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Ball sports have been part of human history for 
thousands of years [1]. Nowadays, 13 of them are 
part of the Olympic games (badminton, basketball, 
beach volley, football/soccer, golf, handball, hockey, 
rugby, table tennis, tennis, volleyball, water polo, ice 
hockey). All these games differ by launcher (hand, 
club, racket, bat), ball (size, shape and mass), pitch 
size and number of players. These differences induce 
different ball velocities. Apart from the velocities 
and the way to maximize them, we discuss in this 
article the ball trajectories and their impact on  
the size of sports fields.
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Velocity in ball sports
One challenge shared by all ball games is to produce the 
fastest ball. This allows players to reach larger distances 
or to outpace their opponents. Figure 1 shows the record 
velocities in different ball sports. At the bottom of the 
ladder, one finds shot-put, handball and basketball, for 
which the ball is launched by hand at roughly 15 m/s. 
Increasing speeds are recorded for volleyball (37 m/s) 
and soccer (62 m/s), for which the ball is hit by hand or 
by foot. Another way to increase velocity is by using an 
instrument to propel the ball: a bat (54 m/s for baseball), 
a racket (73 m/s for tennis), a chistera (86 m/s for jai 
alai) or a club (91 m/s for golf). At the top of the ladder 
stands badminton: in 2013, Malaysia’s Tan Boon Hoeng 
set a new record with a smash at 137 m/s. The first part 
of our discussion is dedicated to the physics associated 
to this velocity ladder.

Throwing vs. hitting
Figures 2(d) and 2(e) show chronophotographies of a 
baseball pitch and a handball throw. The time intervals 
between two snapshots are constant and take the values 
of 5 ms and 40 ms, respectively. The distances traveled by 
the hand (blue segment) and by the ball (red segment) 
between two consecutive snapshots, at the instant when 
they separate, are equal. From 2(e) one deduces that the 
velocity of the thrown ball (ν'2) is equal to the velocity of 
the hand when it releases the ball (ν1): 

ν'2—ν1
 = 1 (1)

For the examples presented in figures 2(d) and 2(e), 
we measure a velocity of 15 m/s for the handball throw 
and 45 m/s for the baseball pitch.

However, most games have chosen another way to 
launch the ball: via an impact. Figures 2(a), 2(b) and 2(c) 
show chronophographies, made by H.E. Edgerton, of a 
golf swing, a tennis serve and a baseball hit [2]. Again, 

the blue segments represent the distances traveled by the 
instrument (club, racket, bat) between two snapshots at 
the exact position of impact and just after it occurs, while 
the red ones represent the distance traveled by the ball. 
The red segments are systematically twice as long as the 
blue ones. The ball velocity is thus twice as large as the 
instrument’s velocity. This factor two is a big advantage 
of hitting vs. throwing. However, to discuss the real dif-
ference between throwing and hitting, one must consider 
the velocity ratio between the ball and the instrument  
ν'2/ν1, derived from the momentum conservation [3]:

ν'2—
ν1

 =      (1+e) —
(1+m2/m1)

(2)

where m1 and m2 are the masses of the instrument and 
the ball, respectively. The coefficient of restitution e 
characterizes the dissipation at impact and is defined as:  
e = - (ν'2 - ν1' )/(ν2 - ν1), where ν1 and ν1' are the velocities 
of the instrument before and after impact, respectively, 
and  ν2 and ν'2 similarly for the ball. In the elastic light ball 
limit (m2 << m1, e ≈ 1), the velocity ratio is ν'2/ν1 = 2. This 
is the ideal hit limit. However, with energy dissipation or 
if the ball is not so light, the velocity ratio decreases. In 
order to compare the efficiency of hitting vs. throwing, we 
turn to figure 2(f) where the velocity ratio ν'2/ν1 is given 
as a function of the mass ratio m1 / m2  for all ball sports. 
This figure shows that for light balls (m2 / m1 < e), hitting 
is more efficient than throwing: all sports in which the 
ball is hit are in the blue area. By contrast, for heavy balls 
(m2 / m1 > e), one finds that it is more efficient to throw 
the ball. These sports are in the red area. As expected, 
smashing a handball towards the goal is not a good idea, 
first because it will be less efficient than throwing, and 
also because the impact will hurt the player. The velocity 
ratio (2) describes the efficiency of hitting vs. throwing, 
but in both cases in order to increase the ball velocity, one 
has to increase the velocity of the launcher.

How to increase the velocity?
There are three main ways, used in sport, to increase the 
velocity at impact: 1 - take advantage of the joints in order 
to enhance the velocity (figure 3(a)); 2 - use a racket, a 
club, a bat in order to artificially increase the length of the 
arm (figure 3(b)); 3 - use a deformable racket in order to 
get an extra elastic boost (figure 3(c)). We briefly discuss 
them below and show how they are connected to the 
speed ladder presented in figure 1.

For a given angular velocity ω, the velocity V of a 
straight arm of length L goes like V = Lω. To change the 
velocity, one can thus either change L or ω. The articulated 
motion mainly plays on ω: indeed, for a given driving 
torque exerted by muscles, the angular velocity of the 
articulated limb is higher since the moment of inertia 
of an articulated limb (figure 3(a)) is smaller than for 
a limb with the same total mass and length but without 
articulation (rigid leg).

