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PREFACE TO THE SECOND EDITION  Xix

Preface to the Second Edition

In the seven years since the first edition of this book appeared some significant
developments have taken place in the area of materials modeling in general
and in composite materials and structures in particular. Foremost among these
developments have been the smart materials and structures, functionally graded
materials (FGMs), and nanoscience and technology - each topic deserves to be
treated in a separate monograph. While the author’s expertise and contributions
in these areas are limited, it is felt that the reader should be made aware of
the developments in the analysis of smart and FGM structures. The subject of
nanoscience and technology, of course, is outside the scope of the present study.
Also, the first edition of this book did not contain any material on the theory and
analysis of laminated shells. It should be an integral part of any study on laminated
composite structures.

The focus for the present edition of this book remains the same — the education of
the individual who is interested in gaining a good understanding of the mechanics
theories and associated finite element models of laminated composite structures.
Very little material has been deleted. New material has been added in most
chapters along with some rearrangement of topics to improve the clarity of the
overall presentation. In particular, the material from the first three chapters is
condensed into a single chapter (Chapter 1) in this second edition to make room for
the new material. Thus Chapter 1 contains certain mathematical preliminaries, a
study of the equations of anisotropic elasticity, and an introduction to the principle
of virtual displacements and classical variational methods (the Ritz and Galerkin
methods). Chapters 2 through 7 correspond to Chapters 4 through 9, respectively,
from the first edition, and they have been revised to include smart structures and
functionally graded materials. A completely new chapter, Chapter 8, on theory
and analysis of laminated shells is added to overcome the glaring omission in the
first edition of this book. Chapters 9 and 10 (corresponding to Chapters 10 and
13 in the first edition) are devoted to linear and nonlinear finite element analysis,
respectively, of laminated plates and shells. These chapters are extensively revised to
include more details on the derivation of tangent stiffness matrices and finite element
models of shells with numerical examples. Chapters 11 and 12 in the present edition
correspond to Chapters 11 and 12 of the first edition, which underwent significant
revisions to include laminated shells. The problem sets essentially remained the
same with the addition of a few problems here and there.

The acknowledgments and sincere thanks and feelings expressed in the preface
to the first edition still hold but they are not repeated here. It is a pleasure to
acknowledge the help of my colleagues, especially Dr. Zhen-Qiang Cheng, for their
help with the proofreading of the manuscript. Thanks are also due to Mr. Romaén
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Arciniega for providing the numerical results of some examples on shells included in
Chapter 9.

J. N. Reddy
College Station, Texas



PREFACE TO THE FIRST EDITION  xxi

Preface to the First Edition

The dramatic increase in the use of composite materials in all types of engineering
structures (e.g., aerospace, automotive, and underwater structures, as well as in
medical prosthetic devices, electronic circuit boards, and sports equipment) and the
number of journals and research papers published in the last two decades attest to
the fact that there has been a major effort to develop composite material systems,
and to analyze and design structural components made from composite materials.

The subject of composite materials is truly an interdisciplinary area where
chemists, material scientists, chemical engineers, mechanical engineers, and
structural engineers contribute to the overall product. The number of students
taking courses in composite materials and structures has steadily increased in recent
years, and the students are drawn to these courses from a variety of disciplines. The
courses offered at universities and the books published on composite materials are
of three types: material science, mechanics, and design. The present book belongs
to the mechanics category.

The motivation for the present book has come from many years of the author’s
research and teaching in laminated composite structures and from the fact there
does not exist a book that contains a detailed coverage of various laminate theories,
analytical solutions, and finite element models. The book is largely based on the
author’s original work on refined theories of laminated composite plates and shells,
and analytical and finite element solutions he and his collaborators have developed
over the last two decades.

Some mathematical preliminaries, equations of anisotropic elasticity, and virtual
work principles and variational methods are reviewed in Chapters 1 through 3. A
reader who has had a course in elasticity or energy and variational principles of
mechanics may skip these chapters and go directly to Chapter 4, where certain
terminology common to composite materials is introduced, followed by a discussion
of the constitutive equations of a lamina and transformation of stresses and strains.
Readers who have had a basic course in composites may skip Chapter 4 also.

The major journey of the book begins with Chapter 5, where a complete
derivation of the equations of motion of the classical and first-order shear
deformation laminated plate theories is presented, and laminate stiffness
characteristics of selected laminates are discussed. Chapter 6 includes applications
of the classical and first-order shear deformation theories to laminated beams
and plate strips in cylindrical bending. Here analytical solutions are developed
for bending, buckling, natural vibration, and transient response of simple beam
and plate structures. Chapter 7 deals with the analysis of specially orthotropic
rectangular laminates using the classical laminated plate theory (CLPT). Here,
the parametric effects of material anisotropy, lamination scheme, and plate aspect
ratio on bending deflections and stresses, buckling loads, vibration frequencies, and
transient response are discussed.
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Analytical solutions for bending, buckling, natural vibration, and transient
response of rectangular laminates based on the Navier and Lévy solution approaches
are presented in Chapters 8 and 9 for the classical and first-order shear deformation
plate theories (FSDT), respectively. The Rayleigh-Ritz solutions are also discussed
for laminates that do not admit the Navier solutions. Chapter 10 deals with finite
element analysis of composite laminates. One-dimensional (for beams and plate
strips) as well as two-dimensional (plates) finite element models based on CLPT
and FSDT are discussed and numerical examples are presented.

Chapters 11 and 12 are devoted to higher-order (third-order) laminate theories
and layerwise theories, respectively. Analytical as well as finite element models are
discussed. The material included in these chapters is up to date at the time of this
writing. Finally, Chapter 13 is concerned about the geometrically nonlinear analysis
of composite laminates. Displacement finite element models of laminated plates with
the von Kérmén nonlinearity are derived, and numerical results are presented for
some typical problems.

The book is suitable as a reference for engineers and scientists working in industry
and academia, and it can be used as a textbook in a graduate course on theory
and/or analysis of composite laminates. It can also be used for a course on stress
analysis of laminated composite plates. An introductory course on mechanics of
composite materials may prove to be helpful but not necessary because a review of
the basics is included in the first four chapters of this book. The first course may
cover Chapters 1 through 8 or 9, and a second course may cover Chapters 8 through
13.

The author wishes to thank all his former doctoral students for their research
collaboration on the subject. In particular, Chapters 7 through 13 contain results of
the research conducted by Drs. Ahmed Khdeir, Stephen Engelstad, Asghar Nosier,
and Donald Robbins, Jr. on the development of theories, analytical solutions, and
finite element analysis of equivalent single-layer and layerwise theories of composite
laminates. The research of the author in composite materials was influenced by many
researchers. The author wishes to thank Professor Charles W. Bert of the University
of Oklahoma, Professor Robert M. Jones of the Virginia Polytechnic Institute and
State University, Professor A. V. Krishna Murty of the Indian Institute of Science,
and Dr. Nicholas J. Pagano of Wright-Patterson Air Force Base. It is also the
author’s pleasure to acknowledge the help of Mr. Praveen Grama, Mr. Dakshina
Moorthy, and Mr. Govind Rengarajan for their help with the proofreading of the
manuscript. The author is indebted to Dr. Filis Kokkinos for his dedication and
innovative and creative production of the final artwork in this book. Indeed, without
his imagination and hundreds of hours of effort the artwork would not have looked
as beautiful, professional, and technical as it does.

The author gratefully acknowledges the support of his research in composite
materials in the last two decades by the Office of Naval Research (ONR), the Air
Force Office of Scientific Research (AFOSR), the U.S. Army Research Office (ARO),
the National Aeronautics and Space Administration (NASA Lewis and NASA
Langley), the U.S. National Science Foundation (NSF), and the Oscar S. Wyatt
Chair in the Department of Mechanical Engineering at Texas A&M University.
Without this support, it would not have been possible to contribute to the subject
of this book. The author is also grateful to Professor G. P. Peterson, a colleague



PREFACE TO THE FIRST EDITION  xxiii

and friend, for his encouragement and support of the author’s professional activities
at Texas A&M University.

The writing of this book took thousands of hours over the last ten years. Most
of these hours came from evenings and holidays that could have been devoted to
family matters. While no words of gratitude can replace the time lost with family,
it should be recorded that the author is grateful to his wife Aruna for her care,
devotion, and love, and to his daughter Anita and son Anil for their understanding
and support.

During the long period of writing this book, the author has lost his father,
brother, brother in-law, father in-law, and a friend (Hans Eggers) - all suddenly.
While death is imminent, the suddenness makes it more difficult to accept. This
book is dedicated to the memory of these individuals.

J. N. Reddy
College Station, Texas

All that is not given is lost
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Equations of Anisotropic Elasticity,
Virtual Work Principles, and
Variational Methods

1.1 Fiber-Reinforced Composite Materials

Composite materials consist of two or more materials which together produce
desirable properties that cannot be achieved with any of the constituents alone.
Fiber-reinforced composite materials, for example, contain high strength and high
modulus fibers in a matriz material. Reinforced steel bars embedded in concrete
provide an example of fiber-reinforced composites. In these composites, fibers
are the principal load-carrying members, and the matrix material keeps the fibers
together, acts as a load-transfer medium between fibers, and protects fibers from
being exposed to the environment (e.g., moisture, humidity, etc.).

It is known that fibers are stiffer and stronger than the same material
in bulk form, whereas matrix materials have their usual bulk-form properties.
Geometrically, fibers have near crystal-sized diameter and a very high length-to-
diameter ratio. Short fibers, called whiskers, paradoxically exhibit better structural
properties than long fibers. To gain a full understanding of the behavior of fibers,
matrix materials, agents that are used to enhance bonding between fibers and
matrix, and other properties of fiber-reinforced materials, it is necessary to know
certain aspects of material science. Since the present study is entirely devoted to
mechanics aspects and analysis methods of fiber-reinforced composite materials, no
attempt is made here to present basic material science aspects, such as the molecular
structure or inter-atomic forces those hold the matter together. However, an abstract
understanding of the material behavior is useful.

Materials are studied at various levels: atomic level, nano-level, single-crystal
level, a group of crystals, and so on. For the purpose of gaining some insight into
the material behavior, we consider a basic unit of material as one that has properties,
such as the modulus, strength, thermal coefficient of expansion, electrical resistance,
etc., whose magnitudes depend on the direction. The directional dependence of
properties is a result of the inter-atomic bonds, which are “stronger” in one direction
than in other directions. Materials are “processed” such that the basic units are
aligned so that the desired property is maximized in a given direction. Fibers provide
an example of such materials. When a property is maximized in one direction, it
may be achieved at the expense of the same property in other directions and other
properties in the same direction. When materials are processed such that the basic
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units are randomly oriented, the resulting material tends to have the same value of
the property, in an average statistical sense, in all directions. Such materials are
called isotropic materials. A matrix material, which is made in bulk form, provides
an example of isotropic materials. Material scientists are continuously striving to
develop better materials for specific applications. The fibers and matrix materials
used in composites are either metallic or non-metallic. The fiber materials in use
are common metals like aluminum, copper, iron, nickel, steel, and titanium, and
organic materials like glass, boron, and graphite materials.

Fiber-reinforced composite materials for structural applications are often made
in the form of a thin layer, called lamina. A lamina is a macro unit of material whose
material properties are determined through appropriate laboratory tests. Structural
elements, such as bars, beams or plates are then formed by stacking the layers to
achieve desired strength and stiffness. Fiber orientation in each lamina and stacking
sequence of the layers can be chosen to achieve desired strength and stiffness for a
specific application. It is the purpose of the present study to develop equations
that describe appropriate kinematics of deformation, govern force equilibrium, and
represent the material response of laminated structural elements.

Analysis of structural elements made of laminated composite materials involves
several steps. As shown in Figure 1.1.1, the analysis requires a knowledge
of anisotropic elasticity, structural theories (i.e., kinematics of deformation) of
laminates, analytical or computational methods to determine solutions of the
governing equations, and failure theories to predict modes of failures and to
determine failure loads. A detailed study of the theoretical formulations and
solutions of governing equations of laminated composite plate structures constitutes
the objective of the present book.

Anisotropic Elasticity
Equations

Structural Theories )

Analysis of Laminated

Composite Structures

Analytical and Computational
Methods

Damage / Failure Theories

Figure 1.1.1: Basic blocks in the analysis of composite materials.
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Following this general introduction, a review of vectors and tensors, integral
relations, equations governing a deformable anisotropic medium, and virtual work
principles and variational methods is presented, as they are needed in the sequel.
Readers familiar with these topics can skip the remaining portion of this chapter
and go directly to Chapter 2.

1.2 Mathematical Preliminaries

1.2.1 General Comments

The quantities used to express physical laws can be classified into two classes,
according to the information needed to specify them completely: scalars and
nonscalars. The scalars are given by a single number. Nonscalar quantities
require not only a magnitude specified, but also additional information, such as
direction. Time, temperature, volume, and mass density provide examples of scalars.
Displacement, temperature gradient, force, moment, and acceleration are examples
of nonscalars.

The term wvector is used to imply a nonscalar that has magnitude and “direction”
and obeys the parallelogram law of vector addition and rules of scalar multiplication.
Vector in modern mathematical analysis is an abstraction of the elementary notion
of a physical vector, and it is “an element from a linear vector space.” While the
definition of a vector in abstract analysis does not require the vector to have a
magnitude, in nearly all cases of practical interest the vector is endowed with a
magnitude. In this book, we need only vectors with magnitude. Some nonscalar
quantities require the specification of magnitude and two directions. For example,
the specification of stress requires not only a force, but also an area upon which
the force acts. A stress is a second-order tensor. Sometimes a vector is referred
to as a tensor of order one, and a tensor of order 2 is also called a dyad. First-
and second-order tensors (i.e., vectors and dyads) will be of primary interest in the
present study (see [1-8] for additional details). We also encounter third-order and
fourth-order tensors in the discussion of constitutive equations. A brief discussion
of vectors and tensors is presented next.

1.2.2 Vectors and Tensors

In the analytical description of physical phenomena, a coordinate system in the
chosen frame of reference is introduced, and various physical quantities involved
in the description are expressed in terms of measurements made in that system.
The description thus depends upon the chosen coordinate system and may appear
different in another type of coordinate system. The laws of nature, however, should
be independent of the choice of a coordinate system, and we may seek to represent
the law in a manner independent of a particular coordinate system. A way of
doing this is provided by vector and tensor notation. When vector notation is
used, a particular coordinate system need not be introduced. Consequently, use
of vector notation in formulating natural laws leaves them invariant to coordinate
transformations.
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Vectors

Often a specific coordinate system is chosen to express governing equations of a
problem to facilitate their solution. Then the vector and tensor quantities are
expressed in terms of their components in that coordinate system. For example, a
vector A in a three-dimensional space may be expressed in terms of its components
(a1, a2,a3) and basis vectors (e1,e2,e3) (e; are not necessarily unit vectors) as

A = a1e; + ases + ages (1.2.1)

When the basis vectors of a coordinate system are constants, i.e., with fixed lengths
and directions, the coordinate system is called a Cartesian coordinate system. The
general Cartesian system is oblique. When the Cartesian system is orthogonal, it is
called rectangular Cartesian. The Cartesian coordinates are denoted by

(x1,22,23) or (z,y,z) (1.2.2)

The familiar rectangular Cartesian coordinate system is shown in Figure 1.2.1. We
shall always use a right-hand coordinate system. When the basis vectors are of unit
lengths and mutually orthogonal, they are called orthonormal. In many situations
an orthonormal basis simplifies calculations. We denote an orthonormal Cartesian
basis by

(él,ég,ég) or (éx,éy,éz) (123)

For an orthonormal basis the vectors A and B can be written as
A =A@ + Axér + Azés
B = B1é; + Byéy + Bsés

where &; (i = 1,2, 3) is the orthonormal basis, and A; and B; are the corresponding
physical components (i.e., the components have the same physical dimensions as the
vector).

Xg=2

Xy=x

Figure 1.2.1: A rectangular Cartesian coordinate system, (z1,z2,23) = (2,9, 2);
(€1,€2,€3) = (€,€,,€,) are the unit basis vectors.
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Summation Convention

It is convenient to abbreviate a summation of terms by understanding that a
repeated index means summation over all values of that index. For example, the
component form of vector A

A =d'e + a’ey + a3eg

where (e1, ez, e3) are basis vectors (not necessarily unit), can be expressed in the
form

3
A= Zajej =dle; (1.2.4)
j=1
The repeated index is a dummy index in the sense that any other symbol that is not
already used in that expression can be employed:

A =de; = avep = a™ey,

The range of summation is always known in the context of the discussion. For
example, in the present context the range of j,k and m is 1 to 3 because we are
discussing vectors in a three-dimensional space.

In an orthonormal basis the scalar product (also called the “dot product”) and
vector product (also called the “cross product”) can be expressed in the index form
using the Kronecker delta symbol 6;; and the alternating symbol (or permutation
symbol) €;;:

A -B = (A;&) - (B;&;) = A;Bjb;; = A;B; (1.2.5a)
A x B = (4;&;) x (B;&;) = A;iBjeijié (1.2.5b)
where
. 1, ifi=j
%zei‘ej:{ 0 i“#j (1.2.6)

1, if ¢, 4,k are in cyclic order
and not repeated (i # j # k)
€5k = § —1, if 4,7,k are not in cyclic order (1.2.7)
and not repeated (i # j # k)
0, if any of i, j, k are repeated

Further, the Kronecker delta and the permutation symbol are related by the identity,
known as the €-6 identity,

€ijk€imn = 0jmOkn — 6jndkm (1.2.8)

Differentiation of vector functions with respect to the coordinates is a common
occurrence in mechanics. Most of the operations involve the “del operator,” denoted
by V. In a rectangular Cartesian system it has the form

.0 90 0
V:ex%—i—eya—y +ez$ (129)
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or, in the summation convention, we have

5}

V= Eiaxi

(1.2.10)

It is important to note that the del operator has some of the properties of a vector
but it does not have them all, because it is an operator. For instance V - A is a
scalar, called the divergence of A,

? DA, 04, 0A,
A= (60 (Ae) = (8.8, 00 94 _ 04 1.2.11
VoA (g ) (e = (68 ot = Gt = g (1.2.11)
whereas A -V
A A N
A.v_(Ajej)-(eza—%> — 45 (8 8) 5 = i (1.2.12)

is a scalar differential operator. Thus the del operator does not commute in this
sense. The operation V¢(x) is called the gradient of a scalar function ¢ whereas
V x A(x) is called the curl of a vector function A.

We have the following relations between the rectangular Cartesian coordinates
(z,y,2) and cylindrical coordinates (r,6, z) (see Figure 1.2.2):

x=rcosf, y=rsint, z==2 (1.2.13)
&.=cosf &, +sinf &, & = —sinf &, +cosf &,, €.=¢€, (1.2.14)
oeé oe .
;er = —sinf é; + cosb &, = &y, % = —cosf &, —sinf &, = —é, (1.2.15)

and all other derivatives of the base vectors are zero. For more on vector calculus,
see Reddy and Rasmussen [5] and Reddy [6], among other references.

Figure 1.2.2: Cylindrical coordinate system.
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Tensors

To introduce the concept of a second-order tensor, also called a dyad, we consider
the equilibrium of an element of a continuum acted upon by forces. The surface
force acting on a small element of area in a continuous medium depends not only on
the magnitude of the area but also upon the orientation of the area. It is customary
to denote the direction of a plane area by means of a unit vector drawn normal to
that plane. To fix the direction of the normal, we assign a sense of travel along the
contour of the boundary of the plane area in question. The direction of the normal is
taken by convention as that in which a right-handed screw advances as it is rotated
according to the sense of travel along the boundary curve or contour. Let the unit
normal vector be given by in. Then the area A can be denoted by A = An.

If we denote by AF(n) the force on a small area nAS located at the position r
(see Figure 1.2.3a), the stress vector can be defined as follows:

. AF(n)
Alégo AS

t(n) = (1.2.16)
We see that the stress vector is a point function of the unit normal n which denotes
the orientation of the surface AS. The component of t that is in the direction of
n is called the normal stress. The component of t that is normal to n is called a
shear stress. Because of Newton’s third law for action and reaction, we see that
t(—n) = —t(n). Note that t(n) is, in general, not in the direction of n.

It is useful to establish a relationship between t and n. To do this we now set
up an infinitesimal tetrahedron in Cartesian coordinates as shown in Figure 1.2.3b.
If —t;, —to, —t3, and t denote the stress vectors in the outward directions on the
faces of the infinitesimal tetrahedron whose areas are ASy, ASs, AS3, and AS,
respectively, we have by Newton’s second law for the mass inside the tetrahedron,

tAS — t1AS) — t2AS, — t3AS; + pAVE = pAVa (1.2.17)

where AV is the volume of the tetrahedron, p the density, f the body force per unit
mass, and a the acceleration. Since the total vector area of a closed surface is zero

=

AF(1)

(a)

Figure 1.2.3: (a) Force on an area element. (b) Tetrahedral element in Cartesian
coordinates.
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(see Problem 1.3),
ASH — AS18; — AS»é; — ASzé3 = 0 (1.2.18)

it follows that
AS] = (n-&1)AS, ASy;=(n-é)AS, AS;=(i-é3)AS (1.2.19)

The volume of the element AV can be expressed as

AV = %AS (1.2.20)

where Ah is the perpendicular distance from the origin to the slant face.
Substitution of Egs. (1.2.19) and (1.2.20) in (1.2.17) and dividing throughout by
AS reduces it to

t=(n-e)t; +(n-&)ty + (n-é3)ts + p%(a —f) (1.2.21)
In the limit when the tetrahedron shrinks to a point, Ah — 0, we are left with
t=(n-&)t;+ (n-eé)te+ (n-&3)t3 = (fi- &)t; (1.2.22)
It is now convenient to display the above equation as
t =n-(ét; + éxty + é3t3) (1.2.23)

The terms in the parenthesis are to be treated as a dyadic, called stress dyadic or
stress tensor o (we will not use the “double arrow” notation for tensors after this
discussion):

o = &1t] + éaty + ést3 (1.2.24)

Thus, we have

t(h)=n-o (1.2.25)

and the dependence of t on i has been explicitly displayed.
It is useful to resolve the stress vectors tj,te, and ts into their orthogonal
components. We have

t; = 0y1€1 + 05282 + 0383 = 0;€; (1.2.26)

for ¢ = 1,2,3. Hence, the stress dyadic can be expressed in summation notation as
T = &it; = 06,8, (1.2.27)

The component o;; represents the stress (force per unit area) on an area

perpendicular to the ith coordinate and in the jth coordinate direction (see Figure
1.2.4). The stress vector t represents the vectorial stress on an area perpendicular

to the direction f. Equation (1.2.25) is known as the Cauchy stress formula, and o
is termed the Cauchy stress tensor.
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‘\_______ P

X1

Figure 1.2.4: Notation used for the stress components in Cartesian rectangular
coordinates.

One of the properties of a dyadic is defined by the dot product with a vector. For
example, dot products of a second-order tensor ® with a vector A from the right
and left are given, respectively, by

P A= ((I)ijéiéj) : (Akék) = (I)i]'Ajéi

A - = (Aké]g) : (q)z'jéiéj) = (I)iinéj
Thus the dot operation with a vector produces another vector. The two operations in
general produce different vectors. The transpose of a second-order tensor is defined
as the result obtained by the interchange of the two basis vectors:

T = (9;;6,6))T = 0,658 (1.2.28)

It is clear that we have

A ®=dT- A, d A=A 37T (1.2.29)

We can display all of the components ®;; of a dyad @ by letting the j index run
to the right and the 4 index run downward:

D = ¢11€1€1 + 9126182 + P13€183
+ ¢21€2€1 + P22€2€5 + P23€9263
+ ¢31€381 + 32€382 + 336363 (1.2.30)

This form is called the nonion form. Equation (1.2.30) illustrates that a dyad
in three-dimensional space, or what we shall call a second-order tensor, has nine
independent components in general, each component associated with a certain dyad
pair. The components are thus said to be ordered. When the ordering is understood,
the explicit writing of the dyads can be suppressed and the dyad is written as an

array:

$11 P12 $13 e’ &1

[(I)] = I:qbgl ¢22 (bQS} and ® = {ég } [(I)] {ég } (1.2.31)
¢31 ¢32 P33 & €3

€3



10 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

This representation is simpler than Eq. (1.2.30), but it is taken to mean the same.
A unit second order tensor I is defined by

I=96;€é, 1.2.32
J 7

In the general scheme that is developed, vectors are called first-order tensors and
dyads are called second-order tensors. Scalars are called zeroth-order tensors. The
generalization to third-order tensors thus leads, or is derived from, triadics, or three
vectors standing side by side. Tt follows that higher order tensors are developed from
polyads. An nth-order tensor can be expressed in a short form using the summation
convention:

P = Pijre.. €;€5€5€) - - (1.2.33)

Here we have selected a rectangular Cartesian basis to represent the tensor.

Tensors are sometimes defined by the transformation law for its components. For
example, a vector A has components A; with respect to the rectangular Cartesian
basis (€1, €9,€3); its components referred to another rectangular Cartesian basis
(8], 6y,8&5) are A;j. The two sets of components are related according to

where ¢;; are called the direction cosines. Similarly, the components of a second-
order tensor @ transform according to the rule

O;; = Limbjn P o1 (@] = [L][®][L]" (1.2.35)

If the components do not satisfy the above transformation law, then it is not a
tensor.

The double-dot product between tensors of second order and higher order is
encountered in mechanics. The double-dot product between two second-order
tensors ® and W is defined as

DW= (0;€:€;) : (Vmn€mén)
= Gij¥mn(€; - €m)(&i - &)
= ¢ijVmnOjmbin
= ¢nmwmn
_ by (1.2.36)

Integral Relations

Relations between volume integrals and surface integrals of the gradient (V) of a
scalar or a vector and divergence (V-) of a vector are needed in the later chapters.
We record them here for future reference and use.

Let © denote a region in space surrounded by the surface I', and let ds be a
differential element of the surface whose unit outward normal is denoted by n. Let
dv be a differential volume element. Let ¥ be a scalar function and A be a vector
function defined over the region 2. Then the following integral identities hold (see
Figure 1.2.5):
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X1

Figure 1.2.5: A solid body with a surface normal vector n.

Gradient Theorem

/ Vi dv = ?{ ny ds (vector form) (1.2.37a)
Jo r

oY

— dv = j{ n;y ds (component form) (1.2.37b)
 Ox; r

Divergence Theorem

/ V-Adv= f n-Ads (vector form) (1.2.38a)
Ja r
0A;
dv = 7{ n;A; ds (component form) (1.2.38b)
Ja Ox; JI

In the above integral relations, ¢ denotes the integral on the closed boundary I' of
the domain €2, and the component forms refer to the usual rectangular Cartesian
coordinate system. Equations (1.2.37) and (1.2.38) are valid in two as well as three
dimensions. The integral relations in Egs. (1.2.37) and (1.2.38) can be expressed
concisely in the single statement

/(V*F) dv = ?{(ﬁ*F) ds (1.2.39)
Q J1T
where * denotes an appropriate operation, i.e., gradient, divergence or curl
operation, and F' is a scalar or vector function.

Some additional integral relations can be derived from Egs. (1.2.37) and (1.2.38).
Let A = Vg in Eq. (1.2.38a), where ¢ is a scalar function, and obtain

V- (Vy) dv = / V3 dv = 7{ n-(Vy)ds (vector form) (1.2.40a)
Jo Ja Jr



12 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

or, in component form

o Ay
dv = i d 1.2.4
Q 8.’131'8.1'1' v jg‘n 6.”1,3 s ( Ob)

The quantity n - Vo is called the normal derivative of ¢ on the surface I', and is
denoted by

0
6_:: =n - Vg (invariant form)
Oy .
=nig (rectangular Cartesian component form)
i
Op Op Op

The integral relations presented in this section are useful in developing the so-called
weak forms of differential equations in connection with the Ritz method and finite
element formulations of boundary value problems.

1.3 Equations of Anisotropic Elasticity
1.3.1 Introduction

The objective of this section is to review the governing equations of a linear
anisotropic elastic body. The equations governing the motion of a solid body can
be classified into four basic categories:

(1) Kinematics (strain-displacement equations)

(2) Kinetics (conservation of momenta)

(3) Thermodynamics (first and second laws of thermodynamics)
(4) Constitutive equations (stress-strain relations)

Kinematics is a study of the geometric changes or deformation in a body, without the
consideration of forces causing the deformation. Kinetics is the study of the static
or dynamic equilibrium of forces and moments acting on a body. This leads to
equations of motion as well as the symmetry of stress tensor in the absence of body
moments. The thermodynamic principles are concerned with the conservation of
energy and relations among heat, mechanical work, and thermodynamic properties
of the body. The constitutive equations describe thermomechanical behavior of
the material of the body, and they relate the dependent variables introduced in
the kinetic description to those in the kinematic and thermodynamic descriptions.
These equations are supplemented by appropriate boundary and initial conditions
of the problem.

In the following sections, an overview of the governing equations of an anisotropic
elastic body is presented. The strain-displacement relations. equations of motion,
and the constitutive equations for an isothermal state (i.e., no change in the
temperature of the body) are presented first. Subsequently, the thermodynamic
principles are considered only to determine the temperature distribution in a solid
body and to account for the effect of non-uniform temperature distribution on the
strains.

A solid body B is a set of material particles which can be identified as having
one-to-one correspondence with the points of a region  of Euclidean point space R°.
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The particles of B are identified by their time-dependent positions relative to the
selected frame of reference. The simultaneous position of all material points of B at
a fixed time is called a configuration of the structure. The analytical description of
configurations at various times of a material body acted on by various loads results
in a set of governing equations.

Consider a deformable body B of known geometry, constitution, and loading.
Under given geometric restrictions and loading, the body will undergo motion and Jor
deformation (i.e., geometric changes within the body). If the applied loads are time
dependent, the deformation of the body will be a function of time, i.e., the geometry
of the body will change continuously with time. If the loads are applied slowly so that
the deformation is only dependent on the loads, the body will take a definitive shape
at the end of each load application. Whether the deformation is time dependent or
not, the forces acting on the body will be in equilibrium at all times.

Suppose that the body B under consideration at time ¢t = 0 occupies a
configuration C°, in which a particle X of the body B occupies a position X. Note
that X is the name of the particle that occupies the location X in the reference
configuration. At time ¢t > 0, the body assumes a new configuration C and the
particle X occupies the new position x.

There are two commonly used descriptions of motion and deformation in
continuum mechanics. In the referential or Lagrangian description, the motion
of a body B is referred to a reference configuration C*. Thus, in the Lagrangian
description the current coordinates (z1, 2, x3) are expressed in terms of the reference
coordinates (X, X9, X3) and time ¢ as

X:X(Xl,XQ,Xg,t) (1.3.1)

Often, the reference configuration C is chosen to be the unstressed state of the body,
i.e., C® = The coordinates (X1, X2, X3) are called the material coordinates.

In the spatial or Eulerian description of a body B, the motion is referred to the
current configuration C occupied by the body B. The spatial description focuses
attention on a given region of space instead of on a given body of matter, and is
the description most used in fluid mechanics, whereas in the Lagrangian description
the coordinate system X is fixed on a given body of matter in its undeformed
configuration, and its position x at any time is referred to the material coordinates
Xi. Thus, during a motion of a body B, a representative particle X occupies a
succession of points which together form a curve in Euclidean space. This curve is
called the path of X and is given parametrically by Eq. (1.3.1).

1.3.2 Strain-Displacement Equations

The phrase deformation of a body refers to relative displacements and changes in
the geometry experienced by the body. Referred to a rectangular Cartesian frame
of reference (X, X, X3), every particle X in the body corresponds to a set of
coordinates X = (X;, X2, X3). When the body is deformed under the action
of external forces, the particle X moves to a new position x = (x1,x2,23). The
displacement of the particle X is given by

u=x—-—X or u;=x; — X; (1.3.2)
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If the displacement of every particle in the body is known. we can construct the
current (deformed) configuration C from the reference (or undeformed) configuration
CY. In the Lagrangian description, the displacements are expressed in terms of the
material coordinates X;, and we have

ui( X1, X2, X3,t) = 2;(X1, Xo, X3,t) — X; (1.3.3)

A rigid-body motion is one in which all material particles of the body undergo the
same linear and angular displacements. A deformable body is one in which the
material particles can move relative to each other. The deformation (i.e., relative
motion of material particles) of a deformable body can be determined only by
considering the change of distance between any two arbitrary but infinitesimally
close points of the body.

Consider two neighboring material particles P and () which occupy the positions
P (XI,X2,X3) and Q : (X1 +dXi, X9+ dXo, X3+ ng), respectively, in the
undeformed configuration CY of the body B. The particles are separated by the
infinitesimal distance dS = /dX;dX; (sum on i) in C° and dX is the vector
connecting the position of P to the position of (). These two particles move to
new places P and @, respectively, in the deformed body (see Figure 1.3.1). Suppose
that the positions of P and Q are (1,22, 73) and (z1 + dz1, z2 + dzg, x3 + dx3),
respectively. The two particles are now separated by the distance ds = v/dz;dz; in
the deformed configuration C, and dx is the vector connecting P to Q. The vector
dx can be interpreted as the position occupied by the deformed material vector dX.
When the material vector dX is small but finite, the line vector dx in general does
not coincide exactly with the deformed position of dX, which lies along a curve in
the deformed body. The deformation (or strains) in a body can be measured in
a number of ways. Here we use the standard strain measure of solid mechanics,
namely the Green-Lagrange strain E, which is defined such that it gives the change

Particle X \ .
t t=0
A Co (occupying A C, (time )

position X)
X2, X

/:_Cl

u =

% X

/ C (time £)

e

Particle X
(occupying
position x)

xl,X1

Figure 1.3.1: Kinematics of deformation of a continuous medium.
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in the square of the length of the material vector dX

2dX - E - dX = (ds)? — (dS)? = dx - dx — dX - dX (1.3.4a)
and in rectangular Cartesian component form we have

2dX; E;j dX; = (ds)? — (dS)? = dzidx; — dX;dX; (1.3.4b)

In Eq. (1.3.4b) and in the equations that follow, the summation convention on
repeated indices is used, and the range of summation is 1 to 3.

