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Abstract  

As increased energy demand, global warming and other environmental problems 

caused by the use of fossil fuels have brought severe challenges to China, the 

Chinese government has set targets to improve the share of renewable energy in 

the energy structure and promote the construction of wind, photovoltaic and other 

renewable energy power plants. In this study, the researcher develops a geographic 

information system (GIS) and remote sensing (RS) based methodology to assess 

renewable energy potentials in a specific study area at a regional scale from the 

view of spatial planning. The specific aims of the study are: (1) to quantify and map 

the wind energy, solar energy and bioenergy potential from a theoretical level to an 

economic level. (2) to define the social and environmental restrictions for wind, 

photovoltaic and biomass power plants, and (3) to analyze land suitability for wind, 

photovoltaic power plants and to find the optimal locations for biomass power plants. 

The research used the wind speed extrapolation model, Weibull distribution, wind 

power density and wind energy estimation models to assess theoretical and 

technical wind energy potential. Theoretical and technical solar energy potential 

were evaluated using the Bristow and Campbell model, and the solar energy 

estimation model. Land suitability analysis for wind and Photovoltaic (PV) power 

plants was implemented using the multi-criteria method. In addition, the unit 

generation costs of wind power and solar power were calculated, and bioenergy 

potential was derived from net primary productivity (NPP) through generic model. 

The optimal locations of biomass power plants were identified using network 

analysis tools in ArcGIS. One creative research view is that the researcher 

combined renewable energy policy and economic factors, such as cost and price, 

to estimate the economic potential of renewable energy. Thus, through the analysis 

of different scenarios, the effects of incentives contained in renewable energy policy 

become apparent. 

The results of this thesis provide not only the total quantitative amount of renewable 

energy potential, but also identify the spatial distribution of wind, solar and 

bioenergy potential. In the study area, including Hebei Province, Beijing and Tianjin, 

the economic wind potential under current renewable energy policy is 34 TWh, and 

the economic installed capacity is 32 GW. The eligible area for wind projects 
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occupies 21,543 km2, which is enough for 108 GW installed wind power capacity. 

Maintaining the current energy policy and improving transmission lines and local 

grids are crucial for further development. 

Under current energy policy, solar energy using PV technology has no economic 

potential. However, the total technical potential over the region is estimated to be 

2,379 TWh/year for large-scale PV plants. A slight increase in subsidy  and 

prioritising the decentralisation of small-scale PV plants are suggested for the 

development or solar energy in the future. Most of the suitable areas are distributed 

across the north-western part of the study area, on the Bashang Plateau, and cover 

10,634 km2.  

Moreover, the technical biomass power potential in the study area is 214 TWh. The 

economic analysis results based on 12 MW installed capacity and 30 MW installed 

capacity case studies indicate that biomass power plants can be profitable without 

subsidy. The incentives offered under the present energy policy are sufficient to 

stimulate biomass energy development.  

The methodology employed in this study can be used in other study area to assess 

renewable energy potential. Energy project developers can identify new profitable 

areas based on the land suitability analysis results in this study, and policy makers 

can define different parameters (such as restricted areas and energy incentive 

policy)  to analyse their effects on power generation.  
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1 Introduction  

1.1 Motivation  

Based on data from the Population Division of the United Nations and projections 

from the world’s two main energy agencies, the International Energy Agency (IEA) 

and the Energy Information Administration (EIA), total world energy consumption 

will increase from 505 quadrillion British thermal units (Btu) in 2008 to 619 

quadrillion Btu in 2020 and 770 quadrillion Btu in 2035 (Figure 1.1). Most of the 

growth in energy consumption occurs in countries outside the Organization for 

Economic Cooperation and Development (non-OECD nations), where energy 

demand is driven by strong long-term economic growth.  In the reference case, 

energy use in non-OECD nations is set to increase by 85 percent, compared with 

18 percent in OECD economies (EIA, 2011). China, with its economic growth of 

more than 7% in 2013, continues to face a sharp increase in energy consumption: 

since 2009, energy consumption in China exceeds that in the United States (Word 

Energy Council, 2013) and China has become the largest energy consumer in the 

world. 

 

Figure 1.1: World energy consumption, 1990 – 2035 (quadrillion Btu) 

Source: International Energy Outlook 2011 
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Fossil fuels are expected to continue supplying much of the energy used worldwide 

(Figure 1.2) (IEA, 2011). The use of fossil fuels produces significant negative 

environmental effects, especially the rise of carbon dioxide (CO2) emissions. World 

CO2 emissions are expected to increase from 30.2 billion metric tons in 2008 to 

35.2 billion metric tons in 2020 and 43.2 billion metric tons in 2035 (IEA, 2011). 

Since 2006, China’s CO2 emissions from fossil fuel use and industrial processes 

have been the highest in the world and China tops the list of CO2 emitting countries 

(IEA, 2011). In 2013, CO2 emissions reached 10 billion tons, accounting for 30% of 

global CO2 emissions (Netherlands Environmental Assessment Agency, 2013). 

With increased of CO2 emissions from the use of fossil fuels, the issue of global 

warming is becoming a great challenge for the international community. According 

to the Intergovernmental Panel on Climate Change, averaged over all land and 

ocean surfaces, temperatures increased roughly 1.53 °F (0.85 °C) from 1880 to 

2012 (IPCC, 2013).  

 

Figure 1.2: World energy consumption by fuel, 1990 - 2035 (quadrillion Btu) 

Source: International Energy Outlook 2011 

In China, the large population and strong economic growth cause high energy 

consumption, while large domestic coal reserves lead to the wide use of coal for 

electricity generation and industrial processes. Total electricity generation in 2013 
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was 5168.7 TWh, which increased approximately 7% in 2014 (China Statistics 

Bureau, 2013). More than 70% of electricity is produced using coal power plant; the 

installed coal-fired capacity in China is set to nearly double from 2008 to 2035, and 

coal use in China’s industrial sector will grow by 67% (EIA, 2011). Hence, greater 

focus on the environmental problems caused by CO2 emissions is required. 

The increased energy demand and the environmental consequences of 

greenhouse gas emissions have driven the Chinese government to support a 

substantial increase in renewable energy sources, as substituting fossil fuels with 

renewable energy sources is regarded as a significant measure for satisfying the 

increased demand for energy while reducing global carbon emissions. Full use of 

renewable energy sources can help to mitigate global warming in environmental 

terms and also meet energy needs in economic terms (Yue & Wang, 2006). China 

has set the target that the share of renewable energy in the energy structure shall 

reach 20% by 2020 according to the 12th national five-year plan (Yue & Wang, 

2006). Viable renewable energy sources include wind, solar and biomass energy. 

Wind power comprises the largest development and market-oriented utilization of 

renewable resources. Over the last six years, the wind power industry has formed 

30% of global annual installed capacity growth and created 300,000 new jobs 

worldwide in a global business worth $40 billion annually (Grassi et al., 2012). By 

the end of June 2012, grid-connected installed wind power capacity in China 

reached 52.58 GW; the total wind-installed capacity may reach 70 GW by 2015. It 

is planned that the annual output reached 140 TWh (He et al., 2013). 

Solar power is the conversion of sunlight into electricity, directly using photovoltaic 

(PV) technology or indirectly using concentrated solar power (CSP). PV electricity 

is one of the sustainable energy options available worldwide, and PV development 

in China began in 2009 increasing at an annual rate of 200 to 300% (China 

Electricity Council, 2013). Since 2009, the Chinese government has promoted the 

constructions of PV power plants, especially in the northwestern region of China 

because of abundant solar energy and barren land cover. In 2009, China increased 

the installed PV capacity of 160 MW to a total installed capacity of 300 MV, while in 

2013, the 11GW PV capacity increased to a total installed capacity of 17GW (China 

Electricity Council, 2013). At present, the global PV market is growing at an annual 



4          Jie Zhang 

rate of 35% to 40%, and the total installed capacity in China accounts for 40% of 

global installed capacity. By 2015, the total installed PV capacity is planned to reach 

10 GW (Sun et al., 2013). 

Biomass as a renewable and carbon neutral fuel is a sustainable energy source, 

because when biomass is used for energy, it decreases environmental pollution 

caused by Sulphur oxides (Sox) and nitrogen oxides (NOx) emissions and net CO2 

emissions (Liao et al., 2004). Biomass resources can be grouped into wood 

residues generated from wood products industries; agricultural residues generated 

by crops, agroindustry and animal farms; energy crops (that is, crops and trees 

dedicated to energy production); and municipal solid waste (Easterly & Burnham. 

1996). Biomass is used as fuel for direct heating in industrial or domestic 

applications, in the production of steam for electricity generation and for the 

production of gaseous or liquid fuels (Voivontas et al., 2001).  

The total output of straw resources in China in 2005 reached 841 million tons, which 

formed 62% of global straw resources (Bi et al., 2009). Moreover, half the 

population of China lives in rural areas, according to the data of the 6th national 

census, and biomass residues are widely used for cooking and heating in rural 

households, although at low efficiency (MOA/DOE Project Expert Team, 1998). 

Thus, the Chinese government has focused on the development and utilization of 

biomass as an energy resource since 1998, and it has conducted long-term and 

wide-ranging R&D on the latest biomass energy conversion technologies through 

the National Program for Key Science and Technology projects (MOA/DOE Project 

Expert Team, 1998). 

The deteriorating environment, increasing energy demands, and incentives 

contained in renewable energy policy provide a promising outlook for renewable 

energy development in China. Wind, solar and biomass energy all are derived from 

the sun, which supplies a constant flow of energy to the earth (Hoogwijk, 2004). In 

addition, wind, solar and biomass energy are endowed with enormous potential to 

supply energy. To utilize renewable energy in a scientific manner, the assessment 

of renewable energy potential and mapping of the spatial distribution of renewable 

energy potential is the first crucial step. 
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1.2 The potential of wind, solar and biomass energy 

The potential availability of wind, solar and biomass energy in different regions 

varies not only by the theoretical resource availability (theoretical limit) but also by 

geographical conditions, such as land-use demands; by technology characteristics, 

such as innovative conversion technologies; and by economic developments, such 

as investment cost, or operation and maintenance cost, and revenue. When 

studying the potential of renewable energy sources, aspects such as geographical, 

technical and economic development must be considered. Therefore, different 

types of potentials can be defined, such as the categories introduced by Wijk and 

Coelingh (1993): 

• The theoretical potential is the theoretical limit of the primary resource. For solar-

driven sources, this is solar energy or solar energy converted to wind or biomass. 

• The geographical potential is the theoretical potential reduced by the energy 

generated in areas considered available and suitable for this production. 

• The technical potential is the geographical potential reduced by the losses of the 

conversion of the primary energy to secondary energy sources. The technological 

potential is defined by the energy that can be harvested using existing technology.  

• The economic potential is the total amount of technical potential derived at cost 

levels that are competitive compared to those of alternative energy applications. 

Thus, the economic potential is defined as the energy that can be harvested using 

economically feasible installations. Infrastructure or technical constraints (road and 

grid network) and economic aspects (energy production cost and expected profits) 

fix the limits of economic potential, and subsidies and other policy incentives can 

boost economic potential.  

In this study, the researcher assesses the theoretical, geographical, technical and 

economic potential of wind and solar energy. Biomass energy potential is 

determined through the assessment of usable biomass potential and economic 

analysis, as biomass energy differs from wind and solar energy in that biomass 

must be transported to power plants. Thus it is impossible to evaluate the spatial 

distribution of the economic potential of biomass because transport costs must be 
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calculated based on a specific study and the economic analysis should be based 

on a specific case study or a specific project.  

The Wind and Solar Resource Centre of China Meteorology Administration has 

published data on wind resource distribution in China in 2009. However, the 

evaluation is based on the numerical simulation model and the research field is the 

entire country. Similarly, solar resources were evaluated based on measurement 

results from meteorological stations. Several researchers focused on wind and 

solar resource evaluation in specific regions, yet most studies and researches 

assessed only the theoretical potential; few researchers evaluated technical 

potential, economic potential considering the technology, economic aspects and 

energy policies. Bioenergy resource assessment has received little attention, and 

this gap should be addressed in the near future. In contrast, this study includes an 

assessment of not only theoretical potential but also technical aspect, the economic 

potential of renewable energy in light of technology, energy policies and economic 

factors. 

1.3 Research objectives and questions 

The main objective of this study is to present a GIS-based method to assess 

renewable energy potential at a regional scale. The research results provide 

renewable energy project investors and planners with scientific information 

regarding renewable energy potential and suggestions for renewable energy 

development in the near future. To achieve this general objective, specific research 

objectives have been formulated: 

(1) To quantify and map wind energy, solar energy and bioenergy potential 

Wind speed, solar radiation, biomass residues, technology, economic factors 

and renewable energy policies determine renewable energy potential. Wind 

power density and solar radiation are indicators of the theoretical potential of 

wind and solar energy; geographic conditions and technology determine 

technical potential, namely annual energy yield; and the current energy price, 

cost of renewable energy plants, and renewable energy policies have the 

influence economic potential.  
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(2) To define the social and environmental restrictions for wind power, 

photovoltaic and biomass power plants  

Due to the social and environmental restrictions on the construction of power 

plants, restricted areas identified by social and environmental restrictions 

should be excluded. 

(3) To analyze land suitability for wind and photovoltaic power plants, and to find 

the optimal locations for biomass power plants. 

Several aspects should be considered when planning the locations of power 

plants: the transportation cost of biomass is a major element in finding the 

optimal location for biomass power plants and the transportation and 

installation of wind turbines play an important role for wind power plants. 

When determining the locations of wind, photovoltaic and biomass power 

plants, different standards and methods are considered. 

Furthermore, the researcher answers the following questions: 

a. Which types of renewable energy potential are assessed in this thesis? 

b. Which types of renewable energy technologies are adopted in this thesis? 

c. What indicators are used to express the theoretical potential, geographical 

potential, technical potential and economic potential of wind energy and 

solar energy?  

d. What indicators are used to express biological biomass potential and usable 

biomass potential? 

e. How are wind, solar and bioenergy potential based on GIS and RS 

assessed in the given study area? 

f. Which types of restrictions should be considered when positioning power 

plants? 

g. How can one find the optimal sites for biomass power plants and suitable 

area for wind and PV power plants? 

h. How have policies regarding renewable energy incentives influenced the 

development of renewable energy? 

1.4 Outline of the thesis 

This consists of six chapters. Chapter 1 introduces the motivation of the research 

work, concept of renewable energy potential, research objectives and research 
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questions. In Chapter 2 a review of current research is presented with the research 

methods related to the assessment of wind, solar energy and biomass energy 

potential examined separately. Chapter 3 begins with an introduction to the study 

area before information regarding the renewable energy development situation and 

energy policy in the study area is supplied. The data used in this study is listed at 

the end of Chapter 3, and the methodologies used to assess wind, solar and 

biomass energy potential are described in Chapter 4. The framework of the study 

includes methods used in the analysis of theoretical potential, the definition of 

geographical restrictions for power plants, and the analysis of technical energy and 

economic potential analysis and land suitability analysis for power plants. Chapter 

5 contains the results and discussion of the research, including renewable energy 

potential, sensitive analysis and land suitability levels for power plants. In Chapter 

6, the researcher summarizes the main findings of this research and gives an offers 

suggestions for further study. 

 



Review of current research   9 

2 Review of current research  

As renewable energy is the trend for future energy sources, assessing renewable 

energy potential, locating sites for wind and solar farm installation, and identifying 

and characterizing the potential for biomass utilization are unavoidable topics. 

Renewable energy is emerging as a sustainable, environmentally friendly and 

long-term cost-effective energy. Wind speed, solar radiation and biomass 

amounts are the major elements that determine the potential of renewable energy 

resources. Accessibility is limited by geographical conditions, such as terrain 

conditions, nature reserves; hence, a GIS database that contains data on wind, 

solar radiation, biomass amounts, topography, urban areas and special activities 

is essential for the evaluation of renewable energy potential. The main 

advantages of using GIS technology is its flexibility in handling data the available 

on different levels of spatial analysis and its ability to highlight the spatial 

interrelations between data sets (Voivontas, 1998). GIS is used not only for 

storing and managing digital data, but also for spatial analysis. Moreover, RS 

technology provides a rapid method to obtain land use information and monitor 

land use change.  

The improvements in GIS technology, the availability of spatial data and the 

growing interest in renewable energy multiplied the number of studies conducted 

not only on the estimation of solar (Nguyen & Pearce, 2010) and wind energy 

potential (Sliz-Szkliniarz & Vogt 2011; Janke, 2010) but also on the estimation of 

bioenergy potential (Shi et al., 2008). In addition, in recent years, the large-scale 

integration of renewable energy in the landscape has piqued researchers’ interest 

in the application of GIS in the field of social acceptance (Serwan & Baban 2001; 

Simão et al., 2009; Grassi et al., 2012). 

Renewable energy resources can replace conventional sources of energy. 

Renewable energy decision making is considered a multiple-criteria decision-

making problem because of the increasing complexity of the related social, 

technological, environmental and economic factors, and traditional single 

criterion decision-making approaches can’t manage the complexity of current 

systems in addressing this problem (Abu-Taha, 2013). The multi-criteria decision 

method (MCDM) provides a flexible tool that can manage and bring together a 
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wide range of variables appraised in different ways and, thus, offers decision 

makers useful assistance in solving the problem (Abu-Taha, 2013). 

Several projects utilize GIS in the field of renewable energy: many of them employ 

GIS applications in the resolution of localization problems or in resources 

evaluation for specific sources (Domínguez-Bravo et al, 2007). In this field, 

studies of wind farm siting, photovoltaic electrification and biomass evaluation 

stand out (Domínguez-Bravo et al., 2007). In the following paragraphs, the 

researcher separately examines the current research status of the assessment 

of wind, solar and biomass energy potential and MCDM. 

2.1 Assessment of wind energy potential  

Wind power is one form of renewable energy expected to be commercially 

successful, mainly because wind energy can be economically viable and does 

not produce any physical pollution (Serwan & Baban, 2001). Voivontas et al. 

described one of the pioneer projects in 1998, and since then, GIS has been used 

for renewable energy site selection at the local, regional, and national levels.  

Through their research, Voivontas et al. (1998) intended to identify areas with 

high wind energy potential to site wind farms. Based on the normalization of each 

potential type and the determination of the restrictions applicable, theoretical, 

available, technological and economically exploitable potential were selected as 

the different layers of renewable energy potential concepts. Wind resources 

determine the theoretical potential for wind energy and the available potential 

depends on the restrictions imposed by local characteristic. Thus, Voivontas et 

al. (1998) assessed wind energy potential using sequential steps: 

1. Estimation of the existing wind energy system potential  

2. Assessment of the restrictions imposed by local characteristics  

3. Evaluation of the restrictions imposed by the available technology 

4. Assessment of the expected economic profits 

Voivontas’s research is the first application of GIS in estimating the potential of 

renewable energy resources over a large area and a GIS database with data on 

wind, topography, urban areas, and special activities was developed and used 
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for the evaluation of theoretical potential through the spatially continuous 

mapping of renewable energy resources (Voivontas, 1998). 

In the Uited Kingdom, Serwan & Baban (2001) developed a GIS-assisted 

approach to siting wind farms. In this model, public participation is implemented 

through questionnaires about the criteria for locating wind farms: 112 

questionnaires were distributed to gather information about the criteria used to 

locate new areas suitable for wind farms. After collecting responses from the 

public, the criteria are justified by considering previous research and existing 

planning principles. Criteria from different constraint factors, such as topography, 

wind direction, land use, population, access, economy and hydrology as well as 

historic and cultural resource, determined the final wind farm location. The weight 

for each criterion is allocated based on a pairwise comparison for the relative 

importance of the two criteria by rating rows relative to columns and entering the 

rating into a matrix (Serwan & Baban, 2001). This overlay methodology is 

different from the steps used in the research of Voivontas et al. However, both 

methodologies consider physical resources, the accessibility of planning and 

economic feasibility, which provides guidance in the systematic exploration of 

renewable energy potential, from theoretical potential to economic potential.  

In the above research examples, with the spatial analysis and data management 

function of GIS, how to find a reasonable location for wind farms was considered 

a key question. Wind speed maps, which indicate wind resources, were used 

directly as input data in the research. Nevertheless, in some cases, wind resource 

evaluation is considered the central task because wind characterization in terms 

of speed, direction and power is the first step in determining the initial feasibility 

of generating electricity from wind power through a wind farm in a given region 

(Nedaei, 2012). Numerous studies have been undertaken in different countries, 

and these studies can be classified according to methods used to conduct them: 

The first study category includes research that involves the analysis of wind 

speed data from meteorological stations, while considering wind turbine 

characteristics to predict annual energy generation. Hossain (1989) estimated 

annual wind energy generation in Antarctica, India using Weibull distribution 

based on wind speed data. Similarly, Ahmed et al. (2006) assessed wind power 
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potential for coastal areas in Pakistan using available meteorological data. They 

examined wind speed pattern, extractable wind power, wind energy and 

associated Weibull parameter and the results indicate which locations offer the 

greatest wind power potential. Zhou et al. (2006) and Elamouri & Ben Amar (2008) 

used modified power law and the Weibull distribution model to analyze wind 

energy potential in the Pearl River Delta region, China and Tunisia respectively. 

The results include not only wind potential, but also an analysis of seasonal 

variation. The study of the monthly forecasts of the average wind speed in 

Portugal and Cadenas et Rivera in the south coast of Oaxaca, Mexico adopted 

the autoregressive integrated moving average (ARIMA) and artificial neural 

networks (ANN) methodologies for the treatment of wind time series (Rio et al. 

2006; Cadenas, Rivera 2007; Kose et al., 2004). The shortcoming of these 

studies is that only the wind energy for each specific measurement station is 

estimated, which does not indicate wind energy potential over a geographical 

area. This problem can be solved by using the numerical model and GIS methods.  

