
LIMO: Learning Programming using Interactive Map
Activities (Demo Paper)∗

Ruby Y. Tahboub Jaewoo Shin Aya Abdelsalam Jalaleldeen W. Aref
Walid G. Aref Sunil Prabhakar

Purdue University, West Lafayette, Indiana
{rtahboub,shin152}@cs.purdue.edu, aya.abdelsalam.91@gmail.com,

{jaref,aref,sunil}@cs.purdue.edu

ABSTRACT
Advances in geographic information, interactive two- and
three-dimensional map visualization accompanied with the
proliferation of mobile devices and location data have
tremendously benefited the development of geo-educational
applications. We demonstrate LIMO; a web-based program-
ming environment that is centered around operations on
interactive geographical maps, location-oriented data, and
the operations of synthetic objects that move on the maps.
LIMO materializes a low-cost open-ended environment that
integrates interactive maps and spatial data (e.g., Open-
StreetMap). The unique advantage of LIMO is that it relates
programming concepts to interactive geographical maps and
location data. LIMO offers an environment for students to
learn how to program by providing: 1. An easy-to-program
library of map and spatial operations, 2. High-quality inter-
active map graphics, and 3. Example programs that intro-
duce users to writing programs in the LIMO environment.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education; D.2.6 [Programming Envi-
ronment]: Map-integrated Environment.

General Terms
Design.

1. INTRODUCTION
In recent years, the interest in learning programming and

computer science classes among undergraduate students has
been modestly growing in comparison with STEM1 [11].
The key to inspire students to learn computer science lies

∗Walid G. Aref’s research is partially supported by the National
Science Foundation under Grants IIS 1117766 and IIS 0964639.

1Science, Technology, Engineering and Mathematics.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).
SIGSPATIAL ’15, November 03-06, 2015, Bellevue, WA, USA
Copyright 2015 ACM 978-1-4503-3967-4/15/11.
http://dx.doi.org/10.1145/2820783.2820796 ...$15.00.

in adopting an active learning approach. Many academic
institutions have redesigned the introductory computer sci-
ence course to include a visual component e.g., Alice [8] and
Greenfoot [9], a hardware component e.g., Finch robot [10],
or a context, e.g., media computation [7]. Although these
approaches have successfully raised the interest in comput-
ing and made programming accessible, none of the environ-
ments provide a platform for maps as a pedagogical tool
for learning programming. Interactive maps (e.g., based
on OpenStreetMap, Google Maps, Bing Maps, or Google
Earth) and location-based services provide a very viable al-
ternative and a unique opportunity to add excitement to
students while learning programming by relating program-
ming concepts to locations and places that students are fa-
miliar with. Moreover, map activities, e.g., finding direc-
tions with certain properties, scale conversion, coordinate
systems, distance computations, shortest paths in road net-
works, and spatial analysis are rich in semantics and help
students develop strong computational thinking skills.

2. THE LIMO PROGRAMMING ENVIRON-
MENT

We have realized a prototype for LIMO (Please see
http://ibnkhaldun.cs.purdue.edu:8181/limo/). In this sec-
tion, we present a first view of the LIMO environment in-
cluding its user interface and programming library. Also,
this section covers an overview of the LIMO system design.

2.1 LIMO User Interface
LIMO provides a web-based environment that integrates

Python scripting and interactive maps to facilitate creat-
ing map-visualized programs. The LIMO user interface, il-
lustrated in Figure 1, is comprised of three main parts: a
program scripting area, a program output area and an inter-
active map. Users can create programs by writing Python
scripts that utilize the LIMO library to write map programs.
Furthermore, the LIMO interface integrates OpenStreetMap
that is used to explore map features, e.g., roads and parks,
and visualizes the output of the executed programs, e.g.,
an animation of the Commuter as it follows moving direc-
tions on the map. Finally, the program output area is dedi-
cated for displaying textual output, e.g., computational re-
sults performed by the executing program.