In order to express the strains in terms of the displacements, we use Eq. (1.3.2)
and write

X:X+u(X1,X2,X3,t) (135)

Since x is a function of X, its total differential is given by [using the chain rule of
differentiation and Eq. (1.3.5)]

dx =dX +dX -Vu=dX - (I+ Vu) (1.3.6)

where V denotes the gradient operator with respect to the material coordinates, X.
Now the strain tensor or its components from Egs. (1.3.4a,b) can be expressed in
terms of the displacement vector or its components with the help of Eq. (1.3.6):

2dX - E - dX = dx - dx — dX - dX
= [dX - (I+Vu)][dX (I+ Vu)] —dX - -dX
=dX - (I4+Vu) - (I+Vu) . dX —dX dX
= dX.- [(I+vu).(1+vu)T—1] -dX (1.3.7)

Thus the Green (or Green-Lagrange) strain tensor E is given in terms of the
displacement gradients as

E = [(1+vu)-(1+vu)T—1]

DO | k=t DN

[Vu+ (V)" + Vu- (Va)'] (1.3.8)

Note that the Green-Lagrange strain tensor is symmetric, E = ET (Eij = Ej;). The

strain components defined in Eq. (1.3.8) are called finite strain components because

no assumption concerning the smallness (compared to unity) of the strains is made.
The rectangular Cartesian component form is given by

1 ou; Ou;

_1 duj N ouy, Oy Oum,
2\ 0X, 09X, 00X, 0Xy

(1.3.9)
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Explicit form of the six Cartesian components of strain are given by

=gt a | (6) + (3%) (%)
e i )+ () R
o= -3 (58)  (GR) - (2)°
23 (g%, * % o, 2% 0% o%, * axio%)

e — _1_ (8u1 n 8U3 i aul Bul 8u2 a’LLQ 6U3 8U3)
B=95\6X; " 0X,  0X,0Xs  0X,0Xs ' 08X, 0X3

1 8u2 6u3 8U1 (911,1 8’11,2 B’U,Q 8’&3 811.3

= 1.3.1

2 <8X3 T ox, T 0X,0Xs | 0X,0Xs | 0X, ax3> (1.3.10)

If the displacement gradients are so small, |[Vu| << 1, that their squares and
products are negligible compared to |Vu|. Then the Green-Lagrange strain tensor
reduces to the infinitesimal strain tensor, E ~ ¢:

_ l T o 1 8’11,1 8’&]'
e= {Vu—% (Vu) } , €ij =5 (Bwj + 33:,-) (1.3.11)

The explicit form of the infinitesimal strain components (1.3.11) is given by (v;;
denote the engineering shear strains)

Oouy Oug Oug Oup  Ous
EN=4—, €2=7—, 3= 75—, NM2=2€612= 75—+ 75—
51’1 (9.772 8:173 83c2 8:5'1

Ou1  Ous Ous  Ous

=2 = — 4+ — =2 = — 1.3.12
713 €13 8w3+8x1’ Y23 €23 9 ( )

X3 8.’E2

Example 1.3.1:

(a) A square block is deformed as shown by dotted lines in Figure 1.3.2a. Assuming that the body
is very thin and the strains (due to the Poisson effect) associated with the thickness direction are
negligible, we wish to determine the two-dimensional strains.

A material particle which occupied position (X7, X5, X3) in the undeformed body takes the
position (21,9, 23) in the deformed body. The current coordinates of the material particle can be
expressed in terms of its original position as

z :X1+§X2, :L'2=X2, $3:X3 (1.3.13)
The displacements are
uy Ex14X1:§X2, Uug =29 — X0 =0, ug=x3-X3=0 (1.3.14)

Then the Green-Lagrangian strains can be computed using Eq. (1.3.10). The only nonzero strain
component is (e = 0.2cm and a = 10cm)

Eip = % =0.01 cm/cm (1.3.15)
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%9, X5

e Pl

> x1,X, = x1,X;
jae—a —»f
(a)
%9,X5 x9,Xo
A A
—» e 4
T i
I
]
a - |
l !
= x1,X; L = x.,X,
ja—a —»f
(b)

Figure 1.3.2: Undeformed and deformed configurations of a solid square block.
(a) Pure shear deformation. (b) Pure extensional deformation.

(b) Consider a square block, deformed as shown by dotted lines in Figure 1.3.2b. The current
coordinates of the material particle occupying position (X1, X5, X3) in the undeformed body can
be expressed as

371=X1+§X1, Ty = Xo, x3= X3 (1.3.16)

The displacements are
uy = '“Xl = -EXl, Uug EIQ—X2 20, U3z = I3 —X3 =0 (143417)

The only nonzero Lagrangian strain is

2
EH:Z+%(3 = (0.02 + 0.0002) cm/cm (1.3.18)

The strain is nonlinear. The nonlinear part of the strain is 0.02 percent.

This completes the kinematic description. In the coming chapters, we use only
the linear strains and the von Kdrmén nonlinear strains derived from Eq. (1.3.10).
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1.3.3 Strain Compatibility Equations

By definition, the components of the strain tensor can be computed from a
differentiable displacement field using Eq. (1.3.8) or Eq. (1.3.11). However, if
the siz components of strain tensor are given and if we are required to find the three
displacement components, the strains given should be such that a unique solution
to the six differential equations relating the strains and displacements exists. The
existence of a unique solution is guaranteed if the infinitesimal strain components
satisfy the following six compatibility conditions:

2. 2 2. 2. .
0%€ij O“cmn B 0%€im _ 0%cjn _ 0 (1.3.19)
OrpOx,  Ox;0x; Ox;0x, Or0TH,

for any 7, j,m,n = 1,2, 3. For the two-dimensional case, Eq. (1.3.19) reduces to the
following single compatibility equation

82511 82622 82612

— = 1.3.2
ox3 Oz} 0x10z2 (1.3.20)

It should be noted that the strain compatibility equations are satisfied automatically
when the strains are computed from a displacement field. Thus, one needs to verify
the compatibility conditions only when the strains are computed from stresses that
are in equilibrium.

1.3.4 Stress Measures

Stress at a point was introduced in Section 1.2 as a measure of force per unit area.
Equation (1.2.16) indicates that the stress vector at a point depends on the force
vector (its direction and magnitude) and the surface area. The surface area in turn
depends on the orientation of the plane used to slice the body. It was shown that
the state of stress at a point inside a body can be expressed in terms of stress vectors
on three mutually perpendicular planes, say planes perpendicular to the rectangular
coordinate axes by Cauchy’s formula in Eq. (1.2.25).

In the above discussion, stress vector t at a point in a deformed body is measured
as the force per unit area in the deformed body. The area element As in the deformed
body corresponds to an area element AS in the reference configuration, in much the
same way X is the position of a material particle X in the deformed body whose
position in the reference configuration was X. Thus the Cauchy stress tensor o is
defined to be the current force per unit deformed area:

df =tda=da-o, where da=dan (1.3.21)

where Cauchy’s formula, t = ¢ - 1, is used.
Expressing df in terms of a stress times the initial undeformed area dA requires
a new stress tensor P,

df =dA -P, where dA =dAN (1.3.22)

where N is the unit normal to the undeformed area dA. The stress tensor P is
called the first Piola—Kirchhoff stress tensor, and it gives the current force per unit
undeformed area. The first Piola—Kirchhoff stress tensor is not symmetric.
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The second Piola—Kirchhoff stress tensor S is introduced as follows. First, we
introduce the deformation gradient tensor F

0x

dx =F - dX =dX-F' where F={—-—
X wnere (BX

) = (Vox)* (1.3.23)

and Vj is the gradient operator with respect to X. We also have

0X
dX =F !.dx=dx -F ', where F7T = 5. = VX (1.3.24)
X
and V is the gradient operator with respect to x. Analogous to the transformation
between X and x, we can transform the force df on the deformed elemental area da
to the force dF on the undeformed elemental area dA (not to be confused between
the force dF and deformation gradient tensor F)

dF =F 1. df =F'. (dA - P)=dA-P-F "=dA-S (1.3.25)

Thus, the second Piola—Kirchhoff stress tensor gives the transformed current force
per unit undeformed area. The second Piola-Kirchhoff stress tensor is symmetric
whenever the Cauchy stress tensor is symmetric.

1.3.5 Equations of Motion

The principle of conservation of linear momentum states that the rate of change of
the total linear momentum of a given continuous medium equals the vector sum of
all the external forces acting on the body B, which initially occupied a configuration
CY, provided Newton’s third law of action and reaction governs the internal forces.
The principle leads to the following equations of motion:

0%u
Veo+f= pw (vector form) (1.3.26a)
0o 24,
a?J + fi= pa@tg (Cartesian component form) (1.3.26b)

where p is the density in the deformed configuration and f is the body force vector
(measured per unit volume). The equations of equilibrium are obtained by setting
the time derivative term to zero:

V.o+f=0 (vector form) (1.3.27a)

00 ;

8(;]1 + fi =0 (Cartesian component form) (1.3.27b)
J

For kinematically infinitesimal deformations, ie., |Vu| << 1, we do not
distinguish between x and X, between ¢ and S and between ¢ and E, and we
use the first symbol of each pair. In much of this book we deal with kinematically
infinitesimal deformations (i.e., linearized elasticity).

The strain-displacement relations and the equations of motion in any coordinate
system can be obtained from the vector forms in Egs. (1.3.8), (1.3.11), (1.3.26a) and
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(1.3.27a) by expressing o, f, u, and V in the chosen coordinate system. The vector
forms of equations are invariant, i.e., independent of the choice of the coordinate
system.

The principle of conservation of angular momentum, in the absence of any
distributed body couples, leads to the symmetry of the stress tensor:

o=0" (0 =0j)

Thus there are only six independent components of the Cauchy stress tensor. Since
the Cauchy stress tensor is a second-order tensor and symmetric, we may write it
with a “double arrow” notation as

o (1.3.28a)

This notation is meaningful and descriptive of the nature of the tensor; the notation
indicates that the quantity is a dyad (i.e., having two base vectors) and it is
symmetric:

Ef = éz 0ij éj (1.3.28b)

Note that the equations of motion or equilibrium contain three equations relating
six stress components and therefore cannot be solved for all six components uniquely.
Additional equations are required. These include the strain-displacement relations
discussed in Section 1.3.2 and constitutive relations or stress-strain relations to be
discussed in the next section.

Example 1.3.2:

Consider the following stress field in a body that is in equilibrium:
C3
o11 = €1%1 + CoTg + C3T1T2, O12 = —7(1’2)2 ~ 12, 022 =41 + 1T

and all other components of stress are zero. We wish to determine if the stress field satisfies the
equations of equilibrium in the presence of body forces, fi =0, fo = —c1, and f3 = 0. We assume
that the body experienced only a small deformation. We have

_ (90'11 60'12 60’13
0= 8x1 + 81‘2 + 8.’133 +f1

= (c1 +c3x2) +(—cy —c3zp) +0+0

_ 8012 6022 (90'23
- 6%1 + 8&72 + 8:133

=0+c; +0+0+(—cp)

0

+ f2

Thus, the first two equations of equilibrium are identically satisfied for any choice of constants, ¢,
ca, 3, and c4. The third equation of equilibrium is trivially satisfied.

Example 1.3.3:

Consider the cantilevered beam under an end load (see Figure 1.3.3). The bending moment about
the zo-axis at any distance zy is given by My = P(L — z1). Then the stress component 11 can be
calculated using the flexure stress formula from elementary strength of materials:

Mg.’L‘g P

= ——(L—Il)xgEcl(L—.’L'l)QT?) (1329)
Iy I

011 = —
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where Igg is area moment of inertia about the zo-axis. Assuming a two-dimensional state of
stress (with respect to the z; and z3 coordinates) in the beam, we wish to determine the stress
components 013 and 033 in the absence of body forces. Since the stress components 15,099, and
023 are assumed to be zero, the first equation of equilibrium yields

8(713 _ 8011 _
(9(63 N (9.171 - s
Integration with respect to x3 gives
c
o13 = *21(953)2+f(371) (1.3.30)

where f is a function of x; only. The second equation of equilibrium is trivially satisfied. The third
equation of equilibrium gives
60'33 . 80'13 . df

81'3 (9331 Adl‘l

Integration with respect to x3 yields

d
033 = —Ei%l':s +g(z1) (1.3.31)

The functions f and g can be determined using the boundary conditions of the beam. Note
that 013 and o33 must be zero on the top and bottom surfaces of the beam (i.e., at x3 = +h/2).
Vanishing of o33 at 3 = +h/2 gives

df , h

*d'—vvl§+9:07 _E(*§)+g:0
which imply that
—%:0, g=0, or f=cy and ¢g=0
Vanishing of 013 at 3 = £h/2 gives
o = 01}22
27778

Thus the two-dimensional state of stress is given by

P Ph? 2z3?
o1 = “E(L —x1)T3, 013 = 8,y [1 - (Ts) } , 033=0 (1.3.32)

Figure 1.3.3: A cantilevered beam (i.e., fixed at one end and no support at the
other end) under an end load.
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Since the stress field is derived from stress equilibrium equations, it is necessary to see if the
strain compatibility condition in Eq. (1.3.20) is satisfied. Suppose that the strains £11,€13, and
€33 are related to the stress components 11,013, and o33 by the relations (see the next section for
details)

€11 = S11011 + S13033 + S15013
€33 = S13011 + 533033 + 535013
€13 = S15011 + 535033 + S55013

Then

P Ph? | 223 2
€11 = 7511E(va1)m3+515@; 1- (73)

P PhQ 2 2
533:_313—(L—I1):E3+S35— 1-— (ﬂ)
Ipo 8199 |

€13 = =515

P Ph? 225\ 2]
L- Sss e |1 (=2 1.3.33
i (- mdes+ Ssagr 1= (52 (1.3.33)

Substituting these strain components into the compatibility equation [see Eq. (1.3.20)],

(92511 82633 (92613
-2 =0 1.3.34
amg Bm% Jx10x3 ( )

we obtain

P P
—S15— +0+2515— #0
Iop Igg

Thus the strains are compatible only if S15 = 0, which is the case when the material is isotropic or
orthotropic with respect to the problem coordinates.

1.3.6 Generalized Hooke’s Law

The kinematic relations and the mechanical and thermodynamic principles are
applicable to any continuum irrespective of its physical constitution. Here we
consider equations characterizing the individual material and its reaction to applied
loads. These equations are called the constitutive equations.

Materials for which the constitutive behavior is only a function of the current
state of deformation are known as elastic. In the special case in which the work
done by the stresses during a deformation is dependent only on the initial state and
the current configuration, the material is called hyperelastic.

A material body is said to be homogeneous if the material properties are the same
throughout the body (i.e., independent of position). In a heterogeneous body, the
material properties are a function of position. For example, a structure composed of
several uniform thickness layers of different materials stacked on top of each other
and bonded to each other is heterogeneous through the thickness. An anisotropic
body is one that has different values of a material property in different directions
at a point; i.e., material properties are direction-dependent. An isotropic body is
one for which every material property in all directions at a point is the same. An
isotropic or anisotropic material can be nonhomogeneous or homogeneous.
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A material body is said to be ideally elastic when, under isothermal conditions,
the body recovers its original form completely upon removal of the forces causing
deformation, and there is a one-to-one relationship between the state of stress and
the state of strain in the current configuration. The constitutive equations described
here do not include creep at constant stress and stress relaxation at constant
strain. Thus, the material coefficients that specify the constitutive relationship
between the stress and strain components are assumed to be constant during the
deformation. This does not automatically imply that we neglect temperature effects
on deformation. We account for the thermal expansion of the material, which can
produce strains or stresses as large as those produced by the applied mechanical
forces. Here, we discuss the constitutive equations of linear elasticity (i.e., relations
between stress and strain are linear) for the case of infinitesimal deformation (i.e.,
|Vu| << 1). Hence, we will not distinguish between various measures of stress and
strain, and use S ~ ¢ for the stress tensor and E ~ ¢ for strain tensor in the material
description used in solid mechanics. The linear constitutive model for infinitesimal
deformation is referred to as the generalized Hooke’s law. Suppose that the reference
configuration has a (residual) stress state of . Then if the stress components are
assumed to be linear functions of the components of strain, then the most general
form of the linear constitutive equations for infinitesimal deformations is

0 0
0=C:et+o0, o0ij=Cijpere + 055, Ere = ek (1.3.35)

where C is the fourth-order tensor of material parameters and is termed stiffness
tensor. There are, in general, 3* = 81 scalar components of a fourth-order tensor.
The number of independent components of C are considerably less because of the
symmetry of o, symmetry of ¢, and symmetry of C, as discussed next [6].

In the absence of body couples, the principle of conservation of angular
momentum requires the stress tensor to be symmetric, o;; = 0. Then it follows
from Eq. (1.3.35) that Cjjpe must be symmetric in the first two subscripts. Hence
the number of independent material stiffuess components reduces to 6(3)? = 54.
Since the strain tensor is symmetric (by its definition), €ij = €ji, then Cjjpp must
be symmetric in the last two subscripts as well, further reducing the number of
independent material stiffness components to 6 x 6 = 36.

If we also assume that the material is hyperelastic, i.e., there exists a strain
energy density function Up(e;;) such that

oU, ‘
0ij = gjj = Cijrecre + 0y (1.3.36)
we have )
0“Uy
=Y ..
851-_,- 8€M ijke

Since the order of differentiation is arbitrary, 92U [0€;0ce = 0%U,/ OeeOesj, it
follows that Cyjre = Cieij. This reduces the number of independent material stiffness
components to 21. To show this we express Eq. (1.3.35) in an alternate form using
single subscript notation for stresses and strains and two subscript notation for the



24 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

material stiffness coefficients:

01 = 011, 02 = 022, 03 =033, 04 =023, 05 =013, 06 = 012
€1 = €11, €2 = €22, €3 = €33, €4 = 2623, €5 = 2613, €6 = 212 (1.3.37a)

11—-1 22—-2 3—-3 23—-4 13—5 12—6. (1.3.37b)

It should be cautioned that the single subscript notation used for stresses and strains
and the two-subscript components C;; render them non-tensor components (ie., oi,
ei, and Cy; do not transform like the components of a vector or tensor). The single
subscript notation for stresses and strains is called the engineering notation or the
Voigt-Kelvin notation. Equation (1.3.35) now takes the form

o; = Cyje5 + 0’? (1.3.38a)

where summation on repeated subscripts is implied (now from 1 to 6). In matrix
notation, Eq. (1.3.38a) can be written as

o1 Cii Ci2 Ciz Ciu Ci5 Cis €1 o)
o2 Co1 Caa Caz3 Coy Ca5 Cop €2 0%
o3 C31 C3p C33 C34 C35 Csg €3 o3

= + 1.3.38b
o Cy Cao Ca3 Ca Cys Cge €4 o? ( )
lof: Cs1 Cso Cs3 Css Css Cse €5 o?
o6 Ce1 Cs2 Cs3 Ces Css Cop €6 oo

Now the coefficients C;; must be symmetric (C;; = Cj;) by virtue of the assumption
that the material is hyperelastic. Hence, we have 6+5+4+3+2+1 = 21 independent
stiffness coeflicients for the most general elastic material.

We assume that the stress-strain relations (1.3.38a,b) are invertible. Thus, the
components of strain are related to the components of stress by

E; = SijO'j + E?, 8? = —SUO'? (1.3.39&)
where S;; are the material compliance parameters with [S] = [C] ! (the compliance

tensor is the inverse of the stiffness tensor: S = C™!). In matrix form Eq. (1.3.39a)
becomes

€1 S Si2 Siz S Sis Sie o1 &9
€2 So1 Sa2 S2z Soa Sos Sae | | 02 8%
eg | _ | S31 S32 S3z Sz Sz Sz | ) o3 €3
eq [ | Ssn Saz Saz Ssa Sis Sas | | o4 + €9 (1.3.39b)
€5 Ss1 Ss2 Ssz3 Ssa Sss Sse | | 05 e
€6 Se1 Se2 Ses Ses Ses  Ses o6 e

In the following discussion we assume that the reference configuration is stress
free, of = 0 and strain free £ = 0.
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Material Symmetry

Further reduction in the number of independent stiffness (or compliance) parameters
comes from the so-called material symmetry. Suppose that (x;,z9,z3) denote the
coordinate system with respect to which Egs. (1.3.38a,b) and (1.3.39a,b) are defined.
We shall call them material coordinate system. The coordinate system (z,y, 2)
used to write the equations of motion and strain-displacement equations will be
called the problem coordinates to distinguish them from the material coordinate
system. Note that the phrase “material coordinates” used in connection with the
material description should not be confused with the present term. In the remaining
discussion, we will use the material description for everything, but we may use one
material coordinate system, say (z, vy, z), to describe the kinematics as well as stress
state in the body and another material coordinate system (x1,x9,x3) to describe
the stress-strain behavior. Both are fixed in the body, and the two systems are
oriented with respect to each other. When elastic material parameters at a point
have the same values for every pair of coordinate systems that are mirror images of
each other in a certain plane, that plane is called a material plane of symmetry (e.g.,
symmetry of internal structure due to crystallographic form, regular arrangement
of fibers or molecules, etc.). We note that the symmetry under discussion is a
directional property and not a positional property. Thus, a material may have
certain elastic symmetry at every point of a material body the properties may vary
from point to point. Positional dependence of material properties is what we called
the inhomogeneity of the material.

In the following we discuss various planes of symmetry and forms of associated
stress-strain relations. Note that use of the tensor components of stress and strain
is necessary because the transformation laws of the form (1.2.35) are valid only for
the tensor components. The fourth-order tensor, for example, transforms according
to the formula

;jkl = eip qu Crr lys Cpqrs (1340)

where ¢;; are the direction cosines associated with the coordinate systems (x1, z2, x3)
and (21, zy,23), and C};,; and Cpgrs are the components of the fourth-order tensor
C in the primed and unprimed coordinate systems, respectively.

Monoclinic Materials

When the elastic coeflicients at a point have the same value for every pair of
coordinate systems which are the mirror images of each other with respect to a
plane, the material is called a monoclinic material. For example, let (z1, 22, z3) and
(x], x5, z4) be two coordinate systems, with the z1, zo-plane parallel to the plane of
symmetry. Choose zj-axis such that 25 = —z3 (never mind about the left-handed
coordinate system as it does not affect the discussion) so that one system is the
mirror image of the other. The definitions and sign conventions of the stress and
strain components show that

or, in single-subscript notation

/ ’ / 7
04y = —04, Oy = —O0s5, €4 = —&4, €&y = —€5
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while all their independent stress and strain components remain unchanged in value
by the change from one coordinate system to the other. Using the stress-strain
relations of the form in Eq. (1.3.38b), we can write

! 7 ! / 7 ! /
01 = Chriey + Cragy + 01383 + 01464 + 015&“5 + 01656
o1 = Crie1 + Craeg + Ci3e3 — Craeq — Cises + Creee

But we also have
o1 = Crnier + Craez + Cizez + Craeq + Crses + Crses

Note that the elastic parameters Cj; are the same for the two coordinate systems
because they are the mirror images in the plane of symmetry. From the above two
equations (subtract one from the other) we arrive at

Chaeg + Ci5e5 = 0 for all values of ¢4 and &5

The above equation holds only if C14 = 0 and Ci5 = 0. Similar discussion with the
two alternative expressions of the remaining stress components yield Cos = 0 and
Cos = 0; C34 = 0 and C35 = 0; and Cy6 = 0 and Cs¢ = 0. Thus out of 21 material
parameters, we only have 21 — 8 = 13 independent parameters, as indicated below

Cii Ci2 Ciz O 0 Cie
Ci2 Ca2 Co3 0 0 Cy
Ciz Cog C33 0 0 Csg
0 0 0 Cys Css 0
Cie Cp% C3 O 0 Ces

Note that monoclinic materials exhibit shear-extensional coupling; i.e., a shear strain
can produce a normal stress; for example, 011 = Cigeg = 2C14¢12. Therefore, the
principal axes of stress do not coincide with those of strain.

The result in Eq. (1.3.42) can also be obtained using the following transformation

matrix (which converts the unprimed coordinate system to the primed one) in Eq.
(1.3.40):

[C] = (1.3.42)

1 0 O
[L] = |:0 1 0 ] (OI‘ £11 = £22 = 1, 533 = —1, gij =0 for i 7& ]) (1.3.43)
00 -1

Orthotropic Materials

When three mutually orthogonal planes of material symmetry exist, the number of
elastic coeflicients is reduced to 9 using arguments similar to those given for single
material symmetry plane, and such materials are called orthotropic. The stress-
strain relations for an orthotropic material take the form

o1 Cnn Ci2 Ciz 0 0 0 €1
o2 Cig Ca Co3 0 0 0 €2
o3| _|Ciz Co3 (33 0 0 0 €3
g4 - 0 0 0 C44 0 0 €4 (1'3'44)
(o4 0 0 0 0 C55 0 &5
J¢ L O 0 0 0 0 C(;G Ee
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The transformation matrices associated with the planes of symmetry are

10 0 -1.0 0 1 0 0
ZW)=]0o 1 of; Z@=| 0o 1 of; L@ =0 -1 0
00 -1 00 1 0 0 1

Most simple mechanical-property characterization tests are performed with a
known load or stress. Hence, it is convenient to write the inverse of relations in
(1.3.44). The strain-stress relations of an orthotropic material are given by

€1 St Siz2 Sz 0 0 0 o1
€2 Siz2 S22 Sz 0 0 0 o)
ez | _ Sz Sz Sz 0 0 0 o3
&4 - 0 0 0 544 0 0 g4 (1.3.45)
€5 0 0 0 0 Sss 0 05
£6 0 0 0 0 0 Ses o6

where S;; are the compliance coefficients ([C] = [S]™1)

Cyy = %g;sid Cho = 513523 ; S12533

Coo = é%?lls*_sfz Oy 512528 . S152

Clg = %‘Sﬁ Gy - 512518 = 93511
1 1 1

Caa = S Css = o Cos = S

S = $11529553 — S115%; — S205%; — 53387 + 2512523513 (1.3.46)

Most often, the material properties are determined in a laboratory in terms of the
engineering constants such as Young’s modulus, shear modulus, and so on. These
constants are measured using simple tests like uniaxial tension test or pure shear test.
Because of their direct and obvious physical meaning, engineering constants are used
in place of the more abstract stiffness coefficients Cj; and compliance coefficients
Sij. Next we discuss how to relate the compliance coefficients S;; to the engineering
constants.

One of the consequences of linearity (both kinematic and material linearizations)
is that the principle of superposition applies. That is, if the applied loads and
geometric constraints are independent of deformation, the sum of the displacements
(and hence strains) produced by two sets of loads is equal to the displacements (and
strains) produced by the sum of the two sets of loads. In particular, the strains
of the same type produced by the application of individual stress components can
be superposed. For example, the extensional strain 5(111) in the material coordinate
direction z1 due to the stress ¢ in the same direction is 011/ FE;, where E; denotes
Young’s modulus of the material in the x1 direction. The extensional strain 5(121) due
to the stress o99 applied in the xzo direction is —v91092/Fa, where vo1 is the Poisson
ratio

_ fn
V1= ———

€22
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and FE is Young’s modulus of the material in the xy direction. Similarly, o33

produces a strain Eﬁ) equal to —uv31033/F3. Hence, the total strain €17 due to

the simultaneous application of all three normal stress components is

Jg11 022121 _033V31 (a)

1 2 3

where the direction of loading is denoted by the superscript. Similarly, we can write

01112 022 03332
e = — + = = (b)
Ey Es E3
01113 0221723 033
€33 = — - + = c
Eq E, E3 (c)

The simple shear tests with an orthotropic material give the results

2e19 = g1z 2e13 = 913 293 = 723
— , - B3 _ 72
G2 Gis '’ Gas

(d)
Recall that 2e;; (¢ # j) is the change in the right angle between two lines parallel
to the z; and z2 directions at a point, o;; (i # j) denotes the corresponding shear
stress in the z;z; plane, and G;; (i # j) are the shear moduli in the z;z; plane.
Writing Eqgs. (a)-(d) in matrix form, we obtain

- 1

1% | % -
€9 Eq Ey Es3 )
sl_| ~8 ~H m 0 0 01]a (1.3.47)
g4 [ 0 0 0 GL% 0 0 04 -
€5 0 0 0 0 & © I5
€6 L 0 0o 0o 0 0 L]l

where E1, Ey, F3 are Young’s moduli in 1, 2, and 3 material directions, respectively,
v;; is Poisson’s ratio, defined as the ratio of transverse strain in the jth direction
to the axial strain in the ith direction when stressed in the ith direction, and
G23,G13, G2 are shear moduli in the 2-3, 1-3, and 1-2 planes, respectively. Since
the compliance matrix [S] is the inverse of the stiffness matrix [C] and the inverse of
a symmetric matrix is symmetric, it follows that the compliance matrix [S] is also a
symmetric matrix. This in turn implies that the following reciprocal relations hold

[see Eq. (1.3.47)]:
Por M2 Ma1_ M3 Vi 123
Ey E,’ Ej E;’ Ej3 Ey
or, in short
% = %; (no sum on 1i,7) (1.3.48)

for 7,7 = 1,2,3. The 9 independent material coefficients for an orthotropic material
are
En, Ea, E3, G23, Gi3, Gi2, vi2, 113, Va3 (1.3.49)
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It is important to note the difference, for example, between v;; and vj; for ¢ # j
for an orthotropic material [10]. For example the difference between v and v
for an orthotropic material is illustrated in Figure 1.3.4 with two cases of uniaxial
stress for a square element of length a. First a stress ¢ is applied in the z;-direction
as shown in Figure 1.3.4a. The resulting strains are

aﬂ):i gglgz_i’l_?a (1.3.50)
Eq

where the direction of loading is denoted by the superscript and negative sign

indicates compression. Next, the same value of stress is applied in the xs-direction
as shown in Figure 1.3.4b. The strains are

2 V21 2 a
While it is obvious that 5(111) < EéQQ)
(1) (2)

magnitudes of 5212 and £;,. However, the displacements associated with the two

if B4 > Es, we have no clue about the relative

loads are
ugl) = aEi1 ugl) = —a—lg—fa (1.3.52a)
ugz) = *G%O’ ug) = aEi2 (1.3.52b)
and the reciprocal relation (1.3.48) gives ug) = u§2), which is the statement of

Betti’s reciprocity theorem (see Reddy [6]).

U,
S 4“‘:{\
< " : >
o <HIFE.
DI il
23— |‘\ul(l)
uf) o
PR
---------- "!‘—\(2)
X9 E u,
(b) N
a_ |
Jvvviy
(2

Figure 1.3.4: Distinction between v19 and v9;.
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Comparing Eqs. (1.3.45) and (1.3.47), we note that

1 V12 V13
S = — = —— S = -
=g S12 B, OB E
1 V23 1
Spp=—, Spz=--2 Syy=—
22 B’ 23 B, 0% o
Si= o Si=——  Se= (1.3.53)
44 = G’ 0BT Cra 66 = i 3.

and using Eq. (1.3.46) the stiffness coefficients can be expressed in terms of the
engineering constants

1 — 193103 Vo1 + U313 V12 + U3oli3
Ch=—7——, Ci2= =

EsE3A  EsFE3sA E\E3A
Cla = V31 + Vo1V32 _ 3 + V12v93
13 EyEsA E1EsA
Cr — 1 — 1331 Ol = 182 + vi2v31 _ vz + v21vi3
2T TR EA T ELEsA E1EsA
1 — v19v91
Ciz=——"", Cu=G Cs5=G3 Ce=G
33 EiBA 44 23 Css 31 Ces 12
A= 1 — vi9v91 — V23139 — V31113 — 2101032013 (1.3.54)
E By B3

Example 1.3.4:

The material properties of graphite fabric-carbon matrix layers, which are characterized as
orthotropic, are:

E1 =25.1x 100 psi, Fy =4.8x10% psi , F3 =0.75 x 108 psi
Gio =1.36 x 10% psi , G153 =1.2 x 10° psi, Ga3 = 0.47 x 109 psi
Vo = 0036, Vg = 025, Vo3 = 0.171

The matrix of elastic coefficients for the material can be calculated using Eq. (1.3.54) as

25.16 0.2063 0.1934 O 0 0
0.2063 4.8240 0.1304 O 0 0
(C] = 0.1934 0.1304 4.8320 O 0 0 (ms)
0 0 0 047 0 0
0 0 0 0 12 0
0 0 0 0 0 1.36

A qualitative understanding of the anisotropic behavior of a material can be
obtained by simple tension and shear tests [10]. Application of a normal stress to
a rectangular block of isotropic or orthotropic material leads to only extension in
the direction of the applied stress and contraction perpendicular to it, whereas an
anisotropic material experiences extension in the direction of the applied normal
stress, contraction perpendicular to it, as well as shearing strain (see Figure 1.3.5).
Conversely, the application of a shearing stress to an anisotropic material causes
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Normal Stress Shear Stress

Isotropic

R |

and '/
Orthotropic [ =~

Anisotropic

r—— ="

Figure 1.3.5: Deformation of orthotropic and anisotropic rectangular block under
uniaxial tension.

shearing strain as well as normal strains. Normal stress applied to an orthotropic
material at an angle to its principal material directions causes it to behave like an
anisotropic material. The coupling between the two loading modes and the two
deformation modes plays a significant role in the testing, analysis, and design of
composite materials.

