
A Java Programming Learning Assistant System
Using Test-Driven Development Method

Nobuo Funabiki, Yukiko Matsushima, Toru Nakanishi, Kan Watanabe, and Noriki Amano

Abstract—Recently, the object-oriented programming lan-
guage Java has been used in many practical systems including
enterprise servers, smart phones, and embedded systems, due
to its high safety and portability. Thus, a lot of educational
institutes have offered Java programming courses to foster
Java engineers. In this paper, we propose a Web-based Java
Programming Learning Assistant System (JPLAS) using the
test-driven development (TDD) method, to enhance educational
effects of Java programming by assisting self-studies of students
who have studied the basic Java grammar while reducing
teacher loads. In JPLAS, a teacher first registers a Java
programming assignment with a statement, a model source
code, and a test code. Then, a student writes a source code by
reading the statement and the test code, such that the source
code can be tested automatically at the server by using JUnit,
a tool for the TDD method. We confirm the effectiveness of
JPLAS through experimental applications to students in our
department.

Index Terms—Web system, programming language, Java,
test-driven development method, JUnit, code reading

I. INTRODUCTION

W ITH penetrations of the information and communi-
cation technology (ICT) into our societies, adverse

affects of failures of computer and network systems due to
software bugs have become intolerable. They sometimes have
stopped functions of critical infrastructures such as railways
[1], airlines [2], and large banking systems [3]. Along this
trend, the software test has been regarded as a last crucial
process to avoid productions of software bugs. Then, a test-
driven development (TDD) method has been focused as an
effective software development method that can avoid bugs
by writing and testing source codes at the same time [4].
In the TDD method, a test code should be written before
writing a source code. A test code is a program code to
verify the correctness of the outputs from the methods that
are implemented in the source code.

Java is a useful and practical object-oriented programming
language that has been used in a lot of important practi-
cal systems including enterprise servers, smart phones, and
embedded systems due to its high safety and portability.
Thus, Java programming educations have become important
to foster professional Java engineers, and many educational
institutes over the world have actually offered Java program-
ming courses. In a Java programming course, usually one
or a few teachers educate a lot of students at the same
time. Because a student needs writing various Java codes by
him/herself to master Java programming, a teacher usually

Manuscript received Jan. 20, 2013; revised Jan. 20, 2013.
N. Funabiki, Y. Matsushima, T. Nakanishi, and K. Watanabe

are with the Department of Electrical and Communication En-
gineering, Okayama University, Okayama 700-8530, Japan, e-mail:
{funabiki,nakanisi,can}@cne.okayama-u.ac.jp.

N. Amano is with the Center for Faculty Development, Okayama Uni-
versity, Okayama 700-8530, Japan, e-mail: amano@cc.okayama-u.ac.jp.

gives a lot of Java programming assignments to the students
in the class. Then, for a teacher, the verification of Java codes
from students and the feedback with proper comments may
take an intolerably long time. As a result, some students may
miss chances of improving Java programming skills and lose
interests in studying Java programming.

In this paper, we propose a Web-based Java Programming
Learning Assistant System (JPLAS) using the TDD method,
to enhance educational effects in Java programming courses
in universities or vocational schools by allowing self-studies
of students, while reducing teacher loads. By accessing to
JPLAS from a Web browser, a student can repeat the learning
cycle of Java programming until he/she can complete the
correct code for each assignment given by a teacher. This
cycle consist of 1) reading the test code written by the
teacher, 2) writing/modifying the source code, and 3) testing
the source code and suggesting the errors if there exist. By
repeating this cycle, a student can master Java programming.
As a target user of JPLAS, we consider a student who has
studied the basic Java grammar in a class and has written
simple Java codes in textbooks through exercises, but who
may not be able to write a proper code that satisfies the
requirements of an assignment described by sentences and/or
to properly read source codes written by other persons.

In JPLAS, a teacher first registers a Java programming
assignment with a statement, a model source code, and a
test code. Then, a student writes a source code by reading
the statement and the test code such that the source code
can be tested automatically at the server by using a software
tool for the TDD method called JUnit [5]. Because the Java
source code is tested automatically every time it is submitted
to the server, a student can keep modifying the code until
completing the correct one.