The second category includes studies involving the extrapolation of wind speed 

over a geographical area with the use of the numerical model. Jackson & Hunt’s 

(1975) theory provided a basis for numerically modelling two-dimensional steady-

state turbulent flow over a low hill. According to their theory, the surface Rossby 

and Reynolds numbers are assumed large enough for the wind profile in most 

parts of the boundary-layer to be logarithmic. The air flow is separated into inner 

and outer regions, and the governing momentum equations are linearized using 

scale analysis and assuming a uniform rough surface and small slope. The inner 

flow is under the balance of perturbation stress, inertia stress and pressure 

gradient, while the outer flow is characterized by a pressure gradient driven by 

irrational flow (Yu et al., 2006). 

Application of the theory to wind energy study led to the development of the two 

most popular microscale-modelling products: WAsP (Mortensen et al., 1993) and 

MsMicro (Walmsley & Salmon 1989; Yu et al. 2006). The Department of Wind 

Energy at the Technical University of Denmark introduced WAsP for predicting 

wind climates, wind resources, wind power productions from wind turbines and 

wind farms in micro scale. The program includes a complex terrain-flow model, a 

roughness change model and a model for sheltering obstacles (Yu et al., 2006). 
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Buflasa et al. (2008) used WAsP modelling to assess wind resources for the 

Kingdom of Bahrain, while Troen & Petersen (1989) describe the procedure of 

wind resource assessment using a microscale model. Microscale models can be 

applied to a horizontal domain of hundreds of square kilometers at a grid spacing 

of 0.1 km if long-term observation data is available for nearby areas. However, 

mesoscale effects are ignored in these microscale models (Yu et al. 2006).  

Mesoscale models can be used to estimate the wind resource while considering 

mesoscale phenomena, such as the channeling effect of wind by wide valleys, if 

large-scale climatological forcing is correctly specified. The Wind Energy 

Simulation Toolkit (WEST) is a mesoscale model developed by the 

meteorological service of Canada for use by the wind energy industry. WEST is 

based on a statistical dynamic downscaling approach that is conducting a 

statistical analysis of climate data to determine the basic atmospheric states and 

a dynamic adaptation of each basic state to high-resolution terrain and surface 

roughness by using mesoscale and microscale models (Yu et al., 2006). Pinard 

et al. (2005) used the WEST model to simulate wind resource for mountainous 

terrain in the Yukon. 

Another currently widely scientifically accepted mesoscale numerical model is the 

Weather Research and Forecasting (WRF) Model, presented by the National 

Center for Atmospheric Research in the United States. This model is a next- 

generation mesoscale numerical weather prediction system designed to serve 

both atmospheric research and operational forecasting needs, and it is suitable 

for a wide range of meteorological applications across scales ranging from meters 

to thousands of kilometers (WRF, 2014). Storm et al. (2009) investigated wind 

energy potential over western Texas and southern Kansas using the WRF model. 

The results indicate that the WRF can capture some of the essential 

characteristics of observed nocturnal low-level jet and thus offers the prospect of 

improving the accuracy of wind resource estimates and short term wind energy 

forecasts.  

Other mesoscale models, such as CALMET, have proven to be particularly 

suitable for complex terrain, as well as large areas and long-term simulations. 

Furthermore, its use to properly downscale prognostic models for wind resource 
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assessment purposes has been proven, for example, in combination with Fifth-

Generation NCAR/Penn State Mesoscale Model (MM5). Yim et al. (2007) 

investigated the wind energy potential in Hong Kong, a region with a complex 

terrain, by coupling the prognostic MM5 mesoscale model with the CALMET 

diagnostic model to produce high-resolution wind fields. The MM5 model wind 

field (1.5 km horizontal resolution) output was input into the CALMET diagnostic 

meteorological model every hour while following an objective analysis procedure 

using all available observations. The results identified the locations of the highest 

wind energy potential in Hong Kong down to 100 m resolution. 

Thus, the numerical simulation model is used to simulate the surface boundary 

layer flow in complex terrain to overcome the limitations of simple interpolation or 

extrapolation of observation data. However, the numerical simulation model 

requires the support of a super computer because of the heavy simulation 

workload and the work is time consuming. Under the limited conditions created 

by the lack of a super computer, it is impossible to investigate wind energy 

resources over a large area. 

The third study category involves the extrapolation of wind speed over a 

geographical area based on a GIS platform. The evaluation of global wind power 

conducted by the Department of Civil and Environmental Engineering at Stanford 

University. This study intended to quantify the world’s wind power potential from 

measured data in surface stations and sounding stations. Wind speed and 

temperature data from the National Climatic Data Center and Forecast Systems 

Laboratory for the years 1998-2002 were used to generate maps. To obtain 

estimates of wind speed at 80 m at all sites (sounding, surface and buoy stations), 

a revised version of the least square methodology was used. A map of wind 

speed extrapolated to 80 m indicates the high potential of wind energy (Archer, 

2005). Nevertheless, the interpolation or extrapolation of observation data has 

limitations. One major limitation is that the distribution of measurement stations 

is uneven, which leads inaccuracy. In regions where few measuring stations are 

located, inaccuracy can be so significant that it cannot be dismissed.  

Similarly, in a study conducted in India by Hossain et al. (2011), the researcher 

assessed wind energy potential using GIS platform, wind speed measurements 
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and NCEP/NCAR reanalysis data. This methodology involves computation of 

wind speeds at boundary layer level through vertical extrapolation of known or 

measured mean annual wind speed, interpolation of the extrapolated wind 

speeds to arrive at a mean annual wind field at boundary layer level and 

computation of wind speed at the hub height of the wind turbine (Hossain et al., 

2011). In addition, Sliz-Szkliniarz & Vogt (2011) adopted an interpolation method 

based on a GIS platform to assess wind energy potential in Kujawsko-Pomorskie 

Voivodeship, Poland. The results indicate annual wind energy yield and 

economic potential. 

GIS has been used as a tool for performing operations on geographic data to 

determine the potential for wind energy. It can be used to define the amount of 

wind energy that could be harnessed as well as whether the land is appropriate 

for development for both onshore and offshore wind turbines. Moreover, GIS has 

been used in wind energy research for decision-support systems to evaluate 

potential locations for wind energy generation, and the spatial analysis function, 

buffering tool and aggregation function of composite maps in GIS are the most 

widely used tools in the wind energy field. 

2.2 Assessment of solar energy potential 

Solar radiation is a key factor in determining the amount of electricity produced 

by PV system, and primary solar radiation data are measured at a limited number 

of climatic ground stations (Šúri et al., 2005). Ground-measured solar radiation 

data are seldom scarcely available for a given site where a solar system is 

planned, as measurement networks’ density is usually far too low (Hammer et al., 

2003b). To measure solar radiation over a large region, interpolation techniques, 

such as spline, inverse distance weighted, kriging interpolation method are used. 

In addition to obtaining direct measurements from meteorology stations, solar 

radiation can be calculated using mathematical models, meteorological 

geostationary satellites and an enabled model in a GIS platform. Several studies 

have been conducted to estimate the spatial distribution of solar radiation based 

on mathematical models, satellite data and GIS. (Şenkal & Kuleli, 2009; Gurel & 

Ergun 2012; Coskun et al., 2011; Janjai et al., 2011;Zarzo & Martí 2011).  
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From the 20th century, numerous solar radiation mathematical models have been 

developed in an attempt to estimate solar radiation around the world. Ångström 

proposed the first theoretical model for model estimating global solar radiation 

based on sunshine duration. However, Ångström-model estimation of solar 

radiation is based on the sunshine percentage, which is difficult to interpolate; 

therefore, the Ångström-model is difficult to use when estimating spatial solar 

radiation distribution. Katiyar & Pandey (2013) reconsidered this model to make 

it possible to calculate the monthly average of the daily global radiation on an 

extraterrestrial horizontal surface (Korachagaon, 2012), while Bristow & 

Campbell (1984) suggest a relationship between the daily temperature range and 

daily global solar radiation. Additionally, Allen (1997) estimates mean monthly 

global solar radiation as a function of extraterrestrial solar radiation, mean 

monthly maximum temperature and mean monthly minimum.  

The Bristow - Campbell model is widely used in ecological science and the 

geosciences (Luo et al., 2010; Chen et al., 2004; Ball et al., 2004). Thornton & 

Running (1999) present a reformulation of the Bristow - Campbell model for daily 

solar radiation using daily observations of radiation, temperature, humidity and 

precipitation. In contrast, the cloudiness model by Kasten & Czeplak (1980) is 

based on the observed cloudiness, cloud height, cloud form and so forth, and it 

depends mainly on the visual records of observers. Because cloud observation 

data have relatively large uncertainties, cloudiness model has not been widely 

used (Furlan et al., 2012; Luo et al., 2010). The Ångström sunshine percentage 

model, Bristow–Campbell model and cloudiness model are empirical models.  

The mechanism model, such as meteorological/statistical solar radiation model 

(METSTAT) by Maxwell (1998), is an alternative type of mathematical model. 

Mechanism models consider the effects of the main components of air on solar 

shortwave radiation and simulate solar radiation based on different direct 

radiation and scattered radiation generation mechanisms (Pan et al., 2013). 

METSTAT was developed specifically to support the creation of the national solar 

radiation database for the United States (Maxwell, 1998). The model consists of 

deterministic algorithms designed to produce accurate monthly means for each 

element for each hour and statistical algorithms intended to simulate the 

statistical and stochastic characteristic of multi-year solar radiation data sets.  
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In recent years, with the development of RS technology, modern algorithms allow 

the estimation of solar irradiance via satellite measurements, which provides an 

alternative method of radiation estimation. Qin et al. (2011) estimated monthly-

mean daily global solar radiation in the Tibetan Plateau based on Moderate 

Resolution Imaging Spectro-radiometer (MODIS) monthly averaged land surface 

temperature and Tropical Rainfall Measuring Mission (TRMM) satellite monthly 

precipitation dada. Similarly, Janjai et al. (2009) present a model for calculating 

global solar radiation from geostationary satellite data. This model represents a 

physical relationship between the earth-atmospheric albedo derived from 

Geostationary Meteorological Satellite (GMS5) data and the absorption and 

scattering coefficients of various atmospheric constituents.  

One advantage of RS is its ability to collect continuous signals in space and time 

at the top of the atmosphere (Qin et al., 2011), which makes estimating radiation 

in remote regions where radiation stations are sparse possible. Geostationary 

satellites, such as Meteorological Satellite (METEOSAT) provide an opportunity 

to derive information on solar radiance for a large area at a temporal resolution 

of up to 30 min and a spatial resolution of up to 2.5 km (Hammer et al., 2003a). 

Several researchers estimated monthly-mean daily global solar radiation based 

on remote sensing products (Renne et al., 1999; Qin et al., 2011). However, 

satellite data are not always free and not typically available for field-scale 

predictions, and their non-precise historical databases have limitations.  

Another group of methods used to estimate solar radiation is based on GIS. 

Charabi & Gastli (2010) developed solar radiation maps in Oman using a solar 

radiation tool enabled in ArcGIS, which allows users to map and analyse the 

effects of the sun over a geographic area for specific periods. It includes area 

solar radiation and point solar radiation tools, and accounts for atmospheric 

effects, site latitude and elevation, steepness (slope) and compass direction 

(aspect), daily and seasonal shifts of the angle of the sun, and effects of shadows 

cast by surrounding topography (Esri, 2013). Incoming solar radiation originates 

from the sun, is modified as it travels through the atmosphere, is further modified 

by topography and surface features, and is intercepted at the earth’s surface as 

direct, diffuse, and reflected components. The sum of direct, diffuse, and reflected 

radiation forms global solar radiation. Generally, direct radiation is the principal 
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component of total radiation, and diffuse radiation is the second largest 

component. The solar radiation tools in ArcGIS Spatial Analyst do not include 

reflected radiation in the calculation of total radiation. Therefore, total radiation is 

calculated as the sum of direct and diffuse radiation. Moreover, the solar radiation 

tools can perform calculations for point locations or for entire geographic areas 

(Esri, 2013). This tool is suitable in a small area; in a large area, the calculation 

process is too time consuming.  

R.sun is a solar radiation calculation model implemented in the GRASS GIS 

open-source environment. It is widely used in the calculation of solar radiance 

due to its open-source design and the accuracy of the simulation (Šúri et al., 2005; 

Hofierka & Kaňuk, 2009; Nguyen & Pearce; 2010). This model is based on a 

comprehensive methodology for spatially and temporally distributed computation 

of solar irradiation and irradiance developed by Šúri and Hofierka (2004), and the 

methodology follows the research conducted for the European Solar Radiation 

Atlas. The integration of r.sun with the open-source environment of GRASS GIS 

provides another GIS tool for direct input and output data processing directly 

within a single computing environment (Šúri & Hofierka 2004). 

At present, various data sets offering solar radiation and other climatic data, such 

as the European solar radiation Atlas, are available. Information on solar radiation 

and related parameters also is available on various website. The market 

development of solar energy not only depends on solar resource but also is 

strongly affected by policy, technological development, and whether solar energy 

products are economic. It is necessary to integrate all these influencing factors to 

analyse the potential of solar energy as a source for producing electricity and to 

plan the exploitation of solar energy in a given area (Sun et al., 2013).  

2.3 Assessment of bioenergy potential  

Voivontas et al. (2001) conducted pioneering research in the analysis of biomass 

resources based on the GIS method and national statistical data. They used 

Crete, the largest Greek island, as a case study and evaluated biomass resource 

by separately assessing theoretical biomass potential, available biomass 

potential, technological biomass potential and economic biomass. In this study, 

theoretical biomass potential is viewed as the total annual production of 
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agricultural, forestry and other residues in a region. The potential represents the 

total quantity of agriculture residues generated in a region and is considered the 

upper boundary of the bioenergy that actually can be derived from cultivated 

crops in the area. The theoretical biomass potential from agricultural residues in 

a specific region is a function of the cultivated area and the biomass production 

yield of each crop, while the available biomass potential is defined as the biomass 

that can be technically and economically harvested and used for energy purposes 

(Voivontas, 2001). The technological biomass potential for a particular biomass 

source and a specific energy form is defined as the energy that can be produced 

and is restricted by the characteristics of the selected energy production 

technology (Voivontas, 2001).  

A wide array of technologies makes energy production from biomass possible. 

The most popular are direct firing for steam production, integrated gasification 

combined cycle, and co-firing with fossil fuels (US Department of Energy, 1997). 

The technology selected to exploit the biomass from crop residues depends on 

specific energy needs and the efficiency of the energy production process. The 

first step in the assessment of biomass energy potential is the estimation of 

biomass amount. 

Methods of biomass estimation are classified into three groups based on the 

different methodologies, namely field measurement, RS technology and GIS 

method.  

The first category is estimation of biomass based on filed measurement. 

Traditional techniques based on field measurement are the most accurate ways 

for collecting biomass data. A sufficient number of field measurements are a 

prerequisite for developing biomass estimation models and for evaluating the 

above ground biomass (AGB) estimation results (Lu, 2006).Thus, Klinge et al. 

(1975) analyzed the AGB of a central Amazonian rain forest using destructive 

sampling based on sample trees, while Overman et al. (1994) conducted a study 

near Araracuara in Colombia to determine AGB by means of regression analysis. 

Dry weight, total height and specific wood density were measured on 54 

harvested trees chosen in a selected random manner. In addition, Gillespie et al. 

(1990) developed an exponential model for converting volume of residues to 
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biomass. However, these approaches are often time consuming, labour intensive 

and difficult to implement, especially in remote areas; and they cannot provide 

the spatial distribution of biomass in large areas.  

The second category is estimation of biomass based on RS, which are divided 

into four groups based on the scales of data - spatial resolution data, medium 

spatial resolution data, coarse spatial resolution data and radar data.  

Tiwari & Singh (1984) used black-and-white aerial photographs and non-

destructive field sampling to map forest biomass in the Kumaun Himalaya in India, 

while Thenkabail et al. (2004) used multi-data IKONOS images to develop 

biomass models and to calculate the carbon stock levels of West African oil palms. 

These two studies were based on fine spatial-resolution data. The drawback of 

this technique is the lack of shortwave infrared images, which often are important 

for AGB estimation. Moreover, obtaining high-resolution images is significantly 

more expensive and the implementation of data analysis is far more time 

consuming than when using medium spatial-resolution images.  

The Medium spatial-resolution ranges from 10 to 100 m, and includes Landsat 

Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) data. Lu & 

Batistella (2005) used TM data to explore relationships between TM image 

textures and aboveground biomass in Rondonia in the Brazilian Amazon. Zheng 

et al. (2004) coupled aboveground biomass values, calculated from field 

measurements of tree diameter at breast height, with various vegetation indices 

derived from Landsat 7 ETM+ data through multiple regression analysis to 

produce an initial biomass map. In practice, it is difficult to identify which texture 

measures, window sizes, and image bands are suitable for a specific research 

topic, and the lack of guidelines on how to select an appropriate texture further 

complicates the process (Liu, 2012a). 

Coarse spatial resolution is often greater than 100 m and includes National 

Oceanic and Atmospheric Administration (NOAA) Advanced Very High 

Resolution Radiometer (AVHRR), SPOT VEGETATION and MODIS, which 

frequently are used on national, continental and global scales. Baccini et al. (2004) 

used MODIS data in combination with precipitation, temperature and elevation 
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information for mapping AGB in national forest lands in California in the United 

States.  

In many areas, frequent cloud cover limits the acquisition of high-quality remotely- 

sensed data. Thus, radar systems offer a feasible method of acquiring remotely 

sensed data within a given time because the systems can collect earth feature 

data irrespective of weather or light conditions. Radar backscatter in the P and L 

bands is highly correlated with major forest parameters, such as tree age, tree 

height, basal area, and AGB (Lu, 2006). Synthetic aperture radar (SAR) L-band 

has proven to be particularly valuable for AGB estimation (Sun et al., 2002). 

However, several constraints limit the use of radar data in biomass estimation: 

data are captured through airborne sensors, which is an expensive, and the data 

analysis involved in pre-processing, the removal of noise, and image processing 

require specialist software and advanced skills and knowledge (Lu, 2006).  

Nevertheless, RS data has advantages in repetitive data collection: it is digital 

format allows the rapid processing of large quantities of data (Lu, 2006). Shi et al. 

(2008) conducted a case study using RS and GIS to evaluate the biomass 

potential, feasibility of establishing new biomass power plants and the 

optimization of the locations of plants in Guangdong, China. The researchers 

estimated the available biomass potential using MODIS/Terra data based on RS 

and GIS. Furthermore, the biomass was connected to the biomass power plants. 

The feasibility of establishing new biomass power plants was assessed with the 

aid of a network analysis function in GIS.  

When combined with ancillary data, such as slope, soil, precipitation and 

statistical data, GIS offers an additional method for biomass estimation and the 

assessment of bioenergy potential.  

Brown & Gaston (1995) used the GIS method to produce geographically 

referenced, spatial distributions of potential and actual AGB density of all forest 

types in tropical Africa. Similarly, Zhuang et al. (2011) used ancillary data and 

GIS techniques to assess marginal land resources and bio-fuel potential in China. 

The multi-factor analysis method allowed them to identify marginal lands for 

bioenergy development, but the researchers focused on the siting of a bioenergy 

plant and land use, and not on the utilization of residues from farmland and 
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forests. The results indicated that 10% of this marginal land was utilized fully for 

growing energy plants; 13.39 million tons of bio-fuel would be produced. GIS 

further allows spatial analysis for site selection of biomass power plants. Shi et 

al. (2008) used network analysis in GIS to select optimal biomass energy plants 

in Guangdong province, China. 

Graham et al. (1996) designed a GIS model for analyzing the geographic 

variation in potential bioenergy feedstock supplies and optimal locations for siting 

bioenergy facilities. This model is designed for examining individual American 

states but could readily be adapted to any geographic region. It combines soil 

quality, climate, land use and road network information with transportation, 

economic and environmental models to predict both where energy crops would 

be grown and the marginal cost of supplying biomass from energy crops to 

specific locations (Graham et al., 1996).  

GIS-based methods using ancillary data requires high-quality ancillary data, the 

existence of indirect relationships between AGB and ancillary data and 

information regarding the comprehensive effects of environmental conditions on 

AGB accumulation (Lu, 2006). Moreover, research on bioenergy involves ABG 

biomass estimation, bioenergy potential based on energy plants, bioenergy 

potential from residues of farmland and forests, and the economic analysis of 

biomass power generation schemes under renewable energy initiatives based on 

economic analysis methods, for example, net present value analysis.  

In addition to the analysis methods mentioned above, several other analysis 

technique exits in the field of biomass energy, including economic analysis 

methods. Moon et al. (2011) conducted an economic analysis of biomass power 

generation in South Korea for two technologies, namely direct combustion with a 

steam turbine and gasification with a syngas engine. In view of the present 

domestic biomass infrastructure of Korea, a small and distributed power 

generation system ranging from 0.5 to 5 MW was considered and it was found 

that gasification with a syngas engine becomes more economically feasible as 

plant size decreases. Wu et al. (2002) conducted an economic analysis of 

biomass gasification and power generation in China. In this study, experimental 

data from 1MW scale circulating fluidized bed biomass gasification and power 
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generation (BGPG) plants were analyzed. It was found that the unit capital cost 

of BGPG is only 60-70% of that of a coal power station and its operation cost is 

much lower than that of a conventional power plant (Wu et al., 2002).  

2.4 Multi-criteria decision making method  

Multi-criteria decision making (MCDM) methodology is a branch of operation 

research models and a well-known method of decision making. These methods 

can manage both quantitative and qualitative criteria and can be used to analyze 

conflict in criteria and decision makers (Pohekar & Ramachandran, 2004). MCDM 

can be divided into two categories, namely multi-objective decision making 

(MODM) and multi-attribute decision making (MADM). In MODM, the decision-

making problem is characterized by the existence of multiple and competitive 

objectives that should be optimized against a set of feasible and available 

constraints; in contrast, in MADM, a set of alternatives is evaluated against a set 

of criteria (Pohekar & Ramachandran, 2004). MCDM is helpful solving the 

complex interactions for decision making in renewable energy systems. 

