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Time periodic forcing in the form of coherent radiation is a standard tool for the coher-
ent manipulation of small quantum systems like single atoms. In the last years, periodic
driving has more and more also been considered as a means for the coherent control of
many-body systems. In particular, experiments with ultracold quantum gases in optical
lattices subjected to periodic driving in the lower kilohertz regime have attracted a lot of
attention. Milestones include the observation of dynamic localization, the dynamic con-
trol of the quantum phase transition between a bosonic superfluid and a Mott insulator,
as well as the dynamic creation of strong artificial magnetic fields and topological band
structures. This article reviews these recent experiments and their theoretical descrip-
tion. Moreover, fundamental properties of periodically driven many-body systems are
discussed within the framework of Floquet theory, including heating, relaxation dynam-
ics, anomalous topological edge states, and the response to slow parameter variations.
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I. INTRODUCTION

While time-periodic forcing in the form of coherent ra-
diation is a standard tool for the coherent manipulation

∗ eckardt@pks.mpg.de

of small quantum systems like single atoms, traditionally
it plays much less of a role in the context of many-body
systems. However, recent experiments with ultracold
atomic quantum gases in optical lattices demonstrate
that periodic forcing can also be a powerful tool for the
coherent manipulation of many-body states and their dy-
namics. These experiments include the control of ballistic
expansion of Bose-Einstein condensates via periodic driv-
ing (Lignier et al., 2007), coherent resonant AC-induced
tunneling (Alberti et al., 2009; Haller et al., 2010; Ivanov
et al., 2008; Sias et al., 2008), the dynamic control of
the quantum phase transition between a bosonic Mott
insulator and a superfluid (Zenesini et al., 2009), the cre-
ation of kinetic frustration (Struck et al., 2011), artificial
magnetic fields (Aidelsburger et al., 2013, 2011; Atala
et al., 2014; Kennedy et al., 2015; Miyake et al., 2013;
Struck et al., 2012, 2013) and topological band structures
(Aidelsburger et al., 2015; Jotzu et al., 2014), coherent
band coupling (Bakr et al., 2011; Gemelke et al., 2005;
Ha et al., 2015; Parker et al., 2013), as well the coher-
ent control of interaction blockade by means of resonant
forcing (Bakr et al., 2011; Chen et al., 2011; Ma et al.,
2011). It is the fact that ultracold quantum gases are ex-
tremely clean, very well isolated from their environment,
and highly controllable in a time-dependent fashion that
allowed for these recent advances.

On a theoretical level, the idea of controlling lattice
systems by means of strong periodic forcing (beyond the
regime of linear response) dates back to the work of Dun-
lap and Kenkre, 1986. They investigated the spreading
of a localized particle in a tight-binding chain under the
influence of a sinusoidal force Fω cos(ωt). The forcing
was found to slow down the linear spreading of the wave
function by a factor of J0(dFω/~ω), with lattice constant
d and Jm denoting the Bessel function of the first kind
of order m. The possibility to tune this factor to zero,
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and thus completely suppress the dispersion of the wave
packet, was termed dynamic localization. The effect was
much later observed with a Bose-Einstein condensate in
a shaken optical lattice (Creffield et al., 2010; Eckardt
et al., 2009; Lignier et al., 2007) and in arrays of optical
wave guides, where one spatial direction plays the role of
time (Dreisow et al., 2008; Iyer et al., 2007; Lenz et al.,
2003; Longhi et al., 2006; Szameit et al., 2009, 2010). It
can be understood in terms of an effective modification
of the band width (or the tunneling matrix element) by
the same factor (Holthaus, 1992). Whereas this mod-
ification is exact in the infinite translational invariant
chain, for large frequencies it still holds approximately if
the translational symmetry is broken.1 This effect was
used in a series of proposals for the AC control of quan-
tum mechanical localization by effectively squeezing the
tunneling parameter relative to the strength of an iso-
lated defect (Hone and Holthaus, 1993), on-site disorder
(Holthaus et al., 1995), or a quasiperiodic perturbation
(Drese and Holthaus, 1997a). The last reference is also
the first proposal for the application of such a coherent
control scheme to a system of ultracold atoms in a driven
optical lattice. More recently, it was argued that for large
driving frequencies the effective modification of the tun-
neling remains approximately valid also in the presence
of interactions, so that it should be possible to control
also the interaction-driven localization transition from a
bosonic superfluid to a Mott-insulating state (Eckardt
et al., 2005b), an effect later observed experimentally
(Zenesini et al., 2009).

An important concept for the coherent control of time-
periodically driven quantum systems, also called Floquet
systems, is the Floquet Hamiltonian ĤF

t0 . It is defined to
reproduce the time evolution generated by the Hamilto-
nian Ĥ(t) = Ĥ(t+ T ) over one driving cycle T ,2

Û(t0 + T, t0) ≡ exp
(
− i
~
TĤF

t0

)
. (1)

Here Û(t2, t1) denotes the time evolution operator from
time t1 to time t2. Thus, when looking at the time evo-
lution in a stroboscopic fashion in steps of the driving

1 In this high-frequency limit the phenomenon is equivalent to the
effective modification of the Landé factor of an off-resonantly
driven atomic spin (Haroche et al., 1970) and the effect of coher-
ent destruction of tunneling (Grossmann et al., 1991) in a driven
two-level system (Gomez Llorente and Plata, 1992; Grifoni and
Hänggi, 1998; Grossmann and Hänggi, 1992; Shirley, 1965) ob-
served in an atom-beam experiment (Kierig et al., 2008).

2 Let us make a note on terminology: The Floquet Hamiltonian,
as it is defined here, is a special case of an effective Hamiltonian
ĤF introduced in Eq. (4) below [see Eq. (11) and the paragraph
containing it]. It is also called “effective Hamiltonian” by some
authors. Moreover, the term “Floquet Hamiltonian” is some-
times used to denote the operator Q̂(t) = Ĥ(t) − i~dt [Eq. 69]
acting in the space of time-periodic states, which will be denoted
“quasienergy operator” here.

period T , the system behaves effectively as if it was de-
scribed by the time-independent Hamiltonian ĤF

t0 . The
effect of dynamic localization has to be understood in
this sense.

The simple equation (1) suggests a general strategy
for the controlled manipulation of quantum systems. By
tailoring the Hamiltonian Ĥ(t) of a system and its pe-
riodic time dependence the physics of a Floquet Hamil-
tonian ĤF

t0 with desired properties can be realized. This
concept of Floquet engineering becomes of practical rel-
evance, provided three conditions are fulfilled:

(i) The system allows for the implementation of a suit-
able time-periodic driving scheme.

(ii) The system is well isolated from its environment
such that dissipative processes happen on a time
scale much longer than the driving period T .

(iii) The Floquet Hamiltonian can be computed theo-
retically, at least within a suitable approximation
valid on the experimentally relevant time scale, and
takes a simple form that allows for a clear interpre-
tation.

The first two requirements make ultracold atomic quan-
tum gases, which are well isolated from their environment
and provide a great freedom for time dependent parame-
ter control, an optimal platform for Floquet engineering.

Based on this strategy it is also possible to endow a sys-
tem with qualitatively new properties. A prime example
is the creation of artificial gauge fields (magnetic fields or
spin orbit coupling), which among others (Dalibard et al.,
2011; Galitski and Spielman, 2013; Goldman et al., 2014)
can be accomplished using Floquet engineering. For that
purpose charge-neutral atoms in an optical lattice are
driven in such a way that they behave effectively as if they
had a charge coupling to a magnetic field or to their spin.
Such a proposal for the realization of an artificial mag-
netic field was first made by Sørensen et al., 2005, based
on a sequence of overlapping pulses during each cycle
where external potentials and the amplitudes of the tun-
neling matrix elements in both directions are switched on
in an alternating fashion. Later, simpler schemes, relying
solely on the modulation of on-site potentials, were real-
ized experimentally. This includes the effective creation
of a topologically non-trivial band structure by means
of circular forcing (Oka and Aoki, 2009), known as Flo-
quet topological insulator (see also the related work by
Kitagawa et al., 2010 and Lindner et al., 2012). Orig-
inally proposed for electrons in irradiated graphene, it
was realized with fermionic atoms in a circularly shaken
honeycomb-like lattice (Jotzu et al., 2014) [as well as
in an optical wave-guide experiment (Rechtsman et al.,
2013)]. Lattice shaking was also employed to create ki-
netic frustration and staggered magnetic fields in a trian-
gular optical lattice (Eckardt et al., 2010; Struck et al.,
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2011, 2012, 2013). Finally, the effective creation of mag-
netic fields can be achieved in a square lattice where tun-
neling against strong potential offsets is resonantly in-
duced by driving the system with a moving secondary
lattice (Bermudez et al., 2011; Kolovsky, 2011), as has
been demonstrated experimentally with bosonic atoms
(Aidelsburger et al., 2013, 2011, 2015; Atala et al., 2014;
Kennedy et al., 2015; Miyake et al., 2013).

Despite these experimental results, which proof the
great success of Floquet engineering in atomic quantum
gases, it would be misleading to state that the strobo-
scopic time evolution of periodically driven quantum sys-
tems simply corresponds to that of some effective au-
tonomous (i.e. non-driven) system. Even though we can
define a Floquet Hamiltonian ĤF

t0 , its properties are gen-
erally quite different from those of the time-independent
Hamiltonians used to describe autonomous many-body
systems. These differences result from the absence of
energy conservation in the driven systems, which is re-
flected in the fact that the Floquet Hamiltonian is not
defined uniquely by relation (1), since the logarithm is
multivalued. Namely, its eigenvalues, the quasienergies,
are determined modulo the energy quantum ~ω only;
the quasienergy spectrum can be represented on a circle.
Thus, when switching on a time-periodic perturbation,
eigenstates of the unperturbed time-independent Hamil-
tonian with energies separated by some integer multiple
of ~ω appear to be degenerate and can, therefore, hy-
bridize. As a consequence, the eigenstates of ĤF

t0 can be
coherent superpositions of unperturbed states of rather
different energy. In the above-mentioned experiments
such resonant coupling plays two different roles. On the
one hand it is sometimes exploited to induce coherent
tunneling against static potential offsets of integer multi-
ples of ~ω and plays a major role for engineering desired
system properties. On the other hand, it also causes heat-
ing. For the purpose of Floquet engineering such heat-
ing has to be suppressed on the experimentally relevant
time scale by a suitable choice of parameters. Further
fundamental differences between the (stroboscopic) dy-
namics of periodically driven quantum systems and that
of autonomous systems include, for example, the possible
emergence of anomalous topological edge states or heat-
ing in response to slow parameter variations (see section
IV).

This article reviews the status of Floquet engineering
in systems of ultracold atomic quantum gases in period-
ically driven optical lattices. For this purpose, we will
first briefly summarize a few general properties of time-
periodically driven quantum systems in section II. In sec-
tion III we will then describe recent experiments and ex-
plain them in terms of a common language and using
simple intuitive approximations. This section addresses
also readers who are not interested in the formalism of
Floquet theory. This formalism, the Floquet picture, will
then be introduced in section IV and employed to de-

scribe various effects beyond the simple approximations
used in the preceding section III. Here we will discuss
issues like those mentioned in the previous paragraph:
heating, the asymptotic behavior in the long-time limit,
anomalous topological edge states, and the effective adi-
abatic dynamics required for state preparation. We will
close with conclusion and outlook in section V.

The material and the references covered in the present
article are selected as follows. We try to give a rather
complete overview of the recent experiments, where peri-
odic forcing was used to coherently control atomic quan-
tum gases in optical lattices (not including experiments
where modulation was employed for spectroscopic pur-
poses). This includes the corresponding theoretical pro-
posals and analyses. The theory of periodically driven
many-body quantum systems recently became a very ac-
tive field. We do not attempt to (and cannot) give an
exhaustive overview of this rapidly growing field, but
mention some pioneering contributions relevant for fu-
ture quantum-gas experiments. This selection of covered
works reflects the interests and the background of the
author and is constrained by the format of a short re-
view. It unavoidably misses contributions that would
have been worth being covered as well. Further infor-
mation and references about the Floquet theory of peri-
odically driven quantum systems can be found in excel-
lent recent review articles, covering the control of tunnel-
ing (Grifoni and Hänggi, 1998), multiphoton processes in
atoms and molecules (Chu and Telnov, 2003), AC-driven
transport in nano-structured devices (Kohler et al., 2005;
Platero and Aguado, 2004), high-frequency approxima-
tions (Bukov et al., 2015a; Goldman and Dalibard, 2014)
and band-structure engineering (Holthaus, 2016).

II. SOME GENERAL PROPERTIES OF FLOQUET
SYSTEMS

Let us consider quantum systems described by a time-
periodic Hamiltonian

Ĥ(t) = Ĥ(t+ T ) =

∞∑
m=−∞

eimωtĤm, (2)

with Ĥm ≡ 1
T

∫ T
0

dt e−imωtĤ(t) = Ĥ†−m. The time

evolution operator Û(t, t0) describes solutions |ψ(t)〉 =
Û(t, t0)|ψ(t0)〉 of the time-dependent Schrödinger equa-
tion

i~dt|ψ(t)〉 = Ĥ(t)|ψ(t)〉. (3)

At least formally, one can now construct a time-periodic
unitary operator UF (t) = ÛF (t+ T ), such that the time

evolution of the transformed state |ψF (t)〉 = Û†F (t)|ψ(t)〉
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is governed by a time-independent Hamiltonian3

ĤF = Û†F (t)Ĥ(t)ÛF (t)− i~Û†F (t)
˙̂
UF (t). (4)

In terms of these operators, the time evolution operator
takes the form (Shirley, 1965)

Û(t, t0) ≡ ÛF (t) exp
(
− i
~

(t− t0)ĤF

)
Û†F (t0). (5)

It illustrates that the evolution of a Floquet system re-
sults from the interplay of two ingredients. On the one
hand, the micromotion operator ÛF (t) describes a time-
periodic component of the dynamics, the micromotion. It

can be expressed like ÛF (t) = e−iK̂(t) in terms of a her-
mitian time-periodic kick operator K̂(t) describing the
effect of an abrupt switching on of the forcing (Gold-
man and Dalibard, 2014). On the other hand, the time-
independent effective Hamiltonian ĤF describes a linear
phase evolution, which determines the time evolution in
a similar way as a time-independent Hamiltonian deter-
mines the time evolution of an autonomous system.

The eigenvalue problem of the effective Hamiltonian

ĤF |ũn〉 = εn|ũn〉 (6)

gives rise to generalized stationary states |ψn(t)〉 of
the time dependent Schrödinger equation, called Floquet
states. They are of the form (Autler and Townes, 1955;
Shirley, 1965; Zel’dovich, 1967)

|ψn(t)〉 = e−
i
~ tεn |un(t)〉, |un(t)〉 = ÛF (t)|ũn〉. (7)

Here the periodic time-dependence of the Floquet mode
|un(t)〉 = |un(t + T )〉 represents the micromotion and
the quasienergy εn determines the linear phase evolution.
The Floquet states are eigenstates of the time-evolution
operator over one driving period,

|ψn(t+ T )〉 = Û(t+ T, t)|ψn(t)〉 = e−
i
~Tεn |ψn(t)〉. (8)

For every time t, they form a complete and orthogonal
basis. If the system is prepared in a Floquet state, its
time evolution is periodic, determined by the Floquet
mode |un(t)〉, and in this sense quasi stationary. If the
system is prepared in a coherent superposition of several
Floquet states,

|ψ(t)〉 =
∑
n

cne
− i

~ tεn |un(t)〉, cn = e
i
~ t0εn〈un(t0)|ψ(t0)〉,

(9)

3 Such a transformation might not exist in the limit of an infinite-
dimensional states space (Gesztesy and Mitter, 1981). However,
here we are dealing with systems of finite spatial extent on finite
time scales, on which states above some high-energy cutoff will
not matter.

deviations from a periodic evolution are governed by the
quasienergies εn.

There is not a unique time-periodic micromotion op-
erator ÛF (t) leading to a unique time-independent ef-
fective Hamiltonian ĤF . Starting from one solution,
ÛF (t), another one, Û ′F (t), can be constructed by ap-
plying certain operations. The Floquet states |ψn(t)〉,
being eigenstates of the time-evolution operator, will not
be altered by such operations. The simplest possibil-
ity is to multiply the micromotion operator with an ar-
bitrary time-independent unitary operator Û from the
right, Û ′F (t) = ÛF (t)Û , so that Ĥ ′F = Û†ĤF Û . For

example, by choosing Û ′F (t) = ÛF (t)Û†F (t0) ≡ ÛF (t, t0)
a new micromotion operator is obtained that becomes
equal to the identity once during each driving period,
Û ′F (t0) = ÛF (t0, t0) = 1. This allows for writing the
time-evolution operator like

Û(t, t0) ≡ ÛF (t, t0) exp
(
− i
~

(t− t0)ĤF
t0

)
, (10)

with Floquet Hamiltonian

ĤF
t0 = ÛF (t0)ĤF Û

†
F (t0) (11)

and two-point micromotion operator

ÛF (t, t0) = ÛF (t)Û†F (t0). (12)

In particular, for t = t0 + T Eq. (10) reduces to Eq. (1).
The Floquet Hamiltonian is a special choice of the ef-
fective Hamiltonian, which directly generates the strobo-
scopic time evolution in steps of the driving period T .
ĤF
t0 depends parametrically on the initial time t0, and

thus also on the driving phase. However, according to
Eq. (11) this dependence is rooted in a unitary transfor-
mation, so that the spectrum of the Floquet Hamiltonian
is independent of t0 and the driving phase.

