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Abstract—As we move towards large-scale object detection, it
is unrealistic to expect annotated training data, in the form of
bounding box annotations around objects, for all object classes
at sufficient scale, and so methods capable of unseen object
detection are required. We propose a novel zero-shot method
based on training an end-to-end model that fuses semantic at-
tribute prediction with visual features to propose object bounding
boxes for seen and unseen classes. While we utilize semantic
features during training, our method is agnostic to semantic
information for unseen classes at test-time. Qur method retains
the efficiency and effectiveness of YOLOV2 [1] for objects seen
during training, while improving its performance for novel and
unseen objects. The ability of state-of-art detection methods
to learn discriminative object features to reject background
proposals also limits their performance for unseen objects.

We posit that, to detect unseen objects, we must incorporate
semantic information into the visual domain so that the learned
visual features reflect this information and leads to improved
recall rates for unseen objects. We test our method on PASCAL
VOC and MS COCO dataset and observed significant improve-
ments on the average precision of unseen classes.

Index Terms—Zero-shot learning, object detection, convolu-
tional neural network

I. INTRODUCTION

ERO shot learning (ZSL) has recently drawn increasing
attention [2]-[6]]. By leveraging the inexpensive descrip-
tions of categories, connections between the visual and se-
mantic representations are built to interpolate the unseen class,
which has no examples in the training stage. While methods
like [4] achieve high classification accuracy over unseen
categories, a more realistic problem, generalized zero shot
learning (gZSL), where both seen and unseen classes need to
be recognized, is proposed [[7]]. This problem makes ZSL more
practical since there is no oracle in the real world indicating
whether an object class has been seen during training.
However, this extension of the classical ZSL problem still
has its own limitation: it assumes the object is precisely
localized and the only task is to recognize it. In fact, there
are many potentially unseen objects appearing in the wild.
An intelligent system should be able to not only classify, but
also to localize them. Therefore, in this paper, we consider
this additional source of complexity, and introduce zero shot
detection (ZSD). This involves detecting unseen objects.
Deep learning based object detection methods trained on
fully annotated training data has had significant success over
the last few years [1]], [8]-[12]. Methods such as YOLOvV2 [[1]],
achieve high-performance, by training detectors to accurately
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predict object bounding boxes to match the ground-truth
bounding boxes, while suppressing bounding boxes that are
part of the background image.

Nevertheless, YOLOV2 as currently structured, is also some-
what limited in scope in the context of large-scale applications
where we encounter a large number of object classes. In
these applications, it is unrealistic to expect object bounding
boxes for all classes at sufficient scale that is required for
training. Indeed, the lack of labeled training data in large-
scale recognition applications has led to the emergence of
zero-shot recognition (ZSR) methods (see for instance, [13]],
[14]) as an alternative means to supplement labeled data. As
object detection moves towards large-scal it is imperative
that we move towards a framework that serves the dual role
of detecting objects seen during training as well as detect-
ing heretofore unseen categories. Furthermore, this problem
gains more importance as we move towards object detection
appearing in the wild.

Motivated by these challenges, we develop a novel zero-
shot detection architecture (ZS-YOLO) for detection of unseen
object classes. Our method is based on a seamless integra-
tion of semantic attribute predictors with YOLOV2’s visual
detection architectureﬂ Specifically, we train an end-to-end
model for zero-shot detection based on a novel multi-task loss
objective, which incorporates semantic and visual information.
Nevertheless, at test-time, our method is agnostic to semantic
information of unseen objects, and the semantic component
of our network functions as a system for identifying semantic
components that resemble trained classes. We choose YOLOv2
as the base detector for zero-shot detection because it is the
state-of-the-art single stage detector on existing benchmark
datasets [[1]]. By changing the confidence loss and network
backbone, our method can be easily applied to other single
stage detector like SSD [[11f] and RetinaNet [[18]]. In addition,
ZS-YOLO can be viewed as a variation of region proposal net-
work (RPN), thus can be integrated with two-stage detectors
like Faster-RCNN [9]] seamlessly. Ultimately, our choice of
YOLOV2 is coincidental based partially on the ease with which
we can integrate other side information, and the fundamental
focus of the paper is on understanding and quantifying the
utility of semantic attributes for zero-shot detection.

Limitations of Naive Methods: In comparison various naive
strategies do not perform well. For instance, a cascade of
YOLOV?2 and a off-the-shelf zero-shot classifier (ZSR) at run-
time turns out to be somewhat less effective in detecting

I Although the number of annotations have increased in common detection
datasets (e.g. 20 classes provided by PASCAL VOC [15] and 80 provided by
the more recent MSCOCO [16]), it is substantially smaller relative to image
classification [[17].

2We choose YOLOV2 for concreteness. Our method is applicable to other
architectures. See Sec.IIL.B
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Fig. 1. Example of detected unseen class through attributes. Our model
(Right) detects the chair, sofa and fireplace even though they are not in the
annotated list of classes in PASCAL whereas YOLOV2 (left) only detects the
seen class dog.

unseen classes. This may seem surprising particularly because
ZSR is capable of transferring semantic class-level information
(such as attributes [[13], [19]-[23]], word phrases [24], [25]]) for
synthesizing unseen object classifiers.

The fundamental issue is that, YOLOV2 tends to relegate
unseen objects as background leading to missed detection of
unseen objects. In our experiments we often observe signifi-
cant recall drops when a detector [1] is trained on seen classes
but applied to unseen object classes with zero training samples.
YOLOvV2’s low recall rate for unseen objects is altogether
not surprising because YOLOV2 achieves high-performance,
in part, by implicitly learning unique object visual features
that can be used to match true objects at test-time through
penalization of objectiveness confidence (to suppress false
positives and maximize precision) during training. As a result,
if an unseen class does not share the visual features learned
on training data, these unseen objects have low objectiveness
scores resulting in low recall.

Key Insight: We posit that we must explicitly train detectors
that account for semantic attribute information in the visual
domain to ensure that semantically similar object attributes
will be reflected in the learnt visual features. In this way,
at test-time, we can hope to detect unseen objects that are
semantically related to seen object classes.

Recognition vs. Object Detection: We focus on the problem
of proposing object bounding boxes in presence of seen and
unseen classes, although, our method can be readily extended
to recognition if semantic information for unseen objects
were available. We focus on object detection out of necessity
(limitations of available datasets) as well as practical reasons
(for objects in the wild scenarios semantic information for
unseen classes is not available).

