
utomatic control is a “miracle” tech- 
nology that exploits feedback to 

improve the performance of a tremendous 
range of technological systems, from the 
steam engine to the space station. Watt’s 
governor tamed the steam engine and 
made the Industrial Revolution possible. 
However, feedback is used by everyone: 
if the shower water is too hot, open up the 
cold water faucet. Today, feedback con- 
trol is used in radios (amplifiers), CD 
players (laser tracking), automobiles 
(cruise control, engines, and suspen- 
sions), flight control (autopilots and sta- 
bility augmentation), spacecraft (attitude 
control and guidance), machine tools, ro- 
bots, power plants, materials processing, 
and many other applications. In many 
cases automatic control is an enabling 
technology since the system cannot oper- 
ate without it. Feedback is also used to 
regulate virtually every system in the hu- 
man body and is constantly at work in eco- 
logical systems (but let’s not go too far 
afield here). At first sight, control engi- 
neering looks simple and straightforward. 
It is not. While automatic control is apow- 
erful technology, the subject is amazingly 
subtle and intricate in both theory and 
practice. This subtlety is mainly because 
changes cannot be effected instantane- 
ously in a dynamical system-when the 
shower is too hot to the touch, it is already 
too late to shut down the hot water. An 
otherwise correct control decision applied 
at the wrong time could result in catastro- 
phe. Accounting for this and numerous 
other effects is what control engineering 
is about. 
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Because automatic control is such an 
intricate subject it is extremely easy for 
students to miss the forest for the trees. 
This guide is intended to be of help to both 
undergraduate and graduate students. Un- 
dergraduates may skim this guide at the 
beginning of a first course on control to 
get arough roadmap of the subject and ter- 
minology and later refer to it periodically 
during the course. At the end of the 
course, these notes can be useful for re- 
viewing the course while studying for the 
final exam. For graduate students em- 
barking on a course in modern control, 
these notes can provide a quick review at 
the beginning of the course to help place 
their prior knowledge in perspective. 

1. Feedback is pervasive. The inter- 
action of any pair of systems almost al- 
ways involves feedback. System l reacts 
to System 2 and vice versa. It is cascade 
(one-way interaction) that is the excep- 
tional case. Newton’s third law is a state- 
ment of feedback: The force applied to A 
by B is counteracted by the force applied 
to B by A. When two electrical circuits are 
wired together, each affects the other, and 
Kirchoff‘s laws determine what that inter- 
action is. 

2. Block diagrams are not circuit 
diagrams. Block diagrams are helpful for 
analyzing feedback. However, block dia- 
grams should not be confused with circuit 
diagrams. It is useful to be able to translate 
circuit diagrams into block diagrams. 
This translation requires representing im- 
pedances and admittances as systems with 
inputs and outputs that are voltages and 
currents. Remember that the lines con- 
necting the boxes are not wires. Analo- 
gously, it is useful to be able to represent 

mechanical systems by block diagrams 
with forces, positions, velocities, and ac- 
celerations as inputs and outputs and with 
the blocks representing kinematics and 
dynamics. 

3. Determine the equilibrium points 
and linearize. An equilibrium point is a 
state in which the system would remain if 
it were unperturbed by external distur- 
bances. An equilibrium point can be un- 
stable (an egg standing on its end), 
neutrally stable (a mass connected to a 
spring), or stable (a book lying on a table). 
For a system under feedback control, an 
equilibrium point is called an operating 
point. 

Real systems are nonlinear. How- 
ever, a linearized model can be used to 
approximate a nonlinear system near an 
equilibrium point of the nonlinear sys- 
tem by a procedure called linearization. 
The resulting linear system has an equi- 
librium point at zero that corresponds to 
the equilibrium point of the nonlinear 
system. While linearized models are only 
an approximation to the nonlinear sys- 
tem, they are convenient to analyze and 
they give considerable insight into the 
behavior of the nonlinear system near the 
equilibrium point. For example, if the 
zero equilibrium point of the linear sys- 
tem is stable, then the equilibrium of the 
nonlinear system is locally stable. Un- 
less stated otherwise, we will consider 
only the approximate linearized model of 
the system. 