Another possibility to construct a new micromotion
operator and effective Hamiltonian is given by Û ′F (t) =

ÛF (t) exp
(
imωt|ũn〉〈ũn|

)
with integer m, which implies

Ĥ ′F = ĤF + m~ω|ũn〉〈ũn|. This operation changes the
quasienergy εn and its Floquet mode to new solutions
labeled by m:

εnm = εn +m~ω, |unm(t)〉 = eimωt|un(t)〉, (13)

such that the corresponding Floquet state is not altered,

|ψn(t)〉 = e−
i
~ tεn |un(t)〉 = e−

i
~ tεnm |unm(t)〉. (14)

Equation (13) shows that quasienergies are defined up
to integer multiples of ~ω only, in agreement with the
earlier observation that Eq. (1) does not determine the
Floquet Hamiltonian uniquely. This property reflects the
possibility of resonant coupling. The freedom to choose
m individually for each Floquet state n, can be used
to choose all quasienergies to lie in the same interval of
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width ~ω. Such an interval is often called Brillouin zone,
in loose analogy to Bloch’s theory of spatially periodic
systems. In the latter quasimomenta are defined modulo
reciprocal lattice vectors only. They can be chosen to
lie in one elementary cell of the reciprocal lattice such
as the first Brillouin zone. In case the Floquet mode

|un(t)〉 ≡
∑
m′ |u(m′)

n 〉e−im′ωt is dominated by a specific
harmonic m′ = m0 with respect to a given frame of ref-
erence, m = m0 constitutes a meaningful choice for the
quasienergy, which, in the limit of a time-independent
Hamiltonian, reproduces the energy spectrum.

A prerequisite for Floquet engineering is a theoretical
method to compute the effective Hamiltonian and the mi-
cromotion operator, at least within a suitable approxima-
tion. For ~ω large compared to the matrix elements of the
Hamiltonian, a systematic approximation to the effec-
tive Hamiltonian and the micromotion operator is given
by a high-frequency expansion (Eckardt and Anisimovas,
2015; Goldman and Dalibard, 2014; Goldman et al., 2015;
Grozdanov and Raković, 1988; Itin and Katsnelson, 2015;
Mikami et al., 2016; Rahav et al., 2003))

ĤF ≈
µcut∑
µ=1

Ĥ
(µ)
F , ÛF (t) ≈ exp

( µcut∑
µ=1

Ĝ(µ)(t)

)
. (15)

Here Ĥ
(µ)†
F = Ĥ

(µ)
F and [Ĝ(µ)(t)]† = −Ĝ(µ)(t). The lead-

ing terms are given by

Ĥ
(1)
F = Ĥ0, Ĥ

(2)
F =

∑
m 6=0

ĤmĤ−m
m~ω

,

Ĥ
(3)
F =

∑
m 6=0

[[
Ĥ−m,

[
Ĥ0, Ĥm

]]
2(m~ω)2

+
∑

m′ 6=0,m

[
Ĥ−m′ ,

[
Ĥm′−m, Ĥm

]]
3mm′(~ω)2

]
, (16)

and

Ĝ(1)(t) = −
∑
m6=0

eimωtĤm

m~ω
,

Ĝ(2)(t) =
∑
m6=0

[
eimωt

[
Ĥ0, Ĥm

]
(m~ω)2

+
∑

m′ 6=0,m

ei(m−m
′)ωt
[
Ĥ−m′ , Ĥm

]
2m(m−m′)(~ω)2

]
. (17)

A similar high-frequency expansion for the Floquet
Hamiltonian ĤF

t0 and the two-point micromotion oper-

ator ÛF (t, t0) is known as Floquet-Magnus expansion
(Blanes et al., 2009; Bukov et al., 2015a; Casas et al.,
2000; Maricq, 1982; Milfeld and Wyatt, 1983; Verdeny
et al., 2013)

ĤF
t0 ≈

µcut∑
µ=1

Ĥ
F (µ)
t0 , ÛF (t, t0) ≈ exp

( µcut∑
µ=1

F̂ (µ)(t, t0)

)
.

(18)

We can contruct the leading terms from the expan-
sion (15) using Eqs. (11) and (12). For the Floquet-
Hamiltonian they read

Ĥ
F (1)
t0 = Ĥ

(1)
F = Ĥ0,

Ĥ
F (2)
t0 = Ĥ

(2)
F − [Ĥ

(1)
F , G(1)(t0)]

=
∑
m 6=0

ĤmĤ−m + eimωt0 [H0, Hm]

m~ω
. (19)

Here the second term of Ĥ
F (2)
t0 results from the expansion

of the unitary operator ÛF (t) ' 1 + Ĝ(1)(t) + · · · . This
expansion conserves unitarity only up to the considered
order µcut, e.g. in first order one finds [1 + Ĝ(1)(t)]†[1 +
Ĝ(1)(t)] = 1 − [Ĝ(1)(t)]2. As a consequence, the approx-
imate quasienergy spectrum obtained from the Floquet
Hamiltonian in µcutth-order acquires a spurious depen-
dence on the initial time t0 and, thus, also on the driving
phase. When expanding the spectrum in powers of the
inverse driving frequency, the t0 dependence appears in
terms of powers ≥ µcut, which cannot be expected to be
captured correctly within the given order of the approxi-
mation. While these terms should be small in the regime
where the approximation is justified, they might cause
spurious symmetry breaking (Eckardt and Anisimovas,
2015).

The Floquet-Magnus expansion is guaranteed to con-
verge, if the period-averaged operator norm of the Hamil-
tonian Ĥ(t) is smaller than ξF~ω, where ξF is a con-
stant of order one (Casas et al., 2000). For periodically
driven many-body systems, possessing excited states also
at macroscopically large energies, this condition cannot
be expected to be fulfilled (unless the state space is ef-
fectively reduced by symmetry or localization). However,
even in this case the high-frequency expansion might still
provide a suitable approximation provided ~ω is large
compared to the typical intensive energy scales of the
system, at least up to a certain time span th beyond
which the system heats up (Abanin et al., 2014; Kuwa-
hara et al., 2016; Maricq, 1982; Mori et al., 2016). Abanin
et al., 2014 and Kuwahara et al., 2016 showed that for
spin systems with local interactions (i.e. for systems with
local energy bound) the time scale th increases expo-
nentially with the driving frequency. For these systems,
Kuwahara et al., 2016, moreover, showed that for time
spans smaller than th the Floquet-Magnus expansion is
(at least) an asymptotic series that provides a good ap-
proximation for the time-evolution operator, whose error
rapidly decreases with µcut before it increases again be-
yond an optimal order µopt

cut . While these results do not
apply to optical lattice systems, which do not have a local
energy bound, they still indicate that the high-frequency
approximation can provide an accurate description of a
driven many-body system as long as the duration of the
experiment is short compared to some heating time th.
This issue is discussed in more detail in section IV.



6

The approximate effective Hamiltonian, as it is given
by a certain low order µcut of the high-frequency approx-
imation (15), defines a simple model Hamiltonian. In
contrast, the full effective Hamiltonian of a driven sys-
tem of many interacting particles is typically a highly
complex (rather awkward) object, which cannot be writ-
ten down explicitly. Very often the starting point of Flo-
quet engineering is, therefore, to realize the physics of
an autonomous model described by a target Hamiltonian
Ĥtarget directly corresponding to the high-frequency ap-

proximation in some low order (µcut = 1 or 2), Ĥtarget =∑µcut

µ=1 Ĥ
(µ)
F . From this perspective, the dynamics of the

driven quantum system provides an approximation to the
physics of the desired model Hamiltonian Ĥtarget, rather
than the other way around. The quantum-gas experi-
ments described in the following section III can be inter-
preted from this point of view.

III. QUANTUM-GAS EXPERIMENTS AND THEIR
BASIC DESCRIPTION

This section shall give an overview over recent experi-
ments with quantum gases of ultracold neutral atoms in
periodically driven optical lattices. We will not discuss
experiments, where periodic driving has been employed
for spectroscopic purposes, but rather describe those aim-
ing for the coherent manipulation of the system’s state
and its dynamics. The observed effects will be explained
in terms of a common language and using intuitive ap-
proximations.

A. Neutral atoms in optical lattices

Ultracold quantum gases (Bloch et al., 2008; Lewen-
stein et al., 2012) consist of neutral atoms held in op-
tical or magneto-optical traps inside a vacuum cell and
cooled down to quantum degeneracy by means of laser
cooling and evaporative cooling. They are very well iso-
lated from their environment. Dissipative processes, such
as the formation of molecules via three-body collisions,
spontaneous emission as a result of the optical trap, or
collisions with background particles, are often negligible.
Atom numbers of up to several millions can be reached.

The possibility to create light-shift potentials propor-
tional to the laser intensity allows for the creation of quasi
defect-free lattice potentials from standing light waves,
called optical lattices. For example, a one-dimensional
lattice created by two counter-propagating laser beams
with wave vectors kL and −kL takes the form of a cosine
lattice, VL(r) = V0 sin2(kL · r), where the lattice depth
V0 is proportional to the laser intensity. Besides the lat-
tice depth V0, a second energy scale is the recoil energy
ER = ~2k2

L/2m, with kL = |kL| and atomic mass m.
It corresponds to the kinetic energy required to localize

a particle on the length of a lattice constant d = π/kL.
Recoil energies are of the order of several (h×) kilohertz,
roughly corresponding to (kB×) microkelvin or several
pico-electron volts. The lattice depth can take values of
up to hundreds of recoil energies. The rather large time
scales corresponding to these low energy scales allow for
accurate time-dependent manipulation and time-resolved
imaging. By combining standing waves in different direc-
tion or by creating more complex interference patterns
one can create various two- and three-dimensional lattice
structures. Moreover, effectively one- or two-dimensional
systems can be realized by strong transversal confine-
ment.

For deep lattices, V0 � ER, the system is well de-
scribed by a Hubbard model with one localized Wannier
state at each lattice minimum. The single-particle terms
of the Hamiltonian take the form

Ĥtun = −
∑
〈`′`〉

Jâ†`′ â`, Ĥpot =
∑
`

v`n̂` (20)

where â†`, â`, and n̂` = â†` â` denote the creation, an-
nihilation and number operator for a particle, boson or
fermion, in the Wannier state at lattice site `. The kinet-
ics is captured by Ĥtun and to good approximation ex-
hausted by tunneling processes between neighboring sites
` and `′, here 〈`′`〉 denotes a directed pair of neighboring
sites `′ and `. The nearest-neighbor tunneling parame-
ter J depends sensitively on the lattice depth and can,
depending on the lattice structure, also acquire a direc-
tional dependence J → J`′`. For a deep cosine lattice
J/ER ' 4π−1/2(V0/ER)3/4 exp(−2

√
V0/Er) (Zwerger,

2003). The potential term Ĥpot captures the influence
of an external potential such as the trap or a superlattice
potential.

The interactions among low-temperature alkaline
atoms, as they were used in the experiments to be re-
viewed here, are short-ranged and captured by on-site
terms. For spinless bosons the interaction term reads

Ĥint =
U

2

∑
`

n̂`(n̂` − 1). (21)

For deep lattices the Hubbard parameter U approaches
U '

√
2/π~2as/(mā

3
0) = 2ER

√
2/π(kLas)/(kLā0)3 with

s-wave scattering length as and the mean harmonic-
oscillators length ā0 in the lattice minimum. For the
cosine lattice the harmonic-oscillator length depends
weakly on the lattice depth like a0kL = (V0/ER)−1/4

and for Rb-87 atoms kLas ≈ 0.041 at 2π/kL = 850 nm.
Spinless (i.e. spin-polarized) fermions do not interact due
to Pauli exclusion. In order to have interactions among
fermionic atoms, one has to consider spinful atoms or
elements with long-ranged dipolar interactions.

The Hubbard model is justified for sufficiently deep
lattices (V0/ER > 5) and has been tested to pro-
vide a quantitative description of optical lattice sys-
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tems (Trotzky et al., 2009). Excited states belong-
ing to higher Bloch bands not included in the Hub-
bard model are separated by a large energy gap EG of
several ER. The gap EG, which is roughly given by
EG ≈ ER min

(
V0/(2ER), 2

√
V0/ER− 1

)
, can be two or-

ders of magnitude larger than J and U . Thus, even if the
driving frequency is required to be large compared to J
and U , it can still be small compared to the band gap.
This suggests that a description of the periodically driven
systems in terms of the low-energy subspace described by
the Hubbard model is possible. A more detailed discus-
sion of this issue is given in Sec. IV.C below.

B. Dynamic localization

The first experiment where the coherent dynamics of
an ultracold quantum gas has been controlled by means
of periodic forcing has been conducted in Arimondo’s
group in Pisa. The ballistic spreading of a localized
Bose-Einstein condensate in the lowest band of a one-
dimensional optical lattice has been slowed down, and
even suppressed completely, by the application of a sinu-
soidal force (Lignier et al., 2007, see also Creffield et al.,
2010 and Eckardt et al., 2009). This is the effect of dy-
namic localization (Dunlap and Kenkre, 1986).

The experimentalists created a one-dimensional optical
lattice in the tight-binding regime along the x direction,
together with a tube-like harmonic confinement in the
radial directions y and z. Initially a Bose-Einstein con-
densate of 87Rb atoms was loaded into the lowest Bloch
band of the lattice, localized in the center of the tube
by an additional trapping potential. When this addi-
tional trap was switched off, the condensate started to
expand in the tube. During this expansion a sinusoidal
force was applied, created as an inertial force by shak-
ing the lattice back and forth. The shaken lattice is de-
scribed by the potential VDL(r, t) = VL(r − ξ(t)) with
ξ(t) = ξ(t + T ) = ξ(t) = ξ0 cos(ωt)ex, which transforms
to VL(r)−r ·F (t) in the reference frame co-moving with
the lattice, where

F (t) = −mξ̈(t) = Fω cos(ωt) (22)

with Fω = mω2ξ0ex ≡ Fωex (Drese and Holthaus,
1997b; Madison et al., 1998). After a certain time of ex-
pansion in the driven lattice, the atom density was mea-
sured by absorption imaging either in situ or, in order
to reveal the momentum distribution, after an additional
time of flight with all potentials switched off.

For a broad range of parameters, the momentum distri-
bution revealed sharp peaks, indicating that the conden-
sate retained its coherence like in the case of a ballistic
expansion and that the shaking did not cause significant
heating. Moreover, by comparing the in-situ extent of
the atom cloud with that found for ballistic expansion
in the non-driven lattice (Fig. 1), the driven system was

FIG. 1 Effective tunneling matrix element |Jeff|/J versus
K0 = K/~ω. Extracted from the expansion dynamics of
a condensate of about 5 · 104 87Rb atoms in a shaken op-
tical lattice of ER ≈ 2π~3.16 kHz (squares: V0/ER = 6,
ω/2π = 1 kHz, circles: V0/ER = 6, ω/2π = 0.5 kHz, tri-
angles: V0/ER = 4,ω/2π = 1 kHz, dashed line: theoretical
prediction). Inset: Jeff/J for K/~ω = 2 and V0/ER = 9 ver-
sus ~ω/J , indicates breakdown of high-frequency prediction
(dashed line) for ~ω/J < 2. (taken from Lignier et al., 2007)

found to be well-described by the effective tunneling pa-
rameter predicted by Dunlap and Kenkre, 1986,

Jeff = JJ0

( K
~ω

)
, (23)

where K = dFω is the amplitude of the potential modu-
lation between neighboring lattice sites.

Let us explain this result. In the lattice frame of ref-
erence the system can be described by the tight-binding
Hamiltonian

Ĥ(t) = −
∑
〈`′`〉

Jâ†`′ â`+
∑
`

[(
v`+w`(t)

)
n̂`+

U

2
n̂`(n̂`−1)

]
,

(24)
where ` labels the minima r` = (x`, 0, 0) of the one-
dimensional lattice and where

w`(t) = −r` · F (t) = −x`
d
K cos(ωt), v` = vtr

` (25)

captures the periodic force as well as a weak harmonic
trap in the lattice direction vtr

` , respectively. In the ex-
pansion experiment vtr

` was small enough to have no sig-
nificant influence on the measured expansion dynamics.

One can now perform a gauge transformation,
|ψ′(t)〉 = Û†(t)|ψ(t)〉 and Ĥ ′(t) = Û†(t)Ĥ(t)Û(t) −
i~Û†(t)[dtÛ(t)], defined by the time-periodic unitary op-
erator

Û(t) = exp

(
i
∑
`

χ`(t)n̂`

)
(26)

with

χ`(t) = −
∫ t

t0

dt′
w`(t

′)

~
− χ0`. (27)
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The time-independent gauge constant χ0` shall be chosen

such that
∫ T

0
dt χ`(t) = 0. Writing

χ`(t) ≡ r` · a(t) (28)

reveals that the unitary operator Û(t) describes a global
shift in quasimomentum by

a(t) = −m
~
ξ̇(t) =

1

d

K

~ω
sin(ωt)ex. (29)

By employing Û†(t)â`Û(t) = eiχ`(t)â` and noting that
the time-derivative of the unitary transformation cancels
with the driving term, the gauge-transformed Hamilto-
nian can be brought to the form

Ĥ ′(t) = −
∑
〈`′`〉

Jeiθ`′`(t)â†`′ â` +
∑
`

[
v`n̂` +

U

2
n̂`(n̂`− 1)

]
.

(30)
The time-dependent Peierls phases

θ`′`(t) = χ`(t)− χ`′(t) = −(r`′ − r`) · a(t) (31)

play the role of a discrete vector potential that now, in-
stead of the discrete scalar potential w`(t), describes the
force F (t).