Isotropic Materials

When there exist no preferred directions in the material (i.e., the material has
infinite number of planes of material symmetry), the number of independent elastic
coefficients reduces to 2. Such materials are called isotropic. For isotropic materials
we have

Ei=FEy=F=F G2=Gi3=0G3=G, rviap=vs=v3=Vr (1.3.55)

Consequently, Egs. (1.3.44) and (1.3.47), in view of the relations (1.3.53), (1.3.54)
and (1.3.55), take the form

o1 [1-v v v 0 0 0 €1
o9 v 1—v v 0 0 0 €9
o3 v v 1—v 0 0 0 €3
s ("M 0 0 0 la-w) 0 0 o
o5 0 0 0 0 (1 —2v) 0 €5
o6 .0 0 0 0 0 T —2v)] Leg

(1.3.56)
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€1 1 —v —v 0 0 0 o1
&9 v 1 —v 0 0 0 092
es| _ 1 v —-v 1 0 0 0 03
aa{ E 0 0 0 14+v 0 0 04 (1'3'57)
€5 0 0 0 0 1+v 0 o5
€6 0 0 0 0 0 1+v o6
where B
A (1.3.58)

T A+v)(-2v)

Alternatively, the stress-strain relations can be written in more compact form
using the fact that a fourth-order isotropic tensor can be expressed as

Cijke = Mijbke + 11 (0ib5e + 6i00jr.) (1.3.59)

where A and p are called Lamé constants. Therefore, the stress-strain relation for
the isotropic case takes the form

Oij = Cijkg&‘kg = 2pei; + /\5kk5ij; o =2ue + A tr(e)l (1.3.60)

The strain-stress relations are

1 A 1 A
- _)(,kk(;ij] e [a - Gyt (e

ST 5, %% T 2ut 3 2% 2u+3N)

We note the following relations between the Lamé constants A and g and
engineering constants £, v and G for an isotropic material [8]:

A
g MBA+2p)

L v=—>" . G= 1.3.62
At u YT N o (1.3.62)

The following definitions and constitutive relations are of interest in the sequel:
mean stress, o E%oii, dilatation, e =¢y; (1.3.63)
deviatoric stress, ¢’ = o — &I, deviatoric strain, ¢ =¢ — étr(s) (1.3.64)
oii = (BA+2u)esi, 6 =Ke, K=X+ gps (1.3.65)

where K is the bulk modulus and p = G is the shear modulus.

In view of the relations between the Lamé constants and engineering constants,
Egs. (1.3.60) and (1.3.61) can be written in terms of engineering constants:

Oij = T Eij t VB Exkbij, o= b e+ e tr(e)I
1+v (14+v)(1-2v) 1+v (1+v)(1-2v)
(1.3.66)
1 1
& =g (1 +v)oij — vorkbij], €= I [(1+v)o —vir(o)]] (1.3.67)
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The strain energy density for a linear isotropic material is given by

1
Up = icijkéfijgké = 50ij€ij
1
=3 (011611 + 022892 + 033833 + 2012612 + 2013613 + 2093623)  (1.3.68)

Plane Stress-Reduced Constitutive Relations

A state of generalized plane stress with respect to the zzo-plane is defined to be
one in which

Uaﬂ = Uag(fljl,l'z), Oa3 — 0’a3($1,$2), g33 — 0 (1.3.69)

where a and (3 take the values of 1 and 2. Although o33 = 0, £33 is not zero.

The strain-stress relations of an orthotropic body in plane stress state can be
written as [see Eq. (1.3.47)]

2

1
€1 Er £ 0 o1 Si1 Sz 0 o1
€9 — _.%_12 1 0 o9 = SIQ 822 0 (o] (13703)
€6 0 0 L o 0 0 Se] Los

G2

and the transverse normal strain is given by

v 1%
€33 = (51301 + S2302) = —Eilgal - Eljoz (1.3.70b)

The strain-stress relations (1.3.70a) are inverted to obtain the stress-strain relations

o1 Qu Q12 0 €1
o2 p=|Qiz2 Qa O £9 (1.3.71)
o6 0 0 Qes €6

where the ();;, called the plane stress-reduced stiffnesses, are given by

Soo Ey S12 vk

Qun = = , Q2= =
511892 — 5%, 1 — vya1e S11892 — 8%, 1 —vavm
S11 Ey 1
Q22 = = , =— =G 1.3.72
S11892 — 5%, 1 — vavn %™ Ses 2 ( )

Note that the reduced stiffnesses involve four independent material constants, E;,
Es, v12, and Gis.

The transverse shear stresses are related to the transverse shear strains in an
orthotropic material by the relations

{04} _ {Q(;m Q(is] {84 } . Quu=Ca3, Oss = Gus (1.3.73)

05 €5



34 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

1.3.7 Thermodynamic Principles

Of the four principles of thermodynamics, the first law of thermodynamics and the
second law of thermodynamics are important in the study of deformable solids. The
first law of thermodynamics, also known as the principle of conservation of energy,
states that the time rate of change of the total energy is equal to the sum of the rate
of work done by applied forces and the change of heat content per unit time. The
second law of thermodynamics places restrictions on the interconvertibility of heat
and work done. For irreversible processes, the second law states that the entropy
production is positive.

The thermodynamic principles can be expressed, in the Lagrangian description
of deformation of solid bodies, as

T
pcvaa—t:—v-qﬂ— Q+o:é€ (1.3.74)

where T is the temperature, q is the heat flux vector, ) is the internal heat
generation (measured per unit volume), p is the density, ¢, is the specific heat
at constant volume or constant strain, o is the stress tensor, and € is the strain rate
tensor (or time rate of the strain tensor).

Equation (1.3.74), termed the generalized heat conduction equation, is used to
determine the temperature distribution in the body. The viscous dissipation couples
the thermal problem to the stress problem. Even when the viscous dissipation is
neglected, the thermal problem is coupled to the stress problem through constitutive
relations, as explained in the next section.

The thermal problem for the solid requires the temperature or the heat flux to
be specified on all parts of the boundary enclosing the heat transfer region as

T =T(s,t) on I'p (1.3.75a)
n-q+ he(T —1Tc) = gn(s,t) on Iy (1.3.75b)

where I' is the total boundary enclosing the heat transfer region, I' = I'r U I'y,
I'r NIy =0, h, is the convective heat transfer coefficient, T, is a reference (or sink)
temperature for convective transfer, g, is the specified boundary flux, and s denotes
the position of a point on the boundary.

Thermoelasticity

The thermoelastic problem is governed by the strain-displacement equations of
Section 1.3.4, equations of motion of Section 1.3.5, thermodynamic equations of this
section, and the constitutive equations to be given in this section. The constitutive
equation of the thermal problem is the well known Fourier’s heat conduction law,
which states that heat flux is proportional to the gradient of temperature:

or

q= —k~VT or q; = —ki]‘%
J

(1.3.76)
where k denotes the thermal conductivity tensor of order two. The negative
sign in Eq. (1.3.51) indicates that heat flows from higher temperatures to lower
temperatures.
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The constitutive equations of thermoelasticity are derived by assuming the
existence of the Helmholtz free-energy function Wo = Wo(e;5,T) (see [11-14])

Uo(eij, T) = Uy — T

1 ;OC' 2
= 5Cijke €ij ere = Bij €36 — 27_:;9 (1.3.77a)
such that .
Jij = ——85-? = Cijke €kt — Bij 0 (1.3.77b)
1J

where § = T — Ty, Tj is the reference temperature, 7 is the entropy density, and [3;;
are material coefficients. It is assumed that n and o;; are initially zero. Equation
(1.3.77b) is known as the Duhamel-Neumann law for an anisotropic body. Inverting
relations (1.3.77b), we obtain

Eij = Sijke Oke + 5 0 (1.3.78)

where Sjjre are the elastic compliances, and «;; are the thermal coefficients of
expansion and related to 3;; by 8i; = Cijre ouge.

Hygrothermal Elasticity

Temperature and moisture concentration in fiber-reinforced composites cause
reductions of both strength and stiffness [15-18]. Therefore, it is important to
determine the temperature and moisture concentration in composite laminates under
given initial and boundary conditions. As described in the previous section, the
heat conduction problem described by equations (1.3.74)-(1.3.76) can be used to
determine the temperature field.

The moisture concentration problem is mathematically similar to the heat

transfer problem. The moisture concentration ¢ in a solid is described by Fick’s
second law:

Oc
5 = -V -qy + o5 (1.3.79a)

qr=—-D Ve (1.3.79b)

where D denotes the mass diffusitivity tensor of order two, q;y is the flux vector, and
¢y is the moisture source in the domain. The negative sign in Eq. (1.3.79b) indicates
that moisture seeps from higher concentration to lower concentration. The boundary
conditions involve specifying the moisture concentration or the flux normal to the
boundary:

c=¢(s,t) on I (1.3.80a)
n-qy=qs(s,t) on I' (1.3.80b)

where I' = I'y UT'y, and I’y N’y = () and quantities with a hat are specified functions
on the respective boundaries.

The moisture-induced strains {¢}* are given by

{3 = {an}e (1.3.81)
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where {apr} is the vector of coefficients of hygroscopic expansion. Thus, the
hygrothermal strains have the same form as the thermal strains [see Eq. (1.3.76)].
The total strains are given by

{e} = [S{o} + {ar }(T — To) + {am Hc — o) (1.3.82)

where Ty and c¢g are reference values from which the strains and stresses are
measured. In view of the similarity between the thermal and moisture strains,
we will use only thermal strains to show their contribution to governing equations
in the sequel.

Electroelasticity

Electroelasticity deals with the phenomena caused by interactions between electric
and mechanical fields. The piezoelectric effect is one such phenomenon, and it is
concerned with the effect of the electric charge on the deformation [14-16]. A
laminated structure with piezoelectric laminae receives actuation through an applied
electric field, and the piezoelectric laminae send electric signals that are used to
measure the motion or deformation of the laminate. In these problems, the electric
charge that is applied to actuate a structure provides an additional body force to
the stress analysis problem, much the same way a temperature field induces a body
force through thermal strains.

The piezoelectric effect is described by the polarization vector P, which represents
the electric moment per unit volume or polarization charge per unit area. It is related
to the stress tensor by the relation (see [14-17])

P=d-o or P, =d;xojk (1.3.83a)

where d is the third-order tensor of piezoelectric moduli. The inverse effect relates
the electric field vector £ to the linear strain tensor € by

e=&E-d or €ij = dkijglc (1.3.83b)

Note that dy;; is symmetric with respect to indices 7 and j because of the symmetry
of ¢;; (note that ,j,k = 1,2, 3).

The pyroelectic effect is another phenomenon that relates temperature changes

to polarization of a material. For a small temperature change AT, the change in
polarization vector AP is given by

AP = pAT (1.3.84)

where p is the vector of pyroelectric coefficients.

The coupling between the mechanical, thermal, and electrical fields can be
established using thermodynamical principles and Maxwell’s relations. Analogous
to the strain energy function Uy for elasticity and the Helmholtz free-energy function
Uy for thermoelasticity, we assume the existence of a function ®

Qo(gi5, &, T) =Up — € -D =0T

1
= ECiij Eij €kt — €ijk €ijEk — Bij €50
1
— exe Exe — prErd — D02 (1.3.85a)

2 2Ty
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which is called the electric Gibbs free-energy function or enthalpy function, such that

09 0dq 00 0Pq
==, Di=——r, n=-——= -+ 1.3.85b
iy a&ij ' ’ 851 n oT 00 ( )
where o;; are the components of the stress tensor, D; are the components of the
electric displacement vector, and 7 is the entropy. Use of Eq. (1.3.85a) in Eq.
(1.3.85b) gives the constitutive equations of a deformable piezoelectric medium:

0ij = Cijke €ke — €ije€ — Bij0 (1.3.86a)

Dy = ek €45 + e + prb (1.3.86b)
C

n = Bij € + Prr + %’0 (1.3.86¢)

where (i are the elastic moduli, eijk are the piezoelectric moduli, €;; are the
dielectric constants, py are the pyroelectric constants, 3;; are the stress-temperature
expansion coefficients, ¢, is the specific heat per unit mass, and Tj is the reference
temperature. In single-subscript notation, Eqs. (1.3.86a-c) can be expressed as

g; = Cijefj - eikgk — ,3;‘0 (1.3.873)
Dy = ex;€5 + €xele + pro (1.3.87b)
n = Bii + Pk + %0 (1.3.87¢)

0

Note that the range of summation in (1.3.87a—c) is different for different terms:
,j = 1,2,---,6;k,¢ = 1,2,3. For the general anisotropic material, there are 21
independent elastic constants, 18 piezoelectric constants, 6 dielectric constants, 3
pyroelectric constants, and 6 thermal expansion coefficients.

Maxwell’s equation governing the electric displacement vector is given by
V-D=0 (1.3.88)

It is often assumed that the electric field £ is derivable from an electric scalar
potential function :
E=-Vy (1.3.89)

This assumption allows us to write Eq. (1.3.88), in view of Eq. (1.3.87b), as

) MY\, 9 o d ( O > B
Dy (mc’km) 523 (622372) oy \ g, ) TS =0 (1.3.90a)
where 5
fe= . (exeer + pib) (1.3.90b)
Tk

This completes a review of the basic equations of solid mechanics. In the coming
chapters reference is made to many of the equations presented here.
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1.4 Virtual Work Principles
1.4.1 Introduction

In solid mechanics some of the laws of physics take several alternative forms. For
example, the principle of conservation of linear momentum, which requires that
the vector sum of all applied forces acting on a body be equal to the total time
rate of momentum of the body, is known in mechanics as Newton’s second law
and it is also derivable from a variational principle. The use of Newton’s laws to
determine the governing equations of a structural problem requires isolation of a
typical volume element of the structure with all its applied and reactive forces (i.e.,
the free-body diagram of the element). For complicated systems the procedure
becomes more cumbersome and intractable. In addition, the type of boundary
conditions to be used in conjunction with the derived equations is not always clear.
In a variational approach, the governing equations are obtained by the principle of
virtual displacements or by seeking the minimum of the total potential energy of
the system. The variational approach, applicable to linear or nonlinear theories, is
useful both in deriving governing equations and boundary conditions, and obtaining
approximate solutions by variational methods.

In the context of the present study, the principle of virtual displacements will be
used to derive the equations of motion of laminated plates. Hence, it is useful to
study variational principles and methods (see Reddy [6] for additional details). We
begin with the concepts of virtual displacements and forces.

1.4.2 Virtual Displacements and Virtual Work

From purely geometrical considerations, a given mechanical system can take many
possible configurations consistent with the geometric constraints of the system. Of
all the possible configurations, only one corresponds to the actual configuration,
and it is this configuration that satisfies Newton’s second law (i.e., equations of
equilibrium or motion of the system). The set of configurations that satisfy the
geometric constraints but not necessarily Newton’s second law is called the set of
admissible configurations. These configurations are restricted to a neighborhood of
the true configuration so that they are obtained from infinitesimal variations of the
true configuration. During such variations, the geometric constraints of the system
are not violated and all the forces are fixed at their actual values. When a mechanical
system experiences such variations in its configuration, it is said to undergo virtual
displacements from its true or actual configuration. These displacements need not
have any relationship to the actual displacements that might occur due to a change
in the applied loads. The displacements are called virtual because they are imagined
to take place (i.e., hypothetical) while the actual loads acting at their fixed values.
The virtual displacements at the boundary points at which the geometric conditions
(or displacements) are specified, are necessarily zero.

The work done by the actual forces moving through virtual displacements is
called virtual work. The virtual work done by actual forces F in a body € in
moving through the virtual displacements éu is given by

oW = F-déudv (1.4.1)
Qo
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where dv denotes the volume element dv = dzydradrs in the material body .

The external virtual work done due to virtual displacements éu in a solid body
2o subjected to body forces f per unit volume and surface tractions t per unit area
of the boundary T, is given by

(5V:—</ f-éudv+/ t-éuds) (1.4.2)
J Qo I's

where ds denotes a surface element and I', denotes the portion of the boundary
on which stresses are specified. The negative sign in Eq. (1.4.2) indicates that the
work is performed on the body. It is understood that the displacements are specified
on the remaining portion Iy, = T' — ', of the boundary I'. Therefore, the virtual
displacements are zero on I, irrespective of whether u is specified to be zero or not.
For example, a bar fixed at one end (x = 0) and subjected to an axial load at the
other end (z = L) can be imagined to have a virtual displacement su(z), provided
6u(0) = 0, because the actual displacement is specified at x = 0. Thus, one may
select du(x) = cx, where c is an arbitrary constant.

Recall that the deformation of solid body acted upon by forces can be measured
in terms of strains and that the body experiences internal stresses. The forces
associated with the stress field move the material particles through displacements
corresponding to the strain field in the body, and hence work is done. The work done
by these internal forces in moving through displacements of the material particles
is called internal work. Note that the work done on the body is responsible for the
internal work stored in the body.

The internal virtual work due to the virtual displacement éu can be computed as
follows. Suppose that an infinitesimal material element of volume dv = dzdzadxs
of the body experiences virtual strains é¢;; due to the virtual displacements éu;,
where [see Eq. (1.3.12)]

1
beij = 5(‘5”‘%\]’ + buyi), buj = (1.4.3)

The work done by the force due to actual stress 011, for example, in moving through
the virtual displacement duy = fe11dz; is

011dl‘2d$3 . 5811d11 = 011(5511dv

Here €;; denote the strain components and o;; the stress components. Similarly, the
work done by the force due to stress o5 in the body is

Olgdl‘zdl‘g . 2(5512d$1 = 0‘1225612(11)
Thus, the total virtual work done by forces due to all the stresses in a volume
element (that originally occupied the material element dv) in moving through their

respective displacements is

(0'11 -0€11 + 099 - bE9p + - + 012 - 25812)(1’0 = 0y - (581']'d’l) (144)
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The total internal virtual work done is obtained by integrating the above expression
over the entire volume of the body

oU =/ Oij 562'3' dv (1.4.5)
Qo

Equation (1.4.5) is valid for any material body irrespective of its constitutive
behavior. The expression in Eq. (1.4.5) is called the wvirtual strain energy of a
deformable body.

The internal virtual work done by virtual stresses do;; in moving through the
actual strains &;; is

5U* ———/ Eij 60’,']' dv (1.4.6)
Q0

The expression in Eq. (1.4.6) is also known as the virtual complementary strain
energy. The virtual forces (6f;,6t;) and virtual stresses (60;;) should be such that
the stress equilibrium equations [see Eq. (1.3.27b)] and stress boundary conditions
[see Eq. (1.2.25)] are satisfied:

[603'1']4 +6f;i =0 in Q (1.4.73,)
6ti = (50'j7;TLj =0 on Fa- (147b)

In the present study we will not consider complementary energy principles.

1.4.3 Variational Operator and Euler Equations

The delta symbol § used in conjunction with virtual displacements and forces can
be interpreted as an operator, called the variational operator. It is used to denote a
variation (or change) in a given quantity; i.e., éu denotes a variation in u. Thus ¢
is an operator that produces virtual change or variation éu in a dependent variable
u, in much the same way as dz denotes a change in z, and du is called the first
variation of u. The operator proves to be very useful in constructing virtual work
statements and deriving governing equations from virtual work principles, as will be
shown shortly.

There is an analogy between the variational operator § and the total differential
operator d. To see this consider a function F' of the dependent variable u and its
derivative v’ = du/dz in one dimension. The total differential of F, for fixed z, is

oF OF oF
dF = %da: + %du + %du (1.4.8)

The first variation of F' is

oF oF 19%F
6F = — - — U + === (bu)?
ou 6u+8u’ ¢ JF28u2 (bu)” +

Since éu is small, terms involving squares and higher powers of §u can be neglected.
We have

19%F

5 52 (6u)2+ -+ (1.4.9)

OF _  OF _,
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Since x is fixed during the variation of u to u+46éu, we have dr = 0 in Eq. (1.4.8) and
the analogy between 6F in Eq. (1.4.10) and dF in Eq. (1.4.8) becomes apparent:
the variational operator, 6, is a differential operator with respect to the dependent
variable, u. Indeed, the laws of variation of sums, products, ratios, powers, and so
forth, are completely analogous to the corresponding laws of differentiation. The
following properties of the variational operator should be noted:

§(Vu) = V(6u)

6(/Qud§2> :'/Qéudﬂ

( )

( )

§(Fy + Fy) = 6F, + 6F, (1.4.13)
§(F\Fy) = 6F\ Fy + Iy 6F, ( )
( )

Fi\ R 6F,
(&m)=7 5 (%)
S(F) =n(F)" R (1.4.16)

where F1 = Fi(u) and Fy = F(u). If G = G(u,v,w) is a function of several
dependent variables (and possibly their derivatives), the total variation is the sum

of partial variations:
0G = 6,G + 6,G + 6,G (1.4.17)

where, for example, ¢, denotes the partial variation of G with respect to wu.
Functionals

Integral expressions whose integrands are functions of dependent variables and their
derivatives are called functionals. Mathematically, a functional is a real number (or
scalar) obtained by operating on functions (dependent variables) from a given set
(or vector space). Thus, a functional I(-) is an operator which maps functions u of
a vector space H into a real number I(u) in the set of real numbers, R:

I:H—R (1.4.18)

For example, the integral expression
L
I(u) = / [au(z) + bu'(z) + cu (z)] d=
Jo

qualifies as a functional for all integrable and square-integrable functions u(x). Note
that I(u) is a number whose value depends on the choice of u.

A funectional is said to be linear if
Hau+ pv) = al(u) + BI(v) (1.4.19)

for all constants « and 3 and dependent variables v and v. A quadratic functional
is one which satisfies the relation

I(au) = o*I(u) (1.4.20)
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for all constants a and dependent variable w.

The first variation of a functional I(u) of v (and its derivatives) can be calculated
using the definition in Eq. (1.4.10). For instance consider the functional I{u) defined
in the interval (a,b)

I(u) = /ab F(z,u,u) dz (1.4.21)

where F' is a function, in general, of z, u and du/dx = «’. The first variation of the
functional I is

b b b
61 = 5/ Fdx = / SF dx = / (6—F¢5u + Q}zéu’) dx (1.4.22)
a a a ou ou’

Thus, the variation of a functional can be readily calculated.

Fundamental Lemma of Variational Calculus

The fundamental lemma of calculus of variations can be stated as follows: for any
integrable function G, if the statement

b
/ G-nde=0 (1.4.23)
a

holds for any arbitrary continuous function n(z), for all z in (a,b), then it follows
that G = 0 in (a, b). A mathematical proof of the lemma can be found in most books
on variational calculus. A simple proof of the lemma follows. Since 7 is arbitrary,
it can be replaced by G. We have

b
/G2dx=0

Since an integral of a positive function is positive, the above statement implies that
G = 0. A more general statement of the fundamental lemma is as follows: If 7 is
arbitrary in @ < < b and n(a) is arbitrary, then

b
if / Gn de + B(a)n(a) = 0 (1.4.24)
then G=0ina<z<b and B(a)=0 (1.4.24b)

In most of our study in this book, we shall be interested in the use of Eqs. (1.4.24a,b)
because they provide the means to the determination of the governing equations and
boundary conditions and their solution by the variational methods.

Consider the question of finding the extremum (i.e., minimum or maximum) of
the functional

b
I(u) = /a F(z,u,u’) dz, u(a) = u,, u(b)=1wu (1.4.25)

The necessary condition for the functional to have a minimum or maximum is
(analogous to minima or maxima of functions) that its first variation be zero:

51 =0 (1.4.26)
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Using Eq. (1.4.10) we obtain

oF oF
O:/(l (8—5U+F6u> dz

Note that éu’ = é(du/dz) = d(éu)/dx. We cannot use the fundamental lemma in
the above equation because it is not in the form of Eq. (1.4.24). To recast the above
equation in the form of Eq. (1.4.24), we integrate the second term by parts and

obtain
or 8F
N ou' dx *
d (OF or _1°
i .
Let us first examine the boundary expression:
oF
[Gu ] ou

There are two parts to this expression: a varied quantity and its coefficient. The
variable u that is subjected to variation is called the primary variable. The
coefficient of the varied quantity, i.e., the expression next to éu in the boundary
term, is called a secondary variable. The product of the primary variable (or its
variation) with the secondary variable often represents the work done (or virtual
work done). The specification of the primary variable at a boundary point is
termed the essential boundary condition, and the specification of the secondary
variable (0F/0u') is called the natural boundary condition. In solid mechanics,
these are known as the geometric and force boundary conditions, respectively.
All admissible variations must satisfy the homogeneous form of the essential (or
geometric) boundary conditions: du(a) = 0 and du(b) = 0. Elsewhere, a < z < b,
ou is arbitrary.

Returning to Eq. (1.4.27), we note that the boundary terms drop out because of
the conditions on éu. We have

bror d /OF
o=/ [%‘a(a )}5““””

which must hold for any éu in (a,b). In view of the fundamental lemma of calculus
of variations (n = éu), it follows that

_OF d (OF .
:%_@<W>_O in a<z<b (1.4.28)

Thus the necessary condition for I(u) to be an extremum at v = u(z) is that u(x)
be the solution of Eq. (1.4.28).
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If u(a) = u, and bu(b) is arbitrary (i.e., u(a) is specified but u is not specified at
x = b), then du(a) = 0 and we have from Eq. (1.4.27) the result

brOF  d (OF OF
0= / [5.7; - <@)] Su dz + <W>x—b su(b) (1.4.29)

Since éu is arbitrary in (a,b) and du(b) is arbitrary, the above equation implies, in
view of Eq. (1.4.28), that both the integral expression and the boundary term be
zero separately:

oF d F
o I (%) =0, a<z<b (1.4.30a)

Both Eq. (1.4.30a) and Eq. (1.4.30b) are called the Euler-Lagrange equations.
Note that the boundary conditions that are a part of the Euler-Lagrange equations
always belong to the class of natural boundary conditions.

Now we have all the necessary concepts and tools in place to study the principles
of virtual work. In the next section, we discuss the principle of virtual displacements
and its special case, the principle of minimum total potential energy. For a discussion
of the principle of virtual forces and its special cases, consult Reddy [6].

1.4.4 Principle of Virtual Displacements

Recall that the virtual work due to virtual displacements is the work done by actual
forces in displacing the body through virtual displacements that are consistent
with the geometric constraints. All applied forces are kept constant during the
virtual displacements. Consider a rigid body acted upon by a set of applied
forces F1, Fo, ...F,, and suppose that the points of application of these forces
are subjected to the virtual displacements duj, éug, ---, duy, respectively. The
virtual displacement du; has no relation to éu; for i # j. The external virtual work
done by the virtual displacements is

5V = [Fy-buy +Fy-bup+ -+ Fy - dup) = — S F; - bug (1.431)
=1

The internal virtual work done 6U is zero because a rigid body does not undergo
any strains (hence virtual strains are zero). In addition, the virtual displacements

buy, buy, ---, Su, should all be the same, say éu, for a rigid body. Thus, we have
n n

§V ==Y F; bu;=— (ZF) .6u and U =0 (1.4.32)
i=1 i=1

But by Newton’s second law, the vector sum of the forces acting on a body in
static equilibrium is zero. This implies that the total virtual work, 6U + 6V, is
equal to zero. Thus, for a body in equilibrium the total virtual work done due to
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virtual displacements is zero. This statement is known as the principle of virtual
displacements. The principle also holds for continuous, deformable bodies, for which
oU is not zero. In this section, the principle of virtual displacements and its special
case are described since they play an important role in the formulation of theories
(e.g., plate theories) and their analysis by variational methods of approximation.

Consider a continuous body B in equilibrium under the action of body forces f and
surface tractions t. Let the reference configuration be the initial configuration C°,
whose volume is denoted as €2y. Suppose that over portion I, of the total boundary
I' of the region 2 the displacements are specified to be u, and on portion I', the
tractions are specified to be t. The boundary portions I';, and I', are disjoint (i.e.,
do not overlap), and their sum is the total boundary T'. Let u be the displacement
vector corresponding to the equilibrium configuration of the body, and let o and
€ be the associated stress and strain tensors, respectively. The set of admissible
configurations are defined by sufficiently differentiable functions that satisfy the
geometric boundary conditions: u =0 on ['.

If the body is in equilibrium, then of all admissible configurations, the actual one
corresponding to the equilibrium configuration makes the total virtual work done
zero. In order to determine the equations governing the equilibrium configuration
C, we let the body experience a virtual displacement éu from the true configuration
C. The virtual displacements are arbitrary, continuous functions except that they
satisfy the homogeneous form of geometric boundary conditions; i.e., they must
belong to the set of admissible variations.

The principle of virtual displacements can be stated as: if a continuous body
is in equilibrium, the virtual work of all actual forces in moving through a virtual

displacement is zero:
U4+ 6V =6W =0 (1.4.33)

Just as we derived the Euler-Lagrange equations associated with the statement
0I = 0, we can derive them for the statement in Eq. (1.4.33). However, first
we must identify 6U and 6V for a given problem. The principle of virtual work is
independent of any constitutive law and applies to both elastic (linear and nonlinear)
and inelastic continua.

For a solid body, the external and internal virtual work expressions are given in
Eqgs. (1.4.2) and (1.4.5), respectively. The principle can be expressed as

/a:ésdv— f-6udv—/ t-duds=0 (1.4.34)
Qo Qo -

where o : 6 denotes the “double dot product,” g is the volume of the undeformed
body, and dv and ds denote the volume and surface elements of 5. Writing in
terms of the Cartesian rectangular components, Eq. (1.4.34) takes the form

/ (O’ij(Se’:‘Z‘j - fz-éui) dv — / tiéui ds=20 (1.4.35)
Qo -
where the summation on repeated subscripts is implied.

The Euler-Lagrange equations associated with the statement (1.4.35) of the
principle of virtual displacements are nothing but the equilibrium equations of the
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3-D elasticity theory. Recall the strain-displacement equations from Eq. (1.3.11).
The virtual strains ée;; are related to the virtual displacements éu; by

1 0du;
beij = 5 (buiy + buzy),  bui; = aTjZ (1.4.36)

Substituting ée;; from the above equation into Eq. (1.4.35), and using the divergence
theorem, Eq. (1.2.38), to transfer differentiation from éu; to its coefficient, one
obtains (0;; = 0j;)

1
0= / [—aij(éul-,j + 6Uj’i) - f16u1:| dv — / tibu; ds
Qo L2

= / (o,-jéui,j — fléul) dv —/ tiéui ds
Qo

I

= —/ (Uij,j + fi)oudv —/ tidu; ds + j{ oijn;ou; ds (1.4.37)
Qo r

o

Since I' =T, UT, and éu; = 0 on I'y,, we have
0= —/ (Uij’j + fz) ou; dv +/ (Uijn]' — ti) bu; ds (1.4.38)
Qo T

Because the virtual displacements are arbitrary in Qg and on I',, Eq. (1.4.38) yields
the following equations [cf., Eq. (1.3.27b)]

00i; .
8—;]7 + fi = 0in Qp (1.4.39)
aijnj — ti =0 on FU (1.4.40)

Equations (1.4.39) and (1.4.40) are the Euler-Lagrange equations associated with
the principle of virtual displacements for a body undergoing small deformation. The
stress boundary conditions in Eq. (1.4.40) are the natural boundary conditions. The
principle of virtual displacements is applicable to any continuous body with arbitrary
constitutive behavior (i.e., elastic or inelastic).

Example 1.4.1: (Euler—Bernoulli beam theory)

Consider the bending of a beam of length L, Young’s modulus F and moment of inertia I, and
subjected to distributed axial force f(x) and transverse load ¢ (see Figure 1.4.1). Under the
assumption of small strains and displacements, we derive the governing differential equation of the
beam using the Euler-Bernoulli hypotheses, which assumes that straight lines perpendicular to the
beam axis before deformation remain (1) straight, (2) perpendicular to the tangent line to the beam
axis, and (3) inextensible after deformation. These assumptions lead to the displacement field (see

Figure 1.4.1a)

u=u0(x)—z%, v=0, w=wy(x) (1.4.41)

where (u, v, w) are the displacements of a point (z, y, z) along the z, y and z coordinates, respectively,
and (ug,wq) are the displacements of the point (z,0,0). Under the assumption of smallness of strains
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Vi(x) V(x)+AV(x) Vi) V(x)+A4V(x)
(b) ()

Figure 1.4.1: Bending of beams. (a) Kinematics of deformation of an Euler-
Bernoulli beam. (b) Equilibrium of a beam element. (c) Definitions
(or internal equilibrium) of stress resultants.

and rotations, the only nonzero strain is

dU() d2w0
b= S0 U 4.4
frr = e da? (1.4.42)

First we derive the equilibrium equations using Newton’s second law of motion. Summing the
forces and moments on an element of the beam (see Figure 1.4.1b) gives the following equilibrium
equations:

dN .
av
Y . =0: - =) (1.4.43b)
Z S dM

where N(z) is the net axial force, M (z) the bending moment, and V(z) the shear force, which are
known as the stress resultants, and they are defined in terms of the stresses o, and 0., on a cross
section as (see Figure 1.4.1c)

N(z)= / Owe dA, M(z) = / sz dA, V(z)= / 0xzdA (1.4.44)
J A Ja A
Here A denotes the area of cross section. Equations (1.4.43b) and (1.4.43c) can be combined into
the single equation so that Egs. (1.4.43a—c) reduce to
B d?M
dz?