4. Check stability first. Once a linear- 
ized model has been obtained, stability 
must be checked. Stability can be asked of 
any system, whether the system is uncon- 
trolled (with the control turned off) or the 
system is in closed-loop operation (with 
the control determined by feedback). If 
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the system is represented by a transfer 
function, then the roots of the denomina- 
tor polynomial (called the poles of the 
system) determine whether the equilib- 
rium or operating point is stable. Stabil- 
ity can be tested explicitly by computing 
the roots of this polynomial or implicitly 
by using the Routh criterion. If the sys- 
tem is in state space form, then the eigen- 
values of the dynamics matrix can be 
computed as an explicit test of stability. 
Stability can also be tested by forming the 
characteristic polynomial of the dynamics 
matrix and applying the Routh criterion. 
However, this approach is inconvenient if 
the system is of high order. 

5. Stable systems have a frequency 
response. Much of control-system 
analysis involves the frequency re- 
sponse of linear systems. The meaning 
of the frequency response can be under- 
stood by keeping in mind the funda- 
mental theorem of linear systems: 
Suppose that a sinusoidal (or harmonic) 
input (such as a forcing) with frequency 
w is applied to a stable linear system G 
(s). Then the output of the system ap- 
proaches a sinusoidal motion whose fre- 
quency is the same as the frequency of 
the input. This limiting sinusoidal mo- 
tion is called the harmonic steady- 
state response. Note, however, that the 
output of the system does not have a 
limit in the usual mathematical sense 
since the harmonic steady-state re- 
sponse does not approach a constant 
value. The transient behavior of the sys- 
tem before its response reaches har- 
monic steady state depends on the poles 
and zeros of the system as well as on the 
initial conditions of the internal states. 
The ratio of the amplitude of the har- 
monic steady-state response to the am- 
plitude of the sinusoidal input is equal to 
the absolute value or gain of the transfer 
function evaluated at the input fre- 
quency w, that is, 1/2G uw)l/2, while 
the phase shift or phase of the harmonic 
steady-state response relative to the 
phase of the input is given by the phase 
angle of the transfer function evaluated at 
the input frequency, that is, tan-’(Im G 
(iw)/Re G (iw)). Bode plots show the 
gain and phase of G (jw) for each fre- 
quency w in a range of frequencies. Al- 
though the fundamental theorem of 
linear systems does not apply to neutrally 
stable and unstable systems, Bode plots 
can be drawn for these systems as well, 
although the gain may be infinite at cer- 

tain frequencies. For convenience we re- 
fer to these plots as the “frequency re- 
sponse” even when the system is not stable. 

6. Remember the loop transfer func- 
tion. Breaking the loop of a closed-loop 
system reveals the loop transfer func- 
tion, which is the product of all of the 
transfer functions in the loop, including 
the plant, the sensor, the controller, and 
the actuator. Always be aware of whether 
the loop transfer function of a closed-loop 
system is stable or not, and be sure to note 
whether the closed-loop system involves 
positive or negative feedback. The gain 
and phase of the loop transfer function at a 
given frequency are called the loop gain 
and loop phase, respectively, and these 
quantities are defined whether or not the 
loop transfer function is stable. Note that 
if the loop transfer function is stable then 
it does not necessarily follow that the cor- 
responding closed-loop system is stable, 
and that if the loop transfer function is un- 
stable then it does not necessarily follow 
that the corresponding closed-loop sys- 
tem is unstable. Stability of a closed-loop 
system can be tested directly by applying 
the Routh criterion to the closed-loop sys- 
tem or by computing the poles of the 
closed-loop transfer function. In the case 
of negative feedback, the closed-loop 
transfer function involves the sensitivity 
function which is one over one plus the 
loop transfer function. 

While the characteristics of the loop 
transfer function (such as its frequency re- 
sponse and its poles and zeros) may be 
well understood, the closed-loop system 
is relatively complicated. Thus it is much 
more convenient to analyze stability indi- 
rectly in terms of the loop transfer func- 
tion. The Nyquist criterion and root 
locus procedure allow you to do just that. 