Writing programs in LIMO is simple. First, the program
scene is set as a map that is zoomed at a default location.
Next, the user writes a standard Python script that utilizes
the LIMO library to encode the actions of the program’s

Figure 1: The LIMO programming environment consists of program scripting area, a program output area and
an interactive map.

moving object that is referred to by the Commuter. Finally,
on running the program, the animation of the movements of
the Commuter is displayed on the map. Figure 1 gives an
example program that provides the commuting directions
between two locations. Function start at (Lines 2) speci-
fies the start location and direction of Commuter. Next,
Function display marker (Line 3) adds a marker at the
current location of Commuter. Constructs move until,
move distance and turn (Lines 4-7) control Commuter’s
movements on the map. Function display distance (Line 8)
prints in the program output area the total distance com-
muted so far. Finally, Function show on map displays an
animation of Commuter’s movements on the map.

2.2 The LIMO Programming Library
LIMO integrates interactive maps and rich location-

oriented data and spatial data types into an easy-to-use pro-
gramming library. The LIMO library functions are designed
to enable users to process, customize, and visualize location
data on the map. The LIMO library offers two categories of
functions: map basics, and spatial.

The map functions enable users to interact with the un-
derlying map and perform primitive activities, e.g., display-
ing a message or adding a marker on map. Location in the
basic constructs is represented as an actual address that can
either be explicit, e.g., the intersection of two streets, or im-
plicit, e.g., the commuter’s current location. Moreover, the
basic map functions are suitable for beginners with no map
programming experience. For instance, the semantics of dis-
play, move and turn are intuitive and have basis in reality.
Hence, a wide variety of programs can be written to describe
the various movements of commuter while keeping track of
time and distance.

The spatial functions encapsulate complex location-based
data and operations into easy-to-use functions. Location is
represented as a geo-coordinate point, e.g., using the lati-
tude and the longitude. Spatial functions enable creating
programs that incorporate real-world location data and ap-
ply.For instance, get location seamlessly converts a textual
address to its equivalent geo-coordinates, get all is a spatial
function that provides a list of locations (in the form of geo-

coordinates or shapes) that match a textual place descrip-
tion parameter (e.g., all airports in Indiana). Consequently,
given the current location of Commuter, one program may
iterate over the list of interesting locations and finds the

Table 1: Sample operations of the LIMO program-
ming library
Category Function Name Description/ Options

Map
(Basics)

start at(name, address,
direction)

Sets Commuter’s start
location to address with
heading direction

move distance(name,
distance),
move until(name,
street),
move to next intersection
(name)

Move Commuter for certain
distance or until a certain
street or next intersection

turn to(name,
streetName, direction)

Re-orient Commuter
towards a new street and
direction, e.g., 123
University St. and South

display message
(message,
address|location)

Place a text message, e.g.,
at a given address or
geo-location

display marker (address|
location)

Place a map marker at a
given address or
geo-location

display [distance|
time](commuter)

Display total distance/time
commuted so far

compute distance(add1,
add2)

Return the distance
between two addresses or
geo-locations

Spatial
get location(address)

Return a point that
represents the
geo-coordinates of address

get(name, description,
geometric shape)

Return the location (as
geometric shape) of the
place that matches the
given name and discription

get all(description,
geometric shape)

Return a list of locations
(as geometric shape) for
places that match
discription

overlaps| touches|
intersects| contains
(shape1, shape2)

Boolean operators that test
whether two shapes
overlap, touch, intersect, or
contain one another

display shape (geometric
shape)

Display geometric shape
(e.g., lake boundary) on
map

LIMO

User Interface

LIMO

Backend
OpenStreetMap

Spatial Database

Python

spatial query

output

Editing Processing Execution

Program Visualization

script

Figure 2: Process flow diagram of a program in
LIMO.

closest (or farthest) location to Commuter ’s current loca-
tion. Another program may simply visualize all the qualify-
ing locations on a suitably scaled map. Spatial predicates,
e.g., intersect or contains further enrich the programming
library by enabling spatial tests, e.g., does the park contain
a lake? Refer to Table 1 for a list of sample operations of
the LIMO programming library.

2.3 System Design
Figure 2 gives the process flow of a LIMO program in-

side the LIMO programming environment. In the edit-
ing phase, the user creates and edits her program. Upon
program execution, LIMO’s backend analyzes the program
script and invokes the proper LIMO library functions to
carry out map and spatial operations. For example, the
display marker(“1001 Hillcrest Rd ...”) requires a spatial
query that obtains the geo-coordinates of the address param-
eter. The geo-coordinates are used to visualize the construct
on the map. Then, the backend performs the actions spec-
ified by the program. Finally, in the execution phase, the
program output is visualized on the map.