,‘5;7 — f(x), = q(x) (1.4.45a,b)
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The stress resultants (IV,M) can be related back to the stress 0., using the linear elastic
constitutive relation for an isotropic material as [see Eq. (1.4.42)]

_ _ d’u,o d2w0
Ope = Eepe = F (—E —z ol (1.4.46)
First, note that
duo duo
N(z)= | 0z dA=E—= dA=FA— (1.4.47a)
A dz [, dx
2 2
M) = [ omzdd=E [ [F0_ T 44 prEwo (1.4.47b)
4 4\ dz dz? dxz?
or )
dug _ N - dwo M (1.4.48)

de ~ EA’ da? = EI
where I is the moment of inertia about the axis of bending (y-axis) and z is the transverse

coordinate. Note that the z-axis is taken through the geometric centroid of the cross section
so that fA 2dA = 0. Using the relations in Eq. (1.4.48) in Eq. (1.4.46), we obtain

N Mz
sz = & + =7 ( )
Next, we derive the governing equations (1.4.45a,b) using the principle of virtual displacements.
Note that for the problem at hand the only nonzero stress is o,,. Hence, the internal virtual work
done per unit length of the beam by the actual internal force o,» dA in moving through the virtual
displacements e, dz is given by 0,,dA - ez.dz. The total internal virtual work done is

L
U =/ /om O€zr dAdx (1.4.50)
0 A

where all other stresses are assumed to be zero; i.e., the Euler-Bernoulli assumptions are invoked.
The actual strain in the Euler-Bernoulli beam theory is given by Eq. (1.4.42). The virtual
strain de.. is related to the virtual displacements (Sug, wg) by 8eze = (dbug/dx) — 2(d?6wq/dx?).
Substituting this expression into (1.4.50), we obtain

L 2 L 2
U =/ / oas | U0 _ FLALICR =/ N3uo g d b0 ) 4z (1.4.51a)
o Ja dz dx o dx dx

The virtual work done by the external distributed forces f(z) and ¢(z) in moving through the
displacements dug and dwg, respectively, is

L
oV = —/ (fbéug + qéwp) dz (1.4.51b)
0

The virtual work done by any applied point loads (and moments) must be added to 6V in Eq.
(1.4.51b). For example, the virtual work done by the counterclockwise moment M; at z = L in
rotating through the virtual rotation 620 (L) is

M, (7 d&wo)
dx L
and the virtual work done by an axial point load Py, in moving through 6ug(L) and a transverse
point load F, in moving through the virtual displacement §wq(L) is (see Figure 1.4.2)

- [PLé’U,O(L) + FL(S’LU()(L)]
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Thus, the total external virtual work done is

_ d6w0
d

L
BV = — {/ (f6uo + qdwo) de + My, ( . ) 4 Puéug(L) + Fréwy(L) (1.4.52)
0 x=L

The principle of virtual displacements states that if the beam is in equilibrium we must have
oU + 6V =0or

L .
dé’lto d26w0 d6w0 _
/0 (N TR0 - MEZ0  foug — g | do — My (_ = )I:L ~ Ppbug(L) - Fpéwg(L) =0

(1.4.53)

To obtain the Euler-Lagrange equations associated with the virtual work statement (1.4.47),
integrate the first term by parts once and the second term by parts twice and obtain

L
AN d2M déwy  dM L
= _ _ N _ bt
/O [( 1) 6u0+< = q> 61110] de + | Nowp — M0 + Stoug|

_ dé’wo
dx

- M, ( )z:L — Prbug(L) - Fréwo(L) =0

Note from the boundary terms that ug, wg and dwg/dz are primary variables and N, dM/dz =V
and M are the secondary variables of the problem. We have

/ {(—% - ) Sug + <—% - q) 6w0} dz + [N(L) — Py]6ug(L) — N(0)6ug(0)
| ,

~[M(L) - My (d‘fgo )Z:L + M(0) (d‘;:")mzo

First, consider the integral expressions in (1.4.54). Since dug and dwg are independent and
arbitrary in 0 < z < L, we obtain the Euler equations

Sug - —%—f:0,0<x<L (1.4.55a)
2 A

swp:  —EM 0. 0<z<L (1.4.55b)
dx?

which are the same as those in Eqs. (1.4.45a,b).

uf0)=0
wy(0) =0
wy(0)=0

Figure 1.4.2: A cantilever beam with distributed loads f and ¢, and concentrated
loads Pr,, Fr and M, at the right end.
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Next, consider the boundary expressions in (1.4.54). If the beam is fixed at z = 0 and subjected
to forces P, My, and Fp, the virtual displacements éug and dwy must satisfy the conditions

Sup(0) =0, Ewp(0) =0, (d5w0> =0 (1.4.56)
dx z=0

and they are arbitrary at x = L. Consequently, the second, fourth and sixth boundary expressions
vanish, and we have the (natural) boundary conditions resulting from the virtual work principle:

Sug(L): N(L)—PL=0, at 2 =1L (1.4.57)

Swo(L) - (%) _FPL=0 et a=L (1.4.58)

(d‘S“’O) . M(L)-Mp =0, at z=1L (1.4.59)
dI =L

We note that Eqs. (1.4.55a) and (1.4.57) together define axial deformation, while Egs. (1.4.55b),
(1.4.58) and (1.4.59) describe bending deformation of the beam. These sets of equations can be
solved independently as N is only a function of ug and M is a function of only wq [see Eq. (1.4.48)].

The Principle of Minimum Total Potential Energy

A special case of the principle of virtual displacements that deals with linear as
well as nonlinear elastic bodies is known as the principle of minimum total potential
energy. For elastic bodies (in the absence of temperature variations) there exists a
strain energy density function Uy such that

g = % or o0y = gTD:J) (1.4.60)
Equation (1.4.60) represents the constitutive equation of an hyperelastic material.
The strain energy density Uy is a single-valued function of strains at a point
and is assumed to be positive definite. The statement of the principle of virtual
displacements, Eq. (1.4.34), can be expressed in terms of the strain energy density
Uo:

oUy

——: 0E dv — [ f-oudv+ t-du ds} =0 (1.4.61a)
Q, 0 Q0 r,
or, in component form,

oy

= 0gi; dv — [ / fibu; dv + / tidu; ds} =0 (1.4.61b)
Qp Oggj Qo T,

The first integral is equal to

6Uqy dv = 6U
Qo

where U is the internal strain energy functional

U= Up dv (1.4.62a)
Qo
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Suppose that there exists a potential V whose first variation is

§V = —

f-éudv+/ t~6uds]
Qo T

= - [ fibu; dv +/ tidu; ds] (1.4.62b)
Qo

(el

Then the principle of virtual work takes the form
U+ 6V =6(U+V)=6I1=0 (1.4.63)

The sum U 4+ V = II is called the total potential energy of the elastic body. The
statement in Eq. (1.4.63) is known as the principle of minimum total potential
energy. It means that of all admissible displacements, those which satisfy the
equilibrium equations make the total potential energy a minimum:

M(u) < I(q) (1.4.64)

where u is the true solution and u is any admissible displacement field. The equality
holds only if u = 1.

Example 1.4.2:

We consider the cantilever beam problem of Example 1.4.1 (see Figurc 1.4.2). The minimum total
potential energy principle requires us to construct the total potential energy (i.e., sum of the strain
energy and potential energy due to applied loads) of the beam and set its first variation to zero to
obtain the Euler-Lagrange equations of the functional.

The total strain energy stored in the beam is

L L 2 2
1 dug d?wy 1 dug d?wy
== — - M de = = FEA{— EI dx 1.4.65
v 2/0 ( d dm2)”” 2/0 [ (d:v)+ dr? v (14.65)

where Eq. (1.4.48) is used to write the last expression for U. The work done by external applied
loads f, q, M, Pr and Fy is

L
V=-_ U (fuo + qwo)dz + Prug(L) + My (;id“ﬂ) ¥ FLwO(L)} (1.4.66)
Jo L /) e=L

The total potential energy of the beam is given by

L 2 9 2
EI
H:U+V:/ %(%) +7(dd:;0) __qu_qwona:
0 :

— Prug(L) — My, (-%)’ _ —Fuuwo(L) (1.4.67)

The total potential energy principle requires that §(U + V) = 0:

L 2 2
0= / <EAdﬂ dbug + Eld wo d”0wp féug — q5u10) dz
0

dr dz dz?  dx?

~ Préuo(L) — My, (-d‘;wO

T

)x:L — Fréwo(L)
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Integration by parts of the first two terms, and use of Eq. (1.4.56) and the property that dug and
Swq are arbitrary both in (0, L) and at & = L, yields the Euler equations

d dU() _
. (EA%) _f=0,0<z<L (1.4.684)
d2 d2w0
dw2( dﬂ) q=0,0<z< (1.4.68b)
dug _
(EA%>0:=L ~PL=0 (1.4.68c¢)
2
_er%o ~ ML =0 (1.4.68d)
dxz? —L
d d2w0
[_E (EI s )]IZL ~F, =0 (1.4.68¢)

Equations (1.4.55a,b), and (1.4.57)—(1.4.59) are the same as above when N and M are replaced in
terms of ug and wg using Eq. (1.4.47a,b), i.e., when the beam constitutive equations are used.

The minimum property of the total potential energy can be established by considering an
arbitrary admissible displacement field, (@, w)
i =ug+avy, asmall, v1(0)=0 (1.4.69a)

@ = wy + By, B small, vy(0)=0, (%) =0 (1.4.69b)

For the example problem we have

L _ .2 2.\ 2 _
o EA /du EI (d*w _ _ _ dw _
(g, w) = /0 lT (%) — <@) - quqw‘| dz — Pya(L) - My, (_%)I:L — Fya(L)
L 2 2
. E_A d'u.o 2 %) d’il.g dvl _
_/0 { 5 [(%> + o (dr + 2a Tr de flug + avy) pdx
+ ﬂ d2w0 2 +B2 d2U2 z + 2ﬂd2w0 d2‘02 (w +8 ) dxr
2 |\ da? dx? dz? dg2 | BWOTER2
d
[(-22)  +5(-%2) ] - Felwo) + pua(r)
L 2
_ JEA (du\? | BT (&vy
= I(ug, wo) +/0 [a 5 (d ) + 8 5\ 22 dz

L
—I—a/ [EA@dﬂ+Eldwodvz fvl—qu]dx
0

dr d dz? dz?
d’l}2
- [aPLvl(L) +BM;, ("%) Lt ﬁFLvQ(L)] (1.4.70a)

Now, consider the second integral and the boundary terms

L
a{/ (EA%)dﬂ —fvl) dw—PLvl(L)}
0
+ﬂ{/ (md wo%fg _qv2> o~y (- 22) ) —FLvQ(L)}
0 =
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~of [ (eatie) - oo (a2 )]}
ool [ [ (sr ) o [z o] ().

+[ d‘i( w) FLL#UQ(L) (1.4.70b)

The boundary terms at x = 0 are zero because of the conditions in Eq. (1.4.69a,b). Since (ug, wq)
is the true solution of the problem, all terms in Eq. (1.4.70b) are zero. Thus, Eq. (1.4.70a) becomes

L 2 2 ?
o FEA rd EI (d
TI(u, w) = (uo, wo) +/ [az 2 (71%) +F 2 < d;);) } "
. z

> H(UO,U}()) (1471)

and the equality holds only when @ = 1y and @ = wg. Thus [1(z,w) is greater than II(up, wg) when
O # wq and @ # ug, establishing the minimum character of the total potential energy of the beam.

One may note that in this example, we considered axial deformation of a bar (set wy = 0) as
well as pure bending of a beam (set ug = 0). These equations are uncoupled for the case of small
strains. The total potential energy is the minimum with respect to both ug and wyg.

Hamilton’s Principle

Hamilton’s principle is a generalization of the principle of virtual displacements to
dynamics of systems. The principle assumes that the system under consideration
is characterized by two energy functions; a kinetic energy K and a potential energy
I1. For deformable bodies, the energies can be expressed in terms of the dependent
variables (which are functions of position) of the problem. Hamilton’s principle may
be considered as dynamics version of the principle of virtual displacements [6].

Newton’s second law of motion applied to deformable bodies expresses the global
statement of the principle of conservation of linear momentum. However, it should
be noted that Newton’s second law of motion for continuous media is not sufficient
to determine its motion u = u(x,t); the kinematic conditions and constitutive
equations discussed in the previous sections are needed to completely determine
the motion.

Newton’s second law of motion for a continuous body can be written in general
terms as

F-ma=0 (1.4.72)

where m is the mass, a the acceleration vector, and F is the resultant of all forces
acting on the body. The actual path u = u(x,t) followed by a material particle
in position x in the body is varied, consistent with kinematic (essential) boundary
conditions, to u+ éu, where du is the admissible variation (or virtual displacement)
of the path. We suppose that the varied path differs from the actual path except
at initial and final times, ¢; and ¢, respectively. Thus, an admissible variation éu
satisfies the conditions,

bu=0on S; for all ¢ (1.4.73a)
bu(x,t;) = du(x,tz) = 0 for all x (1.4.73b)
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where S1 denotes the portion of the boundary of the body where the displacement
vector u is specified. Note that the scalar product of Eq. (1.4.72) with fu gives
work done at point x, because F, a, and u are vector functions of position (whereas
the work is a scalar). Integration of the product over the volume (and surface) of
the body gives the total work done by all points.

The work done on the body at time t by the resultant force in moving through
the virtual displacement éu is given by

/f-(Su av+ [ i-suds- /0:52’ v (1.4.74)
Vv

Where f is the body force vector, t the specified surface traction vector, and & and
€ are the stress and strain tensors. The last term in Eq. (1.4.74) represents the
virtual work of internal forces stored in the body. The strains §¢ are assumed to be
compatible in the sense that the strain-displacement relations (1.3.11) are satisfied.
The work done by the inertia force ma in moving through the virtual displacement
ou is given by

2
/V p%Tl; sudvV (1.4.75)

where p is the mass density (can be a function of position) of the medium. We have
the result

to 82‘1
/tL1 {/préu dv —
or

ta au odu
—/tl[v por S AV + / (- 6u—5:62)av +

/ (f-éu-E’:a‘?:)dVJr £~5uds”dt:o
174 So

£ 6u dS]dt =0 (1.4.76)
Sa

In arriving at the expression in Eq. (1.4.76), integration-by-parts is used on the first
term; the integrated terms vanish because of the initial and final conditions in Eq.
(1.4.73b). Equation (1.4.76) is known as the general form of Hamilton’s principle
for a continuous medium (conservative or not, and elastic or not).

For an ideal elastic body, we recall from the previous discussions that the forces
f and t are conservative,

5V = — (/ f.sudv+ [ t-6u dS) (1.4.77a)
\% So

and that there exists a strain energy density function Uy = Uop(€i5) such that

oUy
a&“ij

Uz'j = (1.4.77b)

Substituting Eqgs. (1.4.77a,b) into Eq. (1.4.76), we obtain

5 tt2 K —(V+U))dt=0 (1.4.78)
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where K and U are the kinetic and strain energies:

pou du

(S Gav U= /UO av (1.4.79)

Equation(1.4.78) represents Hamilton’s principle for an elastic body (linear or
nonlinear). Recall that the sum of the strain energy and potential energy of external
forces, U + V, is called the total potential energy, II, of the body. For bodies
involving no motion (i.e., forces are applied sufficiently slowly such that the motion
is independent of time, and the inertia forces are negligible), Hamilton’s principle
(1.4.78) reduces to the principle of virtual displacements.

The Euler-Lagrange equations associated with the Lagrangian, L = K — II,
(Il =U + V) can be obtained from Eq. (1.4.78):

to
0=2¢6 L(u,Vu,u) dt

t1

-/ [/( ‘222 d1va—f> Su dV+/ (t—#)-6uds|d  (1.4.80)

where integration-by-parts, gradient theorems, and Egs. (1.4.73a,b) were used in
arriving at Eq. (1.4.80) from Eq. (1.4.78). Because éu is arbitrary for ¢, t; <t < ta,
and for x in V' and also on S», it follows that

5%u

pw—div;—sz inV

t—t=0 onS, (1.4.81)

Equations (1.4.81) are the Euler-Lagrange equations for an elastic body.

Example 1.4.8 (Third-order beam theory)

Counsider the displacement field

U(ZE, Z, t) = U’O(l', t) + Z(,{)(./If~ t) — (tlz (d) + d1l70)
w(z, z,t) = wo(z,t) (1.4.82)

where ¢; = 4/(3h?), ug is the axial displacement, wy the transverse displacement, and ¢ the rotation
of a point on the centroidal axis = of the beam. The displacement field is arrived by (a) relaxing the
Euler-Bernoulli hypotheses to let the straight lines normal to the beam axis before deformation to
become (cubic) curves with arbitrary slope at z = 0, and (b) requiring the transverse shear stress to
vanish at the top and bottom of the beam. Thus, only restriction from the Euler-Bernoulli beam
theory that is kept is w(z, z,t) = wy(z,t) (i.e., transverse deflection is independent of the thickness
coordinate z). The displacement field (1.4.82) accommodates quadratic variation of transverse shear
strain €., and shear stress o, through the beam height, as can be seen from the strains computed
next.

Now suppose that the beam is subjected to distributed axial force f(x) and transverse load of
g(x,t) along the length of the beam. Since we are primarily interested in deriving the equations of
motion and the nature of the boundary conditions of the beam that experiences a displacement ficld
of the form in Eq. (1.4.82), we will not consider specific geometric or force boundary conditions
here. The procedure to obtain the equations of motion and boundary conditions involves the
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following steps: (1) compute the strains, (ii) compute the virtual energies required in Hamilton’s
principle, and (iii) use Hamilton’s principle, derive the Euler-Lagrange equations of motion and
identify the primary and secondary variables of the theory (which in turn help identify the nature
of the boundary conditions).

Although one can use the general nonlinear strain-displacement relations, here we restrict the
development to small strains and displacements. The linear strains associated with the displacement
field are
Exz = s;‘;) + zagﬁ) -+ zBsS?

where

©_9%uw _096 @ _ (9 09w
Era = ¢ =a Bx+6.c2

rx 6$ ? TTr T aw 3 :c:):
©_pp %0 @) o (64 3“’0) (1.4.83b)
oz
and cg = 4/h?. Note that v;, = 2e4, is a quadratic function of 2. Hence, 0., = Gy, is also
quadratic in z.

From the dynamic version of the principle of virtual displacements (i.e. Hamilton’s principle)
we have

0= / / / Oux 562(;) + 2155&%,) + 2363(?’,)) (6’733) + zz&y(z))] dAdzdt
/ / / { u0+z¢—clz (¢+dwo)] {6110+z6q'5~clz (6¢+821;10)}
L
+ wo g }dAdacdt - / / (féup + qdbwg)dxdt
0o Jo

/ / szfse“’) 4 Maobel) + Poete® + 0.6+9 + R, 57(2)) dadt

/ / Totio8iio + [ngs —ely (qb + %o )] 8+ foug + q&wo} dadt

cl I4¢ -cilg (¢ + = Otbo )} (605 + ngo) + 10111051110} dzdt

T L
_ ONeo d%u OMzz 9% FBwg
_/0 /O {( et [032)‘5“( o Tt Kegm —adig g |0
PP,  0Q. 93¢ g 02w
+ [_"1W”W“q“l< 150~ o ggage |+ o | Swo pdadt

L
T
3511)0 ~ OPyy 82¢ Bw
—+ /0 {Nméug + Mméqb — Clpzz Gy I:Qx + ( B2 — J4 852 + C1[66 8t2 (S’LUO dt

0
(1.4.84)

where all the terms involving [ - ]I’ vanish on account of the assumption that all variations and
their derivatives are zero at t = 0 and ¢ = T, and the new variables introduced in arriving at the
last expression are defined as follows:

Nz h/2 1 Q h/2 1
Mo § = / 2 Sou dz {Rx} :/ {22 }o’u dz (1.4.85)
P:rx —h/2 Z3 a —h/2
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- = 4 4
A{:v:p = Al;px - C]Pa:m s Qa: = Qq; - CQRI , €1 = éﬁ , Co = ﬁ (1486&)
h/2
J4 214‘011—67 K2 :127201]4—{"6%167 11:/ p(Z)1 dz (1486b)
—h/2
Note that I; are zero for odd values of i (i.e., [y = I3 =I5 =0).
Thus, the Euler-Lagrange equations are
8Nmm _ 8271,0
dug : Bz +f=1I 52 (1.4.87)
Q2 02 Py
dwy : EE——&—C] 522 +q
82wy 03¢ 8wy
=1ly—=5 J. — ¢ 1.4.8
0Bz ta ( “acor VO arar (1.4.88a)
. OM,e = 0%¢ 33wy
: —Qr=Kog—" — 1.4.88b
000 g ~Wr=Fagm —aligae (1.4.88b)

The last line of Eq. (1.4.84) includes boundary terms, which indicate that the primary variables
of the theory are (those with the variational symbol) ug, wg, ¢, and dwgy/0x. The corresponding
secondary variables are the coefficients of dug, dwy, 6¢, and déwg/Ox:

8P” 62(15 6311}0

ac ~Tige Talegg

N, Qw+c1( ) Mzz, —C1Pua (1.4.89)

When ¢; = 0 in Eq. (1.4.82), it corresponds to the displacement field of the Timoshenko beam
theory. Thus, the equations of motion of the Timoshenko beam theory can be obtained directly
from Egs. (1.4.87) and (1.4.88a,b) by setting ¢; = cp = 0:

ONyz 92
G4 f= 10_8;0 (1.4.90)

P . 82
a‘i tq=1, 6;‘50 (1.4.91a)

OMzq 92
Eraia 12_615(2]5 (1.4.91b)

The primary and secondary variables of the Timoshenko beam theory are: (ug,wp,¢) and
(Nuw,Qz, Myz). Note that the Timoshenko beam theory accounts for transverse shear strain
ve: =2, and hence Q.. In the Timoshenko beam theory Q. is defined, in place of the definition
(1.4.85), by

Qq :K/ OrzdA (1.4.92)
A

where K is the shear correction factor.

A simplified third-order beam theory can be obtained from Eqgs. (1.4.87) and (1.4.88a,b) by
setting ¢; = 0 (but not ¢g):

8N“, _ 8211,0

o+ f= 10__&2 (1.4.93)
8@,; . 3211)() C
Dz +q=1y o2 (1.4.94)
OMee  ~ . 9%

8.’,[' - Q:I: — I2_at2 (1495)

These equations are lower-order than those in Egs. (1.4.87) and (1.4.88a,b).
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1.5 Variational Methods
1.5.1 Introduction

In Section 1.4, we saw how virtual work and variational principles can be used to
obtain governing differential equations and associated boundary conditions. Here
we study the direct use of the variational principles in the solution of the underlying
equations. The methods to be described here are known as the classical variational
methods. In these methods, we seek an approximate solution to the problem in
terms of adjustable parameters that are determined by substituting the assumed
solution into a variational statement equivalent to the governing equations of the
problem. Such solution methods are called direct methods because the approximate
solutions are obtained directly by applying the same variational principle that was
used to derive the governing (i.e., Euler-Lagrange) equations.

The assumed solutions in the variational methods are in the form of a finite linear
combination of undetermined parameters with appropriately chosen functions. This
amounts to representing a continuous function by a finite set of functions. Since the
solution of a continuum problem in general cannot be represented by a finite set of
functions, error is introduced into the solution. Therefore, the solution obtained is
an approximation to the true solution of the equations describing a physical problem.
As the number of linearly independent terms in the assumed solution is increased,
the error in the approximation will be reduced, and the assumed solution converges
to the exact solution.

It should be understood that the equations governing a physical problem are
themselves approximate. The approximations are introduced by several sources,
including the geometry, representation of specified loads and boundary conditions,
and material behavior. Therefore, when one thinks of permissible error in an
approximate solution, it is understood to be relative to exact solutions of the
governing equations that inherently contain approximations. The variational
methods of approximation to be described here are limited to the Ritz method. and
the weighted-residual methods (e.g., the least-squares method, collocation method,
and so on). The weighted-residual methods will be visited only briefly. Interested
readers may consult the references at the end of the chapter for additional details
[6].

1.5.2 The Ritz Method

As noted in Section 1.4 the principle of virtual displacements gives the equilibrium
equations as the Euler-Lagrange equations. These governing equations are in the
form of differential equations that are not always solvable by exact methods of
solution. There exists a number of approximate methods that can be used to solve
differential equations (e.g., finite-difference methods, the finite element method,
etc.). The most direct methods are those which bypass the derivation of the Euler—
Lagrange equations, and go directly from a variational statement of the problem to
the solution of the equations. One such direct method was proposed by Ritz [26].
The Ritz method is based on variational statements, such as those provided by the
principles of virtual displacements or the minimum total potential energy, which are
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equivalent to the governing differential equations as well as the natural boundary
conditions, and they are also known as the weak forms.

The basic idea of the Ritz method is described here using the principle of virtual
displacements or the minimum total potential energy principle. In the Ritz method
we approximate a dependent unknown (e.g., the displacement) u of a given problem
by a finite linear combination of the form

N

ur Uy =Y cjpj+¢o (1.5.1)
7j=1

and then determine the parameters ¢; by requiring that the principle of virtual
displacements holds for the approximate solution, i.e., minimize II(Uy) with respect
tocj, j=1,2,---,N. In Eq. (1.5.1) ¢; denote undetermined parameters, and ¢
and ¢; are the approzimation functions, which are appropriately selected functions
of position z. Equation (1.5.1) can be viewed as a representation of v in a finite
component form; ¢; are termed the Ritz coefficients. The selection of ¢; is discussed
next.

Properties of Approximation Functions

Substitution of Eq. (1.5.1) into IT(u) for u and the minimization of II(c;) results
in a set of algebraic equations among the parameters ¢;. In order to ensure that
the algebraic equations resulting from the Ritz procedure have a solution, and the
approximate solution converges to the true solution of the problem as the number
of parameters N is increased, we must choose wj (j =1,2,3,---,N) and g such
that they meet the following requirements:

1. o has the principal purpose of satisfying the specified essential (or geometric)
boundary conditions associated with the variational formulation; ¢q plays the
role of particular solution. It should be the lowest order possible for completeness.

2. ¢; (j =1,2,---, N) should satisfy the following three conditions:

(a) be continuous as required in the variational statement (i.e., ; should be such
that it has a nonzero contribution to the virtual work statement);

(b) satisfy the homogeneous form of the specified essential boundary conditions;
c) the set {¢;} is linearly independent and complete. 1.5.2
J

The completeness property is defined mathematically as follows. Given a function
u and a real number ¢ > 0, the sequence {¢;} is said to be complete if there exists

an integer N (which depends on € ) and scalars ¢, ¢a, - - -, ¢y such that
N
e =3 oyl < = (1.5.3)
j=1
where || - || denotes a norm in the vector space of functions u. The set {¢;} is called

the spanning set. A sequence of algebraic polynomials, for example, is complete if
it contains terms of all degrees up to the highest degree (N).
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Linear independence of a set of functions {¢;} refers to the property that there
exists no trivial relation among them; i.e., the relation

a1y Fogpe + - +anpn =0

holds only for all a; = 0. Thus no function is expressible as a linear combination of
others in the set.

For polynomial approximations functions, the linear independence and
completeness properties require ¢; to be increasingly higher-order polynomials. For
example, if (1 is a linear polynomial, ¢ should be a quadratic polynomial, 3 should
be a cubic polynomial, and so on (but each ¢, need not be complete by itself):

2
@1 = a1 + bz, Y2 = ag + box + ca7?, ag + cox®, or by + cpx?, - -

The completeness property is essential for the convergence of the Ritz approximation
(see Reddy [29], p. 262).

Since the natural boundary conditions of the problem are included in the
variational statements, we require the Ritz approximation Uy to satisfy only the
specified essential boundary conditions of the problem. This is done by selecting ;
to satisfy the homogeneous form and ¢p to satisfy the actual form of the essential
boundary conditions. For instance, if u is specified to be @ on the boundary = = L,
we require

po=1% at r=1L and ;=0 at a=L for i=1,2,---,N

The requirement on ¢; to satisfy the homogeneous form of the specified essential
boundary conditions follows from the approximation adopted in Eq. (1.5.1). Since
Uy =t and ¢g = @ at z = L, we have

N
Un(L) = ¢jpi(L) + wo(L)
j=1
N
U= Cj(,Oj(L) +u
j=1

and, therefore, it follows that 2921 cjpi(L) = 0. Since this condition must hold for
any set of parameters c;, it follows that

0;j(L)y=0 for j=1,2,---,N

Note that when the specified values are zero, i.e., & = 0, there is no need to include
o (or equivalently, o = 0); however, ¢; are still required to satisfy the specified
(homogeneous) essential boundary conditions.

The conditions in Eq. (1.5.2) provide guidelines for selecting the coordinate
functions; they do not give any formula for generating the functions. As a general
rule, coordinate functions should be selected from the admissible set, from the lowest
order to a desirable order without missing any intermediate admissible terms in the
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representation of Uy (i.e., satisfy the completeness property). The function g has
no other role to play than to satisfy specified (nonhomogeneous) essential boundary
conditions; there are no continuity conditions on ¢g. Therefore, one should select
the lowest order ¢, that satisfies the essential boundary conditions.

Algebraic Equations for the Ritz Parameters

Once the functions g and ¢; are selected, the parameters ¢; in Eq. (1.5.1) are
determined by requiring Uy to minimize the total potential energy functional II (or
satisfy the principle of virtual work) of the problem: §II(Uy) = 0. Note that II(Uy)
is now a real-valued function of variables, ¢1,co, -+, cy. Hence minimization of the
functional II(Uy) is reduced to the minimization of a function of several variables:

N
o1l o1l
0=46II(Uy) =06Il(¢c;) = Y ——0bc; or =—— =0 (1.5.4)
ot dc; Oc;

This gives N algebraic equations in the N coefficients (c1, ca, ..., cn)
M &
0= 8_61 = Z Aijcj - bz or [A]{C} = {b} (155)
j=1

where A;; and b; are known coefficients that depend on the problem parameters
(e.g., geometry, material coefficients, and loads) and the approximation functions.
These coefficients will be defined for each problem discussed in the sequel. Equations
(1.5.5) are then solved for {c} and substituted back into Eq. (1.5.1) to obtain the
N-parameter Ritz solution.

Some general features of the Ritz method based on the principle of virtual
displacements are listed below:

1. If the approximate functions ¢; are selected to satisfy the conditions in Eg.
(1.5.2), the assumed approximation for the displacements converges to the true
solution with an increase in the number of parameters (i.e., as N — 00). A
mathematical proof of such an assertion can be found in [20-22, 29].

2. For increasing values of IV, the previously computed coefficients A4;; and b; of the
algebraic equations (1.5.5) remain unchanged, provided the previously selected
coordinate functions are not changed. One must add only the newly computed
coeflicients to the system of equations. Of course, c¢; will be different for different
values of N.

3. If the resulting algebraic equations are symmetric, one needs to compute only
upper or lower diagonal elements in the coefficient matrix, [4]. The symmetry
of the coefficient matrix depends on the variational statement of the problem.

4. If the variational (or virtual work) statement is nonlinear in u, then the resulting
algebraic equations will also be nonlinear in the parameters ¢;. To solve such
nonlinear equations, a variety of numerical methods are available (e.g., Newton’s
method, the Newton-Raphson method, the Picard method), which will be
discussed later in this book (see Chapter 13).
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5. Since the strains are computed from an approximate displacement field, the
strains and stresses are generally less accurate than the displacement.

6. The equilibrium equations of the problem are satisfied only in the energy sense,
not in the differential equation sense. Therefore the displacements obtained from
the Ritz approximation, in general do not satisfy the equations of equilibrium
pointwise, unless the solution converged to the exact solution.

7. Since a continuous system is approximated by a finite number of coordinates
(or degrees of freedom), the approximate system is less flexible than the
actual system. Consequently, the displacements obtained using the principle
of minimum total potential energy by the Ritz method converge to the exact
displacements from below:

Uy < Uz <...< Uy < Upy... <ulexact), for M > N

where Upn denotes the N-parameter Ritz approximation of v obtained from the
principle of virtual displacements or the principle of minimum total potential
energy. It should be noted that the displacements obtained from the Ritz method
based on the total complementary energy (maximum) principle provide the upper
bound.

8. The Ritz method can be applied, in principle, to any physical problem that can
be cast in a weak form — a form that is equivalent to the governing equations
and natural boundary conditions of the problem. In particular, the Ritz method
can be applied to all structural problems since a virtual work principle exists.

Example 1.5.1:

Consider the cantilever beam shown in Figure 1.4.2. We consider the pure bending case (i.e.,
ug = 0). We set up the coordinate system such that the origin is at the fixed end. For this case the
geometric (or essential) boundary conditions are

dw
wo(0) = 0, d—;}(()) =0

The force (or natural) boundary conditions can be arbitrary. For example, the beam can be
subjected to uniformly distributed transverse load g(z) = qg, concentrated point load Fy, and
moment My, as in Figure 1.4.2. The applied loads will have no bearing on the selection of ¢y and
;. The applied loads will enter the analysis through the expression for the external work done [see
Eq. (1.4.52)], which will alter the expression for the coefficients F; of Eq. (1.5.5).

