for low values of ξ (cf. Figures 9.10(a), (d) and (g)), the dimensionless
stress intensity factors increase for low values of α and decrease for high α values. On
the other hand, for high values of ξ, K∗

I(bn) decreases for all the considered values of α

(cf. Figure 9.10(i)). The behaviour of the stress intensity factor K∗
I(b,opt) is similar to that

of K∗
I(bn), except that K∗

I(b,opt) increases for high values of ξ and low values of α (cf. α = 0.2

in Figure 9.10(f)).
It may be remarked that an increasing stress concentration factor, Kt, leads to an

increase of the dimensionless stress intensity factor, K∗, especially in the deepest point on
the crack front (point A, ζ/b = 1.00).

Some values of the dimensionless sifs at point A and point B of a surface crack in
a plate under σb,circ, σb,opt and σbn opening stresses are reported in Table 9.4 for several
values of ξ and α. sifs under constant elementary stress are reported in the last column.

9.3.2 fcg Simulation

Employing the sif results found in the previous section, the growth of a semi-elliptical
surface crack in a plate due to mode I fatigue loading calculated using the Paris law (9.2).
Propagation rates are calculated for the deepest point on the crack front, A, and for the
near-surface point, B, which is situated at ζ/c = 0.1 (cf. Figures 9.8, 5.7 and Section 5.3.4).
Values of K∗

I(n) at the surface point, C, have not been computed (cf. Section 5.3.4).
Points A and B propagate in the zx-plane perpendicular to the crack front (cf. Fig-

ure 9.11). It is assumed that the crack front hereby keeps its semi-elliptical shape. Thus,
under one cyclic loading the crack front with semi-axes a and c grows to a new configuration
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c Figure 9.11: Two-parameter model of fa-
tigue crack growth.

that is defined by the expression

x2

(a∗)2 +
z2

(c∗)2 = 1 (9.25)

where a∗ and c∗ are the semi-axes of the surface crack after one load cycle (Figure 9.11).
Fatigue crack growth paths are generated numerically for different initial surface cracks

and for three cyclic stress fields, σb,circ, σb,opt and σbn (cf. Figures 9.12(a)(d), (b)(e) and
(c)(f), respectively). Loading conditions and initial ξ values of the numerical simulations
are chosen according to the experimentally observed surface cracks.

Beach mark data for cracks that propagated in the stress field of quarter-circular and
shape optimised T-joint specimen transitiones were created in experimental fatigue tests
presented in Chapter 7 (cf. Table 7.2). Here, the nominal loading conditions are character-
ised by the stress range ∆σbn = 820 MPa and the load ratio RL = 0.1 Material constants
in the Paris Equation (9.2) for R = 0.1 were employed and were assumed to be m = 3.26
and C = 3.85 · 10−13 (with da/dN expressed in m/cycle and ∆K in MPa

√
m).

Beach mark data of the crack in the nominal T-joint section are taken from [157]. The
respective load data are ∆σbn = 616 MPa and RL = 0.3. Here, Paris data for R = 0.5
were employed, giving m = 3.1 and C = 2 · 10−12.

Fatigue crack propagation paths in the diagram of α = a/c against ξ = a/t are shown in
Figures 9.12(a)–(c) for σb,circ(w), σb,opt(w) and σbn(w), respectively. Seven different initial
cracks are considered (No.s from 1 to 7), with an initial shape defined by two parameters
(ξi, αi): the relative crack depth, ξi, is equal for all the six cracks of each stress field
considered, whereas the initial flaw aspect ratio, αi, ranges from 0.2 to 1.2.

As can be observed in Figure 9.12, fatigue crack growth paths tend to converge to a
common asymptote. For the cracked nominal section and the cracks that grow in the stress
field of the shape optimised T-joint transition, the crack configurations approach decreasing
values of α for increasing values of ξ. The slope of the nominal section asymptote in
Figure 9.12(c) is steeper than the one in Figure 9.12(b) for the shape optimised transition.
In the case of the quarter-circular transition stress field, fatigue crack growth paths converge
to a common α value that increases for higher ξ values (cf. Figure (9.12(a))).

Experimental results are reported in Figure 9.12(d)–(f), where the solid symbols indi-
cate the values of ξ and α for the semi-ellipses that best fit the “beach marked” crack fronts
during the fatigue tests performed (cf. Section 7.1.3). As can be observed, the numerical
fatigue crack growth paths are in satisfactory agreement with the experimental results.
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Figure 9.12: Development of fatigue cracks in different T-joint stress fields for different
initial values of α. (a)(d) Quarter-circular transition. (b)(e) Shape optimised transition.
(c)(f) Unnotched nominal section. Numerical Simulation (curves 1–7) and beach mark results
from experimental fatigue testing (circular symbols).
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In Figures 9.12(d)–(f) the number of loading cycles, N , against the relative crack depth,
ξ, is displayed for the stress distributions σb,circ(w), σb,opt(w) and σbn(w), respectively. The
seven initial flaws (No.s 1–7) considered in Figures 9.12(a)–(c) are examined. Again, beach
mark data from experimental tests are displayed. It can be observed that the depth of
the surface crack grows more rapidly for initial low values of α (for instance, crack No. 1)
compared to cases characterised by high values of α (for instance, crack No. 7).

A more detailed presentation of these comparative results is provided in Section 9.4.3.

9.4 Methods Comparison

So far, different stress intensity factor solutions for linear and non-linear stress gradients
in surface-cracked plates have been presented. A fatigue crack growth methodology for
Francis runner surface cracks has been established and applied to cracks in standard and
shape optimised transitions, employing sifs of Pommier et al. [113]. Applying the work of
Carpinteri et al. [126], beach marks from experimental fatigue testing have been investi-
gated by fatigue crack growth simulation.

Comparative investigations of the different sif solutions and the individual fcg meth-
ods associated are carried out in the following.

9.4.1 sif Values

Figures 9.13 to 9.16 show the dimensionless stress intensity factors, K∗, of the Pommier
et al. [113] and the Carpinteri et al. [126] solutions for relative crack depths ξ = 0.1, 0.2,
0.3 and 0.5. Since Pommier et al. consider the semi-infinite body, sif values displayed for
a certain relative thickness, ξ, are here calculated for a crack depth, a, obtained for the
finite thickness solutions [102, 126]. The stress fields considered are again T-joint stress
distributions from nominal bending loading in the quarter-circular transition, σb,circ, in
the shape optimised transition, σb,opt, and in the nominal section, σbn. Additionaly, the
stress field in the nominal section under nominal tensile loading, σtens,n, is displayed. The
solution of Newman and Raju [102] provides sif values for the two latter stress fields and
is reproduced in the respective diagrams. All K∗ values presented are drawn vs. the crack
front location angle, φ, as it is defined in Figure 5.6 on page 40.

For ξ = 0.1 (cf. Figures 9.13(a)–(d)), K∗ values generated by the Pommier et al.
solution for the deepest point, A, exceed the Carpinteri et al. values by 0.025–0.035. This
is observed for all stress distributions and for all considered crack aspect ratios, α. For the
near-surface point, B, Pommier and Carpinteri sifs are approximately the same for α = 1.0
and 1.2. For lower α values, Pommier values exceed those of Carpinteri by 0.04–0.06.

For high values of α, Newman-Raju values follow the Pommier solution for all points
along the crack front. For lower α, Newman-Raju sif values exceed Pommier values
between points A and B. For for α = 0.5, the difference is between 0.025 and 0.1. However,
in points B and C this difference is reduced to 0–0.02.

For ξ = 0.2 (cf. Figures 9.14(a)–(d)) the Carpinteri and Pommier solutions are in good
agreement. In point A the difference in sif values ranges between 0 and 0.02. At point B
the set of curves is more spread for Pommier than for Carpinteri and shows lower sif values
for high values of α and higher sif values for low α values, for all stress distributions.
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Figure 9.13: Dimensionless sif along the crack front for ξ = a/t = 0.1 after solutions
of [102, 113, 126], with φ defined as shown in Fig. 5.6. T-joint stress distributions from
nominal bending (a)–(c) and nominal tensile load (d). (a) Quarter-circular transition, σb,circ.
(b) Shape optimised transition, σb,opt. (c) Nominal section, σbn. (d) Nominal section, σtens,n.
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Figure 9.14: Dimensionless sif along the crack front for ξ = a/t = 0.2 after solutions
of [102, 113, 126], with φ defined as shown in Fig. 5.6. T-joint stress distributions from
nominal bending (a)–(c) and nominal tensile load (d). (a) Quarter-circular transition, σb,circ.
(b) Shape optimised transition, σb,opt. (c) Nominal section, σbn. (d) Nominal section, σtens,n.
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Figure 9.15: Dimensionless sif along the crack front for ξ = a/t = 0.3 after solutions
of [102, 113, 126], with φ defined as shown in Fig. 5.6. T-joint stress distributions from
nominal bending (a)–(c) and nominal tensile load (d). (a) Quarter-circular transition, σb,circ.
(b) Shape optimised transition, σb,opt. (c) Nominal section, σbn. (d) Nominal section, σtens,n.
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Figure 9.16: Dimensionless sif along the crack front for ξ = a/t = 0.5 after solutions
of [102, 113, 126], with φ defined as shown in Fig. 5.6. T-joint stress distributions from
nominal bending (a)–(c) and nominal tensile load (d). (a) Quarter-circular transition, σb,circ.
(b) Shape optimised transition, σb,opt. (c) Nominal section, σbn. (d) Nominal section, σtens,n.
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Table 9.5: fcg methodology results for different sif solutions. Number of lcf cycles(
∆σ1(x = 0) = 500 MPa, m = 3, C = 10−11

)
required for initially semi-circular surface

crack to become critical with respect to vibration loading (D = 0.1).

Stress field Type of crack growth analysis ai = ci [mm] ac [mm] cc [mm] N [cycles]
Membrane simplified 0.5 1.44 1.44 14 550

Newman-Raju [102] 0.5 1.48 1.65 16 340
Pommier et al. [113] 0.5 1.45 1.69 15 890
Carpinteri et al. [126] 0.5 1.78 1.89 24 310

Bending Newman-Raju 0.5 1.75 2.10 20 780
Pommier et al. 0.5 1.72 2.18 20 250
Carpinteri et al. 0.5 2.22 2.59 32 270

T-joint Pommier et al. 0.5 2.81 4.67 35 700
circular Carpinteri et al. 0.5 4.26 6.35 61 580

Newman-Raju fits well for high α but generates sif values that exceed the Pommier
and Carpinteri values for low α values by more than 0.1.

For ξ = 0.3 (cf. Figures 9.15(a)–(d)), methods that consider a finite body thickness
give similar values while Pommier values for low α values fall behind. This effect is most
significant for sif values in the deepest point, A, and especially in the case of the non-linear
stress distributions (cf. Figures 9.15(a)(b)).

For ξ = 0.5 (cf. Figures 9.16(a)–(d)) the trends described above for ξ = 0.3 are in-
tensified, with exception of the nominal bending stress field (cf. Figure 9.15(c)) as here
Carpinteri values are much lower than those derived from Newman-Raju [102] (finite plate
width) and Pommier [113] (infinite width).