For v` = 0, the gauge transform restores the dis-
crete translational symmetry of the lattice. The time-
dependent tunneling term of Ĥ ′(t) is, thus, diagonal in
quasimomentum representation,

Ĥ ′tun(t) =
∑
k

ε
(
k + a(t)

)
n̂k. (32)

Here n̂k denotes the number operator for particles in the
Bloch state with quasimomentum wave number k, char-
acterized by 〈`|k〉 ∝ exp(ir`·k), and ε(k) = −2J cos(dkx)
is the single-particle dispersion relation of the undriven
tight-binding lattice. The form (32) explicitly shows
that the transformation (26) describes a shift in mo-
mentum by a(t).4 Under the influence of Ĥ ′tun(t) the
quasimomentum occupation numbers of the state do not
change in time. During each driving period a parti-
cle in state |k〉 just pics up an integrated dynamical
phase proportional to the time-averaged energy εeff(k) =
1
T

∫ T
0

dt ε
(
k + a(t)

)
= −2Jeff cos(dkx), with the effec-

tive tunneling matrix element Jeff as given by Eq. (23).5

Thus, apart from an oscillatory dynamics at the driv-
ing frequency the system behaves as if it was described
by the effective dispersion relation εeff(k) with a reduced

4 The transformation can be viewed as an analog of the Kramers-
Henneberger transformation (Henneberger, 1968), with the roles
of momentum and position interchanged.

5 In order to compute the time average, the identity
exp(ia sin(b)) =

∑∞
µ=−∞ Jµ(a) exp(iµb) was employed.

band width of 4Jeff. This argument is valid also for low
driving frequencies, unless interactions or translational-
symmetry-breaking cause scattering between quasimo-
mentum states.

In the more interesting situation with interactions and
translational-symmetry breaking, the effective modifica-
tion of tunneling is still valid approximately in the high-
frequency regime. Namely, if ~ω is large compared to
the characteristic energy scales J , U , and |v`′ − v`| on
neighboring sites `′ and `, which determine the rates at
which the system’s state |ψ′(t)〉 changes in time, we can
average over the rapid oscillation of the Peierls phases.
The tight-binding Hamiltonian can be approximated by
its cycle average

Ĥ ′(t) ≈ 1

T

∫ T

0

dtĤ ′(t) ≡ Ĥeff. (33)

One finds

Ĥeff = −
∑
〈`′`〉

Jeff
`′`â
†
`′ â` +

∑
`

[
v`n̂` +

U

2
n̂`(n̂`− 1)

]
, (34)

with modified tunneling matrix element

Jeff
`′` =

J

T

∫ T

0

dt ei[χ`(t)−χ`′ (t)], (35)

resulting in Jeff
`′` = Jeff, where Jeff is given by Eq. (23).6

This rotating-wave-type approximation is in principle
valid not only for the case of weak interactions of the
expansion experiment, but also in the regime where U is
comparable or larger than J (Eckardt et al., 2005b).

The result of the rotating-wave approximation can be
related to Floquet theory. The time-independent Hamil-
tonian Ĥeff that was argued to effectively describe the
time evolution, constitutes an approximation to the ef-
fective Hamiltonian ĤF and the unitary operator (26)
approximates the micromotion operator ÛF (t):

ĤF ≈ Ĥeff, ÛF (t) ≈ Û(t). (36)

This corresponds to the leading order of the high-
frequency approximation (15) applied to Ĥ ′(t),

Ĥeff = Ĥ
′(1)
F . (37)

As will be discussed in section IV this approximation
is expected to be valid on a certain time scale, before
heating sets in. This time scale can, however, be rather
long and comparable to the duration of the experiment
(typically a few hundred milliseconds). In the experi-
ment by Lignier et al., 2007, the condensate coherence

6 For non-sinusoidal square-wave forcing the modification of tun-
neling is given by a sinc function (Zhu et al., 1999), as it was
observed also experimentally (Eckardt et al., 2009).
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was found to decay during the expansion on a dephasing
time of about 200 milliseconds for the non-driven system
with V0/ER ≈ 9. For the strongly driven system with
K/~ω = 2.2 comparable dephasing times were achieved
when the driving frequency was increased to an optimal
value.

A significant modification of tunneling requires strong
driving with the driving strength K of the order of ~ω.
For such strong forcing it would not have been justi-
fied to approximate the original Hamiltonian Ĥ(t) by its
time average, since the amplitude of the driving term K
changes the state at a rate comparable to the driving
frequency. However, by integrating out the driving term
via a gauge transformation before applying the rotating-
wave approximation, also the case of strong driving can
be treated (Eckardt et al., 2010; Goldman et al., 2015).
In this way a non-perturbative treatment of the forcing
has been achieved. This is visible in the fact that through
the Bessel-function-type dependence the effective tunnel-
ing matrix element Jeff contains arbitrarily large powers
of the driving amplitude K. In contrast, when perform-
ing the high-frequency expansion starting from Ĥ(t) in
µth order the largest power encountered is Kµ. Thus, in-
tegrating out the driving term via the gauge transforma-
tion (26) before employing the high-frequency expansion
corresponds to a partial resummation of the series (15).

Lignier et al., 2007 also observed deviations from the
tight-binding description (24) in the form of a small
amount of transfer to the first excited band of the lat-
tice (less than ten percent for K/~ω < 3). Moreover,
for negative effective tunneling matrix elements Jeff < 0,
the measured momentum distribution revealed that the
atoms recondensed into the minimum kx = π/d of the
inverted dispersion relation εeff(k). A plausible explana-
tion of this process, during which the (effective) kinetic
energy is lowered, is that the excess energy is absorbed
by excitations in the rather weakly confined transversal
direction.

The fact that the periodic force has been created as an
inertial force via lattice shaking has a convenient impli-
cation concerning the measurement of the quasimomen-
tum distribution. In the lattice frame of reference the
quasimomentum distribution oscillates like −a(t) in re-
sponse to the inertial force. This oscillation is removed,
when transforming back to the laboratory frame of ref-
erence, where the quasimomentum distribution is mea-
sured. This resembles the effect of the gauge transfor-
mation that led to Ĥ ′(t) ≈ Ĥeff. Time-of-flight pictures,
thus, directly reveal the quasiomentum distribution of
Ĥeff (multiplied, however, by an oscillating envelop given
by the Fourier transform of the Wannier function).

C. “Photon”-assisted coherent tunneling

The starting point of a second type of experiment has
been the Wannier-Stark configuration, namely a one-
dimensional lattice system in combination with a homo-
geneous static force F0 = F0ex. If the potential differ-
ence between neighboring sites ∆ = F0d is large com-
pared to the band width (while still being small with
respect to the band gap) tunneling processes between
neighboring lattice sites are strongly suppressed. In this
regime the localized single-particle Wannier-Stark eigen-
states are approximately identical to the Wannier states
at the lattice sites `, and Bloch oscillations are reduced to
a rapid shivering motion of angular frequency ∆/~ and
negligible amplitude ∼ J/∆. An initially localized Bose
condensate does not spread in time. However, coherent
tunneling can be induced by applying a time-periodic
force Fω cos(ωt), provided the resonance condition

∆ = ν~ω + δ, (38)

with integer ν and small detuning δ is met. This phe-
nomenon is known as “photon”- assisted, AC-induced,
or laser-assisted tunneling. For such a situation the en-
ergy separation ∆ between neighboring sites is bridged
by ν energy quanta ~ω (tunneling corresponds to an al-
lowed ν-“photon” transition) and particles can tunnel
with an effective tunneling matrix element −Jeff, as if
there was no potential tilt (Zak, 1993). If the resonance
condition is not met exactly such that a finite detuning δ
remains, this detuning plays the role of a residual static
force δF = (δ/d)ex (Eckardt and Holthaus, 2007).

A basic theoretical description of “photon”-assisted
tunneling in a sinusoidally forced tilted lattice can be
obtained in a similar way as for the phenomenon of dy-
namic localization. Subjecting a one-dimensional lattice
system to the force

F (t) = −F0 + Fω cos(ωt), (39)

with F0 = F0ex and Fω = Fωex, it is described by the
Bose-Hubbard Hamiltonian (24). However now the driv-
ing potential is defined like

w`(t) =
x`
d

[
−K cos(ωt) + ν~ω

]
, (40)

where K = Fωd as before, and

v` = vtr
` +

x`
d
δ, (41)

describes an additional weak static potential. Here we
have included the larger share ν~ω of the static potential
tilt (38) to the driving term w`(t), whereas the small
detuning δ was included into v`.

Now w`(t) contains all terms of the Hamiltonian, whose
characteristic energy scale is not small compared to the
driving frequency. Moreover the w`(t) term is defined
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such that it can be integrated out by a time-periodic
gauge transformation, described by the unitary operator
(26) and (27) with w`(t) as defined by Eq. (40). This
gauge transformation leads to a Hamiltonian of the form
(30). It corresponds to a global shift in quasimomentum
by

a(t) =
[1

d

K

~ω
sin(ωt)− 1

d
νωt+ a0

]
ex, (42)

where the constant a0 depends both on the integration
time t0 and the gauge constant χ0` in Eq. (27). The lin-
ear dependence on time makes the definition of χ0` as
the time average of the integral in Eq. (27) meaningless.
Instead the freedom to choose χ0` can be used either to
incorporate into a0 the actual momentum shift induced
when both Fω and F0 are switched on according to a par-
ticular experimental protocol (Creffield and Sols, 2011)
or to achieve a0 = 0 for convenience, as it shall be done
in the following. The quasimomentum shift (42) is time
periodic, in the sense that quasimomentum wave num-
bers kx are defined modulo 2π

d only. The integer ν corre-
sponds to the number of times the system is translated
in quasimomentum through the first Brillouin zone.

We are now again in the position to approximate
Ĥ ′(t) = Ĥ ′(t + T ) by its time average, as long as J ,
U , and |v`′ − v`| on neighboring sites `′ and ` (i.e. also
|δ|) are small compared to ~ω. We arrive at the approx-
imate effective Hamiltonian (34), but with v` given by
Eq. (41) and with the effective tunneling matrix element
reading (Eckardt and Holthaus, 2007; Zak, 1993)

Jeff = JJν
(
K

~ω

)
. (43)

For small arguments the Bessel function behaves like

Jν(x) ' 1
|ν|!
[
sgn(ν)x2

]|ν|
, so that for ν 6= 0 the effective

tunneling matrix element vanishes for K/~ω = 0. This
reflects the fact that for a strong potential tilt ν~ω � J
tunneling is suppressed. However, switching on a finite
driving strength K/~ω the effective tunneling matrix ele-
ment acquires finite values such that coherent “photon”-
assisted tunneling is induced by the periodic force.

The fact that the localized Wannier-Stark eigenstates
of the tight-binding model described by Ĥeff with a fi-
nite tilt δ are known explicitly in the absence of trapping
potentials and interactions, allows for an analytical de-
scription of the dynamics of an initially localized wave
packet in the shaken tilted lattice (Thommen et al., 2002,
2004a,b, see also Creffield and Sols, 2011; Kolovsky and
Korsch, 2010; and Kudo and Monteiro, 2011), as it has
been investigated in different experiments to be described
in the following paragraphs.

“Photon”-assisted tunneling described by the effective
tunneling matrix element (43) with ν = 1 and ν = 2 has
been observed in Arimondo’s group in Pisa (Sias et al.,
2008) from the coherent expansion of a Bose conden-
sate of Rb-87 atoms in a one-dimensional lattice, where

both the static and the sinusoidal force where created
by lattice acceleration [a seeming discrepancy between
the measured data with the prediction (43) was later re-
solved by taking into account the initial extent of the
condensate when extracting the effective tunneling ma-
trix element (Creffield et al., 2010)].

At the same time a similar experiment has been con-
ducted in Tino’s group in Florence with Sr-88 atoms in
an optical cosine lattice, where the static force was given
by gravitation and the periodic force was realized via
lattice shaking (Ivanov et al., 2008). The experimen-
talists observed ballistic spreading for resonant forcing
with ~ω = n∆ and n = 1, 2, 3 and 4. The authors
attribute the resonances to tunneling processes between
lattice sites at distance nd. Since for the used lattice
depth of V0/ER = 20 the matrix elements for next-
nearest-neighbor tunneling are negligible, this interpre-
tation suggests that atoms were loaded also into excited
Bloch bands of the lattice, where also longer-ranged tun-
neling matrix elements matter. An alternative mecha-
nism leading to such resonances would be nth-order tun-
neling processes, where n particles tunnel to a neighbor-
ing site via virtual intermediate non-resonant states.

In a later experiment by the same group the atoms
were loaded into the lowest band of a tilted lattice and
the impact of the small effective lattice tilt δ = ∆ − ~ω
was explored, as it appears in the effective Hamiltonian
(34) through v` [Eq. (41)]. The experimentalists observed
a large-amplitude breathing dynamics of the initially lo-
calized atom cloud at the small effective Bloch frequency
δ/(2π~) (Alberti et al., 2009). For the lowest effective
Bloch frequency of approximately 0.26 Hertz a breathing
amplitude of about one millimeter was observed. The
driven system retained coherence over macroscopic times
and distances. Since the atom cloud was hot, with the
momentum distribution smeared out over the whole first
Brillouin zone, no center-of-mass Bloch oscillations were
observed. However, the thermal nature of the initial state
did not destroy the coherent breathing dynamics.

In an experiment by Nägerl’s group in Innsbruck also
center-of mass oscillations at the effective Bloch fre-
quency δ/(2π~) were observed (Haller et al., 2010). In
this experiment with bosonic Cs-133 atoms in a one-
dimensional optical lattice the static tilt was given by
gravitation and the sinusoidal force was realized using an
oscillating magnetic-field gradient. Since the atom cloud
possessed a peaked quasimomentum distribution, it ac-
quired also a large-amplitude center of mass oscillation
(super Bloch oscillations, Kolovsky and Korsch, 2010),
described by the group velocity of the effective Hamilto-
nian at the oscillating quasimomentum peak. The am-
plitude of the oscillations was found to be determined by
Jeff as given by Eq. (43) with ν = 1. Their phase, as it is
determined by the quasimomentum shift acquired while
the forcing is switched on, was controlled by the time
when during the driving period the forcing was switched



11

on abruptly.
Another possibility to resonantly induce effective co-

herent tunneling in a strongly tilted lattice is a sinusoidal
modulation of the lattice depth, which is captured by a
modulation of the tunneling matrix element in the tight-
binding Hamiltonian (24),

J → J(t) =

∞∑
µ=−∞

J (µ)eiµωt ' J + ∆J cos(ωt), (44)

with J (−µ) = J (µ)∗. Additionally, there is also a weak
periodic modulation of the interaction parameter, U →
U(t) ' U −∆U cos(ωt). The Wannier-Stark tilt is cap-
tured by

w` =
x`
d
ν~ω, v` = vtr

` +
x`
d
δ. (45)

Integrating out the strong potential tilt included in w`
by a gauge transformation [Eqs. (26) and (27)], one ar-
rives at a Hamiltonian Ĥ ′(t) of the form (30), with J
and U replaced by J(t) and U(t) and Peierls phases (31)
determined by the quasimomentum shift

a(t) = [−1

d
νωt+ a0]ex. (46)

Once again, one can approximate Ĥ ′(t) by its time av-
erage, giving the effective Hamiltonian (34), where v` is
given by Eq. (45) and where for the choice of gauge a0 = 0
the effective tunneling matrix element reads

Jeff = J (−ν`′`) ' δν,0J +
δν,1 + δν,−1

2
∆J, (47)

with integer ν`′` ≡ (w`′ −w`)/~ω for tunneling from ` to
`′. Thus, as long as higher harmonics are negligible in
the modulated tunneling matrix element J(t), the forc-
ing allows for single-“photon” processes bridging energy
differences of ±~ω.

Such “photon”-assisted tunneling via a modulation of
the lattice depth has been observed in Florence (Alberti
et al., 2010), where inter alia the selectivity to single-
“photon” processes has also been used in order to se-
lectively induce and observe tunneling processes between
next-nearest and next-next nearest lattice sites. Subse-
quently, the scheme was employed for a precision mea-
surement of the gravitational acceleration (Poli et al.,
2011).

This effect has been combined with strong interactions
both with spinless bosons in a tilted lattice by Greiner’s
group at Harvard (Ma et al., 2011) and with spin-1/2
bosons in a tilted double well by Bloch’s group in Mu-
nich (Chen et al., 2011). In these experiments the on-site
interaction U is large compared to the tunneling param-
eter J and comparable to the lattice tilt ∆, so that the
resonance condition (38) has to be modified to include
also the change of interaction energy associated with a

FIG. 2 Dynamically induced Superfluid-to-Mott-insulator
transition in a shaken cubic optical lattice. Two-dimensional
projection of the momentum distribution obtained from time-
of-flight absorption imaging at three different times during
the experimental protocol: before ramping up the driving
strength K0 = K/~ω, after K0 has been ramped up linearly
(middle), after K0 has been ramped down again (right). The
loss and re-appearance of sharp peaks indicates that the sys-
tem approximately followed a many-body Floquet state un-
dergoing a quantum phase transition from a superfluid to a
Mott insulator and back. (taken from Zenesini et al., 2009)

tunneling process. In this way the effective tunneling ma-
trix element becomes occupation dependent. In Greiner’s
lab, this effect was employed to measure the Hubbard en-
ergy U as well as occupation-number-dependent correc-
tions to it, as they arise from perturbative admixtures
of excited Bloch bands. Moreover, it has been used to
control (a finite-size precursor of) a phase transition in
the effective spin model that the same group had realized
already in an earlier experiment with spinless bosons in
a tilted lattice (Simon et al., 2011). In the Bloch experi-
ment also second-order tunneling via non-resonant inter-
mediate states was observed at the resonance condition
~ω = 2∆ (see also Eckardt et al., 2005a) and the modu-
lation was used to control superexchange processes (see
also Bukov et al., 2016 and Mentink et al., 2014).