To train ZS-YOLO, we learn an end-to-end detection net-
work with a hierarchical architecture (Fig. 2): In the first
level, we train the network with a multi-task loss to perform
(1) bounding box prediction in the visual domain; and (2)
attribute prediction in the semantic domain; Next, the visual
features of each bounding box proposal and its semantic
attributes are further combined as a multi-modal input for the
final layer to produce an objectiveness confidence score. This
setup must be contrasted with existing detection frameworks
which predict the confidence score based solely on the visual
space. Extensive experiments are conducted to verify the ZS-
YOLO performance on both traditional zero shot detection
where only unseen objects exist and generalized zero shot

detection (GZSD) where both seen and unseen objects appear
in the images. Our experiments evidently shows the benefits of
our multi-task training and multi-modal confidence prediction
strategy: we improve the recall rate of the baseline model []1]]
from 18.6% to 48.2% on unseen classes at 0.9 confidence, and
unseen average precision from 56.4% to 60.1% on PASCAL
VOC dataset for 10(seen)/10(unseen) split. Similar trends are
also observed on different data splits as well as MS COCO
dataset. We then perform extensive ablative analysis and quan-
tify the utility of semantic information in for unseen object
detection. We then identify cases where attribute information
is particularly useful for unseen object detection.

Our contributions in this paper are: (1) Novel method for
zero-shot detection problem that seamlessly integrates seman-
tic attribute predictors with visual features during training. (2)
Dataset: We construct a new ZSD dataset with multiple seen
and unseen classes splits based on existing PASCAL VOC
and MS COCO dataset; New performance metrics are also
introduced and discussed; (3) We develop a new ZSD detector,
based on the visual network structure of YOLOv2 [1]. In
contrast to state-of-art detectors, ZS-YOLO learns to predict
semantic attribute as a side task during training, and produces
object bounding boxes with both visual and semantic informa-
tion. We observe significant improvements on both PASCAL
VOC and MS COCO for unseen classes.

II. RELATED WORK
A. Object Detection and Proposal

We utilize YOLOV2 [1]] as our baseline model, since it is fast
(> 50 FPS detection speed), simple (single-shot detection with
a fully convolutional network structure [26]]), and effective
(state-of-art performance). As a single-shot detector, YOLOv2
directly infers from image cells and simultaneously produces
a fixed set of bounding box proposals together with their asso-
ciated confidence scores. Compared to YOLOV2, while other
contemporary deep detectors can be as effective, they are less
efficient (usually < 30 FPS). For instance, Faster-RCNN [9]]
and R-FCN [27] use a Region Proposal Network (RPN) as a
parallel branch to first generate object proposals, and use the
pooled region features to further refine bounding box locations
as well as their objectness scores, which is usually much
slower compared to YOLOV2. Nevertheless, in the context
of large-scale detection problems, these methods including
YOLOvV2 are somewhat ineffective in detecting unseen object
classes when trained with no corresponding training data.
This can be attributed to seeking high supervised performance
during training, a strategy that leads to maximizing detection
precision with seen classes and encourages the network to
suppress any image regions with divergent visual features as
false positive proposals. This strategy in turn hampers unseen
object detection since proposals of novel or unseen objects are
often relegated as background.

On the other hand, in contrast to deep detectors, which
are trained to suppress false positives, region proposal meth-
ods [9]], [28]-[30] can potentially discover objects that are
unseen. However, region proposal methods suffer from sig-
nificantly high false positive rates. While they are designed



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

to propose hundreds of regions per object, this leads to poor
precision and requires significant computational resources for
post-processing to improve accuracy. For these reasons we
leverage YOLOV2 rather than improve precision of object
proposal methods. Specifically, we extend YOLOV2 by lever-
aging the semantic attributes in the detection architecture.
Nevertheless our method can be applied to other detectors,
but we choose to demonstrate it on YOLOv2 due to superior
performance.

B. Zero Shot Recognition

Zero Shot Learning (ZSL) seeks to recognize novel visual
categories that are unannotated in training data [4], [13],
[14]], [31]. Traditional ZSL is constrained to closed set of
unseen classes only. Recently it has been shown that traditional
methods do not generalize well to the case where classification
includes both seen and unseen classes at test time [3], [7],
[32]. While generalized ZSL (GZSL) relaxes this constraint
that the test data only belongs to unseen class, it still does
not deal with background class which significantly increases
the problem complexity. Our method complements the existing
ZSL work by reducing the open set problem to a closed set
one by detecting only the foreground objects. After bounding
boxes of unseen objects are extracted by our detector, any ZSL
method can be applied to obtain object labels.

C. Other Methods

Recent work on weakly supervised localization have pro-
posed methods to localize objects without bounding box
annotations [33]]-[35]. However, these methods still rely on
image level object annotations and are not focused on detecting
the unseen. In our case, there are no annotations for unseen
classes in training data. There are also methods that aim
to discover objects without supervision [36]]. These methods
usually rely on redundant parts and features in the training
data to discover patterns and clusters of objects. Our goal is
to transfer the detection knowledge of seen classes through
semantic attributes to unseen ones. Fully unsupervised meth-
ods do not utilize the semantic transfer and may have hard
time discovering clusters that are completely missing in the
training data.

D. Concurrent Works

Two other groups have concurrently worked on ZSD [37],
[38] and appeared around the time a preliminary version of
this paper was posted on arxiv. However, both approaches
differ significantly from ours. Both works assume object
proposals are predicted by a predefined proposal generator
(Edge-Box [28] for [37] and Region Proposal Network(RPN)
for [38])), and focus on the subsequent ZSR problem, which is
to map the visual features extracted from object proposals to a
semantic embedding and perform classification. Nevertheless,
this assumption of already available proposals on unseen
objects is unrealistic in the GZSD problem. In fact, one key
argument of this paper is that traditional detectors/proposal
generators often suppress unseen objects as backgrounds,

and thus cannot detect unseen objects initially. To mitigate
this issue, this paper proposes a novel confidence prediction
layer which takes a combination of visual features, semantic
features, and spatial locations as input to jointly justify the
existence of unseen objects. In addition, unlike [37]], [38] that
exploit a two-step detection setup, our GZSD detector is built
on the one-step YOLO detector, which is fast and scalable
to large data size. Last but not the least, this paper adopts a
substantially more thorough evaluation setting with multiple
splits of both ZSD and GZSD experiments, whereas both
[38] and [38]] are mainly evaluated on the ZSD test setting
(only unseen classes) with only one split. We also noticed
that [38]] only evaluated on the ILSVRC-2017 [39]] which is
more constrained where most images contain only one object
that needs to be detected.

III. METHODOLOGY

A. Problem Definition

First, let us formally define the problem of detecting unseen
object classes with zero training data, or Zero-Shot Detection
(ZSD). Assuming a detection training set of N ground truth
bounding box labels is given as Dy, = {B;, c;,y;} Y, where
B; = {zi, yi, w;, h;} specifying the location and size of each
object bounding box, ¢; € Cg..,, denoting the class label of
the i-th object, and y; € R is its corresponding h-dimensional
semantic representation vector, e.g. attributes. During testing
time, we assume images contain objects with both seen classes
€ Cgeen and unseen classes € Cypseen (Coseen U Cunseen =
). The task of ZSD is to recognize every foreground objects
against backgrounds and meanwhile predict their bounding
boxes.