A main feature of JPLAS in Java programming educations
is the utilization of the TDD method. In JPLAS, a teacher
must disclose the test code to students for each assignment.
This means that the teacher can clarify the requirements
in the source code that he/she intends for this assignment
by describing them in the test code. In fact, a program
code including a test code can sometimes be clearer than a
description using sentences describing the specifications. In
addition, students can study reading existing codes through
the test code reading. Reading codes is actually very im-
portant to improve programming skills, and can often hap-
pen in the real world. Furthermore, JPLAS provides the
error code highlighting function to help students to find
the faults in their source codes by graphically highlighting
the corresponding lines [6]. Therefore, using JPLAS, we
expect that students become more aggressive in studying Java
programming.

The rest of this paper is organized as follows: Section II
introduces the TDD method. Section III describes the plat-

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_05

(Advance online publication: 9 February 2013)

__

form for JPLAS. Sections IV presents the service functions
in JPLAS. Section V shows the evaluation result of JPLAS.
Section VI discusses some related works. Section VII con-
cludes this paper with future works.

II. TEST-DRIVEN DEVELOPMENT METHOD

In this section, we introduce the test-driven development
(TDD) method with its features.

A. Outline of TDD Method

In the TDD method, the test code should be written before
the source code is written, so that it can verify whether the
source code satisfies the required specifications during its
development process. The basic code development cycle in
the TDD method is as follows:

(1) to write a test code that can test every specification,
(2) to write a source code, and
(3) to repeat modifications of the source code until it

passes every test by the test code.

B. JUnit

In JPLAS, we adopt JUnit (JUnit4) as an open-source
Java framework to support the TDD method. JUnit can
assist a unit test of a Java code unit or a class. Because
JUnit has been designed with the Java-user friendly style,
its use including a test code programming is easy for Java
programmers. In JUnit, a test of a code is performed by using
a method whose name starts from ”assert”. For example,
this paper adopts the ”assertEquals” method to compare the
execution result of the source code with its expected value.

C. Test Code

A test code should be written using libraries provided in
JUnit. By using the Math class source code, we explain how
to write a test code. The Math class returns the summation
of the two integer arguments.

1: public class Math{
2: public int plus(int a, int b){
3: return(a + b);
4: }
5: }

Then, the following test code can test the plus method in
the Math class.

1: import static org.junit.Assert.*;
2: import org.junit.Test;
3: public class MathTest {
4: @Test
5: public void testPlus(){
6: Math ma = new Math();
7: int result = ma.plus(1, 4);
8: asserEquals(5, result);
9: }
10:}

This test code imports JUnit packages at lines 1 and 2,
and declares MathTest at line 3. @Test at line 4 indicates
that the succeeding method represents the test method. Then,

it describes the test method testPlus to test plus in Math by
the following steps:

(1) to generate an instance for the Math class,
(2) to call a method in the instance in (1) using the given

arguments, and
(3) to compare the result with its expected value for the

arguments in (2) using the assertEquals method.

D. Features in TDD Method

In the TDD method, the following features can be ob-
served:

1) The test code can represent the specifications of a
program, where it must describe any function to be
tested in the program.

2) The test code can be useful in considering the program
structure.

3) The test process of a source code becomes efficient,
because each function can be tested individually.

4) The refactoring process of a source code becomes easy,
because the modified code can be tested instantly.

Thus, to study the test code description is useful for students
studying Java programming, because the test code can be
equivalent to the program specification. Beside, students
should experience the software test that has become impor-
tant in producing practical software. In future studies, we
will put a learning function for test code descriptions into
practical use in JPLAS.

III. PLATFORM FOR JPLAS

In this section, we describe the software platform for
JPLAS.

A. Server Platform

JPLAS is implemented using JSP/Servlet with Java 1.6.2
as a Web application on a server, where it adopts the operat-
ing system Ubuntu Server 10.04, the Web application server
Tomcat 6.0.26, and the database system MySQL 5.0.27, as
shown in Figure 1.

JPLAS
(JSP / Se r v l e t)

T o m c a t
(W e b s e r v e r)

M y SQ L
(D a t a b a s e)

U b u n t u Se r v e r
(O S)

Fig. 1. Server platform.