Compared to the single-criterion approach, the advantage of MCDM methods is 

employing multiple-criteria or attributes to obtain an integrated decision-making 

result.  

MCDM includes several different methods, the most important of which involve 

the analytic hierarchy process (AHP), the preference ranking organization 

method for enrichment evaluation (PROMETHEE), elimination and choice 

translating reality (ELECTRE) and multi-attribute utility theory (MAUT) (Abu Taha, 

2013). MAUT is the most common MCDM method used in energy planning 

literature, followed by AHP, PROMETHEE, ELECTRE, and decision-support 

systems (DSS) (Pohekar & Ramachandran, 2004). A brief summary of the most 

well-known MCDM methods follows. 

 MAUT: One of the most popular MCDM methods in decision making, the 

theory considers the decision maker’s preferences in the form of the utility 

function, which is defined over a set of attributes where the utility of each 

attribute/criterion does not have to be linear (Wang et al., 2010). 

 AHP: A MADM method first introduced by Saaty (Saaty, 1980), AHP is a 

type of weighted sum method. In AHP, the problem is constructed as a 
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hierarchy by breaking down the decision from the top to the bottom. The 

goal is at the first level, criteria and sub-criteria are in the middle levels and 

alternatives are at the bottom layer of the hierarchy. The input of experts 

and decision makers are considered as pair-wise comparison, and the 

best alternative can be selected according to the highest rank between 

alternatives (Abu Taha, 2013). 

 Analytic network process (ANP): The ANP methodology is a general form 

of the AHP; Saaty (1996) introduced both. Although AHP is easy to use 

and apply, its unidirectional relationship characteristics cannot manage the 

complexity of many problems. ANP deals with the problem as a network 

of complex relationships between alternatives and criteria where all the 

elements can be connected. Cheng & Li (2005) provide an empirical 

example to illustrate the use of ANP. 

 PROMETHEE: This method is characterized by ease of use and 

decreased complexity. It uses the outranking principle to rank the 

alternatives and performs a pair-wise comparison of alternatives to rank 

them with respect to a number of criteria. The family of PROMETHE 

includes PROMETHEE I & II (Oberschmidt et al., 2010). 

 ELECTRE: This method is capable of managing discrete criteria that are 

both quantitative and qualitative in nature and provides complete ordering 

of the alternatives. The analysis is focused on the dominance relationship 

between alternatives and is based on the outranking relations and 

exploitation notions of concordance. The outranking method uses pair-

wise comparison between alternatives (Wang et al., 2009). The family of 

ELECTRE includes ELECTRE I, II, III and IV. 

Abu Taha (2013) has notes that MCDM methods include four main stages: (1) 

structuring the decision process, alternative selection and criteria formulation; (2) 

displaying trade-offs among criteria and determining criteria weights; (3) applying 

value judgments concerning acceptable trade-offs and evaluation; and (4) final 

evaluation and decision making. 

The application of MCDA in energy-related matters includes energy planning and 

power plant allocation (Akash et al., 1999; Madlener et al., 2009), energy 
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resource allocation (Ramanathan & Ganesch, 1993), energy policy (Greening & 

Bernow, 2004) and energy management (Ben Salah et al., 2008). Developing 

evaluation criteria and methods is a prerequisite for selecting the best alternative, 

identifying energy supply systems, informing decision makers of the integrated 

performance of the alternatives, and monitoring effects on the social environment.  

Weights are assigned to the criteria to indicate their relative importance and are 

determined by the variance degrees of criteria, the independency of criteria and 

the subjective preferences of the decision makers. The methods used to assign 

weights include equal weights and rank-order weights. However, the equal- 

weights method has been criticized because it ignores relative importance among 

criteria. Rank-order weighting methods are classified into three categories: the 

subjective weighting method, objective weighting method and combination 

weighting method. Criteria weights determined by the subjective weighting 

method depend only on the preference of decision-makers and not on the 

quantitative measured data of energy projects. Conversely, objective weights are 

obtained using mathematical methods based on the analysis of the initial data. 

Subjective weighting methods explain the evaluation clearly, while objective 

methods are relatively weak. Additionally, the judgments of decision makers 

sometimes depend on their knowledge or information. Thus, errors in assigning 

criteria weights are unavoidable to some extent. An integrated method could 

overcome these shortcomings and could be the most appropriate technique for 

determining criteria weights (Wang et al., 2009). 

Pair wise comparison and AHP are the most commonly used methods in 

sustainable energy decision making. In the pair wise comparison method, 

participants are presented a worksheet and are asked to compare the importance 

of two criteria at a time, each time answering the question, ‘‘Which one of these 

two criteria is more important, and how much more important?’’ (Wang et al., 

2009). Relative importance is scored using various scales; a scale of 0 (equal 

importance) to 3 (absolutely more important) is usually adopted. The results are 

consolidated by adding the scores obtained by each criterion when preferred to 

criteria with which it is compared.  
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The classic MCDA methods generally assume that all criteria and their respective 

weights are expressed in clear values and, thus, that the rating and ranking of 

the alternatives can be carried out without any problem (Wang et al., 2009). 

Nevertheless, in a real-world decision situation, the application of the classic 

multi-criteria evaluation methods may face serious practical constraints from the 

criteria, perhaps because of imprecision or vagueness inherent in the information. 

Due to the availability and uncertainty of information and the vagueness of human 

feeling and recognition, such as classifying agreement as ‘equally’, ‘moderately’, 

‘strongly’, ‘very strongly’, ‘extremely’ and a ‘significant degree’, it is difficult for 

decision makers to assign exact numerical values to the criteria, make precise 

evaluation and convey their feelings about and recognition of objects (Wang et 

al., 2009). Hence, most of the selection parameters cannot be provided precisely 

and the evaluation data of the alternative suppliers’ suitability for various 

subjective criteria and the weights of the criteria are usually expressed in linguistic 

terms by the decision makers. Furthermore, it is also recognized that human 

judgment on qualitative criteria is always subjective and therefore imprecise. 

The fuzzy set theory introduced by Zadeh (1965) can solve this problem and play 

an important role in the decision situation. The combination of MCDM methods 

and fuzzy set theory has been applied in renewable energy cases. Mamlook et 

al. (2001) used fuzzy set methodology to perform the comparison between 

different solar power systems for various applications to determine the order in 

which systems should be prioritized for use in Jordan. 
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3 Study area and renewable energy development  

3.1 Study area  

The study area of this research—Hebei Province; Beijing, the capital of China 

and Tianjin, one of four municipalities in China—lie in northern China (Figure 3.1). 

The area covers 217,141 km2, of which 73,237 km2 is agricultural land and 54,800 

km2 is forest, and there is abundant biomass residue resource in the study area. 

It has a continental monsoon climate, with temperatures of -14 to -2 oC in January 

and 20 to 27 oC in July, and annual precipitation of 400 to 800mm, occurring 

mostly in summer.  

The population of the study area was 95 million in 2013, and population density 

is illustrated in Figure 3.2. In the same year, the region’s gross domestic product 

(GDP) reached USD 882.3 billion, accounting for 11% of the national GDP (China 

Statistics Bureau, 2013). The spatial distribution of GDP can be seen in Figure 

3.3. Economic growth and a large population have led to enormous energy 

consumption in the area (Figure 3.4).  

Most central and southern parts of the study area lie within the North China Plain. 

The western part is raised into the Taihang Mountains, while the Yanshan 

Mountains are located in the north-eastern part. The northern part is adjacent to 

the Inner Mongolia Plateau. The highest peak is Mount Xiaowutai in north-

western Hebei. Wind conditions during the year are characterized chiefly by the 

same mechanisms, including south-east trade winds during summer and autumn, 

and north-west trade winds during winter and spring. The abundant biomass 

resources, economic growth and large population in the study area attract 

research regarding the assessment of biomass potential and site selection for 

biomass potential. 
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Figure 3.1 The geographical position and elevation (m) of study area  

Source: Own illustration, elevation data from International Scientific Data Service 
Platform (http://www.cnic.cn/zcfw/sjfw/gjkxsjjx/) 
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Figure 3.2 Population density in the study area in the year of 2013 

Source: Own illustration, population data is based on statistic year book from 2014 
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Figure 3.3 GDP in the study area in the year of 2013 

Source: Own illustration, population data is based on statistic year book from 2014 



Study area and renewable energy development   31                           

 

Figure 3.4 Energy consumption in the study area in 2013 

Source: Own illustration, population data is based on statistic year book from 2014 
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3.2 Renewable energy development and energy policies in the study 

area 

Hebei Province ranked the second behind Inner Mongolia on installed wind power 

capacity in China at the end of 2013; the cumulative installed wind capacity was 

8.59 GW. With the installed wind power capacity in Beijing and Tianjin, total 

cumulative installed wind power capacity in the study areas was 8.96 GW, and 

the total installed capacity in China was 92 GW (China Renewable Energy 

Statistic Year-book, 2013). With the substantial growth in the last 10 years (Figure 

3.5), these areas play an important role in the future of wind-generated power. 

By the end of 2015, installed wind power capacity in these areas is planned to 

reach 11GW, based on the 12th national five-year plan. 

 

Figure 3.5 Growth of the cumulative installed wind power capacity (MW) in study area 
(2004-2013) 

Source: Own illustration, based on China renewable energy statistic yearbook from 2014 

The Renewable Energy Law, published in 2006, states that the gap between the 

costs of electricity generated from renewable energy and conventional energy 

sources should be subsidized by the Renewable Energy Development Fund 

(Zhang et al., 2014). The National Development and Reform Commission 
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(NDRC), the country’s economic planning agency, identified four categories of 

onshore wind projects in 2009 based on the locations of wind farms. Areas with 

better wind resources had lower feed-in-tariffs, while those with lower outputs 

were able to access more tariffs that were more generous. The four wind feed-in-

tariff (FIT) levels ranged from 0.51 to 0.61 ¥/kWh (1¥=$0.16 at time of writing) 

nationwide. Under this scheme, grid operators are forced to offer a premium for 

wind-generated power over coal power. This represents a significant premium on 

the average rate of 0.41 ¥/kWh paid to coal-fired electricity generators. Two 

different FIT exist in this study (see Figure 3.6): northern parts of study area, the 

two cities of Zhangjiakou and Chengde, have lower FIT than other regions due to 

their superior wind resources. 
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Figure 3.6 Two level of feed-in-tariffs for onshore wind power in China 

Source: Own illustration, based on the publish report from NDRC 

Because of this FIT, a rapid increase in wind installations has taken place since 

2006. In addition, other forms of financial support from the national and provincial 
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governments are essential incentives for the dramatic growth of wind power 

installation in China. To promote wind power, the State Tax Bureau has instituted 

a preferential discount of 50% on value added tax (VAT) on wind power; thus, 

VAT has been discounted to 8.5%. Similarly, in Hebei Province, the VAT on wind 

power has been reduced to 6%. Preferential policies further allow for an initial 

two-year income tax exemption, followed by three years at 50% of the normal 

rate (hence, 12.5% at the current rate), and the next 15 years at a rate of 15%. 

Compared to the cumulative installed wind capacity, the cumulative installed PV 

capacity in this region is significantly lower, with only 680 MW in 2013. The high 

cost of PV has historically restricted China’s PV market growth. For many years, 

China’s PV power market concentrated only on off-grid electrification projects in 

rural areas. Moreover, large-scale PV development in China is related closely to 

the government’s incentive policies, such as the Golden Sun Demonstration 

Program (2009) and the national feed-in-tariff scheme (2011). The Golden Sun 

Demonstration Program has supported the development of more than 500 MW 

of solar PV projects in two to three years, and the program provides 50% of the 

total costs for on-grid projects. However, it requires the system size to be larger 

than 300 kW (Zhang and He, 2013). According to the regulations of the feed-in- 

tariff policy, projects which completed construction and achieved commercial 

operation before 31 December 2011 receive a tariff of 1.15 ¥/kWh; projects that 

did not complete construction before 31 December 2011receive a tariff of 1 ¥/kWh, 

which equals 0.16 $/kWh at the current exchange rate (Zhang and He, 2013). 

In China, a total amount of 480 million tons of oil equivalent from biomass is 

available annually, of which approximately 76% is usable for electricity generation. 

Crop residue accounts for 50% of the total biomass resources; however, crop 

residue is dispersive and greatly influenced by seasons, and hence costs of 

transportation and storage are two important factors that determine the technical 

route, generating capacity, and location of power stations (Wu et al., 2010). 

Biomass power generation includes three types of technologies: power is 

generated through biomass gasification, biomass direct combustion and co-firing. 

The Law of Renewable Energy, published in 2005 and implemented from 2006, 

has set the purchase price of electricity from biomass power generation at 
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0.25 ¥ higher than that of electricity from coal-fired power plants (NDRC,2005). 

Due to this incentive-based renewable energy policy, 39 biomass power projects 

with installed capacities totalling 1284 MW obtained construction licenses from 

local governments by the end of 2006. Most of these projects employ biomass 

direct combustion technology introduced by Danish company BWE. The first two 

power stations, with the capacities of 2*12 MW and 25 MW were established in 

the Hebei and Shandong Provinces.  

By the end of 2013, based on information contained in the author’s incomplete 

statistical study, 12 biomass plant projects had been constructed or were under 

construction in the study area. The total installed capacity exceeds 300 MW, and 

installed capacity for each project ranges from 12 MW to 30 MW, with an average 

installed capacity size of 24 MW. All the projects use biomass direct combustion 

technology and combine power and heat production. 

Energy policies for biomass generation include electricity price subsidies, a VAT 

refund (defined uniformly by the Ministry of Finance) and an income tax reduction. 

In some areas, such as industrial parks, reduction of income tax is a method used 

to attract investment, for example, by offering exemption from income tax for the 

first three years and a 50% reduction for the next two years. The electricity price 

subsidiary increases the price to 0.75 ¥/kWh, which equates to the benchmark 

price plus a subsidiary price equal to 0.75 ¥/kWh. In addition to these, different 

provinces might have other supportive policies for biomass power generation, 

especially soft policies, such as lower rental of land or energy-saving reward. 

3.3 Data 

Data is the fundamental and essential element for GIS analysis. The data used 

in this thesis include data derived from remote sensing, raster and vector data in 

GIS, meteorological data from meteorological stations and other ancillary data. 

The categories and data sources are listed in Table 3.1. 
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Table 3.1 Data and data source 

Data 
Category 

Data Source 

Data 
derived 
from remote 
sensing 

Land cover data United States Geological Survey(USGS) 

NPP data United States Geological Survey(USGS) 

GIS data Elevation data International Scientific Data Service Plat form 

Natural reserve data Digitalization based on published map 

Road network data AutoNavi Holdings Limited 

Airport data Digitalization based on Google Earth 

Existed coal power 
plants distribution 
data  

Compiled based on related data 

Meteorology 
data 

Wind speed data  China meteorological data sharing service system 

Temperature data  China meteorological data sharing service system 

Ancillary 
data 

Population data Statistic yearbook from the year of 2014 

Crop production 
data 

Statistic yearbook from the year of 2013 

 

Annual land cover type in the global region is provided by the US Geology Survey 

(USGS), while the MODIS Land Cover Type product contains five classification 

schemes that describe land cover properties derived from observations spanning 

a year’s input of Terra- and Aqua-MODIS data. The primary land cover scheme 

identifies 17 land cover classes defined by the International Geosphere 

Biosphere Programme, which includes 11 natural vegetation classes, 3 

developed and mosaicked land classes, and three non-vegetated land classes 

(USGS, 2014). Land cover type with 500m spatial resolution in 2010 was adopted 

in this study. 

Net primary productivity (NPP) defines the rate at which all plants in an 

ecosystem produce net useful chemical energy. In other words, NPP is equal to 

the difference between the rate at which plants in an ecosystem produce useful 

chemical energy (or GPP), and the rate at which they expend some of that energy 

for respiration (USGS, 2014). 
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The Version-55 of the NPP product produced by the Numerical Terra Dynamic 

Simulation Group /University of Montana corrects the problem with cloud-

contaminated MODIS LAI-FPAR inputs to the MOD17 algorithm. Version-55 

Terra/MODIS NPP products are validated to stage 3; this means that their 

accuracy was assessed and uncertainties in the product were established via 

independent measurements made in a systematic and statistically robust way 

that represents global conditions. These data are deemed ready for use in 

science applications (USGS, 2014). In this study, NPP with 1,000 m spatial 

resolution in 2010 was downloaded. 

Meteorological data from meteorological stations were adopted from China’s 

meteorological data sharing service system, built and managed by the Climatic 

Data Center of China Meteorological Administration. The wind speed and 

temperature data were obtained from this sharing system. Overall, 47 

meteorological stations are distributed in the study area and its surroundings. As 

some meteorological stations only have a 21 years’ data source (1989-2009), 21 

years data were used and information from the three stations with 6 to 15 years' 

data was excluded. 

The International Scientific Data Service Platform, built and maintained by 

Chinese Academy of Science, provided digital elevation data for this study. 

Original elevation data with 30 m spatial resolution was acquired from the Shuttle 

Radar Topography Mission (SRTM). The SRTM obtained elevation data on a 

near-global scale to generate the most complete high-resolution digital 

topographic database worldwide. 

The author digitalised the natural reserve data based on the published map, 

AutoNavi Holdings Limited Company provided road network data, and the author 

digitalised the airport data based on Google Earth. Existing power plants have 

been compiled by geographic locations. Other ancillary data, such as population 

data and crop production data were obtained from the China Statistic Yearbook 

(2013). 
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4 Methodology 

The GIS-based methodology in this study is presented separately according to 

the different topics, namely the assessment of wind energy potential, solar energy 

potential and biomass energy potential. The methodology for the assessment of 

wind and solar energy potential includes the analysis of theoretical potential, the 

definition of geographic restrictions for power plants, the analysis of technical and 

economic potential, and land use suitability analysis for power plants. In the 

section addressing biomass, methods of estimation of usable biomass potential, 

the definition of geographic restrictions for power plants, an economic analysis 

based on specific biomass power plants and site selection for biomass power 

plants are explained. The research framework is shown in Figure 4.1. 
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Figure 4.1 Research framework 

4.1 Assessment of wind energy potential  

The assessment of wind energy potential assessment is based on the wind speed 

data from meteorological station and using theoretical calculation method on the 

GIS platform. The methodology includes wind speed height extrapolation model, 
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wind interpolation model, wind speed distribution model, wind power density 

model, wind energy production calculation formula, and cost-and-revenue 

comparison analysis. Wind power density is the indicator used to express 

theoretical wind power potential, and the assessment of technical wind power 

potential integrates the wind speed condition, available area for wind power 

plants and technical characteristics of wind turbines. Annual wind energy 

generation expresses the technical wind power potential, while the unit 

generation cost of wind energy combines the cost and revenue of wind power. 

The economic wind energy potential is calculated based on the unit generation 

cost and wind energy policy. The workflow for the assessment of wind energy 

potential is shown in Figure 4.2. 

 

Figure 4.2 Overview of approach to assessing wind energy potential  
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4.1.1 Analysis of theoretical wind power potential  

Wind speed largely determines theoretical wind power potential, and the records 

of wind speed from meteorological station provide essential data to evaluate 

theoretical wind power potential. However, at meteorology station, wind speed is 

measured at 10 m above the ground, and the height of wind turbines is different 

from that of meteorological stations and varies according to wind turbine type. 

Thus, a wind speed height extrapolation model is used to calculate wind speed 

at a given height. Wind speeds measured at a given height can be extrapolated 

to another height within the boundary layer (wind turbine hub height) using the 

modified power law or 1/7th power law (Mikhail, 1985). The power law equation 

is a simple but useful model of the vertical wind profile, which first was proposed 

by Hellmann (1914). According to the revision by Simiu & Scanlan (1996), the 

general form of this equation is given by the relationship 

𝑉2

𝑉1
= (

𝑍2

𝑍1
)

𝛼𝑚

, 

where V2 is the average wind speed at hub height Z2, αm is the modified power 

law exponent, and V1 is the average wind speed measured at the measurement 

height Z1. Early work by Von Karman showed that under certain conditions 𝛼𝑚  

equals 1/7, but in the general case, 𝛼𝑚 is a highly variable quantity. Moreover, 

Sisterson & Frenzen (1978) measured wind profile exponents that change from 

1/7 during the day to 1/2 at night over the same terrain. In this case, two factors 

should be considered to calculate 𝛼𝑚, namely the nature of the terrain in terms 

of surface roughness and the wind speed. Thus, to calculate the power law 

exponent, Hossain et al. (2011) adopted the formula 

𝛼𝑚 = 𝑎𝑚 + 𝑏 ln 𝑉1, 

where, 

𝑎𝑚 =
1

ln(
𝑍𝑔

𝑍𝑜
)

+
0.088

[1−0.008 ln
𝑍1
10

]
, 

𝑏 = −
0.008

1−0.008 ln
𝑍1
10

, 

𝑍𝑔 = (𝑍1 ∗ 𝑍2)
1

2⁄ , 
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and Zo is the surface roughness length, which has a close relationship with 

landscape type. Table 4.1 shows roughness class and roughness length 

(Hossain et al., 2011). 

Table 4.1 Landscape type and roughness class 

Rough-

ness 

class 

Surface 

Roughness 

Length (m) 

Landscape Type 

0 0.0002 Water surface 

0.5 0.0024 Completely open terrain with a smooth surface, e.g. 

concrete runway in airports, mowed grass .etc 

1 0.03 Open agriculture area without fence and hedgerows 

and very scattered buildings; only softly rounded hills 

1.5 0.055 Agricultural land with some houses and 8 m tall 

sheltering hedgerows with a distance of approximately. 

