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Abstract. The classic thinking problem, the “Nine Dots Puzzle”, is widely used in courses 

on creativity and appears in a lot of games magazines. One of the earliest appearances is in 

“Cyclopedia of Puzzles” by Sam Loyd in 1914. Here is a review of the generic solution of 

the problem of the 9 points spread to n
2
 points. Basing it on a specific pattern, we show that 

any nxn (for n ≥ 5) points puzzle can also be solved ‘Inside the Box’, using only 2∙n − 2 

straight lines (connected at their end-points), through the square spiral method. The same 

pattern is also useful to “bound above” the minimal number of straight lines we need to 

connect n
k
 points in a k-dimensional space, while to “bound below” the solution of the 

nxnx…xn puzzle we start from a very basic consideration. 

Keywords: dots, straight line, inside the box, outside the box, plane, upper bound, lower 

bound, graph theory, segment, points. 
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§1.   Introduction 

The classic thinking problem, the nine points puzzle, reads: “Since the 9 points as shown in Fig. 1, we 

must join with straight line and continuous stroke, without this overlap more than once, using the smallest 

number of lines possible” [6]. For the solution to this problem, we must make some exceptions, and one 

of them is that a line must be attached to at least two points, such that the least number of lines that can be 

used in this 3x3 grid is 4. That is obvious, since it would be meaningless to do a line for each point, 

although there is nothing to prevent it. 

 

 

Fig. 1. The nine points connected by four lines. 

The interesting thing about this problem is not the solution, but rather, the procedure in reaching it.  

This problem requires lateral thinking for its solution [7]. The problem appears in a lot of places, for 

example, in the book “The art of creative thinking, how to be innovative and develop great ideas” [1]. 

Thinking outside the box (sometimes erroneously called “thinking out of the box” or “thinking outside 

the square”) is to think differently, unconventionally or from a new perspective. This phrase often refers 

to novel, creative and smart thinking [3]. 

The phrase means something like “think creatively” or “be original” and its origin is generally 

attributed to consultants in the 1970s and 1980s who tried to make clients feel inadequate by drawing 

nine dots on a piece of paper and asking those clients to connect the dots without lifting their pen, using 

only four lines [5]. 

§2.   nxn points problem in a bi-dimensional space 

From the 3x3 grid, there has grown the problem of extending it to a grid of nxn points, and to find a 

solution under the same conditions as the original problem. Fig. 2 shows a grid of 4x4 points. 

 

 

Fig. 2. 4x4 grid points. 

Fig. 3 shows some of the possible solutions for a grid of 4x4. Given the grid symmetry, it is enough to 

exhibit some solutions, because the remaining cases are obtained by rotating the grid. Therefore, it is 

possible to solve the 4x4 version of the puzzle using 6 lines starting from any point of the grid. In 

addition, each starting point, in any of the solutions, may well be the point of arrival. These solutions are 

using the least number of lines. 
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Fig. 3. 4x4 grid points and some solutions. 

Another curiosity that arises is that for n greater than 4, it is possible to construct solutions “Inside the 

Box” and “Outside the Box”. Fig. 4 illustrates the 5x5 case. 

 

 

Fig. 4. 5x5 grid points solutions inside / outside the box. 

 

Fig. 5 shows the solution for a grid with n equal to 3, 4, 5 and 6 respectively, using a pattern with a 

spiral shape. In figure c, the solution is given by a pattern “Inside the Box” and compared with figure b, it 

has two lines more. In turn, comparing b with a, we can also see two additional lines. It’s the same with d 

and c. Likewise, when n is increased by one unit of the number of lines, the solution to the problem is 

increased by two. This occurs for any pattern solution to the problem, whether or not it is the spiral type. 

In fact, we can draw a square spiral around the pattern in figure c (or considering a different solution), so 

it is trivial that we add two straight lines more for any further row / column we have. In the mentioned 

figure, we show the spiral shape of the solution (a square spiral frame for n ≥ 5). 

 

 

Fig. 5. Some solutions for n = 3, n = 4, n = 5 and n = 6, which show the square spiral frame starting from 

n = 5. 

 

Stated another way, the Eq. 1 gives the minimum number of lines required [2]. Where h represents the 

number of straight lines to connect all the points and n is the number of rows or columns of the grid. It 

a b c d
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should be mentioned that this result is independent of the grid pattern solution for any value of n, 

excepting for 1 and 2. 