B. Secure Testing Environment

A source code from a student may contain defective
commands such as an infinite loop and an illegal file access.
To protect the server from them, two methods, namely a
code analysis and an execution time monitoring, are adopted
in JPLAS. The code analysis analyzes the source code form

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_05

(Advance online publication: 9 February 2013)

__

a student to find whether it contains commands that may
give adverse effects to the server. Specifically, if it contains
a class for the file access such as ”Buffered Write” and
”PrintWriter”, and a class for using external commands such
as ”Process” and ”Runtime”, the test execution for this code
is aborted and the test failure is returned to the student. The
execution time monitoring runs the source code on a thread
so that the execution time is observed from the main program
as shown in Figure 2. If the execution time exceeds a given
limit or an exception is detected from the source code, the
test is aborted and the failure is returned.

Thread creation

Time monitoring

Result

Run test program

Output test result

On thread

Main

Fig. 2. Execution time monitoring by thread for Java code test.

IV. SERVICE FUNCTIONS IN JPLAS

In this section, we present the service functions imple-
mented in JPLAS, which consist of teacher service functions
and student service functions.

A. Teacher Service Functions

Teacher service functions include the registration of new
classes, the registration and management of assignments,
and the testing of source codes submitted from students.
To register a new assignment, a teacher needs to submit an
assignment title, a problem statement, a model source code,
and a test code to JPLAS. They will be disclosed to the
students except for the model source code. Note that the test
code must pass the model code correctly.

Using the following correspondence between a source
code and a test code, JPLAS automatically generates a
template for the test code from the model source code:

• The class name is given by the test class name + Test.
• The method name is given by the test + test method

name.
Thus, a teacher only needs to specify the specific values for
the arguments in each test method to complete the test code,
as shown in Figure 3.

To evaluate the difficulty of assignments and comprehen-
sions of students, JPLAS allows a teacher to view the number
of submissions for code testing by each student. If a teacher
finds that a lot of resubmissions have been done by many
students for an assignment, this assignment can be considered
too difficult for them and should be changed to an easier one.
If a teacher finds a student who submitted codes many times
whereas other students did so fewer times, this student should
be cared extraordinarily.

Test code:

Run test code

Add the expected value and executed value:
assertEquals(#, tmp.plus(#, #));

assertEquals(2, tmp.plus(1, 1));

Fig. 3. Test code template.

B. Student Service Functions

Student service functions include the view of the assign-
ments, the submission of source codes for assignments, and
the feedback from source code tests at the server. A student
should write a source code for an assignment by reading
the problem statement and the test code, where he/she must
use the class/method names, the types, and the argument
setting that are specified in the test code. JPLAS implements
a Web-based source code editor called CodePress [7] so that
a student can write codes on a Web browser. The submitted
source codes are stored in the database at the server so that
they can view old ones.

As an example, Figures 4 and 5 show a test code from a
teacher and a source code from a student for the ElGamal
encryption programming assignment. Figure 6 shows the test
result, where one error is detected because the last argument
of the ”encrypt” method in the source code is different from
the specification given in the test code.

As a feedback function on the source code test from
the server, JPLAS implements the error code highlighting
function to help students to debug their source codes, in
addition to displaying the output log of JUnit. The JUnit
log may be hard for these students who even cannot find
the lines that they need to modify in their source codes.
Thus, we implement a function of highlighting the lines that
contain the error codes found by JUnit. This function actually
highlights both the lines in the test code returning errors at
the test and the corresponding lines in the source code, as
discussed in the following subsections.

1) Highlighting in Test Code: This function highlights
the lines containing the test methods such as assertEquals
returning errors in the test code. In our implementation,
these lines are extracted from the JUnit output log that
contains the erroneous line information. Figure 7 shows an
example JUnit output log, where the line framed in by a
rectangular indicates that the 10th line in the test code returns
an error. We note that the 24th line also returns an error,
which is omitted in Figure 7 to save space. Figure 8 shows
the corresponding interface to students for this test code
highlighting.

2) Highlighting in Source Code: Then, this function high-
lights the lines in the source code that declare the methods
containing the erroneous lines found by JUnit. These erro-

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_05

(Advance online publication: 9 February 2013)

__

Five string arguments
for “encrypt” method

Fig. 4. Test code from teacher.

ElGamal encryption

Fig. 5. Source code from student.

neous methods in the source code are extracted from the
codes for the methods returning errors in the test code that
are found for the test code highlighting. Figure 9 shows an
example of the source code highlighting corresponding to
Figure 8.

V. EVALUATION

To evaluate the effectiveness of JPLAS in the Java pro-
gramming education, we applied it to students in our depart-
ment.