1250m 

2 0.1  Agricultural land with some houses and 8 m tall 

sheltering hedgerows with a distance of 

approximately.500m 

2.5 0.2 Agricultural land with many houses, shrubs and plants, 

or 8m tall sheltering hedgerows with a distance of 

approximately.250m 

3 0.4 Villages, small towns, agricultural land with many or tall 

sheltering hedgerows, forests and very rough and 

uneven terrain 

3.5 0.8 Larger cities with tall buildings 

4 1.6 Very large cities with tall buildings and skyscrapers 

Source: Hossain et al., 2011 
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The wind speed from meteorological stations is the point data; it cannot cover the 

entire area. To provide the continuous surface wind speed, which covers the 

whole study area, the wind speed interpolation model has been adopted. 

Previous results confirm that kriging methods produce the most accurate results 

when compared to deterministic techniques (Sliz-Szkliniarz & Vogt, 2011). Using 

kriging methods, the point wind-speed data was interpolated to the surface.  

Weibull wind speed distribution is a mathematical idealization of the distribution 

of wind speed over time (Odo et al., 2012) The function shows the probability of 

the wind speed in a 1 m/s interval centred on a particular speed (V), taking both 

seasonal and annual variations into account. It is a two-parameter function 

characterized by a dimensionless shape (K) parameter and scale (C) parameter 

(in unit of speed) (Odo et al., 2012).  

Weibull’s law is the model used most frequently to describe the distribution of 

wind speed. This distribution also is used in other sectors, such as the  

automotive sector, for the analysis of survival data. Takle & Brown (1978) give 

the probability density function (PDF) of wind speed as  

𝑓 (𝑉) = (
𝐾

𝐶
) (

𝑉

𝐶
)

𝐾−1

exp (−
𝑉

𝐶
)

𝐾

 

 

where 

f (V) is the probability density function of wind speed, 

V is wind speed (m/s), 

C is the Weibull scale parameter (m/s), and 

K is the dimensionless Weibull shape parameter. 

Then, the cumulative distribution function F (V) is written as follows: 

𝐹(𝑉) = 1 − exp (−
𝑉

𝐶
)

𝐾
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The value of K determines whether the Weibull distribution is similar to other kinds 

of statistical distribution (K = 1.0: exponential, K = 2.0: Rayleigh, K = 3.5: Normal). 

K=2.0, or Rayleigh distribution typically is used for the calculation. In this study, 

K and C are estimated using mean wind speed and the standard deviation of wind 

speed by the formula from Wang et al. (2012), 

𝐾 = 0.9846(
𝜎

𝜇
)−1.0944 

where K is the dimensionless Weibull shape parameter, 

𝜇 is mean wind speed and  

𝜎 is the standardized deviation of wind speed. 

K has different values at different heights; it increases as height increases to 70 m 

but decreases above 70 m. Justus created the formula (Justus et al., 1978) 

𝐾 = 𝐾1

1 − 0.088ln(
𝑍1
10)

1 − 0.088ln(
𝑍

10
)
 

where 

𝐾1 is the dimensionless Weibull shape parameter at Z1 height. 

The average wind speed �̅�  can be expressed as a function of the scale 

parameter “C” and the shape parameter “K”, by the relationship (Wang et al., 

2012): 

𝐶 = 𝜎/𝐺𝑎𝑚𝑚𝑎(1 + 𝐾−1) 

where Gamma denotes the Gamma function 

The power of the wind that flows at speed (V) through a blade sweep area (A) is 

expressed as the cube of its velocity and is given by  

𝑃(𝑉) =
1

2
ρA𝑉3 

Where ρis air density. 
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The wind power density (D) of a site based on a Weibull probability density 

function is expressed by Chang et al. (2003) as: 

𝐷 =
𝑃

A
= ∫ 𝑃(𝑉)𝑓(𝑉)𝑑𝑉 =

1

2
ρC3Gamma(

𝐾 + 3

𝐾
)

∞

0

 

4.1.2 Analysis of geographical wind power potential 

The first reduction of the theoretical potential in this study is the restriction of 

available land for wind turbines: certain land is excluded because of planning or 

physical constraints. Unfeasible land includes land with specific functions (such 

as a nature reserve), land where wind turbines would interfere with current use 

(airports, built-up areas and wetland) and land where it is physically impossible 

to install turbines (water bodies, porous ground and slopes greater than 10%) 

(Haaren & Fthenakis, 2011).In addition, aspects such as visual intrusion, noise 

pollution, ecological effects, and physical constraints influence wind farm 

placement. 

The visual intrusion of wind turbines is a debatable issue. Although some people 

see wind turbine farms as the obliteration of nature, others welcome the clean 

power from wind farms and like the structures in their area (Haaren & Fthenakis, 

2011). The findings of Grady’s (2002) survey in North Carolina in the United 

States support this view. Of the respondents 58% (n=400) did not see wind 

turbines as a problem or could not think of a problem with developing a wind 

industry in the state. Of the people who had a problem, the majority (44%) 

considered visual “pollution” their major issue with wind power. Kaldellis (2005) 

has shown that public attitudes towards wind power are more positive in areas 

with wind farms than in areas where people have not previously experienced the 

phenomenon, and the study’s conclusions indicate that public acceptance 

increases with information and experience levels. The placement of turbines in 

the visual periphery of urban areas would benefit the public opinion of wind power 

and stimulate the placement of more wind turbines in the area (Haaren & 

Fthenakis, 2011). 

Noise is a quantifiable issue and numerous guidelines and regulations can be 

found on this issue. Serwan & Baban (2001) note that wind project developers 
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keep a distance of 500 m from single dwellings to keep sound levels at an 

appropriate level. Noise propagation is described by the logarithmic relationship 

of sound power level at the source (𝐿𝑤) and sound pressure level at a location 

(𝐿𝑝), both measured in dB. Haaren & Fthenakis (2011) offer a simple relationship 

between 𝐿𝑝 and distance to turbine  

𝐿𝑝 = 𝐿𝑤 − 10𝑙𝑜𝑔10(2𝜋𝑅2) − 𝛼𝑅 

where 

𝑅2 = 𝐻2 + 𝑋2 

and 𝐻 is the tower height, 𝑋 is the observer’s distance to the tower, and  𝛼 is 

the atmospheric absorption of 1000 Hz sound and corresponds to 0.005 dB/m. 

With the Vestas V82 (selected wind turbine type, detail follow in the next section), 

which has a sound power level of 101-103 dB at the hub and a tower height of 

78 m, the approximate decrease of sound pressure level over distance depicted 

in Figure 4.3 can be expected. Based on the regulations related to noise level 

published by the Chinese government, noise in residential and commercial areas 

should be between 40 and 55 dB. In light of these results, a 500 m buffer zone 

from an urban area is sufficient to lessen the noise and visual intrusion.

 

Figure 4.3 Approximation of the sound pressure level as a function of distance 

Furthermore, wind turbines have negative effects on ecology, which can be 

categorized into three groups: creating collision hazards for birds and bats, the 
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destruction of wildlife habitat and the destruction of vegetation. A study conducted 

by Miller (2008) showed that 18 wind turbine farms that contain 1,569 turbines 

were reportedly the cause of 0.04 – 10 bird mortalities per turbine per year and 

0.07 – 64 bat mortalities per turbine per year. Although researchers use different 

bias corrections, which complicates comparison, the averages indicate what can 

be expected: 2.4 birds and 12.2 bats per turbine per year.  

However, the strategic placement of turbines outside ecologically sensitive and 

dense population areas can reduce their ecological impact. To prevent the 

disturbance of animals in their habitats, wind turbines should be placed a safe 

distance away from breeding grounds, specifically wetlands and wildlife refuge 

forests. Wetlands are protected for their hydrologic characteristics (for example, 

the collection of runoff water). In this study, wetlands and forests with woody 

plants and buffered areas around them are considered unfeasible sites for these 

reasons. Although strict regulations do not exist on distances, Serwan & Baban 

(2001) suggest a 500 m buffer between wind farms and wetlands based on 

literature and a questionnaire investigation, and a 1,500 to 2,000 m distance 

between wind farms and airports. 

Finally, physical constraints for slope were set at 10% based on a survey 

conducted by Serwan & Baban (2001). Constructing turbines on a slope greater 

than 10% is difficult due to the limited access of the cranes needed to lift heavy 

turbine components. Criteria for excluded areas were developed as the following 

table shows:  

Table 4.2 Criteria of restriction area for wind farms 

Feature Recommendation for buffer zones  

Natural reserve Buffer zones around natural reserve:500m 

Forest Buffer zones around woody land: 500m 

Airports Buffer zones around airports: 2500m 

Slope Slope greater than 10% is not allowed 

Urban area Buffer zones around urban area: 500m 

Water body Buffer zones around water body: 500m 

Wetland  Buffer zones around water body: 500m 

Source: Own illustration, based on the mentioned literature above  
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4.1.3 Analysis of technical wind power potential  

Once the excluded area for wind power plants has been defined, the size of the 

eligible area is clear. The next challenge is to estimate annual wind energy 

generation, namely technical wind power potential. The wind energy harvest is 

determined by wind speed, its frequency distribution and the characteristics of 

wind turbines. A wind power density map with 1 km spatial resolution calculated 

from theoretical potential analysis is used to calculate annual wind generation, 

and the available area for wind power plants is divided into 1 km grid to match 

wind power density resolution. 

The Vestas 82 (V82 1.65 MW) wind turbine produced by Vestas company was 

chosen as an example. Vestas has gained a market-leading position with more 

than 60 GW of installed wind turbines, comprising close to 19% of total global 

capacity (Vestas, 2014). The V82 is an extremely competitive turbine in areas 

with low and medium wind speed. It is optimised for sites with an average wind 

speed of 6 m/s at hub height, while a breeze of as little as 3.5 m/s is all that is 

needed to start production. The technical parameters of the V82 are shown in 

Table 4.3. 

Table 4.3 Technical parameters of V82 wind turbine 

Hub 

height 

Rated power  Rotor 

diameter 

Swept area Cut-in 

speed 

Cut-off 

speed  

80 m 1650 KW 82 m 5281 m2 3.5 m/s 25 m/s 

 

The annual wind energy (𝑬𝒊 ) in grid i can be extracted by wind turbines is defined 

by the equation 

𝐸𝑖 = 𝐷 ∗ 𝐴 ∗ 𝐶𝑝 ∗ 𝑛 ∗ ℎ𝑒 

where 

𝐷 is wind power density, calculated in wind power density model, and 

𝐴 is the swept area of the wind turbine.  



50        Jie Zhang 

𝐶𝑝 represents the percentage of power which can be extracted from the wind, 

depending on the available wind energy and the operating characteristics of the 

wind energy extraction device. However, wind turbine cannot use 100% of this 

power due to the Berz limit. The wind power available according to the previous 

equation can be rewritten by adding a coefficient, Cp, which defines the maximum 

efficiency of the Betz limit (0.593) (Lima & Filho, 2012). 

The number of turbine in the given grid is represented by 𝑛, calculated as  

 

𝑛 =
𝐴𝑖

(5 ∗ 10 ∗ 𝜑2)
 

where 

𝐴𝑖 is the size of grid i, in this case, is 1 km2, and 

𝜑 is the rotor diameter of the wind turbine(82 m). 

The symbol 𝒉𝒆 represents the effective hours for which the wind turbine works. 

A wind turbine cannot work when the wind speed is beyond the range between 

the cut-in and cut-off speeds. Effective hours were calculated based on the 

following formula (Jiang et al., 2010) 

ℎ𝑒

ℎ𝑜
= exp (− (

𝑉𝑐𝑢𝑡 𝑖𝑛 

𝐶
)

𝐾

) − exp (− (
𝑉𝑐𝑢𝑡 𝑜𝑓𝑓 

𝐶
)

𝐾

), 

where 

ℎ𝑜 is 365*24, 8760 hours, 

𝑉𝑐𝑢𝑡 𝑖𝑛  is cut-in speed, 3.5 m/s for Vestas 82, 

𝑉𝑐𝑢𝑡 𝑜𝑓𝑓  is cut-off speed, 25 m/s in this case, 

C is the Weibull scale parameter (m/s), and  

K is the dimensionless Weibull shape parameter. 

In 2011, more than 1500 GWh of wind power in China was not integrated, 

accounting for more than 12% of total wind generation. Therefore, annual wind 

energy production was adjusted by multiplying by 0.88 in this case. For a typical 
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onshore wind farm, adjusted parameters of 0.95, 0.98 and 0.97 array, air foil 

soiling and icing loss rates, and the miscellaneous loss rate were selected to 

adjust annual wind energy production (Zhang et al., 2014). Adjusted annual 

energy production is the index of technical wind energy potential. 

4.1.4 Analysis of economic wind power potential  

The above sections addressed the physical wind speed and geographical 

constraints for wind power plants and the technical aspects of wind energy. 

Additional aspects that influence the growth of wind energy utilization are market 

and policy factors that play significant roles in the promoting the development of 

renewable energy projects (Madlener & Stagl, 2005). These factors include 

electricity tariffs, subsidies and administrative project-related policy. 

He et al. (2013) indicate that for onshore wind energy, the costs of generators still 

account for around 75 – 85% of the total investment expenses. Wind turbine cost 

accounts for approximately 80% of investment cost according to the data from 

existing projects. The expenditure related to the auxiliary and road infrastructure 

as well as to grid connection may amount to up to 15% of the total cost. Of this 

share, the majority is the cost of connecting to existing transmission lines; this 

represents the 6 to 8% of the investment cost. Annual operation costs include 

debt service costs, insurance, property tax and lease of land, and expenditure on 

maintenance, and amount to 3% of the initial capital cost. Additional expenses 

vary from project to project depending on site-specific conditions. 

In China, the total amount earned by the producers of wind energy is composed 

of the market price of electricity and the government subsidy. The average annual 

cost per kilowatt-hour of electricity generated by a wind turbine was derived from 

the sum of total annual investment costs, operating costs and the turbine’s annual 

energy yield. The unit cost of energy was calculated using the formula 

𝑃𝐶𝑖 =
𝐶𝑜&𝑚 + 𝐿

𝐸𝑖
 

𝐿 = 𝐼 
𝑟(1 + 𝑟)𝑛

(1 + 𝑟)𝑛 − 1
 

where  
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𝑃𝐶𝑖 is the cost of 1 kWh of electricity generated in a grid cell; 

𝐶𝑜&𝑚 is the operation and maintenance costs, and is assumed to be a constant 

rate(0.03 of investment) over the life time Cost (Hoogwijk, 2004); 

𝐸𝑖 is the annual energy yield in a grid; 

𝐿 is the annual loan payment and it is assumed that the total investment is 

obtained from loans; 

𝐼 is the initial investment cost, where turbine cost takes 80% of the investment 

(Hoogwijk, 2004); 

𝑟 is the interest rate (5%); and  

𝑛 is the life time of the system (25 years). 

The average cost of wind energy investment per kW is estimated to be around 

$1,000 to $1,200, reaching up to $1,600 in extreme cases (Sliz-Szkliniarz & Vogt 

2011). In this study, the cost of a wind turbine is $1,200 per kW and the rated 

power of the Vestas 82 1.65 MW is 1650 kW. 

The supply-cost curve of renewable energy sources is an essential tool for 

synthesising and analysing large-scale energy policy scenarios, both in the short 

and long terms (Izquierdo et al., 2010). It often is used in global, regional or 

country analyses of energy-policy scenarios. Similarly, supply cost usually is 

employed as an essential tool in the analysis of economic potential. In this study, 

geospatial supply cost is introduced to estimate economic potential in different 

situations. Using the calculation model described above, the spatial distribution 

of wind energy generation and unit generation cost are available. The x axis is 

the aggregate supply, or the amount of wind energy production, while the y axis 

represents the average unit generation cost.  

Moreover, it is assumed that wind turbine installation begins in the area with the 

lowest unit generation cost before wind projects gradually move to areas with 

higher unit generation cost gradually. Hence, average unit generation cost 

increases with the increase of wind energy supply. Economic potential is defined 

as the amount of wind energy supply at the point of intersect where average unit 
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generation cost equals the sum of market price and subsidy. The proposed 

relationship between aggregate supply and average unit generation cost is 

shown in Figure 4.4. Although a linear relationship is selected as a simple 

example to show the method, in reality, it probably would not be a linear 

relationship. 

 

 

 
Figure 4.4 Proposed relationship between aggregated wind energy supply and average 
unit generation cost  

4.1.5 Land suitability analysis for wind power plants based on multi-

criteria method 

After wind energy potential is assessed, the final step is to site the wind power 

plants. In this phase, a land suitability analysis for wind power plants is conducted 

to find the most suitable areas. Mendoza (1997) defines land use suitability as a 

generic term associating a combination of factors and their effects with respect 

to potential land uses. The generic model of land suitability can be formulated as: 

𝑆 = 𝑓(𝑖1, 𝑖2,…𝑖𝑛) 

where S is the suitability measure, and 𝑖1, 𝑖2,…𝑖𝑛 are the indicators affecting the 

suitability of the land. Suitability analysis involves an appropriate approach to 
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combining these indicators, and AHP often has been used for land suitability 

analysis. This mathematical method, developed in decision analysis determines 

weight for each criterion and forms part of multi-attribute decision analysis. AHP 

is used to site wind farms because of its advantages summarized by Thinh & 

Vogel (2007) as follows: 

 It provides a structured approach to measuring the suitability by breaking 

the problem into hierarchical units and levels. 

 The AHP relies less on the completeness of the data set and more on 

expert judgements or observations about the different indicators. 

 This method is more transparent and thus easily accepted, especially 

when the suitability analyses serve as a basis of land allocation. 

 The approach permits the participation of both experts and stakeholders 

in the process  

Wind potential is considered the most influential criterion in determining the 

suitability of land for wind farms. In addition, wind farm sites ideally should be 

close to roads and the existing power grid system. In this study, unit generation 

cost is considered the most important criterion because it defines the feasibility 

of wind electricity production and integrates the technical wind energy potential 

and cost. Moreover, several geographic criteria should be considered. An area 

with a mild slope is more suitable for a wind farm than a steep area, as 

construction is significantly easier and costs lower where the ground is flat. Finally, 

economic factors including distance to roads, urban areas and transmission lines, 

viewed as the least important criteria, should be considered.  

The weight of each criterion was derived through AHP by directly comparing the 

importance of one criterion to that of another. Saaty (1980) employed an 

underlying scale with values from 1 to 9 (Table 4.4) using pairwise comparison of 

criteria to offer a ratio scale. For each pair of criteria, the decision maker is 

required to respond to a pairwise comparison question asking the person to 

compare the relative importance of the two. Responses are gathered in verbal 

form and subsequently codified on a nine-point intensity scale (Table 4.4) (Bennui, 

2007). After the development of the pairwise comparison matrix A= (aij) (i,j=1(1)n) 

(Table 4.5), criterion weights were computed as follows (Thinh & Vogel, 2007): 
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1) Calculate the sum of the values in each column of the matrix aij. 

2) Divide each element in the matrix by its total column (the resulting matrix 

bij (i,j=1(1)n) is the normalised pairwise comparison matrix (Table 4.6) 

3) Compute the average of the elements in each row of the normalised matrix; 

these averages are used as the relative weights wi(i=1(1)n) of the criteria 

(Table 4.7). 

Table 4.4 Scale for pairwise comparison 

Intensity of importance Definition 

1 Equal importance 

2 Equal to moderate importance 

3 Moderate importance 

4 Moderate plus 

5 Strong importance 

6 Strong plus 

7 Very strong importance 

8 Very, very strong importance 

9 Extreme importance 

Source: Saaty,2006 

Table 4.5 Comparison matrix 

Criteria Unit 

generation 

cost 

Slope Distance 

to roads 

Distance 

to urban 

areas 

Distance to 

transmission 

lines Unit generation cost 1 3 5 5 5 

Slope 1/3 1 3 3 3 

Distance to roads 1/5 1/3 1 1 1 

Distance to urban 

areas 

1/5 1/3 1 1 1 

Distance to 

transmission lines 

llllllllllllllllllllllineslines 

1/5 1/3 1 1 1 

Total 1.93 5 11 11 11 
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Table 4.6 Normalised pairwise comparison matrix 

Criteria Unit 

generation 

cost 

Slope Distance 

to roads 

Distance to 

urban 

areas 

Distance to 

transmission 

lines Unit 

generation 

cost 

0.516 0.758 0.467 0.467 0.467 

Slope 0.172 0.152 0.333 0.333 0.333 

Distance to 

roads 

0.104 0.03 0.067 0.067 0.067 

Distance to 

urban areas 

0.104 0.03 0.067 0.067 0.067 

Distance to 

transmission 

lines 

0.104 0.03 0.067 0.067 0.067 

 

Table 4.7 Weights of criteria 

Criteria Unit generation 

cost 

Slope Distance to 

roads 

Distance to 

urban 

areas 

Distance to 

transmission 

lines Weights 0.535 0.264 0.067 0.067 0.067 

 

The next step is to investigate whether the comparisons are consistent. For 

controlling the consistency of the estimated weight values, the consistency ratio 

(CR) is calculated as follows: 

First, calculate the eigenvector and the maximum eigen-value for each matrix. 

Then, calculate an approximation to the consistency index (CI) using the equation 

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 

where 

𝜆𝑚𝑎𝑥 is the eigenvalue of the pairwise comparison matrix and 

𝑛 is the number of criteria. 
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Finally, to check the consistency of the pairwise comparison matrix, the 

consistency judgement must be checked for the appropriate value of n by CR: 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 

RI is the random consistency index, and the RI values for different numbers of n 

are shown in Table 4.8. If CR is smaller than or equal to 0.10, the degree of 

consistency is satisfactory (Saaty 1980). The CR value in this study is smaller 

than 0.1 for each criterion. 