9.4.2 fcg Methodology Calculation

In Sections 9.2.1 and 9.2.2, Fatigue crack growth simulation according to the fcg meth-
odology presented in Chapter 4 was calculated for standard and shape-optimised T-joint
geometries. The investigation is now completed by the nominal bending load case and the
Carpinteri et al. fcg method based on sif values presented above. fcg results derived
from Newman-Raju equations (cf. Section 5.3.2) are displayed where applicable.

Values of the relative crack depths covered by the Carpinteri et al. [126] solution (0.1 ≤
ξ ≤ 0.7) are higher than the ξ values of the chosen initial crack configuration. sif values
for the respective crack depths (ξ < 0.1) were therefore generated by linear extrapolation
of the ξ = 0.1 and ξ = 0.2 sif values.

The values displayed in Table 9.5 show excellent agreement between crack depths, crack
lengths and fatigue life results from Newman-Raju and Pommier et al. Further, it becomes
clear that the sif values of Carpinteri et al. [126] that were extrapolated to relative crack
depths below ξ = 0.1 are lower than for other solutions employed.
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9.4.3 fcg Calculation and Beach Marks

It is of interest to find out how well predictions that base on the fatigue crack growth mod-
els presented agree with experimental observations. Results from different crack growth
simulation tools are now compared with beach mark data from experimental fatigue testing
(cf. Section 7.1.4).

Stress Correction for Plasticity

In order to account for plasticity effects at the T-joint transition that occur due to high
loading rates under fatigue testing (cf. Chapter 7), the effect of a local, effective stress range
at the transition surface on the fcg simulation has been investigated. For the Pommier et
al. fcg simulation method, the local stress range at the surface point, C, was reduced to
the local stress amplitude value derived from Neuber plasticity correction (8.3). Further
modification to an equivalent stress amplitude, σa, was performed according to Walker’s
equation for crack closure (8.5). At the deepest point, A, stress conditions were assumed
to show the elastic behaviour as defined in Equations (9.8) and (9.21).

Carpinteri et al. propagate the crack front at the deepest point, A, and at the near-
surface point, B. By definition, the location of B is at x = 0.436a for all crack aspect
ratios, α = a/c. Thus, the point B x-co-ordinate of a crack that propagates in plate
thickness direction changes continuously. As amplitudes of the local stress field for a
certain configuration and for fixed values of x are constant, point B is not as well suited
for modifications of the surface stress field as is point C where stress ranges are constant.

For the relative crack depths and loading conditions considered it is therefore assumed
that stresses at point B are unaffected from plasticity effects that appear in the surface
zone at the transition. Stress field modifications that account for surface layer effects in the
Carpinteri et al. fcg method may preferably be realised by the definition of a completely
new stress field and by new coefficients Bn(L) (5.21) instead.

Stress correction for plasticity effects was performed for the Pommier et al. method
only (cf. “Pommier corr.” curves in Figures 9.17(a) and (b)). The equivalent values of
stress range, ∆σC, employed at the surface point, C, are 892 MPa and 875 MPa in the
stress field of the quarter-circular and the shape optimised T-joint transition, respectively.
Material constants in the Paris crack growth equation (9.2) for both fcg methods and all
points along the crack front are set to the values for R = 0.1, which are m = 3.26 and
C = 6.15 · 10−13. Thus, crack lengths calculated for the “Pommier corr.” curves employing
∆σC are slightly overestimated.

For the specimens showing the quarter-circular and the shape-optimised transition,
σn = 820 MPa and R = 0.1. The number of load cycles that significantly propagate the
crack front between beach marks is ∆N = 4000 and ∆N = 5000, respectively (cf. Fig-
ures 9.17(a) and (b)). In the case of the crack that propagates in the nominal section
under pure bending loading, σn = 616 MPa, R = 0.3 and ∆N = 18 000. Here, m = 3.1
and C = 2 · 10−12 (for R = 0.5)(cf. Figure 9.17(c)).

Results

Already in Section 9.4.2 it was observed that sif values derived from Carpinteri et al.,
which are extrapolated to relative crack depths ξ < 0.1, are relatively low. This is obvious
for the beach marks and calculated crack fronts in the nominal bending stress field in
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Figure 9.17(c), with ai = 1.1 mm and ci = 1.3 mm. The same applies to the stress field
of the quarter-circular T-joint transition (cf. Figure 9.17(a)) where the initial crack shows
ξ < 0.08. In the case of the stress field of the shape optimised T-joint transition, Carpinteri
et al. fcg slightly underestimates beachmarks, especially if further retardation of fcg at
the surface points due to the effect of notch surface plasticity is taken into consideration.

It can generally be stated that the Carpinteri et al. fcg simulation method satisfactorily
reproduces the crack shape aspect ratio of beach marks from experimental fatigue testing.
Extrapolation of sif values to relative crack depths that are below the covered range of
0.1 ≤ ξ ≤ 0.7 underestimates beach marks. As the effect of the finite plate thickness
for small relative crack depths should be marginal, the Carpinteri et al. sif valus are
apparently low for ξ = 0.1. This assumption is substantiated by sif data presented in
Figures 9.13–9.15.

Applying the Pommier et al. sif solution, fcg results are in good agreement with beach
mark results. Overestimation of crack lenghts, c, can be attributed to surface plasticity
effects.
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Figure 9.17: Fatigue crack growth simulation between beach marks from T-joint specimen
tests under nominal bending fatigue loading. (a) Quarter-circular transition (specimen 1.7),
∆N = 4000. (b) Shape optimised transition (specimen 2.7), ∆N = 5000. (c) Nominal
section (beach marks from [157]), ∆N = 18 000.





Chapter 10

Summary

10.1 Discussion and Conclusions

A design procedure for turbine runners has been suggested, which considers the growth
of a crack under start-stop cycles until the crack becomes large enough to grow under
vibrational loading. In particular, fatigue crack growth in the transition between the blade
and the band or crown of a Francis turbine runner has been analysed. The transition
has been idealised by simple models where the transition between the two members is
characterised by constant curvatures.

Finite Element Analysis

The stress concentration factor of the T-joint transition is acceptably predicted by an fe
model, when there are at least 5-6 second-order quadrilateral elements along the quarter-
circular transition arc. A simplified, coarse fe model, neglecting the finite transition
curvature, can be used to compute the undisturbed (nominal) stress field.

Three-dimensional (3D) fea of the trailing edge transition showed that the transition
radius, R, is more decisive for stress concentration than the blade edge radius, r. Moreover,
the blade dimensions of the model proved to have a significant influence on the stress
concentration factor.

Stress Intensity Factors

Comparing various results found in the literature, the detailed component geometry showed
to have only minor impact to the stress intensity factor (sif) values, especially for relatively
small cracks. Therefore, in order to simplify the problem, the stress intensity factors of
semi-elliptic surface cracks in plates under non-linear stress fields are computed by means
of solutions of Pommier et al. [113] and of Carpinteri et al. [126].

The solution of Pommier et al. [113] provides approximate equations derived from body
force analysis. The solution considers a large plate subjected to a 3rd grade polynomial
distribution of the stress field in direction of the crack depth, a, and covers crack aspect
ratios a/c between 0.5 and 2.

In the work of Carpinteri et al. [126], a finite-thickness plate with a semi-elliptical
surface crack has been analysed. Relative crack depths, a/t, between 0.1 and 0.7, and
crack aspect ratios, a/c, between 0.1 and 1.2 are covered. 3D fe analysis has been carried
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out to determine the sif values for different elementary loading conditions applied to the
cracked plate. These loading conditions have been used to model the actual stress field
at the expected crack location in the T-joint specimen and, by applying the superposition
principle and the power series expansion of an arbitrary stress field, an approximate sif
for the cracked T-joint has been obtained.

Shape Optimisation

In order to increase fatigue properties in the critical locations of the Francis runner, the (2d)
T-joint and (3d) trailing edge transitions have been shape optimised. For this, the standard
circular shapes have been modelled employing B-splines. Manual and ansys-automated
iterative modifications of the B-splines then resulted in lower stress concentration. The
following statements can be given:

· The higher the stress concentration, the steeper is the slope of the notch stress
gradient. In the T-joint, the stress slopes of the design solutions considered coincide
at a/t1 = 0.075 (cf. Figure 6.9).

· Stress concentration in the T-joint due to bending load could virtually be eliminated.
The required geometrical changes reduce stress concentration to a minimum but
create a shape that is considered to be more sensitive to manufacturing tolerances.

· In T-joint shape optimisation, a B-spline, defined by end slopes and end point co-
ordinates only, proved to be the most effective design boundary solution for a reas-
onable grade of optimisation, i. e. for a transition zone that is slightly enlarged. This
most effective B-spline boundary solution was also employed in shape optimisation
of the trailing edge transition and resulted in a similar reduction of the stress con-
centration.

· The shape optimisation strategy presented for the trailing edge transition employs
five design variables and yields a number of different shape optimisation solutions.
These local optimum solutions show a level of stress concentration which is only
slightly elevated, compared to the absolute optimisation solution found. The absolute
optimum solution shows the lowest stress concentration at the trailing edge transition
and reduces the problem to only two design variables. Design requirements beyond
mechanical integrity, e. g. hydromechanical design criteria, may be met by a shape
solution that follows a local optimum shape solution. A local optimum solution has
been realised in the optimised 3D fatigue test specimens.

· Reasonable shape optimisation reduces the stress concentration factor, Kt, from 1.32
to 1.12 in the T-joint transition. For the trailing edge specimen, the stress concen-
tration of Kt = 1.68 was reduced to 1.31 in the absolute optimum solution of the
moderately optimised geometry.

Fatigue Testing

Standard circular-shaped and moderately optimised transitions were subjected to experi-
mental fatigue testing. The T-joint specimens underwent stress-relieving annealing treat-
ment after welding. Nevertheless, coarse and inhomogeneous surfaces of cracks in the
welded transition zone attest to the sustained influence of the welding.
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The trailing edge tests revealed a low fatigue strength of cast steel material. Inclusions
and pores of up to 3 mm in size and of various shapes were distributed evenly in the cast
steel material. These defects proved to have a more detrimental effect to fatigue strength
than the stress concentration of the optimised transition.

Further, it can be stated that high-quality hot-rolled steel may show material defects
that are sensitive to fatigue loading: the centre line of the trailing edge specimens coincided
with that of the cylindrically rolled bar stock from which they were machined. All along
this longitudinal axis a material discontinuity was observed. In two of the eight hot-rolled
steel specimens tested, fatigue cracks grew from this material defect, before fatigue cracks
propagated from the (shape optimised) transitions.

Both the shape optimised T-joint and trailing edge specimens showed an increase in
fatigue life by a factor 2–2.5, compared to the quarter-circular shaped specimens.

Fatigue Crack Growth Calculation

Using the sif solutions described above in combination with Paris’ law, the growth of
surface cracks in a variable T-joint stress field can be predicted. Predictions compare well
with beach marks observed in T-joint specimens with quarter-circular and shape optimised
transitions.

Beach mark shapes are reproduced well by the Carpinteri et al. [126] solution. Fatigue
crack growth (fcg) of small cracks at a relative crack depth a/t < 0.2 is somewhat un-
derpredicted due to low sif values compared to the solutions of Pommier et al. [113] and
Newman and Raju [102].

Failure in fcg calculation has been defined by the condition ∆Khcf ≥ ∆Kth(Rhcf)
all along the crack front. This condition may be reconsidered and failure may be defined
earlier for a state with hcf crack growth present at a few points on the crack front.