A. Assignment for Evaluation

We prepared an assignment of writing a Java code to
calculate the area of a circle and a rectangle, and gave it to 42
sophomore students taking the Java programming course in
our department. They have finished the basic Java grammar
in the class, and have written simple Java codes in textbooks
as exercises. Here, we actually gave them a source code for

this assignment that has one error intentionally such that
r + r * 3.14 be corrected to r * r * Math.PI for
the given radius r, and asked them to fix it. We note that
these students have used JPLAS to know how to use it before
this experiment, and Math.PI appears in the test code that
is disclosed to the students as shown in Figure 8.

Here, we discuss the background of our experiment. When
we introduce new methods, systems, or functions to improve
educations in schools, we should verify their effectiveness
and clarify problems or disadvantages at their practical use
through regular classes. At the same time, the quality of a
regular class must be maintained by avoiding disturbances
as much as possible. Under this tradeoff, we prepared a full
source code having one error that can be corrected within
15min. Actually, we consider that this error correction of an
existing source code is appropriate as an assignment to target
users of JPLAS, because it can test abilities of students in
reading an existing code and debugging it using the functions
in JPLAS.

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_05

(Advance online publication: 9 February 2013)

__

Compile success

No main method for Encryption class

One error detected

Compile result

Execution result

Test result

Fig. 6. Test result for source code.

JUnit version 4.8.2
.E..E
Time: 0.006
There were 2 failures:
1) testCalCircle(TestMyArea)
java.lang.AssertionError: expected:<113.04> but was:<24.84>

at org.junit.Assert.fail(Assert.java:91)
at org.junit.Assert.failNotEquals(Assert.java:645)
at org.junit.Assert.assertEquals(Assert.java:441)
at org.junit.Assert.assertEquals(Assert.java:510)
at TestMyArea.testCalCircle(TestMyArea.java:10)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

.

.

.

Fig. 7. JUnit log example.

B. Results from Students

Table I summarizes the distribution of numbers of code
submissions by the students for this assignment. Seven stu-
dents could correctly answer it, where four students repeated
submissions twice or more. This result shows that most
students could submit answers at least once during this short
time, and some students could solve it after correcting codes
by referring to outputs from JPLAS.

After the experiment, we asked the students to reply to the
six questions in Table II with five grades. Table III shows
their replies to the questions.

For Q1, the similar number of students replied positively
(4 or 5) or negatively (1 or 2). It indicates that the usability

TABLE I
NUMBERS OF CODE SUBMISSIONS BY STUDENTS.

of submissions # of students
0 3
1 18
2 13
3 3
4 2
5 1
6 1
7 0
8 1

Average 1.99

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_05

(Advance online publication: 9 February 2013)

__

Fig. 8. Test code highlighting example.

Fig. 9. Source code highlighting example.

TABLE II
QUESTIONS FOR QUESTIONNAIRE.

Question
Q1 Do you think to use the system is easy ?
Q2 Do you think this system is helpful in

checking the program functions ?
Q3 Do you think to read the test code is helpful in

understanding the assignment specification ?
Q4 Do you feel the response time after the source

code submission is long ?
Q5 Do you think the error code highlighting function

is helpful in fixing the errors in the code ?
Q6 Do you think this system is helpful in

understanding Java programming ?

of JPLAS is basically acceptable for them. However, some
students felt that the programming editor on a Web browser
CodePress is not convenient if compared with an editor on a
PC. Thus, a more advanced editor for a Web browser should
be introduced in JPLAS.

For Q2 and Q3, most students replied 3 or more, whereas
some students replied 2. It indicates that JPLAS is generally

TABLE III
QUESTIONNAIRE RESULTS WITH FIVE GRADES.

1 2 3 4 5
Q1 hard 1 14 13 8 6 easy
Q2 useless 0 9 17 9 7 useful
Q3 useless 0 9 19 10 4 useful
Q4 long 2 5 9 14 12 short
Q5 useless 0 2 22 9 9 useful
Q6 useless 3 5 22 6 6 useful

helpful in writing a correct Java code for the assignment.
For Q2, its negative replies may come from the short time
in using JPLAS such that this experiment was over before
being accustomed to JPLAS. For Q3, they may come from
incomprehension of the TDD method where they did not
know how to read the test code. The result for Q6 also
indicates the insufficiency. Thus, we should give sufficient
instructions of the TDD method before the next experiment,
and let students use JPLAS for a longer time there.