When developing ZS-YOLO, we deliberately do not require
it to identify the test object class names for three reasons:
(1) The failure of YOLOV2 on unseen classes is caused by
missing detection rather than classification. That is, YOLOv2
tends to relegate unseen classes as backgrounds. Thus, the low
recall rates on unseen classes becomes the main issue for ZS-
YOLO to address; (2) Once the missing detection problem is
solved, the classification task of seen and unseen classes with
the extracted bounding boxes has already been extensively
explored by ZSR with saturated off-the-shelf solutions [2],
[41, 113], [14]; (3) Different to ZSR where the set of unseen
classes Cypseen are given during training, ZS-YOLO works
in a more generalized setting where C,,scep, in completely
unknown and unconstrained. In other words, its task is to
detect any foreground objects whose classes are not limited
by any pre-defined set.

B. ZS-YOLO Network Architecture

The architecture of the proposed ZS-YOLO is shown in
Fig. E} It consists of four modules: a feature extraction module,
an object localization module, a semantic prediction module,
and an objectiveness confidence prediction module. Same
as YOLOV2 [1], ZS-YOLO is fully convolutional [26], i.e.
constructed by only convolutional layers and pooling layers.
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1) Feature Extraction: We take the backbone architecture
of YOLOV2 [1]] (named as Darknet-19) as the CNN subnet
due to its superiority on handling multi-scale objects with
a specifically designed passthrough layer applied on fine-
grained features. In practice, any other popular CNN model,
e.g. ResNet [40], Inception-V3 [41]], VGGI16 [42], can be
replaced here as the base network. Same as [1], we resize
input images into 416 x 416, and our feature extractor outputs
a feature tensor, denoted as T r, in shape of 13 x 13 x 1024 for
each input image. After feature extraction, our network is then
divided into two branches, which perform object localization
and semantic attribute prediction respectively.

2) Object Localization: Similar to [[10], we divide each
image into 13 x 13 cells, each represented by a 1024-dim
vector in T . Each cell is assigned with 5 anchor boxes with
pre-defined aspect ratios, and needs to predict 4 coordinate
offsets for each anchor box. This is implemented by a fully
convolutional layer with 4 x 5 = 20 filters of 1 x 1 kernel
size. The output tensor, denoted as Ty, is thus in shape of
13 x 13 x 20. For locating a predicted bounding box, assuming
the cell location is denoted by (¢, ¢, ), the width and height
of an anchor box is (puw,pn), and the predicted offsets are
(0z, 0y, 0w, 0n), o) the sigmoid function, then the location
of this prediction is calculated by:

= U(Om) + Cq, 9= U(Oy) + Cy,

h = pre™ (D

3) Semantic Prediction: In addition to the bounding box
locations, we assign each cell a new task to predict the
corresponding semantic representation y € R” (e.g. attributes)
for every bounding boxes proposals. Specifically, since each
cell proposes 5 bounding boxes, the output tensor T is thus
in shape of 13 x 13 x 5h, which again can be implemented by a
convolutional layer with 5h filters of size 1x 1. h is determined
by the semantic annotations and may vary across datasets.
For example, on PASCAL VOC we use the 64-dim attributes
released by [19]] as the semantic representations, so h is set to
be 64. Training the semantic prediction side-task brings two
advantages: (1) For each testing bounding box proposal we can
obtain its semantic representation; (2) As ZS-YOLO is trained
end-to-end, the loss of this layer will back propagate so that
the learned visual representations will also be influenced by
similarities in the semantic domain. Both the learned semantic
and visual representations will be then incorporated for the
further objectiveness confidence prediction.

4) Detection of Overlapping Objects.: Observe that our
method allows for detection of overlapping objects either
from the same or of different classes. This is because each
bounding box outputs its own attribute prediction. Therefore,
even if the objects are overlapping, such as the motorbike and
person in Fig. [2] the predicted attributes correspond to different
bounding boxes and the outputs are different, enabling recog-
nition. Our semantic loss (discussed later) can further enforce
diversity among predictions. In addition, even when bounding
boxes are in the same location, as a consequence of YOLOv2,
they arise from different cells, and so the attributes will be
learned from different visual features resulting in different
outputs.

A o
w = pywe,

5) End-to-End vs. Two-Step Recognition.: Our model could
be viewed as an embedding based end-to-end zero-shot lo-
calization and recognition method, when semantic attributes
for all target classes are available. This follows from the fact
that our model produces two outputs at test-time, a bounding
box with visual features, and a semantic output. The semantic
output is not used whenever target class semantic attributes are
unavailable, such as in-the-wild recognition problems. Never-
theless, observe that the semantic output for test examples
is always available, and incorporates both test visual features
as well as semantic attributes for seen classes. Consequently,
the semantic output can be directly compared against ground-
truth semantic attributes such as nearest-neighbor or cosine
similarity to output a label. In an embedding method, the visual
features are mapped to semantic space and these attributes
are compared against ground-truth. Viewed in this way, ours
is an embedding based method [7], a standard approach for
generalized zero-shot learning. Compared to the cascaded or
two-step ZSR methods, the computation of the NN classifier
is negligible, and the performance is similar to a two-step
approach, as we show in the experiments. Moreover, other loss
functions widely used in zero shot recognition methods (e.g.
max-margin losses) may also be leveraged for the semantic
prediction for our setting.

6) Confidence Prediction: The final component of our
network is to predict a confidence score, p, associated with
each bounding box proposal. Existing detectors, e.g. SSD [[11]]
and YOLOV2 [1]l, [10], predict the confidence score directly
from the CNN feature map Tr. However, such a strategy
produces low confidences for unseen objects visually dif-
ferent to the seen training data, and thus suffering from
low recalls. To address this problem, ZS-YOLO predicts the
confidence utilizing information from both visual and semantic
domain. Additionally, the bounding box coordinates can also
be explored as useful sources for predicting the objectiveness
confidence, since foreground objects are often located on
certain locations (e.g. center rather than corners) of an image.

More specifically, we concatenate all output tensors from
previous modules (Tr, Tz, Tg) as a combined multi-modal
input tensor with shape 13 x 13 x (1024 + 20 + 5h), and
forward it into a convolutional layer with 5 single dimensional
filters, generating an 13 x 13 x 5 output tensor T, each
bit representing the predicted confidence score p for the
corresponding one of the 13 x 13 x 5 = 845 bounding boxes
on an image.

7) Choice of YOLOv2 Detection Architecture.: In our im-
plementation we choose YOLOvV2 as the backbone network
for three reasons: (a) As a single stage detector, YOLOv2
has a very similar structure with SSD [11]. The only major
difference is that YOLOv2 uses Darknet as the feature ex-
tractor while SSD uses VGG. As reported in [1f], YOLOv2
reaches higher accuracy on VOC2007 test set while the speed
is also faster than SSD512. It is thus not difficult to apply
the same idea on SSD. (b) Another popular single stage
detector, RetinaNet [18], mainly leverages focal loss. Our
experiments with penalizing focal loss did not demonstrate
noticeable benefits on performance, as we will discuss later in
experiments. (c) Many two-stage detectors, like Faster-RCNN
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Fig. 2. The network architecture of our ZSD model. We choose h = 64 for our experiments on PASCAL VOC dataset, so the output dimension of the
Semantic Prediction layer is 64 x 5 = 320. In the block (¢ X w X h X d) represent the size of the convolution filter, where ¢ = input channel, (w, h) = filter

size, d = output channel.