We note in passing that “photon”-assisted tunneling
has recently also been observed in a lattice of optical
wave guides (Mukherjee et al., 2015). Experiments that
use “photon”-assisted tunneling induced by a moving sec-
ondary lattice for the purpose of engineering artificial
magnetic fields will be reviewed in Sec. III.F.1 below.

D. Dynamic control of the bosonic
superfluid-to-Mott-insulator transition

When deriving the approximate effective Hamiltonian
(34), in the previous sections it was assumed that the
driving frequency is large compared to tunneling and in-
teraction parameters. But it was not required that the
interactions are weak compared to the kinetic energy.
Therefore, it is possible to control a lattice system also in
the strong coupling regime by means of periodic forcing.
This has been exploited in an experiment in Pisa (Zen-
esini et al., 2009), where the transition between a bosonic
superfluid and a Mott-insulator state has been induced
by means of lattice shaking. This experiment followed a
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proposal by Eckardt et al., 2005b (see also Eckardt and
Holthaus, 2007).

The bosonic Hubbard model possesses two different
ground-state phases, a gapless compressible superfluid
phase, with the particles being delocalized, and a gapped
incompressible Mott-insulator phase, where an integer
number of particles is localized at every lattice site by
strong repulsive interactions (Fisher et al., 1989). In a
trapped optical lattice system extended Mott-insulator
regions form when the ratio between Hubbard interaction
and tunneling parameter, U/J , exceeds a critical value
(Jaksch et al., 1998), which for the three-dimensional
cubic lattice at unit filling is given by (U/J)c ≈ 29.3
(Capogrosso-Sansone et al., 2007; Teichmann et al.,
2009). This transition has been observed the first time
in a seminal experiment with spinless bosons in a cubic
optical lattice by Greiner et al., 2002 in Munich, where
the ratio U/J was increased by ramping up the lattice
depth V0. As a signature of the transition the experi-
mentalists observed the disappearance of sharp peaks in
the momentum distribution, as they characterize the su-
perfluid phase, as well as their reappearance, when the
lattice depth was ramped down again.

In the Pisa experiment lattice shaking was employed
to lower the effective tunneling parameter (23) with re-
spect to the interaction strength U , which is not altered
by the lattice shaking. In order to modify the tun-
neling matrix element in all three directions of a cubic
lattice, the forcing was applied along the diagonal di-
rection. When the shaking amplitude was ramped up
smoothly, the sharp momentum peaks characterizing the
superfluid ground state disappeared once U/Jeff became
sufficiently large. The peaks reappeared, when the forc-
ing was ramped down again (see Fig. 2). The inter-
pretation of this experiment is that the system followed
approximately a many-body Floquet state that, in re-
sponse to the variation of the driving amplitude, under-
went a transition from a superfluid to a Mott insulator
and back. This experiment demonstrates on the one hand
that time-periodic forcing is a suitable tool also for the
manipulation of strongly interacting many-body systems
and their interaction-driven physics. On the other hand,
it also is an example of adiabatic state preparation in a
time-periodically driven system. Such “adiabatic” pro-
cesses in driven many-body systems will be discussed in
more detail in section IV below, where we will point out
that they actually correspond to a complex mixture of
adiabatic and diabatic processes in an extended Hilbert
space.

E. Kinetic frustration

Controlling the spreading of a Bose condensate, Bloch
oscillations, or even the superfluid-to-Mott-insulator
transition, all these experimentally observed effects dis-

cussed above clearly show that periodic forcing is a suit-
able tool for controlling many-body systems of ultracold
atoms in optical lattices. These effects have, however,
been achieved also without periodic forcing, e.g. by vary-
ing the depth of the optical lattice, leading to an expo-
nential suppression of the tunneling matrix element, or
by tuning a Wannier-Stark tilt. But periodic forcing can
also be used to engineer systems with qualitatively new
properties. One possibility is to effectively modify not
only the amplitude, but also the sign or, more generally,
the phase of tunneling matrix elements.

In the one-dimensional driven tight-binding
chain, with effective dispersion relation εeff(kx) =
−2Jeff cos(dkx), a sign change of the effective tunneling
matrix element Jeff does not lead to qualitatively new
physics. The resulting inversion of the dispersion relation
can be compensated by a shift in quasimomentum by
∆k = π/d, which corresponds to a gauge transformation
and leaves also the interactions unchanged. This argu-
ment generalizes to other bipartite lattice geometries
(like square, hexagonal, or cubic), where a sign change
of the tunneling matrix element can be compensated by
redefining the sign of the Wannier orbital on every other
lattice site. However, for a non-bipartite lattice (like the
triangular or the Kagomé lattice), the inversion of the
tunneling matrix element does not simply correspond
to a gauge transformation, but leads to a geometrically
frustrated tunneling kinetics: A negative tunneling pa-
rameter Jeff < 0, corresponding to a positive tunneling
matrix element −Jeff > 0, favors the wave function to
change sign from one lattice site to the other. Thus,
given, e.g., three sites arranged in a triangular plaquette,
it is not possible anymore to minimize the kinetic energy
at each of the three tunneling bonds at the same time.
Especially in combination with strong interactions, such
kinetic frustration can give rise to intriguing behavior.

A sign inversion of the effective tunneling parame-
ter can be achieved via periodic forcing (Eckardt et al.,
2010). A two-dimensional lattice that is shaken along a
circular orbit experiences the inertial force

F (t) = Fω[cos(ωt)ex + sin(ωt)ey]. (48)

In the high-frequency regime its dynamics can be de-
scribed by the approximate effective Hamiltonian (34)
with the isotropic tunneling parameter given by Eq. (23),
where K = dFω with lattice constant d. The effec-
tive tunneling parameter becomes negative at K/~ω ≈
2.4 and assumes a minimal value of Jeff ≈ −0.4J at
K/~ω ≈ 3.8. On the single-particle level, after an in-
version of the tunneling matrix elements, the dispersion
relation of the triangular lattice εeff(k) possesses two in-
equivalent minima k = ±q. For a Bloch wave function
ψ` = M−1/2 exp(iϕ`) with ϕ` = k · r` on the lattice,
where M denontes the total number of lattice sites, the
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FIG. 3 (a) Anisotropic triangular lattice with effective tun-
neling parameters Jeff and J ′eff. (b) Momentum distribution
averaged over many measurements (shots) and corresponding
pattern of the condensate phase (indicated by direction of ar-
row) for different Jeff and J ′eff (dashed/solid lines indicate pos-
itive/negative tunneling parameters). (c) Spontaneous time-
reversal symmetry breaking for Jeff = J ′eff < 0. Each of the
two spatial configurations of the condensate phase shown in
A breaks time-reversal symmetry. In absorption images the
two are distinguished by the position of the measured peaks,
indicated by dotted or solid circles in B. The contrast between
both configurations χ varies from shot to shot (C) giving a
bimodal distribution (D), so that typically only one of the
two configurations appears spontaneously. [(b) and (c) taken
from Struck et al., 2011]

effective kinetic energy is given by

εeff(k) = −Jeff

M

∑
〈`′`〉

cos(ϕ`′ − ϕ`) = −Jeff

∑
d

cos(d · k),

(49)
where the second sum runs over the six vectors d that

connect each lattice site with its nearest neighbors. The
phases ϕ` play the role of coupled classical rotors. For
antiferromagnetic coupling, Jeff < 0, this energy be-
comes minimal for the two spiral phase patterns denoted
“Spiral 1” in Fig. 3(b), characterized by k = ±q with
q = (qx, 0, 0) and qx = 4π/(3d).

Considering many, weakly repulsive, spinless bosons,
the ground state of the effective Hamiltonian corresponds
to a Bose condensate in one of the two minima of the ef-
fective dispersion relation [states involving both quasi-
momenta q and −q, either in a coherent supersposi-
tion or by forming a fragmented condensate, are disfa-
vored by repulsive interactions (Eckardt et al., 2010)].
This form of spontaneous time-reversal symmetry break-
ing has been observed in a system of weakly interacting
spinless bosons in a triangular lattice of one-dimensional
tubes in Sengstock’s group in Hamburg (Struck et al.,
2011), see Fig. 3(c).

Extending the scheme to elliptical forcing causes an
anisotropic modification of tunneling, since the ampli-
tude of the forcing K acquires a directional dependence.
In a triangular lattice this allows for creating the pattern
of tunneling matrix elements depicted in Fig. 3(a). The
parameter space spanned by Jeff and J ′eff has been ex-
plored in the Hamburg experiment. Fig. 3(b) shows the
measured momentum distributions, which feature peaks
at the expected positions corresponding to the sketched
phase patterns. The degree of kinetic frustration is basi-
cally controlled by Jeff/|J ′eff|. For Jeff = 0, the remaining
J ′eff bonds form a bipartite rhombic lattice, which does
not feature frustration and favors a staggered Néel-type
order of the phases ϕ` [denoted ”rhombic” in Fig. 3(b)]
for antiferromagnetic coupling J ′eff < 0. Switching on
a finite antiferromagnetic Jeff = −γ|J ′eff| < 0 leads to
frustration for either sign of J ′eff, and causes spontaneous
time-reversal symmetry breaking when γ > γc. The cor-
responding phase patterns are denoted by “Spiral 1” and
“Spiral 2” for J ′eff < 0 and J ′eff > 0, respectively. The crit-
ical parameter is roughly given by γc ≈ 0.5, where the
single-particle dispersion relation develops two minima,
though interaction-induced quantum fluctuations are ex-
pected to shift it to slightly larger values (Eckardt et al.,
2010).

The idea of achieving kinetic frustration via lattice
shaking is of interest mainly for bosons. For fermions,
an inversion of tunneling matrix elements results already
from a particle-hole transformation, so that kinetic frus-
tration will naturally appear when the Fermi energy be-
comes sufficiently large. Apart from the triangular lat-
tice, the scheme can be used to induce kinetic frustra-
tion also in other non-bipartite lattice geometries. For
an optical Kagomé lattice, as it has been realized ex-
perimentally recently (Jo et al., 2012), the impact of ki-
netic frustration would be even more drastic. After in-
verting the sign of the tunneling parameters the lowest
of the three bands will be completely flat, so that even
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weak interactions will have a major impact on the ground
state (Huber and Altman, 2010). Also one-dimensional
chains, like the saw-tooth (Huber and Altman, 2010) or
zig-zag (Greschner et al., 2013) lattice, can acquire ki-
netic frustration in response to lattice shaking as well as
non-bipartite three-dimensional lattice geometries, such
as pyrochlore. Kinetic frustration enhances the role of in-
teractions not only in the extreme case of lattice geome-
tries acquiring a flat lowest band. In the triangular lat-
tice the critical interaction strength for the formation of a
Mott-insulator will be reduced (Eckardt et al., 2010) and
it can even become zero in the zig-zag chain (Greschner
et al., 2013). Note that the system can form a chiral
Mott insulator, with spontaneously broken time-reversal
symmetry breaking appearing in the particle-hole fluctu-
ations (Greschner et al., 2013; Zaletel et al., 2014).

It is also an interesting perspective to explore the inter-
play of kinetic frustration with very strong interactions.
In the limit of hard-core bosons the effective Hamiltonian
(34) can be mapped to a quantum spin-1/2 XY model
(Eckardt et al., 2010)

Ĥeff = −Jeff

∑
〈`′`〉

Ŝ+
`′ Ŝ
−
` = −Jeff

∑
〈`′`〉

(
Ŝx`′ Ŝ

x
` + Ŝy`′ Ŝ

y
`

)
.

(50)
Here the Ŝ` denote standard spin operators acting on
the pseudo-spin degree of freedom spanned by the two
states “there is a boson” (↑) and “there is no boson”
(↓). In the experiment mentioned above, reaching this
regime would requires a further confinement perpendic-
ular to the lattice, making the system effectively two-
dimensional. For non-bipartite lattices and Jeff < 0 the
Hamiltonian (50) describes frustrated quantum antifer-
romagnetism. The ground-state (and low-temperature)
regime of such frustrated quantum magnets can give rise
to intriguing physics, like the formation of topological
or critical spin liquids. However, the theoretical predic-
tion of the nature of the ground state is typically a hard
problem (Balents, 2010; Moessner and Ramirez, 2006;
Sachdev, 2008). Possibly, future experiments simulating
the Hamiltonian (50) in shaken optical lattices of various
geometries could provide useful information concerning
this issue. Here a promising feature is that the model
(50) is based on easy-to-cool motional bosonic degrees of
freedom, with the coupling on the order of the tunnel-
ing matrix element Jeff ∼ J . Without a lattice, bosonic
systems have been cooled down to entropies per parti-
cle as low as 0.001kB (Olf et al., 2015). This contrasts
with optical-lattice spin systems based on a Mott insula-
tor of spin-1/2 fermions, with small superexchange cou-
pling ∼ J2/U � J between neighboring spins. For spin-
1/2 fermions entropies per particle of about 0.6kB in the
Mott-insulating state (Boll et al., 2016; Greif et al., 2013;
Hart et al., 2015) and 0.04kB in a system without lattice
(Ku et al., 2012) have been achieved. Moreover, close
analogies between ground and low-energy states of frus-

trated XY and Heisenberg antiferromangets might per-
mit to shed light also on the physics of the latter (Läuchli
and Moessner, 2015).

F. Artificial magnetic fields – High-frequency schemes

Inverting the sign of the tunneling matrix elements can
be viewed as a special case of a more general scheme
where the effective matrix element for tunneling from `
to `′ acquires a phase,

Jeff
`′` = |Jeff

`′`| eiθ
eff
`′` . (51)

Such effective Peierls phases θeff
`′` play the role of a vector

potential. The tight-binding representation of a vector
potential A(r) is, according to the Peierls substitution,
given by θ`′` = 1

~
∫ r`′

r`
dr ·A(r), where we have absorbed

the charge in the definition of A so that it carries the
dimension of a momentum and where the integration is
taken along a straight line. In the last years, such effec-
tive Peierls phases have been realized by means of peri-
odic forcing in several experiments (Aidelsburger et al.,
2013, 2011, 2015; Atala et al., 2014; Kennedy et al., 2015;
Miyake et al., 2013; Struck et al., 2012, 2013).

Of particular interest is the situation where the Peierls
phases describe a finite effective magnetic flux Φeff

P

through a lattice plaquette P . It is defined as the di-
mensionless Aharonov-Bohm-like phase Φeff

P =
∑
P θ

eff
`′`

obtained by summing over the Peierls phases picked up
when tunneling once around the plaquette in positive
direction, as depicted in Fig. 4. The plaquette flux is
defined modulo the dimensionless magnetic flux quan-
tum of 2π only, it is gauge invariant and plays the
role of the magnetic field (flux density) in continuous
systems. The creation of effective plaquette fluxes by
means of periodic forcing turned out to be a powerful
method for the creation of artificial (or synthetic) mag-
netic fields for charge-neutral particles in optical lattices
(other schemes rely on laser-dressing of internal atomic
degrees of freedom, Dalibard et al., 2011 and Goldman
et al., 2014). In this way extremely strong fields of the
order of the maximum possible flux of π can be achieved.
To put this in perspective, for an electron a flux of π
through the hexagonal plaquette of graphene with area

Ahex ≈ 5.2Å
2

would correspond to the enormous mag-
netic field strength B = π~/(eAhex) ≈ 3.9 · 104T, which
is more than two orders of magnitude larger than the real
magnetic fields that can be achieved in the laboratory.

The experiments to be discussed in the following are
based on tailoring on-site potentials of the form

w`(t) = wdr
` (t) + ν`~ω, (52)

appearing in the Hamiltonian (24), with time-periodic
potential modulation wdr

` (t) = wdr
` (t+T ) of zero average,

1
T

∫ T
0

dtwdr
` (t) = 0, and possibly also a static part with
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Φ = 𝜃14 + 𝜃43 + 𝜃32 + 𝜃21 

FIG. 4 (a) The dimensionless magnetic flux Φ piercing a
lattice plaquette equals the sum of the Peierls phases θ`′`
picked up when moving around it in positive direction once.
(b) Moving-secondary-lattice scheme for creating a a homo-
geneous flux configuration. (d) Assymmetric lattice shaking
(left) gives rise to complex effective tunneling matrix elements
(right), plotted versus K = F0dT1/T (in units of ~ω) for
T1/T2 = 2.1. [taken from: (b) Aidelsburger et al., 2011, (c)
from Aidelsburger et al., 2013, (d) Struck et al., 2012]

integers ν`. In the high-frequency regime, a system that
is driven like that will again be described by an effective
Hamiltonian of the form (34), with the tunneling matrix
elements Jeff

`′` given by Eq. (35) depending on w`(t) as
specified by Eq. (27).

Before reviewing specific schemes and experiments, let
us identify necessary conditions for the creation of arti-
ficial gauge fields (Hauke et al., 2012, a general discus-
sion of symmetries of the effective Hamiltonian is further-
more given by Kitagawa et al., 2010). For that purpose,
we choose the gauge constant χ0` in Eq. (27) such that
χ`(t) = χdr

` (t)−ν`ωt+γ`, with χdr
` (t) having zero average,

1
T

∫ T
0

dtχdr
` (t) = 0, and with yet undetermined constants

γ` representing the gauge freedom. The imaginary part
of the effective tunneling matrix element Jeff

`′` is given by

I`′` = − J
T

∫ T
0

dt sin
(
χdr
`′`(t) − ν`′`ωt + γ` − γ`′

)
, where

χdr
`′` = χdr

`′ −χdr
` and ν`′` = ν′`− ν`. If one can find gauge

constants γ` such that all I`′` vanish, one cannot create
plaquette fluxes Φeff

P 6= 0, π that break time reversal sym-
metry (where the special case Φeff

P = π corresponds to the
situation of kinetic frustration discussed above).