For Q4, most students replied positively, whereas some
students replied negatively. It indicates that the response

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_05

(Advance online publication: 9 February 2013)

__

time is generally acceptable, but when many students submit
source codes at the same time, the response can be delayed.
For Q5, most students replied 3 or more. It indicates that the
error code highlighting function is useful in finding errors
in source codes. Thus, we expect that this function helps
students to study the Java programming by JPLAS more
aggressively.

C. Teacher Remarks

Through this experiment, we obtained the following re-
marks on JPLAS from the teacher teaching the Java pro-
gramming course:

• The registration of an assignment in JPLAS is easy.
• JPLAS is helpful to improve motivations of students in

studying Java programming, because the answering to
assignments is easy and outputs of JPLAS are helpful
to check the correctness of their answers.

• Because assignments in this experiment are easy, addi-
tional experiments with harder assignments are neces-
sary. The selection of proper assignments is important to
enhance educational effects for Java programming using
JPLAS.

• Handbooks of JPLAS should be prepared so that stu-
dents can use it without explanations by a teacher.

• JPLAS should provide functions to encourage students
to use JPLAS more actively, such as an interface
of showing their rankings among the students in the
number of correctly solved assignments and/or the total
assessing time to JPLAS.

These remarks suggest that this teacher valuated JPLAS
positively, and at the same time, it is necessary to implement
additional functions, select proper assignments, and prepare
handbooks. They will be in our further studies for JPLAS.

VI. RELATED WORKS

A number of works have been reported for systems or
tools to support programming courses and their applications
into classes. Within our surveys, we could not find any Web
application system that has the functions of the automatic
template generation for a test code to help a teacher and the
erroneous line highlighting to help a student in JPLAS.

As integrated development environments (IDEs) for pro-
gramming practices, Eclipse [9] and NetBeans [10] can plug-
in JUnit, Covertura [8], and JUnit Helper [11]. They have
a lot of functions to support various needs in developing
practical codes by professional programmers, and can be
used in programming educations. However, we consider that
JPLAS is more suitable for Java programming educations
than these existing tools due to the following observations:

• Their affluent functions have been developed to meet
various needs of professional programmers in develop-
ing practical codes, but not been designed for students
in a Java programming course. Such target users of
JPLAS usually need considerable time in understanding
their proper use, and may feel difficulty in it. As a
result, some students may give up using these tools.
Besides, preparations of IDEs and related manuals for
code testing can be heavy burdens for a teacher who is
not familiar to them.

• They assume standalone systems, and need collab-
orations with other systems for communications be-
tween a teacher and students when a teacher presents
assignments to students, collects their answers, and
promptly feedbacks marking results. As a Web appli-
cation system, JPLAS can easily realize these essen-
tial functions in programming educations. By JPLAS,
students can work on Java programming at any place
including homes and schools without carrying PCs or
software/data, as long as the Internet access service is
provided. This portability of study is very important to
support Java programming educations in schools.

Here, we note that JUnit Helper is a tool to help test
code generations, and actually has more functions for use in
practical projects than that in JPLAS. In future works, we
will consider its incorporation into JPLAS.

In [12], Matsuura et al. presented a lesson support system
to improve the programming exercise lesson. This system
provides a variety of functions for students and teachers
such as uploading and downloading of materials for lessons,
registering student records, and creating/evaluating question-
naires. Unfortunately, this system does not support functions
for self-studies of students.

In [13], Desai et al. evaluated the effects using the test-
first approach (TDD method) versus the test-last approach in
early programming courses, and showed that the former one
can improve testing and programmer performance, although
early programmers are reluctant to adopt it. Thus, to use the
TDD method is important to improve the educational quality
of programming.

In [14], Desai et al. surveyed the current state of ex-
periments using the TDD method conducted at universities.
They show that it can expose students to analytical and
comprehension skills needed in software testing, and help
them design complex projects and increase confidence.

In [15], Desai et al. demonstrated how the TDD method
can be integrated into existing course materials, and showed
two controlled experiments where the TDD method was first
introduced with unit testing at the beginning of the course,
and then, a student needed to write a test code by modifying
its similar code. The results indicate that they could success-
fully develop test codes while learning programming, and the
test-first approach using the TDD method gave better results
in the quality of developed programs than the conventional
non-TDD approach.