An N-parameter Ritz approximation of the transverse deflection wy(z) is chosen in the form

N
wo(z) » Wy = ch%‘ + o (1.5.6)
j=1

Since the specified essential boundary conditions are homogeneous, pg = 0. Next, we must select

@, to satisfy the homogeneous form of the specified essential boundary conditions

©:(0) =0 and %%’(0):0 (1.5.7)

and p; must be differentiable as required by the total potential energy functional in Eq. (1.4.67)
of Example 1.4.2. Since there are two conditions to satisfy, we begin with ¢; = a + bz + cz? and
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determine two of the three constants using Eq. (1.5.7). The third constant will remain arbitrary.
Conditions (1.5.7) give a = b =0, and ¢, (x) = cx2. We can arbitrarily take ¢ = 1. Using the same
procedure, we can determine g, @3, etc. One may set the coefficients of lower order terms to zero,
since they are already accounted in the preceding ;:

o1 =12 gy =2 pg=2zt ., oy =N T!
The Ritz approximation becomes
Wx = c10? +coa® + -+ +eyazV ! (1.5.8)

Substituting Eq. (1.5.8) into Eq. (1.4.67) we obtain II as a function of the coefficients ci, ¢o, - -,
CN:

L
El
ey, co,+,0n) :/ {T [261 +6€21‘—}—~-4+N(N+1)CN&2‘N71]2
0

— q((ﬁlg;Q +(32(IIS + ... +CN$N+1)}dCE

— FL [(,‘1.’172 + CQl’3 + -+ CN$N+I]1:L

— Mp[2¢c17 + 3cp2® + -+ (N 4+ DeyzNa=1 (1.5.9)
Using the total potential energy principle, 611 = 0, which requires that IT be a minimum with
respect to each of ¢y, ¢g, ---, ¢y, we arrive at the conditions
o1l o1l oIt
=0, —— =0, -, — = 1.5.1
8c1 03 8(22 O’ ! aCN 0 ( ? 0)
The ith equation in (1.5.10) has the form
ol r
0=5- = / {EI [2¢1 + 6coz + -+ + N(N + DeyaV 1 i(i + 1)a' =1 — g 2*t] }dm
o3 0
—Fp Lt - Mp(i+ 1)L
L L
=¢ [/ 2EI-i(i+1)mi‘ldx} + ¢ [/ 6EIz-i(i + 1)zi—1dx] SR
J0 0
L L
+en V EIN(N + 1)aN-Yi(i + 1)x”de ~/ q(x)zitlde — Fp L't — M (i + 1)L}
JO [0}
N
=c1Aq +caAg+ -+ enAin — F = ZAijcj b, (i=1,2,..,N) (1.5.11a)
j=1
where

L L
Ay =EI / JEF DI i+ ) e, b = / (@) de+ FL LIt 4+ M (i4+1) L8 (1.5.11b)
Jo 0
For one- and two-parameter approximations we have the following equations:
3
N=1:  Aj =4AEIL, b, = %+FLL2+2MLL
o q0L2 FLL A[L

“C T 12ET " 1EI " 2EI°
i = (357 + S+ 5 ) o (15122
N=2: A1 =4EIL, Ay =6FEIL? = Ay, Agg=12EIL3
by = qup +FLL? +2M L, by = q_o4£‘ + FL L3 +3M, L2
0 = 'E17 (25—4q0L2 + %FLL+ %M,,) ey = *ﬁ (g0 + 2Fy)

_ 5110L4 FL L3 A{L LQ IL'2 QOL4 FL L3 2?3
Wa(w) = (24EI t2er T 2Er )2 "\ 1281 T GET ) I3 (1.5.12b)
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The exact solution is

ql?t [ x? 3  zt FrL3 ( z2 23 M L2 x2
- N I A W A I S DI el 5.1
wo(®) = 517 <6L2 Bt T eEr P ) T 2T I (1.5.13)

The two-parameter solution is exact for the case in which gg = 0. For gy # 0, the solution is not
exact for every z but the maximum deflection W5(L) coincides with the exact value wg(L). The
three-parameter solution, with ¢35 = 24, would be exact for this problem.

If we were to choose trigonometric functions for ¢;, we may select the functions ¢;(z) =
1 — cos[(2i — 1)wz/2L]. This particular choice would not give the exact solution for a finite value
of N, because the applied load gg, when expanded in terms of ¢;, would involve infinite number
of terms. Thus, a proper choice of the coordinate functions is important in realizing the exact
solution. Of course, both algebraic and trigonometric functions would yield acceptable results with
finite number of terms.

1.5.3 Weighted-Residual Methods

Consider an operator equation in the form
Alu) = fin Q

Bi(u) =tonTi, Ba(u) =gonTy (1.5.14)

where A is a linear or nonlinear differential operator, u is the dependent variable, f
is a given force term in the domain 2, B; and By are boundary operators associated
with essential and natural boundary conditions of the operator A, and ¢ and § are
specified values on the portions I'y and I’y of the boundary I' of the domain. An
example of Eq. (1.5.14) is given by

du

Alu) = “‘3% (az—z> , Bi(u) = u, Ba(u) = o

I"; is the point x = 0, I'g is the point x = L
We seek a solution in the form

N

Un = chgoj—l-(po (1.5.15)
j=1

where the parameters c¢; are determined by requiring the residual of the

approximation
N

Ry=A ZCj(,Oj-i-gO() —f#0 (1.5.16a)
j=1

be orthogonal to N linearly independent set of weight functions v;:
/ wiRN(Ci,(Pi,f) dX:O, 1= 1,2,'-',N (1.5.16b)
Q

The method based on this procedure is called, for obvious reason, a weighted-residual
method.
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The coordinate function ¢, and ¢; in a weighted-residual method should satisfy
the properties in Eq. (1.5.2), except that they should satisfy all specified boundary
conditions:

e o should satisfy all specified boundary conditions.

* ; should satisfy homogeneous form of allspecified boundary conditions. (1.5.17)

The variational statement referred to in Property 2a of (1.5.2) is now given in Eq.
(1.5.16b). Properties in (1.5.17) are required because the boundary conditions,
both essential and natural, are not included in Eq. (1.5.16b). Both properties now
require ; to be of higher order than those used in the Ritz method. On the other
hand, ; can be any linearly independent set, such as {1,z,---}, and no continuity
requirements are placed on ;.

Various special cases of the weighted-residual method differ from each other due
to the choice of the weight function ;. The most commonly used weight functions
are

Galerkin’s method: Vi = @;
Least-squares method: v; = A(yp;)
Collocation method: Y = 6(x — x;)

Here 6(-) denotes the Dirac delta function. The weighted-residual method in the
general form (1.5.16b) (with ¢; # ¢;) is known as the Petrov-Galerkin method.
Equation (1.5.16b) provides N linearly independent equations for the determination
of the parameters c;. If A is a nonlinear operator, the resulting algebraic equations
will be nonlinear. Whenever A is linear, we have

N N
A (Z cjp; + 990) =Y ¢jA(ps) + Aleo) (1.5.18)
j=1 j=1
and Eq. (1.5.16b) becomes
N
; UQ wiA(SOj)dx} cj — /Q%' [f — Apo) dx = 0
N
> Gijej—qi=0,i=1,2,--- N (1.5.19a)
j=1
where
Gy = [ widlpdx, o= [ wilf- Ao ax  (15.190)

Note that G;; is not symmetric in general, even when ¢; = ¢; (Galerkin’s method).
It is symmetric when A is a linear operator and ; = A(yp;) (the least-squares
method).

It should be noted that in most problems of interest in solid mechanics, the
operator A is of the form that permits the use of integration by parts to transfer
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half of the differentiation to the weight functions v; and include natural boundary
conditions in the integral statement (see Reddy [6]). For problems for which there
exists a quadratic functional or a virtual work statement, the Ritz method is most
suitable. The least-squares method is applicable to all types operators A but requires
higher-order differentiability of ;.

The Galerkin Method

The Galerkin method is a special case of the Petrov—Galerkin method in which
the coordinate functions and the weighted functions are the same (¢; = ;). It
constitutes a generalization of the Ritz method. When the governing equation has
even order of highest derivative, it is possible to construct a weak form of the
equation, and use the Ritz method. If the Galerkin method is used in such cases,
it would involve the use of higher-order coordinate functions and the solution of
unsymmetric equations.
The Ritz and Galerkin methods yield the same set of algebraic equations for the
following two cases:
1. The specified boundary conditions of the problem are all essential type, and
therefore the requirements on ; in both methods are the same.
2. The problem has both essential and natural boundary conditions, but the
coordinate functions used in the Galerkin method are also used in the Ritz
method.

Least-Squares Method

The least-squares method is a variational method in which the integral of the square
of the residual in the approximation of a given differential equation is minimized
with respect to the parameters in the approximation:

min I(c;) z/ IR (ci 05, F)I dx (1.5.20a)

Q

or aR
/ 2RN(cj,<pj,f)a—cN dx =0, i=1,2,-- N (1.5.20b)

Q 7

where Ry is the residual defined in Eq. (1.5.16a). Equation (1.5.20) provides N
algebraic equations for the constants c;.

First we note that the least-squares method is a special case of the weighted-
residual method for the weight function, v; = 2(8Rx/9c;) [compare Egs. (1.5.16b)
and (1.5.20b)]. Therefore, the coordinate functions ¢; should satisfy the same
conditions as in the case of the weighted-residual method. Next, if the operator
A in the governing equation is linear, the weight function ; becomes

_ ORy

(4 ae;

= A(y;) (1.5.21)

Then from Eq. (1.5.20) we have

N
) [ /Q Am)A(%)dx] ¢ — /Q [A(gi) f ~ Algi) Alo)] dx =0

Jj=1
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or N
j=1
where
Ly = /Q Alpi)Alpj) dx, hi = /Q Ali) [f — Alpo)] dx (1.5.22b)

Note that the coefficient matrix is symmetric. The least-squares method requires
higher-order coordinate functions than the Ritz method because the coefficient
matrix L;; involves the same operator as in the original differential equation and no
trading of differentiation can be achieved. For first-order differential equations the
least-squares method yields a symmetric coefficient matrix, whereas the Ritz and
Galerkin methods yield unsymmetric coefficient matrices. Note that in the least-
squares method the boundary conditions can also be included in the functional. For
example, consider Eq. (1.5.14). The least-squares functional is given by

I(u) = % {/Q[Am) —f]2d(2+/rl B (u) —ﬁ]zdFJr/Fz [Ba(w) —g]er} (1.5.23)

Collocation Method

In the collocation method, we require the residual to vanish at a selected number of
points x* in the domain:

Ry(x', {c}, {6}, f) =0, (i=1,2,---,N) (1.5.24a)

which can be written, with the help of the Dirac delta function, as

A S(x —x"YRy(x,{c}, {¢}. f) dx =0, (i=1,2,---,N) (1.5.24b)
Thus, the collocation method is a special case of the weighted-residual method
(1.5.16b) with 1;(x) = §(x — x'). In the collocation method, one must choose as
many collocation points as there are undetermined parameters. In general, these
points should be distributed uniformly in the domain. Otherwise, ill-conditioned
equations among c; may result.

Eigenvalue and Time-Dependent Problems

It should be noted that if the problem at hand is an eigenvalue problem or a
time-dependent problem, the operator equation in Eq. (1.5.14) takes the following
alternative forms:

Eigenvalue problem

A(u) — AC(u) =0 (1.5.25)

Time-dependent problem
Ai(u) + A(u) = f(z,t) (1.5.26)
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In Eq. (1.5.25), parameter A is called the eigenvalue, which is to be determined
along with the eigenvector u(x), and A and C are spatial differential operators. An
example of the equation is provided by the buckling of a beam-column

d? d?u d%u
_— ——— —_— 1. .2
= <Eldw2> +de2 0 (1.5.27)

where u denotes the lateral deflection and P is the axial compressive load. The
problem involves determining the value of P and mode shape u(z) such that the
governing equation and certain end conditions of the beam are satisfied. The
minimum value of P is called the critical buckling load. Comparing Eq. (1.5.27)
with Eq. (1.5.25), we note that

d? d’u d*u

In Eq. (1.5.26) A is a spatial differential operator and Ay is a temporal differential
operator. Examples of Eq. (1.5.26) are provided by the equations governing the axial
motion of a bar: 5 5 5

u u

2 Y EBA—

p ot? Ox ( 09z

where u denotes the axial displacement, p the density, E Young’s modulus, Ag area
of cross section, and f body force per unit length. In this case, we have

) = f(z,1) (1.5.28)

9%u 0 ou
Ay(u) = P A(u) = oz (EA0£>

Application of the weighted-residual method to Eqgs. (1.5.25) and (1.5.26) follows
the same idea, i.e., Eq. (1.5.16b) holds. For additional details and examples, the
reader may consult {6].

Example 1.5.2:

Consider the eigenvalue problem described by the equations

2u du
—— —Au=0, u(0)=0, E—I—u—O atx=1 (1.5.29)

In a weighted-residual method, o; must satisfy not only the condition ¢1(0) = 0 but also the
condition cp;(l) +¢;(1) = 0. The lowest-order function that satisfies the two conditions is

¢1(x) = 3z — 222 (1.5.30)

The one-parameter Galerkin’s solution for the natural frequency can be computed using
1
d2pq 10 4
0= 01/0 Y1 (W + A1 Jdz or (—? + 5/\) c1 =0 (1.5.31)

which gives (for nonzero c;) A = 50/12 = 4.167. If the same function is used for ¢, in the one-
parameter Ritz solution, we obtain the same result as in the one-parameter Galerkin solution.
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For one-parameter collocation method with the collocation point at z = 0.5, we obtain
[£1(0.5) = 1.0 and (d?¢; /dz?) = —4.0]

0= cr01(0.5) l(djﬁl)

which gives A = 4.
The one-parameter least-squares approximation with ¥; = A(p;) gives

L 2 2
o:cl/ L) (d 1 +,\<p1) dz or (—4+ §A) =0 (1.5.33)
0

+ ,\<p1(0.5)] or (=44 X)ep =0 (1.5.32)
z=0.5

dz? dz? 6

and A = 4.8. If we use ¥); = A(p1) — Ag1, we obtain

-1 ’
d? d?
0201/0 ( d.L(“OQI +>\<,01> ( d.’;p; +)\<,91> dx

- (é/\h @/\Hﬁ) & (1.5.34)
5 3
whose roots are 95 1
A2 = 3 + 6\/445 — A =T7.6825, Xy =0.6508 (1.5.35)

Neither root is closer to the exact value of 4.116. This indicates that the least-squares method with
i = A(ps) is perhaps more suitable than ¥; = A(p;) — AC(p;).
Let us consider a two-parameter weighted-residual solution to the problem

Uz(z) = c11(x) + capa(x) (1.5.36)

where ¢1(xz) is given by Eq. (1.5.30). To determine ¢3(z), we begin with a polynomial that is one
degree higher than that used for ¢q:

a(r) = a + bx + cx? + da’
and obtain

02000 =0 — a=0; @h(1)+pa(l)=0 — Qb+3c+4d=00rd:—%b—%c

We can arbitrarily pick the values of b and ¢, except that not both are equal to zero (for obvious
reasons). Thus we have infinite number of possibilities. If we pick b = 0 and ¢ = 4, we have d = —3,
and ¢y becomes

©2(z) = a+ bx + ca? + da® = 422 — 323 (1.5.37a)
On the other hand, if we choose b =1 and ¢ = 2, we have d = —2, and @9 becomes
w2(z) = a+bx + cx? + dad =z + 222 — 227 = o (a) (1.5.37b)

The set {y1, 92} is equivalent to the set {¢1,p2}. Note that

Uz(z) = crp1(x) + capa()
= ¢1(37 — 222) + co(4x2 - 323)
=3¢y + (—2¢y + 4co)x? — 3eqa’
Uz(z) = cr91(z) + c2p2()
=& (37 — 222) + o (x + 222 — 22%)
= (3¢, + &) T + (=26, + 2&3) 2% — 2G>
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Comparing the two relations we can show that
¢1 =c1 —0.5¢c9, & = 1.5co

Hence, either set will yield the same final solution for Ua(z) or .

Using 7 from (1.5.30) and 9 from Eq. (1.5.37a), we compute the residual of the approximation
as

d2U, d? d2
g2 e =-a d;’;l —c2 d;‘;l — A(e1py + capa)

42 e
- ( dfl ,\¢1> + ey <— df; V)\Lp2> (1.5.38)

For the Galerkin method, we set the integral of the weighted-residual to zero and obtain
1 1 2 <p P2 <p
0= / e1(2)R dz =/ p1(z) [ 13 Lo o LA +C2<P2)} dx
0 0 z
= Kyie1 + Kiacg — A(Mycq + Migcs)

1 1
d? d?
0:/ p2(x)R dl':/ p2(z) [—Q d(P21 —c2 d<p21 —Aerpr +02¢2)} dx
0 0 x

= Kojc1 + Kagca — A (Mare1 + Mazcs)

R=-—

In matrix form, we have

[K]{c} — A[M]{c} = {0}

1 d2 ] 1
Kij = — Pi L) d.’,C, M” = PiP; dr
' 0 dz? 0

First, for the choice of functions in Egs. (1.5.30) and (1.5.37a), we have

where

d*er 4 d?py

dz2 7 da?

Evaluating the integrals, we obtain

=8 - 18z

d? qbl 10

K =-— ¢1 d:c—/ 3z — 22°)(4)dx = 3

0

K12=—/ 1

1
Koy = / ¢2d ¢1 dr—/ (422 w31;-’5)(4)61.@:3

Koo = — / q§2d P2 dac—/ (422 - 323)(~8 + 18z)dx = ?i

2
d ¢’22 de = / (3z — 222) (-8 + 18z)dx = %
0

1
My, = ¢1¢>1 de = / (3z — 222)(3z — 22%)dx =
0 0

‘\-HI >

1 1
Mg = / $1po dx = / (8z — 2z2)(4z? — 323)dzx = g = My,
0 JO

S| 1
My = / Papo dz = / (4z2 — 32%)(42? — 323)dx = g
0 0 35

1[50 35] A28 21]\[er ) _JO
1535 38] 35|21 17|/ eaf )0

and
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For nontrivial solution, ¢; # 0 and ¢y # 0, we set the determinant of the coefficient matrix to zero
to obtain the characteristic polynomial
675 — gknL%)\Q =0 or 525-148\+5X2=0 (1.5.39)
which gives
A =4.121, Ay = 25.479 (1.5.40)
Clearly, the value of A\; has improved over that computed using the one-parameter approximation.
The exact value of the second eigenvalue is 24.139.

If we were to use the collocation method, we may select = 1/3 and = = 2/3 as the collocation
points, among other choices. We leave this as an exercise to the reader.

1.6 Summary

In this chapter a review of the linear and nonlinear strain-displacement relations,
equations of motion in terms of stresses and displacements, compatibility conditions
on strains, and linear constitutive equations of elasticity, thermoelasticity and
electroelasticity is presented. Also, an introduction to the principle of virtual
displacements and its special case, the principle of minimum total potential energy,
is also presented. The virtual work principles provide a means for the derivation of
the governing equations of structural systems, provided one can write the internal
and external virtual work expressions for the system. They also yield the natural
boundary conditions and give the form of the essential and natural boundary
conditions. The last feature proves to be very helpful in the derivation of higher-
order plate theories, as will be shown in the sequel. A brief but complete introduction
to the Ritz method and weighted-residual methods (Galerkin, least-squares, and
collocation methods) is also included in this chapter.

The principle of virtual displacements will be used in this book to derive
governing equations of plates according to various theories, and the Ritz and
Galerkin methods will be used to determine solutions of simple beam and plate
problems. The ideas introduced in connection with classical variational methods
are also useful in the study of the finite element method (see Chapter 9).

The single most difficult step in all classical variational methods is the selection
of the coordinate functions. The selection of coordinate functions becomes more
difficult for problems with irregular domains or discontinuous data (i.e., loading
or geometry). Further, the generation of coefficient matrices for the resulting
algebraic equations cannot be automated for a class of problems that differ from
each other only in the geometry of the domain, boundary conditions, or loading.
These limitations of the classical variational methods are overcome by the finite
element method. In the finite element method, the domain is represented as an
assemblage (called mesh) of subdomains, called finite elements, that permit the
construction of the approximation functions required in Ritz and Galerkin methods.
Traditionally, the choice of the approximation functions in the finite element method
is limited to algebraic polynomials. Recent trend in computational mechanics is
to return to traditional variational methods that are meshless and find ways to
construct approximation functions for arbitrary domains [31-36]. The traditional
finite element method is discussed in Chapter 9.
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Problems

1.1 The nine cross-product (or vector product) relations among the basis (&;,és,&3) can be

expressed using the index notation as

€; Xxe; = €ijkCk

where €;;5 is the permutation symbol. Prove the following properties of 6;; and €;;:

(a) Fij65 = Fiy

(b) bijbi; = bui

(¢) €iji€iji =6, (for 4,7,k over a range of 1 to 3)
(d) €644, =0

(e) €ijk = €kij = €jki = —€5ik = —€ikj = —€kji

1.2 Prove the following vector identities using the summation convention and the ¢ — § identity

(1.2.8). In the first three identities A, B, C and D denote vectors:
(a) (AxB)x(CxD)=[A - (CxD)B-[B-(CxD)A
(b) (AxB)- (CxD)=(A-C)(B-D)-(A.-D)(B-C)
(c) (AxB)- [(BxC)x(CxA)=[A-(BxC)?
(d) (AB)T = (B)T(A)T, where A and B are dyads
1.3 Use the integral theorems to establish the following results:
(a) The total vector area of a closed surface is zero.
(b) Show that AV = 42AS (see Figure 1.2.3b).

1.4 Derive the following integral identities:

) 19 (97.1.1 an _ Bwi 3u,~ Buj o Buz
(a)_/nw’ [8_55]- (0xj M aa:iﬂ a0 = /Q da; (axj M azi) dQ_jé,“"”f (axj M

4 2 2 _ 3 2 2 8_(,0
(b)/n(cpvw—VtPVw)dQ—ﬁ[cpan(Vzb) Vwan]dr

8u]-
8.”1,'1;

)dF

where w; and u; are functions of position in §2, and T is the boundary of 2. The summation

convention on repeated subscripts is used.
1.5 If A is an arbitrary vector and ® is an arbitrary second-order tensor, show that
(a) IxA) ®=Ax®, I=unit tensor
(b) (® x A)T = —A x &T

1.6 Write the position of an arbitrary point (z;,z2,z3) in the deformed body (solid lines) in
terms of its coordinates in the undeformed body (broken lines) and compute the nonlinear

Lagrangian strains for the body shown in Figure P1.6.

X9, X5
x2, X3 A ey
A e et
T {eo
b b ;i
- L feo
a %1, X1 a x1,X3
(a) ()

Figure P1.6
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1.7 Write the position of an arbitrary point (z1,z9,23) in the deformed body (solid lines) in
terms of its coordinates in the undeformed body (broken lines) and compute the nonlinear
Lagrangian strains for the body shown in Figure P1.7.

x2,Xp
X3, X, r
A e e
fe—et o
Parallel
b b quadratic
curves
o ol
2 x1, X, a x1,X3
(a) (b)

Figure P1.7

1.8 Compute the axial strain in the line element AB and the shear strain at point O of the
rectangular block shown in Figure P1.8 using the engineering definitions.

%9, Xo x9, X5 e
A A ey
D C &
a a| | OX%5
. NIB
o x:XI A B x1,X4
]
a
(a) (b)

Figure P1.8

1.9 Compute the nonlinear strain components E,; associated with the displacement field

€o

ulzb

€
Xg y ?LQZ—(’XI 5 U3:0
a

where e,, a, and b are constants.

1.10 Consider the uniform deformation of a square of side 2 units initially centered at X = (0, 0).
The deformation is given by the mapping

1 1
I = 1(18+4X1 +6X2), To = Z(l4+6X2)

(a) Sketch the deformed configuration of the body.

(b) Compute the components of the deformation gradient tensor F and its inverse (display
them in matrix form).

¢) Compute the Green’s strain tensor components (display them in matrix form).
p

1.11 Find the linear strains associated with the 2-D displacement field

Px2xy  PL2 (24+v)P 4
Ul = ———— =72 —X
2FET 2FET 6EI 2
PR2(1 +v) vP 9 3 PL? PL3
B LIS S Bl o, s 3 _ I it
v2 Fr (Lm0t oppnn t gprti - gprt T 3gy
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where P, h, v, and EI are constants.

1.12 Find the linear strains associated with the 2-D displacement field (u3 = 0)
U] = —Cpx1To + C1Xo + T3 + €4

uz = o [v (53~ a?) +a3] +eams + e+ co

where cg,cq, -+, cg are constants.
1.13 Use the definition (1.3.11) and the vector form of the displacement field and the del operator

(V) in the cylindrical coordinate system

u = u,&, +ugég +u,&, and V= ér2 —|—ég12 —l—éz2
T

or 90 Oz

to compute the linear strain-displacement relations in the cylindrical coordinate system:

e = 20T _10ur  Oup wp o 10us  ur
T g T T e or r’ T o r
. l@uz Oug _ Ou, ou, = Ou,

=T Y e 2T 5 T 5 T o

1.14 Show that in order to have a valid displacement field corresponding to a given infinitesimal
strain tensor €, it must satisfy the compatibility relation

vV x (V X E)T =0 or €imp€ing€ijmn — 0

where €5, is the permutation symbol [see Eqs. (1.2.5b) and (1.2.7)] and g;; are the
Cartesian components of the strain tensor. Hints: Begin with V x € and use the requirement
Ui 56 = Ui kj-

1.15 Consider the Cartesian components of an infinitesimal strain field for an elastic body [8]:
€31 = €32 = €33 =0
€11 = ALL‘%, €29 = ALE%, 2612 = B$1.’132

where A and B are constants.

(a) Determine the relation between A and B required for there to exist a continuous,
single-valued displacement field that corresponds to this strain field.

(b) Determine the most general form of the corresponding displacement field with the A
and B from Part (a).

(¢) Determine the specific corresponding displacement field that is fixed at the origin so
that u =0 and V x u = 0 when x = 0.

1.16 Use the del operator (V) and the dyadic form of o in the cylindrical coordinate system
(7,0, 2) to express the equations of motion (1.3.26a) in the cylindrical coordinate system:

00,y | 180.g | 00rz | O — Opg 0%,
or +r 08 + 0z + r +f=r0 ot?
80}9 1 80’99 60’92 Org _ 02UQ
or +7‘ o6 + oz +2T +fo=ro Ot?
00, 100, O0.. Ors _ 0%u,
or T ag T as T TP

1.17 The components of a stress dyadic ¢ at a point, referred to the rectangular Cartesian system
(zq,9,x3), are:
12 9 0
[c]=19 -12 0|MPa
0 0 6
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Find the following:
(a) The stress vector acting on a plane perpendicular to the vector 28 — 2&, + &3 passing
through the point. Here &; denote the basis vectors in (1,29, 23) system.

{b) The magnitude of the stress vector and the angle between the stress vector and the
normal to the plane.

(¢) The magnitudes of the normal and tangential components of the stress vector.

(d) Principal stresses.

1.18 The problem of pulling a fiber imbedded in a matrix material can be idcalized (in the interest
of gaining qualitative understanding of the stress distributions at the fiber-matrix interface)
as one of studying the following problem [8]: consider a hollow circular cylinder with outer
radius a, inner radius b, and length L. The outer surface of the hollow cylinder is assumed
to be fixed and its inner surface ideally bonded to a rigid circular cylindrical core of radius

b and length L, as shown in Fig. P1.18. Suppose that an axial force F = Pé, is applied to
the rigid core along its centroidal axis.

(a) Find the axial displacement & of the rigid core by assuming the following displacement
field in the hollow cylinder:

Ur =up =0, wu;=u.(r)
(b) Find the relationship between the applied load P and displacement é of the rigid core.
(c) Determine the work done by the load P.

Here the hollow cylinder represents the matrix around the fiber while the fiber is idealized
as the rigid core.

AR R RN

Figure P1.18

1.19-1.20 Write expressions for the total virtual work done, §W = U + 6§V, for each of the
beam structures shown in Figs. P1.19 and P1.20.

Beam (EILEA)

Figure P1.19



76 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

- 99
9= g =q,(2-%)

.
Ei A, /77@77 +

Figure P1.20

Find the Euler-Lagrange equations and the natural boundary conditions associated with each of the

functionals in Problems 1.21 through 1.25. The dependent variables are listed as the arguments
of the functional. All other variables are not functions of the dependent variables.

1.21

L 2
M) = | ﬁfﬁg)m4m+§w@m—ﬁmm,w@:o
0

1.22
L 2
EI [ d? k
I{wg) :/ {7 ( d::éo) + §w(2) —qwol dr, w(0) =0, we(L)=0
0
1.23
“(BA [duy 1 dwo 2] EI {d?wy\’
H(“O’w‘)):/o 2 [E“Li(%) ] +7<dx2 ) d
— Fowo(L) — Pug(L)
dw()
up(0) = 0, wp(0) =0, %(0) =0
1.24
2 2 2
_ Du 6271)0 D22 62’1,00 az’wo _
H(wo)—/ﬂ 5 <E§_ +T 592 +2Dq4 m quwg | daxdy
Bwo \
wo =0, 5= = 0 on the boundary T
1.25

1 ou A\ 2 ou v\ 2
[(%U)—/Q{§ [(Cuaﬁ-cua—y) +(612% +C223—y)

du  Ov\?
+ c33 (6—;; + 6—;) ] —flu—fgv}dxdy— F2(t1u+t2v)ds

u=gandv=?0 on I'y, I'1 + Ty =T
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1.27

1.28

1.29

1.30

1.31

1.32

1.33

1.34
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Suppose that the total displacements (u,v,w) along the three coordinate axes (z,y,z) in a
laminated beam can be expressed as

u(z, 2) = ug(@) + 26 (x) + 2°u (z) + 2%0: ()
v(z,z) =0
w(z, 2) = wo(x) + 2¢.(x) + 2290, (z) + 230.(z)

where (ug,wp) denote the displacements of a point (z,y,0) along the  and z directions,
respectively, ¢, denotes the rotation of a transverse normal about the y-axis, and
Y, 0z, ¢z, 9., and 6. are functions of z. Construct the total potential energy functional
for the theory. Assume that the beam is subjected to a distributed load g(z) at the top
surface of the beam.

Give the approximation functions ¢; and ¢g required in the (i) Ritz and (ii) weighted-
residual methods to solve the following problems:

(a) A bar fixed at the left end and connected to an axial elastic spring (spring constant,
k) at the right end.

(b) A beam clamped at the left end and simply supported at the right end.

Consider a uniform beam fixed at one end and supported by an elastic spring (spring constant
k) in the vertical direction. Assume that the beam is loaded by uniformly distributed load
go. Determine a one-parameter Ritz solution using algebraic functions.

Use the total potential energy functional in Eq. (1.4.67) to determine a two-parameter Ritz
solution of a simply supported beam subjected a transverse point load Fy at the center. You
may use the symmetry about the center (z = L/2) of the beam to set up the solution.

Determine a two-parameter Galerkin solution of the cantilever beam problem in Example
1.5.1.

Determine a two-parameter collocation solution of the cantilever beam problem in Example
1.5.1. Use collocation points « = L/2 and = = L.

Determine the one-parameter Galerkin solution of the equation

d? x| d2wy
{(2 dz?

x
az? z)—} Thuwo =

that governs a cantilever beam on elastic foundation and subjected to linearly varying load
(from zero at the free end to qq at the fixed end). Take k = L = 1 and qp = 3, and use
algebraic polynomials.

Find the first two eigenvalues associated with the differential equation

—dz—uﬁ/\u 0<z<l; uw0)=0, u(l)+u'(1)=0
sz - ’ ’ - Y -
Use the least-squares method. Use the operator definition to be A = —(d?/dz?) to avoid

increasing the degree of the characteristic polynomial for .

Solve the Poisson equation

—V2u = fy in a unit square, u=0 on the boundary

using the following N-parameter Galerkin approximation

N
Uy = E ci;sinimz sin jmy
i,7=1
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2

Introduction to
Composite Materials

2.1 Basic Concepts and Terminology
2.1.1 Fibers and Matrix

Composite materials are those formed by combining two or more materials on
a macroscopic scale such that they have better engineering properties than the
conventional materials, for example, metals. Some of the properties that can be
improved by forming a composite material are stiffness, strength, weight reduction,
corrosion resistance, thermal properties, fatigue life, and wear resistance. Most man-
made composite materials are made from two materials: a reinforcement material
called fiber and a base material, called matriz material.

Composite materials are commonly formed in three different types: (1) fibrous
composites, which consist of fibers of one material in a matrix material of another; (2)
particulate composites, which are composed of macro size particles of one material
in a matrix of another; and (3) laminated composites, which are made of layers of
different materials, including composites of the first two types. The particles and
matrix in particulate composites can be either metallic or nonmetallic. Thus, there
exist four possible combinations: metallic in nonmetallic, nonmetallic in metallic,
nonmetallic in nonmetallic, and metallic in metallic.

The stiffness and strength of fibrous composites come from fibers which are
stiffer and stronger than the same material in bulk form. Shorter fibers, called
whiskers, exhibit better strength and stiffness properties than long fibers. Whiskers
are about 1 to 10 microns (i.e., micro inches or y in.) in diameter and 10 to 100 times
as long. Fibers may be 5 microns to 0.005 inches. Some forms of graphite fibers are
9 to 10 microns in diameter, and they are handled as a bundle of several thousand
fibers. The matrix material keeps the fibers together, acts as a load-transfer medium
between fibers, and protects fibers from being exposed to the environment. Matrix
materials have their usual bulk-form properties whereas fibers have directionally
dependent properties.

The basic mechanism of load transfer between the matrix and a fiber can be
explained by considering a cylindrical bar of single fiber in a matrix material (see
Figure 2.1.1a). The load transfer between the matrix material and fiber takes place
through shear stress. When the applied load P on the matrix is tensile, shear stress
7 develops on the outer surface of the fiber, and its magnitude decreases from a high
value at the end of the fiber to zero at a distance from the end. The tensile stress o
in the fiber cross section has the opposite trend, starting from zero value at the end
of the fiber to its maximum at a distance from the end. The two stresses together
balance the applied load, P, on the matrix. The distance from the free end to the
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point at which the normal stress attains its maximum and shear stress becomes zero
is known as the characteristic distance. The pure tensile state continues along the
rest of the fiber.

When a compressive load is applied on the matrix, the stresses in the region of
characteristic length are reversed in sign; in the compressive region, i.e., rest of the
fiber length, the fiber tends to buckle, much like a wire subjected to compressive
load. At this stage, the matrix provides a lateral support to reduce the tendency of
the fiber to buckle (Figure 2.1.1b). When a fiber is broken, the load carried by the
fiber is transferred through shear stress to the neighboring two fibers (see Figure
2.1.1c), elevating the fiber axial stress level to a value of 1.50.

Matrix
material

-

|

Characteristic
distance

(a)

Springs representing the lateral
restraint provided by the matrix

2222

9 - (¢}

Figure 2.1.1: Load transfer and stress distributions in a single fiber embedded in
a matrix material and subjected to an axial load.