Let us first discuss the case, where the static potential
off-sets vanish, ν`′` = 0. One can identify two temporal

symmetries of the relative potential modulations wdr
`′` ≡

wdr
`′ −wdr

` that imply I`′` = 0 for the choice γ` = γ′` = 0.
These are the local reflection symmetry

wdr
`′`(t− τ`′`) = wdr

`′`(−t− τ`′`) ∀〈`′`〉 (53)

with respect to times τ`′` defined individually on each
local bond (`′`), and the shift symmetry

wdr
`′`(t) = −wdr

`′`(t− T/2) ∀〈`′`〉. (54)

Either of these symmetries implies that the effective
Hamiltonian preserves time-reversal symmetry. Note
that precisely these symmetries are also known to pre-
vent ratchet-type transport (Denisov et al., 2007; Flach
et al., 2000).7 A sinusoidal potential modulation obeys
both symmetries.

If additional to the potential modulations also finite
potential off-sets ν`′` 6= 0 are created, so that the driv-
ing has to induce “photon” assisted tunneling, the above
symmetries are not enough to enforce time-reversal sym-
metry I`′` = 0. Instead this can be achieved by choosing
γ` = −ν`ωτ , if the global reflection symmetry

wdr
`′`(t− τ) = wdr

`′`(−t− τ) ∀〈`′`〉 (55)

is fulfilled with respect to a globally defined time τ .
Involving “photon” assisted tunneling against non-zero

potential off-sets ν`′`~ω poses less constraints for the cre-
ation of artificial gauge fields, since only the global reflec-
tion symmetry (55) has to be broken. As a consequence,
already sinusoidal forcing

wdr
` (t) = K sin(ωt− ϕ`) (56)

can produce plaquette fluxes Φeff
P 6= 0, π, provided the

driving phase ϕ` varies from site to site. This has been
proposed theoretically (Bermudez et al., 2011; Kolovsky,
2011) and demonstrated in a series of beautiful exper-
iments in the groups of Bloch in Munich (Aidelsburger
et al., 2013, 2011, 2015; Atala et al., 2014) and Ketterle
at MIT (Kennedy et al., 2015; Miyake et al., 2013). For
γ` = 0, one finds

Jeff
`′` = JJν`′`

(K`′`

~ω

)
eiν`′`ϕ`′` , (57)

with amplitude K`′` = 2K sin(ϕ`′−ϕ`) and phase ϕ`′` =
(ϕ′` + ϕ`)/2 of the relative potential modulation wdr

`′`(t).

1. Moving-secondary-lattice scheme

Experimentally a site-dependent driving phase ϕ` has
been achieved by combining two slightly detuned laser

7 Such directed transport has also been studied experimentally
with atomic quantum gases in driven optical lattices in Weitz’s
group in Bonn (Salger et al., 2013, 2009).
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waves ∝ exp(ik1,2 · r − ω1,2t), which create a shallow
secondary lattice of depth 2K that moves with respect
to the deep host lattice.8 This moving secondary lat-
tice causes sinusoidal potential modulations wdr

` (t) of fre-
quency ω = (ω1 − ω2) and spatially dependent driving
phase ϕ` = q · r` with q = (k1 − k2). A configuration
of particular interest is shown in Fig. 4(b). For a square
lattice q = (qx, qy) is combined with a strong static po-
tential gradient in one of the lattice directions, ν` = x`/d
(Aidelsburger et al., 2013; Miyake et al., 2013). Accord-
ing to Eq. (57), the resulting effective parameters for tun-
neling in x and y direction read

Jeff
x = JxJ1

(Kx

~ω

)
eiq·(r`′+r`)/2, Jeff

y = JyJ0

(Ky

~ω

)
,

(58)
where Ki = 2 sin(diqi)K, with i = x, y. Here di and Ji
denote the lattice spacing and the tunneling parameter
in both spatial directions, respectively.

The y-dependent part qyy of the Peierls phase for “pho-
ton” assisted tunneling in x direction, gives rise to an
effective flux of

Φeff = dqy, (59)

piercing every lattice plaquette. The effective Hamilto-
nian describes particles on a square lattice subjected to
a homogeneous magnetic field and corresponds to the
paradigmatic Harper Hamiltonian (Harper, 1955). It is
famous for the fractal structure of its single-particle spec-
trum plotted versus α = Φeff/2π, the Hofstadter butterfly
(Hofstadter, 1976). It results from the possibility that
the area dxdy/α of the magnetic unit cell can become
an incommensurate multiple of the area dxdy of the the
square-lattice unit cell. If the potential gradient results
from a Zeeman field the sign of the magnetic flux will de-
pend on the spin state of the atoms (Aidelsburger et al.,
2013; Kennedy et al., 2013; Miyake et al., 2013). If the
potential gradient is replaced by an optical superlattice,
so that ν` = [1 + (−1)x`/d]/2 gives rise to staggered po-
tential off-sets ν`′`~ω, and a staggered pattern of fluxes
±|Φeff| (Aidelsburger et al., 2011). In order to realize the
Harper Hamiltonian also for the superlattice configura-
tion, the flux can be rectified by combining two moving
secondary lattices such that driving phases ϕ`′` are ob-
tained that compensate the staggered potential offsets
(Aidelsburger et al., 2015).

Experimentalists have investigated the ground state of
a weakly interacting Bose gas in effective lattice mod-
els created using the moving-secondary-lattice scheme.
Their observations reflect the fact that finite plaquette

8 This configuration resembles the one employed in an earlier pro-
posal for the creation of artificial magnetic fields by Jaksch and
Zoller, 2003, which is based on Raman transitions between inter-
nal atomic states.

fluxes introduce frustration into the tunneling kinetics.
This frustration results from the fact that the phase-
winding of the wave function around the plaquette has
to be an integer multiple of 2π, while the optimal phase
differences at the tunneling bonds, which are given by
θeff
`′`, sum up to Φeff. The frustration becomes maximum

for the maximum phase mismatch Φeff mod 2π = π. For
a fixed flux the degree of frustration can be controlled
by the relative strength of different tunneling parame-
ters, since it becomes energetically less costly to accom-
modate a greater share of the phase mismatch at weaker
tunneling links. In the experiment by Aidelsburger et al.,
2011 the bosonic ground state for a staggered flux con-
figuration with Φeff = ±π/2 was explored. The unit
cell contains two sites, giving rise to two bands. If the
ratio γ = |Jeff

x |/|Jeff
y | becomes larger than the critical

values of γc =
√

2, the central minimum of the lowest
band splits continuously into two minima that separate
in ky-direction. That is, while for γ ≤ γc the wave func-
tion does not adapt its momentum to the plaquette flux,
for larger γ a two-fold degenerate spiral phase pattern
around the lattice plaquettes becomes more favorable.
This resembles the case of the frustrated triangular lat-
tice reviewed in the previous section. However, different
from the triangular lattice, a homogeneous density dis-
tribution, as it is favored by the repulsive interactions,
is achieved by a coherent superposition of both ground
states (Möller and Cooper, 2010), which has been ob-
served in the experiment.

Reducing the geometry to one-dimensional ladders
with constant plaquette flux π/2 by suppressing tunnel-
ing at every other link in x direction for the model of
Fig. 4(b), the transition at γ = γc finds an appealing in-
terpretation as an analog of the Meissner effect in super-
conductors (Orignac and Giamarchi, 2001). For γ < γc,
corresponding to the phase of low magnetic fields, the
wave function is stiff, so that the Peierls phases cause a
circular Meissner current around the whole ladder. In
turn, when γ > γc, the wave function adapts to the field,
corresponding to the formation of vortices. This effect
was observed by Atala et al., 2014.

Very recently, the bosonic superfluid ground state, or
more precisely a low-entropy state close to it, was pre-
pared using the tilted-lattice configuration giving rise
to a plaquette of π [as depicted in Fig. 4(b), but with
Φeff = π (Kennedy et al., 2015)]. Even in the presence
of a rather deep lattice (of more than ten recoil energies)
in the perpendicular z direction, which leads to a sig-
nificant increase of interactions and which can be used
to reduce the dynamics to two dimensions, rather large
coherence times were observed. This is a promising step
towards the preparation of strongly correlated fractional
quantum-Hall-type states in optical lattices with artifi-
cial magnetic fields.

Also dynamical signatures of artificial magnetic fields
have been probed experimentally. Conceptually maybe
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the most straightforward signature is the observation of
the cyclotron-type dynamics of a single particle on an iso-
lated plaquette of the square lattice (Aidelsburger et al.,
2013, 2011). An intriguing effect is, moreover, the obser-
vation of a quantized Hall velocity with thermal bosons
in a square lattice with homogenous flux (Aidelsburger
et al., 2015). For a quarter of a flux quantum per pla-
quette the elementary lattice cell is enlarged to the area
Am = 4d2 of four plaquettes pierced by one flux quantum
and the Hubbard model describes four Bloch bands. The
lowest band has favorable properties. It is rather flat, i.e.
it is separated by a large energy gap of about seven times
the band width, and characterized by a Chern number
C0 = 1. For the bth band of a two-dimensional lattice
this topological index is defined like

Cb =
1

2π

∫
BZ

dkxdky Ωb(k), (60)

where the integral is taken over the reduced first Brillouin
zone of area (2π)2/Am corresponding to the enlarged lat-
tice cell Am. Moroever, Ωb(k) denotes the Berry curva-
ture with respect to quasimomentum k. It is given by
Ωb(k) = ez ·Ωb(k) with Ωb(k) = ∇k ×Ab(k) and Berry
connection Ab(k) = i〈ub(k)|∇k|ub(k)〉. Here |ub(k)〉 is
the spatially periodic part of the Bloch state with quasi-
momentum k of band b. The Chern number is quantized
and can take integer values only. This is a consequence
of the fact that it corresponds to (2π)−1 times the Berry
phase associated with a closed surface in quasimomen-
tum space, namely the torus given by the first-Brillouin
zone. In the presence of a homogeneous force F the ve-
locity associated with a Bloch state is given by (see, e.g.
Xiao et al., 2010)

vb(k) =
1

~
[
∇kεb(k)− F ×Ωb(k)

]
. (61)

The “anomalous” second term describes a Hall drift
(Karplus and Luttinger, 1954). For a homogeneously
filled band, the mean velocity of the particles is given
by

v̄(k) =
Am

(2π)2

∫
BZ

dkxdky vb(k) = −Am
Cb
h
ez × F , (62)

where we have used Eq. (61) and the fact that the first
term on the left-hand-side of Eq. (61) averages to zero.
The velocity is proportional to the Chern number Cb
and, therfore, quantized. For a fermionic band insula-
tor, with the B lowest bands filled completely, this result
implies a quantized Hall conductivity σh = C/h with
C =

∑
b≤B Cb (Thouless et al., 1982).9. For C 6= 0

this is the integer quantum Hall effect and the system

9 σh = Ce2/h for charged particles with elementary charge e.

is a topological insulator called Chern insulator (Hasan
and Kane, 2010; Qi and Zhang, 2011). However, in the
experiment by Aidelsburger et al., 2015, the flatness of
the lowest band is exploited in order to create a thermal
state, where weakly interacting bosons occupy (to good
approximation) the lowest band in a uniform fashion, but
no excited bands. Extracting the Hall displacement of
the cloud in response to a force F the Chern number C0

was measured to be 0.99(5) in excellent agreement with
theory. Here an effective force Fx = δ/d results from a
slight detuning δ between the driving frequency and the
potential off set between neighboring sites to be over-
come by “photon”-assisted tunneling [Eq. (38)].) Also
the breakdown of the Hall response was observed at a
topological transition to a lattice structure with C0 = 0
induced by a superlattice potential was observed.

2. Asymmetric-lattice-shaking scheme

A different scheme for the creation of artificial mag-
netic fields does not require potentials off-sets with fi-
nite ν`′`, and can be realized by means of lattice shaking
(Hauke et al., 2012; Struck et al., 2012, 2013). It is based
on breaking both the local reflection symmetry (53) and
the shift symmetry (54) by employing non-sinusoidal
driving functions wdr

` (t). The fact that the optical-lattice
physics happens at rather low energy scales, so that the
driving frequencies ω/2π required for the high-frequency
approximation (34) and (35) are in the lower kilohertz
regime, allows for the implementation of practically ar-
bitrary shaking functions. In a first experiment, a one-
dimensional lattice has been subjected to the inertial
force depicted in Fig. 4(c), which led to the complex tun-
neling parameter Jeff = |Jeff|eiθeff shown in the same fig-
ure. While in a one-dimensional chain no magnetic field
is created by a finite Peierls phase, its impact, a shift of
the effective dispersion relation εeff(kx) by θeff/d, can still
be observed. When θeff (representing the x component
of a homogeneous, but time-dependent vector potential)
is rapidly ramped up this creates a significant conser-
vative force (the shifted dispersion relation possesses a
finite group velocity at the initial condensate momentum
kx = 0). This initiates an oscillatory dynamics in the
trap. When θeff is switched on slowly the trapped con-
densate follows the minimum of the dispersion relation.
This gives rise to a peak shift by kshift = θeff/d in the
measured momentum distribution (see discussion in the
last paragraph of section III.B), from which the Peierls
phase θeff was inferred (data points in Fig. 4(c)].

Asymmetric lattice shaking can be employed to realize
effective magnetic fluxes through such lattice plaqettes
that do not feature pairwise parallel edges (whose con-
tribution to the flux would mutually cancel). This has
been used in an experiment by Struck et al., 2013 to cre-
ate a staggered flux configuration in a triangular lattice
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(of one-dimensional tubes), with fluxes

Φeff
4 = Φeff and Φeff

5 = −Φeff (63)

for the two types of plaquette orientations. Unless
Φeff = 0 or π, these fluxes break time-reversal symme-
try in the approximate effective Hamiltonian (34). But
they do not break the translational symmetry of the lat-
tice so that the tight-binding model still gives rise to a
single band. This is different compared to the square
lattice with homogeneous flux [Fig. 4(b)] realized using
the moving-secondary-lattice scheme, where an enlarged
magnetic unit cell leads to the formation of several bands.
Another difference between both schemes concerns the
limit of small driving amplitudes K/~ω: for the moving-
secondary-lattice-assisted tunneling against a finite off-
set ν`′`~ω the amplitude of the tunneling matrix element
vanishes and the Peierls phase remains constant [like for
Jeff
x in Eq. (58)], whereas for the asymmetric driving

scheme with ν`′` = 0 the amplitude remains finite and
the Peierls phase continuously approaches zero [as shown
in Fig. 4(c)].

The possibility of the asymmetric driving scheme to
continuously tune Peierls phases and plaquette fluxes in
situ has been employed in the triangular lattice experi-
ment in order to tune the system away from the π-flux
configuration resulting from the sign-change of the tun-
neling parameter discussed in the previous section III.E.
Realizing

Φeff = π + δ, (64)

a small δ favors one of the two symmetry broken ground
states of the weakly interacting Bose gas [Fig. 3(c)], so
that δ controls a first-order phase transition at δc = 0.
As a signature of the discontinuous nature of the tran-
sition the disfavored state remains metastable in the
vicinity of the transition (potentially causing hysteresis).
This was inferred from the observation that the distri-
bution shown in Fig. 3(c) becomes asymmetric for finite
δ, but remains bimodal up to |δ| ≈ 0.1π (Struck et al.,
2013). It has, moreover, been observed that the time-
reversal symmetry breaking and the metastable state
vanish for large temperatures. The interesting question
whether time-reversal symmetry breaking disappears to-
gether with Bose condensation or in a separate transition
at a higher temperature could not be resolved.

3. Further possibilities

Apart from the moving-secondary-lattice scheme and
the asymmetric-lattice-shaking scheme, there are also
proposals for the dynamic creation of artificial mag-
netic fluxes that are based on a joint modulation of
both on-site energies and tunneling parameters (Lim

et al., 2008; Sørensen et al., 2005). Moreover, exten-
sions of the moving-secondary-lattice and the asymmet-
ric shaking schemes have been proposed for the creation
of Haldane-type hexagonal-lattice Chern insulators, non-
abelian gauge fields (spin-orbit coupling) and topological
(spin-Hall) insulators, as well as Weyl semi-metals (Baur
et al., 2014; Bermudez et al., 2012; Dubček et al., 2014;
Kennedy et al., 2013; Struck et al., 2012). Another ap-
proach for Floquet engineering of artificial magnetic fields
or spin-orbit coupling is to construct driving protocols
given by a sequence of pulses during which different ex-
ternal fields are present (Goldman and Dalibard, 2014).
This includes proposals for the creation of artificial mag-
netic fields (Creffield et al., 2016; Creffield and Sols, 2014;
Sørensen et al., 2005) and of spin-orbit coupling in contin-
uous (non-lattice) systems of ultracold atoms using a se-
quence of magnetic field pulses (Anderson et al., 2013; Xu
et al., 2013) as well as for the realization of Floquet topo-
logical Chern insulators using pulsed tunneling matrix el-
ements in lattice systems (Kitagawa et al., 2011; Rudner
et al., 2013). The latter two references can be viewed
as variants of schemes known under the label “ Floquet-
topological insulators”. These are based on intermediate
driving frequencies and will be discussed in section III.H
as well as in section IV.D, which is devoted to anoma-
lous topological edge states in periodically driven lattice
systems. Finally, we would like to mention two proposals
for the dynamic creation of artificial gauge fields not re-
lying on standard optical lattices. The first one suggests
to use periodically modulated spin-dependent optical po-
tentials in order to effectively engineer lattices with sub-
wave-length spacing featuring bands with non-zero Chern
numbers (Nascimbene et al., 2015). The second one is
based on the coherent resonant coupling of the eigen-
states of a strong harmonic confinement, playing the role
of lattice sites in a “synthetic dimension” (Price et al.,
2016), in analogy to earlier work where internal atomic
states where used for this purpose (Boada et al., 2012;
Celi et al., 2014; Mancini et al., 2015; Price et al., 2016;
Stuhl et al., 2015).