[9], are based on the so called Region Proposal Network
(RPN), which generates bounding box proposals in the first
stage. This two-stage setup makes the detector very slow
compared to single stage network [1]. The RPN outputs the
bounding boxes and the confidence scores without doing any
classification. Thus RPN could be seamlessly integrated into
ZS-YOLO by substituting the detector module in ZS-YOLO
with an RPN module. Nevertheless, while these offer a number
of options, our focus here was to understand and quantify the
benefits of semantic attributes for zero-shot detection, and less
on comparison of different detectors.

C. Zero-Shot Detection Losses

With the network architecture defined, we minimize an
objective function with a multi-task loss specifically designed
for ZSD. Our overall objective loss function is a weighted
sum of an object localization loss, a semantic loss and a a
confidence loss.

1) Object Localization Loss: Our network predicts multiple
bounding boxes per grid cell, and we want only one bounding
box predictor to be responsible for each object to avoid

2) Semantic Loss: The semantic loss is designed so that
our network could learn a semantic vector representation for
each seen class attributes which could be generalized to unseen
classes during testing time.

Given the ground truth semantic vectors ({y.}, ¢ € Cseen)
for each seen class, i.e. prototypes, our objective is to maxi-
mize the similarity of each semantic predictions on foreground
objects to ground truth labels. Furthermore, to increase the
network’s discriminative capability, we also want the semantic
predictions on background boxes to have low similarity with
seen class prototypes. Similarly to our approach above, we
define a background indicator ]IZOOZ’J for every bounding box
prediction. Assuming the k-th bounding box is predicted by
cell 7, ]IZOO”J is set to 1 if and only if cell j does not overlap
with any ground truth boxes. Otherwise ]IZOObj is set to 0.
During training, the number of background bounding boxes
is much larger than foreground. To balance it, we impose the
weights Agp; and Ajo0p; and set them to 5 and 1 in our ex-
periments, respectively. Assuming S(a,b) denotes the cosine
similarity between two vectors, i.e. S(a,b) = m, our
semantic loss is defined as:

845
redundancy. We thus define an object indicator HO 7 for every 2
Later = Aob; 12" , -1
bounding box predlctlon Assuming the k-th boundmg box is t ; [ bi%k (S(Yk yi) )

preducted by cell 7, ]IO 7 is set to 1 if and only if: (1) The
center of a ground truth object annotation falls into cell j; and
(2) Prediction k has the highest IOU with the ground truth
box among all the 5 predictions made by cell j. Otherwise
szj is set to 0. The localization loss for the k-th bounding
box prediction is then defined as a sum-squared error between
the predicted coordinates and its ground truth labels:

+ Anoon 77 (  Jnax S(¥r,ye) —0?]  3)

3) Confidence Loss: Finally, the confidence loss is imposed
so that our network will predict high objectiveness confidence
scores on foreground bounding box proposals and low scores
for bounding boxes containing only image backgrounds. For-
mally our confidence loss is defined as:
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Note that we put a minus 0 explicitly in Eq.(3-4) to empha-
size the training objective that when the predicted bounding
box contains only backgrounds, the max semantic similarity
score and the confidence score should be close to zero.

Finally, for each training image, its total objective loss is
calculated by a weighted sum of all the above three losses
with weights Ajoc, Agttr; Acong. In our experiments, we set
all of them to be 1. Our network is trained by evaluating
the empirical loss over the entire training set via stochastic
gradient decent.

D. Training Details

We use the first 16 convolutional layers from Darknet-
19 [1] pretrained on ImageNet 1K-class dataset [[17] and add
3 randomly initialized convolutional layers as our feature
extractor.

Validity of Pretraining Weights for Detection. Note that
the pretrained weights correspond to the Darknet weights on
ImageNet classification task, and not the detection challenge
task. Thus no localization supervision is provided in pretrain-
ing, which is the focus of this paper. Also, when training
the detector, no labels or bounding boxes for unseen objects
are accessible. Therefore, observe that the visual features for
unseen classes are viewed as background unless they are
learned from seen classes. Consequently, the representation
embedded in the pretrained weights will tend to be suppressed
due to lack of labels. In addition, in the experiments, both
YOLOV2 and ZS-YOLO are initialized with pretrained Dark-
net weights for fair comparison. We also point out that our
focus here is to understand benefits of semantic attributes
in the best situation, where other components, modules and
weights are suitably well-chosen. Indeed, the general problem
of jointly optimizing the entire system is important but out
of scope of this paper. Based on what we observe the issue
of the ImageNet pretrained weights does not appear to be a
dominant aspect of the large performance gap between seen
and generalized zero-shot detection.

The activation functions of the semantic predictor and
confidence predictor are linear and all other layers use a leaky
rectified linear activation function ®(x):

T if x>0
0.1z otherwise

O(x) (5)

The network is trained end-to-end for 420 epochs on the
training splits from PASCAL VOC 2007 and 2012 and MS
COCO. We use a SGD optimizer with the batch size 64,
momentum 0.9 and a decay of 0.0005. As for the learning
rate, in the first 5 epochs, we set it to 0.0001 because the
model often diverges if it starts with a high learning rate. Then
we increase it to 0.001 and train the model for 195 epochs.
Afterwards we decrease it to 0.0001 for 110 epochs, and train
it with 0.00001 for the final 110 epochs.

IV. EXPERIMENTS

For our evaluation metrics, we measure the detection perfor-
mance by Average Precision (AP), which is the average pre-
cision of all classes in the dataset. For our evaluation metrics,

Data VOC2007 VOC2012 COCO Class

Train train/val train/val train seen

Test-Seen test - val seen

Test-Unseen train/val+test train/val train/val unseen

Test-Mix train/val+test train/val train/val both
TABLE I

OUR DATA SPLITS ON PASCAL VOC AND MS COCO DATASET.

we measure the Pascal VOC [15] 0.5-I0U 11-point average
precision (AP). Specifically, the ground truth overlapped by a
predicted bounding box with IOU over 0.5 is counted as True-
Positive (TP); the number of ground truth objects is GT; and
Pred denote the number of predicted bounding boxes. For a
specific confidence threshold, the precision (Prec) and recall
(Rec) is computed via:

Prec = TP/Pred
Rec = TP/GT

(6)
(7

The average precision is then defined as the mean precision
at a set of eleven equally spaced recall levels [0,0.1,0.2,...]:

AP = 1 Z Prec(Rec =) (8)

r€(0,0.1,...]

Unlike standard mAP used in Pascal VOC, we measure AP
over all classes since we do not classify the objects. There is no
way to get a class-specific precision and so class-level AP and
mAP are not computed. The AP reflects the overall detection
performance on all possible objects. Nevertheless, as we
have already mentioned in Sec. we could conceivably
use our system as an embedded based recognition method,
whenever semantic attributes for ground-truth are provided.
With this in mind we also tabulate recognition results for the
sake of completeness.