Exemplary fatigue crack growth calculations of a crack which grows from the location of
highest stress concentration on different T-joint transitions have been performed. For the
moderately optimised T-joint shape D, Pommier-code fcg simulation yields an increase in
fcg life of 54 percent, compared to the standard quarter-circular transition. The T-joint
transition solution that shows the lowest stress concentration factor, Kt = 1.02, increases
fatigue life by 81 percent in the exemplary calculation of fcg in pre-cracked T-joints.
Considering further the results from experimental fatigue testing, the conclusion can be
drawn that shape optimisation is recommendable for Francis turbine runner design.

10.2 Suggestions for further Work
In the course of this work, more sn data of 16Cr-5Ni material derived from notched and
smooth specimens would have been helpful, especially for lives N = 104–106.

In shape optimisation, it should be possible to eliminate the stress concentration at the
trailing edge transition by a further extension of the transition zone.

For low relative crack depths, a/t ≤ 0.2, sif values of the Carpinteri et al. solution
should be revised.

The propagation of fatigue cracks from the Francis runner trailing edge transition might
be investigated by means of franc3d or similar fcg simulation codes. Beach mark results
have been generated in experimental fatigue testing of the trailing edge specimen, and the
comparison with fcg calculations would be interesting.
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In the present work, constant (lcf) amplitude loading has been considered. The fatigue
methodology presented can easily be adjusted for an arbitrary load history. Recording of
representative in-service fatigue load history data and the subsequent application of the
rain-flow method in combination with the Miner rule might be an appropriate method
to adjust loading conditions and thus enhance the accuracy of fatigue life predictions in
specific components.
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Appendix A

Stress Concentration Factor Formula
due to Rainer

In the following table A.1, the stress concentration factor formula published by Rainer [65]
in 1985 is presented. Figures and layout after Dubbel [66].

Rainer’s investigation comprises 100 different round and flat bar geometries showing
grooves and shoulder fillets. On the basis of the stress concentration factor results derived
by means of fea, equations of [185] were modified and integrated in the formula below.

Table A.1: Equation for calculation of concentration factors at notched symmetric bars.

flat bar round bar
notch shoulder fillet notch shoulder fillet
F,Mb r t

2a

F,Mb F,Mb r

2at

F,Mb F,M ,Mb t r t

2a

F,M ,Mb t r
t

F,M ,Mb t F,M ,Mb t

2a

z b z b z b t z b t

A 0.10 0.08 0.55 0.40 0.10 0.12 0.40 0.44 0.40 0.40
B 0.7 2.2 1.1 3.8 1.6 4.0 15.0 2.0 6.0 25.0
C 0.13 0.20 0.20 0.20 0.11 0.10 0.10 0.30 0.80 0.20
k 1.00 0.66 0.80 0.66 0.55 0.45 0.35 0.60 0.40 0.45
l 2.00 2.25 2.20 2.25 2.50 2.66 2.75 2.20 2.75 2.25
m 1.25 1.33 1.33 1.33 1.50 1.20 1.50 1.60 1.50 2.00
z = tension b = bending t = torsion

Kt = 1 +

 A“
t
ρ

”k + B

(
1+a

ρ

a
ρ

q
a
ρ

)l

+ C
a
ρ“

a
ρ
+ t

ρ

”“
t
ρ

”m

− 1
2
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Appendix B

Stress Intensity Factor Solutions

B.1 sif Formulae due to Newman and Raju

These are the Newman and Raju [102] engineering set formulae for the finite plate con-
taining a semi-elliptical surface crack. For 0 < a/c ≤ 1, 0 ≤ a/t < 1, c/b < 0.5 and
0 ≤ φ ≤ π, the stress intensity factor for combined tension and bending loads, St and Sb,
respectively, is

KI = (St + HSb)
√

π
a

Q
F
(a

t
,
a

c
,
c

b
, φ
)

(B.1)

F =
(
M1 + M2ξ2 + M3ξ4

)
fφ gφ fw (B.2)

M1 = 1.13− 0.09α (B.3)

M2 = −0.54 +
0.89

0.2 + α
(B.4)

M3 = 0.5− (1/ (0.65 + α)) + 14 (1− α)24 (B.5)
gφ = 1 +

(
0.1 + 0.35ξ2

) (
1− sin2 φ

)
(B.6)

fφ =
(
α2 cos2 φ + sin2 φ

)0.25 (B.7)

fw =
(
sec
(πc

2b

√
ξ
))0.5

(B.8)

p = 0.2 + α + 0.6ξ (B.9)
G1 = −1.22− 0.12α (B.10)
G2 = 0.55− 1.05α0.75 + 0.47α1.5 (B.11)
H1 = 1− 0.34ξ − 0.11αξ (B.12)
H2 = 1 + G1ξ + G2ξ2 (B.13)
H = H1 + (H2−H1) sinp φ (B.14)
Q = 1 + 1.464α1.65 (B.15)

with α = a
c and ξ = a

t .
f

2c

a

2b

t
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B.2 sif Formulae due to Pommier et al.
The engineering code solution for the stress intensity factor of a semi-elliptic mode I surface
crack in a large body of Pommier et al. [113] assumes the normal stress to vary as

σy[x, z] =
3∑

i=0

3∑
k=0

σik(x/a)i(z/c)k . (B.16)

Here, i + k ≤ 3. The crack axis ratio a/c =
(

a
c

)
is limited to the interval 0.5 ≤ α ≤ 2.

KI[φ = 0] = σ0FI[φ]
√

πa and KI[φ = π/2] = σ0FI[φ]
√

πc.

For the formfactor, FI, the following solution is presented:

FI[φ, i, k, α] = F0{1 + (−1 + H) · T [i + k]} (B.17)
H[φ, i, k, α] = GiT [i] + GkT [k] + (Gik −Gi −Gk) · T [i · k] (B.18)

T [i] = {2 arctan [1000 · i]}/π (B.19)
F0[φ, α] = C0 + C2(φ2) + C4(φ4) (B.20)

C0[α] = 1.225− 0.8512α + 0.3414α2 − 0.0561α3 (B.21)
C2[α] = −0.54781 + 0.97969α− 0.52601α2 + 0.10557α3 (B.22)
C4[α] = 0.11569− 0.18205α + 0.09851α2 − 0.02134α3 (B.23)

Gk[φ, α, k] = Nk + Pk · cosk φ (B.24)
Pk[k, α] = {0.493− 0.096k + 0.009k2}+

+ α{0.105 + 0.0645k − 0.0105k2} −
− α2{0.0204 + 0.0039k − 0.00069k2} (B.25)

Nk[k] = 0.3− 0.165k + 0.025k2 (B.26)
Gi[φ, α, i] = Ni + Pi · sini φ (B.27)

Pi[i, α] = {1.2728− 0.439i + 0.09i2} −
− α{0.5643− 0.24675i + 0.0693i2}+
+ α2{0.1478− 0.07781i + 0.02489i2} (B.28)

Ni[i] = 0.0375(1 + (−1)i) (B.29)
Gik[φ, α, i, k] = Nik + Pik · sini φ · cosk φ (B.30)

Pik[i, α] = {0.575− 0.0313(k − i)− 0.11863(k − i)2}+
+ α{−0.0866 + 0.06706(k − i) + 0.05393(k − i)2}+
+ α2{0.021− 0.0157(k − i)− 0.01193(k − i)2} (B.31)

Nik[i] = 0.015(1 + (−1)i) (B.32)

f
c

a



Appendix C

Experimental Fatigue Test Data

C.1 Fatigue Test sn Data
In the following table C.1 the setup and sn results from experimental fatigue testing are
presented. A load ratio RL = 0.1 applies to all fatigue tests performed. Stress values
indicated for σa,Walker are corrected for local plasticity after Neuber [34] (8.2) and trans-
formed to the state of equivalent zero-to-maximum (R = 0) local stresses according to
Walker [169] (8.5).
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Appendix D

Material Stress–Strain Data

Static stress–strain curves from static tensile testing are presented in Figures D.1(a)–(f) for
the different materials used in the experimental fatigue tests of Chapter 7. These materials
are

1. X4CrNiMo 16-5 hot rolled plate material, quenched and tempered;

2. 34CrNiMo 6 hot rolled bar stock material, quenched and tempered;

3. GX5CrNi 13-4 cast material, quenched and tempered.

For the specimens of materials (1) and (2) the direction of applied force under testing and
the forge direction of the material coincide. The specimens of material (2.) were taken
from a rod of 200 mm in diameter, 30 mm from the rod cross section centre. Material
(3) specimens are taken from a cast steel slab (200 × 300 × 1500), 70 mm below the slab
surface. All tensile tests were performed and analysed by sintef Materials Technology,
Trondheim.

In Figures D.1(b), (d) and (f) the lines of 0, 0.01 and 0.2 % plastic strain are shown.
Young’s modulus, E, is estimated to 220 GPa in D.1(a) and (b). For (c), E = 180 GPa.

An overview over setup and result data is given in Table D.1.
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Figure D.1: Static stress–strain curves of the materials used in experimental fatigue testing.
(a)(b) X4CrNiMo 16-5. (c)(d) 34CrNiMo 6. (e)(f) GX5CrNi 13-4.
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Appendix E

Visual Basic Codes

E.1 Newman-Raju fcg Subroutine
’ K_NR81 Macro
’
’ Copyright 2004 by Hans-Jörg Huth. This code may not be used for purposes that are
’ not related to the PhD research of Hans-Jörg Huth without his prior written consent.
’ Hans.Jorg.Huth@ntnu.no
’
’ Macro imported from K_NR79, K_PSM99.
’
’ Growth of semi-elliptic surface crack in finite plate under bending
’ according to Newman & Raju "An empirical stress-intensity factor equation
’ for the surface crack", 1981
’
’ To be fixed in code on new calculation: - plate length b
’ - membrane and/or bending load
’
’ Length unit is [mm]
’
’
Sub K_NR81()

Dim a As Double, ai As Double, anew As Double, af As Double, afinal As Double
Dim c As Double, ci As Double, cnew As Double, ac As Double, cfinal As Double
Dim t As Double, tF As Double
Dim sigmin As Double, sigmax As Double, dsigc As Double
Dim dsig As Double, dsigtens As Double, dsigbend As Double, dsiga As Double
Dim dK As Double, dKnm As Double, ParisC As Double, Parism As Double
Dim N As Double, Nf As Double, Nmax As Double, Noutput As Double
Dim m As Double, Fnm As Double
Dim alfa As Double, beta As Double, gamma As Double
Dim ellx As Double, elly As Double
Dim pi As Double

Dim M1 As Double, M2 As Double, M3 As Double, gphi As Double, fphi As Double
Dim Fa As Double, Fc As Double, Fadim As Double, Fcdim As Double, fw As Double
Dim G1 As Double, G2 As Double, H1 As Double, H2 As Double, HH As Double, Q As Double

Dim PHI As Variant
Dim i As Integer, j As Integer, g As Integer, R As Integer, v As Integer
Dim d As Integer, o As Integer, Kill As Integer

Dim ICoeff As Double, IExp As Double, H As Double
Dim k1 As Double, k2 As Double, k3 As Double, k4 As Double, k5 As Double
Dim l1 As Double, l2 As Double, l3 As Double, l4 As Double, l5 As Double
Dim DeltaKa As Double, DeltaKc As Double, DeltaKathHCF As Double, DD As Double

pi = (4 * (Atn(1)))
’ _

ai = Cells(7, 6).Value ’initial crack depth \
ci = Cells(8, 6).Value ’initial crack semi-length all in [mm]