It is an interesting perspective to combine the two
schemes discussed in this section with strong interac-
tions. The flat topological band of the π/2 Harper
model realized by Aidelsburger et al., 2015 together with
the promising creation of low-entropy states in such
a system (Kennedy et al., 2015) make this system a
candidate for the stabilization of topologically ordered
fractional-quantum-Hall-type states (fractional Chern in-
sulators, Bergholtz and Liu, 2013 and Parameswaran
et al., 2013). Moreover, in the hard-core boson limit, the
time-reversal symmetry breaking, as it can be induced
by asymmetrically shaking the triangular lattice, intro-
duces Dzyaloshinskii-Moriya interactions D ·(Ŝ`′×Ŝ`) to
the effective spin model (50), extending the tool box for
quantum engineering of spin Hamiltonians. Namely, for
hard-core bosons the tunneling term −(Jeff â

†
`′ â` + h.c.)
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FIG. 5 (a) By resonantly coupling the two lowest bands of
a cosine lattice a frustrated ladder is created with plaquette
fluxes of π. (b) Hexagonal lattice. The effective Hamiltonian
of the driven system including next-nearest-neighbor tunnel-
ing with Peierls phase θ (along the dashed lines).

with complex −Jeff = R+ iI corresponds to

2R
(
Ŝx`′ Ŝ

x
` + Ŝy`′ Ŝ

y
`

)
+ 2Iez ·

(
Ŝ`′ × Ŝ`

)
(65)

in the language of spin-1/2 operators.

G. Coherent resonant band coupling

Periodic driving can not only bridge large energy off-
sets between neighboring sites, but it can also induce co-
herent resonant coupling to excited Bloch bands. This
possibility has been explored experimentally in Chu’s
group in Stanford (Gemelke et al., 2005), in Greiner’s
group at Harvard (Bakr et al., 2011), and in Chin’s group
in Chicago (Ha et al., 2015; Parker et al., 2013).

In the Stanford and Chicago experiments, conducted
with weakly interacting bosons, the lowest two bands
of a cosine lattice have been coupled by means of lat-
tice shaking with the driving frequency ~ω bridging the
gap between both bands. Assuming that the coupling
to even higher-lying bands is off-resonant and negligi-
ble, in this way an effective hybridized band structure is
created. The coupling between both bands happens pre-
dominantly on-site. Introducing the label α = 0, 1, . . .
for the Bloch bands and their Wannier orbitals with re-
spect to one lattice direction, x, an inertial force (22)
oriented in this direction gives rise to oscillating cou-
pling matrix elements Kηα′α cos(ωt)â†α′`âα`. Here the
dimensionless dipole matrix element ηα′α vanishes for
Wannier states of the same parity, i.e. when (α′ − α)
is even. Analogously to the case of photon-assisted tun-
neling (47) via a modulation of the tunneling matrix el-
ement (44), one finds an effective description where the
α = 1 Wannier states have the shifted energy ε1 − ~ω
and couple to the α = 0 states via effective matrix ele-
ment Kη10/2. The band-coupled system can be viewed
as a ladder, with the Wannier states of each band form-
ing one leg [Fig. 5(a)]. The tunneling parameters Jα
of both bands differ in sign and magnitude, J1 < −J0,
so that the ladder is frustrated by plaquette fluxes of π

(Sträter and Eckardt, 2015). The effective band structure
results from hybridization of the effective dispersion re-
lations of both bands, εeff

0 (kx) = −J0J0(K/~ω) cos(dkx)
and εeff

1 (kx) = ε1 − ~ω + J1J0(K/~ω) cos(dkx), where ε1
is the band-center energy of the first excited band (Drese
and Holthaus, 1996).

In the experiment by Gemelke et al., 2005, εeff
0 (0) was

tuned to resonance with εeff
1 (π/d) and coherent oscilla-

tions between both states, attributed to scattering, were
observed after the forcing was switched on suddenly. In
the Chicago experiments, tuning ε1−~ω < 0 a hybridized
band with two inequivalent minima kx = ±q was created.
Similar like in the case of the kinetically frustrated trian-
gular lattice, repulsive interactions favor Bose condensa-
tion in one of the two minima, but not in both. Like in a
ferromagnet, the experimentalists observed the formation
of spatial domains with +q or −q correlations (Parker
et al., 2013). The domain size was controlled by how
fast the driving was switched on, with large domains ob-
tained for slow ramps. In a subsequent experiment Bragg
spectroscopy was used to measure the dispersion relation
of the elementary Bogoliubov excitations of the system
condensed into one of the minima (Ha et al., 2015). It
is phonon-like near the condensate momentum and can
feature a local minimum at the second minimum of the ef-
fective dispersion relation of the non-interacting gas (see
also Struck et al., 2013). This structure reminds of a
roton minimum resulting from long-ranged interactions.

The Harvard experiment (Bakr et al., 2011) was per-
formed in a rather deep lattice, where interactions are
strong and band coupling can be understood on the level
of a single site. By employing a modulation of the lat-
tice depth in one direction, the lowest-band Wannier or-
bital was coupled to states of the same parity in this
direction (see, e.g. Lacki and Zakrzewski, 2013).10 The
resonance frequency for coupling to the second excited
state (α = 2) was found to depend crucially on the on-
site occupation of both states as a consequence of strong
orbital- dependent interactions. This allows to engineer
number-selective adiabatic passages, where a single par-
ticle is transferred to the excited band. In particular, by
slowly ramping down the driving frequency, a sequence
of such processes subsequently transfers all, but a single
particle to the excited band, irrespective of the initial oc-
cupation. In this way an algorithmic cooling procedure
was implemented: A state with an arbitrary number of
atoms ≥ 1 in the lowest Wannier orbital on every site is
eventually transformed into a state with one atom in the

10 Resonant transitions into orbital states of opposite parity can in
principle also occur in the presence of interactions, namely when
two particles jointly scatter into the excited state (Sowiński,
2012) or in the form of density-induced orbital-changing tun-
neling processes, as they have recently been shown to give rise to
exotic model systems (Dutta et al., 2015b; Biedroń et al., 2016;
Przysiezna et al., 2015).
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lowest Wannier orbital per site. Entropy has been trans-
ferred to an excited band, from where it can be removed
by selectively taking away the excited atoms.

H. Floquet topological insulators

All the experiments discussed here so far, rely on high-
frequency forcing, where ~ω is large compared to the
tunneling matrix elements. This is different for a class
of recent proposals for the Floquet engineering of lat-
tice systems with topologically non-trivial band struc-
tures (Cayssol et al., 2013; Kitagawa et al., 2010; Lindner
et al., 2012; Oka and Aoki, 2009). These schemes, known
as Floquet topological insulators, rely on driving frequen-
cies that are only moderately larger than the tunneling
matrix elements. The prototype of a Floquet topological
insulator was originally proposed for graphene irradiated
with circularly polarized light (Oka and Aoki, 2009). It is
based on the observation that a hexagonal tight-binding
lattice subjected to a circular force (48) possesses an ef-
fective band structure with a gap separating two bands
with opposite Chern numbers ±1. Recently, this Floquet
topological band structure has been realized and probed
in two different experimental platforms. In a first exper-
iment with photons in a hexagonal array of optical wave
guides, the chiral transport of localized particles at the
boundary of the system was observed in situ (Rechtsman
et al., 2013). This is a signature of the chiral edge states
related to Chern bands via the bulk-boundary correspon-
dence (Hasan and Kane, 2010; Qi and Zhang, 2011). The
second experiment was conducted by Jotzu et al., 2014
in Esslinger’s group in Zurich with ultracold fermionic
atoms in a shaken hexagonal-like brick-wall lattice. Here
a finite Hall conductivity of the bulk system was mea-
sured.

A hexagonal lattice with isotropic nearest-neighbor
tunneling [Fig. 5(b), solid lines] subjected to circular
forcing (48) is described by the Hamiltonian (30) with
time-dependent Peierls phases θ`′`(t) = K sin(ωt−ϕ`′`).
Here K = Fd and the driving phase ϕ`′` is directly de-
termined by the spatial direction of tunneling. In the
high-frequency limit ~ω � J , Ĥ ′(t) can be approxi-
mated by its time average giving rise to effective tun-
neling matrix elements (23) between nearest neighbors.
However, if the frequency is lowered, also the second-

order term Ĥ
(2)
F in the high-frequency expansion (15) be-

comes relevant. Its contribution to the effective Hamilto-
nian ĤF results from processes where a particle tunnels
twice during one driving period. Using Eq. (16) with

Ĥm = −
∑
〈`′`〉 JJm(K/~ω)â†`′ â`, in second order one

finds the kinetics to be described by the approximate ef-

fective Hamiltonian (Kitagawa et al., 2011)

ĤF ≈ Ĥ ′(1)
F + Ĥ

′(2)
F

= −J (1)
eff

∑
〈`′`〉

â†`′ â` − J
(2)
eff

∑
〈〈`′`〉〉

e−iσ`′`θâ†`′ â`. (66)

Here J
(1)
eff = JJ0(K/~ω), J

(2)
eff '

√
3[JJ1(K/~ω)]2/~ω

(neglecting terms with m ≥ 2), θ = π/2 and next-
nearest-neighbor pairs 〈〈`′`〉〉 with σ`′` = 1 (-1) for tun-
neling in anticlockwise (clockwise) direction around a
hexagonal plaquette.11 This model is the paradigmatic
Haldane model, the prototype of a topological Chern in-
sulator (Haldane, 1988). For finite next-nearest neighbor
tunneling matrix elements the band structure acquires a
gap separating two bands of opposite Chern number ±1.
By introducing an energy difference ∆AB between both
sublattices A and B [Fig. 5(b)], the Chern numbers van-

ish when at |∆AB | = ∆
(c)
AB the band gap closes. |∆(c)

AB |
is maximum, ≈ 2.6|J (2)

eff |, for θ = ±π/2 and vanishes for
θ = 0, π.

In the Zurich experiment a distorted optical hexagonal
lattice (a brick-wall lattice) with a tunable off-set ∆AB is
filled with spin-polarized (i.e. non-interacting) fermions
and an elliptical force F (t) = F [cos(ωt)ex + cos(ωt −
ϕ)ey] is applied via lattice shaking (Jotzu et al., 2014,
see also Zheng and Zhai, 2014). The system is described
by an anisotropic effective model, whose phase diagram
resembles that of the Haldane model with ϕ playing a
role similar to θ. This phase diagram is mapped out by
measuring the Hall response of the system.

I. Floquet engineering of interactions

In most of the experiments described above, periodic
forcing was employed to effectively modify the single-
particle Hamiltonian of the system, describing tunneling
between neighboring lattice sites or the coupling between
different Bloch bands. In contrast, the on-site interac-
tions among the particles were not altered significantly
by the driving. Exceptions are given by the experiments
of Greiner’s group discussed above. Here interactions
were strong enough to shift the resonance condition for
“photon”-assisted processes, tunneling (Chen et al., 2011;
Ma et al., 2011) or band coupling (Bakr et al., 2011),

11 Within the second-order Floquet-Magnus expansion of the
Floquet Hamiltonian (18) the amplitude of the next-nearest-
neighbor tunneling matrix elements depends on the direction of
tunneling, so that the single-particle band-structure breaks the
discrete rotational symmetry of the hexagonal lattice. This is an
artifact of the approximation related to the fact that the driv-
ing phase in x and y direction differs by π/2 for circular forcing
(Eckardt and Anisimovas, 2015). It illustrates the discussion fol-
lowing Eq. (19).
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so that they became occupation-number selective (effec-
tively realizing an extended Hubbard model, Dutta et al.,
2015a). In this way tunneling or band coupling are not
described by single-particle terms in the effective Hamil-
tonian anymore, which are quadratic in the annihilation
and creation operators, and must be viewed as a form of
interactions.

It is an interesting prospect to combine such a tech-
nique with driving schemes for the creation of artificial
gauge fields as we discussed them in Sec. III.F (Bermudez
and Porras, 2015; Cardarelli et al., 2016; Sträter et al.,
2016). For that purpose one has to consider a lat-
tice system, where the strong energy off-sets that have
to be overcome by resonant “photon”-assisted tunnel-
ing are determined not only by static external poten-
tials, but also by the strong interactions among the par-
ticles. Choosing the resonance condition U = ν~ω + δU ,
with |δU | � ~ω between the Hubbard parameter for
on-site interactions and the driving frequency, tunneling
from site ` to site `′ corresponds to a potential energy
change of an integer number ν`′` of quanta ~ω. Con-
sidering, e.g., spinless bosons, from Eq. (21) one ob-
tains ν`′` = ν′` − ν` + ν[n`′ − (ν` − 1)], with site oc-
cupations n` and n`′ before the tunneling event. For
~ω � J , tunneling is suppressed for ν`′` 6= 0, unless it
is reestablished via “photon”-assisted tunneling, giving
rise to number-dependent effective tunneling parameters
Jeff
`′`(n`′ , n`). The system is then described by an ap-

proximate effective Hamiltonian that, in rotating wave
approximation, takes the form

Ĥeff = −
∑
〈`′`〉

â†`′ â`J
eff
`′`(n̂

′
`, n̂`) +

Ueff

2

∑
`

n̂`(n̂`−1). (67)

The effective Hubbard parameter is given by the non-
resonant part of the interactions, Ueff = δU = U − ν~ω,
which is not integrated out when transforming to the
rotating frame and whose magnitude and sign can be
controlled by the driving frequency (this is true also for
fermionic systems).

Bermudez and Porras, 2015, proposed such schemes,
where the “photon”-assisted tunneling is induced by a
moving-secondary-lattice as described in Sec. III.F.1.
They lead to effective tunneling matrix elements de-
scribed by Eq. (57), with ν`′` replaced by an operator
involving the occupation numbers of the particles. In
this way they show, among others, how to engineer mod-
els where the magnetic field felt by one atomic species
depends dynamically on the state of another species.
Moreover, Sträter et al., 2016 describe how to realize
the physics of one-dimensional lattice anyons by inducing
photon-assisted tunneling via asymmetric lattice shaking
(see Sec. III.F.2). They use a mapping of the anyons
to bosons with number-dependent tunneling parameters
J`+1,` = |J |eiθn̂`+1 and J`−1,` = |J |e−iθn̂` , which had
been exploited already in a previous proposal based on

Raman-assisted tunneling (Keilmann et al., 2010). Fi-
nally, Cardarelli et al., 2016, propose a scheme based on
the fact that “photon”-assisted tunneling induced by a
sinusoidal modulation of the tunneling matrix element
(as they can be induced by a modulation of the lat-
tice depth) gives rise to single-“photon” transitions only.
This can be seen from that fact that Eq. (47) describes
non-zero effective tunneling matrix elements for |ν| ≤ 1
only. Thus, superimposing sinusoidal modulations at dif-
ferent frequencies, one can individually address tunneling
processes corresponding to different number-dependent
energy off-sets, with the amplitude and the phase of the
effective tunneling matrix elements directly correspond-
ing to the amplitude and the phase of the modulation.

An alternative approach for achieving number-
dependent tunneling matrix elements consists in a mod-
ulation of the interaction strength (Gong et al., 2009),
as it can be achieved in a system of ultracold atoms by
employing a magnetic Feshbach resonance, giving rise to
a time-dependent Hubbard parameter U(t) = U0 +Udr(t)

with Udr(t + T ) = Udr(t) and
∫ T

0
dt Udr(t) = 0. In

this way the energy of multiply occupied lattice sites
is modulated in time, so that for spinless bosons tun-
neling from ` to `′ is connected to an energy change of
U(t)[n′`−(n`−1)]. Thus, for U0 � J and sinusoidal forc-
ing Udr(t) = U1 cos(ωt), the effective tunneling matrix el-
ements Jeff

`′`(n`′ , n`) are number dependent and given by
Eq. (23) with K replaced by K`′` = U1[n′`−(n`−1)]. Sig-
natures of this effect, which was first described theoret-
ically by Gong et al., 2009, have recently been observed
experimentally in Nägerl’s group (Meinert et al., 2016) by
measuring the number of multiply occupied sites after a
quench. It is moreover, proposed to use this principle to
engineer exotic many-body states of matter (Dutta et al.,
2016; Greschner et al., 2014; Liberto et al., 2014; Rapp
et al., 2012) and to realize disordered tunneling matrix
elements by modulating the interactions with randomly
distributed localized atoms of a second species (Kosior
et al., 2015).

Another driving-induced modification of the interac-
tions is described by higher-order corrections of the effec-
tive Hamiltonian in high-frequency approximation (16).
If the Hubbard interactions are time-independent, so that
they contribute to the Fourier component Ĥ0 of the
Hamiltonian only, the leading correction involving the

interactions appears in the third-order term Ĥ
(3)
F .12 It

12 Within the Floquet-Magnus expansion of the Floquet Hamilto-
nian (18) an interaction correction ∝ JU/(~ω) appears already
in the second-order term (Bukov et al., 2015a; Verdeny et al.,

2013) [Ĥ
F (2)
t0

in Eq. (19) contains Ĥint through Ĥ0]. However,
this correction results from the expansion of the unitary micro-
motion operator and thus does not alter the spectrum on the
order of JU/(~ω) (see discussion below Eq. (19)).
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reads (Eckardt and Anisimovas, 2015)

Ĥ
(int,3)
F =

∑
m6=0

[
Ĥ−m,

[
Ĥint, Ĥm

]]
2(m~ω)2

, (68)

where Ĥm denote the Fourier components of the single-

particle Hamiltonian, so that Ĥ
(int,3)
F ∝ UJ2/(~ω)2.