Nevertheless, we specifically care about AP of unseen
classes since our goal is to leverage YOLOV2 to detect more
unseen objects. We also report the average F-score as an aux-
iliary measurement since it reflects the average performance
of the detector at different confidence thresholds The average
F-score is computed by averaging the F-scores over a set of
101 equally spaced confidence thresholds [0, 0.01, 0.02, ...], at
each confidence threshold, the F-score is defined as:

Prec - Rec

F-score = ———
Prec + Rec

€))
The average F-score can reflect the robustness of overall
performance for the detector.

A. Datasets and Settings

To evaluate the zero-shot detection performance of the
proposed ZS-YOLO model, we chose PASCAL VOC [15] 2007
and 2012 datasets and Microsoft COCO |16] object detection
dataset due to their popularity among object detection litera-
ture.
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1) PASCAL VOC Dataset: This dataset contains 20 object
classes in total, and each class is labeled with 64-dimensional
semantic attributes published by [19]. The binary instance
level attributes are provided in [[19] and we compute the class-
level attributes by averaging over all instances in the class.
There is no standard seen/unseen split on PASCAL VOC for
object detection, we thus built our own splits. Since PASCAL
VOC is a relatively small dataset we utilize PASCAL primarily
for several ablative studies. In our first experiment our goal
is to quantify the impact of increasing unseen classes. We
discuss other ablative studies in Sec. For this study, we
held out different numbers of unseen classes and utilized the
rest for training. These unseen classes were selected based
on their diversity in class types (e.g. avoiding similar classes
such as dog and cat from being both included as unseen). We
thus ended up with three different seen/unseen class balances:
respectively 15/5, 10/10, and 5/15. During model training for
each split, we collect all the images which only contain seen
object classes in the train/val partition of PASCAL VOC 2007
and 2012 dataset as training data. For testing, we use three dif-
ferent data configurations, named as Test-Seen, Test-Unseen
and Test-Mix. Test-Seen data is constructed by the images
from VOC2007 test partition which only contain seen classes;
Test-Unseen data contains all the images having only unseen
class objects from both train/val/test partitions of VOC2007
and train/val partition of VOC2012; All the other images,
which contain both seen and unseen objects, go into our Test-
Mix data. Test-Unseen corresponds to the standard zero shot
detection task, where only unseen classes are in the data. The
ability of discovering unseen objects can be evaluated on Test-
Unseen. Test-Mix is a more sophisticated situation where both
seen and unseen objects appear in the image. The detector
needs to identify unseen objects (assign high confidence score)
even in the presence of seen objects that the detector has
evidently been optimized to detect during training. The high
score of seen objects may suppress the prediction on unseen
objects resulting in poor unseen scores. Finally, Test-Seen is
a conventional detection dataset and quantifies the ability to
ensure good detection for seen (supervised) classes. We list
the components of our dataset in TABLE [I| in more detail.

Class-level Attributes vs. Object-level Attributes: There are
three reasons for us to adopt the averaged class-level attribute
representation, instead of the original object-level attributes
by [19]. (1) During the training stage of GZSD/R models,
while the class-level averaging might result in reducing the
distinctiveness for each object, the annotation noises and
variations also decrease after averaging. As observed in our
experiments, adopting the class-level attribute representation
as ground-truth label makes the training procedure more stable
and results in better GZSD performance (similar observations
also made by previous ZSR works, e.g. [2[, [43], [44]). This
might be easy to understand since the task is to achieve a good
GZSD/R performance globally, rather than to distinguish each
instance within a specific class. (2) During the testing stage
of GZSD/R models, only the class-level semantic information
(attributes) of the unseen classes is provided, and the object-
level unseen attributes are impossible to acquire beforehand.
(3) Finally, the aPY dataset [19] only labels a fraction of

PASCAL VOC objects and there are still a large amount of
objects in PASCAL VOC without any object-level labels.

2) MS COCO Dataset: MS COCO dataset has 80 classes
which include all 20 classes in PASCAL VOC. While an
attribute dataset for MS COCO has been published in [45]], we
could not utilize it for two reasons: (1) The dataset only labels
29 out of the 80 object classes. The number is too limited
to conduct extensive ZSD experiments on COCO. (2) Many
attributes provided in [45] are not visually meaningful, e.g.,
professional,useful, friendly, functional, and thus not suitable
for visual detection/recognition. An alternative to attributes,
word2vec [46] (W2v), is noisy and performs poorly. To extend
our model to train on more classes, we propose to learn
transformation P, that maps w2v features (300 dimensions)
onto a lower-dimensional w2vR space (25 dimensions, i.e.
h = 25), which is constrained to mirror VOC attribute
similarity on the 20 common classes between MS COCO and
PASCAL VOC. Specifically, for class ¢ attribute y;, and w2v
vector W, we seek P such that

(yi,yj) = (PW;,PW;).

This problem can be solved by using any one of the rank-
approximate methods. More detailed evaluation can be found
in TABLE [V} Section

MS COCO has more classes, while PASCAL VOC has few
classes and this offers several options for conducting ablative
studies. First, with PASCAL VOC we can tabulate effect of
different ratios of seen/unseen classes. For the largest ratio, we
hope to see less difference between ZS-YOLO and YOLOv2
(for test-mix or test-seen) because visual features are signifi-
cantly stronger than semantic information. In contrast for very
small ratio there are more unseen classes and very few seen
classes and so we hope to see generally poor performance.
Second, for MS COCO, since there are a large number of
classes we can conduct a different type of experiment, namely,
how unseen performance varies as we see more seen classes.
For this reason, we tabulate performance for a fixed set of
unseen classes as a function of more seen classes available
for training. Third, MS COCO also allows for us to study the
difference between YOLOvV2 and ZS-YOLO at a larger scale
in the presence of significantly more training data.

Based on this motivation, we first manually selected 20
classes that were sufficiently diverse for unseen categories. We
then chose N training categories that were semantically most
similar in word2vec representation to the unseen categories.
The number N was increased in increments of 20. Similar
to PASCAL VOC, we collected all images which only contain
seen object classes in the train partition of MS COCO dataset
as training data. Accordingly, Test-Seen is constructed by
images only containing seen objects in validation partition of
MS COCO; Test-Unseen contains all images only containing
unseen objects in train/val partitions of MS COCO and all the
images containing both seen and unseen objects in MS COCO
train/val dataset, go into Test-Mix data. The components of
the dataset are detailed in TABLE [l
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Fig. 3. Precision recall and recall curves of compared models on 15/5, 10/10 and 5/15 splits for unseen classes. Our model’s recall exceeds YOLOV2 especially

when the confidence is high.