In [16][17], Röβling presented a Web-based platform
called WebTasks for submitting, testing, and discussing stu-
dent solutions for programming exercises, where student
programs are tested by JUnit. Unfortunately, this system does
not support functions of helping a teacher write a test code,
and helping a student find erroneous lines, where the output
log of JUnit is just displayed.

In [18], Ihantola et al. reviewed recent developments of
automatic assessment tools for programming exercises, and
discussed their major features and approaches, including
programming languages, learning management systems, test-
ing tools, limitations on resubmissions, manual assessments,
security, distributions, and specialty.

In [19], Clarke et al. presented an approach of integrating
use of software testing tools into programming and software
engineering courses. It consists of the development of a Web-

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_05

(Advance online publication: 9 February 2013)

__

based repository of software testing tools, the training of
instructors in testing techniques, and the integration of use
of testing tools into programming courses, where results are
promising.

In [20], Denny et al. presented and evaluated a Web-
based tool providing drill and practice supports for Java pro-
gramming called CodeWrite, where students are responsible
for developing exercises that are shared among classmates.
Because it does not adopt a testing tool such as JUnit,
possible variations for program testing are limited.

In [21], Shamsi et al. proposed a graph-based grading
system for introductory Java programming courses called
eGrader. The dynamic analysis of the submitted program is
based on JUnit, and the static analysis is based on the graph
representation of the program. The accuracy was confirmed
through experiments.

VII. CONCLUSION

This paper presented a Web-based Java Programming
Learning Assistant System (JPLAS) using the test-driven
development (TDD) method, to enhance educational effects
in Java programming courses by assisting self-studies of
students while reducing teacher loads. In JPLAS, a source
code and a test code can be tested automatically at the server
by using an open-source software JUnit. Effectiveness of
JPLAS with respect to low loads in use for both teachers and
students, helps in studying Java programming for students,
and the possibility of TDD method educations in Java
programming courses, was verified through an experimental
application to students in our department.

In future studies, we will improve functions in JPLAS by
adopting an advanced programming editor for Web browsers
and JUnit Helper for test code generations, reduce the
response time in testing by improving its codes and allowing
multiple servers, and prepare handbooks for teachers and
students to use JPLAS. For comprehensive evaluations of
JPLAS, we will continue its use in our Java programming
course while giving a variety of assignments with different
scopes and levels to students, measuring the accessing time
and submission times to JPLAS by students, and analyzing
the relationships between them and academic scores of the
class.

REFERENCES

[1] JR East (online), http://www.thefreelibrary.com/LEAD\%3A+JR+
East\%27s+automated+gate+system+fails+to+read+data+from+Suica.
..-a0155493841.

[2] ANA (online), http://www.venturedata.org/?i434\
Japans-All-Nippon-Airways-computer-system-failure-was-canceled-hundreds-of-flights.

[3] Mizuho Bank (online), http://http://www.reuters.com/article/2011/03/
18/mizuho-idUSL3E7EI02L20110318.

[4] K. Beck, Test-driven development: by example, Addison-Wesley,
Reading, 2002.

[5] JUnit (online), http://www.junit.org/.
[6] N. Funabiki, Y. Fukuyama, Y. Matsushima, T. Nakanishi, and K.

Watanabe, ”An error code highlighting function in Java programming
learning assistant system using test-driven development method,” Lec-
ture Notes in Engineering and Computer Science: Proc. The World
Congress on Engineering and Computer Science (WCECS 2012), 24-
26 October, 2012, San Francisco, USA, pp. 230–235.

[7] CodePress (online), http://sourceforge.net/projects/codepress/.
[8] Code coverage measurement tool Cobertura (online), http://cobertura.

sourceforge.net/.
[9] Eclipse (online), http://www.eclipse.org/.

[10] Eclipse (online), http://netbeans.org/.

[11] JUnit Helper (online), http://code.google.com/p/junithelper/.
[12] S. Matsuura and S. Atsuda, ”Lesson support system for improvement

of the programming exercise lesson,” Proc. IASTED Int. Conf. Web-
based Education, pp. 131–136, Feb. 2005.

[13] C. Desai and H. Saiedian, ”Test-driven learning in early programming
courses,” Proc. SIGCSE ’08, pp. 532-536, March 2008.

[14] C. Desai, D. Janzen, and K. Savage, ”A survey of evidence for test-
driven development in academia,” ACM SIGCSE Bulletin, Vol. 40,
No. 2, pp. 97-101, June 2008.