133



134 APPENDIX E. VISUAL BASIC CODES

af = Cells(9, 6).Value ’max crack length /
t = Cells(10, 6).Value ’plate thickness _/
b = 2000 ’plate length in [mm]
PHI = Array(0, (pi / 2)) ’ PHI = 0 -> "c", PHI = pi/2 -> "a"

sigmax = Cells(12, 6).Value ’max stress
sigmin = Cells(13, 6).Value ’min stress
DD = Cells(16, 6).Value ’HCF stress ratio sig_a / sig_m

Parism = Cells(18, 6).Value ’crack growth exponent
ParisC = Cells(19, 6).Value ’crack growth coefficient
rarb = Cells(20, 6).Value ’initial da/dN
DeltaKathHCF = Cells(21, 6).Value ’threshold value for DKa_HCF and DKc_HCF

H = Cells(24, 6).Value ’Increment value at x0
ICoeff = Cells(25, 6).Value ’Increment Increase Coefficient
IExp = Cells(26, 6).Value ’Increment Increase Exponent

Noutput = Cells(29, 6).Value ’Integer, number of outputs
Nmax = Cells(30, 6).Value

pi = (4 * (Atn(1)))

dsig = sigmax - sigmin
dsigtens = (sigmax - sigmin) * 1# ’Adjust amount of membrane
dsigbend = (sigmax - sigmin) * 0# ’and bending stress in dsig

If af > 10 Then
MsgBox " max. crackdepth exceeds the bending stress trendline array 0 < a < 10 mm "
GoTo 100

End If

anew = ai
cnew = ci
i = 0

If af < ai Then
MsgBox " The chosen value " & af & " m for maximal crack depth is too low"
Exit Sub

End If

’_____Begin output loop________________________________________________________________

d = 0
Do

’_____Begin calculation loop_____________________________________________________________

Do
a = anew
c = cnew
alfa = a / c
beta = a / t
gamma = c / b

i = i + 1 ’procedure counter for calculation loops
H = H * (((i + ICoeff) / i) ^ IExp) ’Integration step increasement
N = N + H ’Next step

If gamma >= 0.5 Then
Beep
MsgBox " ratio cracklength c / platelength b is less/equal than 0.5 "
Kill = 1
GoTo 80

ElseIf alfa > 1# Then
Beep
MsgBox " ratio crackdepth a / cracklength c exceeds 1.0 "
Kill = 1
GoTo 80
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ElseIf beta > 0.8 Then
Beep
MsgBox " ratio crackdepth a / plate thickness t exceeds 0.8 "
Kill = 1
GoTo 80

End If
’_________________________ Newman-Raju 81 , crack depth a ____________

M1 = 1.13 - (0.09 * alfa)
M2 = -0.54 + (0.89 / (0.2 + alfa))
M3 = 0.5 - (1# / (0.65 + alfa)) + (14 * ((1# - alfa) ^ 24))
gphi = 1 + ((0.1 + (0.35 * ((beta) ^ 2))) * ((1 - Sin(PHI(1))) ^ 2))
fphi = (((alfa ^ 2) * ((Cos(PHI(1))) ^ 2)) + ((Sin(PHI(1))) ^ 2)) ^ 0.25
fw = (Cos((gamma * pi / 2) * (beta ^ 0.5))) ^ (-0.5)

Fa = (M1 + (M2 * (beta ^ 2)) + (M3 * (beta ^ 4))) * fphi * gphi * fw ’Formfactor
p = 0.2 + alfa + (0.6 * beta)
G1 = -1.22 - (0.12 * alfa)
G2 = 0.55 - (1.05 * (alfa ^ 0.75)) + (0.47 * (alfa ^ 1.5))
H1 = 1 - (0.34 * beta) - (0.11 * alfa * beta)

H2 = 1 + (G1 * beta) + (G2 * (beta ^ 2))
HH = H1 + ((H2 - H1) * ((Sin(PHI(1))) ^ p))
Q = 1 + (1.464 * (alfa ^ 1.65))

’______________________________________________________________
dsiga = dsigtens + (HH * dsigbend)

a = a / 1000 ’*****[m]*****
DeltaKa = Fa * dsiga * Sqr(pi * a / (Q)) ’SIF a [MPa*m^0.5]
DeltaKaHCF = DeltaKa * (DD) ’SIF a (HCF) [MPa*m^0.5]
Fadim = DeltaKa / (dsig * Sqr(pi * a)) ’Dimensionless K

’____________Integration Runge-Kutta-Fehlberg , crack depth a ____________
k1 = H * E(N, a, DeltaKa, ParisC, Parism, alfa)
k2 = H * E(N + H / 4, a + k1 / 4, DeltaKa, ParisC, Parism, alfa)
k3 = H * E(N + 3# / 8 * H, a + 3# / 32 * (k1 + 3 * k2), DeltaKa, ParisC, Parism, alfa)
k4 = H * E(N + 12# / 13 * H, a + 1932# / 2197 * k1 - 7200# / 2197 * k2 + 7296# / _

2197 * k3, DeltaKa, ParisC, Parism, alfa)
k5 = H * E(N + H, a + 439# / 216 * k1 - 8 * k2 + 3680# / 513 * k3 - 845# / _

4104 * k4, DeltaKa, ParisC, Parism, alfa)

anew = a + (25# / 216 * k1) + (1408# / 2565 * k3) + (2197# / 4104 * k4) - (k5 / 5)
anew = anew * 1000 ’*****[mm]*****

’_________________________ Newman-Raju 81 , crack length c ___________
M1 = 1.13 - (0.09 * alfa)
M2 = -0.54 + (0.89 / (0.2 + alfa))
M3 = 0.5 - (1# / (0.65 + alfa)) + (14 * ((1# - alfa) ^ 24))
gphi = 1 + ((0.1 + (0.35 * ((beta) ^ 2))) * ((1 - Sin(PHI(0))) ^ 2))
fphi = (((alfa ^ 2) * ((Cos(PHI(0))) ^ 2)) + ((Sin(PHI(0))) ^ 2)) ^ 0.25
fw = (Cos((gamma * pi / 2) * (beta ^ 0.5))) ^ (-0.5)

Fc = (M1 + (M2 * (beta ^ 2)) + (M3 * (beta ^ 4))) * fphi * gphi * fw ’Formfactor
p = 0.2 + alfa + (0.6 * beta)
G1 = -1.22 - (0.12 * alfa)
G2 = 0.55 - (1.05 * (alfa ^ 0.75)) + (0.47 * (alfa ^ 1.5))
H1 = 1 - (0.34 * beta) - (0.11 * alfa * beta)
H2 = 1 + (G1 * beta) + (G2 * (beta ^ 2))

HH = H1 + ((H2 - H1) * ((Sin(PHI(0))) ^ p))
Q = 1 + (1.464 * (alfa ^ 1.65))

’______________________________________________________________
dsigc = dsigtens + (HH * dsigbend)

c = c / 1000 ’*****[m]*****
DeltaKc = Fc * dsigc * Sqr(pi * a / (Q)) ’SIF c [MPa*m^0.5]
DeltaKcHCF = DeltaKc * (DD) ’SIF c (HCF) [MPa*m^0.5]
Fcdim = DeltaKc / (dsig * Sqr(pi * a)) ’Dimensionless K

’____________Integration Runge-Kutta-Fehlberg , crack length c ____________
l1 = H * U(N, c, DeltaKc, ParisC, Parism, alfa)
l2 = H * U(N + H / 4, c + l1 / 4, DeltaKc, ParisC, Parism, alfa)
l3 = H * U(N + 3# / 8 * H, c + 3# / 32 * (l1 + 3 * l2), DeltaKc, ParisC, Parism, alfa)
l4 = H * U(N + 12# / 13 * H, c + 1932# / 2197 * l1 - 7200# / 2197 * l2 + 7296# / _

2197 * l3, DeltaKc, ParisC, Parism, alfa)
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l5 = H * U(N + H, c + 439# / 216 * l1 - 8 * l2 + 3680# / 513 * l3 - 845# / _
4104 * l4, DeltaKc, ParisC, Parism, alfa)

cnew = c + (25# / 216 * l1) + (1408# / 2565 * l3) + (2197# / 4104 * l4) - (l5 / 5)
cnew = cnew * 1000 ’*****[mm]*****
a = a * 1000 ’*****[mm]*****
c = c * 1000 ’*****[mm]*****

’______________________________________________________________

If d = 0 Then GoTo 80 ’output of initial values

If DeltaKaHCF > DeltaKathHCF Then ’definition of failure (HCF)
If DeltaKcHCF > DeltaKathHCF Then

Beep
MsgBox " The SIF threshold for HCF has been reached all along the crack front "
Kill = 1
GoTo 80

Else
Beep
MsgBox " The SIF threshold for HCF has been reached at point A "
Kill = 1
GoTo 80

End If
End If

If a > af Then ’definition of failure (af)
Beep
MsgBox " The fracture crack depth af = " & af & " mm has been reached "
Kill = 1

GoTo 80
End If

If i > 100000 Then ’End dead loop
Beep
MsgBox " The calculation has been terminated after 100000 calculation steps "
Kill = 1

GoTo 80
End If

Loop Until N >= (Noutput * d)

’_____begin output to Pivot table____________________________________

80 Cells(74 + d, 1).Value = N ’Output to pivot (A , 74+d)
Cells(74 + d, 2).Value = a ’Output to pivot (B , 74+d)
Cells(74 + d, 3).Value = c ’Output to pivot (C , 74+d)
Cells(74 + d, 4).Value = DeltaKa ’Output to pivot (D , 74+d)
Cells(74 + d, 5).Value = DeltaKc ’Output to pivot (E , 74+d)
Cells(74 + d, 6).Value = a / c ’Output to pivot (F , 74+d) alpha
Cells(74 + d, 7).Value = a / t ’Output to pivot (G , 74+d) xi
Cells(74 + d, 8).Value = Fadim ’ / Sqr(Q) ’Output to pivot (H , 74+d)
Cells(74 + d, 9).Value = Fcdim ’ / Sqr(Q) ’Output to pivot (I , 74+d)

’_____begin drawing ellipse from a_d and c_d_________________

For g = 0 To 30
ellx = c * (1 - (g ^ 2 / 900))
elly = Sqr(((a) ^ 2) * (1 - ((ellx ^ 2) / ((c) ^ 2))))
Cells(74 + g, 10 + (2 * d)).Value = ellx ’Output to pivot (J+2d , 74+g)
Cells(74 + g, 11 + (2 * d)).Value = elly ’Output to pivot (K+2d, 74+g)

Next g

If Kill = 1 Then GoTo 100 ’this was the final output, terminate

d = d + 1
If d > 25 Then

Beep
MsgBox " The max number of 25 outputs has been exceeded. Please increase Noutput. "
GoTo 100

End If
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Loop

’_____end output loop___________________________________________________________

100 Cells(31, 6).Value = N ’Output to pivot (F , 31)
Cells(32, 6).Value = anew ’Output to pivot (F , 31)
Cells(33, 6).Value = cnew ’Output to pivot (F , 31)

MsgBox " Simulation K_NR81 done! "
ActiveWindow.SmallScroll Down:=60

End Sub

Function E(N As Double, a As Double, DeltaKa As Double, ParisC As Double, Parism As Double, _
alfa As Double) As Double