While it is intuitively clear from the 
form of the sensitivity function that the 
frequency response of the loop transfer 
function of a stable system must never be 
equal to -1 if the closed-loop system is to 
be stable, the Nyquist criterion shows 
precisely how the frequency response of 
the loop transfer function must avoid this 
value. Specifically, the Nyquist criterion 
says that the closed-loop system with 
negative feedback is stable if and only if 
the polar plot of the loop transfer function, 
with its argument following a contour that 
includes the imaginary axis, avoids poles 
of the loop transfer function on the imagi- 
nary axis, and encloses the right half 
plane, encircles the critical point - l + j O  as 

many times counterclockwise as there are 
unstable (open right-half plane) poles in 
the loop transfer function, whether these 
unstable poles arise from the plant or from 
the controller. Note that the Nyquist plot 
can only encircle the critical point - l+ jO if 
the loop gain is greater than unity in some 
frequency range. Thus stabilization im- 
poses a minimal requirement on the loop 
gain in certain frequency ranges. This re- 
quirement thus imposes a constraint on 
the gain of the controller that depends 
upon the gain of the plant. 

The root locus procedure shows the 
location of the closed-loop poles for each 
value of a constant feedback gain. The 
closed-loop poles are located near the 
poles of the loop transfer function for 
small values of the feedback gain, and, as 
the feedback gain goes to infinity, con- 
verge to the locations of the loop transfer 
function zeros and move toward infinity 
along asymptotes. Hence a nonminimum 
phase system, that is, a system with at 
least one zero in the open right half plane, 
can be destabilized by large constant 
feedback gains. Furthermore, it can be 
seen from the form of the asymptotes that 
a system that has relative degree (pole- 
zero excess) of at least three can also be 
destabilized by large constant feedback 
gains. 

7. After stability, performance is 
everything. Once stability is settled, per- 
formance is everything. In fact, for plants 
that are open-loop stable, Performance is 
the only reason for using feedback con- 
trol. Basic criteria for performance in- 
clude the ability to track or reject signals 
such as steps, ramps, sinusoids, and noise 
(random signals). Good performance 
generally requires high loop gain which 
corresponds to small gain of the sensitiv- 
ity function and thus tracking error reduc- 
t ion o r  d i s turbance  at tenuat ion.  
Unfortunately, Bode’s integral theorem 
tells us that for any real control system the 
sensitivity function cannot have gain less 
than unity at all frequencies. 

8. Perfect performance is asymp- 
totically possible. In the extreme case, 
asymptotically perfect tracking or distur- 
bance rejection can be obtained by means 
of infinite loop gain and thus zero sensi- 
tivity at the disturbance frequencies. This 
is the case when an integral controller is 
used to provide infinite gain at DC (zero 
frequency) and thus asymptotically track 
a step command or reject a step distur- 
bance. The same idea can be used to as- 
ymptotically track or reject a sinusoidal 
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signal by using infinite controller gain at 
the disturbance frequency (which we are 
assuming is known). Since the controller 
incorporates a model of the command or 
disturbance, its operation is a special case 
of the internal model principle. Don’t 
forget that closed-loop stability must still 
be checked for this infinite-gain controller. 

9. Assure nominal stability. If the 
system is uncertain, as least assure nomi- 
nal stability. Everything that has been said 
so far with regard to stability and perform- 
ance is based upon the assumption that the 
linearized model of the plant is an accu- 
rate representation of the system near the 
equilibrium. While all real systems are 
nonlinear, it is convenient to view the lin- 
ear approximation itself as possessing 
modeling uncertainty, so that the model 
we have been discussing is merely a 
nominal model of the plant. All of the sta- 
bility tests, whether direct or indirect, can 
be applied to the nominal model to guar- 
antee nominal stability. 

10. What guarantees robust stabil- 
ity? Robust stability refers to stability 
for all linear models in the range of the 
modeling uncertainty. Robust stability 
can be guaranteed in principle by apply- 
ing any stability test to all possible models 
of the uncertain system. Unfortunately, 
this is hard work. However, the Nyquist 
criterion can be used to determine robust 
stability with a frequency domain un- 
certainty model, which measures the 
level of modeling uncertainty at each fre- 
quency. In general, uncertainty tends to be 
greater at higher frequencies, and loop 
gain is generally known better than loop 
phase. 