The LIMO programming environment is a web applica-
tion that follows a multi-tier architecture. Refer to Fig-
ure 3. In the Figure, LIMO’s presentation layer embodies
a web-based user interface that integrates a scripting area
and an interactive map. The middle layer (i.e., Logic) con-
sists of a Jython interpreter (a Java-based implementation
of Python), the LIMO library of functions, and a customized
map visualization library. Finally, the data layer uses a re-
lational database that handles spatial datasets. We discuss
the technical details of each layer next.

2.3.1 Presentation Layer
LIMO’s user interface is built using Google Web Toolkit

(GWT) [2]; an open-source web tool for developing Java-
Script front-end applications. GWT is appealing for LIMO
due to its cross-browser compatibility, efficient testing and
debugging, and not mandating prior background in web lan-
guages (e.g., JavaScript or HTML).

An interactive map based on OpenStreetMap (OSM) is
integrated into LIMO’s user interface. OSM provides a free
editable map of the world. Moreover, OSM offers open ac-
cess to map datasets. Finally, LIMO uses the OpenLayers
API [3]; an open-source library for map development, to
realizw visualizations on LIMO’s interactive map.

2.3.2 Logic Layer
The logic layer (also termed the Application Layer) plays

a key role in executing programs in LIMO including per-

Presentation Layer

Logic Layer

Data Layer

LIMO interface: Google Web Toolkit (GWT)

Raw Python Script
Program Output

Area
Interactive Map

Jython Interpreter

and LIMO library Customized Map

Visualization Library

TIGER dataset

OpenStreetMap dataset
PostgreSQL

PostGIS

update map

textual output

process map output

spatial data and geocoding

LIMO interface: Google Web Toolkit (GWT)

run program

Figure 3: The architecture of the LIMO program-
ming environment.

forming computations and communicating with the Data
Layer. The Jython interpreter processes the python script
and utilizes the LIMO library to carry out spatial and map
operations. On program execution, the textual output is
displayed on the program output area and the map-related
data is moved to a customized map visualization library to
create object movement animation. Finally, the interactive
map is updated with program visualizations.

2.3.3 Data Layer
The data layer is comprised of a relational database man-

agement system (DBMS) and stored datasets. LIMO de-
ploys PostgreSQL [5]; an open-source relational DBMS along
with PostGIS [4]; an open-source extension that adds sup-
port for spatial data to PostgreSQL.

The spatial database in LIMO stores TIGER [1] and Open-
StreetMap datasets. TIGER is a public dataset adminis-
trated by the U.S. Census Bureau [6]. TIGER consists of
geometric data that features roads, railroads, rivers, in ad-
dition to legal and statistical geographic areas. LIMO uses
TIGER to support geocoding, e.g., translating between ad-
dress and geo-coordinates. Geocoding is crucial for LIMO
in order to visualize the actions of constructs on the map.
OpenStreetMap contains rich datasets about the locations
of points of interests (e.g., tourist attractions), lines (e.g.,
roads), and areas (e.g., lakes).

3. DEMONSTRATION
This section provides sample LIMO programs to demon-

strate the various programming library functions and show-
case how the LIMO environment can be used to create stim-
ulating open-ended programming exercises.

3.1 Basic Programs
Program 1. This program presents an example of uti-

lizing display, compute-distance, and conditional structure If
... Else. The goal of the program is to determine whether
the user should walk or bike from home to the office. The
user is willing to walk only if the distance to office is less
than 3 miles. Otherwise, she prefers to bike. Moreover, the
program adds a marker and a message on the locations of
home and office.

1 Home = read_address("1001 Hillcrest Dr.",
"WestLafayette", "IN", "47906")

2 Office = read_address("Airport Dr.",
"West Lafayette", "IN", "47907")

3 display_marker(Home)

 (a) (b)

Figure 4: (a) The output of Program 2. (b) The output of Program 3.

4 display_message("Start", Home)
5 display_marker(Office)
6 display_message("Destination", Office)
7 distance = compute_distance(Home , Office)
8 if distance < 3 :
9 print "I’ll be walking!"
10 else:
11 print "I’ll be biking!"