E = ParisC * (DeltaKa ^ Parism) ’E = da/dN

End Function

Function U(N As Double, c As Double, DeltaKc As Double, ParisC As Double, Parism As Double, _
alfa As Double) As Double

U = ParisC * (DeltaKc ^ Parism) ’U = dc/dN

End Function

E.2 Pommier et al. fcg Subroutine
’
’ K_PSM99 Macro
’
’ Copyright 2004 by Hans-Joerg Huth. This code may not be used for purposes that are
’ not related to the PhD research of Hans-Jörg Huth without his prior written consent.
’ Hans.Jorg.Huth@ntnu.no
’
’ Growth of semi-elliptic surface crack in semi-infinite body
’ subjected to a max. 3rd grade polynomial stress distribution
’ -> Stress intensity factor solution of Pommier et al. is calculated
’ -> Numerical integration of Paris’ law
’ -> Graphical output
’
’ Units are [mm/cycle] , [MPa*m^0.5]
’
Sub K_Pommier99()

Dim a As Double, ai As Double, anew As Double, af As Double, afinal As Double
Dim c As Double, ci As Double, cnew As Double, ac As Double, cfinal As Double
Dim t As Double, tF As Double
Dim sigmin As Double, sigmax As Double, dsiga As Double, dsigc As Double
Dim dK As Double
Dim Parism As Double, ParisC As Double
Dim N As Double, Nf As Double, Nmax As Double, Noutput As Double
Dim alfa As Double, ellx As Double, elly As Double
Dim pi As Double

Dim Trendline As Variant, PHI As Variant
Dim i As Integer, g As Integer, R As Integer, v As Integer, d As Integer

Dim ICoeff As Double, IExp As Double, H As Double
Dim k1 As Double, k2 As Double, k3 As Double, k4 As Double, k5 As Double
Dim l1 As Double, l2 As Double, l3 As Double, l4 As Double, l5 As Double

Dim nn As Integer, nnmax As Integer, mm As Integer, mmmax As Integer, Kill As Integer

Dim Tm As Double, Tn As Double, Tnm As Double, Tnnmm As Double
Dim C0 As Double, C2 As Double, C4 As Double
Dim F0a As Double, F0c As Double, HH As Double
Dim Pm As Double, Pn As Double, Pnm As Double
Dim Nm As Double, Nnm As Double, Gm As Double, Gn As Double, Gnm As Double



138 APPENDIX E. VISUAL BASIC CODES

Dim Fnma As Double, Fnmc As Double
Dim Fa As Double, Fastress As Double, Fc As Double, Fcstress As Double
Dim DeltaKa As Double, DeltaKc As Double, DeltaKaHCF As Double, DeltaKcHCF As Double
Dim DeltaKathHCF As Double, DD As Double
Dim sigsuma As Double, sigsumc As Double

pi = (4 * (Atn(1)))

ai = Cells(7, 6).Value ’initial crack depth \
ci = Cells(8, 6).Value ’initial crack semi-length all in [mm]
af = Cells(9, 6).Value ’max crack length /
t = Cells(10, 6).Value ’thickness of loaded beam (->stress distribution in semi-inf. plate)

sigmax = Cells(12, 6).Value ’max stress
sigmin = Cells(13, 6).Value ’min stress
DD = Cells(16, 6).Value ’HCF stress ratio Dsig_HCF / Dsig_LCF

Parism = Cells(18, 6).Value ’crack growth exponent
ParisC = Cells(19, 6).Value ’crack growth coefficient
DeltaKathHCF = Cells(21, 6).Value ’threshold value for DKa_HCF and DKc_HCF

H = Cells(24, 6).Value ’Increment value at x0
ICoeff = Cells(25, 6).Value ’Increment Increase Coefficient
IExp = Cells(26, 6).Value ’Increment Increase Exponent

Noutput = Cells(29, 6).Value ’Integer, number of outputs written from N = 0 to Nmax
Nmax = Cells(30, 6).Value ’Max value of load cycles after which calculation is terminated

nnmax = Cells(35, 6).Value ’Pommier-stress exponent tension
mmmax = Cells(36, 6).Value ’Pommier-stress exponent bending

tF = 40 / t ’trendline scaling factor (tl. based on t1 = 40mm)

anew = ai ’initial values
cnew = ci
i = 0 ’procedure counter for calculation loops
N = 0 ’number of load cycles

PHI = Array(0, (pi / 2)) ’ PHI = 0 -> "a", PHI = pi/2 -> "c" , in contrary to NR_81

If af > 10 Then
MsgBox " max. crackdepth exceeds the bending stress trendline array 0 < a < 10 mm "
GoTo 100

End If

If af < ai Then
MsgBox " The chosen value " & af & " mm for maximal crack depth is too low"
Exit Sub

End If

If (nnmax + mmmax) > 3 Then
MsgBox " The sum of the Pommier stress field exponents n and m exceeds 3"
Exit Sub

End If

’_____Begin output loop________________________________________________________________

d = 0
Do
’For d = 0 To Noutput
’_____Begin calculation loop_____________________________________________________________

Do
a = anew
c = cnew
alfa = a / c

i = i + 1 ’procedure counter for calculation loops
H = H * (((i + ICoeff) / i) ^ IExp) ’Integration step increasement
N = N + H ’Next step
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If alfa < 0.1 Then ’Pommier: alfa < 0.5
Beep
MsgBox " ratio crackdepth a / cracklength c is beyond 0.1 "
GoTo 100

ElseIf alfa > 2 Then ’Pommier: alfa < 2
Beep
MsgBox " ratio crackdepth a / cracklength c i above 2 "
GoTo 100

End If

’_____begin trendline defining the bending force slope ____________________________________

’ ### trendlines are based on FE-calculations with t = 40mm ###
’ ### activate/disable trendline by deleting/adding < ’ > ###
’
’____quarter-circular transition trendlines follow________________
’
Trendline = Array(1.2521, (-0.1383 * a * tF), (0.0062 * ((a * tF) ^ 2)), (-0.0001 * ((a * tF) ^ 3)))
’is Trendline for ultra fine meshed quarter-circular transition (R0) -> circ. test specimen -> nn = 0, mm = 3, x/t1=0.5
’
’Trendline = Array(1.3133, (-0.2024 * a * tF), (0.0188 * ((a * tF) ^ 2)), (-0.0008 * ((a * tF) ^ 3)))
’is Trendline for ultra fine meshed quarter-circular transition (R0) -> circ. test specimen -> nn = 0, mm = 3, x/t1=0.25
’_____________
’
’Trendline = Array(1.4315, (-0.08265 * a * tF))
’is Trendline for sharp transition (S4) -> nn = 0, mm = 1
’
’____constant gradient trendlines follow________________
’
’Trendline = Array(1, (-a * tF / 10))
’is Trendline for dsiga/dx = sigmax/5 in semi-infinite plate -> nn = 0, mm = 1

’Trendline = Array(1, (-a * tF / 15))
’is Trendline for dsiga/dx = sigmax/7.5 in semi-infinite plate -> nn = 0, mm = 1

’Trendline = Array(1, (-a * tF / 20))
’is Trendline for pure bending stress in semi-infinite plate -> nn = 0, mm = 1
’ (dsiga/dx = sigmax/10)

’Trendline = Array(0.9995, (-0.0503 * a * tF), (8e-05 * ((a * tF) ^ 2)), (-3e-06 * ((a * tF) ^ 3)))
’is Trendline for almost pure bending stress in 3rd grade stress field -> nn = 0, mm = 3
’ (dsiga/dx = sigmax/10)

’Trendline = Array(1, (-a * tF / 40))
’is Trendline for dsiga/dx = sigmax/20 in semi-infinite plate -> nn = 0, mm = 1

’Trendline = Array(1, (-a * tF / 80))
’is Trendline for dsiga/dx = sigmax/40 in semi-infinite plate -> nn = 0, mm = 1

’Trendline = Array(1, (-a * tF / 160))
’is Trendline for dsiga/dx = sigmax/80 in semi-infinite plate -> nn = 0, mm = 1

’Trendline = Array(1)
’is Trendline for pure membrane stress in semi-infinite plate -> nn = 0, mm = 0
’

’____ Pommier-paper example trendline follows________________
’
’Trendline = Array(1, (-0.075 * a * tF), (0.0019 * ((a * tF) ^ 2)), (-2e-05 * ((a * tF) ^ 3)))
’is Trendline for cubic stress (max. = 1 at surface) -> nn = 0, mm = 3

’____ Parma-paper example trendline follows________________
’
’Trendline = Array(1, (-0.075 * a * tF), (0.0019 * ((a * tF) ^ 2)), (-2e-05 * ((a * tF) ^ 3)))
’is Trendline of the "0ř"-crack stress field -> nn = 0, mm = 3
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’____optimised transition trendlines follow________________
’
’Trendline = Array(1.1636, (-0.1151 * a * tF), (0.0051 * ((a * tF) ^ 2)), (-0.0001 * ((a * tF) ^ 3)))
’is Trendline for bend_spline_49_fine -> nn = 0, mm = 3

’Trendline = Array(1.0212, (-0.0572 * a * tF), (0.0005 * ((a * tF) ^ 2)), (-7e-07 * ((a * tF) ^ 3)))
’is Trendline for bend_opt_a2 -> nn = 0, mm = 3

’Trendline = Array(1.1159, (-0.0925 * a * tF), (0.003 * ((a * tF) ^ 2)), (-5e-05 * ((a * tF) ^ 3)))
’is Trendline for bend_opt_b4 -> nn = 0, mm = 3

’Trendline = Array(1.1618, (-0.1172 * a * tF), (0.0053 * ((a * tF) ^ 2)), (-0.0001 * ((a * tF) ^ 3)))
’is Trendline for bend_opt_c0 -> nn = 0, mm = 3

’Trendline = Array(1.1215, (-0.0996 * a * tF), (0.0035 * ((a * tF) ^ 2)), ((-5e-05) * ((a * tF) ^ 3)))
’is Trendline for bend_opt_d0 -> opt. test specimen -> nn = 0, mm = 3, x/t1=0.35

’Trendline = Array(1.1221, (-0.1004 * a * tF), (0.0037 * ((a * tF) ^ 2)), ((-6e-05) * ((a * tF) ^ 3)))
’is Trendline for bend_opt_d0 -> opt. test specimen -> nn = 0, mm = 3, x/t1=0.5

’____definition and modification of stress range_________________________________________

dsiga = sigmax - sigmin ’delta stress at point a
dsigc = (sigmax - sigmin) ’delta stress at point c

’__________begin calc. of stress slope after Pommier, Sakae, Murakami in a-direction____________
Fnma = 0
Fa = 0
Fastress = 0
sigsuma = 0

For nn = 0 To nnmax ’nn = element of {0 ; 1}
For mm = 0 To mmmax ’mm = element of {0 ; 1 ; 2 ; 3}

If d = 0 Then GoTo 10
If N >= (Noutput * d) Then
’If N >= (Nmax * d / Noutput) Then

10 Cells(73 + d, 53 + mm).Value = Trendline(mm + nn) ’Output for linear/quadratic/cubic stress
End If

’__________begin calc. of SIF after Pommier, Sakae, Murakami for a__________________________