Split Model Test-Unseen Test-Seen Test-Mix
AP(%) F-score AP(%) F-Score AP(%) F-score

8 /15 YOLOvV2  36.6 22.1 85.6 48.9 30.0 17.9
4 ZS-YOLO 373 37.3 85.0 81.1 30.9 29.1
:t] 10110 YOLOv2 564 24.3 71.6 30.7 54.3 23.6
) ZS-YOLO 60.1 43.7 71.0 52.3 53.9 41.2
2 15/5 YOLOv2 55.3 33.0 75.3 40.4 53.6 29.4
A ZS-YOLO 573 56.9 73.9 65.6 53.8 47.9
20120 YOLOv2 37.3 22.0 34.5 259 12.3 12.4
8 ZS-YOLO 40.6 38.2 41.2 41.8 20.2 19.9
8 4020 YOLOv2  40.8 22.8 48.7 27.1 24.6 18.5
- ZS-YOLO 42.7 37.6 44.0 42.0 30.0 28.7
= 60/20 YOLOv2 349 23.6 44.8 24.3 37.6 19.8
ZS-YOLO 43.8 353 40.6 36.5 33.6 29.3

TABLE 1T

ZERO-SHOT DETECTION RESULTS ON DIFFERENT DATASETS AND
SEEN/UNSEEN SPLITS. WE PERFORM SIGNIFICANTLY BETTER THAN
YOLOV2 FOR UNSEEN OBJECTS WHILE MAINTAINING SEEN OBJECT

PERFORMANCE.

B. Zero-Shot Detection Evaluation

We first evaluate the proposed ZS-YOLO model by
comparisons on all seen/unseen splits as well as Test-
Seen/Unseen/Mix configurations. As a baseline comparison,
we also train a YOLOV2 as a standard fully-supervised detec-
tor (i.e. with both class and bounding box labels) using the
same training splits. During test time, since we measure the
average precision without classification, the classifier module
in YOLOV2 is detached and the bounding box predictions are
made based on confidence score.Our comparative results are
shown in TABLE [[T] as well as Fig.

TABLE evidently shows the advantage of the pro-
posed ZS-YOLO model, especially on detecting unseen object
classes. Compared with YOLOv2, our model has a higher
AP on Test-Unseen data on all the three different seen/unseen
splits, e.g. we improve from YOLOV2’s 56.4% to 60.1% on
PASCAL VOC (10/10 split), and similarly, from 34.9% to
43.8% on MS COCO (60/20 split). Our hypothesis is that
the main reason for this performance gain in unseen AP is
that ZS-YOLO predicts objectiveness confidence score based
on both visual as well as semantic information, and thus
effectively avoids suppressing unseen objects with novel visual
features but closely-related semantic meanings. Observe that

YOLOV2’s performance is uneven as we increase seen class
categories. For instance, on MS COCO dataset, YOLOV2
achieves the best performance on Test-Unseen (40.8%) when
trained on 40 seen classes, but worse when trained with 20
and 60 classes (37.3% and 34.9% respectively). We attribute
this to the fact to an under and over utilization of seen classes.
Namely, in presence of few seen categories, without semantic
knowledge, it is hard to generalize to unseen classes. On the
other hand, in the presence of large seen training classes,
YOLOV2 learns to reject unseen classes well and tends to
classify unseen class as background. On the other hand, since
ZS-YOLO exploits semantic feature to overcome this issue,
we observe a continuous improvements of ZS-YOLO on Test-
Unseen as the number of training seen classes increases (from
40.6% to 43.8% on MS COCO). Additionally, we observe on
Test-Seen partition that both models suffer from a performance
drop when seen classes increase from 40 to 60. This is because
many difficult classes are added (e.g. stop sign, remote, etc)
which impede both models and lowers the average precision.

From Fig. observe that ZS-YOLO’s recall on unseen
objects is substantially larger than YOLOV2 on both datasets
thanks to its semantic attributes based detection framework.
We illustrate this with the PASCAL VOC 5/15 split. Fig. [3]
shows that at a confidence threshold of 0.8, ZS-YOLO can still
detect about 30% of the total unseen objects, whilst original
YOLOV2’s recall rate is only 20%. While ZS-YOLO achieves
higher AP on unseen data with significantly improved recall
rates, with degradation in precision on seen data. For instance,
on PASCAL VOC ZS-YOLO loses 0.6% (10/10), 1.4% (15/5)
and 0.6% (5/15) AP on Test-Seen compared to YOLOV2.
We posit that this is fundamental. Indeed, in order to detect
more unseen data, we must inevitably accept more background
bounding boxes to improve unseen object detection. However,
if both models are evaluated with the Test-Mix data with both
seen and unseen classes, we found that in general ZS-YOLO
achieves better performance compared to YOLOV2.

We can observe from Fig. [3] that except for VOC 5/15
split, ZS-YOLO has a higher precision than YOLOV2 in
any level of recall. The 5/15 split is a special case where
the number of seen attributes are somewhat insufficient to
generalize to unseen objects. For example, on VOC 10/10 split,
at the recall level 60%, YOLOV2 has precision 50% while
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AP
Model Unseen Seen Mix
YOLOvV2 56.4 71.6 54.3
ZS-YOLO(visual) 57.2 71.2 52.3
ZS-YOLO(semantic) 57.0 70.9 52.3
ZS-YOLO(full) 60.1 71.0 53.9
TABLE III

ABLATIVE ANALYSIS OF DIFFERENT COMPONENTS OF THE
PROPOSED ZS-YOLO MODEL.

Prototypes attribute  w2v  one-hot  random
Unseen AP 60.1 58.9 57.7 49.0
TABLE IV

SEMANTIC PROTOTYPE COMPARISON ON PASCAL VOC 10/10 SPLIT.

ZS-YOLO is 61%. Also, ZS-YOLO has higher recall than
YOLO on any level of confidence score. Although YOLOv2
achieves the same recall as ZS-YOLO at a smaller confidence
threshold, it suffers from loss on precision. Consequently,
we do benefit from semantic predictions, specifically, when
we have sufficient number of training classes and, as noted
later, when the semantic unseen and seen attributes are related
Table Noticeably, ZS-YOLO is robust, with a high recall
in a wide range of confidence, meaning its performance does
not degrade for a wide range of confidence scores. This can
also be justified by the average F-score in Table.

It might be surprising that the performance gap is not large
over YOLOV2 on PASCAL VOC as revealed in TABLE [l and
Fig. 3] Importantly, we argue that this is primarily because
other than the unseen object classes among the 20 annotated
ones we artificially held out during training, there are many
more unannotated object classes in the PASCAL VOC dataset
which do not have their corresponding ground truth boxes.
Thus, they are also counted as false positives even though
7ZS-YOLO does successfully detect them as foregrounds. Un-
fortunately, these cases cannot be quantitatively measured. We
thus show in Fig. [] extensive qualitative results, where ZS-
YOLO not only succeeds in detecting artificial unseen object
classes, but also those that are truly unseen objects that have
no annotation. These successful detections will be measured
as false positives in TABLE [[I] and Fig. [3] resulting in lower
AP. Therefore, ZS-YOLO’s performance gain can be expected
to be larger than YOLOV2 in practice.