 

    (   )                             (1) 
 

A special case is represented by a mono-dimensional space, we have n points in a row. In this case,   

n ≥ 2, h = 1, and this puzzle can be solved inside the box or outside the box. 
 

§3.   Problem generalization: nxnx…xn points corresponding to a k-dimensional 

space 

After showing the general solution for the case of nxn points on a plane, a new problem arises: extending 

the same puzzle to nxnx...xn points in a k-dimensional space, where k is equal to the number of 

occurrences of n (n
k
 total points, indeed). 

First we show the problem and the solution to a three-dimensional space, afterwards, the general 

problem and the solution to a k-dimensional space. 

We distinguish two types of solutions: first, called “Upper Bound”, considering the spiral solution 

method, and second, called “Lower Bound” [4], based on the consideration that we cannot connect more 

than n points with the first line and the maximum of n−1 points for any additional line (i.e., it is possible 

to connect n−1 points with the first line, n points with the second line and n−1 points using any further 

line, but this clarification does not change the previous result). 

Let, hu be the number of lines from the Upper Bound and hl the constraint based on the previous 

assumption; the minimum number of lines, h, we need to connect the nxnx...xn points, is hl ≤ h ≤ hu. 

Table 1 shows the number of lines for Upper and Lower Bound cases, in two and three dimensions 

(based on the square spiral method applying to the pattern shown in figure c, when n ranges from 1 to 20. 

Moreover, the Gap column shows the difference in the number of lines between the Upper and Lower 

Bound. The last column shows the increase in the number of lines for the case in three-dimensions, Upper 

Bound, when incrementing the value of n. 
 

Table 1: Upper / Lower bounds in 2 and 3 dimensions. 

  Two Dimensions Three Dimensions 

n 
Lower 

Bound 

Upper 

Bound 

Gap 

(Upper-

Lower) 

Lower 

Bound 

Upper 

Bound 

Gap 

(Upper-

Lower) 

Upper B. 

Increments 

[n→n+1] 

1 / / / / / / / 

2 3 3 0 7 7 0 6 

3 4 4 0 13 14 1 7 

4 5 6 1 21 26 5 12 

5 6 8 2 31 43 12 17 

6 7 10 3 43 64 21 21 

7 8 12 4 57 89 32 25 

8 9 14 5 73 118 45 29 

9 10 16 6 91 151 60 33 

10 11 18 7 111 188 77 37 

11 12 20 8 133 229 96 41 

12 13 22 9 157 274 117 45 
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13 14 24 10 183 323 140 49 

14 15 26 11 211 376 165 53 

15 16 28 12 241 433 192 57 

16 17 30 13 273 494 221 61 

17 18 32 14 307 559 252 65 

18 19 34 15 343 628 285 69 

19 20 36 16 381 701 320 73 

20 21 38 17 421 778 357 77 
 

In the three-dimensional space case, we used a “plane by plane” solution, from the pattern of the nxn 

puzzle and linking each plane by a line.  

The Upper Bound column of Table 1 shows that h, the number of lines needed, as we increase n by a 

unit, is given by hn +1 = hn + 4∙(n − 1) + 5, for n ≥ 3. 

Fig. 6 shows an Upper Bound solution when n = 5 (h = 43). 

 

 

Fig. 6. 5x5x5 points, 43 straight lines. 

 

Using the Eq. 1 and by an extension of this to a three-dimensional space, we multiply this solution by 

the number of planes given by the n value and add the n−1 necessary lines to connect each plane. This 

gives the number of lines needed to connect all the points. Thus, the Upper Bound for an arbitrary large 

number of dimensions, k, where k ≥ 2, is given by the Eq. 2, and h is the number of lines. 

 

1)12(1)1(2 222   kkk nnnnnh         (2) 

 

Extending the Lower Bound constraint we have previously explained to k dimensions, where k ≥ 2, we 

obtain the Eq. 3. It indicates the number of needed lines to connect n
k
 points in a k-dimensional space. 
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It follows that   
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For the “Lower Bound” on the three-dimensional case considering “plane by plane solutions only”, 

joining the nxn solutions with a line, the result is given by the Eq. 4. 

 
1...6)72(6)62(4)52(4)42(2)32(2)22(  nnnnnnnh  
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Where imax is the maximum (integer) value of “i” inside the summation (the maximum value  ̃ such that 
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Where      ⌊
 

 
 (√       )⌋. 