11. The Nyquist criterion can deter- 
mine robust stability. The number of en- 
circlements of the critical point -l+jO by 
the Nyquist plot of the loop transfer func- 
tion is the crucial frequency domain test 
for nominal stability. Once the number of 
encirclements is correct for nominal sta- 
bility, the distance from the Nyquist plot 
of the loop transfer function to the critical 
point -l+jO determines robust stability in 
terms of a frequency domain uncertainty 
model. This distance is the reciprocal of 
the gain of the sensitivity. Thus, small 
sensitivity at a given frequency corre- 
sponds to large distance from the Nyquist 
plot of the loop transfer function to the 
critical point -l+jO and hence robust sta- 
bility at that frequency. The gain margin 
measures robust stability for frequencies 
at which the phase of the loop transfer 

function is 180 degrees, which quantifies 
robust stability for a pure gain perturba- 
tion of the loop transfer function, while 
the phase margin quantifies robust sta- 
bility for frequencies at which the loop 
gain is unity (these are the crossover fre- 
quencies), which quantifies robust stabil- 
ity for a pure phase perturbation of the 
loop transfer function. The Nyquist crite- 
rion and the root locus procedure can both 
be used to determine gain and phase mar- 
gins. Note that a closed-loop system with 
nonminimum phase loop transfer func- 
tion has limited gain margin (this was 
seen from the root locus procedure), while 
a closed-loop system with loop gain 
greater than unity at some frequency has 
limited phase margin (this follows from 
the Nyquist criterion and Lesson 15 be- 
low). Never forget that the distance from 
the Nyquist plot to the critical point -l+jO 
is irrelevant if the number of encir- 
clements is wrong, that is, if nominal sta- 
bility does not hold. That is  why 
indiscriminate use of large controller 
gains is not a viable control strategy. 

12. Always conserve phase. With the 
critical point sitting at -l+jO, the Nyquist 
criterion shows that any closed-loop sys- 
tem is never more than 180 degrees from 
instability at every crossover frequency. 
And 180 degrees is not a whole lot, espe- 
cially at high frequencies where the plant 
is more difficult to accurately model and 
identify and thus the loop phase is more 
likely to be uncertain. Every degree of 
loop phase at crossover frequencies is pre- 
cious and must be maintained by careful 
engineering. This issue especially arises 
in digital control where analog-to-digital 
(sampling) and digital-to-analog (zero- 
order-hold) devices can cause phase lag. 

13. Beware of lightly damped poles. 
Don’t forget that every lightly damped 
pair of complex conjugate poles in the 
plant (or controller) entails high loop 
gain near the resonance frequency as 
well as a whopping 180 degrees of phase 
shift over a small frequency band. A 
notch in the controller can reduce the 
loop gain at the resonance frequency to 
help avoid an inadvertent change in the 
number of Nyquist encirclements due to 
modeling uncertainty. However, this 
technique will only work if you actually 
know the frequency of the resonance. 
Note that a notch in the controller entails 
some performance loss in the frequency 
band of the notch. An antinotch can be 
used to increase the loop gain and thus 

improve performance in a frequency band 
where the plant is well known. 

14. High controller gain has lots of 
benefits. If the controller gain is high and 
the plant gain is not too small, then the 
loop gain will be high, which implies 
small sensitivity and thus good tracking or 
good disturbance rejection. Also, assum- 
ing that nominal stability holds, high loop 
gain means large distance from the 
Nyquist plot of the loop transfer function 
to the critical point -l+jO and thus some 
measure of robust stability. Thus it would 
seem that high gain gives both good per- 
formance and robust stability. However, 
there are (at least) three hidden catches to 
having the best of both worlds, namely, 
rolloff, saturation, and noise. 