Table 4.8 RI table values 

n 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

Source: Saaty 1980 

Each criterion is normalized on a scale of 1 to 9, where 1 is the lowest value, and 

9 is the highest (Table 4.9). The land suitability value is expressed as follows: 

𝑺 = ∑ 𝒗𝒊 ∗ 𝒘𝒊

𝒏

𝒊=𝟏

  

where 

 𝑖 is indicator, 

𝑛 is the number of indicators, 

𝑣𝑖 is the normalized value of indicator 𝑖, and 

𝑤𝑖 is the weight of indicator 𝑖. 
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Table 4.9 Score of indicators 

Criteria Indicators value 

Unit generation cost    0.07 - 0.3 $/KWh 9 

 0.3 - 0.6 $/KWh 7 

 0.6 - 0.9 $/KWh 5 

 0.9 - 1.2 $/KWh 3 

 >1.2 $/KWh 1 

Distance to road <2 km  9 

 2 km - 5 km 7 

 5 km - 10 km 5 

 10 km - 20 km 3 

 >20 km 1 

Distance to transmission 

line 

<5 km 9 

 5 km - 10 km 7 

 10 km - 15 km 5 

 15  - 20 km 3 

 >20 km 1 

Distance to urban area <5 km 9 

 5 km - 10 km 7 

 10 km - 15 km 5 

 15 km - 20 km 3 

 >20 km 1 

Slope  <1% 9 

 1% - 2.5% 7 

 2.5% - 5% 5 

 5% - 10% 3 

 10% - 15% 1 

 >15% Restricted area 

 

4.2 Assessment of solar energy potential  

The assessment of solar energy potential includes simulating solar radiation, 

defining the excluded areas for PV power plants, estimating solar energy 

production considering PV technology and calculating unit generation cost. The 

temperature data from meteorological stations in the Bristow and Campbell 

model is used to simulate solar radiation. The assessment of technical solar 

power potential considers solar radiation resources, the available area for solar 

power plants, the energy efficiency of the PV module and the unit generation cost 

of solar energy which combines the costs and revenues of solar energy. The 



Methodology   59                                                      

economic solar energy potential is calculated based on the unit generation cost 

and solar energy policy. The workflow of the assessment of solar energy potential 

is shown in Figure 4.5. 

 

Figure 4.5 Overview of approach to assessing solar energy potential 

4.2.1 Theoretical solar radiation potential simulation  

Solar radiation resources directly affect the theoretical solar energy potential. 

Incoming solar radiation originates from the sun, is modified as it travels through 

the atmosphere, is further modified by topography and surface features, and is 

intercepted at the earth’s surface as direct, diffuse and reflected components. 

Direct radiation is the principal component of total radiation (Charabi & Gastli, 

2010). The sum of the direct, diffuse and the reflected radiation forms global solar 

radiation. Bristow and Campbell proposed a method for estimating the daily 

global solar radiation from daily maximum and minimum air temperature 
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measurements; this method requires less input data. The range of daily 

temperature extremes ∆𝑇 was calculated as follows: 

∆𝑇(𝐽) = 𝑇𝑚𝑎𝑥(𝐽) − (𝑇𝑚𝑖𝑛(𝐽) + 𝑇𝑚𝑖𝑛(𝐽 + 1))/2 

where  

𝑇𝑚𝑎𝑥 is the daily maximum temperature (°C); 

 𝑇𝑚𝑖𝑛 is the daily minimum temperature (°C); 

𝐽 is the day number. 

The mean of the two minimum temperatures that occur on either side of the daily 

maximum value was used to help reduce the effect of large-scale hot or cold air 

masses that may move through the study area. A warm air mass moving through 

the area of interest on day 𝐽 could increase 𝑇𝑚𝑎𝑥(𝐽) above the value possible 

for incoming radiation alone. By not incorporating𝑇𝑚𝑖𝑛(𝐽 + 1), the resultant ∆𝑇 

would imply a greater radiation load than actually occurred. The opposite situation 

occurs in the case of a cold air mass, and underestimation of incoming radiation 

would result from these conditions (Bristow & Campbell 1984).  

The total transmittance for the day includes both the direct and diffuse 

components occurring on a horizontal surface, and 𝑇𝑡  is the daily total 

transmission coefficient. It is computed as 

𝑇𝑡 =  
𝑑𝑎𝑖𝑙𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

𝑑𝑎𝑖𝑙𝑦 𝑒𝑥𝑡𝑟𝑎𝑡𝑒𝑟𝑟𝑒𝑠𝑡𝑟𝑖𝑎𝑙 𝑖𝑛𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 
 

Daily total extraterrestrial insolation (Qo) occurring on a horizontal surface in (J/m2) 

was computed using the equation (Gillespie et al., 1990): 

 𝑄0 = 86400𝑆0 (
𝑑𝑚𝑒𝑎𝑛

𝑑
⁄ )

2

(ℎ𝑠𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝛿 + 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝛿𝑠𝑖𝑛ℎ𝑠)/𝜋 

where  

𝑆0 is the solar constant(1360w/m2), 

𝑑𝑚𝑒𝑎𝑛 is the mean value of the distance from sun to earth, 
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d is the distance from the sun to the earth; (
𝑑𝑚𝑒𝑎𝑛

𝑑
⁄ )

2

never differs by more than 

3.5% and was therefore taken as unity (Gillespie et al., 1990), 

ℎ𝑠 is the half daylength (𝑐𝑜𝑠ℎ𝑠 = −𝑡𝑎𝑛𝜑𝑡𝑎𝑛𝛿), 

𝜑 is the latitude of the location of interest, and  

𝛿 is the solar declination (𝛿 = 0.409 ∗ sin ((
2πJ

365
) − 1.39)). 

The equation used to describe 𝑇𝑡 as a function of ∆𝑇 according to the Bristow-

Campbell model is expressed as follows: 

𝑇𝑡 = 𝐴[1 − exp (−𝐵∆𝑇𝐶)] 

where A, B, and C are empiric coefficients. Although these coefficients are 

determined empirically, they display the physics involved in a relationship. A 

represents the maximum clear sky of the study area and it varies with elevation 

and the pollution content of the air. B and C determine how soon maximum 𝑇𝑡 is 

achieved as ∆𝑇  increases. They display the partitioning of energy that is 

characteristic of the region and differ, for example, from humid to arid 

environments (Bristow & Campbell, 1984). Kreith & Kreider (1978) describe the 

atmospheric transmittance for beam radiation by the empirical relationship given 

in the equation:  

𝐴 = 0.56 ∗ (𝑒−0.56𝑀 + 𝑒−0.095𝑀) 

where A is the clear sky atmospheric transmittance and M is the air mass ratio. 

The constants account for the radiation attenuation by the different factors 

discussed above. Because scattering is wavelength dependent, the coefficients 

represent an average scattering over all wavelengths. This relationship gives the 

atmospheric transmittance for clear skies to within a 3% accuracy. 

The air mass ratio is the relative mass of air through which solar radiation must 

pass to reach the surface of the earth and is defined by the ratio of the actual 

path length mass to the mass when the sun is directly overhead. The two main 

factors affecting the air mass ratio are the direction of the path and the local 
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altitude. The paths direction is described in terms of its zenith angle, 𝐻, which is 

the angle between the path and the zenith position directly overhead. The ratio 

M is defined in the following equation where p is the local pressure; Mo and Po 

are the corresponding air mass and pressure at sea level. 

𝑀 = (𝑝/𝑝0) 𝑀𝑜 

The formula above is valid only for zenith angles less than 70°. When the zenith 

angle is greater than 70°, the secant approximation underestimates solar energy 

because atmospheric refraction and the curvature of the earth have not been 

accounted for. Keith and Kreider suggest using the following equation to calculate 

the value of air mass ratio: 

𝑀𝑜 = (1229 + (614𝑠𝑖𝑛𝐻)2)0.5 − 614𝑠𝑖𝑛𝐻 

𝑝

𝑝𝑜
= (1 − 0.0065 ∗ ℎ/288)5.256 

where h is the height above sea level and 

H is zenith angle 

The value of B and C were adopted from the research work of Liu & Pan (2012). 

B and C in this study area are 0.019 and 1.876. 

Annual global solar radiation can be calculated as the sum of daily global solar 

radiation. However, using this technique leads to an overly heavy workload. Thus, 

a linear interpolation method was introduced. Every 15th day of each month was 

chosen to be the monthly mean day (the 15th, 46th, 74th, 105th, 135th 166th, 196th, 

227th, 258th, 288th, 319th and 349th day in the year). After calculating the global 

solar radiation of the monthly mean day, linear interpolation methods were used 

to calculate the daily global solar radiation. The linear interpolation formula is 

expressed as follows: 

𝑋𝑖 =  𝑋1 −
𝐷𝑂𝑀𝑖 − 𝐷𝑂𝑀1

(𝐷𝑂𝑀2 − 𝐷𝑂𝑀1) ∗ (𝑋1 − 𝑋2)
 

where 
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𝑋𝑖 is the global solar radiation of day i, 𝑋1 and 𝑋2 are the global solar radiation 

of monthly mean day, 𝐷𝑂𝑀1and 𝐷𝑂𝑀2  are the day numbers of the monthly 

mean day and 𝐷𝑂𝑀𝑖 is the day number of i. The annual global solar radiation is 

the sum of 𝑋𝑖.  

4.2.2 Analysis of geographical solar PV potential  

Not all theoretical solar energy potential can be utilized due to geographic 

restrictions. The definition of unfeasible land is similar to that of the exclusion 

area for wind power plants. Therefore, the exclusion area for solar power plants 

includes land where PV modules would interfere with current land use, such as 

built-up areas, wetlands and land where it is physically impossible to install PV 

modules, such as bodies of water and steep areas.  

Large-scale PV farms require flat terrain or fairly steep slope. Slope is a measure 

of the steepness of the surface. Although steep slopes can be utilized for home 

installations, flatter surfaces are desirable for large-scale solar farms (Arnette & 

Zobel, 2011). Furthermore, aspect is the direction in which a slope faces. Aspects 

of southern exposure are more desirable than slopes facing other directions for 

harnessing solar power because the study area is in the northern hemisphere. 

Based on previous research, an area with a slope of less than 2.5% is acceptable 

with any aspect for solar power plants (Arán Carrión et al., 2008). Southern 

exposure is not required in flat areas as the solar panels can be titled to the south 

with no effect on potential. In addition, Arnette & Zobel (2011) consider areas with 

slopes of 2.5% to 15% and a south-facing aspect as suitable for PV modules. Any 

location with a slope greater than 15%, regardless of the exposure, is considered 

unfeasible for solar farm development. 

The next criterion applied in determining whether land is feasible for solar farms 

is based on land use restrictions. Any area restricted due to conservation, such 

as natural reserve, wetland and bodies of water, is excluded. PV systems have 

been recognized as a technology that has virtually no environmental impact, as 

they are clean and silent. Thus, there is no need to consider the use of a buffer 

for natural reserves or urban areas. Buffer analysis is used when siting wind 

farms mainly due to visibility, noise and the effect on wildlife associated with wind 

turbines, but buffers have not been used in previous solar farm siting research. 
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Unlike wind farms, which can be placed on agricultural land without substantially 

decreasing the amount of productive land, PV modules require that the majority 

of the land be utilized solely for PV installation. From this standpoint, solar farm 

sites should avoid built-up areas and productive agriculture land.  

In summary, excluded areas for PV farms include any area with a slope greater 

than 15%, areas with a slope of 2.5% to 15% that don’t have a south-facing 

aspect, nature reserves, built-up areas, wetlands and bodies of water. As the 

information regarding productive agricultural land in the study area is vague, 

fertile agricultural land is not considered. 

4.2.3 Analysis of technical solar PV potential 

The area of suitable land for PV farms becomes evident after the excluded area 

has been defined. The next task is to estimate annual solar energy generation, 

namely the technical solar energy potential. The solar energy harvest is 

determined by solar radiation and solar energy technologies. The branch of solar 

energy includes different types of concentrated solar power (CSP) technologies, 

such as parabolic trough, power tower, parabolic dish and concentrated 

photovoltaic systems (CPS). 

Parabolic trough systems comprise rows of trough-shaped mirrors that direct 

solar insolation to a receiver tube along the focal axis of each trough (Stoddard 

et al., 2006). The focused radiation raises the temperature of heat-transfer oil, 

which is used to generate steam. The steam is used to power a steam turbine-

generator to produce electricity. Power tower systems consist of a field of 

thousands of sun-tracking mirrors that direct insolation to a receiver at the top of 

a tall tower. A molten salt heat-transfer fluid is heated in the receiver and is piped 

to a ground based steam generator. The steam drives a steam turbine-generator 

to produce electricity (Stoddard et al., 2006).  

Parabolic dish systems use a dish shaped arrangement of mirror facets to focus 

energy onto a receiver at the focal point of the collector. A working fluid such as 

hydrogen is heated in the receiver, and drives a turbine or stirling engine. Most 

current dish applications use sterling engine technology because of its high 

efficiency. The PV cells generate direct current electricity, which is converted to 

alternating current using a solid-state inverter (Stoddard et al., 2006).  
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Among the large-scale solar power systems, parabolic trough systems and power 

tower systems have been proven best suited for large-scale plants of 50 MW or 

larger. Trough and tower plants, with their large central turbine generators and 

balance of plant equipment, can take advantage of economies of scale for cost 

reduction, as cost per kW decreases with increased size. Additionally, these 

plants use thermal storage or hybrid fossil systems to achieve greater operating 

flexibility and dispatchability, accounting for situations in which sufficient solar 

insolation is unavailable (Tao & Rayegan, 2011). 

Large-scale flat panel PV array systems for utility power production are also 

widely used because they are easy to scale up or down. When tied into electric 

grids, they provide flexible, variable power generation options. However, their 

costs are much higher in comparison to those of parabolic trough systems. Dish 

and CPS are modular in nature, and a single unit could produce power in the 

range of 10 kW to 35 kW. They could be used for either distributed or remote 

generation applications, or in large arrays of several hundred or thousand units 

for a utility scale application. Moreover, they have the potential advantage of 

mass production of individual units (Tao & Rayegan, 2011), and the 

implementation of PV plants is significantly faster than other technologies, which 

affords greater flexibility to cope easily with the development of the grid system 

(Charabi & Gastli, 2011). 

Concentrating photovoltaic plants provide power by focusing solar radiation onto 

photovoltaic modules, which convert the radiation directly to electricity. Three 

main parameters determine PV production energy: solar radiation of the local 

area and the size and performance ratio of PV systems. PV production energy is 

calculated as: 

𝐸𝑖 = 𝐺𝑖 ∗ 𝐴 ∗ 𝐴𝑓 ∗ 𝜂 ∗ 𝑝𝑟 

where, 

𝐸𝑖 is electric power generation potential per year (GWh/year); 

𝐺𝑖 is annual solar radiation received per unit horizontal area (GWh/km2/year); 

𝐴 is the calculated total area of suitable land (km2); 



66        Jie Zhang 

𝐴𝑓  is the area factor indicating what fraction of the calculated areas can be 

covered by solar panels, assumed to be 10% (Gastli & Charabi, 2010); and  

𝜂 is the efficiency with which the solar system converts sunlight into electricity. 

Conversion efficiency varies with PV cells. Based on the current report from the 

Fraunhofer Institution, the highest conversion efficiency is between 36 and 41.1% 

using high-efficiency tandem cells. The efficiency of mainly c-Si cells is between 

20 and 24%, and the conversion efficiency of simple c-Si cells is 14 to18%. With 

thin film cell technology, efficiency is only 6 to 11%. Considering the technologies 

used in existing PV projects, efficiency falls between 11 and 15%. Thus, based 

on existing research conducted by Hoogwijk (2004) and Stoddard (2006), 𝜂 is 

taken as 14.3% in this study. 

𝑝𝑟, is 0.75, performance ratio or PV system, taking energy loss in storage and 

connection into the electricity grid into account. 

4.2.4 Analysis of economic solar PV potential  

To show the spatial distribution of PV generation costs and draw the geospatial 

supply curve, unit PV electricity costs in the study area was calculated. The total 

production cost of solar PV energy comprises initial investment cost as well as 

operation and maintenance costs. The total initial investment cost is the sum of 

PV system costs and construction costs, and the annual operation and 

maintenance costs are considered constant and defined as a fraction (3%) of 

investment cost (Hoogwijk, 2004). The transmission cost has been neglected. N 

is the life-time of the system, which is 25 years (Sun et al., 2013). The nominal 

discount rate is taken as 5%, and it is assumed that the total investment of PV 

plants is obtained completely from loans. 

The average annual cost per kilowatt-hour of electricity generated in a grid cell 

was derived from the sum of total annual investment and operating costs and the 

annual energy yield. The unit cost of energy was calculated using the formulae: 

𝑃𝐶𝑖 =
𝐶𝑜&𝑚 + 𝐿

𝐸𝑖
 

𝐿 = 𝐼 
𝑟(1 + 𝑟)𝑛

(1 + 𝑟)𝑛 − 1
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where  

𝑃𝐶𝑖 is the cost of 1 kWh of electricity generated in a grid cell; 

𝐶𝑜&𝑚 is the operation and maintenance costs, and is assumed to be a constant 

rate (0.03 of investment) over the life time;  

𝐸𝑖 is the annual energy yield in a grid; 

𝐿 is the annual loan payment; 

𝐼 is the initial investment cost. Based on the current market report, PV module 

cost in this study is considered as 1.2 $/w. Capacity of PV per square kilometer 

is assumed as 41.13 MW (Gastli & Charabi, 2010); 

𝑟 is the interest rate; 

𝑛 is the life time of the system. 

The method used to calculate the economic potential of solar energy is similar to 

that used in the section related to the assessment of wind energy potential. It is 

also assumed that PV module installation begins in the area with lowest unit 

generation cost before solar energy projects gradually move to areas with higher 

unit generation costs. Economic potential is defined as the amount of solar 

energy supply at the point of intersection where average unit generation cost 

equals the sum of market price and subsidy.  

4.2.5 Land suitability analysis for PV plants based on the multi-criteria 

method 

Arán Carrión et al. (2008) note that when allocating land for solar farms, the 

number of sun hours, irradiance, temperature, and aspect must be considered to 

maximize potential. Geographic variables such as land cover or vegetation that 

increase shade, access to highways for maintenance and repair, population 

density, and the location of substations play a role, as do factors such as solar 

radiation, slope and aspect, which maximize temperature. Large-scale PV farms 

require flat terrain or relatively steep slope facing south, with less than a 5% 

graded slope. Moreover, Charabi & Gastli (2011) suggest that proximity to roads 

can avoid additional cost of infrastructure construction and consequential 
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damage to the environment. PV farms are particularly suitable where the 

connection to the existing electric grid is effortless, and establishing farms in 

proximity to the existing grid and load poles reduce significant transmission 

losses. As multiple factors influence the suitability of an area or the establishment 

of a solar farm, the multi-criteria method is appropriate for land suitability analysis. 

The methodology is identical to that used in land suitability analysis for wind 

power plants.  

Solar radiation is considered the most influential criterion in determining the 

suitability of land for solar farms. The sites of PV farms should avoid mountain 

summits and steep slopes, as the complex terrain makes the installation of PV 

modules and the construction of other infrastructure difficult. PV module 

installation requires a large area, unlike wind turbines, and land cover type is an 

important indicator. Barren land is considered the most desirable; forest and 

farmland are less suitable. Ideally, solar farm sites should be close to roads, the 

existing power grid system and urban areas. Energy demand in urban areas is 

significantly higher than in rural areas, and locating solar farms near urban areas 

reduces loss during energy transmission. The costs of constructing transmission 

lines also decreased.  

In this study, unit generation cost is considered the most important criterion 

because it defines the feasibility of solar energy production and integrates the 

technical solar energy potential and cost. Geographic criteria are next: an area 

with a mild slope is more eligible for a PV farm than a steep area is, and barren 

land is given high priority, while forest and farmland are considered a poor choice. 

Economic factors, distance to roads, urban area and transmission lines are the 

least important. The weight of each criterion was derived using the AHP method, 

by directly comparing the importance of one criterion to another; the comparison 

matrix is shown in Table 4.10.   
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Table 4.10 Comparison matrix of criteria for solar farm 

Criteria Unit 

generation  

cost 

Slope Landcover Distance  

to road 

Distance 

to urban 

area 

Distance to  

transmission 

line 

Unit 

generation 

cost 

1 3 3 5 5 5 

Slope 1/3 1 1 3 3 3 

Landcover 1/3 1 1 3 3 3 

Distance to 

roads 

1/5 1/3 1/3 1 1 1 

Distance to 

urban area 

1/5 1/3 1/3 1 1 1 

Distance to 

transmission 

lines 

1/5 1/3 1/3 1 1 1 

Total  2.26 6 6 14 14 14 

 

Table 4.11 shows the normalised pairwise comparison matrix of criteria for solar 

farms. Finally, the weights of criteria are displayed in Table 4.12. 
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Table 4.11 Normalised pairwise comparison matrix of criteria for solar farm 

Criteria Unit 
generation  

cost 

Slope Landcover Distance 

to road 

Distance 

to urban 
area 

Distance to  

Transmission 

line 

Unit 
generation 

cost 

0.442 0.5 0.5 0.357 0.357 0.357 

Slope 0.147 0.167 0.167 0.215 0.215 0.215 

Landcover 0.147 0.167 0.167 0.215 0.215 0.215 

Distance to 
roads 

0.088 0.055 0.055 0.071 0.071 0.071 

Distance to 
urban area 

0.088 0.055 0.055 0.071 0.071 0.071 

Distance to 
transmission 
lines 

0.088 0.055 0.055 0.071 0.071 0.071 

 

Table 4.12 Weights of criteria for solar farm 

Criteria Unit 

generation  

cost 

Slope Landcover Distance  

to road 

Distance 

to urban 

area 

Distance to  

Transmission 

line 

Weights 0.418 0.188 0.188 0.0685 0.0685 0.0685 

 

The next step is to investigate whether the comparisons are consistent. For 

controlling the consistency of the estimated weight values, CR is calculated using 

the formula detailed in section 4.1.5. If CR is less than or equal to 0.10, the degree 

of consistency is satisfactory (Saaty, 1980). The CR value of each criterion for 

solar farms is smaller than 0.1. 