 

 

Table 2 shows the number of needed lines using a “plane to plane” solution for nxnxn points. The Gap 

column is the difference between “Upper Bound” and “Lower Bound”. 

 

Table 2: Upper / Lower Bounds in 3 dimensions [9]. 

n 
Lower 

Bound 

Upper 

Bound 

Gap 

Upper-

Lower 

Upper B. 

Increments 

[n→n+1] 

Guessing 

the Plane 

Bound 
 

n 
Lower 

Bound 

Upper 

Bound 

Gap 

Upper-

Lower 

Upper B. 

Increments 

[n→n+1] 

Guessing 

the Plane 

Bound 

1 / / / / / 

 

11 133 222 89 39 211 

2 7 7 0 6 7 

 

12 157 265 108 43 253 

3 13 14 1 7 14 

 

13 183 311 128 46 298 

4 21 26 5 12 26 

 

14 211 361 150 50 347 

5 31 43 12 17 40 

 

15 241 415 174 54 400 

6 43 64 21 21 59 

 

16 273 473 200 58 457 

7 57 89 32 25 82 

 

17 307 535 228 62 518 

8 73 117 44 28 109 

 

18 343 601 258 66 583 

9 91 148 57 31 139 

 

19 381 670 289 69 651 

10 111 183 72 35 173 

 

20 421 743 322 73 723 

 

Fig. 7 shows points of connection without crossing the line and without additional constraint 

intersections. We called this the “pure” square spiral pattern. The square spiral is not only a frame 

connected to another internal pattern; it is solving the problem inside the box, connecting points without 

crossing a line and visiting any dot just once. 
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Fig. 7. The “pure” square spiral pattern in three dimensions. 

 

1...8)72(6)62(

6)52(4)42(4)32(2)22(2)12(





nnn

nnnnnh
 

 

So, 

 
 




























max max

1 1

max
2

2)12(
2

)2(21
i

i

i

i

i
nin

i
innh             

 

Thus (for n ≥ 4) 
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 (√       )⌋.   

 

 

A method to reduce the gap between the Upper and the Lower Bound in three dimensions is combining 

the pattern [10] on Fig. 8 with the square spiral one. 
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Fig. 8. 5x5 points, 8 lines basic pattern. 

 

This is not the best Upper Bound that defines under the “plane by plane” additional constraint. In fact, 

there are other patterns which enhance the solution. As per Fig. 9, Fig. 10 and Fig. 11. The pattern in Fig. 

11 is valid for any even value of n, for n ≥ 6, while it improves the “standard” Upper Bound in Fig. 8 for 

n = 6, 8, 10, 12 and 14. 

 

 

 

Fig. 9. 6x6x6 points, 62 straight lines. 

 

 

 

Fig. 10. 7x7x7 points, 85 straight lines. 
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Fig. 11. 10x10x10 points, 178 straight lines. 

 

Analyzing the different patterns, the best “Upper Bound”, for n ≥ 15, is the one derived from the 

pattern by Fig. 8. Table 3, and shows the three-dimensional “Upper Bound”, based on the standard 

solution of Fig. 8.  

 

 

Table 3: nxnxn points puzzle Upper Bounds considering the pattern by Fig. 8 only. 

n 

Upper 

Bound 

(nxnxn) 

 

n 

Upper 

Bound 

(nxnxn) 

 

n 

Upper 

Bound 

(nxnxn) 

 

n 

Upper 

Bound 

(nxnxn) 

1 / 

 

16 471 

 

31 1799 

 

46 4003 

2 7 

 

17 532 

 

32 1919 

 

47 4181 

3 14 

 

18 597 

 

33 2043 

 

48 4363 

4 26 

 

19 666 

 

34 2171 

 

49 4549 

5 43 

 

20 739 

 

35 2302 

 

50 4739 

6 63 

 

21 816 

 

36 2437 

 

51 4932 

7 87 

 

22 897 

 

37 2576 

 

52 5129 

8 115 

 

23 982 

 

38 2719 

 

53 5330 

9 146 

 

24 1071 

 

39 2866 

 

54 5535 

10 181 

 

25 1163 

 

40 3017 

 

55 5744 

11 220 

 

26 1259 

 

41 3172 

 

56 5957 

12 263 

 

27 1359 

 

42 3331 

 

57 6174 

13 309 

 

28 1463 

 

43 3493 

 

58 6395 

14 359 

 

29 1571 

 

44 3659 

 

59 6620 

15 413 

 

30 1683 

 

45 3829 

 

60 6849 

 

Table 4 shows the three-dimensional problem Upper Bounds, based on the square spiral pattern. This 

is the best Upper Bound we have currently found for an arbitrary large value of n (i.e., n ≥ 51). 