15. Practice safe rolloff. Don’t forget 
(and we can’t stress this enough) that high 
loop gain is useless if the number of 
Nyquist encirclements is wrong for nomi- 
nal stability. Thus, as already noted, indis- 
criminate use of high controller gain is not 
recommended. If nominal stability does 
hold, then there is still the problem of rol- 
loff, since the gain of a real system, and 
thus the loop gain, always goes to zero as- 
ymptotically at high frequency. As the 
loop gain drops below unity at the cross- 
over frequency, gain and phase margins 
must be maintained to provide adequate 
distance from the critical point -l+jO in 
order to assure robust stability against 
modeling uncertainty. In general, as the 
frequency increases you will have to roll 
off the loop gain more quickly than the 
plant uncertainty grows. Also remember 
that achieving good rolloff isn’t as easy as 
adding poles to the controller to roll off 
the loop gain since, as the loop gain rolls 
off, the loop phase lags (that is, the loop 
phase decreases) with 90 degrees of lag 
incurred at high frequency for each pole. 
Hence good rolloff requires that the loop 
gain decrease adequately without accu- 
mulating excessive loop-phase lag. An- 
other Bode integral theorem shows that 
most of the loop-phase lag is due to the 
rolloff rate at the crossover frequency 
with steeper rolloff causing greater phase 
lag. Lead-lag compensators are useful 
for shaping the loop gain and loop phase 
to achieve high gain and safe rolloff. 

16. Saturation can rob you. As if 
that’s not all the trouble high loop gain can 
get you into, high loop gain is useless if 
the actuators cannot deliver the specified 
control signal. If the controller asks for 
four Newtons and the actuator can deliver 
only two Newtons, then you have a seri- 
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ous problem. You can think of the Nyquist 
plot as being “squashed down” due to this 
saturation effect. Margins will be re- 
duced, and, even worse, the Nyquist en- 
circlement count can change and the 
closed-loop system will be unstable. It is 
extremely important to remember that the 
inability of the actuators to deliver the 
specified control signal is not just the fault 
of the controller gain being too high, but 
rather is also due to both the size of the 
plant gain and the amplitude of the distur- 
bance signal. If the disturbance signal has 
large amplitude, then the actuator may 
saturate and you will have no choice but to 
reduce the gain of the controller and thus 
sacrifice some of the performance you 
want (and which was the reason for using 
feedback control in the first place!). 
Therefore, saturation can rob you of both 
stability and performance. Although we 
discussed saturation in terms of linear sta- 
bility analysis, saturation is actually a spe- 
cial kind of nonlinearity. 

17. High gain amplifies noise. If your 
high gain controller survives the rolloff 
dragon and the saturation beast, it may yet 
succumb to the noise monster. While an 
integrator (“l/s”) tends to smooth and at- 
tenuate noise, a differentiator (“s”) tends 
to amplify noise. Every pole in a transfer 
function is “like” an integrator, while 
every zero is ‘‘like’’ a differentiator. As the 
plant gain rolls off, you may wish to in- 
clude zeros in your controller in order to 
increase the loop gain for better perform- 
ance while adding phase lead to the loop 
transfer function in order to increase your 
phase margin for robust stability. Zeros 
will do both of these things quite nicely 
for you. However, the resulting high con- 
troller gain will now amplify noise in the 
measurements, and this amplification 
may outweigh the performance and stabil- 
ity benefits of the high loop gain and 
loop-phase lead. This amplification of 
noise was to be expected since the zeros, 
after all, act like differentiators. 

18. Time delays can be deadly. A 
time delay can be deadly-think of the 
Trojan horse or the AIDS virus. A time de- 
lay in the feedback loop corresponds to a 
transfer function that has unit magnitude 
at all frequencies as well as phase lag that 
increases linearly with frequency. This 
phase lag will warp the Nyquist plot, espe- 
cially at high frequencies. Thus, if a 
closed-loop system has an unmodeled 
time delay in the loop, then the number of 
Nyquist encirclements by the loop trans- 

fer function of the actual system may be 
different from what you expect, and the 
closed-loop system may be unstable. If 
you know about the delay in advance, then 
you may be able to counteract the effect of 
the delay through careful loop-shaping 
design. However, although you can (at 
least in theory) design stabilizing control- 
lers in the presence of even large time de- 
lays, the closed-loop performance will 
most likely be poor. Imagine trying to 
make decisions using old information. 