C. Ablative Study on PASCAL VOC

1) Effect of Semantic Prediction: To further evaluate the
effect of the semantic prediction side task during model
training and its impact on the learnt visual features, we
conducted ablative analysis on the proposed ZS-YOLO model.
Specifically, we trained two different models for the PASCAL
VOC 10/10 split: (1) ZS-YOLO (visual): Instead of using the
combined multi-model input [Tr, Ty, Ts| (see Fig. for
final confidence score prediction, we removed the semantic
prediction module completely from the network architecture,
so the final confidence prediction is based purely on [T g, Tf]
without semantic information; and (2) ZS-YOLO (semantic):
In this model, we remove visual features from confidence

Dataset YOLOvV2 Ours(Atr) Ours(w2v)  Ours(w2vR)

PASCAL VOC 56.4 60.1 58.9 59.3

MS COCO 37.3 38.4 38.4 40.6
TABLE V

AP % FOR UNSEEN CLASSES WITH DIFFERENT SEMANTIC FEATURES ON
PASCAL VOC (10/10 SPLIT) AND MS COCO (20/20 SPLIT).

Split E Score AP
10/10-1 0.843 60.1
10/10-2 0.793 58.7
10/10-3 0.567 39.3
5/15-1 0.684 373
5/15-2 0.630 34.7
TABLE VI

SEEN/UNSEEN CORRELATION COMPARISON ON PASCAL VOC.
UNSEEN PERFORMANCE CORRELATES STRONGLY WITH F SCORE.

prediction input by only feeding [T, Ts] into the confidence
prediction module. Other than the above two models, we
consider original YOLOV2 which only uses T r for confidence
prediction as a third baseline. The comparative results are
shown in TABLE

From TABLE we observe that utilizing both visual
features as well as semantic attributes as multi-modal clues
improves the detection performances on unseen data, com-
pared to detection models that exclusively use single-modal
information to infer objectness confidence. Specifically, on
unseen data the ZS-YOLO(full) model that explores both
visual and semantic domains achieves 60.1% AP on Test-
Unseen data, which is the highest among all three competitors.
By comparing YOLOvV2 with ZS-YOLO(visual), we can see
that using the bounding box locations as a side information
also helps to detect unseen objects, although such information
might be redundant for detecting seen objects especially when
the visual features are uniquely fine-tuned to those classes.
Finally, we can see when we exclusively utilize only semantic
information, ZS-YOLO(semantic) generates better detection
performance compared to YOLOv2 on unseen data, which
again validates the importance of utilizing semantic informa-
tion when moving toward zero-shot detection. This effect can
be visualized in Fig. 5] with t-SNE embeddings of all the
bounding box proposals generated on the PASCAL VOC Test-
Mix data by using the learned YOLOv2’s visual feature as
well as ZS-YOLO’s semantic feature (i.e. Tg).

2) Choices of Semantic Prototypes: One-hot & Random:
We are also interested in the problem of whether using
attributes and word2vec (w2v) as semantic prototypes are
indeed superior to other choices. Two semantic prototype
spaces were tested for training in this context: (1) One-hot
encoding: we use the one-hot class label vectors as semantic
prototypes, so that all the prototypes are orthogonal to each
other. Note that one-hot vectors were used only to encode
seen classes. Since, we disconnect semantic attribute predictor
at test-time, the issue of unseen semantic representation does
not arise for our situation. Indeed, were we to look at semantic
predictions, it is quite likely that at test-time the unseen classes
are possibly represented by a combination of seen (one-hot)
classes, analogous to the semantic attributes. (2) Random
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Fig. 4. (Best to be viewed in color) Examples of detected unseen classes by YOLOv2 (left) and proposed ZS-YOLO (right). ZS-YOLO not
only detects artificially held out unseen classes such as sofa, sailboat, potted plant, cat, but also recognizes completely unannotated objects
such as flag, painting, chameleon, pet horse, truck, etc. It is also interesting that car wreck is recognized by our model and missed by YOLOv2
although car is in the seen classes. We believe that training with semantic attributes prevent over-fitting of detector for specific view-angles
as well. Although our model is better in overall performance, the lower overall precision can be partially attributed to unannotated object
classes that count as false positives. The seen, unseen and unannotated classes are color coded as red, blue and green.

encoding: We generate the prototypes for each class with
same dimension as attribute vectors (h = 64) by randomly
sampling from uniform distribution. We run the experiments
on the PASCAL VOC 10/10 split and the comparative results
are reported in TABLE [IV] The results clearly show that by
using meaningful semantic prototypes such as attributes and
word2vec, the detection performance on unseen objects can
be improved. Random encoding prototypes, which contain
no semantic information, make the AP of our model 49.0%,
significantly worse than original YOLOv2. Meanwhile, by
utilizing one-hot encoding semantic prototypes, class level in-
formation is introduced and our model can get better detection
performance on unseen data.

3) Effect of Semantic Dimensionality Reduction: To verify
our semantic dimensionality reduction method as discussed
in Section [V-A] we compared models trained in the re-
duced word2vec space (w2vR) with the original word2vec
space (w2v) on both PASCAL VOC (10/10 split) and MS
COCO (2020 split) datasets. Since the original w2v space
(300 dimensions) is highly noisy, which is irrelevant to the
visual space, learning such information has the effect of poor
convergence behavior for a convolutional neural network. On
the contrary, the reduced word2vec space w2vR is defined to
preserve similarity structures originally defined in the attribute
space which is more visually related. It is evident from
TABLE [V] that models trained on our mapped w2v, w2vR,

leads to better performance on detecting unseen objects than
the original w2v. In particular, on MS COCO dataset, the
model trained on w2vR gets an AP of 40.6%, even higher
than model trained on VOC attribute, 38.4%.

4) Effect of Seen/Unseen Correlations: In zero shot recog-
nition, the unseen and seen classes have to share some
common visual appearance such that the classifier can gener-
alize the representation learned from seen classes to unseen
[2]. If the unseen classes have low correlation with seen
classes, the zero shot task tends to be more difficult. The
same phenomenon may also exist in zero shot detection.
Therefore, we seek to test the effect of correlation between
the attributes of seen and unseen classes on detection per-
formance of unseen objects. To measure this correlation,
we deﬁne an energy score function E of a class split as:
E = m Zaecunmn maxpeC..., S(Yas¥b)-

If the energy score is higher, the unseen classes have higher
correlation with the seen classes. To further analyze its effect,
we construct two more 10/10 splits (named as 10/10-2 and
10/10-3) and one 5/15 (5/15-2) split experiments over PASCAL
VOC. The splits are constructed based on the energy score.
10/10-2 has an intermediate energy score over all 10/10 splits
while 10/10-3 has the smallest. 5/15-2 has the smallest energy
score and since it is very close to 5/15-1 which already has
the highest energy score we don’t need to construct one more.
When the energy score is high, visually similar classes seem to
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tSNE of yolo visual feature tSNE of our semantic feature
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Fig. 5. tSNE visualization comparison between YOLOV2 visual
features (left) with ZS-YOLO semantic features (right) on Test-Mix
dataset. Foreground ( and ) and background (bg) are more
separable if trained with the semantic prediction as a side task.

appear in seen/unseen split separately, and when it is low, they
seem both in seen or unseen. For example, in 10/10-1 split,
for some similar class pairs like motorbike-bicycle, bicycle
is in seen and motorbike is in unseen. While in 10/10-3 split,
they are both in seen. E|Our results are reported in TABLE
with each split’s seen/unseen correlation calculated by £ score
defined in Section [VAl TABLE [V1 is consistent with our
intuition, that in general when seen and unseen data are
more semantically correlated, our ZS-YOLO performs better
on detecting unseen classes. For instance, in split 10/10-1
where E = 0.843, ZS-YOLO achieves a 60.1% AP on Test-
Unseen; Whilst on split 10/10-3 where seen/unseen classes are
less semantically related (£ = 0.567), ZS-YOLO achieves a
inferior AP of 39.3%.