INTRODUCTION TO COMPOSITE MATERIALS 83

2.1.2 Laminae and Laminates

A lamina or ply is a typical sheet of composite material. It represents a fundamental
building block. A fiber-reinforced lamina consists of many fibers embedded in a
matrix material, which can be a metal like aluminum, or a nonmetal like thermoset
or thermoplastic polymer. Often, coupling (chemical) agents and fillers are added
to improve the bonding between fibers and matrix material and increase toughness.
The fibers can be continuous or discontinuous, woven, unidirectional, bidirectional,
or randomly distributed (see Figure 2.1.2). Unidirectional fiber-reinforced laminae
exhibit the highest strength and modulus in the direction of the fibers, but they
have very low strength and modulus in the direction transverse to the fibers. A poor
bonding between a fiber and matrix results in poor transverse properties and failures
in the form of fiber pull out, fiber breakage, and fiber buckling. Discontinuous
fiber-reinforced composites have lower strength and modulus than continuous fiber-
reinforced composites.

A laminate is a collection of laminae stacked to achieve the desired stiffness and
thickness. For example, unidirectional fiber-reinforced laminae can be stacked so
that the fibers in each lamina are oriented in the same or different directions (see
Figure 2.1.3). The sequence of various orientations of a fiber-reinforced composite
layer in a laminate is termed the lamination scheme or stacking sequence. The layers
are usually bonded together with the same matrix material as that in a lamina. If a
laminate has layers with fibers oriented at 30° or 45°, it can take shear loads. The
lamination scheme and material properties of individual lamina provide an added
flexibility to designers to tailor the stiffness and strength of the laminate to match
the structural stiffness and strength requirements.

:'l""ll"ll,.;""

(b) Bi—directional

VAV AVAV AV
AT AV AV IV A
VAT AV ATAY

WAV AT AV AT.AY
VAV Av AV AV
v, -~

.&’/- ol ookt

(¢) Discontinuous fiber (d) Woven

Figure 2.1.2: Various types of fiber-reinforced composite laminae.



84 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

Figure 2.1.3: A laminate made up of laminae with different fiber orientations.

Laminates made of fiber-reinforced composite materials also have disadvantages.
Because of the mismatch of material properties between layers, the shear stresses
produced between the layers, especially at the edges of a laminate, may cause
delamination. Similarly, because of the mismatch of material properties between
matrix and fiber, fiber debonding may take place. Also, during manufacturing
of laminates, material defects such as interlaminar voids, delamination, incorrect
orientation, damaged fibers, and variation in thickness may be introduced. It is
impossible to eliminate manufacturing defects altogether; therefore, analysis and
design methodologies must account for various mechanisms of failure.

This book is devoted to the theoretical study of laminated structures.
Determination of static, transient, vibration, and buckling characteristics of fiber-
reinforced composite laminates with different lamination schemes, thicknesses,
loads, and boundary conditions constitutes the major objective of the study. The
theoretical concepts and analysis methods presented herein can help structural
engineers in aerospace, civil, and mechanical engineering industries to select suitable
materials and the number and orientations of fiber-reinforced laminae for the best
performance in a particular application.
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In the remaining portion of this chapter, we study the mechanical behavior of a
single lamina, treating it as an orthotropic, linear elastic continuum. The generalized
Hooke’s law is revisited (see Section 1.3.6) for an orthotropic material, the elastic
coefficients of an orthotropic material are expressed in terms of engineering constants
of a lamina, and the fiber-matrix interactions in a unidirectional lamina are
discussed. Transformation of stresses, strains, and elasticity coefficients from the
lamina material coordinates to the problem coordinates are also presented.

2.2 Constitutive Equations of a Lamina
2.2.1 Generalized Hooke’s Law

In this section we study the mechanical behavior of a typical fiber-reinforced
composite lamina, which is the basic building block of a composite laminate. In
formulating the constitutive equations of a lamina we assume that:

(1) alamina is a continuum; i.e., no gaps or empty spaces exist.
(2) alamina behaves as a linear elastic material.

The first assumption amounts to considering the macromechanical behavior of a
lamina. If fiber-matrix debonding and fiber breakage, for example, are to be included
in the formulation of the constitutive equations of a lamina, then we must consider
the micromechanics approach, which treats the constituent materials as continua
and accounts for the mechanical behavior of the constituents and possibly their
interactions. The second assumption implies that the generalized Hooke’s law is
valid. It should be noted that both assumptions can be removed if we were to
develop micromechanical constitutive models for inelastic (e.g., plastic, viscoelastic,
etc.) behavior of a lamina.

Composite materials are inherently heterogeneous from the microscopic point
of view. From the macroscopic point of view, wherein the material properties
of a composite are derived from a weighted average of the constituent materials,
fiber and matrix, composite materials are assumed to be homogeneous. The
following discussion of constitutive equations is independent of whether the material
is homogeneous or not, because the stress-strain relations hold for a typical point in
the body.

The generalized Hooke's law for an anisotropic material under isothermal
conditions is given in contracted notation [see Eq. (1.3.37a,b)] by

g; = Cij5j (2.2.1)

where o;; (0;) are the stress components, &;; (g;) are the strain components, and
Ci; are the material coefficients, all referred to an orthogonal Cartesian coordinate
system (z1,%2,z3). In general, there are 21 independent elastic constants for
the most general hyperelastic material as discussed in detail in Section 1.3.6.
When materials possess one or more planes of material symmetry, the number
of independent elastic coefficients can be reduced. For materials with one plane
of material symmetry, called monoclinic materials, there are only 13 independent
parameters, and for materials with three mutually orthogonal planes of symmetry,
called orthotropic materials, the number of material parameters is reduced to 9 in
three-dimensional cases.
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2.2.2 Characterization of a Unidirectional Lamina

A unidirectional fiber-reinforced lamina is treated as an orthotropic material whose
material symmetry planes are parallel and transverse to the fiber direction. The
material coordinate axis z; is taken to be parallel to the fiber, the z2-axis transverse
to the fiber direction in the plane of the lamina, and the z3-axis is perpendicular
to the plane of the lamina (see Figure 2.2.1). The orthotropic material properties
of a lamina are obtained either by the theoretical approach or through suitable
laboratory tests.

The theoretical approach, called a micromechanics approach, used to determine
the engineering constants of a continuous fiber-reinforced composite material is
based on the following assumptions:

1. Perfect bonding exists between fibers and matrix.
Fibers are parallel, and uniformly distributed throughout.
The matrix is free of voids or microcracks and initially in a stress-free state.

Both fibers and matrix are isotropic and obey Hooke’s law.

B

The applied loads are either parallel or perpendicular to the fiber direction.

The moduli and Poisson’s ratio of a fiber-reinforced material can be expressed in
terms of the moduli, Poisson’s ratios, and volume fractions of the constituents. To
this end, let

E¢ = modulus of the fiber; E,, = modulus of the matrix
vs = Poisson’s ratio of the fiber; vy, = Poisson’s ratio of the matrix
vy = fiber volume fraction; Uy, = matrix volume fraction

Then it can be shown (see Problems 2.1 and 2.2) that the lamina engineering
constants are given by

E\ = Esvs + Epvn, V12 = VfUf + UmUnm
_ EfEm GG
Ef’()m + Emvf ’

E, 12 (2.2.2)

B G pvm + Gy

Figure 2.2.1: A unidirectional fiber-reinforced composite layer with the material
coordinate system (z1,x2,x3) (with the x;-axis oriented along the
fiber direction).
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where Fjp is the longitudinal modulus, F» is transverse modulus, 12 is the major
Poisson’s ratio, and (12 is the shear modulus, and

Ej Enm
_ o tm 2.2.3
Gy 21 +vp) Cm 21 + Um) (2.23)

Other micromechanics approaches use elasticity, as opposed to mechanics of
materials approaches. Interested readers may consult Chapter 3 of Jones [3] and
the references given there (also see [18-20]).

The engineering parameters Fy, Fo, F3, G2, Gi3, Gog, V12, 13, and o3 of an
orthotropic material can be determined experimentally using an appropriate test
specimen made up of the material. At least four tests are required to determine
the four constants E1, E9, F3 and (G12 and the longitudinal strength X, transverse
strength Y and shear strength S (and additional tests to determine G13 and Gag).
These are shown schematically in Figure 2.2.2a-d.

For example, Fy, v12 and X of a fiber-reinforced material are measured using a
uniaxial test shown in Figure 2.2.2a. The specimen consists of several layers of the
material with fibers in each layer being aligned with the longitudinal direction.
The specimen is then loaded along the longitudinal direction and strains along
and perpendicular to the fiber directions are measured using strain gauges (see
Figure 2.2.2e). By measuring the applied load P, the cross-sectional area A, the
longitudinal strain ey = £; and transverse strain €; = €5, we can calculate

Ef:El:AL;la Vét:l/lQ:—Z—j, X:p;;“
sz sz
~ = T
(a) (b)
Xg

(d)

strain gages

Figure 2.2.2: Tests required for the mechanical characterization of a laminate.
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where Py is the ultimate load (say, load at which the material reaches its elastic
limit). Similarly, Es, vo; and Y can be determined from the test shown in Figure

2.2.2b: p p
€2 ult
Ei=FE = — , = = ——, Y = ——~
t 1 Ae, Vg = V12 1 A
The shear modulus is determined from the test shown in Figure 2.2.2¢ by measuring
E, = P/Ae, Ey, E; and vy, and using the transformation equation (4a) of Problem

2.3:
1_1(i+i+ 1 21/tg)
Ey 4\E, E Gu F
wherein Gy, is the only unknown. The shear strength S is determined from the test

shown in Figure 2.2.2d:
Tult

27r2h
where 7' is the applied torque, and r and h are the mean radius and thickness of

the tube, respectively. The values of the engineering constants for several materials
are presented in Tables 2.2.1 and 2.2.2.

S =Ty, =

Table 2.2.1: Values of the engineering constants for several materials*.

Materialf Eq Ey Gio Gi3 Gog Vig
Aluminum 10.6 10.6 3.38 3.38 3.38 0.33
Copper 18.0 18.0 6.39 6.39 6.39 0.33
Steel 30.0 30.0 11.24 11.24 11.24 0.29
Gr.-Ep (AS) 20.0 1.3 1.03 1.03 0.90 0.30
Gr.-Ep (T) 19.0 1.5 1.00 0.90 0.90 0.22
Gl.-Ep (1) 7.8 2.6 1.30 1.30 0.50 0.25
GL-Ep (2) 5.6 1.2 0.60 0.60 0.50 0.26
Br.-Ep 30.0 3.0 1.00 1.00 0.60 0.30

*Moduli are in msi = million psi; 1 psi = 6,894.76 N/m?2; Pa = N/m?; kPa = 103 Pa; MPa =
106 Pa; GPa = 109 Pa.

t The following abbreviations are used for various material systems: Gr.-Ep (AS) = graphite-epoxy
(AS/3501); Gr.-Ep (T) = graphite-epoxy (T300/934); Gl.-Ep = glass-epoxy; Br.-Ep = boron-epoxy.

Table 2.2.2: Values of additional engineering constants for the materials listed
in Table 2.2.1%*.

Material E3 V13 Vo3 aq Qs

Aluminum 10.6 0.33 0.33 13.1 13.1
Copper 18.0 0.33 0.33 18.0 18.0
Steel 30.0 0.29 0.29 10.0 10.0
Gr.-Ep (AS) 1.3 0.30 0.49 1.0 30.0
Gr.-Ep (T) 1.5 0.22 0.49 -0.167 15.6
Gl-Ep (1) 2.6 0.25 0.34 3.5 114
Gl.-Ep (2) 1.3 0.26 0.34 4.8 12.3
Br.-Ep 3.0 0.25 0.25 2.5 8.0

* Units of E3 are msi, and the units of @; and ay are 10~% in./in./°F.
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2.3 Transformation of Stresses and Strains

2.3.1 Coordinate Transformations

The constitutive relations (1.3.44) and (1.3.45) for an orthotropic material were
written in terms of the stress and strain components that are referred to a coordinate
system that coincides with the principal material coordinate system. The coordinate
system used in the problem formulation, in general, does not coincide with the
principal material coordinate system. Further, composite laminates have several
layers, each with different orientation of their material coordinates with respect to
the laminate coordinates. Thus, there is a need to establish transformation relations
among stresses and strains in one coordinate system to the corresponding quantities
in another coordinate system. These relations can be used to transform constitutive
equations from the material coordinates of each layer to the coordinates used in the
problem description.

In forming flat laminates, fiber-reinforced laminae are stacked with their z;xo-
planes parallel but each having its own fiber direction. If the z-coordinate of the
problem is taken along the laminate thickness, the z3-coordinate of each lamina
we will always coincide with the z-coordinate of the problem. Thus we have a
special type of coordinate transformation between the material coordinates and the
coordinates used in the problem description.

Let (x,y, z) denote the coordinate system used to write the governing equations
of a laminate, and let (z1,z2,z3) be the principal material coordinates of a typical
layer in the laminate such that zs-axis is parallel to the z-axis (i.e., the zjza-
plane and the zy-plane are parallel) and the z;-axis is oriented at an angle of +6
counterclockwise (when looking down on the lamina) from the z-axis (see Figure
2.3.1). The coordinates of a material point in the two coordinate systems are related
as follows (z = x3):

1 cosf sinf O T T
Ty p = | —sinf cosf 0|y ,=[L]Sy (2.3.1)
3 0 0 1 z z
The inverse of Eq. (2.3.1) is
x cos) —sinf 0 1 1
y ¢ =|sin® cos® 0[S xyp=I[LT{ x (2.3.2)
z 0 0 1 3 T3

Note that the inverse of [L] is equal to its transpose: [L]™! = [L]T.
The transformation relations (2.3.1) and (2.3.2) are also valid for the unit vectors
associated with the two coordinate systems:

&b =[L]{ & ¢, {& r=[0]"{é (2.3.3)
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X2

Figure 2.3.1: A lamina with material and problem coordinate systems.

2.3.2 Transformation of Stress Components

Next we consider the relationship between the components of stress in (z,y, z)
and (z1,22,x3) coordinate systems. Let o denote the stress tensor, which
has components 011,012, -+,033 in the material (m) coordinates (z1,z2,z3) and
components Ogz, 0gy, "+, 02, in the problem (p) coordinates (z,y,z). Since stress
tensor is a second-order tensor, it transforms according to the formula

(Okg)m = Lrilqj(0ij)p,  (Okq)p = Cikliq(Tij)m (2.3.4)

where (O‘ij)m are the components of the stress tensor ¢ in the material coordinates
(x1,x2,x3), whereas (o;;), are the components of the same stress tensor ¢ in the
problem coordinates (z,, z), and #;; are the direction cosines defined by

Lij = (&)m - (&)p

and (&;)m and (&;), are the orthonormal basis vectors in the material and problem
coordinate systems, respectively. Note that the tensor transformation equations
(2.3.4) hold among tensor components only. Equations (2.3.4) can be expressed in
matrix forms. First, we introduce the 3 x 3 arrays of the stress components in the
two coordinate systems:

Ozx Ozy Ozz 011 012 013
[Olp = |0zy Oy Oyz|, [Olm=|012 02 o093 (2.3.5)
Ozz Oyz Ozz 013 023 033

Then Eqs. (2.3.4) can be expressed in matrix form as
[o]m = [Lllolp[L]",  [o]p = [L]"[o]m(L] (2.3.6a,b)

where [L] is the 3 x 3 matrix of direction cosines 4;;.
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Equation (2.3.6a) provides a means to convert stress components referred to the
problem (laminate) coordinate system to those referred to the material (lamina)
coordinate system, while Eq. (2.3.6b) allows computation of stress components
referred to the problem coordinates in terms of stress components referred to
the material coordinates. Equations (2.3.6a,b) hold for any general coordinate
transformation, and hence it holds for the special transformation in Egs. (2.3.1).

Carrying out the matrix multiplications in Eq. (2.3.6b), with [L] defined by
Eq. (2.3.1), and rearranging the equations in terms of the single-subscript stress
components in (z,y, z) and (1, z2,z3) coordinate systems, we obtain

Oz cos? f sin? @ 0 0 0 —sin20 7 (o1

Oyy sin? @ cos? 6 0 0 0 sin 20 09

022 | _ 0 0 1 0 0 0 03

oy [ 0 0 0 cos@ sind 0 04

O 0 0 0 —sinf cosd 0 o5

Ozy sinfcosf —sinfcosf O 0 0 cos?f—sin?0] \og
(2.3.7)

or

{0}y = [THo}m (23.8)

The inverse relationship between {o},, and {o},, Eq. (2.3.6a), is given by

o1 cos® 6 sin® @ 0 0 0 sin 26 Oy

o sin? ¢ cos60 0 0 0 — sin 20 Tyy

o3 | _ 0 0 1 0 0 0 o

os [ 0 0 0 cosf —sinf 0 Oy2

o5 0 0 0 sinf  cosf 0 Ozz

ol —sinfcosf sinfcosfd 0 0 0 cos? 6 — sin? @ Oy
(2.3.9)

or

{o}m = [Rl{c}p (2.3.10)

The result in Eq. (2.3.9) can also be obtained from Eq. (2.3.7) by replacing 6
with —8.

Example 2.3.1:

The stress transformation equations (2.3.9) can be derived directly by considering the equilibrium of
an element of the lamina (see Figure 2.3.2). Consider a wedge clement whose slant face is parallel
to the fibers. Suppose that the thickness of the lamina is A, and the length of the slant face is
AS. Then the horizontal and vertical sides of the wedges are of lengths AScosf and ASsiné,
respectively. The forces acting on any face of the wedge are obtained by multiplying the stresses
acting on the face with the area of the surface.

Suppose that we wish to determine o429 in terms of (04, 0yy, 02y). Then by summing all forces
acting on the wedge along coordinate zo (i.e., equilibrium of forces along z5) we obtain

029AS h ~ (0,2 ASsin@ h)sin® + (6,,ASsin@ h)cos@ — (o,,AS cos8 h)cosf
+ (0uyAScosf h)sin® =0

or
099 = Oupe sin® 0 + Oy OS2 6 — 20,y cosfsinf
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Xo

Figure 2.3.2: A free-body diagram of a wedge element with stress components.

Similarly, summing the forces along z; coordinate, we obtain

012AS h+ (022 ASsin@ h)cosb + (0zyASsin® h)sinf — (o, AS cosf h)siné
— (0eyAScosf h)cosf =0

or
012 = —0zz 8in0cosf + oyy cosfsinf + om,(cos2 6 — sin? 9)

Clearly, the expressions for o9y and 079 derived here are the same as those for o; and og,
respectively, in Eq. (2.3.9). The stress component o1 can be determined in terms of (0z¢, Oyy, Ozy)
by considering a wedge element whose slant face is perpendicular to the fibers (see Figure 2.3.2).
By summing forces along the 2- and y-coordinates we can obtain stresses 0z and ozy in terms of

(011,022,012).

Example 2.3.2:

Consider a thin (i.e., the thickness is about one-tenth of the radius), filament-wound, closed
cylindrical pressure vessel (see Figure 2.3.3). The vessel is of 63.5 cm (25 in.) internal diameter and
pressurized to 1.379 MPa (200 psi). We wish to determine the shear and normal forces per unit
length of filament winding. Assume a filament winding angle of 8 = 53.125° from the longitudinal
axis of the pressure vessel, and use the following material properties, typical of graphite-epoxy
material: F; = 140 MPa (20.3 Msi), E; = 10 MPa (1.45 Msi), G = 7 MPa (1.02 Msi), and
v12 = 0.3. Note that MPa means mega (10%) Pascal (Pa) and Pa = N/m? (1 psi = 6,894.76 Pa).
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YA /

6 -53.125°

» X

Figure 2.3.3: A filament-wound cylindrical pressure vessel.

The equations of equilibrium of forces in a structure do not depend on the material properties.
Hence, equations derived for the longitudinal (0..) and circumferential (oy,) stresses in a thin-
walled cylindrical pressure vessel are valid here:

pD; pD;
= — (o2 = —_-—
7o = qh 0 T T 3h

where p is internal pressure, D; is internal diameter, and h is thickness of the pressure vessel. We

obtain
_1.379x0.635 _ 0.2189

. =
e 4h h
The shear stress o,y is zero.

MPa, oy = 1.379;;0.635 _ 04}2:»78 MPa

Next we determine the shear stress along the fiber and the normal stress in the fiber using the
transformation equations (2.3.9) or from the equations derived in Example 2.3.1. We obtain

_0.2189 0.4378

ol - (0.6)%2 + T(0,8)2 = 93;;’9_0 MPa
L= 0.2;89 08)° + 0.4:78 (0.6)% = 0.2:77 MPa
0.4378  0.2189 0.1051
2-( P )x0.6><0.8A 5 MPa

Thus the normal and shear forces per unit length along the fiber-matrix interface are Fyo = 0.2977
MN and Fyp = 0.1051 MN, whereas the force per unit length in the fiber direction is Fy; = 0.359
MN.

2.3.3 Transformation of Strain Components

Since strains are also second-order tensor quantities, transformation equations
derived for stresses, Egs. (2.3.6a,b), are also valid for tensor components of strains:

le)m = [L][e]p[L]T (2.3.11a)
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lelp = (L] [elm[L] (2.3.11b)

Therefore, Egs. (2.3.7) and (2.3.9) are valid for strains when the stress components
are replaced with tensor components of strains from the two coordinate systems.
However, the single-column formats in Eqgs. (2.3.7) and (2.3.9) for stresses are not
valid for single-column formats of strains because of the definition:

2812 = &g, 2813 = &5, 2623 = &4 (2.3.12)

Slight modification of the results in Egs. (2.3.7) and (2.3.9) will yield the proper
relations for the engineering components of strains. We have

Exa cos?f sin?6 0 0 0 —sinfcosf €1

Eyy sin?@  cos?f 0 0 0 sin @ cos 8 €9

€22 | _ 0 0 1 0 0 0 €3

2ey, [ 0 0 0 cosf siné 0 €4 (2.3.13)
222 0 0 0 —sinf cosf 0 €5

24y sin20 —sin2 0 0 0 cos?0—sin?0] Leg

The inverse relation is given by

€1 cos?f  sin?6 0 0 0 sin# cos 8 Exa
) sin?f  cos’6 0O 0 0 —sinfcosf Eyy
ez | _ 0 0 1 0 0 0 €1z
ea [ 0 0 0 cosf —sinf 0 2ey; (2:3.14)
€5 0 0 0 sinf cosf 0 2€,
€6 —sin20 sin20 0 0 0  cos?0—sin?6] | 2e,,

We note that the transformation matrix [T] in Eq. (2.3.8) is the transpose of the
square matrix in Eq. (2.3.14). Similarly, the transformation matrix in Eq. (2.3.13)
is the transpose of the matrix [R] in Eq. (2.3.10):

{ehp = [BI{edm,  {e}m = [T {e}p (2.3.15)

Example 2.3.3:

A square lamina of thickness h and planar dimension a is made of glass-epoxy material (F; =
40 x 103 MPa, E5 = 10 x 103 MPa, G5 = 3.5 x 103 MPa, and v3 = 0.25). When the lamina is
deformed as shown in Figure 2.3.4, we wish to determine the longitudinal strain in the fiber and
shear strain at the center of the lamina. The fibers are oriented at 45° to the horizontal.

From Eq. (2.3.14), the only nonzero strain is €5y = 0.01. Hence, longitudinal strain in the fiber
is

€1 =¢€11 = O+O—|—2{;‘Ty =0.01 CIH/C]’I]

1 1
V22
and the shear strain is given by

eg =212 =0+ 0+ 2e4y (%7%):0.0
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Figure 2.3.4: Deformation of a fiber-reinforced lamina.

Example 2.3.4:

Suppose that the thickness of the cylindrical pressure vessel of Example 2.3.2 is A = 2 cm. Then
the stress field in the material coordinates becomes

o11 = 17.95 MPa, 09, = 14.885 MPa, 05 = 5.255 MPa

The strains in the material coordinates can be calculated using the strain-stress relations (1.3.47).
We have (va1/Ey = v12/Eq)

. Ell _ a092V12 17.95 _ 14.885 x 0.3

€11 = E, 2 20 110 =0.0963 m/m

g11V12 J9292 17.95x 0.3 14.885
=l re gy Cde — =14
£22 B B o T 5 m/m

J12 5.255

€12 = %Gy Tx7 = 0.3757

The strains in the (x,y) coordinates can be computed using Eq. (2.3.13):

Eza = 0.0963 x (0.6)% + 1.45 x (0.8)% — 0.3757 x 0.6 x 0.8 = 0.782 m/m
Eyy = 0.0963 x (0.8)% +1.45 x (0.6)2 + 0.3757 x 0.6 x 0.8 = 0.764 m/m
oy = 2(0.0963 — 1.45) x (0.6) x 0.8 4 0.3757[(0.6)% — (0.8)?] = —1.405
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2.3.4 Transformation of Material Coefficients

In formulating the problem of a laminated structure, we must write the governing
equations, with all their variables and coefficients, in the problem coordinates. In
the previous section we discussed transformation of coordinates (which are also valid
for displacements and forces), stresses, and strains. The only remaining quantities
that need to be transformed from the material coordinate system to the problem
coordinates are the material stiffnesses C;; and thermal coefficients of expansion a;.

The material stiffnesses Cj; in their original form [see Eq. (1.3.35)] are the
components of a fourth-order tensor. Hence, the tensor transformation law holds.
The fourth-order elasticity tensor components C_'ijkg in the problem coordinates
can be related to the components Cpnpe in the material coordinates by the tensor
transformation law

Cijké = aimajnakpaﬁqcmnpq

However, the above equation involves five matrix multiplications with four-subscript
material coefficients. Alternatively, the same result can be obtained by using
the stress-strain and strain-stress relations (1.3.38a,b), and the stress and strain
transformation equations in (2.3.8) and (2.3.15):

{o}p = [TN{o}m = [TN[Clm{e}m = [TN[ClmlT] {e}p = [Clp{e}s (2.3.16)

where [C]y, is the 6 x 6 material stiffness matrix [see Eq. (1.3.38a)] in the material
coordinates and [T is the transformation matrix defined in Eq. (2.3.8). Thus the
transformed material stiffness matrix is given by ([C] = [C], and [C] = [C]n)

€] = [)[CyT]* (2.3.17)

Equation (2.3.17) is valid for general constitutive matrix [C] (i.e., for orthotropic
as well as anisotropic). Of course, [T] is the matrix based on the particular
transformation (2.3.1) (rotation about a transverse normal to the lamina).

Carrying out the matrix multiplications in (2.3.17) for the general anisotropic
case, we obtain

C11 = Cqp cos* @ — 4C1g cos® @sin 6 + 2(Ch2 + 2Cgp) cos? @ sin” 0
— 4056 cos fsin® 6 + Cog sin® @

Cio = Ciacos* 0 + 2(C16 — Cos) cos® Osinf + (C11 + Caa — 4Cip) cos? §sin’ 0
+2(C36 — C16) cos @sin® 6 + Crosin? @

C13 = Ci3 cos? 6 — 2036 cos 0 sin @ + Cag sin® 6

Cig = Cigcos? 6 + (C11 — Chr2 — 2Csg) cos® @sin § + 3(Cog — C1) cos? Asin’ 6
+ (2Cs6 + C12 — Ca2) cos b sin® 6 — Cag sin* 6

Cas = Cag cos® 0 + 4C5 cos® #sin 6 + 2(Ch2 + 2Ceg) cos? fsin? 0
+ 4C16 cosOsin® @ + Cy; sin @

Ca3 = Caz cos? 0 + 2C56 cos 0 sin 0 + Cy3sin? 6
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Cos = Cagcos O + (Cry — Cag + 2Ce6) cos® Osin 0 + 3(Cig — Cog) cos® fsin? @
+ (C11 — C12 — 2Cg) cos fsin® § — Cigsin? @
Cs3 = Ca
C36 = (C13 — Ca3) cos Osin § + Cyg(cos  — sin? 0)
Coo = 2(C1 — Cag) cos® fsin 6 + (C11 4+ Cag — 2C19 — 2C%6) cos? fsin? 0
+2(Ca6 — Chg) cos b sin® 6 + 6’66(6034 6 + sin* 0)
Ciy = Cugcos® 0 + Csg sin? 6 + 2C,5 cos O sin 6
Cys = Cus(cos® § — sin? §) + (Css — Cy) cos Osin @
Css = Cys cos® 0 + Cyysin? 6 — 2C45 cos B sin 8
Cra = Cryc08® 0 + (C15 — 2C46) cos? O sin 6 + (Caq — 2Csg) cos Bsin® § + Cos sin® @
Ci5 = Ci5cos® 0 — (Crq + 2C's6) cos? @ sin 0 + (Cas + 2Cy6) cos @sin?  — Cyq sin® 0
Cag = Cyycos® 6 + (Cas + 2Cy6) cos® Osin b + (C14 + 2Cs6) cos sin? 6 + Cy5 sin® 0
Cas = Casc08° 0 + (2056 — Ca4) cos® fsin 6 + (C15 — 2Cy) cosfsin® ) — Cpysin® 0
Cs4 = C34 cos0 + Css sin 6
Css5 = Cs5c080 — Cyqsin 0
Cap = Cyg cos® 0 + (Cs6 4 Cra — Cay) cos? 0sin 0 + (C15 — Ca5 — Cyg) cos fsin’ 6

— Cs6sin® 0
Cse = Crg cos® 6 + (C15 — O — Cyg) cos® Osin b + (Caq — C14 — Csg) cos O sin’ 6
+ Cygsin® 6 (2.3.18)

When [C] is the matrix corresponding to an orthotropic material, it has the form
shown in Eq. (1.3.44); then Eq. (2.3.16) has the explicit form [cf. Eq. (1.3.42) for

monoclinic materials]

Ozz Ciu Cp Ciz3 0 0 Cig €z
Oyy Cn Co Cypy 0 0 Cy Eyy
0z { _|Cs1 Cs C33 0 0 36 Ezz
Oyz N 0 0 0 C_;'44 Q45 0 2€yz (2'3.19)
Trz _0 _0 _0 C45 055 70 26:,;2
Oy Cig Cos C36 0 0 Ceed \2eyy

where the Cj; are the transformed elastic coeficients referred to the (x,y, 2)
coordinate system, which are related to the elastic coefficients in the material
coordinates Cij by Eq. (2.3.18). Note that Cig4, Cis, Cig, Co4, Cos, Cog, Cay,
Css, C36, Cus, Cys, and Csg are zero for an orthotropic material.

In order to relate compliance coefficients in the two coordinate systems, we use
the strain transformation equation in Eq. (2.3.15):

{e}p = BRI {e}m = [R]T (IShm{o}m) = [RI"[S]m ([R){o},)
= [S],{o}, (2.3.20a)

Thus the compliance coefficients S;; referred to the (z,y, 2) system are related to the
compliance coefficients S;; in the material coordinates by ([S], = [S] and [S],, = [S])

[S] = [R]T[S][R] (2.3.20b)
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Expanded form of the relations in Eq. (2.3.20b) is

S11 = Sy1 cos? 6 — 2816 cos® Osin 6 + (2512 + Ses) cos® fsin’ 9
— 2856 cos @ sin® 8 + S0 sin? 6
Shg = Siocost 0 + (S16 — Sa6) cos® @sin @ + (S11 + So2 — Ses) cos? fsin? 0
+ (826 — Si6) cosfsin® 0 + Sz sin® @
S13 = Si3cos? 0 — Sz cos@sinh + Saz sin® 0
§16 = S COS4 0+ (2511 — 28519 — 566) COS3 fsinf + 3(826 — 816) (3082 0 Sin2 0
+ (S + 2512 — 2522) cosd sin® @ — Spg sin? 6
Soo = Sag cos? 6 + 2896 cos® Osin 6 + (2512 + See) cos® @ sin? 0
+ 2816 cos Osin® 6 + Sy sin @
So3 = So3 08 6 + S3cosfsind + Sy3 sin? 6
Sog = Sog cos? 6 + (2512 — 25922 + Se6) cos® @sin @ + 3(S16 — Sa6) cos® @ sin® 6
+ (2811 — 2812 — See) cos fsin® § — Sygsin® 0
Saz = Ss3
S36 = 2(S13 — Sa3) cosfsinf + 536(C082 6 — sin® 0)
See = See(cos® 8 — sin® )2 + 4(S16 — Sap)(cos? 6 — sin? §) cos O sin 6
+ 4(S11 + S22 — 2512) cos? fsin? 6
Sia = Saa cos? 0 + 2545 cos B sin 8 + Sis sin’ 6
Su5 = 545(0082 6 — sin? 6) + (Sss — Saa) cos @ sin b
Sss = Ss5 0082 6 + Sassin? @ — 2545 cosfsin f
Si4 = S1acos® 0+ (Si5 — Sag) cos? 0sin 6 + (Sa4 — Ss6) cos fsin® 0 + Sy sin® 6
S5 = S15cos® 0 — (S14 + Sse) cos? fsin 6 + (S25 + Sa6) cosfsin? § — Soysin’ 6
So4 = Sogcos® O + (Sa5 + Sap) cos® Osin + (S14 + Sse) cos@sin? 0 + Sy5sin® @
Sos = Sas cos® 0 + (—Saq + Ss6) cos? §sin@ + (S15 — Sie) cosfsin? @ — Sy4sin® 6
S34 = S34 cos ) + S35 sin 6
535 = 535 cosf — 534 sin @
Sie = (2514 — 2524 + Ss6) cos® Osinf + (2515 — 2525 — Sag) cos fsin® @
+ Syg cos® 0 — Ssg sin3 6
Ss6 = (2515 — 2525 — Sag) cos? 0sin @ 4 (2824 — 2514 — Ss6) cos 6 sin? 6
+ Ssg cos® 0 + Sugsin® 0 (2.3.21)

For an orthotropic material, the compliance matrix [S] has the form shown in
Eq. (1.3.45), and the strain-stress relations in the problem coordinates are given by

Exx Siu Sz Si3 0 0 Si6] (0ax
Eyy S S Sz 0 0 S| | oy
€22 | _ | S31 S Sz 0 0 Sse| ) oz
2e. [ | O 0 0 Sy S5 0 Oyz (2.3.22)
26952 0 0 0 545 S55 0 Ogxz

2eqy Sig S S O 0 Ses Oy
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Note that Eq. (2.3.22) relates stresses to strains in the problem coordinates while
Eq. (1.3.45) relates the stresses to strains in the material coordinates.