When U � J , this term can matter in Floquet topolog-
ical systems (Sec. III.H), where the frequency is moder-
ately large only, such that effective next-nearest-neighbor

tunneling matrix elements J
(2)
eff ∝ J2/(~ω) [Eq. 66] play

a crucial role. For the model of Sec. III.H, the Ĥm are

specified above Eq. (66). The effect of Ĥ
(int,3)
F is to

“smear-out” the interactions. It creates effective nearest-
neighbor interactions Veff

2

∑
〈`′`〉 n̂`′ n̂` (at the cost of low-

ering the on-site interactions to U−zVeff/2 with coordina-
tion number z) and also gives rise to density-assisted and
two-particle tunneling (Eckardt and Anisimovas, 2015).
Numerical studies based on the exact diagonalization
(Anisimovas et al., 2015; Račiūnas et al., 2016) suggest
that this smearing out tends to have a negative impact
on the possible stabilization of fractional-Chern- insula-
tor states in Floquet topological band structures recently
proposed by Grushin et al., 2014.

IV. THE FLOQUET PICTURE

So far, we have argued that a simple high-frequency ap-
proximation provides a suitable description of a variety
of recent experiments, where ultracold atoms in optical
lattices were controlled by means of periodic driving. In
this section we will discuss the limitations of this approx-
imation and effects beyond it. This requires a treatment
in terms of the extended Floquet Hilbert space.

A. Extended Floquet Hilbert space

By plugging the Floquet state given by Eq. (14)
into the Schrödinger equation (3), one obtains [Ĥ(t) −
i~dt]|unm(t)〉 = εnm|unm(t)〉. As was pointed out by
Sambe, 1973, this equation can be interpreted as the
eigenvalue problem of the hermitian quasienergy operator

Q̂(t) = Ĥ(t)− i~dt, (69)

acting in an extended Hilbert space F = H ⊗ T . This
Floquet space is the product space of the physical state
space H and the space of time-periodic functions (with
period T ) T . In F the scalar product combines the scalar
product of H with time averaging and reads

〈〈u|v〉〉 =
1

T

∫ T

0

dt 〈u(t)|v(t)〉. (70)

We will use a double ket |u〉〉 for elements of F ; the cor-
responding state at time t in H is denoted |u(t)〉. Vice

versa, a state |v(t)〉 = |v(t + T )〉, including its full peri-
odic time dependence, is written as |v〉〉 when considered
as element of F . Likewise, an operator acting in F will be
indicated by an overbar to distinguish it from operators
acting in H, which are marked by a caret. For exam-
ple, Q̄ denotes the quasienergy operator. Its eigenvalue
problem is now written like

Q̄|unm〉〉 = εnm|unm〉〉. (71)

In Floquet space |unm〉〉 and |unm′〉〉, defined by Eq. (13),
constitute independent orthogonal solutions if m′ 6= m,
so that the quasienergy spectrum is periodic with pe-
riod ~ω. Despite this redundancy, working in F has the
advantage that one can use both methods and intuition
developed for autonomous systems.

From a complete basis of orthogonal states |α〉 of H,
we can construct a complete basis of orthogonal states
|αm〉〉 of F , given by |αm(t)〉 = |α〉eimωt with integer m.
In terms of these basis states the quasienergy operator
possesses matrix elements

〈〈α′m′|Q̄|αm〉〉 = 〈α′|Ĥm′−m|α〉+ δm′mδα′αm~ω. (72)

The matrix possesses a transparent block structure with
respect to m. The diagonal blocks are determined by the
time-averaged Hamiltonian Ĥ0 and shifted with respect
to each other by integer multiples of ~ω in quasienergy.
This structure resembles that of a quantum system cou-
pled to a photon-like mode in the classical limit of large
photon numbers. In this picture m plays the role of a rel-
ative photon number. The quasienergy eigenvalue prob-
lem (71) is, thus, closely related to the dressed-atom pic-
ture (Cohen-Tannoudji et al., 1998) for a quantum sys-
tem driven by coherent radiation (Eckardt and Holthaus,
2008b). Therefore, m is often called the “photon” num-
ber and the matrix elements of Ĥm are said to describe
m-“photon” processes. A unitary operator ŪF that block
diagonalizes Q̄ with respect to the “photon” indexm in F
corresponds directly to a time-periodic unitary micromo-
tion operator ÛF (t) in H, as it appears in Eqs. (4) and
(5). It produces diagonal blocks given by the effective
Hamiltonian (4),

〈〈α′m′|Ū†F Q̄ŪF |αm〉〉 = δm′m

(
〈α′|ĤF |α〉+ δα′αm~ω

)
.

(73)

B. High-frequency approximation

If ~ω is large compared both to the spectral width Ĥ0

and the matrix elements of the Ĥm 6=0, states of different
subspaces m are energetically well separated and coupled
only weakly to each other. It is, therefore, a reasonable
approximation to neglect the off-diagonal blocks of the
quasienergy operator (72) and to approximate the effec-
tive Hamiltonian ĤF by the time-averaged Hamiltonian
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Ĥ0. Corrections, resulting from the perturbative admix-
ture of states with m′ 6= m to those of the subspace m,
can be obtained systematically by means of degenerate
perturbation theory. The high-frequency expansion (15)
is equivalent to such a perturbative approach, where the
“photonic” part δα′αδm′mm~ω of the matrix (72) consti-
tutes the unperturbed problem and the Hamiltonian (its
Fourier components Ĥm) the perturbation (Eckardt and
Anisimovas, 2015).

The perturbative approach underlying the high-
frequency expansion (15) can be expected to converge
only as long as the the quasienergy levels originating from
different unperturbed subspaces m remain energetically
well separated. This rough statement is similar to the rig-
orous convergence criterion for the Floquet-Magnus ex-
pansion given by Casas et al., 2000 (see discussion at the
end of section II). In a large system of many particles
reasonable driving frequencies ~ω will always be smaller
than the spectral width of the full time-averaged Hamil-
tonian Ĥ0, so that the high-frequency expansion cannot
be expected to converge (unless the state space of the
system is effectively divided into small subspaces due to
symmetry or localization). Nevertheless, even in this case
the high-frequency approximation (34) can still provide
a suitable description of a driven many-body system on a
finite time scale, provided ~ω is large compared to typical
intensive energy scales, such as the tunneling parameter
J or the Hubbard interaction U for a driven Hubbard
model (Eckardt et al., 2005b). This statement is not sur-
prising given the fact that in the previous section III we
were able to explain a variety of experimental observa-
tions in terms of the high-frequency approximation. On
longer times, deviations from the high-frequency approx-
imation will, however, eventually make themselves felt as
heating.

C. Heating and long-time limit

In order to illustrate the break down of the high-
frequency approximation, let us discuss a specific exam-
ple (Eckardt and Holthaus, 2008a). Fig. 6 shows the ex-
act quasienergy spectrum of a small Bose-Hubbard chain
subjected to a sinusoidal force of frequency ~ω/J = 20,
plotted versus the interaction strength U/J . For U/J �
1, the spectrum of Ĥ0 consits of bands whose energies
increase linearly with U . These bands lie above the
horizontal ground-state level, corresponding to a Mott-
insulator-like state with one particle localized at every
lattice site. They contain states characterized by delo-
calized particle-hole excitations. The spectrum of Ĥ0

can clearly be identified in Fig. 6, as well as copies of it,
shifted by −~ω, −2~ω, . . . . When states belonging to
different copies (“photon” numbers m) become degener-
ate, this leads to the formation of avoided level crossings,
the size of which reflects the coupling strength. Near

FIG. 6 Quasienergy spectrum of small Bose Hubbard chain
(five particles on five sites), subjected to a sinusoidal force of
frequency ~ω/J = 20 and amplitude K/~ω = 2. (b) Zoom
into (a). (taken from Eckardt and Holthaus, 2008a)

U = ~ω = 20J and U = 2~ω = 40J , the ground state
participates in a large avoided-crossing-like feature (in-
volving many bands), associated with the resonant cre-
ation of a particle-hole pair of energy U . The size of this
feature is determined by the coupling matrix element J
associated with the creation of a particle-hole pair. For
U < ~ω, a smaller avoided crossing is visible in subfig-
ure (b) near U = 2~ω/3 ≈ 13J . It can be attributed
to the creation of two coupled particle-hole excitations
of energy 3U in a two-“photon” process. The size of
the avoided crossing, which reflects the coupling matrix
element, is of the order of ∼ J2/(~ω). Whereas the nu-
merator of this factor results from the fact that two tun-
neling processes are required to create a two particle-hole
pairs, the denominator indicates that the transition oc-
curs via intermediate states (having a single-particle-hole
pair) that are separated by a large energy ∼ ~ω (Eckardt
and Anisimovas, 2015). For even smaller values of U , the
m = 0 ground state will cross even higher lying bands
of the m < 0 copies, which contain states with three
and more particle-hole excitations. The corresponding
coupling matrix elements are ∼ Jj+1/(~ω)j with j ≥ 2
and the resulting avoided crossings are hardly visible in
Fig. 6. Generally, the larger ~ω compared to both U
and J , the more complex are the collective excitations at
energies ~ω and the smaller are the respective coupling
matrix elements.

The formation of an avoided crossing, where the Flo-
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quet states of different subspaces m and m′ hybridize,
cannot be captured by a perturbation theory describing
the system in terms of eigenstates labeled by the quan-
tum number m. Their presence indicates that the high-
frequency expansion (15), which can be obtained from
such a perturbative approach (Eckardt and Anisimovas,
2015), does not converge. However, we have seen that
when both J and U are sufficiently small with respect to
~ω, the coupling between degenerate states originating
from different subspaces m will be very small. There-
fore, deviations from the high-frequency approximation
will make themselves felt on a large time scale th only.
These deviations can be viewed as heating. In the driven
Bose-Hubbard model with strong interactions U � J
discussed in the previous paragraph they correspond to
the creation of particle-hole excitations (Eckardt and
Anisimovas, 2015; Eckardt and Holthaus, 2008a), for
weakly interacting systems they correspond to energy-
non-conserving two-particle scattering (Bilitewski and
Cooper, 2015a,b; Choudhury and Mueller, 2014, 2015;
Genske and Rosch, 2015). For a numerical study of such
heating see Poletti and Kollath, 2011.

As long as the duration of an experiment is short com-
pared to the heating time th, it can be described by the
high-frequency approximation (15). For lattice systems
with a bound local state space, e.g. fermionic Hubbard or
spin models, it was shown very recently that th increases
exponentially with the driving frequency (Abanin et al.,
2015c; Kuwahara et al., 2016; Mori et al., 2016) and that
the Floquet-Magnus expansion (18) provides at least an
asymptotic expansion for the Floquet Hamiltonian with
an optimal order µcut of truncation (Kuwahara et al.,
2016).

The spectrum shown in Fig. 6 has been obtained for
a small system of five particles on five lattice sites only.
Approaching the thermodynamic limit, where the sys-
tem size and the particle number are taken to infinity at
fixed density, the bands of the spectrum Ĥ0 will approach
a continuum and new bands will be created at high en-
ergies. The quasienergy spectrum of the system, host-
ing an exponentially large number of quasienergy levels
in each Brillouin zone (interval of width ~ω), will ap-
proach a highly structured continuum. In this limit, the
full effective Hamiltonian will be a very complex object,
whose eigenstates, the Floquet modes, are superpositions
of states having very different energies. This scenario ex-
plains, why a description in terms of the simple expres-
sions provided by the high-frequency approximation (15)
is a suitable approach for Floquet engineering, despite
the fact that such a description is valid for times t� th
only.

The existence of a heating time th implies that, when a
periodically driven system is subjected to a quench, i.e.
a sudden change of a parameter like the driving ampli-
tude, the subsequent relaxation dynamics can consist of
two stages. After the quench, the system can first re-

lax on a time scale tr to an equilibrium-like state with
respect to the effective Hamiltonian in high-frequency
approximation (15), before the intrinsic heating due to
the periodic forcing sets in on the time scale th. Obvi-
ously this scenario requires tr � th. Such a behavior,
which has first been discussed already by Maricq, 1982
can be interpreted as a form of prethermalization. It is in-
vestigated theoretically in several recent papers (Abanin
et al., 2015a,b,c; Bukov et al., 2015b; Canovi et al., 2016;
Kuwahara et al., 2016; Mori et al., 2016). An interest-
ing effect could be the realization of a negative tempera-
ture state corresponding to sign-inverted interactions for
fermionic atoms after a sudden inversion of the effective
tunneling matrix element (23) (Tsuji et al., 2011).

Another intriguing question concerns the relaxation of
periodically driven quantum systems on time scales much
longer than the heating time. From Eq. (9) we can infer
that for a pure state |ψ(t)〉 the time evolution of the
expectation value O(t) = 〈ψ(t)|Ô|ψ(t)〉 of an observable
Ô can be written like

O(t) =
∑
n′,n

c∗n′cne
i
~ (εn′−εn)t〈un′(t)|Ô|un(t)〉. (74)

Russomanno et al., 2012, have argued that a relaxation
to a steady state will correspond to the dephasing of the
off-diagonal terms with n′ 6= n, so that asymptotically in
the long-time limit, after a relaxation has occurred, the
expectation values are described by

O(t) '
∑
n

|cn|2〈un(t)|Ô|un(t)〉, (75)

corresponding to the diagonal ensemble (Dziarmaga,
2010; Polkovnikov et al., 2011) with respect to the Flo-
quet states. This implies that O(t) becomes time-
periodic, O(t + T ) = O(t); the system synchronizes
with the driving. Moreover, Lazarides et al., 2014b
have shown that for non-interacting (integrable) systems
the asymptotic expectation values can be obtained us-
ing the principle of entropy maximization, under the
constraint that the mean occupations 〈n̂i〉 of the single-
particle Floquet states i retain their initial values. The
asymptotic sate is, thus, captured by a periodic gener-
alized Gibbs ensemble, so that for typical observables
O(t) ' tr{ρ(t)Ô} with time-periodic density matrix

ρ̂(t) ∝ ÛF (t) exp(−
∑
i λin̂i)Û

†
F (t). The number of pa-

rameters λi required to control the integrals of motion
〈n̂i〉 grows only linearly with the system size. It is much
lower than the number of coefficients cn appearing in
Eq. (75), which grows exponentially with the system
size (since n labels the many-body Floquet states, in
this case Fock states of the single-particle Floquet states,
n = {ni}). The arguments sketched here in the context of
Floquet systems are very similar to those employed for
the relaxation of isolated autonomous systems (Dziar-
maga, 2010; Polkovnikov et al., 2011). An interesting
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FIG. 7 In periodically driven optical lattices, heating occurs
due to the resonant creation of high-energy excitations, either
interband excitations (left) or collective intraband-excitations
(right, illustrated using the example of a large bosonic site
occupation). The time scales for these processes should be
large compared to the duration of the experiment.

exception of the behavior described above are periodi-
cally driven model systems that in the thermodynamic
limit relax to an asymptotic state, dubbed Floquet time
crystal, with O(t) 6= O(t + T ), but O(t) = O(t + kT )
with integer k (Else et al., 2016; von Keyserlingk et al.,
2016; von Keyserlingk and Sondhi, 2016). This behav-
ior is associated with a spontaneous breaking of the dis-
crete time translational symmetry (similar to the pos-
sible breaking of continuous time translation symmetry
proposed recently by Wilczek, 2012), since the time re-
quired to reach a periodic state with O(t) = O(t + T )
grows exponentially with the system size.

For non-integrable Floquet systems, it is believed
that the system approaches a state described by an
infinite-temperature ensemble (D’Alessio and Rigol,
2014; Lazarides et al., 2014a). In the sense of eigen-
state thermalization, for typical observables almost all
many-body Floquet modes |un(t)〉 appearing in Eq. (75)
are conjectured to give rise to the same infinite-
temperature expectation values for typical observables,
〈un(t)|Ô|un(t)〉 ' O independent of n. Roughly speak-
ing, due to the lack of energy conservation, the many-
body Floquet states are formed by the hybridization of
many eigenstates of Ĥ0 at all available energy scales so
that their properties can be computed statistically. How-
ever, also possible exceptions to this behavior have been
discussed (Abanin et al., 2014; Lazarides et al., 2015;
Ponte et al., 2015), including systems featuring many-
body localization (for which the size of the state space is
effectively reduced via the segmentation into local sub-
spaces). The work on the relaxation of isolated Floquet
systems sketched in the last three paragraphs is very re-
cent and it will be interesting to follow further develop-
ments and possible experimental studies.

Above, we have mentioned that the heating time th is
expected to increase exponentially with the driving fre-
quency for systems with a bound local state space. In ex-
periments with ultracold atoms in driven optical lattices,
this condition is never fulfilled due to the presence of

excited orbital states spanning higher-lying Bloch bands
(which are not included in the low-energy tight-binding
description in terms of a Hubbard model). While an ef-
fective description in terms of low-energy degrees of free-
dom is very natural in non-driven systems, the trunca-
tion of high-energy states is a delicate issue in periodi-
cally driven systems already on the single-particle level
(Hone et al., 1997). In a periodically driven optical lat-
tice the driving frequency is typically chosen such that
~ω lies well below the band gap Egap that separates ex-
cited orbital states from the tight-binding state space
spanned by one low-energy Wannier state in each lat-
tice minimum. However, interband excitations can still
occur via n-“photon” processes (Fig. 7, left). The smaller
n, the larger will be the coupling matrix element for
such interband-heating processes. Thus, by increasing
the driving frequency, the heating rate associated with
the resonant creation of collective intraband excitations
(7, right), as we discussed them above using the exam-
ple presented in Fig. 6, might decrease. However, at the
same time the heating rate due to interband excitations
tends to increase with the driving frequency. Floquet
engineering with ultracold atomic quantum gases in op-
tical lattice, therefore, requires that there is a window
of intermediate frequencies for which neither intraband
nor interband heating is releavant on the time scale of
the experiment. Interband transitions can occur both
as a consequence of single-particle processes (Drese and
Holthaus, 1997b; Holthaus, 2015) or two-particle scat-
tering (Choudhury and Mueller, 2014, 2015). For strong
driving, multi-“photon” interband excitations with n as
large as nine have recently been observed experimen-
tally and explained in terms of single-particle transitions
(Weinberg et al., 2015). Arguments based on perturba-
tion theory suggest that the rate for such heating pro-
cesses is suppressed exponentially with n ≈ Egap/(~ω),
provided the driving amplitude remains below a thresh-
old value (Sträter and Eckardt, 2016).