Once the weights are assigned, the criteria or indicators are ordered according 

to their degree of importance and normalized on a scale of 1 to 9, where 1 is the 

lowest value and 9 is the highest, as Table 4.13 shows.  
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Table 4.13 Scores of indicators for solar farm 

Unit generation cost  0.164 - 0.178 $/KWh 9 

 0.178 - 0.187 $/KWh 7 

 0.187 - 0.194 $/KWh 5 

 0.194 - 0.205 $/KWh 3 

 0.205 - 0.229 $/KWh 1 

Slope <1% 9 

 1% - 2.5% 7 

 2.5% - 5% 5 

 5% - 10% 3 

 10% - 15% 1 

 >15% Restricted area 

Landcover type Built-up area, water body and 

wetland, natural reserve 

Restricted area 

 Forest 1 

 Farmland  3 

 Scrub  5 

 Grassland  7 

 Barren land  9 

Distance to road <2 km 9 

 2 km - 5 km 7 

 5 km - 10 km 5 

 10 km - 20 km 3 

 >20 km 1 

Distance to 

transmission line 

<5 km 9 

 5 km -10 km 7 

 10 km - 15 km 5 

 15 - 20 km 3 

 >20 km 1 

Distance to urban area <5 km 9 

 5 km - 10 km 7 

 10 km - 15 km 5 

 15 km - 20 km 3 

 >20 km 1 

 

4.3 Biomass energy potential assessment 

Biopower, or biomass power, is the use of biomass to generate electricity. 

Biopower system technologies include direct-firing, cofiring, gasification, 
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pyrolysis, and anaerobic digestion. Most biopower plants use direct-fired systems 

that burn biomass directly to produce steam. Co-firing refers to mixing biomass 

with fossil fuels in conventional power plants. Coal-fired power plants can use 

cofiring systems to significantly reduce emissions, especially sulphur dioxide 

emissions. Gasification systems use high temperatures and an oxygen-starved 

environment to convert biomass into synthesis gas, a mixture of hydrogen and 

carbon monoxide. The synthesis gas, or syngas, then can be chemically 

converted into other fuels or products, burned in a conventional boiler or used 

instead of natural gas in a gas turbine. Gas turbines are much like jet engines, 

only they turn electric generators instead of propelling jets. Highly efficient to 

begin with, they can be made to operate in a combined cycle in which their 

exhaust gases are used to boil water for steam, a second round of power 

generation, for even higher efficiency (National Renewable Energy Laboratory, 

2013). 

The assessment of biomass energy potential in this study includes the 

assessment of usable biomass potential from agricultural and forestry residues, 

the economic analysis of biomass power plants based on case studies, and site 

selection for biomass power plants. Usable biomass is derived from NPP data. 

Biomass energy is different from wind and solar energy. One obvious difference 

is that biomass needs to be transported from farmland or forests to biomass 

power plants, which makes it impossible to assess the spatial distribution of the 

technical potential of biomass energy. In addition, the energy production from 

biomass must be evaluated based on specific biomass power plants, which 

accounts for the introduction of case studies in this section. Biomass energy 

production, cost and revenue are analyzed in the case studies. As the biomass 

needs to be transported from collection points to biomass power plants, transport 

cost accounts for a large percentage of total cost. The selection of optimal sites 

is based on network analysis to reduce transport cost. The workflow of the 

assessment of biomass energy potential is shown in Figure 4.6. 
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Figure 4.6 Overview of approach to assess biomass energy potential 

4.3.1 Estimation of usable biomass power potential  

The assessment of usable biomass power potential begins from biological 

biomass potential, which is the quantity of total residues from crops and forestry 

and is derived from the annual NPP. NPP is defined as the net flux of carbon from 

the atmosphere into green plants per unit time. In other words NPP is equal to 

the difference between the rate at which plants in an ecosystem produce useful 

chemical energy (or GPP), and the rate at which they expend some of that energy 

for respiration. NPP is a fundamental ecological variable, not only because it 

measures the energy input to the biosphere and terrestrial carbon dioxide 

assimilation, but also because of its significance in indicating the condition of the 

land surface area and status of a wide range of ecological processes. The MODIS 

product (MOD17A3) provides annual global NPP at 1 km resolution. The 

University of Montana produced Version-55 of the NPP product (USGS, 2014). 

NPP includes both above-ground and below-ground production and is measured 

as the amount of carbon per unit area (gC/m2). Only the above-ground biomass 

is used for energy production, so conversion is needed to obtain the above-

ground NPP value from the overall value. The following equation is used to 
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convert NPP from MODIS/Terra data to biologically available biomass based on 

the research of (Shi et al., 2008). 

𝐵 = 𝑁𝑃𝑃 ∗ 𝛼/𝛽 

B is biologically biomass; 

𝛼 is the proportion of above ground biomass in the total biomass;  

𝛽 is carbon concentration in dry biomass; and  

for crops and grass, 𝛼 is 0.8 and 𝛽 is 0.45, while for forest and other woody 

vegetation, 𝛼 is 0.5 and 𝛽 is 0.5 (Shi et al., 2008). 

Not all biologically available biomass can be used for energy production due to 

restrictions, such as soil carbon maintenance, papermaking and other economic 

purposes. Usable biomass is introduced to express the part of biologically 

available biomass that can be used for energy production and is calculated based 

on the equation 

𝑈 = 𝐵 ∗ 𝑟 ∗ (1 − 𝑒 − 𝑙) 

where 

U is usable biomass; 

B is biologically biomass;  

R is the fraction of B that is not primary yield. For crops, only the residues (such 

as straw and stems) are used for energy production. For fast-growing grass or 

trees that are dedicated to energy production, r can be equal or close to 1 (Liao 

et al., 2004). 

e is the fraction of excluding the biomass used for economic purpose other than 

energy production, such as forage and papermaking. 

𝑙 presents the loss during the whole process, for example, the loss occurring 

during the harvest. 

As the land cover data in the land use dataset does not exactly match the crop 

and forest classes due to the two different classification systems, adjustment is 
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required. Specifically, cropland as one class of land cover includes varieties of 

crop types. Bi et al. (2009) provide ratio values of different crop types in China, 

including wheat, corn, soybeans, sugarcane, green beans, cotton, peanuts and 

rape. Using residual/production ratio (r) and production of each crop, the 

composite ratio for cropland in a specific administrative region is calculated using 

the formula: 

𝑅 =
∑ 𝑟𝑖𝑝𝑖

𝑛
𝑖=1

∑ 𝑝𝑖(1 + 𝑟𝑖)𝑛
𝑖=1

⁄   

where  

R is the composite ratio for cropland; 

𝑟𝑖 is residue/production ratio, derived from the ‘ratio of grass to grain’ data (Bi, et 

al., 2009); r for different wood types is derived from the ‘the estimated coefficient 

of forest residue in China’ in the research of Liao et al.(2004); 

𝑝𝑖 is the production of crop i in 2010, recorded from the China Statistic Yearbook 

(2014); 

𝑛 is the number of crops. 

The rate for ‘forest’ in the land use data is calculated in the same way, as forest 

is also a composite type that includes economic forests, timber forests, sparse 

forests, production forests, firewood forests and fast-growing forests (Shi et al., 

2008). The production data for each type of forest from the China Statistic 

Yearbook (2014) is available only for provincial regions. Table 4.14 shows the 

composite residue/production ratio for cropland and forest.  
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Table 4.14 Composite residue/production ratio for cropland and forest  

Region Composite ratio for 

cropland 

Composite ratio for 

forest 

Beijing 0.472415801 0.1691 

Tianjin 0.498991045 0.2710 

Hebei 

Province 

Shijiazhuang 0.491261316 0.3267 

Tangshan 0.475428581 

Qinhuangdao 0.472356799 

Handan 0.493186946 

Xingtai 0.49517735 

Baoding 0.484521497 

Zhangjiakou 0.509070714 

Chengde 0.499377042 

Cangzhou 0.487101238 

Langfang 0.47779864 

Hengshui 0.491461368 

 

For shrubbery and grass and other fast growing vegetables, r is considered 1; for 

savanna land cover type, 0.5 is used in this study according to the MOA/DOE 

report (Dai et al., 1998). The report states that in China the percentage of crop 

residue returned to or left in the field is approximately 15%. However, according 

to the field survey conducted by Shi, et al.(2008), this percentage can be as high 

as 70%. As insufficient information is available to make a more accurate 

estimation, 50% is has been chosen as the percentage of residue that returns to 

the soil.  
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Based on the MOA/DOE report, 2.3% of the total available straw and stalk is used 

as industrial material for papermaking, and approximately 24% is utilized as 

forage; hence, the percentage of economic use is 26.3%. Loss for the entire 

process is assumed to be 5%. Table 4.15 shows the parameter values of different 

land cover types for calculating usable biomass. 

Table 4.15 Parameter values of different land cover types for calculating usable biomass  

Land 

cover type 

α β r e1(return to 

soil) 

e2 (economic 

use) 

loss 

Forest 0.5 0.5 composite 

ratio 

0.5 0 0.05 

Cropland 0.8 0.45 composite 

ratio 

0.5 0.263 0.05 

Shrubbery 0.5 0.5 1 0.5 0 0.05 

Savanna 0.5 0.5 0.5 0.5 0 0.05 

Grassland 0.8 0.45 1 0.5 0.263 0.05 

Other 0 1 0 0 0 0.05 

 

4.3.2 Economic analysis of biomass power plants 

Biomass fuels are burned directly to produce steam, which drives a turbine that 

turns a generator that converts the power into electricity. In some biomass 

applications, the turbine exhaust steam from the power plant also is used for 

manufacturing processes or to heat buildings. Such combined heat and power 

systems greatly increase overall energy efficiency. The systems usually operate 

24 hours per day and 7 days per week, with several weeks of downtime per year 

for maintenance and repairs (Tomberlin & Mosey, 2013). The amount of energy 

generated by a biopower system depends on several factors, such as the type of 

biomass, the technology used and other economic factors. In this study, 

combined heat power (CHP) technology has been selected because of its high 

overall energy efficiency. CHP is technically the concurrent generation of multiple 
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forms of energy in a single system (Tomberlin & Mosey, 2013). CHP systems 

include reciprocating engines, combustion or gas turbines, steam turbines, micro 

turbines, and fuel cells. While generating electric power, the thermal energy from 

the system can be used to produce steam, hot water, or chilled water for process 

cooling (Tomberlin & Mosey, 2013). 

Biomass power plants are different from wind power plants and solar PV plants, 

because biomass has to be collected from farmland, forests or other places and 

transported to biomass power plants (Liu, 2012a). Unlike the free wind resource 

and solar radiation, biomass has to be bought from farmers. Furthermore, the 

installed cost of biomass power generation systems is estimated based on 

several key factors, including the equipment arrangement, plant size, and 

geographical factors. These costs include permitting, engineering, equipment, 

construction, commissioning, and all soft costs such as development fees and 

the costs for financing. The economics of a biopower system depend on 

incentives, plant costs, labour costs, biomass resource costs and the sales rate 

for electricity and thermal energy. Operational costs are a major component and 

economy of scale is critical concerning operating costs. While larger plants are 

more efficient, cost per kilowatt is also lower due to labour costs. For example, a 

20 MW biopower facility may have only a few more employees than a 10 MW 

facility (National Renewable Energy Laboratory, 2013).  

Table 4.16 shows related data for biomass power plants on different scales 

derived from practical projects in China. According to the case studies from Liu 

(2012b), in the study area the necessary investment is 10,000 yuan per 1kW 

installed capacity. This number includes the purchase and installation costs for 

the biomass combustion boiler and other facilities and the initial investment for 

ancillary infrastructure, thus it can be considered total investment cost. Annual 

operation and maintenance costs are assumed to be 3% of investment cost 

based on the empirical data.  

The field studies from Liu (2012b) offers some guidance on fuel consumption. 

Biomass power plants with 12 MV installed capacity consume 140 thousand tons 

of biomass residues per year. Other biomass residue consumption for different 

scales of biomass power plants are described in Table 4.16. Fuel cost for 
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biomass power plant is 300 ¥/t, which includes collection costs and transportation 

cost from the farms to biomass power plants.  

Heat values for residues from different crops vary, and 15 MJ/kg is used to 

calculate heat value. The results of a study undertaken by Thek (2004) show that 

the average efficiency for electricity from the heat value of biomass is 16.9%, and 

average efficiency for heat is 71 %. In this study, these values are used to 

estimate electricity and heat production. The annual production of electricity and 

heat are estimated based on the formulae: 

 𝐸𝑏 = 𝐹 ∗ ℎ𝑣 ∗ 𝑒𝑝 

 𝐻𝑏 = 𝐹 ∗ ℎ𝑣 ∗ 𝑒ℎ 

where 

 𝐸𝑏 is the annual production of electricity from biomass residue; 

𝐻𝑏 is the annual production of heat from biomass residue; 

𝐹 is the consumed biomass fuel; 

ℎ𝑣 is the heat value; 

𝑒𝑝 is the transfer efficiency from heat value of fuel to electricity production; 

𝑒ℎ is the transfer efficiency from heat value of fuel to heat production. 

Including the government subsidy, the price of electricity produced from biomass 

is 0.75 ¥/kWh, while the benchmark of electricity produced from coal is 

0.45 ¥/kWh. The heat price is 45 ¥/GJ from biomass power plants in the study 

area. To simplify the calculation process, all investment costs are assumed to be 

paid from loans, and the interest rate is 5% annually. The annual loan is 

calculated based on the formula  

𝐿 = 𝐼 
𝑟(1 + 𝑟)𝑛

(1 + 𝑟)𝑛 − 1
 

where  

𝐿 is the annual loan payment; 
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𝐼 is the initial investment cost; 

𝑟 is the interest rate; 

𝑛 is the lifetime of biomass power plants, taken as 15 years. 

Table 4.16 The basis of economic analysis for biomass power plants  

Installed capacity (MW)  12 15 24 30 

Total investment cost (million 

yuan) 120 150 240 300 

O&M cost (million yuan) 3.6 4.5 7.2 9 

Annual fuel Consumption (t) 140,000 163,443 280,000 300,000 

Annual fuel Cost (thousand 

yuan) 42,000 49,032.9 84,000 90,000 

Heat value from fuel (million 

MJ) 2100 2452 4200 4500 

Production of electricity 

(MWh) 99,167 115,772 198,333 212,500 

Production of heat (GJ) 1,470,000 1,716,151 2,940,000 31,50,000 

Heat (MWh) 408. 477 817 875 

Electricity price sales 

revenue (thousand yuan ) 74,375 86,829 148,750 159,375 

Heat price sales revenue 

(thousand yuan ) 66,150 77,226 132,300 141,750 

Loan payment (million yuan) 11.56 14.45 23.12 28.90 

 

In reality, the production of electricity and heat cannot be constant due to the 

decline of facility performance. The decline ratio identified by Moon et al. (2011) 

is utilized in this study. Revenue, costs and net profile for two case studies, with 
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annual CHP of 12 MW and 30 MV were calculated as a result of economic 

analysis. 

4.3.3 Site selection for biomass power plants 

Environmental and social constrains must be considered when planning a site for 

a biomass power plant. Factors that affect restrictions on location include 

pollution, bad smells, and the existence of protected areas and citizens’ reactions 

(Ma et al. 2005). Based on studies by Voivontas (2001) and Perpiñá et al. ( 2009), 

the constraints in Table 4.17 can be applied to site biomass power plants.  

Table 4.17 Environmental and social constraints to apply for sitting bioenergy plants  

Feature Recommendation for buffer zones 

Wetlands and lakes Buffer zones around wetlands and lakes:100m 

Protected areas Buffer zones around protected areas: 500m 

Airports Buffer zones around airports: 500m 

Slope Slope greater than 15% is not allowed 

Residential area Buffer zones around residential area: 500m 

Source: Own illustration, based on the mentioned literature above  

Once the excluded areas for biomass power plants are defined, research focuses 

on the selection of optimal sites. The techniques used to optimize the locations 

for plants include location-allocation modelling and supply area modelling. 

Location-allocation modeling optimizes plant locations based on all usable 

biomass in the area, even if some biomass locations are beyond the reasonable 

transportation distance to the plant locations. This modelling is suitable when the 

planner intends to send all usable biomass to the plant location (Shi et al., 2008). 

Ranta (2005) used this modelling to find optimal power plant locations for utilizing 

logging residue in Finland. In supply or service area modeling, power plants are 

located sites surrounded by high local biomass density as only the biomass near 

the plants is useful; distant biomass is useless because of high transport costs. 

Thus, supply area modeling is appropriate when there is a threshold for 

transportation costs. The first approach is to set the size of the power plant and 
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expand the supply area of a candidate site until the biomass in the supply area 

meets the scale of the plant. The costs for transporting the biomass in the supply 

area to the plant are calculated to evaluate whether a plant at a specific location 

is profitable. Zhan et al. (2005) adopted this approach to evaluate pricing 

strategies for a potential switchgrass to ethanol conversion facility in Alabama. 

The second approach directly sets a transportation cost threshold and finds sites 

whose supply areas contain sufficient biomass. Voivontas (2001) used this 

approach to site biomass power plants. 

In this study,a combination of location-allocation modelling and supply area 

modelling is used because it is rational to set limits on transportation costs in a 

large study area. Transportation costs in this study are measured by distance, 

and 100 km has been chosen as the transportation cost threshold. This threshold 

stems from a technical report from the National Renewable Energy Laboratory 

(Montague et al., 2002). The location-allocation method in network analysis 

enabled in ArcGIS has been used to find optimal sites for biomass power plants. 

This is a powerful tool for developing a spatial decision support system for private 

or public facilities planning. The principle behind it is that biomass power plants 

should be located at locations surrounded by sufficient biomass while 

transportation costs should be minimized. As the name suggests, location-

allocation is a two-fold problem that simultaneously sites facilities and allocates 

demand points to the facilities. In this study, biomass power plants are facilities 

and biomass supply sites are demand points in location allocation analysis. The 

goal of location allocation is to site the facilities in a way that supplies the demand 

points most efficiently.  

Location-allocation analysis enabled in ArcGIS layer offers seven problem types 

to site facilities and allocation demand points, namely minimizing impedance, 

maximizing coverage, maximizing capacitated coverage; minimizing facilities, 

maximizing attendance, maximizing market share and target market share. The 

siting of biomass power plants forms part of the minimizing impedance problem 

because it can reduce overall transportation costs. Because the spatial resolution 

of usable biomass distribution geodata is 1 km2 and considering the efficiency of 

location-allocation analysis, each 5 km2 is considered a point. Each centroid of a 

5 km2 grid contains the usable biomass (t), as the example in Figure 4.7 shows. 
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Figure 4.7 Centroids of 5 km grid, each one contains usable biomass 

The entire territory contains: 

 8,873 biomass retrieving points; and 

 7,182 potential sites of biomass power plants — 691 points have been 

eliminated due to environmental and social constraints. 

The most important work required to implement location - allocation analysis is to 

build a road network. General attributes of the road network include 

 road type, which provides the information of the road hierarchy, such as 

highway, national road or provincial road; 

 length, which refers to the road stretch length of the routes; and 

 one way, which refers to the travel direction. In this case, traffic is allowed 

to travel in both directions. 

After the road network is built, location-allocation analysis can be implemented 

by loading facilities and demand points. The important aspect of demand points 

in location-allocation analysis is usable biomass. This setting of weight 
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guarantees that the points with sufficient usable biomass are more important than 

those with less usable biomass are. The top 10 sites are selected during this 

process. Considering the population density and existing coal and biomass power 

plants, only 4 sites have been selected as the final optimal biomass power plant 

locations. Each optimal site has an individual supply area providing biomass. The 

distribution of optimal sites and statistical results appear in the results and 

discussion section.
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5 Results and discussion 

The section contains the results of the assessment of wind, solar and biomass 

energy potential. All results are derived from the methodology described in 

Chapter 4. Based on the results and current situation of renewable energy 

development, suggestions for future development are provided. 

5.1 Wind energy 

5.1.1 Theoretical wind power potential  

 Figure 5.1 illustrates the annual wind speed at the height of 80 m and wind 

power density are presented and they were calculated based on the formula in 

the section 4.1.1. Wind speed differs in value over the region from 2.6 to 6.0 m/s. 

Wind power density, which indicates theoretical wind power potential, varies from 

4.5 to 210 w/m2.  

 
Figure 5.1 Spatial distribution of annual mean wind speed and wind power density 

The highest wind speed is located in the north-western part of the study area, on 

the Bashang Plateau next to the southern edge of the Mongolian Plateau. In 

winter, the Asian continental cold high pressure passes through this area from 

the north-west to the south-east, and the Wind speed on the Bashang Plateau is 
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higher than in areas because of this. The eastern side of the study area, near the 

Bohai Sea, also experience high wind speed. The lowest wind speeds occur in 

the north-eastern part, in the Yanshan Basin, and the second lowest wind speeds 

occur in the south-western part, in the Taihang Mountains, as the Taihang 

Mountains block the cold high pressure system in winter. Thus, terrain and wind 

regime largely determine the spatial distribution of wind speed in the study area. 

The distribution of wind power density depends on wind speed, and the north-

western area (the Bashang Plateau) and eastern area near the sea are endowed 

with excellent wind energy resources. 