The thermal coefficients «;; are the components of a second-order tensor, and
therefore they transform like the strain components (because ag = 212, and so on).
In the context of the present study, only nonzero components of thermal expansion
tensor are )] = a1, a2 = ag, and agz = ag. All other components are zero. Hence,
following Eq. (2.3.7), we can write the transformation relations (ag = aja = 0,
as = a3 =0, g = a3 = 0)

Qzz = @11 €082 0 + rpg sin’ 6
Qyy = Q11 sin? @ + agy cos® 0
2amy =2 (0411 — (!22) sin 6 cos 8
20z; =0, 20y: =0, 0. =oay (2.3.23)

The same transformations hold for the coefficients of hygroscopic expansion. The
transformation relations (2.3.18), (2.3.21), and (2.3.23) are valid for a rectangular
coordinate system (z1,x2,x3) which is oriented at an angle # (in the xy—plane)
from the (z,y,2) coordinate system (see Figure 2.3.1). The orientation angle 6 is
measured counterclockwise from the x—axis to the z;—axis.

In summary, Eq. (1.3.44) represents the stress-strain relations in the principal
material coordinates (z1,x2,73), and Eq. (2.3.19) represents the stress-strain
relations in the (x,y, z) coordinate system. The material coefficients of the lamina
in the (z,y, 2) coordinate system are related to material coefficients in the material
coordinates by Eq. (2.3.18). In general, for the kth layer of a laminate, the
hygro-thermo-elastic stress-strain relations in the laminate coordinate system can
be written as

{3 = 1019 (=3P ~{ar) (T = 1) — {aar} e — o)
{3 = [S]"o} P + {ar} T ~ Ty) + {an} P (e — o) (2.3.24)

where all quantities are referred to the (x,y, z) coordinate system, and {ar} and
{aar} are vectors of thermal and hygroscopic coefficients of expansion, respectively.

2.4 Plane Stress Constitutive Relations

Most laminates are typically thin and experience a plane state of stress (sce Section
1.3.6). For a lamina in the xjzo—plane, the transverse stress components are
033,013, and a3 (see Figure 2.4.1). Although these stress components are small in
comparison to oy1,099, and o1, they can induce failures because fiber-reinforced
composite laminates are weak in the transverse direction (because the strength
providing fibers are in the x;29—plane). For this reason, the transverse shear stress
components are not neglected in shear deformation theories. However, in most
equivalent-single layer theories the transverse normal stress o33z is neglected. Then
the constitutive equations must be modified to account for this fact.
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X3
O33 =0
O3z
G23
O31
O13 O22 X9

Ci2 \0'21

C11

Figure 2.4.1: A lamina in a plane state of stress.

The condition o33 = 0 results in the following thermoelastic constitutive
equations for the kth layer that is characterized as an orthotropic lamina with
piezoelectric effect:

o} ® Qu Q2 0 1% (e —ayAaT)® 0 0 es & ®
o2 =|Qi2 ®@xr 0 g2 —ag AT —10 0 ez]|{ &
o 0 0 Qes €6 0 0 O Es

(2.4.1)
&

(k)
(k) (k) (k)
o5 0 Qs €5 es 0 O &

N

D1 (k) 0 0 0 €15 0 (k) (3] €11 0 O. (k) 51 (k)
{DQ} =[0 0 ey O 0} €4 +!0 €99 O:| {52}

e €5

€6

(2.4.3)

where Qg»c) are the plane stress-reduced stiffnesses, eg-c) are the piezoelectric moduli,

and €;; are the dielectric constants of the kth lamina in its material coordinate

system, (o4, €, &, D;) are the stress, strain, electric field, and electric displacement

components, respectively, referred to the material coordinate system (z1, z2, z3),

a1 and ag are the coefficients of thermal expansion along the x1 and xo directions,
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respectively, and AT is the temperature increment from a reference state, AT =

T —Tp. Recall from Eq. (1.3.72) that QZ(-;-C) are related to the engineering constants
as follows:

k k k k
Wo B owm ED e B
H (k) (k) ~ 12 (k) (k) 7 22 8 k) o
L —vy'vy 1 —vyvy L —vyy'w
k k k k k k
Qw =G%, Q) =at), QW =clh (2.4.4b)

Note that the reduced stiffnesses involve six independent engineering constants: Fj,
EQ, V12, G12, G13, and Ggg.

The transformed stress-strain relations of an orthotropic lamina in a plane state
of stress are (the superscript £ is omitted in the interest of brevity)

~ _ _ o
Oxx Qll QlQ 6_216 Exx Az 0 0 esn oz
Oyy ¢ = ng ng QQ(; Eyy ¢ —§ Oyy AT |+ 10 0 eé39 6_11//)
Ty Qs Q2 Qeo Yoy 20y 0 0 e3 Qalz/i
(2.4.5)
oy
r A ~ - _ Jz
oy | _ [ Qaa Q45J { Vyz } {614 €24 0] o
=| A A + | _ - 3= 2.4.6
{ Oz } L Q45 Q55 Yxz €15 €25 0 gg) ( )
oz
oz N
D, [ 0 0 ey €5 0O Eyy €xae €zy O 37
Dyp=10 0 ea &5 0|~ |y & 0[5 (247
D, | €31 €32 0 0 €36 Yxz 0 0 € oY

where 1) denotes the scalar electric potential [see Eq. (1.3.89)] and

Q11 = Q11 cos? 0 4 2(Q12 + 2Qe6) sin? 6 cos? 6 + Qo sin'

Q12 = (Q11 + Q2 — 4Q¢6) sin®6 cos® 0 + ng(sin4 6 + cos* 6)

Q22 = Q11 5in® 6 4 2(Q12 + 2Qs6) sin? 6 cos? 6 + Qoo cos® 0

Q16 = (Qu1 — Q12 — 2Qe6) sin b cos® 0 + (Q1z — Qo + 2Qe6) sin® 0 cosd

Q26 = (Q11 — Q12 — 2Qe6) sin® f cos B + (Q12 — Q22 + 2Qes) sin 6 cos® O

Qo6 = (Q11 + Q22 — 2Q12 — 2Qg6) sin® § cos? § + Qs (sin 6 + cos 0)

Q44 = Qu cos? § + Qs5 sin? 6

Q5 = (Qs5 — Q44) cos fsin @

Q = ()55 COS 20 + (Q44 sin 29 (2.4.8)

Qgz, Qyy, and agy are the transformed thermal coefficients of expansion [see Eq.
(2.3.23)]

Qzz = 0 €082 0 4 ap sin 6, Qyy = sin? 6 + a cos 6, Oy = (] — ) sinf cos
(2.4.9)
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and e;; are the transformed piezoelectric moduli, and €z, €zy, and €, are

transformed dielectric coefficients

e31 cos? @ + esosin? 6,

€31 =

€36 = (e31 — e32) sinf cos b,
€94 = €94 COS> 0 + e15in% 0,
€95 = (e15 — e24) sinf cos b,
€yy = €11 sin? 0 + €z cos? 0,

€32
€14 =
€15 =

€xx

Cmy -

€31 sin? 0 + €32 cos? 0, e33 = es3
(e15 — e24)sinf cos b
e1s cos? 0 + egy sin® 6
€11 cos® 6 + €29 sin? 0

(611 - 622) sin 6 cos @ (2.4.10)

This completes the development of constitutive relations for an orthotropic lamina

in a plane state of stress.

Example 2.4.1:

The material properties of graphite fabric-carbon matrix layers are (see Example 1.3.4):

Eq = 25.1 x 10% psi, Ey = 4.8 x 105 psi, E3 = 0.75 x 10° psi

Gha = 1.36 x 108 psi, G13 = 1.2 x 10 psi, Go3 = 0.47 x 10° psi

Vig = 00367 vizg = 025, Vgg = 0.171

The matrix of plane stress-reduced elastic coefficients for the material can be calculated using Eqs.
(2.4.4) and (2.4.8) for various values of § as

25.11 0.1728 0 0 0
0.1728 4.8010 O 0 0
[Qlo=0 = 0 0 047 0 0 | msi (2.4.11)
0 0 0 120 O
0 0 0 0 136
The transformed coefficients for various angles of orientation are given below:
r4.8010 0.1728 O 0 0
0.1728  25.11 0 0 0
[Qlo=g0 = 0 0 120 0 0 | msi (2.4.12)
0 0 0 047 O
L 0 0 0 0 136
r8.923 6.203 0 0 5.076
6.203 8.923 0 0 5.076
Qlo=as = | O 0 0835 0365 0 | msi (2.4.13)
0 0 0.365 0.835 0
L5.076 5.076 0 0 7.390
r 8923  6.203 0 0 -5.076
6.203  8.923 0 0 -5.076
[Qlo=_a5 = 0 0 0.835 —0.365 0 msi (2.4.14)
0 0 -0.365  0.835 0
L-5.076 —5.076 0 0 7.390
r15.51 4.696 0 0 7.007
4.696 5.355 0 0 1.785
Qlo=z0=1 0 0 06525 03161 0 msi (2.4.15)
0 0 0.3161 1.0175 0
L 7.007 1.785 0 0 5.883
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Problems

2.1 Consider the composite lamina subjected to axial stress oy, as shown in Fig. P2.1 below.
Let £, vy and Ay denote Young’s modulus, volume fraction and area of cross section of the
fiber, and (Fm, vm, Am) be the same quantities for the matrix. Assuming that plane sections
remain plane during the deformation process and both matrix and fiber undergo the same
longitudinal deformation Axzy, derive the law of mixtures,

g 1>
E, = i = UfEf +vmEm, vig = _ﬁ =VfUf + VmUm

Figure P2.1 Figure P2.2

2.2 Consider the composite lamina of Problem 2.1 but subjected to axial stress o9 alone, as
shown in Fig. P2.2. Derive the result

E/E
Bo=— f=m
27 Efvm + Emvy

2.3 (Apparent moduli of an orthotropic material) Note that the transformed material compliance

matrix [S] is relatively full and is in the same form as that for a monoclinic material. For
an orthotropic material, we have

Exz 5’11 5:'12 Sw Oz
Eyy ¢ = |S21 S22 S26| | Owy (1)
2eay S16 S26 Seel owy

where S;; are the transformed compliances defined in Eq. (2.3.21). Guided by the form
of the strain-stress relations (1.3.47) in the material coordinates, we can write strain-stress
relations in the problem coordinates as

Vyz  TMzy.s
Exz Ey Ey Ex Oz
_VYay 1 Nay.y
Eyy (= Es Ey Ey Tyy (2)
2e Nzy.,x Nzxy.y 1 o
ik Eax E, (e i

Comparing Eq. (2) with Eq. (1), we note that

1 _
E_m_Slla -

E—y 12 Ex

Vyzx _ S, Nzy,x — g16 Nay,y S. X

3)

and so on. Thus, the equivalent modulus of elasticity F, in the problem coordinates, for
example, can be evaluated using the engineering constants in the material coordinate system:

E], = 511 = Sy, cos* 6+ (2512 + Sgg) sin2 @ cos? 0 + Sy sin 0 (4a)
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where
1 Va1 ]_ 1

il —_21 - = o=
B S12 , Sa2 , See e

S11 = By B

(4b)

Thus, the apparent compliance S, in the (x,y, z) coordinate system is contributed by the
compliances S11, S12, S22, and Sgg and the lamination angle 6:

1 1 4 21/21 1 .2 2 1 .4
—— = — COS 0+(~—+—)sm 0 cos* 6+ —sin* 0 5
BB B, T E )

We note that the compliance S;g, which was zero in the material coordinates, is contributed
by S11, S12, S22, and Sgg:

S16 = (i—%ﬂ—i)sinﬂ 00536—(1+%—L)sin36c036 (6)
1

Physically, S;¢ represents the normal strain in the z-direction caused by the shear stress in
the xy-plane, when all other stresses are zero. Since S;g = Sg1, it also represents the shear
strain in the xy-plane caused by the normal stress along the z-direction, when all other
stresses are zero. Guided by these observations, Lekhnitskii [4] introduced the following
engineering constants, called coefficients of mutual influence:

74;,: =characterizes shearing in the z;z;-plane caused by a normal stress

in the z;—direction (i # j)

€.+
:%, for o;; # 0 and all other stresses being zero (7
i

The compliance S1g and Sog are related, by definition, to the coefficients Ney,z and Nzy .y by

S'16 = nmy,z/Ez’ S'26 = "hy,y/Ey (8)
Show that
Nay,x _( 2 2v91 1 ) . 3 ( 2 291 1 ) .3
—— ==+ =" - —=—)sinf cos’ 0 - [ — + ==~ — —— }sin°Hcosh
E, Ei E Gpp Ey Ey G
9)
Nay,y _( 2 2v9q 1 ) .. 3 ( 2 2v91 1 ) . 3
22 = — 4+ == -~ — )sin 0 cosf — [ — 4+ == - —}siné cos’ 0
Ey By Ey Gy Ey By Gp
(10)

(Continuation of Problem 2.3) Derive an expression for G, in terms of Ey, Eo, 119, Gqa,
and 6.

(Continuation of Problem 2.3) Show that Gy is a maximum for § = 45°. Make use of the
following trigonometric identities:

cos?f = %(3 + 4 cos 260 + cos 40)
sin 9 = %(3 — 4.cos 20 + cos 46)

cos? 0 sin? § = %(1 — cos46)

(Continuation of Problem 2.3) Show that the coefficient of mutual influence is zero at 6 = 0°
and 6 = 90°.
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2.15
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(Continuation of Problem 2.3) Show that the moduli E, (and E,) varies between E; and
Ey, but it can either exceed or get smaller than both F; and Es.

(Continuation of Problem 2.3) Derive the expression for E, in terms of Ei, Es, vi9, Gia,
ay, a9, and 8 for the nonisothermal case.

(Continuation of Problem 2.3) Derive the expression for G,y in terms of Ey, Eo, v19, G2,
oy, ag, and @ for the nonisothermal case.

Show that the following combinations of stiffness coefficients are invariant:

S1 = (3Q11 + 3Q22 +2Q12 + 4Qep)
Sz = (Q12 — Qes)

S3 = (Q11 + Q22 + 2Q¢6)

Sq = (Q11 + Q22 +2Q12)

Rewrite the transformation equations (2.4.8) as

Q11 = Uy + Uy cos 26 + Us cos 46
ng = Uy — Uz cos 46

Qa2 = Uy — Uy cos 20 + Us cos 40
Q6 = %Uz sin 26 + Uz sin 46

Qa6 = %Uz sin 20 — Us sin 40

= 1

Qe6 = 3 (Uy —Uy) — Uscos46
where

1
Uy = 3 (3Q11 +3Q22 +2Q12 + 4Q¢6)

U = %(Qu - Q22)
Uz = é (Q11 + Q22 — 2Q12 — 4Qsp)
1

Usy = 3 (Q11 + Q22 +6Q12 — 4Q¢p)

Determine the transformation matrix (i.e., direction cosines) relating the orthonormal basis
vectors (&1,82,83) of the system (x1,72,23) to the orthonormal basis (&/,&),&}) of the
system (x’l,x’z,x’g), when &; are given as follows: & is along the vector & — &, +&; and &

is perpendicular to the plane 2z, + 3z5 + 23 —5=10.
Verify the transformation relations for the piezoelectric moduli given in Eq. (2.4.10).

Consider a square, graphite-epoxy lamina of length 8 in., width 2 in., and thickness 0.005
in., and subjected to an axial load of 1000 lbs. Determine the transverse normal strain 3.
Assume that the load is applied parallel to the fibers, and use E; = 20 msi, Ey = 1.3 msi,
Gi12 = G13 = 1.03 msi, Gag = 0.9 msi, vy = v13 = 0.3, and 93 = 0.49.

Compute the numerical values of the reduced stiffnesses Q;; for the graphite-epoxy material
of Problem 2.14. Ans:

20.118 0.392 0O 0 0
0.392 1308 0O 0 0
Q= 0 0 09 0 0 msi
0 0 0 103 0
0 0 0 0 1.03
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2.16 The material properties of AS/3501 graphite-epoxy material layers are

FE; = 140 x 10> MPa, Ey =10 x 103 MPa, Gq2 =7 x 10° MPa

G135 =T x 103 MPa, Ga3 = 7 x 103 MPa, vy, =0.3
o1 =1.0x 1078 m/m/°K, ay =30 x 1078 m/m/°K

Show that (1 GPa = 103 MPa = 109 Pa)

140.90 302 0 0 0
3.02 1006 0 0 O

Q= o 0 7 0 0| GPa
0 0 070
0 0 00 7

The transformed coefficients for various angles of orientation are given below:

1006 302 0 0 O
302 1409 0 0 O

[Qlo=90 = 0 0 7 0 0| GPa
0 0 070
0 0 00 7
46.25 3225 0 0 32.71
32.25 4625 0 0 32.71

[Qlo—ss=| 0 0 70 0 GPa
0 0 07 O
3271 3271 0 O 36.23

Also, compute the transformed thermal coefficients of expansion for § = 45°.
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Classical and First-Order Theories
of Laminated Composite Plates

3.1 Introduction

3.1.1 Preliminary Comments

Composite laminates are formed by stacking layers of different composite materials
and/or fiber orientation. By construction, composite laminates have their planar
dimensions one to two orders of magnitude larger than their thickness. Often
laminates are used in applications that require membrane and bending strengths.
Therefore, composite laminates are treated as plate elements.

The objective of this chapter is to develop two commonly used laminate plate
theories, namely the classical plate theory and the first-order shear deformation
plate theory. To provide a background for the theories discussed in this chapter, an
overview of pertinent literature on laminate plate theories is included here.

3.1.2 Classification of Structural Theories

Analyses of composite plates in the past have been based on one of the following
approaches:

(1) Equivalent single-layer theories (2-D)
(a) Classical laminated plate theory
(b) Shear deformation laminated plate theories

(2) Three-dimensional elasticity theory (3-D)
(a) Traditional 3-D elasticity formulations
(b) Layerwise theories

(3) Multiple model methods (2-D and 3-D)

The equivalent single layer (ESL) plate theories are derived from the 3-D elasticity
theory by making suitable assumptions concerning the kinematics of deformation or
the stress state through the thickness of the laminate. These assumptions allow the
reduction of a 3-D problem to a 2-D problem. In the three-dimensional elasticity
theory or in a layerwise theory, each layer is modeled as a 3-D solid. In this
chapter, we present the classical plate theory and the first-order shear deformation
plate theory as applied to laminated plates. Literature reviews and development of
the governing equations of the third-order shear deformation plate theory and the
layerwise theory will be presented in later chapters (see Chapters 11 and 12).
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3.2 An Overview of Laminated Plate Theories

The equivalent single layer laminated plate theories are those in which a
heterogeneous laminated plate is treated as a statically equivalent single layer having
a complex constitutive behavior, reducing the 3-D continuum problem to a 2-D
problem. The ESL theories are developed by assuming the form of the displacement
field or stress field as a linear combination of unknown functions and the thickness
coordinate [1-13]:

N
vi(z,y,2,t) = Z wg(m,y,t) (3.2.1)

where ¢; is the ith component of displacement or stress, (x,y) the in-plane
coordinates, z the thickness coordinate, ¢ the time, and ¢ are functions to be
determined. '

When ¢; are displacements, then the equations governing ¢} are determined by
the principle of virtual displacements (or its dynamic version when time dependency
is to be included; see Section 1.4):

T
0= /( (6U + 6V — 6K) dt (3.2.2)
)

where U, 6V, and 6K denote the virtual strain energy, virtual work done by
external applied forces, and the virtual kinetic energy, respectively. These quantities
are determined in terms of actual stresses and virtual strains, which depend on
the assumed displacement functions, ¢; and their variations. For plate structures,
laminated or not, the integration over the domain of the plate is represented as the
(tensor) product of integration over the plane of the plate and integration over the
thickness of the plate, because of the explicit nature of the assumed displacement
field in the thickness coordinate:

/Vol. )av = /_i /QO () dQ dz (3.2.3)

where h denotes the total thickness of the plate, and €y denotes the undeformed
midplane of the plate, which is chosen as the reference plane. Since all functions are
explicit in the thickness coordinate, the integration over plate thickness is carried
out explicitly, reducing the problem to a two dimensional one. Consequently, the
Euler-Lagrange equations of Eq. (3.2.2) consist of differential equations involving

the dependent variables @f (x,y,t) and thickness-averaged stress resultants, R(m).

A
Rg.n) = /2h (2)"0i; dz (3.2.4)
2

The resultants can be written in terms of (; with the help of the assumed constitutive
equations (stress-strain relations) and strain-displacement relations. More complete
development of this procedure is forthcoming in this chapter.

The same approach is used when ¢; denote stress components, except that the
basis of the derivation of the governing equations is the principle of virtual forces. In
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the present book, the stress-based theories will not be developed. Readers interested
in stress-based theories may consult the book by Panc [14].

The simplest ESL laminated plate theory is the classical laminated plate theory
(or CLPT) [15-20], which is an extension of the Kirchhoff (classical) plate theory
to laminated composite plates. It is based on the displacement field

«M(«'L'yya 2z, t> = 'll;[)(:l:hy’t) — z?%
8’11)0
U(:E’y’ Z’t) = Uo(.’L‘,y,t) — 25
dy
UJ(I,y,Z,t) = wo(.’lf,y, t) (325)

where (ug,vo, wg) are the displacement components along the (z,y, z) coordinate
directions, respectively, of a point on the midplane (i.e., z = 0). The displacement
field (3.2.5) implies that straight lines normal to the zy—plane before deformation
remain straight and normal to the midsurface after deformation. The Kirchhoff
assumption amounts to neglecting both transverse shear and transverse normal
effects; i.e., deformation is due entirely to bending and in-plane stretching.

The next theory in the hierarchy of ESL laminated plate theories is the first-order
shear deformation theory (or FSDT) [21--27], which is based on the displacement field

u(x’yﬂzﬁ t) = u0($7y7 t) + Zd)llf(w’y’ t)
v(z,y,2,t) = volz, y,t) + zdy(z,y, 1)
w(x7y527t) = wO(I7 y? t) (3'2‘6)

where ¢, and —¢, denote rotations about the y and xz axes, respectively. The
FSDT extends the kinematics of the CLPT by including a gross transverse shear
deformation in its kinematic assumptions; i.e., the transverse shear strain is
assumed to be constant with respect to the thickness coordinate. Inclusion of
this rudimentary form of shear deformation allows the normality restriction of the
classical laminate theory to be relaxed. The first-order shear deformation theory
requires shear correction factors (see [28-32]), which are difficult to determine
for arbitrarily laminated composite plate structures. The shear correction factors
depend not only on the lamination and geometric parameters, but also on the loading
and boundary conditions.

In both CLPT and FSDT, the plane-stress state assumption is used and plane-
stress reduced form of the constitutive law of Section 2.4 is used. In both theories
the inextensibility and/or straightness of transverse normals can be removed. Such
extensions lead to second- and higher-order theories of plates.

Second- and higher-order ESL laminated plate theories use higher-order
polynomials [i.e., N > 1 in Eq. (3.2.1)] in the expansion of the displacement
components through the thickness of the laminate (see [33-38], among many others).
The higher-order theories introduce additional unknowns that are often difficult to
interpret in physical terms. The second-order theory with transverse inextensibility
is based on the displacement field

u(x,y, z2,t) = uo(z, Y, t) + 26 (2, y, t) + 2*0e (2, y, t)
U(-Ta Yy, z, t) = ’U()(JC, Y, t) + Z¢y(x7 Y, t) + 227/)1/(-'5: Y, t)
w(x,y,z,t) = wo(x,y,t) (3.2.7)
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The third-order laminated plate theory of Reddy [38,39] with transverse
inextensibility is based on the displacement field

4 ow
_ 3{ _ _ gvo

4 8’[1)0
U(l’, Y, 2, t) = UO(xy Y, t) + Z¢y(I, Y, t) + Z3 (_W> <¢y + 5&‘)
w(z,y,2,t) = wo(z,y,t) (3.2.8)

The displacement field accommodates quadratic variation of transverse shear strains
(and hence stresses) and vanishing of transverse shear stresses on the top and bottom
of a general laminate composed of monoclinic layers. Thus there is no need to use
shear correction factors in a third-order theory. The third-order theories provide
a slight increase in accuracy relative to the FSDT solution, at the expense of
an increase in computational effort. Further, finite element models of third-order
theories that satisfy the vanishing of transverse shear stresses on the bounding planes
require continuity of the transverse deflection and its derivatives between elements.
Complete derivations of the governing equations of the third-order laminated plate
theory and their solutions are presented in Chapter 11.

In addition to their inherent simplicity and low computational cost, the ESL
models often provide a sufficiently accurate description of global response for thin
to moderately thick laminates, e.g., gross deflections, critical buckling loads, and
fundamental vibration frequencies and associated mode shapes. Of the ESL theories,
the FSDT with transverse extensibility appears to provide the best compromise
of solution accuracy, economy, and simplicity. However, the ESL models have
limitations that prevent them from being used to solve the whole spectrum of
composite laminate problems. First, the accuracy of the global response predicted
by the ESL models deteriorates as the laminate becomes thicker. Second, the ESL
models are often incapable of accurately describing the state of stress and strain at
the ply level near geometric and material discontinuities or near regions of intense
loading — the areas where accurate stresses are needed most. In such cases, 3-D
theories or multiple model approaches are required (see Chapter 12 for the layerwise
theory and multiple model approaches).

This completes an overview of various ESL theories. For additional discussion
and references, one may consult the review articles [40-43]. In the remaining sections
of this chapter, we study the classical and first-order shear deformation plate theories
for laminated plates [44-52].

3.3 The Classical Laminated Plate Theory
3.3.1 Assumptions

The classical laminated plate theory is an extension of the classical plate theory to

composite laminates. In the classical laminated plate theory (CLPT) it is assumed '
that the Kirchhoff hypothesis holds:

T An assumption is that which is necessary for the development of the mathematical
model, whereas a restriction is not a necessary condition for the development of the
theory.
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(1) Straight lines perpendicular to the midsurface (i.e., transverse normals) before
deformation remain straight after deformation.

(2) The transverse normals do not experience elongation (i.e., they are inextensible).

(3) The transverse normals rotate such that they remain perpendicular to the
midsurface after deformation.

The first two assumptions imply that the transverse displacement, is independent
of the transverse (or thickness) coordinate and the transverse normal strain ¢, is
zero. The third assumption results in zero transverse shear strains, €, = 0, €yz = 0.

3.3.2 Displacements and Strains

Consider a plate of total thickness h composed of N orthotropic layers with the
principal material coordinates (z¥, 5, 2%) of the kth lamina oriented at an angle 6y,
to the laminate coordinate, z. Although not necessary, it is convenient to take the
zy-plane of the problem in the undeformed midplane €2y of the laminate (see Figure
3.3.1). The z-axis is taken positive downward from the midplane. The kth layer is

located between the points z = z; and z = 21 in the thickness direction.

X

hi =2k — 2k

Figure 3.3.1: Coordinate system and layer numbering used for a laminated plate.
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The total domain g of the laminate is the tensor product of Qo x (—h/2,h/2).
The boundary of Qy consists of top surface S;(z = —h/2) and bottom surfaces
Sp(z = h/2), and the edge [' = [ x (—h/2,h/2) of the laminate. In general, IT" is
a curved surface, with outward normal n = n,&, + n,é,. Different parts of the
boundary I' are subjected to, in general, a combination of generalized forces and
generalized displacements. A discussion of the boundary conditions is presented in
the sequel.

In formulating the theory, we make certain assumptions or place restrictions, as
stated here:

e The layers are perfectly bonded together (assumption).

e The material of each layer is linearly elastic and has three planes of material
symmetry (i.e., orthotropic) (restriction).

e Each layer is of uniform thickness (restriction).
e The strains and displacements are small (restriction).

e The transverse shear stresses on the top and bottom surfaces of the laminate are
zero (restriction).

By the Kirchhoff assumptions, a material point occupying the position (z,y, z) in
the undeformed laminate moves to the position (x 4w,y + v, 2 +w) in the deformed
laminate, where (u,v,w) are the components of the total displacement vector u
along the (z,y, z) coordinates. We have

u = ue, + vey, + we, (3.3.1)

where (&, €y, €,) are unit vectors along the (z,y, z) coordinates. Due to small strain
and small displacement assumption, no distinction is made between the material
coordinates and spatial coordinates, between the finite Green strain tensor and
infinitesimal strain tensor, and between the second Piola-Kirchhoff stress tensor
and the Cauchy stress tensor (see Chapter 1). The Kirchhoff hypothesis requires
the displacements (u, v, w) to be such that (see Figure 3.3.2)

8’[1)0
1) = 1) — z—9
u(xvy»zv ) Uo(ill,y, ) z oz
0
v(z,y, 2,t) = volz,y,t) — zﬂ
dy
w(z,y,2,t) = wo(z,y,t) (3.3.2)

where (ug,vg, wp) are the displacements along the coordinate lines of a material
point on the zy—plane. Note that the form of the displacement field (3.3.1) allows
reduction of the 3-D problem to one of studying the deformation of the reference
plane z = 0 (or midplane). Once the midplane displacements (ug, vg, wo) are known,
the displacements of any arbitrary point (z,y,z) in the 3-D continuum can be
determined using Eq. (3.3.2).
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Figure 3.3.2: Undeformed and deformed geometries of an edge of a plate under
the Kirchhoff assumptions.

The strains associated with the displacement field (3.3.2) can be computed
using either the nonlinear strain-displacement relations (1.3.10) or the linear strain-
displacement relations (1.3.12). The nonlinear strains are given by

E,.

 SIORERC)
dr 2 |\ 0z i or
~53(5) < (G) (5]

dy 2 [\ 0y oy Ay
e ()]
0z 2 |\0 0z 0z
2\0y Ox Oxdy Oxdy Ox Oy
1 /ou Ow  Oudu  Ovdv Owodw
—5(@ 9z " 9202 aawxaz)
_1(2r, 0u oeon v owdy 533
2\0z Oy Oyodz O0Oydz Oy 0z
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If the components of the displacement gradients are of the order ¢, i.e.,

Oou Ou Ov Ov Ow
%,@,%,a—y,E—O(G) (334)

then the small strain assumption implies that terms of the order €? are negligible in

the strains. Terms of order €2 are

G)-G) GGG (@) (3)(E)
) GG GG G @) GG
(5)(5)- (5)(3)- (%) @5)

If the rotations dwg/0x and dwy/dy of transverse normals are moderate (say 10°-
15°), then the following terms are small but not negligible compared to e:

ow\? [Ow\? Owd
(_w> , (_w> [ Jwow (3.3.6)
Ox dy or Oy
and they should be included in the strain-displacement relations. Thus for small

strains and moderate rotations cases the strain-displacement relations (3.3.3) take

the form
ou 1 /0w 1 /0u Ov Owodw

2
%:5;*5(%) ’ sza(a—y*&*%@)
27 9\dz ' 0z )’ Wy 2\ oy

1 /0v Ow ow
Eyz = 5 (& + 6—?;) y €2z = & (337)

where, for this special case of geometric nonlinearity (i.e., small strains but moderate
rotations), the notation &;; is used in place of E;;. The corresponding second Piola-
Kirchhoff stresses will be denoted o;;.

For the assumed displacement field in Eq. (3.3.2), Ow/0z = 0. In view of the
assumptions in Eqgs. (3.3.4)—(3.3.6), the strains in Eq. (3.3.7) reduce to

_ 0w 1 <3w0>2 _ O
f2e = e T2 Oz * 002
. 1 <8u0 31}0 8’11)0 8w0> 62'LU0

=35\ 0y "oz "oz oy ) “oudy
. _ 9w 1(61110)2_ 0%y
Woy 2\ oy Zay2

_ 1 Owyg  Owg _
Ezz—z( %*79;)—0

1 Owg  Owy _
’fyZ”é(‘a—y*a—y)-O

€22 =0 (3.3.8)
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The strains in Eqgs. (3.3.8) are called the von Kdrmdn strains, and the associated
plate theory is termed the von Kdrmdn plate theory. Note that the transverse strains
(€22,€yz+€2,) are identically zero in the classical plate theory.

The first three strains in Eq. (3.3.8) have the form

(0) (1)

Exx Exx Exx
eyy (=1 e ¢ T2 e (3.3.9)
0
L O D B
2
o 1{0 5
) o+ 5 (%) R0 -5
) =ep =1 gmai(gm)’ o = gay =g
(0) NG 4 (1) 52
RS s b R
(3.3.10)

where (8&:(27 E;S%), %(c(g);)) are the membrane strains, and (6&2,8;&? 77;‘{/)) are the flexural

(bending) strains, known as the curvatures.

Once the displacements (ug, vg, wp) of the midplane are known, strains at any
point (z,y, 2) in the plate can be computed using Eqgs. (3.3.9) and (3.3.10). Note
from Eq. (3.3.9) that all strain components vary linearly through the laminate
thickness, and they are independent of the material variations through the laminate
thickness (see Figure 3.3.3a). For a fixed value of z, the strains are, in general,
nonlinear functions of x and y, and they depend on time ¢ for dynamic problems.