 

Table 4: nxnxn points puzzle Upper Bounds following the “pure” square spiral pattern and the one in 

Fig. 8: if n ≥ 42, we get the same result. 
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n 
Square 

Spiral 

Best Upper 

Bound 

Currently 

Discovered 

Gap 
 

n 
Square 

Spiral 

Best Upper 

Bound 

Currently 

Discovered 

Gap 
 

n 
Square 

Spiral 

Best Upper 

Bound 

Currently 

Discovered 

Gap 

1 / / / 

 

18 601 597 4 

 

35 2304 2302 2 

2 7 7 0 

 

19 670 666 4 

 

36 2439 2437 2 

3 16 14 2 

 

20 743 739 4 

 

37 2578 2576 2 

4 29 26 3 

 

21 820 816 4 

 

38 2721 2719 2 

5 45 43 2 

 

22 901 897 4 

 

39 2868 2866 2 

6 65 63→62 2→3 

 

23 986 982 4 

 

40 3019 3017 2 

7 89 87→85 2→4 

 

24 1075 1071 4 

 

41 3173 3172 1 

8 117 115→112 2→5 

 

25 1167 1163 4 

 

42 3331 3331 0 

9 148 146 2 

 

26 1263 1259 4 

 

43 3493 3493 0 

10 183 181→178 2→5 

 

27 1363 1359 4 

 

44 3659 3659 0 

11 222 220 2 

 

28 1467 1463 4 

 

45 3829 3829 0 

12 265 263→260 2→5 

 

29 1575 1571 4 

 

46 4003 4003 0 

13 311 309 2 

 

30 1687 1683 4 

 

47 4181 4181 0 

14 361 359→358 2→3 

 

31 1803 1799 4 

 

48 4363 4363 0 

15 415 413 2 

 

32 1923 1919 4 

 

49 4549 4549 0 

16 473 471 2 

 

33 2046 2043 3 

 

50 4739 4739 0 

17 535 532 3 

 

34 2173 2171 2 

 

51 4932 4932 0 
 

As already stated, for n = 6, 8, 10, 12 or 14, the best “plane by plane” to “Upper Bound” is given by 

832))5(21(1)1(2 2  nnnnnnh , following the pattern of Roger Phillips [8]. 
 

For any n ≥ 42, the number of lines is given by the (5). 

§4.   Conclusion
 

When n becomes very large (i.e. n ≥ 42), the spiral pattern is the best three-dimensional model “plane 

by plane”, allowing a good solution. It is as good as the one deriving from the pattern of Fig. 8 for any n 

≥ 42 (for n ≥ 51, considering a generic pattern of 5x5, the last / external parts of the two patterns overlap 

– it is a square spiral frame). In addition, the spiral pattern allows a solution “Inside the Box”, without 

crossing any line and passing through each point more than once. It is also the best pattern available 

without crossing lines, for dimensions from 1 to k. 
 

Let us call t the least “Upper Bound” found for the case of three dimensions, see Table 3,   n ≥ 42, we 

obtain the Eq. (6). 
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Where      ⌊
 

 
 (√       )⌋. 
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Thus h, the “Upper Bound” for the k-dimensions problem, can be further lowered as: 

  n    −{0}, let us define t as the lowest “Upper Bound” we have previously proven for the standard 

nxnxn points problem (see Eq. (6) and Table 3 - e.g., n = 6  t = 62), 

 

1)1(1 333   kkk nthnnth       (7) 

 
 

Let l be the minimum amount of straight lines needed to solve the nxnx…xn = n
k
 points problem (k, n   

 −{0, 1, 2}), we have just proven that: 
 

1)12(
1

1 2 


 k
k

nnl
n

n                        (8) 

 

The Eq. (8) can be further improved, by the Eq. (6) and Table 3, as: 
 

1)1(
1

1 3 


 k
k

ntl
n

n                   (9) 
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