5.1.2 Geographic wind power potential  

Wind power plants cannot be built in restricted areas. Based on the criteria in this 

study, restricted areas are shown in Figure 5.2. The restricted section of the study 

area covers 80,189 km2, which accounts for 36.9% of the total area. 
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Figure 5.2 Spatial distribution of wind power density and restricted area  

5.1.3 Technical wind power potential  

Annual wind power production in a given region is closely to wind speed, the 

conversion efficiency of wind turbines and the suitability of the area and was 

calculated based on the formulae in the section 4.1.3. The spatial variation of 

technical potential is similar to theoretical wind power potential. The north-
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western region next to the Mongolian Plateau and the eastern section near the 

Bohai Sea have abundant technical wind power potential. The zonal statistics 

function in ArcGIS was used to summarize electricity production within the 

administrative boundary of 12 cities (see Table 5.1). Zhangjiakou, located in the 

northwestern region, is ranked first with 125 TWh/year technical potential and 

4.05 GWh/year/km2 technical potential density, which is the annual energy yield 

divided by the area available for wind farms. The regional potential is estimated 

to be 307 TWh/year; in 2012, total electricity consumption in study area exceeded 

467.47 TWh. The consumption far exceeds the total technical wind potential. 

 

Figure 5.3 Spatial distribution of technical wind energy potential 
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Table 5.1 Technical potential of wind energy in different cities 

Cities 
Technical 

potential(TWh/year) 

Available area for 
wind power plants 

(km2) 
Technical potential 

density(GWh/year/km2) 

Zhangjiakou 124.99 30840 4.05 

Chengde 36.48 23359 1.56 

Cangzhou 36.42 12133 3.00 

Tangshan 17.30 9609 1.80 

Xingtai 14.41 10118 1.42 

Handan 13.64 8488 1.61 

Hengshui 12.43 6754 1.84 

Tianjin 12.39 7846 1.58 

Baoding 11.80 13146 0.89 

Beijing 9.71 7050 1.37 

Shijiazhuang 6.47 8673 0.74 

Qinhuangdao 5.83 5188 1.12 

Langfang 5.54 5270 1.05 

5.1.4 Economic wind power potential 

According to the cost model described in the section 4.1.4, the unit generation 

cost ranges from 0.07 $/kWh to more than 1 $/kWh under present price level (see 

Figure 5.4 Spatial distribution of unit generation cost for wind energy). Using wind 

energy is more economically feasible in region with lower costs, and the north-

western plateau and eastern side near the sea offers lower generation cost. At 

present, the average tariff in this study area is around 0.069 $/kWh, but Unit 

generation cost is higher than the average tariff. The incentive policies are critical 

to promoting the further development of wind energy; hence, the national and 

provincial administrations have published policies to promote its development. 

One is the feed-in-tariff policy for onshore wind power, which has been available 

since 2009. This policy defines four wind feed-in-tariff levels based on the 

estimated regional wind resources, ranging from 0.08 to 0.1 $/kWh. The north-

western part of the study area falls under the 0.09$/kWh level.  

Figure 5.5 shows the wind supply curve in the study area. Under the current feed-

in-tariff for this study area (0.09 $/kWh), it is estimated that the economic wind 

power potential is 34 TWh/year and the economic wind installed capacity is 

32 GW.  
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Figure 5.4 Spatial distribution of unit generation cost for wind energy 
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Technical potential (TWh/year) 

Figure 5.5 Supply cost curve of wind power 

The lowest level of wind generation cost is 0.05 $/kWh, which is slightly lower 

than the average electricity price from coal-fire power generation (0.069 $/kWh). 

The cost of wind turbines accounts for almost 80% of investment costs. 

Fortunately, the price of a wind turbine has decreased tremendously in the past 

decade, and this decrease could lead to a significant reduction in the 

corresponding levelized cost. To examine the uncertainty of wind cost 

developments in the future, two scenarios of 15% and 30% capital cost reduction 

were analyzed, and the results are shown in Figure 5.6. With 15% reduction of 

investment cost, the economic potential E1 in Figure 5.6 under the current feed-

in-tariff increases to 70 TWh/year, and with a 30% reduction, the economic 

potential increases to 122 TWh/year.  
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Technical potential (TWh/year) 

Figure 5.6 Supply cost curve of wind power with reduction of investment cost  

5.1.5 Sensitivity analysis  

Uncertainty leads to the imprecision of results, and sensitivity analysis is used to 

address this uncertainty and quantify the effects of each input on modelling 

results. 

In the formula used to calculate annual wind energy production in the analysis of 

technical wind power potential, maximum efficiency of the Betz limit ( 𝑪𝒑) is a key 

input for estimation of technical wind energy production. The value of 0.593 is the 

maximum efficiency, but in reality, the efficiency of a wind turbine cannot reach 

this value. The value ranges from 0.3 to 0.5 based on the current technical report. 

Efficiency ratios of wind turbines of 0.3, 0.35, 0.4, 0.45, 0.5, 0.55 and 0.593 have 

been selected to show the variation in technical potential. The relationship is 

linear (Figure 5.7). If the efficiency increases 1%, total technical potential increase 

by 5 TWh/year. 
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Figure 5.7 Sensitivity of total technical potential to the efficiency ratio of wind turbine  

5.1.6 Land suitability level of wind power plants 

Figure 5.8 shows the land suitability level of wind power plants based on the multi-

criteria method. An area with a score higher than 8 is classified as having very 

high suitability level, which in this study are the north-eastern part of study area, 

the Bashang Plateau, and the eastern side near to the sea. These regions cover 

21,543 km2, if all the space available for wind farms is used to install wind turbines. 

The maximum installed capacity in this very suitable area for wind farm could be 

103 GW and maximum technical potential is 85.52 TWh/year.  



94        Jie Zhang 

 

Figure 5.8  Land suitability level of wind power plants 
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5.2 Solar energy 

5.2.1 Theoretical solar radiation resource 

Latitude, continent, terrain and local climatic variations determine solar energy 

resource (Šúri et al., 2007). The spatial variation of annual global solar radiation 

on the horizon in the study area, calculated based on the formula in section 4.2.1, 

is shown in Figure 5.9. Annual solar radiation differs in value over the region from 

1406 kWh/m2 to 1960 kWh/m2. The northern mountain area is endowed with 

excellent solar energy resources. Terrain largely determines the spatial 

distribution of solar radiation in this study area, and seasonal variability of the 

solar energy plays a crucial role for planning power grid management. Figure 

5.10 shows the seasonal variability of monthly average solar radiation in the study 

area. The highest value of monthly average solar radiation is obtained during the 

summer (June) and lowest value is obtained during winter (January), as the study 

area is located in the northern hemisphere. 
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Figure 5.9 Spatial distribution of annual solar radiation 
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Figure 5.10 Seasonal variability of solar radiation in study area 

5.2.2 Geographic solar PV potential 

Land cover and the DEM database were used to extract the geographical 

constraint factors. The appropriate area for PV accounted for 60% of the total 

area (approximately 130143 km2), and 226 PWh/year can be obtained from solar 

radiation in this area. In reality, all suitable areas cannot be covered by PV 

modules; the author assumed a 10% area factor, based on the research of 

Charabi& Gastli (2010), in the calculation of the technical potential of solar energy. 

The geographical potential of solar energy for each city in this study area is 

summarised quantitatively in Table 5.2. The difference in the annual average 

solar radiation between cities is not significant. Zhangjiakou and Chengde have 

the highest annual average solar radiation and largest available areas for PV. 

Solar energy resources in these two cities are abundant due to their high 

elevation.  
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Table 5.2 Geographical potential of solar energy for each city in study area 

Cities 

Total area of 

cities(km2) 

Annual average solar 

radiation(kWh/m2) 

Available 

area(km2) 

Geographical 

potential(TWh/year) 

Zhang jia 

kou 36695 1863 19617 36619 

Cheng de 39462 1896 12315 23350 

Cang zhou 14105 1678 13238 22270 

Bao ding 22294 1719 12536 21418 

Xing tai 12481 1724 10051 17306 

Tang shan 13018 1649 10021 16366 

Tian jin 11613 1611 9930 15996 

Han dan 12063 1741 8795 15177 

Shi jia 

zhuang 14062 1680 8772 14800 

Heng shui 8825 1745 8121 14173 

Bei jing 16376 1792 6616 11695 

Lang fang 6410 1688 6080 10260 

Qin huang 

dao 7758 1685 3997 6611 

 

5.2.3 Technical solar PV potential 

The spatial distribution of annual PV electricity production in each 1 by 1 km grid, 

calculated according to the formula in section 4.2.3, is shown in Figure 5.11. The 

total technical potential is estimated to be 2379 TWh for large-scale PV plants, 

and in 2012, total electricity consumption in the study area exceeded 467.47 TWh. 

Technical potential in this study area is five times that of electricity consumption 

in 2012.  
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The climate conditions, especially solar radiation; the conversion efficiency of PV 

modules; and the suitability of the area determine the annual electricity production 

in a given area. Technical potential in each city is influenced directly by 

geographical potential, and cities with high geographical potential have high 

technical potential. The technical PV potential of each city is shown in Figure 5.12. 

Zhangjiakou is ranked first at 384 TWh/year.  
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Figure 5.11 Spatial distribution of PV electricity production 
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Figure 5.12 Technical PV potential among cities 

5.2.4 Economic solar power potential 

Figure 5.13 shows the spatial distribution of PV production cost, which is 

calculated based on the formula in section 4.2.4. It ranges from 0.16 $/kWh to 

0.23 $/kWh. The unit production cost is related closely to annual electricity 

production and the price of PV modules. Figure 5.14 displays the supply cost 

curve of PV electricity in this study area. In light of the current feed-in-tariff 

(0.16 $/kWh), even the lowest unit of PV electricity generation cost is higher than 

the current tariff.  At present, the average tariff of electricity from coal power 

plants is approximately 0.069 $/kWh, thus the unit generation cost of PV 

electricity is significantly higher than that of conventional energy. Under current 

national energy policy, there is no economic potential for PV electricity.  

To solve these problems, two provinces in China have proposed an explicit tariff: 

Shandong declared a progressive implementation curve, with FIT decreasing 

from 0.27 $/kWh in 2010 to 0.22 $/kWh in 2011 and 0.19 $/kWh in 2012. Jiangsu 

had a similar tariff in 2011 for large-scale PV plants (Sun et al., 2013). Because 

current FIT cannot cover PV electricity production cost, two future FIT scenarios 

have been assumed in this study. With a 0.17 $/kWh FIT, economic potential is 

403.86 TWh, and with 0.175 $/kWh FIT, economic potential reaches 937.08 TWh. 
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Figure 5.13 Spatial distribution of PV production cost 
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Figure 5.14 Supply cost curve of PV power 

In the last decade, the price of PV modules decreased. In 2002, the weighted 

global average price provided by Solar Buzz was around 6 $/w (Hoogwijk, 2004); 

in 2013, it is around 1.0 to 1.2 $/w, according to the price information provided by 

the producer. To determine the influence of solar module price on economic 

potential, two future scenarios are assumed. If the price of PV modules decreases 

by 5%, economic potential under the current policy reaches 178.412 TWh/year; 

with a 10% price decrease, economic potential increases to 1251 TWh/year. 

5.2.5 Sensitivity analysis  

In the calculation of technical solar energy potential, the efficiency with which 

solar systems convert sunlight into electricity,  𝜂 , is an important parameter. 

Conversion efficiency varies according to PV cell type, and the highest 

conversion efficiency is between 36 and 41.1% when using high-efficiency 

tandem cells. The efficiency of multi c-Si cells is between 20 and 24%, while the 

conversion efficiency of simple c-Si cells is 14 to 18%. For thin film cell technology, 

efficiency is only 6 to 11%. However, the dilemma is that the cost of PV cells with 

high conversion efficiency is significantly higher than the cost of cells with lower 
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conversion. Due to the high price, high-efficiency tandem cells are not used in 

practical PV solar power plants. One promising tendency that should be noted is 

that in the last ten years, the price of PV cells decreased, on average, from 6-

7 $/w to 1.2 $/w. It is reasonable to conclude that the cost of PV cells with high 

conversion efficiency will decrease in future and that high efficiency tandem cells 

will be used in PV solar power plants eventually. 

Technical solar energy potential varies as conversion efficiency changes. The 

relationship is linear, as Figure 5.15 shows. If the conversion efficiency ratio 

increases by 1%, total technical potential increases 166 TWh/year.  

 

Figure 5.15 Sensitivity of total PV technical potential to the conversion efficiency ratio of 
PV cells 

Another uncertainty input factor when calculating technical PV energy potential 

is the area factor, 𝐴𝑓. The area factor indicates what fraction of the eligible areas 

can be covered by solar panels, which is assumed to be 10% in this study. 

However, in reality, there may not be as much space that can be provided for the 

development of solar energy due to urban sprawl and other activities; land can 

be occupied for other purposes other than solar power generation. If the area 

factor decreases from the assumed value of 10% to 1%, the technical solar 
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potential decreases as Figure 5.16 shows. Technical solar potential decreases 

by 238 TWh with every 1% decrease on area factor.  

 

Figure 5.16 Sensitivity of total PV technical potential to the area factor 

5.2.6 Land suitability level for solar power plants 

Figure 5.17 shows the land suitability level for PV solar power plants based on 

the multi-criteria method. Regions with scores higher than 8 are classified as very 

extremely suitable, while areas with score between 7 and 8 are categorized highly 

suitable. Most of the suitable land is distributed in the north-eastern part of study 

area, on the Bashang Plateau, and covers 10634 km2. The sum of the 

corresponding technical potential in these areas is 200 TWh/year.  
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Figure 5.17 Land suitability level of solar power plants 
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5.3 Bioenergy 

5.3.1 Usable biomass power potential  

Figure 5.18 shows the spatial distribution of biomass residue in the study area, 

calculated based on the model described in section 4.3.1. Annual biomass 

residue varies from 0 t/km2 to 4008 t/km2. The amount of biomass residue is 

related closely to land cover type. Forest occupies the north-western part of study 

area, thus biomass in this region is abundant. The dominant land cover type in 

the southern part is farm-land, and the residues from crops provide promising 

opportunities to develop biomass energy. The total annual amount of biomass in 

the study area is approximately 214 million tons. A recent report indicates that 

1 kWh electricity can be produced from about 1 kg biomass using combustion 

technology. Based on this transfer parameter, the annual theoretical biomass 

power potential in this study area is 214 TWh.  

Through the spatial statistic function in ArcGIS, the biomass for each county was 

analysed. Table 5.3 lists the top 20 counties with the largest biomass amounts, 

and the spatial distribution of these counties is expressed in Figure 5.19. Most of 

them are distributed in the northern part of the study area. From the viewpoint of 

usable biomass quantity, the northern area is the preferable location for biomass 

power plants. However, there are only two existing biomass power plants in this 

area (Figure 5.19) with others located in the south. This is mainly because of the 

elevation and population density—the northern area has a lower population and 

is covered by mountains, while most central and southern parts lie within the 

North China Plain, where the flat terrain provides superior living conditions and 

offers more biomass residue from a large number of agricultural products. 

In the biomass power plant planning field, numerous factors determine the 

locations of power plants. Considering only the amount of usable biomass power 

cannot satisfy demand, and the economic cost of building and operating biomass 

power plants cannot be neglected. Therefore, not only focused on the 

quantification of usable biomass but also on economic analysis and considering 

various during site selection. The results of these two topics are discussed in the 

sections that follow. 
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Figure 5.18 Spatial distribution of annual usable biomass  
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Table 5.3 Table Statistic results of biomass and biomass power potential  

Name of county  Area(km2) 
Usable 
biomass(ton) 

Theoretical power 
potential(GW) 

Fengning 10393 15933200 15933.2 

Weichang 8813 14414500 14414.5 

Chicheng 5274 8097010 8097.01 

Zhangbei 4183 7597050 7597.05 

Longhua 5431 6882610 6882.61 

Guyuan 3523 6241540 6241.54 

Qinglong 3516 6063830 6063.83 

Kangbao 3288 5022330 5022.33 

Pingquan 3231 4387020 4387.02 

Shangyi 2559 4091050 4091.05 

Wei xian 3159 4025160 4025.16 

Chongli 2352 3951830 3951.83 

Zhuolu 2767 3930100 3930.1 

Xuanhua 2327 3816560 3816.56 

Laiyuan 2405 3452250 3452.25 

Luanping 3221 2905290 2905.29 

Chengdexian 4062 2884270 2884.27 

Fuping 2477 2781900 2781.9 

Yangyuan 1784 2738440 2738.44 

Huanan 1635 2630260 2630.26 
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Figure 5.19 Spatial distribution of existing biomass power plants and counties with 
abundant usable biomass  

5.3.2 Economic analysis of biomass power plants 

The economic analysis of biomass power plants is based on specific case studies, 

as economic factors vary with the installed capacity, price of biomass and so forth. 

To highlight the effects of renewable energy subsidies, two scenarios for each 

case study are assumed: with a subsidy and without a subsidy. The two case 

studies examine biomass power plants with 12 MW installed capacity and 30 MW 
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installed capacity. Operating income includes revenue from power sales and heat 

sales, and operating costs are composed of fuel costs, loan repayments, and 

operation and maintenance costs. The pre-tax profile is the operating income 

minus operating cost.  

The average price of power from conventional power plants is 0.45 ¥/kWh, while 

the subsidy from the government for each kWh of power produced from biomass 

is 0.3 ¥/kWh. With the subsidy, the price of power from biomass power plants is 

0.75 ¥/kWh; without the subsidy, the price is only 0.45 ¥/kWh. Moreover, the 

Chinese government provides tax support to biomass power plants. Corporate 

tax usually is 25%, but for biomass power plants, corporate tax is reduced to 15%. 

In addition, biomass power plants receive VAT (17%) refunds on all machines 

and office products bought during the construction of the plants. The results of 

the economic analysis with subsidies are shown in Table 5.4 and Table 5.6 for 

two cases. Table 5.5 and Table 5.7 contain the economic analysis results without 

subsidies. 

Based on the results calculated, without subsidies, biomass power plants are still 

profitable. However, in reality, existing biomass power plants are unprofitable. 

The primary reason is that the supply of biomass residues is not continuous 

during the year, as the production of biomass is seasonal. Residues are abundant 

in summer and autumn but lacking in winter and spring. As the study area lies 

between the 36°N and 43°N latitudes, temperature and precipitation constrains 

mean that most agricultural products are harvested in summer or autumn. Many 

biomass power plants stop operating during spring due to the lack of biomass 

fuels.  

Another difficulty is the collection of biomass residue. The price of 1 ton of 

biomass residue for biomass power plants is around 300 ¥, which includes 

collection and transportation cost. However, the farmer receives a maximum of 

100 ¥/t from the dealer. The farmer has to collect the biomass residues from the 

farmland and take it to a retrieving points. Compared to the revenue, 100 ¥/t, the 

physical collection workload for farmers is too heavy. For the farmer, combustion 

is preferable to collection and sale when dealing with biomass residue. Recently, 

a possible solution to this problem has emerged— biomass power plants 
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purchase collection machines to collect residues free of charge and pay farmers 

less than 100 ¥/ton. 

 



 

Table 5.4 The income statement of 12MW combustion power heat system 

The period( year) 1 2 3 4 5 6 7 8 9 10 
Operating income 140525 138417 137433 136759 136351 135944 135536 135129 134721 134314 
Power sale revenues(thousand yuan ) 74375 73259 72739 72382 72166 71950 71735 71519 71303 71088 
Heat sales revenuew(thousand yuan ) 66150 65158 64695 64377 64185 63994 63802 63610 63418 63226 
Decline of facilities performance  1.000 0.985 0.978 0.973 0.970 0.967 0.965 0.962 0.959 0.956 
Operating cost 57161 58001 58858 59732 60623 61532 62460 63406 64371 65355 
Fuel cost (thousand yuan) 42000 42840 43697 44571 45462 46371 47299 48245 49210 50194 
Loan payment (thousand yuan) 11561 11561 11561 11561 11561 11561 11561 11561 11561 11561 
O&M cost(thousand yuan) 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 
Pre-tax operate profit 83364 80416 78576 77027 75728 74411 73076 71723 70351 68959 
AVT refund  20400          
Corporate tax(15%) 12505 12062 11786 11554 11359 11162 10961 10758 10553 10344 
Net profit (thousand yuan) 91259 68354 66789 65473 64369 63250 62115 60965 59798 58615 

 

The period( year) 11 12 13 14 15 16 17 18 19 20 
Operating income 133920 133246 132585 131911 131250 130983 130460 129939 129420 128904 
Power sale revenues(thousand yuan ) 70879 70522 70173 69816 69466 69325 69048 68772 68498 68224 
Heat sales revenuew(thousand yuan ) 63041 62723 62413 62095 61784 61658 61412 61167 60923 60679 
Decline of facilities performance  0.953 0.948 0.944 0.939 0.934 0.932 0.928 0.925 0.921 0.917 
Operating cost 66359 67383 68427 69493 70579 71688 72818 73971 75147 76347 
Fuel cost (thousand yuan) 51198 52222 53266 54331 55418 56526 57657 58810 59986 61186 
Loan payment (thousand yuan) 11561 11561 11561 11561 11561 11561 11561 11561 11561 11561 
O&M cost(thousand yuan) 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 
Pre-tax operate profit 67561 65863 64158 62418 60671 59295 57642 55968 54273 52557 
AVT refund            
Corporate tax (15%) 10134 9879 9624 9363 9101 8894 8646 8395 8141 7883 
Net profit (thousand yuan) 57427 55984 54534 53056 51570 50401 48996 47573 46132 44673 

 



 

Table 5.5 The income statement of 12MW combustion power heat system without any subsidy 

The period year 1 2 3 4 5 6 7 8 9 10 
Operating income 110775 110106 109793 109579 109450 109320 109191 109061 108932 108803 
Power sale revenues(thousand yuan ) 44625 43956 43643 43429 43300 43170 43041 42911 42782 42653 
Heat sales revenuew(thousand yuan ) 66150 66150 66150 66150 66150 66150 66150 66150 66150 66150 
Decline of facilities performance  1.000 0.985 0.978 0.973 0.970 0.967 0.965 0.962 0.959 0.956 
Operating cost 58520 59360 60216 61090 61982 62891 63818 64764 65729 66714 
Fuel cost (thousand yuan) 42000 42840 43697 44571 45462 46371 47299 48245 49210 50194 
Loan payment (thousand yuan) 11561 11561 11561 11561 11561 11561 11561 11561 11561 11561 
O&M cost(thousand yuan) 3240 3240 3240 3240 3240 3240 3240 3240 3240 3240 
Pre-tax operate profit 52255 50746 49577 48489 47468 46429 45372 44297 43203 42089 
AVT refund  0 0 0 0 0 0 0 0 0 0 
Corporate tax (25%) 13064 12686 12394 12122 11867 11607 11343 11074 10801 10522 
Net profit  39191 38059 37183 36366 35601 34822 34029 33223 32402 31567 