A simple extension to Program 1 is to add a third option
for driving in case the distance between home and office is
greater than 5 miles.

Program 2. This program presents an example of utiliz-
ing get-all, display-shape, the spatial operator touches, con-
ditional, and looping structures. The goal of the program is
to iterate over a list of geometries that represent the bound-
aries of states. It is required to identify the states that share
borders with Indiana and display a boundary around each
one of them.

1 Ind_pol = get("Indiana", "STATE", "POLYGON")
2 Ind_pnt = ("Indiana", "STATE", "POINT")
3 display_message("Indiana", Ind_pnt)
4 display_shape(Ind_pol)
5 all_states = get_all("STATE", "POLYGON")
6 for state in all_states:
7 if touches (state , Ind_pol):
8 display_shape(state)

Program 3. This program presents an example of utiliz-
ing get, display shape, the spatial operator intersects, con-
ditional and looping structures. The goal of the program
is to display the I-65 Highway segments that intersect the
boundary of the city Indianapolis. The get constructs (Line
1) obtains a list termed I65 segments that contains all of
the I-65 Highway segments. Refer to Figure 4b for illustra-
tion, the I65 segments spans multiple states (e.g., Michigan,
Indiana, ...). Next, the boundary of Indianapolis city is ob-
tained (Line 2) and the spatial operator intersects is used
inside a looping structure to filter out the unqualified seg-
ments (Lines 4-6).

1 I65_segments= get("I- 65", "PRIMARY -ROAD",
"POLYLINE")

2 Ind_pol= get("Indiana", "STATE", "POLYGON")
3 display_shape(Ind_pol)
4 for i in range(len(I65_segments)):
5 if intersects (I65_segments[i], Ind_pol):
6 display_shape(I65_segments[i])

3.2 Some Open-ended Problems
Interactive maps can be used to construct open-ended pro-

gramming problems, i.e., ones that can have multiple poten-
tial solutions. In the following, we present ideas for some
open-ended problems relevant to the LIMO environment.

Program 4. The design of a 5K race route. This
problem has a restriction on the race distance in addition
to the start and end locations. In contrast to the Com-
mute Directions program, there might be multiple or even
no possible solutions.

Program 5. Planning a road trip. This problem
involves choosing the points of interest and allocating the
gas budget that is determined by the total miles to be com-
muted. Many compelling questions can be addressed. For
instance, finding a trip route that allows the user to visit as
many places as the budget and miles restrictions allow.

Program 6. Data visualization activities. There
are many real-world activities that involve visualizing data
on maps, for instance, keeping track of social media friends
and followers around the country. Friends’ location data can
be constructed by using Operation get location. Another
example is monitoring the local weather, e.g., storms, snow
accumulation, and other relevant weather data.

Program 7. The design of a map game. Hunting
for hidden treasures is a very intriguing game for all ages.
Markers on the map can be used to represent treasures and
the goal is to use the LIMO library to encode the path to
each treasure. In this game, user-defined metrics (e.g., the
distance or the number of turns) can be used as scoring
criteria to determine favorable paths among others.

Acknowledgments
We would like to thank Susanne E. Hambrusch for her valu-
able comments and suggestions on how to improve LIMO
Environment.

4. REFERENCES
[1] Census tiger.

http://www.census.gov/geo/maps-data/data/tiger.html.
[2] Google web toolkit. http://www.gwtproject.org/.

[3] Open layers. http://openlayers.org/.

[4] Postgis. http://postgis.org/.
[5] Postgresql. http://www.postgresql.org/.

[6] Us census bureau. http://www.census.gov/.

[7] M. Guzdial. A media computation course for non-majors.
In ACM SIGCSE Bulletin, volume 35, pages 104–108, 2003.

[8] C. Kelleher, R. Pausch, and S. Kiesler. Storytelling alice
motivates middle school girls to learn computer
programming. In CHI, pages 1455–1464. ACM, 2007.

[9] M. Kölling. The greenfoot programming environment.
ACM Transactions on Computing Education (TOCE),
10(4):14, 2010.

[10] T. Lauwers and I. Nourbakhsh. Designing the finch:
Creating a robot aligned to computer science concepts.
2010.

[11] S. Zweben and B. Bizot. 2014 taulbee survey.
COMPUTING, 27(5), 2015.