. FIG. 1:  
Evolution of  

the maximum 
velocity in different 

ball sports.
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However, with a racket, there will be an impact and not a 
throw, which means that the velocity of the ball will get 
an extra factor 2 (equation (2)). We thus expect velocities 
around 60 m/s which is not far from what is observed in 
baseball (54m/s) and tennis (73 m/s). Finally, if elastic-
ity is used, this velocity can again be doubled. Velocities 
around 120 m/s are thus expected in sports where flexible 
rackets are used such as badminton (137 m/s).

Parabola vs. Tartaglia
Once thrown, the ball follows its path, submitted to its 
weight (Mg) and to the aerodynamic forces which we 
write in simplified form as -½ρSCDUU, with ρ the air 
density, S the section of the ball, CD the drag coefficient 
and U the ball velocity (U is its modulus). The motion of 
the ball is thus dictated by Newton’s law:
                            ①      ②           ③

M dU—
dt  

=  Mg  - ½ρSUUCD (3)

This equation states that the momentum change 
per time unit ① is related to the sum of two forces, the 
weight ② and the drag ③. When these two forces bal-
ance ②=③, the particle has reached its terminal velocity  
U∞ =√
–

 2Mg/ρSCD. If the ball is launched with an initial  
velocity U0 smaller than U∞, the drag is smaller than the 
weight and the equality ①=② imposes the classical pa-
rabola (figure 4(a)). In the opposite case where U0 >> U∞, 

The relation V = Lω also states that the larger L, the 
larger the velocity. Using a racket, a club or a bat is one way 
to achieve this “arm stretching”. Looking back to figure 1, 
one notices that the slowest sports do not use this “trick”, 
contrary to the fastest ones.

However, tennis and badminton are two sports for 
which the ball is hit with rackets of same lengths, and 
with similar hit efficiency. But the maximum velocity 
of a badminton shuttle (137 m/s) is twice the tennis 
record (73 m/s). To understand badminton breaking 
velocity records, one must consider the elasticity of the 
shaft which is also a way to change the angular veloc-
ity. The badminton racket is slender and easy to bend, 
contrary to the tennis racket, which is very rigid. When 
the handle is set in motion, the badminton racket head 
doesn’t follow instantly, and the shaft bends, all the more 
as the acceleration is high. Figure 3(c) shows a chrono-
photography of a badminton smash: When the shaft 
bends, elastic energy is first stored into deformation 
and then released into kinetic energy. If the impact oc-
curs when the restoring velocity is at its maximum, the 
velocity of the racket head is up to twice as fast as its 
rigid counterpart.

If we summarize our discussion, we observe in figure 1 
that the maximum velocity achieved with the hand alone 
is 15 m/s (handball). If the length of the arm is doubled 
(using a racket), the velocity will also be doubled (30m/s). 

b FIG. 2: 
Chronophotographies 
of golf (a), tennis (b),  
baseball bat (c), 
baseball pitch (d) and 
handball throw (e).  
The graph (f) shows 
the evolution of 
the velocity ratio 
between the ball and 
the launcher ν'2/ν1 as 
a function of their 
mass ratio m2 /m1.
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Impact on the size of the sports fields
Parabola and Tartaglia are both characterized by a max-
imal range, xmax, which can be calculated [5] and which 
imposes a physical constraint to the size of sports fields. 
Indeed, it’s no use playing on a 100 m-long field, if the 
maximal range of the ball is 10 m. Figure 4(d) shows a 
strong correlation between the size of sports fields and 
the maximal range, xmax, of the associated balls, from table 
tennis to golf. We conclude that the size of sports fields 
is mainly imposed by the physics of the ball flight [6].

Some points in fig. 4(d) are below the line having slope 
1, which means that the field is small compared to the 
range. In tennis, volleyball and table tennis, the field is 
thus reduced in order to make it difficult to keep the ball 
inside. This difficulty is underlined by counting points 
when the ball goes out. For sports above the line, like 
soccer and golf, staying on the field is easy and no points 
are associated to a ball going out. Instead, a small target is 
introduced that the players must reach in order to score. 
The physical line thus separates target sports from sports 
for which the pitch itself is the target.

Conclusion
The study of ball games has led us to explore internal 
ballistics (the projectile propulsion), as well as external 
ballistics (the trajectory of the projectile). We have tried 
to show that, despite the diversity of sports, they are all 
linked by strong physical constraints that impact their 
practice without removing the joy of playing.
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gravity can be initially neglected and the ball follows a 
triangular curve, called a Tartaglia (figure 4(b)) [4].

To know which trajectory is observed in each ball 
sport, one can compare the record velocity to the termi-
nal speed. Figure 4c shows that, for most of sports, drag 
dominates weight and we observe Tartaglia, except for 
handball and basketball. Badminton is the paradigm of 
aerodynamical sports. Figure 4(b) displays the chrono-
photography of a badminton shot: the shuttlecock, hit 
at 58 m/s, first goes straight and its velocity decreases 
strongly over a characteristic length L = 2M/ρSCD = 4.5 m  
which results from the equality ①=③ in equation (3).

As velocity decreases, weight becomes important and 
makes the shuttle turn downward ①=②+③. Finally, it falls 
vertically at a constant velocity U∞: ②=③. But we never 
have a parabola [defined by the equality ①=②].

m FIG. 3: (a) Soccer kick. (b) Chronophotography of a smash in tennis by Stanislas Wawrinka.  
(c) Chronophotography of a smash in badminton by Michael Phomsoupha.

. FIG. 4: The two main trajectories observed in ball sports: (a) parabola, (b) Tartaglia. (c) Ratio of record 
velocity and terminal velocity. (d) Size of sports fields vs. maximum ball range.