Tm = ((2 * (Atn(1000 * mm))) / (pi))
Tn = ((2 * (Atn(1000 * nn))) / (pi))
Tnm = ((2 * (Atn(1000 * nn * mm))) / (pi))
Tnnmm = ((2 * (Atn(1000 * (nn + mm)))) / (pi))

C0 = (1.225 - (0.8512 * alfa) + (0.3414 * (alfa ^ 2)) - (0.0561 * (alfa ^ 3)))
C2 = (-0.54781 + (0.97969 * alfa) - (0.52601 * (alfa ^ 2)) + (0.10557 * (alfa ^ 3)))
C4 = (0.11569 - (0.18205 * alfa) + (0.09851 * (alfa ^ 2)) - (0.02134 * (alfa ^ 3)))

F0a = (C0 + (C2 * ((PHI(0)) ^ 2)) + (C4 * ((PHI(0)) ^ 4)))

Pm = ((0.493 - (0.096 * mm) + (0.009 * (mm ^ 2))) + (alfa * (0.105 + (0.0645 * mm) - _
(0.0105 * (mm ^ 2)))) - ((alfa ^ 2) * (0.0204 + (0.0039 * mm) - (0.00069 * (mm ^ 2)))))

Nm = (0.3 - (0.165 * mm) + (0.025 * (mm ^ 2)))
Gm = (Nm + (Pm * ((Cos(PHI(0))) ^ mm)))

Pn = ((1.2728 - (0.439 * nn) + (0.09 * (nn ^ 2))) - (alfa * (0.5643 - (0.24675 * nn) + _
(0.0693 * (nn ^ 2)))) + ((alfa ^ 2) * (0.1478 - (0.07781 * nn) + (0.02489 * (nn ^ 2)))))

nn = (0.0375 * (1 + ((-1) ^ nn)))
Gn = (nn + (Pn * ((Sin(PHI(0))) ^ nn)))

Pnm = ((0.575 - (0.0313 * (mm - nn)) - (0.11863 * ((mm - nn) ^ 2))) + (alfa * _
(-0.0866 + (0.06706 * (mm - nn)) + (0.05393 * ((mm - nn) ^ 2)))) + _
((alfa ^ 2) * (0.021 - (0.0157 * (mm - nn)) - (0.01193 * ((mm - nn) ^ 2)))))
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Nnm = (0.015 * (1 + ((-1) ^ nn)))
Gnm = (Nnm + (Pnm * ((Sin(PHI(0))) ^ nn) * ((Cos(PHI(0))) ^ mm)))

HH = ((Gm * Tm) + (Gn * Tn) + ((Gnm - Gn - Gm) * Tnm))

Fnma = (F0a * (1 + ((-1 + HH) * Tnnmm))) ’actual F_I at a
Fastress = Fastress + (Fnma * Trendline(mm + nn)) ’accumulated F_I * stress concentration

sigsuma = sigsuma + Trendline(mm + nn) ’accumulated stress concentration

Next mm
Next nn

a = a / 1000 ’*****[m]*****
Fa = Fastress ’Fa = DeltaKa / (dsiga * Sqr(pi * a))
DeltaKa = Fastress * dsiga * Sqr(pi * a) ’SIF A [MPa*m^0.5]
DeltaKaHCF = DeltaKa * (DD) ’SIF A (HCF) [MPa*m^0.5]

’_____begin numeric integration Runge-Kutta-Fehlberg of Paris eq. for a______________________

k1 = H * E(N, a, DeltaKa, ParisC, Parism)
k2 = H * E(N + H / 4, a + k1 / 4, DeltaKa, ParisC, Parism)
k3 = H * E(N + 3# / 8 * H, a + 3# / 32 * (k1 + 3 * k2), DeltaKa, ParisC, Parism)
k4 = H * E(N + 12# / 13 * H, a + 1932# / 2197 * k1 - 7200# / 2197 * k2 + 7296# / -

2197 * k3, DeltaKa, ParisC, Parism)
k5 = H * E(N + H, a + 439# / 216 * k1 - 8 * k2 + 3680# / 513 * k3 - 845# / -

4104 * k4, DeltaKa, ParisC, Parism)

anew = a + (25# / 216 * k1) + (1408# / 2565 * k3) + (2197# / 4104 * k4) - (k5 / 5)
anew = anew * 1000 ’*****[mm]*****

’____begin calc. of SIF after Pommier, Sakae, Murakami for c______________________________

Fnmc = 0
Fc = 0
Fcstress = 0
sigsumc = 0

For nn = 0 To nnmax
For mm = 0 To mmmax

Tm = ((2 * (Atn(1000 * mm))) / (pi))
Tn = ((2 * (Atn(1000 * nn))) / (pi))
Tnm = ((2 * (Atn(1000 * nn * mm))) / (pi))
Tnnmm = ((2 * (Atn(1000 * (nn + mm)))) / (pi))

C0 = (1.225 - (0.8512 * alfa) + (0.3414 * (alfa ^ 2)) - (0.0561 * (alfa ^ 3)))
C2 = (-0.54781 + (0.97969 * alfa) - (0.52601 * (alfa ^ 2)) + (0.10557 * (alfa ^ 3)))
C4 = (0.11569 - (0.18205 * alfa) + (0.09851 * (alfa ^ 2)) - (0.02134 * (alfa ^ 3)))

F0c = (C0 + (C2 * ((PHI(1)) ^ 2)) + (C4 * ((PHI(1)) ^ 4)))

Pm = ((0.493 - (0.096 * mm) + (0.009 * (mm ^ 2))) + (alfa * (0.105 + (0.0645 * mm) - _
(0.0105 * (mm ^ 2)))) - ((alfa ^ 2) * (0.0204 + (0.0039 * mm) - (0.00069 * (mm ^ 2)))))

Nm = (0.3 - (0.165 * mm) + (0.025 * (mm ^ 2)))
Gm = (Nm + (Pm * ((Cos(PHI(1))) ^ mm)))

Pn = ((1.2728 - (0.439 * nn) + (0.09 * (nn ^ 2))) - (alfa * (0.5643 - (0.24675 * nn) + _
(0.0693 * (nn ^ 2)))) + ((alfa ^ 2) * (0.1478 - (0.07781 * nn) + (0.02489 * (nn ^ 2)))))

nn = (0.0375 * (1 + ((-1) ^ nn)))
Gn = (nn + (Pn * ((Sin(PHI(1))) ^ nn)))

Pnm = ((0.575 - (0.0313 * (mm - nn)) - (0.11863 * ((mm - nn) ^ 2))) + (alfa * _
(-0.0866 + (0.06706 * (mm - nn)) + (0.05393 * ((mm - nn) ^ 2)))) + _
((alfa ^ 2) * (0.021 - (0.0157 * (mm - nn)) - (0.01193 * ((mm - nn) ^ 2)))))

Nnm = (0.015 * (1 + ((-1) ^ nn)))
Gnm = (Nnm + (Pnm * ((Sin(PHI(1))) ^ nn) * ((Cos(PHI(1))) ^ mm)))

HH = ((Gm * Tm) + (Gn * Tn) + ((Gnm - Gn - Gm) * Tnm))

Fnmc = (F0c * (1 + ((-1 + HH) * Tnnmm))) ’actual F_I at c
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Fcstress = Fcstress + (Fnmc * Trendline(mm + nn)) ’accumulated F_I * stress concentration

Next mm
Next nn

c = c / 1000 ’*****[m]*****
Fc = Fcstress ’accumulated F_I
DeltaKc = Fcstress * dsigc * Sqr(pi * a) ’SIF C [MPa*m^0.5]
DeltaKcHCF = DeltaKc * (DD) ’SIF C (HCF) [MPa*m^0.5]

’_____begin numeric integration Runge-Kutta-Fehlberg of Paris eq. for c________________________

l1 = H * U(N, c, DeltaKc, ParisC, Parism)
l2 = H * U(N + H / 4, c + l1 / 4, DeltaKc, ParisC, Parism)
l3 = H * U(N + 3# / 8 * H, c + 3# / 32 * (l1 + 3 * l2), DeltaKc, ParisC, Parism)
l4 = H * U(N + 12# / 13 * H, c + 1932# / 2197 * l1 - 7200# / 2197 * l2 + 7296# / 2197 * l3, _

DeltaKc, ParisC, Parism)
l5 = H * U(N + H, c + 439# / 216 * l1 - 8 * l2 + 3680# / 513 * l3 - 845# / 4104 * l4, DeltaKc, _

ParisC, Parism)

cnew = c + (25# / 216 * l1) + (1408# / 2565 * l3) + (2197# / 4104 * l4) - (l5 / 5)
cnew = cnew * 1000 ’*****[mm]*****
a = a * 1000 ’*****[mm]*****
c = c * 1000 ’*****[mm]*****

’_______________________________________________________________________________

If d = 0 Then GoTo 80 ’output of initial values

If DeltaKaHCF > DeltaKathHCF Then ’definition of failure (HCF)
If DeltaKcHCF > DeltaKathHCF Then

Beep
MsgBox " The SIF threshold for HCF has been reached all along the crack front "
Kill = 1
GoTo 80

Else
Beep
MsgBox " The SIF threshold for HCF has been reached at point A "
Kill = 1
GoTo 80

End If
End If

If anew > af Then ’definition of failure (af)
Beep
MsgBox " The fracture crack depth af = " & af & " mm has been reached "
Kill = 1
GoTo 80

End If

If N > Nmax Then
Beep
MsgBox " The number of load cycles Nmax = " & Nmax & " has been reached "
Kill = 1
GoTo 80

End If

If i > 100000 Then ’End dead loop
Beep
MsgBox " The calculation has been terminated after 100000 calculation steps "
Kill = 1
GoTo 80

End If

Loop Until N >= (Noutput * d) ’outputs every Noutput cycles
’Loop Until N >= ((Nmax * d) / Noutput) ’outputs d times until Nmax

’_____end calculation loop, begin output to Pivot table____________________________________

80 Cells(74 + d, 1).Value = N ’Output to pivot (A , 74+d)
Cells(74 + d, 2).Value = a ’Output to pivot (B , 74+d)
Cells(74 + d, 3).Value = c ’Output to pivot (C , 74+d)
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Cells(74 + d, 4).Value = DeltaKa ’Output to pivot (D , 74+d)
Cells(74 + d, 5).Value = DeltaKc ’Output to pivot (E , 74+d)
Cells(74 + d, 6).Value = a / c ’Output to pivot (F , 74+d) alpha
Cells(74 + d, 7).Value = a / t ’Output to pivot (G , 74+d) xi
Cells(74 + d, 8).Value = Fa ’Output to pivot (H , 74+d)
Cells(74 + d, 9).Value = Fc ’Output to pivot (I , 74+d)

’_____begin drawing ellipse from a_d and c_d_________________

For g = 0 To 30
ellx = cnew * (1 - (g ^ 2 / 900))
elly = Sqr(((anew) ^ 2) * (1 - ((ellx ^ 2) / ((cnew) ^ 2))))
Cells(74 + g, 10 + (2 * d)).Value = ellx ’Output to pivot (T+2d , 74+g)
Cells(74 + g, 11 + (2 * d)).Value = elly ’Output to pivot (U+2d, 74+g)

Next g

If Kill = 1 Then GoTo 100 ’this was the final output, terminate

d = d + 1
If d > 25 Then

Beep
MsgBox " The max number of 25 outputs has been exceeded. Increase Noutput. "
GoTo 100