D. Anomalous topological edge states

The ~ω-periodic structure of the quasienergy spectrum
of periodically driven quantum systems reflects the in-
terplay between the dynamics occurring within a driv-
ing period (associated with energy scales larger than ~ω)
with that happening on longer time scales (associated
with energy scales smaller than ~ω). The possibility that
heating occurs on a long time scale due to the resonant
coupling of energetically far distant states, discussed in
the previous section, is one example of such an interplay.
Another, more subtle effect related to this interplay is
the existence of anomalous topological edge states in pe-
riodically driven systems (Jiang et al., 2011; Kitagawa
et al., 2010, 2012; Rudner et al., 2013). Without making
an attempt to give a complete overview of the numerous
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FIG. 8 (a-c) Floquet spectra of periodically driven square
lattice defined in Fig. 9(a) for the parameters specified in (d).
(d) Phase diagram versus tunneling parameter J and sublat-
tice off-set δAB (in units of ~ω/2). Phases are characterized
by the winding numbers Wε for the bulk gaps at quasienergy
ε; the Chern number of the upper (lower) band is given by C
(−C). (taken from Rudner et al., 2013)

recent works on this subject, we will briefly sketch the
phenomenon in the context of non-interacting spinless
particles in a two-dimensional lattice, following Rudner
et al., 2013.

Consider a periodically driven two-dimensional tight-
binding lattice with B sublattice states. For periodic
boundary conditions the quasienergy spectrum will pos-
sess B Floquet-Bloch bands that shall be separated by
gaps. When the translational symmetry is broken by
open boundary conditions, the system can feature chiral
edge states that reflect the topological nature of the bulk
band structure. Spatially these states are localized at
the boundary (in the direction perpendicular to it), but
delocalized in the direction parallel to it. They transport
particles in one direction along the boundary only (de-
fined by their chirality). Figs. 8(a-c) show quasienergy
spectra for a driven two-dimensional lattice of finite ex-
tent with two sublattice states for different parameters.
The spectra are plotted versus the quasimomentum k‖
parallel to two opposite edges (Rudner et al., 2013). The
bulk bands have a finite width according to their disper-
sion in the perpendicular direction. Sometimes neighbor-
ing bulk bands are connected by lines traversing a band.
These lines form one-dimensional bands corresponding to
chiral edge states. They come in pairs of opposite slope
(indicating opposite velocity) corresponding to the two
opposite edges.

Like in autonomous systems, the presence or absence of
chiral edge states is connected to the topological proper-
ties of the bulk (bulk-boundary correspondence, see e.g.
Hasan and Kane, 2010 and Qi and Zhang, 2011). The
difference between the number of edge bands entering a
bulk band b from below and that exiting it above is dic-
tated by the Chern number Cb of that band [Eq. (60)],
which is a bulk property. However, there is one important
difference that distinguishes periodically driven from au-
tonomous systems. As a consequence of the ~ω-periodic
structure of the quasienergy spectrum, edge bands can
exit the uppermost bulk band in the quasienergy interval
[−~ω/2, ~ω/2] above and enter the lowermost bulk band
from below [Figs. 8(b) and (c)] (Jiang et al., 2011; Kita-
gawa et al., 2010). This possibility implies that the sys-
tem can feature chiral edge states even if all bulk bands
have Chern number zero, like in Fig. 8(c). With that it
also implies that the presence or absence of chiral edge
states is not determined by the Chern numbers alone.
This is illustrated by the fact that in both Figs. 8(a)
and (c) the bands have identical Chern numbers, despite
the respective absence and presence of edge modes. In
contrast, in an autonomous systems the number of edge
states in the gap above a certain bulk band b is given by∑
β≤b Cβ , since no edge bands can enter the lowest band

from below.

Rudner et al., 2013, identify a winding number Wε

from the bulk properties of the system that determines
the number of edge modes traversing the band gap con-
taining the quasienergy ε, nedge = Wε. The difference
Wε′−Wε corresponds to the sum of the Chern numbers of
the bands lying between the gaps at ε′ and ε. The wind-
ing numbers associated with all bulk gaps give a complete
topological description of a driven two-dimensional lat-
tice. These topological invariants do not only depend
on the time-evolution operator over one driving period,
Û(t0+T, t0) or Û(T, 0) for definiteness. They also depend
on the time-evolution during each period as it is captured
by the function Û(t) = Û(t, 0), that is they depend on
the micromotion. The winding number is defined like

Wε =
1

8π2

∫
dtdkxdky tr

(
Û†ε∂tÛε

[
Û†ε∂kxÛε, Û

†
ε∂ky Ûε

])
,

(76)
where Ûε(k, t) is a unitary operator with Ûε(k, T ) = 1. It
has to be obtained by continuously deforming the single-
particle time evolution operator Û(t) = Û(k, t) (in the
sector with quasimomentum k) in a way that the gap at
ε is smoothly shifted to ~ω/2 without being closed on
the way. A concrete construction of a suitable operator
Ûε(k, t) for general Û(k, t) is given by Rudner et al., 2013.

The dependence of the winding number on the mi-
cromotion has an interesting consequence for the bulk-
boundary correspondence in Floquet systems: The
quasienergy spectrum and the Floquet states (including
the edge states) can be obtained from the time-evolution
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FIG. 9 (a) Simple model system on a square lattice with two
sublattice states (open and filled circles). Each driving period
is divided into five stages of duration T/5. During each stage
either tunneling matrix elements J are present on the high-
lighted bonds or an energy offset δAB between both sublat-
tices. (b) Dynamics of an initially site-localized particle dur-
ing one driving cycle for fine-tuned parameters J = (5/4)~ω
and δAB = 0 in the bulk (blue) and at the edges (green, red).
(c) Quasienergy spectrum for parameters of (b). The bulk
levels (blue) are dispersionless, whereas the levels for the chi-
ral edge modes (red, green) wrap around the Brillouin zone
with constant slope. (taken from Rudner et al., 2013)

operator over one driving cycle Û(T ) by using Eq. (8).
However, the operator Û(T ) computed for a translational
invariant system, which represents the bulk properties,
does not completely determine the properties of the edge
states appearing at the boundary of a finite system. The
edge states depend also on the micromotion of the bulk
inherent in the time-dependence of the evolution opera-
tor Û(t).

Rudner et al., 2013, illustrate this effect using the spe-
cific model shown in Fig. 9(a). For fine-tuned parameters
the dynamics during each driving cycle is simply that de-
picted in Fig. 9(b): In the bulk, a site-local particle moves
around a closed circle and returns to its initial state.
So while the micromotion in the bulk is non-trivial, the
Floquet Hamiltonian ĤF

0 , which describes/generates the
stroboscopic dynamics in steps of the driving period T ,
vanishes in the bulk. At the edge of the system, the mo-
tion around the closed loop is not possible so that a par-
ticle is transported counter clockwise along the boundary
during each driving period, corresponding to the forma-
tion of a band of chiral edge states. Clearly, this edge
dynamics results from the interplay of the bulk micromo-
tion with the boundary of the system. The quasienergy
spectrum is plotted in Fig. 9(c); while the trivial bulk dy-
namics over one driving period is reflected in a flat bulk
dispersion, chiral edge bands with constant slope (repre-
senting the velocity of two lattice constants per driving
period) wrap around the Brillouin zone.

The model system of Fig. 9(a) (without driving stage
5, though) and the emergence of chiral edge states was
investigated recently in experiments with photonic wave

guides (Maczewesky et al., 2016; Mukherjee et al., 2016).
An implementation of a similar model defined on a hexag-
onal lattice (Kitagawa et al., 2011) with ultracold atoms
and the observation of chiral edge states at interfaces
between spatial domains with different topological prop-
erties has been proposed by (Reichl and Mueller, 2014).
Anomalous chiral edge states have, moreover, been ob-
served in photonic networks (Gao et al., 2016; Hu et al.,
2015). In the circularly forced hexagonal lattice (Jotzu
et al., 2014; Kitagawa et al., 2011; Oka and Aoki, 2009),
which we discussed in Sec. III.H, anomalous edge states
appear for driving frequencies that are low enough to res-
onantly couple the two low-energy Bloch bands described
by the Hubbard model (Kundu et al., 2014; Quelle et al.,
2016; Usaj et al., 2014), i.e. when the high-frequency ap-
proximation (15) breaks down. This is not surprising,
since the effective Hamiltonian obtained within the high-
frequency approximation (15) cannot describe effects re-
lated to the ~ω-periodic structure of the quasienergy
spectrum, such as the anomalous topological edge states
discussed in this section.

E. Two-time formalism

The concept of Floquet theory can be extended to
capture also situations where the Hamiltonian is not
perfectly periodic in time, e.g. when a parameter like
the driving strength is varied (Breuer and Holthaus,
1989b; Peskin and Moiseyev, 1993; Pfeifer and Levine,
1983). For an arbitrary time-dependent Hamiltonian
Ĥ(t), one can always define a time-periodic Hamiltonian
Ĥτ (t) = Ĥτ (t + T ), with parametric dependence on a
second time τ such that Ĥ(t) = Ĥt(t). For example, for
Ĥ(t) = Ĥ0 + p(t) cos(ωt)V̂ , with slowly varying ampli-
tude p(t), we can set Ĥτ (t) = Ĥ0 + p(τ) cos(ωt)V̂ . This
choice is not unique, but for a “natural” description of
the problem, the dependence on τ should be weak, slow,
or limited to a finite interval in time. A suitable descrip-
tion of problems where the driving frequency itself varies
in time can be obtained by a scaling transformation with
respect to time (Drese and Holthaus, 1999).

The quasienergy operator related to Ĥτ (t) is given by

Q̂τ (t) = Ĥτ(t)− i~dt. (77)

Now a Schrödinger-type equation of motion

i~dτ |Ψτ 〉〉 = Q̄τ |Ψτ 〉〉 (78)

for states in the extended Floquet Hilbert space can be
postulated, where Q̄τ generates the evolution with re-
spect to the time τ . A straightforward calculation shows
that

|ψ(t)〉 = |Ψτ (t)〉
∣∣
τ=t

, (79)

with |Ψτ (t)〉 being the H-space representation of |Ψτ 〉〉,
is a solution of the (actual) time-dependent Schrödinger
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equation (3) of the Hamiltonian Ĥ(t) (Breuer and
Holthaus, 1989b). This means that one can integrate
Eq. (78) in F in order to compute the time evolution
of the system as it is described by the time-dependent
Schrödinger equation (3). The initial condition has to
obey |Ψt0(t0)〉 = |ψ(t0)〉, as can be achieved, e.g., by
setting |ψt0〉〉 =

∑
α〈ψ(t0)|α〉 |α0〉〉. The two-time for-

malism provides a Floquet-space description of the time
evolution generated by arbitrary time-dependent Hamil-
tonians Ĥ(t). Therefore, it constitutes a Floquet picture
(Breuer and Holthaus, 1989a). Working in the Floquet
picture is useful when the Hamiltonian is approximately
time periodic.

F. Adiabatic state preparation

A direct consequence of the evolution equation (78)
is that one can apply the adiabatic principle to Flo-
quet states and their quasienergies (Breuer and Holthaus,
1989b). In particular the transition probabilities associ-
ated with parameter variations through isolated avoided
crossings of two quasienergy levels are captured by
Landau-Zener theory. While for a slow (rapid) param-
eter variation the crossing is passed adiabatically (dia-
batically), a superposition of both states is created for
intermediate rates.

An important protocol of Floquet engineering is the
preparation of the ground state of the approximate ef-
fective Hamiltonian to be realized by Floquet engineer-
ing via a smooth parameter variation starting from the
ground state of the undriven system. On the level of a
description in terms of the high-frequency approximation
(15), say in leading order ĤF ≈ Ĥ0, the ideal dynamics
should be adiabatic. However, as was discussed in section
IV.C using the example of Fig. 6, the ground state of Ĥ0

will undergo avoided level crossings with excited states of
energy m~ω. In the high-frequency regime these avoided
crossings are tiny. For the high-frequency approximation
to be valid, they should be passed diabatically, reflect-
ing once more that the high-frequency approximation is
valid on finite times only. Thus, the ideal preparation
should be based on an effectively adiabatic dynamics, de-
fined as a mixture of adiabatic dynamics with respect to
the high-frequency approximation and diabatic dynam-
ics with respect to resonant coupling neglected in this
approximation (Eckardt and Holthaus, 2008a). Another
source of heating occurs the effectively adiabatic dynam-
ics guides the system through a phase transition. Such a
scenario has recently been studied in a spin chain, where
a Kibble-Zurek-like scaling for the creation of excitations
has been observed at a transition induced by resonant
coupling (Russomanno and Dalla Torre, 2015).

V. CONCLUSION AND OUTLOOK

We have seen that periodic forcing can be powerful
tool for the engineering many-body systems of ultra-
cold atoms in optical lattices with tailor-made proper-
ties. While a basic description of such Floquet engineer-
ing can often be given in terms of simple (high-frequency
single-band) approximations, the justification of these
approximations is a more subtle issue. Future research
will, therefore, not only be concerned with novel con-
trol schemes, but also with the stability of Floquet sys-
tems towards heating. Efficient strategies for suppressing
heating will also be crucial for another ambitious goal,
the preparation of strongly correlated states of matter,
such as topologically ordered fractional-quantum-Hall-
type states. Also the experimental investigation of the
relaxation dynamics and the possible prethermalization
and thermalization of Floquet systems should be a sub-
ject of future research.

Another interesting perspective (going beyond the do-
main of ultracold quantum gases) is the engineering of
many-body quantum states of open Floquet systems.
When a periodically driven quantum system is coupled
weakly to a thermal reservoir, it will eventually reach
a quasi- stationary (i.e. time periodic) non-equilibrium
steady state. The non-equilibrium nature results from
the fact that the transitions induced by the coupling to
the bath do not obey detailed balance. Namely a transi-
tion n → n′ between two Floquet states with quasiener-
gies εn and εn′ can be accomplished by changing the bath
energy by ∆EB = εn − εn′ + m~ω, where the integer m
can take different values. Thus, a particular transition
can, for example, occur either by lowering or by rais-
ing the bath energy. This becomes apparent in Fermi-
golden-rule-type expressions obtained for weak system-
bath coupling (Blümel et al., 1991; Hone et al., 2009;
Kohler et al., 1997; Langemeyer and Holthaus, 2014).
The resulting asymptotic non-equilibrium steady states
can have unconventional properties (to mention just a
few examples, see, e.g. recent work by Breuer et al., 2000;
Dehghani et al., 2015; Foa Torres et al., 2014; Goldstein
et al., 2015; Iadecola et al., 2015; Ketzmerick and Wust-
mann, 2010; Seetharam et al., 2015; Shirai et al., 2015,
2016; Tsuji et al., 2009; Vorberg et al., 2013, 2015). A
powerful tool for the treatment of open driven systems is
the Floquet-variant of dynamical mean-field theory (see
Aoki et al., 2014, and references therein). Unlike thermal
states, non-equilibrium steady states are not just deter-
mined by a few thermodynamic variables like tempera-
ture and chemical potential, but depend on the very de-
tails of the environment. This makes a theoretical treat-
ment challenging, but opens the door for robust dissipa-
tive quantum engineering of driven many-body systems
and their properties.
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Blümel, R., A. Buchleitner, R. Graham, L. Sirko, U. Smilan-
sky, and H. Walther (1991), Phys. Rev. A 44, 4521.

Boada, O., A. Celi, J. I. Latorre, and M. Lewenstein (2012),
Phys. Rev. Lett. 108, 133001.

Boll, M., T. A. Hilker, G. Salomon, A. Omran, I. Bloch, and
C. Gross (2016), arXiv:1605.05661.

Breuer, H. P., and M. Holthaus (1989a), Z. Phys. D 11, 1.
Breuer, H. P., and M. Holthaus (1989b), Phys. Lett. A 140,

507.
Breuer, H.-P., W. Huber, and F. Petruccione (2000), Phys.

Rev. E 61, 4883.
Bukov, M., L. D’Alessio, and A. Polkovnikov (2015a), Adv.

in Phys. 64, 139.
Bukov, M., S. Gopalakrishnan, M. Knap, and E. Demler

(2015b), Phys. Rev. Lett. 115, 205301.
Bukov, M., M. Kolodrubetz, and A. Polkovnikov (2016),

Phys. Rev. Lett. 116, 125301.
Canovi, E., M. Kollar, and M. Eckstein (2016), Phys. Rev.

E 93, 012130.
Capogrosso-Sansone, B., N. Prokof’ev, and B. Svistunov

(2007), Phys. Rev. B 75, 134302.
Cardarelli, L., S. Greschner, and L. Santos (2016),

arXiv:1604.08829.
Casas, F., J. A. Oteo, and F. Ros (2000), J. Phys. A 34,

2001.
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Grushin, A. G., A. Gómez-León, and T. Neupert (2014),

Phys. Rev. Lett. 112, 156801.
Ha, L.-C., L. W. Clark, C. V. Parker, B. M. Anderson, and

C. Chin (2015), Phys. Rev. Lett. 114, 055301.
Haldane, F. D. M. (1988), Phys. Rev. Lett. 61, 2015.
Haller, E., R. Hart, M. J. Mark, J. G. Danzl, , L. Reichsöllner,
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