5) Other Losses: We tried other losses such as the focal loss
that has been suggested in the literature to improve detection
through hard positive/negative mining. However, we found that
while seen object detection improved, we saw a larger loss for
unseen objects.

D. Semantic Output for Zero Shot Recognition

For gZSL setting, the mean accuracy (1) and mAP in seen
and unseen classes are also listed. We emphasize the fact
that there are two aspects that contribute to the error. First,
error in recognition even when bounding boxes are provided.
Second, when bounding boxes are not provided and so both
bounding box and recognition is required. Note that GZSL
accuracy (namely only the recognition task) for PASCAL VOC
is notoriously hard [7] with poor accuracy. Consequently, we
have a poor baseline to start with and in addition must also
perform detection. Our goal in this context is to quantify error
increase suffered by virtue of detection. In our ablative study
we find that detection error is a smaller component relative to
Generalized recognition error for PASCAL VOC.

By leveraging ZS-YOLO’s semantic prediction, ZS-YOLO
+ NN reaches the highest AP on almost every class in Test-
Unsee, and most classes in Test-Mix. Using the same classifier,
ZS-YOLO + [4] reaches higher mAP than YOLOvV2. This
could be attributed to the ability of detecting unseen objects of
ZS-YOLO. In the Test-Mix, ZS-YOLO outperforms YOLOv2
on all unseen classes except for cat. It is worth noting that
YOLOV2 + [4] achieves 17.66 on bike but 0 on motorbike,

3The detailed data splits are available at the first author’s github page.

suggesting YOLOV2 suppresses unseen objects even they have
visually similar seen classes.

First from Table. [VII note that the GZSL error for [4] when
bounding boxes are provided is already quite low. While this is
not state-of-art, performance on aPY (which is the recognition
task on PASCAL VOC) is not much larger with other methods.
Our purpose here is less about choosing the best ZSR model
and more about detection of unseen objects and so we did not
consider other approaches here. Next we observe that both
ZS-Y + NN and ZS-Y + [4] achieves much higher mAP on
unseen classes. The unseen mAP for ZS-Y + [2] is 6.92%,
which is better than 4.33% from ZS-Y + NN. However, we
notice that ZS-Y + NN outperforms on 7 unseen classes while
ZS-Y + [4] only reaches much higher AP on boat and car.
Therefore the attribute prediction in ZS-Y is quite accurate
and it outperforms cascaded ZSR. ZS-Y + NN outperforms
YOLOV2 + [4] on both seen and unseen classes. The error
of full zero shot detection comes from the combination of
erroneous localization plus misclassification, as the accuracies
from [4] are very low for some classes especially in gZSL
setting, even though it has no localization error. The results
clearly show that our ZS-YOLO can be combined with zero
shot recognition methods easily to construct a full zero shot
detector and outperforms the original YOLOV2 in the sense
of detecting unseen objects.

Discussion: We focused on detection aspect of GZSD. In
this context, we adopted a simple nearest neighbour model
for classification. Nevertheless, we agree that the performance
of GZSR classifiers also contributes to the final GZSD per-
formance. Specifically, a key challenge in GZSR is the gap
between the semantic domain and the visual domain. There
already exists various efforts to bridge such a gap, e.g. [47]-
[49]. Recently, we have found that a promising solution to
mitigate the divergence between semantic and visual domains
might be to learn a low-dimension ’visually semantic’ em-
bedding [50], [51] that quantifies existence of a prototypical
part-type in the presented instance of seen classes. As a
possible future direction toward better GZSD performances,
one could combine the proposed ZS-YOLO detector with the
more powerful ZSR classifiers described above instead of the
nearest neighbor classifier adopted in this paper.

V. CONCLUSION

We proposed a novel Zero-Shot YOLO method for un-
seen object detection that retains the principle advantages of
YOLOV2 [1]’s efficiency and performance for seen object de-
tection and extends it non-trivially for unseen object detection.
While YOLOV2 is a state-of-art object detection algorithm,
its effectiveness hinges on having access to fully annotated
datasets, which is unrealistic to expect as as we move towards
large-scale object detection. YOLOV2’s effectiveness in learn-
ing sharp visual features for accurately detecting objects that
were seen during training negates its advantages for unseen
object detection. To overcome these drawbacks, we propose to
build upon YOLOv2’s network architecture through seamless
fusion of semantic information with the visual domain so
that, semantically similar object attributes are also reflected
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lMethod bike bird btl bus chair dtbl dog prsn pplnt tv |apln boat car cat cow horse mtbk sheep sofa train|seen unseen mAP
t?[4] (Acc) - - - - - - - - - - |1.37 5.69 64.3595.83 1.12 4.00 91.52 2.31 95.41 14.91| - - 3765
éZS—Y+NN - - - - - - - - - - |5.24 0.32 47.60 23.53 2.69 1.13 29.97 0.49 35.70 24.15| - - 17.08
2|ZS-Y+ (4] - - - - - - - - - - 10.20 0.17 11.19 18.30 0.15 1.22 11.73 0.07 3.61 0.00| - - 4.66
&/YOLOv2+ [4] - - - - - - - - - - 1047 1.05 10.96 13.59 0.44 0.54 9.64 043 233 197| - - 414
§]4] (Acc) 90.16 92.16 90.13 95.86 1.00 69.00 90.87 94.75 91.32 90.82(0.00 0.00 2.82 4.64 0.00 0.34 0.22 0.00 81.17 0.00 |80.61 8.92 44.76
2 ZS-Y+NN 10.68 12.27 26.51 27.16 26.68 16.71 8.42 45.50 31.24 40.39(0.68 0.13 0.00 9.09 5.05 5.25 5.99 0.10 16.97 0.00 24.56 4.33 14.44
EZS-Y+ [4] 11.94 17.89 9.70 25.89 14.72 8.93 11.09 42.99 18.85 38.96(0.00 36.36 12.80 11.31 0.00 2.51 0.13 0.00 6.09 0.00|20.10 6.92 13.51

YOLOV2+ [4] 17.66 10.12 12.90 40.28 16.16 14.00 0.44 46.62 26.68 50.05/0.00 0.00 4.81 11.57 0.00 0.00 0.00 0.00 0.02 0.00|23.5 1.64 12.57

TABLE VII

FULL DETECTION PERFORMANCE ON PASCAL VOC 10/10 SPLIT

in the learned visual features. Empirically we demonstrated
improved performance on two datasets.
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