 

The period year 11 12 13 14 15 16 17 18 19 20 

Operating income 108678 108463 108254 108039 107830 107745 107579 107413 107249 107085 

Power sale revenues(thousand yuan ) 42528 42313 42104 41889 41680 41595 41429 41263 41099 40935 

Heat sales revenuew(thousand yuan ) 66150 66150 66150 66150 66150 66150 66150 66150 66150 66150 

Decline of facilities performance  0.953 0.948 0.944 0.939 0.934 0.932 0.928 0.925 0.921 0.917 

Operating cost 67717 68741 69786 70851 71938 73046 74177 75330 76506 77706 

Fuel cost (thousand yuan) 51198 52222 53266 54331 55418 56526 57657 58810 59986 61186 

Loan payment (thousand yuan) 11561 11561 11561 11561 11561 11561 11561 11561 11561 11561 

O&M cost(thousand yuan) 3240 3240 3240 3240 3240 3240 3240 3240 3240 3240 

Pre-tax operate profit 40960 39722 38468 37188 35892 34699 33402 32084 30743 29379 

AVT refund  0 0 0 0 0 0 0 0 0 0 

Corporate tax(25%) 10240 9931 9617 9297 8973 8675 8351 8021 7686 7345 

Net profit  30720 29792 28851 27891 26919 26024 25052 24063 23057 22034 



 

Table 5.6 The income statement of 30MW combustion power heat system 

The period year 1 2 3 4 5 6 7 8 9 10 

Operating income 301125 263364 261493 260209 259434 258659 257883 257108 256332 255557 
Power sale revenues(thousand 
yuan ) 159375 156984 155869 155104 154642 154179 153717 153255 152793 152331 
Heat sales revenuew(thousand 
yuan ) 141750 106380 105624 105106 104792 104479 104166 103853 103540 103226 
Decline of facilities 
performance  1.000 0.985 0.978 0.973 0.970 0.967 0.965 0.962 0.959 0.956 

Operating cost 127903 118337 120173 122045 123956 125904 127891 129918 131986 134095 

Fuel cost (thousand yuan) 90000 91800 93636 95509 97419 99367 101355 103382 105449 107558 

Loan payment (thousand yuan) 28903 17537 17537 17537 17537 17537 17537 17537 17537 17537 

O&M cost(thousand yuan) 9000 9000 9000 9000 9000 9000 9000 9000 9000 9000 

Pre-tax operate profit 173222 145028 141320 138164 135478 132755 129992 127189 124346 121462 

AVT refund  2981 0 0 0 0 0 0 0 0 0 

Corporate tax(15%) 25983 21754 21198 20725 20322 19913 19499 19078 18652 18219 

Net profit (thousand yuan) 150220 123274 120122 117439 115157 112841 110493 108111 105694 103243 
 

The period year 11 12 13 14 15 16 17 18 19 20 
Operating income 254808 253525 252268 250985 249728 249219 248224 247233 246246 245263 
Power sale revenues(thousand 
yuan ) 

151884 151119 150370 149605 148856 148553 147960 147369 146781 146195 
Heat sales revenuew(thousand 
yuan ) 

102924 102406 101898 101380 100872 100666 100264 99864 99466 99068 
Decline of facilities 
performance  

0.953 0.948 0.944 0.939 0.934 0.932 0.928 0.925 0.921 0.917 
Operating cost 136246 138440 140678 142961 145290 147665 150087 152558 155079 157650 
Fuel cost (thousand yuan) 109709 111904 114142 116425 118753 121128 123551 126022 128542 131113 
Loan payment (thousand yuan) 17537 17537 17537 17537 17537 17537 17537 17537 17537 17537 
O&M cost(thousand yuan) 9000 9000 9000 9000 9000 9000 9000 9000 9000 9000 
Pre-tax operate profit 118562 115085 111590 108024 104438 101554 98137 94675 91167 87614 
AVT refund  0 0 0 0 0 0 0 0 0 0 
Corporate tax(15%) 17784 17263 16738 16204 15666 15233 14721 14201 13675 13142 
Net profit (thousand yuan) 100778 97822 94851 91820 88773 86321 83416 80474 77492 74472 



 

Table 5.7 The income statement of 30MW combustion power heat system without any subsidy 

The period year 1 2 3 4 5 6 7 8 9 10 

Operating income 237375 202005 201249 200731 200417 200104 199791 199478 199165 198851 
Power sale revenues(thousand 
yuan ) 95625 95625 95625 95625 95625 95625 95625 95625 95625 95625 
Heat sales revenuew(thousand 
yuan ) 141750 106380 105624 105106 104792 104479 104166 103853 103540 103226 

Decline of facilities performance  1.000 0.985 0.978 0.973 0.970 0.967 0.965 0.962 0.959 0.956 

Operating cost 127903 118337 120173 122045 123956 125904 127891 129918 131986 134095 

Fuel cost (thousand yuan) 90000 91800 93636 95509 97419 99367 101355 103382 105449 107558 

Loan payment (thousand yuan) 28903 17537 17537 17537 17537 17537 17537 17537 17537 17537 

O&M cost(thousand yuan) 9000 9000 9000 9000 9000 9000 9000 9000 9000 9000 

Pre tax- operate profit 109472 83668 81076 78685 76462 74200 71900 69559 67179 64756 

AVT refund  0 0 0 0 0 0 0 0 0 0 

Corporate tax(25%) 27368 20917 20269 19671 19115 18550 17975 17390 16795 16189 

Net profit (thousand yuan) 82104 62751 60807 59014 57346 55650 53925 52170 50384 48567 
 

The period year 11 12 13 14 15 16 17 18 19 20 
Operating income 198549 198031 197523 197005 196497 196291 195889 195489 195091 194693 
Power sale revenues(thousand 
yuan ) 

95625 95625 95625 95625 95625 95625 95625 95625 95625 95625 
Heat sales revenuew(thousand 
yuan ) 

102924 102406 101898 101380 100872 100666 100264 99864 99466 99068 
Decline of facilities performance  0.953 0.948 0.944 0.939 0.934 0.932 0.928 0.925 0.921 0.917 
Operating cost 136246 138440 140678 142961 145290 147665 150087 152558 155079 157650 
Fuel cost (thousand yuan) 109709 111904 114142 116425 118753 121128 123551 126022 128542 131113 
Loan payment (thousand yuan) 17537 17537 17537 17537 17537 17537 17537 17537 17537 17537 
O&M cost(thousand yuan) 9000 9000 9000 9000 9000 9000 9000 9000 9000 9000 
Pre tax- operate profit 62303 59590 56845 54043 51207 48627 45802 42931 40012 37044 
AVT refund  0 0 0 0 0 0 0 0 0 0 
Corporate tax(25%) 15576 14898 14211 13511 12802 12157 11451 10733 10003 9261 
Net profit (thousand yuan) 46727 44693 42633 40533 38405 36470 34352 32198 30009 27783 
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5.3.3 Site selection for biomass power plants  

Once the evaluation of usable biomass power potential and economic analysis 

for specific biomass power plants have been completed, the next important issue 

is the location of the plants, which is affected by multi-factors. The transportation 

cost of biomass residue from retrieving points to biomass power plants and 

usable biomass potential are considered the two most important factors because 

of the high cost of residue transportation. The location-allocation method in 

network analysis can search optimal sites while considering these two factors 

simultaneously. Figure 5.20 shows the top 10 sites derived using the location-

allocation model described in section 4.3.3. Considering only these two factors is 

inadequate when sitting a biomass power plant— existing power plants and 

population density also have unavoidable influences on the locations of biomass 

power plants. The existing coal power plants and population density are 

illustrated in Figure 5.20. The planned biomass power plant should supply power 

for more people and not be clustered with existing power plants. To avoid 

competition for resources, the NDRC has declared that each county can have 

only one biomass power plant. Based on these planning rules, four sites have 

been selected as shown in Figure 5.21. The first site is given higher priority, then 

the second, the third and the fourth, as the numbers show. 

Table 5.8 lists the statistical results of the four optimal sites. As mentioned 

previously, 100 km was chosen as the transport cost threshold. Once the four 

optimal sites were identified, supply areas with 30 km, 50 km, 80 km and 100 km 

buffer were established by the network analysis tools. The biomass in each buffer 

was calculated using the spatial analysis tool in ArcGIS. Table 5.8 lists the 

biomass in the entire supply area and each buffer zone. The total distance refers 

to the sum distance between each biomass retrieval point and the biomass power 

plants. The biomass demand for specific biomass power plants and the capacity 

of the trucks used for transport, should be considered to calculate the total 

transport distance. In this study, the specific data, such as how much biomass is 

needed for biomass power plants, and which type of truck is used for transport, 

are not defined, thus the exact transport distance is not examined. The land cover 

of the four optimal sites is all cropland. Presently, a biomass power plant with 

30 MW installed capacity requires 300,000 t of biomass residues annually. 
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Therefore, the quantity of biomass residues in the supply areas within 30 km can 

provide enough biomass residue for power plants with installed capacity to 

80 MW. 

 

Figure 5.20 Top 10 sites for biomass power plants and existing coal power plants 
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Figure 5.21 Four optimal sites of biomass power plants 
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Table 5.8 Statistical results of the optimal sites for biomass plats 

 

This section showed the results of the study, namely renewable energy potential 

and land suitability analysis for renewable energy power plants. However, some 

assumptions have to be assumed in the calculation of renewable energy potential, 

such as the percentage of area used for solar power plants and interest rate, and 

some parameters are from empiric, such as energy transfer coefficient. Sensitivity 

analysis is conducted for major unfixed factors, but not for the all unfixed factors. 

These assumptions and parameters mentioned above could affect the accuracy 

of the results.  

In the calculation of theoretical wind and solar energy potential, only 48 

meteorological stations’ wind speed data and daily temperature data are used for 

such a large study area. Therefore, the limited data affected the quality of results. 

Based on the previous study from other researches and published academic 

researches, the author defined the criteria for restricted areas of renewable 

energy plants without public participation and local survey. The calculation of 

technical wind energy potential is based on a specific type of wind turbine, and 

 Site 1 Site 2 Site 3 Site 4 

Biomass 

in each 

buffer of 

supply 

area (t) 

30 km 851,824 1,300,380 950,318 996,159 

50 km 2,198,395 2,165,025 1,803,247 2,508,792 

80 km 6,080,394 6,219,125 5,721,685 6,050,118 

100 km 4,932,790 4,785,208 4,904,004 3,995,847 

Total biomass (t) 14,063,403 14,469,738 13,379,254 13,550,916 

Total transport 

distance (m) 

38,836,891 51,281,211 48,384,518 51,265,827 

Land cover type cropland cropland cropland cropland 
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thus the results vary with other types of wind turbine. Although these limitations 

of study are inevitable, the results of the study are plausible for renewable energy 

potential planning at regional level.    
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6 Conclusion and outlook 

In this chapter, the conclusions derived from the key findings of the study area 

are presented. Based on the results and current research situation, further steps 

or research ideas are provided in the Outlook section. 

6.1 Conclusion 

The researcher presented a methodology to assess wind, solar and biomass 

energy potential at regional scale with the aid of GIS and RS. The methodology 

integrates climate resources, geographical conditions, technology characteristics, 

and economic variables in the evaluation of these three types of renewable 

energy potential from a theoretical level to the economic level. Additionally, 

renewable energy policy was considered because it has a significant effect on 

the development of renewable energy. Hebei Province, Beijing and Tianjin have 

been analyzed as a reference case to present this methodology. Policy makers, 

investors and utility companies involved in renewable energy projects can use 

the research to inform their decision. Based on the results and the current 

situation of renewable energy development in the study area, suggestions and 

advice are provided for renewable energy planning in the future. 

Wind speed and wind power density, as the indicators used to express theoretical 

wind energy potential, have been spatialized and quantified. Wind speed differs 

over the region from 2.6 to 6.0 m/s at 80 m above the ground. Wind power density, 

which indicates theoretical wind power potential, varies from 4.5 to 210 w/m2. The 

north-western area (the Bashang Plateau) and the eastern area near the sea are 

endowed with excellent wind energy resources. The area of the restricted region 

that is unsuitable for erecting wind turbines is 80,189 km2, accounting for 36.9% 

of the total area. Taking the Vestas 82 (V82 1.65 MV) wind turbine as the 

reference turbine, annual wind energy yield can reach 307 TWh, whereas in 2012, 

total electricity consumption in the study area exceeded 467.47 TWh. Therefore, 

consumption far exceeds the entire technical potential of wind energy. The 

economic potential under the current FIT is 34 TWh, and the economic installed 

capacity is 32 GW. Based on the result of cost analysis, unit generation cost of 

power ranges from 0.07 $/kWh to more than 1 $/kWh.  
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The current alternative energy policy defines four wind FIT levels based on the 

estimated regional wind resource, ranging from 0.08 to 0.1 $/kWh. The north-

western part of study area lies at the level of 0.09 $/kWh, while other regions are 

at the 0.1 $/kWh level. The incentive policy is critical to promote the further 

development of wind energy; as such, FIT policy is still required. Another 

opportunity for wind energy development is the reduction of wind turbine price. 

With the 15% and 30% reductions in cost, economic potential increases to 

70 TWh/year and 122 TWh/year respectively.  

Land suitability analysis for wind power plants indicates that the area defined as 

extremely suitable occupies 21,543 km2, which is enough for 108 GW of installed 

wind power capacity. Thus, the eligible area for wind projects is adequate. In 2013, 

the installed wind power capacity of the study area was only around 8.96 GW. 

Compared to the estimated results of this study, much potential still can be 

exploited, as only approximately 27.8% of economic wind power potential has 

been exploited.  

During the estimation process in this study, adjusted parameters were introduced 

due to the lack of adequate transmission lines and supporting infrastructure. Only 

5.3 GW of the total 8.96 GW installed wind power capacity in the study area was 

connected to the local grid in 2013. To make full use of wind energy, supporting 

infrastructure and electricity grids should receive attention, especially in this study 

area, as the grid-connected ratio of wind- installed capacity is lower than national 

average level (88%). The rapid development of wind power in China increasingly 

is restricted by the capacity of the local grids and transmission lines, which have 

not kept pace with the accelerating growth in installed wind capacity. The energy 

planners and policy makers need to plan implementation to improve supporting 

infrastructure, local grids and transmission lines.  

Annual solar radiation simulated through the Bristow and Campbell model ranges 

throughout the region from 1406 kWh/m2 to 1960 kWh/m2. The northern 

mountains area is endowed with excellent solar energy resources, and terrain 

largely determines the spatial distribution of solar radiation in this study area. 

Based on the geographical constraints defined in the study, the appropriate area 

for PV, where 226 PWh/year can be obtained from the solar radiation, accounted 



Conclusion and outlook   125 

for 60% of the total area (about 130,143 km2). In reality, not all suitable areas can 

be covered by PV module; thus, a 10% area factor was considered in the 

calculation of the technical potential of solar energy.  

The total technical potential over the region is estimated to be 2379 TWh/year for 

large-scale PV plants, 5 times the total electricity consumption in 2012. However, 

based on the supply cost curve in this study, current FIT cannot cover PV 

electricity generation costs. Stronger energy policy incentives are essential to 

stimulate the development of large-scale PV. In the assumed 0.17 $/kWh FIT 

scenario, economic potential would be 403.86 TWh/year; with 0.175 $/kWh, 

economic potential would reach 937.08 TWh/year. Hence, FIT should be 

increased slightly or the decentralization of small-scale PV development, such as 

PV modules for households or blocks of flats, should be prioritized. Moreover, a 

reduction in the price of PV modules can stimulate the development of large-scale 

PV plants. Under current FIT policy, a 5% decrease in PV module price in the 

study area would produce economic potential of 178.412 TWh/year, while a 10% 

price decrease would increase economic potential to 1251 TWh/year. Most of the 

extremely suitable areas are distributed in the north-eastern part of the study area, 

covering 10,634 km2. The sum of the corresponding technical potential of this 

lands is 200 TWh/year. 

Annual usable biomass residues range from 0 to 4008 t/km2, and the amount of 

biomass residue is related closely to land cover type. Forest occupies the north-

western part of the study area, hence biomass is abundant. The dominant land 

cover type in the southern part is farm land, and the residues from crops provide 

promising opportunities for developing biomass energy. The total annual amount 

of biomass available in the study area is approximately 214 million tons. 

According to a recent technical report, 1 kWh electricity can be produced from 

about 1 kg biomass by combustion technology. Therefore, the annual technical 

biomass power potential in this study area is 214 TWh. 

The economic analysis results based on 12 MW installed capacity and 30 MW 

installed capacity case studies indicate that biomass power plants can be 

profitable without subsidy. However, all existing biomass power plants in China 

are unprofitable. Interruptions to biomass residue supply and difficulties with 
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biomass residue collection are the principal reasons. Most biomass power plants 

have to stop operations due to a lack of biomass residues, especially from 

February to July. In contrast, during August and January, biomass residues from 

farmland is abundant. To solve these two problems, some biomass power plants 

have entered into agreements with farmers to guarantee continuous biomass 

residue supply and purchase biomass collection machine to collect biomass 

residues in order to reduce the workload of collection for farmers. The issue about 

biomass power plants is biomass residues, such as a continuous supply, quality 

of biomass residues. Incentive energy policy at present is sufficient to stimulate 

biomass energy development.  

Siting biomass power plants differ from siting wind and solar power plants, and 

their locations rely on the availability of resources. Biomass residue needs to be 

transported from retrieval points to power plants, thus optimal sites can reduce 

transportation costs. Once restricted areas have been excluded, the location-

allocation analysis model coupled with road network information is adopted to 

search for optimal sites. After considering population density and existing 

biomass and coal power plants, the author retained only four optimal sites.  

Land use for renewable energy production includes direct land use by wind 

turbine, solar panel and biomass plants and indirect land use. Indirect land use 

includes access roads, related infrastructure and other purposes. Compared to 

traditional energy generation, which requires land for mining and transport, 

renewable energy consumes less land. The land use consumption and 

renewable energy research from NREL in the United States shows that the 

average total land use requirement for PV is 3.6 acres/GWh/year (NREL, 2013). 

According to the existing PV power plants in China, 1 MW installed capacity 

needs on average more than 2.9 acres (Statistic data from Beijixing Website). 

Research regarding land use consumption for other renewable energy generation 

in China is lacking. Land use consumption by renewable energy can be reduced 

through deploying distributed generation technologies or brownfield development. 

Not all renewable energy plants occupy public open space and, for example, 

brownfield in an urban area can provide space for a distributed PV system. 

Another advantage of utilizing brownfield for renewable energy development is 

the usage of existing infrastructure, which can reduce investment costs. 
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Most of the existing research on renewable energy estimation in China estimated 

only theoretical or geographic renewable energy potential. Few researchers have 

estimated technological and economic renewable energy potential under current 

energy policy. Although renewable energy policies have an unavoidable influence 

on the development of renewable energy, few researchers have considered their 

effects. In this study, the researcher combined renewable energy policy and 

renewable energy potential and calculated economic renewable energy potential 

in several assumed scenarios. In addition, the problems in renewable energy 

development have been pointed out for wind, solar and biomass energy 

separately, and possible solutions have been provided. The methodology 

presented in this study does not have spatial limitations; policy makers, 

renewable energy project investors and developers, as well as energy planners 

in other study areas, can apply it. Policy makers can define different parameters 

(such as restricted areas and energy incentive policy) to analyse their effects on 

power generation, while energy project developers can quickly identify new 

profitable areas based on the land suitability analysis results in this study.  

6.2 Outlook  

With the presented GIS method, the researcher has achieved the three major 

research objectives, namely (1) to quantify and map wind energy, solar energy 

and bioenergy potential, (2) to define the social and environmental restrictions for 

wind, photovoltaic and biomass power plants, and (3) to analyse land suitability 

for wind, and photovoltaic power plants and to find the optimal locations for 

biomass power plants. Based on the research results, suggestions for renewable 

energy development in the future have been proposed. Nevertheless, the 

research still has some limitations that could be improved with further study. 

The wind speed data used to estimate wind energy potential and the temperature 

data used to simulate solar resources are from meteorological stations, but the 

meteorological data from 48 national meteorological stations are available free of 

charge. To improve the precision of the output, more meteorological data from 

provincial meteorological stations or municipal meteorological stations should be 

obtainde.  



128   Jie Zhang  

USGS provides land cover data, and the primary land cover scheme identifies 17 

land cover classes that include 11 natural vegetation classes, 3 developed and 

mosaicked land classes, and three non-vegetated land classes (NASA Land Data 

Products and Services, 2014). Although these land cover data provide detailed 

information about vegetation classes, detailed information about farmland 

classes, specifically identifying fertile and barren land, should have been 

classified in this study, as renewable energy power plants should avoid fertile 

farmland. The lack of farmland classification leads to imprecise land suitability 

analysis results. 

PV technology and direct combustion were selected to evaluate solar energy 

potential and biomass potential respectively, but other technologies exist in 

addition to these. As the technical potential of renewable energy varies with the 

technologies used, identifying the type of technology that maximises renewable 

energy potential is an open research question for future study.  

In the economic potential assessment, transmission line cost is not included due 

to the lack of current transmission line data. However, in renewable energy 

projects, transmission line costs account for a large percentage of the investment 

cost. For further study, transmission line costs should be considered in the 

economic potential assessment. 

Combining renewable energy with conventional energy offers additional 

opportunities for utilising renewable energy. Solar power plants can be built with 

coal power plants. During winter, coal power can supplement solar power. 

Similarly, biomass power plants could be combined with coal power plants to 

solve the problems of interruptions biomass residues supply. 

This research is the first effort to assess renewable energy potential based on 

GIS in this study area. The study includes the development of an overall method 

of estimating renewable energy potential while considering climate resources, 

geographical conditions, technology characteristics, economic factors and 

renewable energy policies. With enhanced data quality, various renewable 

energy technologies and combinations with conventional energy, further studies 

in the field could bring a greater number of promising benefits for the country and 

contribute to the study context.
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