19. “Respect the unstable.” As Gun- 
ter Stein discussed in his classic 1989 
Bode lecture (watch the video!), control- 
ling unstable systems can be a dangerous 
undertaking. Real unstable plants (except 
for rigid body motion) are always nonlin- 
ear, and the ability to stabilize them re- 
quires a minimal amount of actuator 
bandwidth and stroke. A disturbance may 
perturb the state of a nonlinear system out- 
side of its domain of attraction so that 
the actuators are unable to move the state 
back to the equilibrium and thus recover 
from the disturbance. In addition, actuator 
failure can lead to disaster and thus cannot 
be tolerated. 

20. Multi-loop control is nontrivial. 
Multi-loop control is much more chal- 
lenging than single-loop control. Every- 
thing that has been said so far applies to 
single-loop control. Multiple control 
loops are needed whenever a plant has 
multiple sensors or actuators. In this case 
the interaction of every feedback loop 
with every other feedback loop must be 
accounted for. While many single-loop 
concepts hold in principle in the multi- 
loop case, the technicalities are much 
more involved. The performance benefits 
of multi-loop control, however, are often 
far more than one would expect from a 
collection of single-loop controllers. 

21. Nonlinearities are always pres- 
ent. Almost everything that has been said 
so far applies to linearized plant models. 
Real systems, however, have all kinds of 
nonlinearities: deadband, backlash, Cou- 
lomb friction, hysteresis, quantization, 
saturation, kinematic nonlinearities, and 
many others. Thus a controller designed 
for a linear plant model to satisfy per- 
formance specifications may perform 
poorly when applied to the actual plant! 
The tradeoff here is between mathemati- 
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cal tractability of the linearized model and 
greater validity of a nonlinear model. 

22. People’s lives may be at stake. 
Control-system engineers must account 
for all of these issues in designing and 
analyzing control systems that work. 
They must also specify, design, analyze, 
build, program, test, and maintain the 
electromechanical hardware, processors, 
and software needed to implement control 
systems. Real control systems must be ex- 
tremely reliable, especially if people’s 
lives depend on them. These are challeng- 
ing and rewarding engineering tasks that 
will keep lots of control-system engineers 
busy for a long time to come. 

Now that you have completed the ba- 
sic course in classical control. you are 
ready to enter the wonderland of modern 
control. The linear control you have 
learned, which has been limited to 
single-input, single-output systems, can 
now be expanded to multiple-input, 
multiple-output plants. Multivariable 
control is often studied with state space 

(differential equation) models and trans- 
fer function matrices. State space models 
provide the means for designing control 
systems that are optimal with respect to 
certain design criteria. Optimal control 
encompasses LQG and H. control theory 
where explicit formulas are used to syn- 
thesize multivariable feedback control- 
lers. Robust control seeks controllers 
that provide robust stability and perform- 
ance for uncertain plants. The computer 
implementation of these controllers is the 
subject of digital control. While the jump 
from single-variable control to optimal 
multivariable control is a major and im- 
portant step, nonlinear control takes 
nonlinearities into account and shows 
how to design nonlinear controllers to ob- 
tain improvements over linear control. 
The next, and most exciting, leap is into 
the subject of adaptive control, where 
controllers learn and adapt in response to 
changes in the plant and disturbances. 

With amazing advances in sensing, ac- 
tuation, and processing as well as a better 
understanding of learning and adaptation 
(for example, using neural computers). 

automatic control will become the technol- 
ogy of the next millennium. You are defi- 
nitely in the right place at the right time! 

tory of automatic control in: 

0. Mayr, The Origins of Feedback Control, MIT 
Press, Cambridge, 1970. 

S. Bennett, A History of Control Engineering 
1800-1930, Peter Peregrinus Ltd.,London, 1979. 

S. Bennett, A History of Control Engineering 
1930-1955, Peter Peregrinus Ltd., London, 1993. 

To get a glimpse of the future and what hath Watt 
wrought, see the exciting book: 

K. Kelly, Out of Control, Addison-Wesley, Read- 
ing, 1994. 

I would like to thank an anonymous re- 
viewer and Steve Yurkovich for numer- 
ous helpful suggestions. I especially 
thank all of my students, graduate and un- 
dergraduate, who surely taught me far 
more than I taught them. This guide is 
their legacy. 
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