End If

Loop

’_____end output loop___________________________________________________________

100 Cells(31, 6).Value = N ’Output to pivot (F , 31)
Cells(32, 6).Value = anew ’Output to pivot (F , 31)
Cells(33, 6).Value = cnew ’Output to pivot (F , 31)

MsgBox " Simulation K_PSM99 done! "
ActiveWindow.SmallScroll Down:=60

End Sub

Function E(N As Double, a As Double, DeltaKa As Double, ParisC As Double, Parism As Double) As Double

pi = (4 * (Atn(1)))
E = ParisC * (DeltaKa ^ Parism) ’E = da/dN

End Function

Function U(N As Double, c As Double, DeltaKc As Double, ParisC As Double, Parism As Double) As Double

pi = (4 * (Atn(1)))
U = ParisC * (DeltaKc ^ Parism) ’U = dc/dN

End Function
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E.3 Carpinteri et al. fcg Subroutine
’ K_Parma04 Macro
’
’ Copyright 2004 by Hans-Joerg Huth. This code may not be used for purposes that are
’ not related to the PhD research of Hans-Jörg Huth without his prior written consent.
’ Hans.Jorg.Huth@ntnu.no
’
’ Growth of semi-elliptic surface crack in finite plate
’ subjected to a max. 5th grade polynomial stress distribution in crackdepth dir. x
’ -> Stress Intensity Factor solution tables of Carpinteri, Brighenti, Huth and Vantadori are interpolated
’ -> Numerical integration of Paris’ law
’ -> Graphical output
’
’ Units are [mm , mm/cycle] , [MPa*mm^0.5]
’
Sub K_Parma04()

Dim a As Double, ai As Double, anew As Double, af As Double, afinal As Double, da As Double
Dim c As Double, ci As Double, cnew As Double, ac As Double, cfinal As Double
Dim b As Double, xb As Double, zb As Double, deltab As Double, db As Double
Dim xbnew As Double, zbnew As Double, deltaxb As Double, deltazb As Double
Dim t As Double, tF As Double
Dim sigmin As Double, sigmax As Double, dsiga As Double, dsigb As Double
Dim F0 As Double, F1 As Double
Dim F00 As Double, F01 As Double, F10 As Double, F11 As Double
Dim alfa As Double, alfaten As Double, ksi As Double, ksiten As Double
Dim alfa0 As Double, alfa1 As Double, ksi0 As Double, ksi1 As Double
Dim Parism As Double, ParisC As Double
Dim N As Double, Nf As Double, Nmax As Double, Noutput As Double
Dim m As Double, Fnm As Double
Dim ellx As Double, elly As Double
Dim pi As Double, Sinphi As Double

Dim Bcoeff As Variant

Dim alfacount As Integer, ksicount As Integer, Kill As Integer
Dim i As Integer, g As Integer, v As Integer, d As Integer

Dim ICoeff As Double, IExp As Double, H As Double
Dim k1 As Double, k2 As Double, k3 As Double, k4 As Double, k5 As Double
Dim l1 As Double, l2 As Double, l3 As Double, l4 As Double, l5 As Double

Dim B0 As Double, B1 As Double, B2 As Double, B3 As Double, B4 As Double, B5 As Double

Dim mm As Integer, mmmax As Integer, mmmin As Integer

’begin Variables for functions E, U:

Dim Fa As Double, Fb As Double
Dim Famm As Double, Fastress As Double, Fbmm As Double, Fbstress As Double
Dim DeltaKa As Double, DeltaKb As Double, DeltaKaHCF As Double, DeltaKbHCF As Double
Dim DeltaKathHCF As Double, DD As Double
Dim sigsuma As Double, sigsumb As Double

pi = (4 * (Atn(1)))

ai = Cells(7, 6).Value ’initial crack depth \
ci = Cells(8, 6).Value ’initial crack semi-length all in [mm]
af = Cells(9, 6).Value ’max crack length /
t = Cells(10, 6).Value ’thickness of loaded beam (->stress distribution in

’ semi-inf. plate)

sigmax = Cells(12, 6).Value ’max stress
sigmin = Cells(13, 6).Value ’min stress
DD = Cells(16, 6).Value ’HCF stress ratio sig_a / sig_m

Parism = Cells(18, 6).Value ’crack growth exponent
ParisC = Cells(19, 6).Value ’crack growth coefficient
DeltaKathHCF = Cells(21, 6).Value ’threshold value for DKa_HCF and DKc_HCF
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H = Cells(24, 6).Value ’Increment value at x0
ICoeff = Cells(25, 6).Value ’Increment Increase Coefficient
IExp = Cells(26, 6).Value ’Increment Increase Exponent

Noutput = Cells(29, 6).Value ’Integer, number of outputs written from N = 0 to Nmax
’(default 20)

Nmax = Cells(30, 6).Value ’Max value of load cycles after which calculation is
’terminated

mmmax = 5 ’grade of stress field polynomial
mmmin = 0

’tF = 40 / t ’Bcoeff scaling factor (tl. based on t1 = 40mm),
’yet to be implemented

anew = ai ’initial values
cnew = ci
i = 0 ’procedure counter for calculation loops
N = 0 ’number of load cycles

If t <> 20 Then
MsgBox " t = 20 mm is the only plate thickness allowed by now "
Exit Sub

End If

If af < ai Then
MsgBox " The chosen value " & af & " mm for maximal crack depth is lower than the initial crack depth "
Exit Sub

End If

’_____Begin output loop________________________________________________________________

d = 0
Do
’For d = 0 To Noutput ’number of outputs "Noutput", e.g. 20
’_____Begin calculation loop_____________________________________________________________

Do
a = anew
c = cnew
alfa = a / c
ksi = a / t
zb = c * 0.9 ’z-coordinate of point B on crack front
xb = (Sqr(0.19)) * a ’x-coordinate of point B on crack front
b = Sqr((xb ^ 2) + (zb ^ 2))

i = i + 1 ’procedure counter for calculation loops
H = H * (((i + ICoeff) / i) ^ IExp) ’Integration step increasement
N = N + H ’Next step

If alfa < 0.1 Then
Beep
MsgBox " ratio crackdepth a / cracklength c is less than 0.1 "
Kill = 1
GoTo 80

ElseIf alfa > 1.2 Then
Beep
MsgBox " ratio crackdepth a / cracklength c is greater than 1.2 "
Kill = 1
GoTo 80

ElseIf ksi < 0.025 Then
Beep
MsgBox " ratio crackdepth a / plate thickness t is less than 0.025 "
Kill = 1
GoTo 80

ElseIf ksi > 0.7 Then
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Beep
MsgBox " ratio crackdepth a / plate thickness t is greater than 0.7 "
Kill = 1
GoTo 80

End If

’_____begin Bcoeff defining the stress gradient _______________________________

’ ### B-coefficients are based on stress field trendlines with plate thickness t = 20mm ###
’ ### activate/disable set of coefficients B0 ... B5 by deleting/adding < ’ > ###
’
’
’------quarter-circular transition R0-----------------------------------------------------------------
B0 = 1.31 - (0.3844 * a) + (0.0686 * (a ^ 2)) - (0.0072 * (a ^ 3)) + (0.0004 * (a ^ 4)) - _

(7e-06 * (a ^ 5))
B1 = (0.3844 * a) - (0.1372 * (a ^ 2)) + (0.0216 * (a ^ 3)) - (0.0016 * (a ^ 4)) + _

(3.5e-05 * (a ^ 5))
B2 = (0.0686 * (a ^ 2)) - (0.0216 * (a ^ 3)) + (0.0024 * (a ^ 4)) - (7e-05 * (a ^ 5))
B3 = (0.0072 * (a ^ 3)) - (0.0016 * (a ^ 4)) + (7e-05 * (a ^ 5))
B4 = (0.0004 * (a ^ 4)) - (3.5e-05 * (a ^ 5))
B5 = (7e-06 * (a ^ 5))
’are B-coefficients for ultra fine meshed quarter-circular transition (R0) -> circ. 2D test specimen, t=20mm
’-------------------------------------------------------------------------------------------------
’------optimised transition d0--------------------------------------------------------------
’B0 = 1.121 - (0.1983 * a) + (0.0129 * (a ^ 2)) - (5e-07 * (a ^ 3)) - (5e-05 * (a ^ 4)) + _

(2e-06 * (a ^ 5))
’B1 = (0.1983 * a) - (0.0258 * (a ^ 2)) + (1.5e-06 * (a ^ 3)) + (0.0002 * (a ^ 4)) - _

(1e-05 * (a ^ 5))
’B2 = (0.0129 * (a ^ 2)) - (1.5e-06 * (a ^ 3)) - (0.0003 * (a ^ 4)) + (2e-05 * (a ^ 5))
’B3 = (5e-07 * (a ^ 3)) + (0.0002 * (a ^ 4)) - (2e-05 * (a ^ 5))
’B4 = -(5e-05 * (a ^ 4)) + (1e-05 * (a ^ 5))
’B5 = -(2e-06 * (a ^ 5))
’are B-coefficients for optimised transition (d0) -> opt. 2D test specimen, t=20mm
’-------------------------------------------------------------------------------------------------
’------Parma-paper "0ř-crack --------------------------------------------------------------
’B0 = 1.21 - (0.28 * a) + (0.0424 * (a ^ 2)) - (0.00481 * (a ^ 3)) + (0.000277 * (a ^ 4)) - _

(6.25e-06 * (a ^ 5))
’B1 = (0.28 * a) - (0.0847 * (a ^ 2)) + (0.0144 * (a ^ 3)) - (0.0011 * (a ^ 4)) + _

(3.12e-05 * (a ^ 5))
’B2 = (0.0424 * (a ^ 2)) - (0.0144 * (a ^ 3)) + (0.00166 * (a ^ 4)) - (6.25e-05 * (a ^ 5))
’B3 = (0.00481 * (a ^ 3)) - (0.0011 * (a ^ 4)) + (6.25e-05 * (a ^ 5))
’B4 = (0.000277 * (a ^ 4)) - (3.12e-05 * (a ^ 5))
’B5 = (6.25e-06 * (a ^ 5))
’are B-coefficients for quarter-circular transition -> Parma-paper examples, t=20mm
’-------------------------------------------------------------------------------------------------
’------pure tension --------------------------------------------------------------
’B0 = 1
’B1 = 0
’B2 = 0
’B3 = 0
’B4 = 0
’B5 = 0
’are B-coefficients for membrane stress
’-------------------------------------------------------------------------------------------------
’------pure bending --------------------------------------------------------------
’B0 = 1 - (a / 10)
’B1 = a / 10
’B2 = 0
’B3 = 0
’B4 = 0
’B5 = 0
’are B-coefficients for bending stress field, nominal section, t=20mm
’-------------------------------------------------------------------------------------------------
Bcoeff = Array(B0, B1, B2, B3, B4, B5)