[15] C. Desai, D. Janzen, and J. Clements, ”Implications of integrating test-
driven development into CS1/CS2 curricula,” Proc. SIGCSE ’09, pp.
142-152, March 2009.

[16] G. Röβling, ”WebTasks: online programming exercises made easy,”
Proc. ITiCSE ’08, pp. 363, June 2008.

[17] G. Röβling, ”A family of tools for supporting the learning of pro-
gramming,” algorithms, vol. 3, pp. 168-182, April 2010.

[18] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Spepala, ”Review of re-
cent systems for automatic assessment of programming assignments,”
Proc. Koli Calling ’10, 2010.

[19] P. J. Clarke, T. M. King, E. L. Jones, and P. Natesan, ”Using a Web-
based repository to integrate testing tools into programming courses,”
Proc. SPLASH ’10, pp. 193-200, Oct. 2010.

[20] P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx,
”CodeWrite: supporting student-driven practice of Java,” Proc.
SIGCSE ’11, pp. 471-476, 2011.

[21] F. A. Shamsi and A. Elnagar, ”An intelligent assessment tool for
student’s Java submission in introductory programming courses,” J.
Intelli. Learning Syst. Appl., vol. 4, pp. 59-69, Feb. 2012.

Nobuo Funabiki received the B.S. and Ph.D.
degrees in mathematical engineering and informa-
tion physics from the University of Tokyo, Japan,
in 1984 and 1993, respectively. He received the
M.S. degree in electrical engineering from Case
Western Reserve University, USA, in 1991. From
1984 to 1994, he was with the System Engineering
Division, Sumitomo Metal Industries, Ltd., Japan.
In 1994, he joined the Department of Information
and Computer Sciences at Osaka University, Japan,
as an assistant professor, and became an associate

professor in 1995. He stayed at University of Illinois, Urbana-Champaign,
in 1998, and at University of California, Santa Barbara, in 2000-2001, as a
visiting researcher. In 2001, he moved to the Department of Communication
Network Engineering (currently, Department of Electrical and Communi-
cation Engineering) at Okayama University as a professor. His research
interests include computer networks, optimization algorithms, educational
technology, Web technology, and network security. He is a member of IEEE,
IEICE, and IPSJ.

Yukiko Matsushima received the B.S. degree in
information science from Tokushima University,
Japan, in 2001, and the M.S. degree in commu-
nication network engineering from Okayama Uni-
versity, Japan, in 2010, respectively. In 2001, she
joined Be-Max Professional School as a lecturer.
She is currently a Ph.D. candidate in Graduate
School of Natural Science and Technology at
Okayama University, Japan. Her research interests
include educational technology and Web service
systems. She is a student member of IEICE.

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_05

(Advance online publication: 9 February 2013)

__

Toru Nakanishi received the M.S. and Ph.D.
degrees in information and computer sciences from
Osaka University, Japan, in 1995 and 2000, respec-
tively. He joined the Department of Information
Technology at Okayama University, Japan, as a
research associate in 1998, and moved to the De-
partment of Communication Network Engineering
in 2000, where he became an assistant professor in
2003 and an associate professor in 2006, respec-
tively. His research interests include cryptography,
information security, and network protocol. He is

a member of IEICE and IPSJ.

Kan Watanabe received the B.S., M.S., and Ph.D.
degrees in information technology from Tohoku
University, Japan, in 2006, 2008, and 2011, re-
spectively. In 2011, he joined the Department
of Electrical and Communication Engineering at
Okayama University, Japan, as an assistant pro-
fessor. His research interests include distributed
systems and wireless networks. He is a member
of IEEE, IEICE, and IPSJ.

Noriki Amano received the B.A. degree from
Nihon University, Japan, in 1990, and the M.S. and
Ph.D. degrees from Japan Advanced Institute of
Science and Technology (JAIST), Japan, in 1996
and 1999 respectively. From 1990 to 1994, he
worked at two companies as a system engineer.
In 1999, he joined the Graduate School of Infor-
mation Science at JAIST as an assistant professor.
In 2006, he moved to the Center for Faculty
Development at Okayama University, Japan, as a
senior associate professor. His research interests

include educational technology and software engineering. He is a member
of IEICE, IPSJ, ACM, and AACE.

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_05

(Advance online publication: 9 February 2013)

__