’____definition and modification of nominal stress range_______________________________

dsiga = sigmax - sigmin ’nominal delta stress for FCG in A
dsigb = sigmax - sigmin ’nominal delta stress for FCG in B
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’_____find closest alfa and ksi neighbours of Fa in table: alfa0,alfa1,ksi0,ksi1____________

alfacount = 1
ksicount = 1
alfaten = alfa * 10
ksiten = ksi * 10

Do
alfa1 = alfacount
If alfaten = alfa1 Then

alfa0 = alfa1
Exit Do

ElseIf alfaten < alfa1 Then
alfa0 = alfa1 - 1
Exit Do

Else: alfacount = alfacount + 1
End If

Loop While alfaten > alfa1

Do
ksi1 = ksicount
If ksiten = ksi1 Then

ksi0 = ksi1
Exit Do

ElseIf ksiten < ksi1 And ksicount = 1 Then
ksi0 = 0
If ksiten = 0.25 Then

ksi1 = ksi0
End If
Exit Do

ElseIf ksiten < ksi1 And ksicount > 1 Then
ksi0 = ksi1 - 1
Exit Do

Else: ksicount = ksicount + 1
End If

Loop While ksiten > ksi1

’__________begin calc. of SIF and stress in A__________________________________________

Famm = 0
Fa = 0
Fastress = 0
sigsuma = 0

For mm = mmmin To mmmax

If d = 0 Then GoTo 10
If N >= (Noutput * d) Then ’Output for stress concentration at A

10 Cells(73 + d, 53 + mm).Value = Bcoeff(0) ’once every Noutput cycles
End If

’_____Fa interpolation_____________________________________________________________

F00 = Worksheets("Parma_KI").Cells(5 + alfa0 - 1 + (mm * 29), 2 + ksi0).Value
F01 = Worksheets("Parma_KI").Cells(5 + alfa0 - 1 + (mm * 29), 2 + ksi1).Value
F10 = Worksheets("Parma_KI").Cells(5 + alfa1 - 1 + (mm * 29), 2 + ksi0).Value
F11 = Worksheets("Parma_KI").Cells(5 + alfa1 - 1 + (mm * 29), 2 + ksi1).Value

If alfa0 = alfa1 Then
F0 = F00
F1 = F01

Else
If F10 > F00 Then

F0 = F00 + ((F10 - F00) * (alfaten - alfa0) / (alfa1 - alfa0)) ’linear interpolation
Else

F0 = F00 - ((F00 - F10) * (alfaten - alfa0) / (alfa1 - alfa0))
End If
If F11 > F01 Then

F1 = F01 + ((F11 - F01) * (alfaten - alfa0) / (alfa1 - alfa0)) ’linear interpolation
Else

F1 = F01 - ((F01 - F11) * (alfaten - alfa0) / (alfa1 - alfa0))
End If
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End If

If ksi0 = ksi1 Then
Famm = F0

Else
If F1 > F0 Then

Famm = F0 + ((F1 - F0) * (ksiten - ksi0) / (ksi1 - ksi0)) ’linear interpolation
Else

Famm = F0 - ((F0 - F1) * (ksiten - ksi0) / (ksi1 - ksi0))
End If

End If

Fastress = Fastress + (Famm * Bcoeff(mm)) ’accumulated K_I(L) = F_I *Kt(a)
sigsuma = sigsuma + Bcoeff(mm) ’accumulated stress concentration

Next mm

a = a / 1000 ’*****[m]*****
Fa = Fastress ’Fa = DeltaKa / (dsiga * Sqr(pi * a))
DeltaKa = Fastress * dsiga * Sqr(pi * a) ’SIF a [MPa*m^0.5]
DeltaKaHCF = DeltaKa * (DD) ’SIF a (HCF)

’_____begin numeric integration Runge-Kutta-Fehlberg of Paris eq. for a______________________

k1 = H * E(N, a, DeltaKa, ParisC, Parism)
k2 = H * E(N + H / 4, a + k1 / 4, DeltaKa, ParisC, Parism)
k3 = H * E(N + 3# / 8 * H, a + 3# / 32 * (k1 + 3 * k2), DeltaKa, ParisC, Parism)
k4 = H * E(N + 12# / 13 * H, a + 1932# / 2197 * k1 - 7200# / 2197 * k2 + 7296# / 2197 * k3, _

DeltaKa, ParisC, Parism)
k5 = H * E(N + H, a + 439# / 216 * k1 - 8 * k2 + 3680# / 513 * k3 - 845# / 4104 * k4, DeltaKa, _

ParisC, Parism)

anew = a + ((25# / 216 * k1) + (1408# / 2565 * k3) + (2197# / 4104 * k4) - (k5 / 5))
anew = anew * 1000 ’*****[mm]*****

’__________begin calc. of SIF and stress in B_________________________________________

Fnmb = 0
Fb = 0
Fbstress = 0
sigsumb = 0

For mm = mmmin To mmmax

’_____Fb interpolation_____________________________________________________________

F00 = Worksheets("Parma_KI").Cells(19 + alfa0 - 1 + (mm * 29), 2 + ksi0).Value
F01 = Worksheets("Parma_KI").Cells(19 + alfa0 - 1 + (mm * 29), 2 + ksi1).Value
F10 = Worksheets("Parma_KI").Cells(19 + alfa1 - 1 + (mm * 29), 2 + ksi0).Value
F11 = Worksheets("Parma_KI").Cells(19 + alfa1 - 1 + (mm * 29), 2 + ksi1).Value

If alfa0 = alfa1 Then
F0 = F00
F1 = F01

Else
If F10 > F00 Then

F0 = F00 + ((F10 - F00) * (alfaten - alfa0) / (alfa1 - alfa0)) ’linear interpolation
Else

F0 = F00 - ((F00 - F10) * (alfaten - alfa0) / (alfa1 - alfa0))
End If
If F11 > F01 Then

F1 = F01 + ((F11 - F01) * (alfaten - alfa0) / (alfa1 - alfa0)) ’linear interpolation
Else

F1 = F01 - ((F01 - F11) * (alfaten - alfa0) / (alfa1 - alfa0))
End If

End If

If ksi0 = ksi1 Then
Fbmm = F0

Else
If F1 > F0 Then
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Fbmm = F0 + ((F1 - F0) * (ksiten - ksi0) / (ksi1 - ksi0)) ’linear interpolation
Else

Fbmm = F0 - ((F0 - F1) * (ksiten - ksi0) / (ksi1 - ksi0))
End If

End If

Fbstress = Fbstress + (Fbmm * Bcoeff(mm)) ’accumulated F_I *Kt(b)
sigsumb = sigsumb + Bcoeff(mm) ’accumulated stress concentration

Next mm

b = b / 1000 ’*****[m]*****
Fb = Fbstress ’accumulated F_I
DeltaKb = Fbstress * dsigb * Sqr(pi * a) ’SIF b [MPa*m^0.5]
DeltaKbHCF = DeltaKb * (DD) ’SIF b (HCF)

’_____begin numeric integration Runge-Kutta-Fehlberg of Paris eq. for b________________________

l1 = H * U(N, b, DeltaKb, ParisC, Parism)
l2 = H * U(N + H / 4, b + l1 / 4, DeltaKb, ParisC, Parism)
l3 = H * U(N + 3# / 8 * H, b + 3# / 32 * (l1 + 3 * l2), DeltaKb, ParisC, Parism)
l4 = H * U(N + 12# / 13 * H, b + 1932# / 2197 * l1 - 7200# / 2197 * l2 + 7296# / 2197 * l3, _

DeltaKb, ParisC, Parism)
l5 = H * U(N + H, b + 439# / 216 * l1 - 8 * l2 + 3680# / 513 * l3 - 845# / 4104 * l4, DeltaKb, _

ParisC, Parism)

deltab = (25# / 216 * l1) + (1408# / 2565 * l3) + (2197# / 4104 * l4) - (l5 / 5)
deltab = deltab * 1000 ’*****[mm]*****
a = a * 1000 ’*****[mm]*****
b = b * 1000 ’*****[mm]*****

’____calculate cnew : growth perpendicular to crackfront___________________________________

deltaxb = (deltab) / (Sqr(1 + ((zb ^ 2) * (a ^ 4) / ((xb ^ 2) * (c ^ 4)))))
deltazb = Sqr((deltab ^ 2) - (deltaxb ^ 2))
xbnew = xb + deltaxb
zbnew = zb + deltazb
cnew = zbnew / (Sqr(1 - ((xbnew / anew) ^ 2)))

’_______________________________________________________________________________

If d = 0 Then GoTo 80 ’output of initial values

If DeltaKaHCF > DeltaKathHCF Then ’definition of failure (HCF)
If DeltaKbHCF > DeltaKathHCF Then

Beep
MsgBox " The SIF threshold for HCF has been reached all along the crack front "
Kill = 1
GoTo 80

Else
Beep
MsgBox " The SIF threshold for HCF has been reached at point A "
Kill = 1
GoTo 80

End If
End If

If a > af Then ’definition of failure (af)
Beep
MsgBox " The fracture crack depth af = " & af & " mm has been reached "
Kill = 1
GoTo 80

End If

If N > Nmax Then
Beep
MsgBox " The number of load cycles Nmax = " & Nmax & " has been reached "
Kill = 1
GoTo 80

End If

If i > 1000000 Then ’End dead loop
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Beep
MsgBox " The calculation has been terminated after 1000000 calculation steps "
Kill = 1
GoTo 80

End If

Loop Until N >= (Noutput * d) ’outputs every Noutput cycles

’_____end calculation loop, begin output to Pivot table____________________________________

80 Cells(74 + d, 1).Value = N ’Output to pivot (A , 74+d)
Cells(74 + d, 2).Value = a ’Output to pivot (B , 74+d)
Cells(74 + d, 3).Value = c ’Output to pivot (C , 74+d)
Cells(74 + d, 4).Value = DeltaKa ’Output to pivot (D , 74+d)
Cells(74 + d, 5).Value = DeltaKb ’Output to pivot (E , 74+d)
Cells(74 + d, 6).Value = alfa ’Output to pivot (F , 74+d) alpha
Cells(74 + d, 7).Value = ksi ’Output to pivot (G , 74+d) xi
Cells(74 + d, 8).Value = Fa ’Output to pivot (H , 74+d)
Cells(74 + d, 9).Value = Fb ’Output to pivot (I , 74+d)

’_____begin drawing ellipse from a_d and c_d_________________

For g = 0 To 30
ellx = cnew * (1 - (g ^ 2 / 900))
elly = Sqr(((anew) ^ 2) * (1 - ((ellx ^ 2) / ((cnew) ^ 2))))
Cells(74 + g, 10 + (2 * d)).Value = ellx ’Output to pivot (J+2d , 74+g)
Cells(74 + g, 11 + (2 * d)).Value = elly ’Output to pivot (K+2d, 74+g)

Next g

If Kill = 1 Then GoTo 100 ’this was the final output, terminate

d = d + 1
If d > 25 Then

Beep
MsgBox " The max. number of 25 outputs has been exceeded. Increase Noutput. "
GoTo 100

End If

Loop

’_____end output loop___________________________________________________________

100 Cells(31, 6).Value = N ’Output to pivot (F , 31)
Cells(32, 6).Value = anew ’Output to pivot (F , 31)
Cells(33, 6).Value = cnew ’Output to pivot (F , 31)

MsgBox " Simulation K_Parma04 done! "
ActiveWindow.SmallScroll Down:=60

End Sub

Function E(N As Double, a As Double, DeltaKa As Double, ParisC As Double, Parism As Double) As Double

E = ParisC * (DeltaKa ^ Parism) ’E = da/dN

End Function

Function U(N As Double, b As Double, DeltaKb As Double, ParisC As Double, Parism As Double) As Double

U = ParisC * (DeltaKb ^ Parism) ’U = db/dN

End Function
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