3.3.3 Lamina Constitutive Relations

In the classical laminated plate theory, all three transverse strain components
(€22, €x2,Eyz) are zero by definition. For a laminate composed of orthotropic layers,
with their zjz2—plane oriented arbitrarily with respect to the xy—plane (z3 = z),

(a) (b)

Figure 3.3.3: Variations of strains and stresses through layer and laminate
thicknesses. (a) Variation of a typical in-plane strain. (b) Variation
of corresponding stress.
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the transverse shear stresses (0, 0y;) are also zero. Since ¢, = 0, the transverse
normal stress o.,, although not zero identically, does not appear in the virtual
work statement and hence in the equations of motion. Consequently, it amounts
to neglecting the transverse normal stress. Thus we have, in theory, a case of both
plane strain and plane stress. However, from practical considerations, a thin or
moderately thick plate is in a state of plane stress because of thickness being small
compared to the in-plane dimensions. Hence, the plane-stress reduced constitutive
relations of Section 2.4 may be used.

The linear constitutive relations for the kth orthotropic (piezoelectric) lamina in
the principal material coordinates of a lamina are

o ) Qu Qi 0 1% (e —ay AT

02 =[Qi2 @2 O g9 —ay AT
o6 0 0  Qes €6
0 0 e3 (k) & (k)
—10 O €32 (92 (3311&)
0 0 O &3

where QZ(-?) are the plane stress-reduced stiffnesses and egl-c) are the piezoelectric

moduli of the kth lamina [cf., Eq. (2.4.4a,b)], (03,¢;,&;) are the stress, strain, and
electric field components, respectively, referred to the material coordinate system
(z1, T2, x3), o and ag are the coefficients of thermal expansion along the z; and
2o directions, respectively, and AT is the temperature increment from a reference
state, AT = T —T;t. When piezoelectric effects are not present, the part containing
the piezoelectric moduli eg-c) should be omitted. The coefficients QE;-“) are known in
terms of the engineering constants of the kth layer:

£y _viekEy va By
Qll = 7 > Q12 - =
1 — viova 1—wvior01 1 —v19v91
FE
Qa2 = 172 » Qes = G2 (3.3.11b)
— Vi2l21

Since the laminate is made of several orthotropic layers, with their material
axes oriented arbitrarily with respect to the laminate coordinates, the constitutive
equations of each layer must be transformed to the laminate coordinates (x,y, 2),
as explained in Section 2.3. The stress-strain relations (3.3.11a) when transformed
to the laminate coordinates (z,y, z) relate the stresses (04, yy, 0y) to the strains
(€z2+ €y, Yay) and components of the electric field vector (&;, &y, ;) in the laminate
coordinates [see Eq. (2.4.5)]

Oz (k) C:211 QIZ Qlﬁ (k) Exx Xy
Tyy = [Q1z Q22 Q2 Eyy ¢ — 3 Oy ¢ AT
Ozy Qe Q2 Qs Yxy Qme
0 0 é3 (k) Es (k)
— (0 0 e39 gy (3‘3.123)

0 0 es3 &,
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where

Q11 = Qi cos? 0 + 2(Q12 + 2Q¢s) sin® 0 cos® 6 4+ Qoo sin @

Q12 = (Q11 + Q22 — 4Q¢s) sin® 0 cos® 6 + Q12(sin @ + cos? 0)

Q22 = Q115in" 0 + 2(Q19 + 2Qgg) sin? 0 cos® 6 + Qap cos? 6

Q16 = (Qu1 — Q12 — 2Qs6) sin f cos” 0 + (Q12 — Qa2 + 2Qes) sin® f cos §

Qa6 = (Qu1 — Q12 — 2Qes) sin®  cos 6 + (Q12 — Q22 + 2Qe6) sin 6 cos® 0

Qo6 = (Q11 + Q22 — 2Q12 — 2Qsp) sin” 0 cos? § + Qgp(sin @ + cos? §)  (3.3.12b)

and azz, yy, and agy are the transformed thermal coeflicients of expansion [see Eq.
(2.3.23)]

Qgr = 1 €08 0 + aysin @
Oy = Q1 sin® 0 + as cos?
20 = 2(a1 — a2) sinf cos (3.3.12¢)

and €;; are the transformed piezoelectric moduli

€31 = e31 cos> 0 + eg sin’ 6
€32 = e318in” 6 + ez cos? §
€36 = (e31 — e32)sinf cos b (3.3.12d)

Here 6 is the angle measured counterclockwise from the z-coordinate to the z;-
coordinate. Note that stresses are also linear through the thickness of each layer;
however, they will have different linear variation in different material layers when

Qg) change from layer to layer (see Fig. 3.3.3b). If we assume that the temperature
increment varies linearly, consistent with the mechanical strains, we can write

AT = Ty(zx,y,t) + 2Ti(z,y,t) (3.3.13)

and the total strains are of the form in Eq. (3.3.9) with
(0) (1

E:E(u)v — Qg 10 5:1:iz — g1
{EO} = Ez(éy) - O‘nyO ; {51} = 51({:,/) — any1 (3.3.14)
’Y;E;y) - 2O‘wyT0 7:£y) - 2azyTl

3.3.4 Equations of Motion

As noted earlier, the transverse strains (vgz, vyz, €..) are identically zero in the
classical plate theory. Consequently, the transverse shear stresses (0., ;) are zero
for a laminate made of orthotropic layers if they are computed from the constitutive
relations. The transverse normal stress o, is not zero by the constitutive relation
because of the Poisson effect. However, all three stress components do not enter the
formulation because the virtual strain energy of these stresses is zero due to the fact
that kinematically consistent virtual strains must be zero [see Eq. (3.3.8)]:

6cp, =0, 6ey. =0, be,. =0
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Whether the transverse stresses are accounted for or not in a theory, they
are present in reality to keep the plate in equilibrium. In addition, these stress
components may be specified on the boundary. Thus, the transverse stresses do not
enter the virtual strain energy expression, but they must be accounted for in the
boundary conditions and equilibrium of forces.

Here, the governing equations are derived using the principle of virtual
displacements. In the derivations, we account for thermal (and hence, moisture)
and piezoelectric effects only with the understanding that the material properties
are independent of temperature and electric fields, and that the temperature 7" and
electric field vector £ are known functions of position (hence, 6T = 0 and 6 = 0).
Thus temperature and electric fields enter the formulation only through constitutive
equations [see Eq. (3.3.12a)].

The dynamic version of the principle of virtual work [see Eq. (1.4.78)] is

T
0= / (8U + 6V — 6K) dt (3.3.15)
0

where the virtual strain energy 6U (volume integral of §Up), virtual work done by
applied forces 6V, and the virtual kinetic energy 6 K are given by

h
oU :/ /2h (O220€ze + Oyybeyy + 205y0ey) dzdzdy
Qo J-L

~ [ AL e e e2) 5 o (ofy + w0y)
0 VT2

+ Ogy (67;2%) + z(?’y%))] dz}da:dy (3.3.16)

[

h ;
oV =— /Q [qb(:c,y)éw(x,y, =) + @z, y)ow(x, y, __L)} dzdy
0

2 2
%
_ / / i [6rnbUn + Gnsdus + o 0w] dzds
r,J-%
=— /Q {las(z,y) + gz, y)] dwo(z, y)} dxdy
0]
h
2 [, obw R odw
_ /n, [% [ann (6u0n — z—gn—o) + Ons (6u03 -z 830)
+ 6nz6w0] dzds (3.3.17)

h
2 . O . 0bwyg
/QO /—% po { u =z Oz blo — = oz

. o6
+ (i}o — Z@_u;) (6'[)0 —z ZO> + u'JO:SwO] dz dxdy (3.3.18)

where g, is the distributed force at the bottom (z = h/2) of the laminate, g; is
the distributed force at the top (z = —h/2) of the laminate, (Gpn, Ons, Gnz) are the
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specified stress components on the portion I', of the boundary T, (Sugy, Sugs) are
the virtual displacements along the normal and tangential directions, respectively,
on the boundary I' (see Figure 3.3.4), pg is the density of the plate material, and a
superposed dot on a variable indicates its time derivative, 1y = dug/dt. Details of
how (ugn, uos) and (opp, 0ys) are related to (ug, vg) and (Ozzy Oyy, Oay), respectively,
will be presented shortly.

The virtual displacements are zero on the portion of the boundary where the
corresponding actual displacements are specified. For time-dependent problems,
the admissible virtual displacements must also vanish at time ¢t = 0 and t = T [see
Eq. (1.4.73b)]. Since we are interested in the governing differential equations and
the form of the boundary conditions of the theory, we can assume that the stresses
are specified on either a part or whole of the boundary. If a stress component is
specified only on a part of the boundary, on the remaining part of the boundary
the corresponding displacement must be known and hence the virtual displacement
must be zero there, contributing nothing to the virtual work done.

Substituting for 6U, 6V, and 6 K from Egs. (3.3.16)—(3.3.18) into the virtual work
statement in Eq. (3.3.15) and integrating through the thickness of the laminate, we
obtain

-,

Nyp6el®) + M,,6el) + Nyyée;‘;) + Myyéeg(}y) + Nzy&y;g)

+ Moy 695 — qbwo — I (tadto + 00810 + tbobuig)
+ Il <86w0 . (‘9w0 (9(511)0 . 0'(1)0 51}0)

50
oz Uo + ox to + oy Yo+ Oy

Duivg D6ty iy 86100)
IQ(ax or oy oy ) |®W

Obwg ~  O0dwy
on My 0s

_/ <Nnn6u0n + an&l% - Mnn

+ Qnéw()) ds}dt
(3.3.19)

Figure 3.3.4: Geometry of a laminated plate with curved boundary.
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where ¢ = g, + ¢; is the total transverse load and

N.’HE % Oxx Mzy g Oz
Nyy ¢ = / L\ Ty dz, My, ¢ = / L Tw (7 dz
Ny 2\ Ogy Mzy 2 Oy
~ h N ~ h N
{]Y”"}:/Q {Unn}dz {M"”}:/z {ann}zdz
Nnps —£ Ons ’ M s Ons
I() % 1 R %
nt=["4ztmds  Qu= [ onds
I —2 | 22 -3

(3.3.20a)

(3.3.20b)

(3.3.20¢)

The quantities (Ngz, Nyy, Ngy) are called the in-plane force resultants, and
(Myy, Myy, My,) are called the moment resultants (see Figure 3.3.5); @ denotes
the transverse force resultant, and (lp, I, I2) are the mass moments of inertia. All
stress resultants are measured per unit length (e.g., N; and @; in Ib/in. and M; in

Ib-in/in.).

Figure 3.3.5: Force and moment resultants on a plate element.
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The virtual strains are known in terms of the virtual displacements in the same
way as the true strains in terms of the true displacements [see Eq. (3.3.10)]:

5200 _ Oy n Owg dbwg sl — 9%y

A RN P
520 _ 0dvg awo Odwy L) _ _82(5100
vy dy By dy vy Oy?

) _ 66UO 4 (9(5’[}0 (96?1}0 a’wg + 8w0 85’&)0

Moy = oy Oz + or Oy dr Oy
0w
by} =255 (3.3.21)

Substituting for the virtual strains from Eq. (3.3.21) into Eq. (3.3.19) and
integrating by parts to relieve the virtual displacements (duq, dvg, dwp) in 2y of any
differentiation, so that we can use the fundamental lemma of variational calculus,
we obtain

T 8w0 .
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r ox ox ’

o 96 |

+ Nyynyvg + (Nyyaﬂ;) nybuwy — Myyn, a:O + My ynySwy

06 a6
— Mgy, awo + Mgy 2nybwo — M, yny—;@ + Mgy ynadwo
Y

Owyg ow
+ Npynydug + Npyngdvg + Ny nT(Swo + Nyy—— B nyéwo} ds

Y oy
. - ~ 06 ~ 06
B / <Nnn6u0n + N’IL."'(SUOS - Afnnﬂ - ]\/I 700 + Q,L(Su)o)
o on Os
Oy ow

—1—% [~Il (tlong + ony) + Io < g + Tyony)] dwy ds} dt (3.3.22)
r

ox
where a comma followed by subscripts denotes differentiation with respect to the
subscripts: Ngz, = ONzz/0x, and so on. Note that both spatial and time
integration-by-parts were used in arriving at the last expression. The terms obtained
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in Qp but evaluated at ¢ = 0 and ¢t = T were set to zero because the virtual
displacements are zero there.

Collecting the coefficients of each of the virtual displacements (dug, v, dwo)
together and noting that the virtual displacements are zero on I',,, we obtain

ATAL

0w
zzm‘Jr’Na:yy I0u0+118—> dug

Owg
( zy,z + Nyyy Iptg + I1— 8y ) g
(Mw:vxx + 2Macymy + M IR +N(w0) +4q

8UO 6 8 ’L'l.!() 82’{[}0
— I —Li— -1 I I )
oo — i 16+282+26y2 wo | dzdy
+/ [(Nmnm + Ngyny) bug + (Ngyng + Nyyny) bvg

+ <menm + My yne + Myyyny + Mayany + P(wo)

—Iitugng — Ilvony + Ig—onx + Iz—ony) dwy

Ox Oy
Odw Obw
— (Mx;):nz + Mg;yny) WO — (Mmynm + Myyny) —a:‘g-g] ds

- / (Nnn6u0n + Nn55u03 - Mnn% - Mns agwo Qnéwo) }dt

o

(3.3.23)

_ 0 8’w0 8w0 2 6w0 8100
N(WO) - —CC (wa or + Na:y 8y > + 8y (ny oz + Nyy 6y ) (3.3.24&)

Owg Owyg Owy Owg
The Euler-Lagrange equations of the theory are obtained by setting the
coefficients of dug, dvg, and dwy over Qy of Eq. (3.3.23) to zero separately:

. 8sz BNzy . 82’11,0 82 8w0
w: G+t =l h ()
ON. ON, 82’00 82 8w0
S - zy vy _ _7n Y (9%
vo ar T oy oz hie ( oy )
P My My,  0°M,, 52uwg
bwo: o Y 2%, t e TN a=lTgs

32 62w0 0211)0 62 8u0 61}0
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The terms involving I, are called rotary inertia terms, and are often neglected in
most books. The term can contribute to higher-order vibration or frequency modes.

Next we obtain the boundary conditions of the theory from Eq. (3.3.23). In order
to collect the coefficients of the virtual displacements and their derivatives on the
boundary, we should express (6ug, évg) in terms of (dug,, Sugs). If the unit outward
normal vector 1 is oriented at an angle # from the z—axis, then its direction cosines
are ny = cosf) and n, = sinf. Hence, the transformation between the coordinate
system (n,s,r) and (x,y, z) is given by

€, =cosf &, —sinf &,
e, =sinf e, + cosf &,
é. =e, (3.3.26)

Therefore, the displacements (uon, ugs) are related to (ug,vo) by
UQ = NzUpn — Nylos, Vo = NyUon + Nglos (3.3.27a)

Similarly, the normal and tangential derivatives (won,wo,s) are related to the
derivatives (wo 4, woy) by

Owyg Owg Owyg Oowp ow

ow
0+nw 0

Ouo _, Owo _ , _ 3.27b
or  on  Was ' oy Yom s (3.3.27b)

Now we can rewrite the boundary expressions in terms of (ugn,ugs) and
(wo,n, wo,s). We have

(Nazng + Nzyny) Sug + (Ngyng + Nyyny) Svo
= (Nzanz + Nayny) (nz6un — nybus) + (Nayng + Nygny) (nydun + ng6us)
(3.3.28a)
We recognize that the coefficients of dug, and dugs in the right-hand side of the

above equation are equal to Ny, and N, respectively. This follows from the fact

that the stresses (onn,0ns) are related to (0zz, 0y, 04y) by the transformation in
Eq. (2.3.9):

2n,
{ Z"” } - [—:zr " Qn_ny2 Tyy (3.3.28b)
ns z2Tly NNy Ny ny o
Yy
Hence we have
r - [ N,
Nnn o n?‘ ’I’Lz anny xx ‘
{ Nis } N —Ng Ny nzﬁy n2 — n2 Nyy (3.3.29a)
L : A
[ . [ M.
M n2 n2 2n.n oz
{ e } = | . n2 2| Muy (3.3.20b)
Mns L —NxTy NNy Ny — ny | M
Yy
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In view of the above relations, the boundary integrals in Eq. (3.3.23) can be
written as

=), .

(Nan = Nan ) Stton + (Nns — Nag ) Suo,

+ (me”w + Mayyne + Myyyny + Moy any + P(wo)

. . O 0o .
I oI Io—2n, 0, — 0,
1igm. 1iony + la—=n + I ay ny — Q >6w0
~ 86’11)0 ~ 85100
_ (Mnn - Mm) e (Mns - Mm) ——8—} dsdt  (3.3.30)

The natural boundary conditions are then given by
Npn — Annzoa an_an:07 Qn_ An:O

Mpp — Mppn =0, Mps — My, =0 (3.3.31a)

on I',, where

.. oW
Qn = (Mxm,a: + Mwy,y — Lo + 128—.%'0) Nzt

Y
<Myy,y + Moy — L1t + 128&1/0) ny + P(wo) (3.3.31b)

Thus the primary variables (i.e., generalized displacements) and secondary variables
(i.e., generalized forces) of the theory are

i ariabl Owg ~ dwo
primary variables: Up, Usy WO, >y ——
on’ Os

secondary variables: Nuny Nusy Qn, Myy, Mps (3.3.32)

The generalized displacements are specified on I',, which constitutes the essential
(or geometric) boundary conditions.

We note that the equations in Eq. (3.3.25) have the total spatial differential order
of eight. In other words, if the equations are expressed in terms of the displacements
(ug, v, wp), they would contain second-order spatial derivatives of ug and vy and
fourth-order spatial derivatives of wy. Hence, the classical laminated plate theory
is said to be an eighth-order theory. This implies that there should be only eight
boundary conditions, whereas Eq. (3.3.32) shows five essential and five natural
boundary conditions, giving a total of ten boundary conditions. To eliminate this
discrepancy, one integrates the tangential derivative term by parts to obtain the
boundary term

- fr Mo 5520 ds = § =2 6un ds — [Mysbuo)y (3.3.33a)
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The term in the square bracket is zero since the end points of a closed curve coincide.
This term now must be added to Q,, (because it is a coefficient of dwp):

8M'H-S
0s

Vi =Qn+ (3.3.33b)

which should be balanced by the applied force Q.. This boundary condition,
Vi = Qn, is known as the Kirchhoff free-edge condition. The boundary conditions
of the classical laminated plate theory are
0
Uy, Ug, WQ, % (essential)
Npny Nps, Vi, My, (natural) (3.3.34)

The initial conditions of the theory involve specifying the values of the
displacements and their first derivatives with respect to time at t = 0:

0 0 0
Up = Uy, Us = Ug, W = Wy
Uy = 00, g = 42, o = W) (3.3.35)

where variables with superscript ‘0’ denotes values at time ¢ = 0. We note that both
the displacement and velocities must be specified.

This completes the basic development of the classical laminated plate theory for
nonlinear and dynamic analyses. As a special case, one can obtain the equations
of equilibrium from (3.3.25) by setting all terms involving time derivatives to zero.
For linear analysis, we set N(wg) and P(wy) to zero, in addition to setting the
nonlinear terms in the strain-displacement equations to zero. Equations (3.3.25) are
applicable to linear and nonlinear elastic bodies, since the constitutive equations
were not utilized in deriving the governing equations of motion.

3.3.5 Laminate Constitutive Equations

Here we derive the constitutive equations that relate the force and moment resultants
in Eq. (3.3.20a) to the strains of a laminate. To this end, we assume that each layer
is orthotropic with respect to its material symmetry lines and obeys Hooke’s law;
i.e., Eq. (3.3.12a) holds for the kth lamina in the problem coordinates. For the
moment we consider the case in which the temperature and piezoelectric effects are
not included. Although the strains are continuous through the thickness, stresses
are not, due to the change in material coeflicients through the thickness (i.e., each
lamina). Hence, the integration of stresses through the laminate thickness requires
lamina-wise integration. The force resultants are given by

Neo N pzyq | Oz
Nyy ¢ = Z Oyy ¢ dz
ny k=1"%k Oy
= = ~ 0 1
N Qu Q2 Qs B () 4 2el)

"Zk41 i
=3[ Qe @n @u| el +uely e
zZ,

k Qe Q2 Qoo ,},;g)JrZ,y;ly)
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0 1
Nyy An An Al (el By1 Bia Bis 5%:12)
Ny o= | Az Agy Agg | { el Bis By Bag|{ el b (3.3.36)
Ny A Az Ags] | 0 Bis By Bes| | A%}

Mz N rzeyr | Oz
My, ¢ = Z/ Oyy ¢ 2 dz
Mz k=1"%k Ozy

N o e {Qu Q12 QlGJ(k) e 4+ zel)

= Z/ Q2 Qn Qx e 2l 3 2 dz
k=172 Qs Q26 Qeo O 4 ny(l)
0 1
My Bu B Big] [ % Du D12 Dis 5%:{%
Myy = 312 BQQ 326 Eyy D12 D22 Dzﬁ Eyy (3337)
Mzy Bis Bz Besl | 49 Dig Dy Des] | 48

where A;; are called extensional stiffnesses, D;; the bending stiffnesses, and B;; the
bending-extensional coupling stiffnesses, which are defined in terms of the lamina

stiffnesses Qgg) as

h Z,
(A’L],sz,Dz]) = 2h Qz] 1 Z, Z dZ — Z/ o (k)(l ZyZ )dz (3338&)
2

or

Q (zlc+1 —2k), Biyj=; Z Q(k)(zkﬂ - zk)

k 1

Dij=3 Z QY (#r — #) (3.3.38b)
k=1

Nl
TTMz

Note that @’s, and therefore A’s, B’s, and D’s, are, in general, functions of position
(z,y). Equations (3.3.36) and (3.3.37) can be written in a compact form as

(o=l o] {24} (330

where {°} and {e!} are vectors of the membrane and bending strains defined in
Eq. (3.3.10), and [A], [B], and [D] are the 3 x 3 symmetric matrices of laminate
coefficients defined in Eqgs. (3.3.38a,b). Values of the laminate stiffnesses for various
stacking sequences will be presented in Section 3.5.

For the nonisothermal case, the strains are given by Eq. (3.3.14) and the laminate
constitutive equations (39) become

{on}=lim wH{EN- (B} {00} eso

where {NT} and {MT} are thermal force resultants

(NT} = Z / Q1% {a}®AT dz (3.3.41a)

(M7} = Z / QP {a}PAT = d- (3.3.41b)
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and {NP} and {MPF} are the piezoelectric resultants

(NP} = Z / [e]F{E}R ¢ ©(3.3.42a)

(MP) = Z / R (E}® - dz (3.3.42b)
Relations similar to Eqs. (3.3.41a,b) can be written for hygroscopic effects.

3.3.6 Equations of Motion in Terms of Displacements

The stress resultants (N’s and M’s) are related to the displacement gradients,
temperature increment, and electric field. In the absence of the temperature and
electric effects, the force and moment resultants can be expressed in terms of the
displacements (ug, v, wo) by the relations

i 3 )
N An Az A g e
Nyy ¢ = | A1z Az A %t 2(—wQ)
Ny A Az Aes | %—‘;Q + gy %Q%“;Q
82
Biy1 Bz Big | 022
2w
— | Bjs By Boyg 8_y2g (3343)
B By B 3w
16 Bz Boo) | 3w
B S
Mgy By Biz Big aﬂl (a_wq)2
My, ¢ = | B2 By B S+ 2(—wQ)
Mxy B16 B26 B66 a_uQ + @ Q".U_Q_aL”Q

oxr Oy
2

8
D1y Di2 Das 682x§
Dio Doy Dog ‘ﬁz‘l (3344)
Dig D26 Des| | 90°wa

0zdy

The equations of motion (3.3.25) can be expressed in terms of displacements
(uo,v0,wo) by substituting for the force and moment resultants from Eqgs. (3.3.43)
and (3.3.44). In general, the Jaminate stiffnesses can be functions of position (z,)
(i.e., nonhomogeneous plates). For homogeneous laminates (i.e., for laminates with
constant A’s, B’s, and D’s), the equations of motion (3.3.25) take the form

0%uy  Owg O%wo O%vg  Owy %wy
A (aﬁ oz a2 ) T2\ Gray T By omay

i 82UQ 4 827)0 + 8211}0 3”&)0 4 8w0 8211)0
Oxdy  0x2 = Ozx? Oy Oz O0xdy
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82U0 8w0 82’11]0 82’00 8w0 (9211)0
A A
+ 416 <8x8y T oz dzoy ) T\ B2 T
2 2 2 2
+A66 8u20+8vg+6w08w0 6w06w0
Ay drdy  dxdy Oy ox 0Oy?
83’11)0 83w0 63100
_B — 2Bgg o0
” 265,38 66 520y
(9N;?,;c 8ny 82110 0311)0
— | —== + — _[0__ —L——=
ox Oy ot2 0x0t?

(3.3.45)

82u0 Bwo 82w0 32’00 8w0 82&)0
Ate ( + 4% | 2oy T oy ozoy

2 2 2 2
+A66 0UO+3U20+6U;08’LUO 3’11)08’11)0
oxrdy  Ox or? Jy Ox Ozdy
83w0 _ 8311)0 _ 83’11}0
ox3 * 0z0y? % 9220y

2 2 2 2
+A12<8 i +8w08 w0> + Any (6 v0+8w08 wg>

Oxdy  Ox Oxdy oy? Oy Oy?

2 2 2 2
+A26 (9u20+8110+8w08'w0 6w06w0
Ay Ox0y  Oxdy Jy ox 0y?

(3.3.46)

B aN§y+aN£ _ v BPug
ox oy

Puy  OPwy Pwy  Owgy FPwy OB 0%wo 0%wo
By =t 55 5 3 12 5o+
Ox 0z? Oz or Ox 0x?0y  Oxdy Ozdy

+8w0 83w0 (93U() n 83’00 + 83w0 811)0 8211)0 6211)()
Oy O0x20y 1\ 0220y * 0x3 ox3 Oy 0x? dxzdy
Bwo 8371)0 64100 84’11)0 84’!1}0
a3 — P —Piegasags — 4165340
Ozr 0x?dy ox 0x20y 030y
83UO (9211}0 82w0 Bwo 6311}0 831)0 0211)() 82w0
2B 2B
+ 2516 <8x28y + 0x? 0xdy  Ox Ox20y 2 0x0y? + Oxdy Oy?

T8y 00,2 20y 020y | 0220y Oy | Dby 02y
n 0%wg 0wy + Owy 03wy ) B DIG% 3 %Lwo‘
dz2  Oy? dx Oxdy? O30y Oxdy?
*wg Pug  Owy Pwy  Owy FPwy
+ B2 ( )

c’)wo (9311}0 ) + 2366 ( 83’LL0 83'1}0 8311)0 Bwo 62’wo 82’LU0

~ 4Dgg

01202 dxdy? = 0xdy dxdy  Ox Ox0y?
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83?}0 82w0 8211)() 8w0 83/1110 83u0 (93'1)0
5+ 2 2 3 Bas 3 T 2
Jy oy’ Oy Oy Oy Jy Ozxdy

0311}() 8w0 + 28211}0 8211]() 871)0 83’11}()>

Oxdy? Oy Oxdy Oy? oz Oy’

(94100 84 (94’(1}()

- DIQW — Dag—— 3y4 —2D2g 810y + N(wo) +¢q
9> ML, 282M§; O’ M,

a2 Oyox + dy?
0%wy 9% [(B%wy O%wy 0% [Ouyg  Oug

=lp— —Db— | =5 I —t —— 3.4
"o 28t2(8:c2+62 +18t2(8x+3y) (3:3.47)

where N (wp) was defined in Eq. (3.3.24a).

The nonlinear partial differential equations (3.3.45)—(3.3.47) can be simplified
for linear analyses, static analyses, and lamination schemes for which some of the
stiffnesses (A;j, Bij, Dyj) are zero. These cases will be considered in the sequel. Once
the displacements are determined by solving Eqs. (3.3.45)-(3.3.47), analytically or
numerically for a given problem, the strains and stresses in each lamina can be
computed using Eqs. (3.3.10) and (3.3.12), respectively.

Example 3.3.1: (Cylindrical Bending)

If a plate is infinitely long in one direction, the plate becomes a plate strip. Consider a plate strip
that has a finite dimension along the r—axis and subjected to a transverse load g(x) that is uniform
at any section parallel to the z—axis. In such a case, the deflection wy and displacements (ug, vg)
of the plate are functions of only z. Therefore, all derivatives with respect to y are zero. In such
cases, the deflected surface of the plate strip is cylindrical, and it is referred to as the cylindrical
bending. For this case, the governing equations (3.3.45)~(3.3.47) reduce to

d%uy  Owg O%wyg 92 Bwy  ONIL O2ug 03wy .
A - - + A -B  — — =1 — I - 3.3.48:
<8m2 + Ox Ox2 167922 17523 dr 07 oe2 ' bxot2 ( Y
02uy Swg 82wy 82vq PBwy  ONT 92y
A — Bia Y — 7T, 3.3.48t
( g2 " r 022 ) TG TP T o T o (3.3.48b)
B PBug . 02wy 0%wg . Owg Py B 33y w 0wy B 9?MT,
! ox3 0x2 Ox? ox Ox3 167923 154 Ox2
0 dwyg 02w, 0wy Py
9 (n,, 2% - I 3.3.48¢
tor ( i ) 1=1o%m ~Lgae tigrae (3.3.48¢)

Example 3.3.2:

Suppose that a six-layer (£60/0), symmetric laminate is subjected to loads such that the only

nonzero strains at a point (z,y) are 5(,0,) = gp in./in. and 5( ) = kg/in. Assume that layers are
of thickness 0.005 in. with material properties £, = 7.8 psi, E2 = 2.6 psi, G1o = G13 = 1.3 psi,
Gas = 0.5 psi, and vi5 = 0.25. We wish to determine the state of stress (0zz,0yy,02y) and force
resultants in the laminate.

The only nonzero strain is €, = g + zK(-. Hence, the stresses in kth lamina are given by

o) = Q) (eq + 2mp) . o) = QW) (0 + 2m0) . o) = QYY) (20 + 2m0)
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where

. 3.215 1431 +0.707 ) 7.966 0.664 0
[Qlicoe = | 1431  5.871 +1.593 | msi, [Qloo = | 0.664 2.655 0 | msi

+0.707 +1.593  2.068 0 0 1.3

The stress resultants are given by

Nia 0.1440 Meo 7.6306
Nyy ¢ =< 0.0353 »eg x 108 Ib/in., { M,, » =< 3.1566 kg Ib-in/in.
Ny 0 M, 0.7066

If g = 1000 x 10-% in./in. and kg = 0, we have

Naa 144 M, 0
Ny, p=14353 % Ib/in, { M, »=40% Ibin/in.
Nay 0 M,y 0

If g =0 in./in. and kg = 1.0 /in., we have
Nzz 0 Mza 7.6306
Ny $=< 03 Ib/in, { My, »=1{ 3.1566 } lb-in/in.
Nay 0 M., 0.7066

3.4 The First-Order Laminated Plate Theory

3.4.1 Displacements and Strains

In the first-order shear deformation laminated plate theory (FSDT), the Kirchhoff
hypothesis is relaxed by removing the third part; i.e., the transverse normals do not
remain perpendicular to the midsurface after deformation (see Figure 3.4.1). This
amounts to including transverse shear strains in the theory. The inextensibility of
transverse normals requires that w not be a function of the thickness coordinate, z.

Under the same assumptions and restrictions as in the classical laminate theory,
the displacement field of the first-order theory is of the form

U(l’,y, Zat) = ’U,()(Q?, y?t) + Z¢m($, Y, t)
v(xvy, th) = Uo(x».% t) + z¢y(xay7t)
w(xayazat) = wO(xay?t) (341)

where (uo, vo, wo, ¢z, ¢y) are unknown functions to be determined. As before,
(w0, vo, wp) denote the displacements of a point on the plane z = 0. Note that

ou ov
i bz, 5 = by (3.4.2a)

which indicate that ¢, and ¢, are the rotations of a transverse normal about the
y— and z—axes, respectively (see Figure 3.4.1). The notation that ¢, denotes the
rotation of a transverse normal about the y—axis and ¢, denotes the rotation about
the z—axis may be confusing to some, and they do not follow the right-hand rule.
However, the notation has been used extensively in the literature, and we will not
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Figure 3.4.1: Undeformed and deformed geometries of an edge of a plate under
the assumptions of the first-order plate theory.

depart from it. If (3;, 8,) denote the rotations about the x and y axes, respectively,
that follow the right-hand rule, then

ﬂw = _d)y ) ,By = ¢x (342b>

The quantities (uo, vo, wo, Pz, ¢y) Will be called the generalized displacements. For
thin plates, i.e., when the plate in-plane characteristic dimension to thickness ratio
is on the order 50 or greater, the rotation functions ¢, and ¢, should approach the
respective slopes of the transverse deflection:

(9’(1)0 _ 8’!1)0

(ﬁx:_%a ¢y: a—y

The nonlinear strains associated with the displacement field (3.4.1) are obtained
by using Eq. (3.4.1) in Eq. (3.3.7):
oug 1 (Owg\? Oy
=ty ()t
’ij _ <6UO 4 % 4 811)0 8w0> 2 (64530 8¢y>

By "oz oz oy oy oz
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— 8’[)0 _|_1 (%)2 + 2z 8¢y

oy = Dy Jy oy
. 811)0 o 6 0 .
’YQ:Z - E + ¢m, ’sz —_— 6:(/ + ¢y, Ezz — 0 (343)

Note that the strains (€,4, €yy, Vay) are linear through the laminate thickness, while
the transverse shear strains (vz,7vy.) are constant through the thickness of the
laminate in the first-order laminated plate theory. Of course, the constant state of
transverse shear strains through the laminate thickness is a gross approximation of
the true stress field, which is at least quadratic through the thickness.

The strains in Eq. (3.4.3) have the form

du Owg \2
) [ e %1 () o
wl_Jeml, | B ) W
Yyz (= Wz (T2 W (= By T ¢y +z 0
2o O B B e 2oy g, L0
Yoy O e L avo + Bua 2u0 %+ G
(3.4.4)

3.4.2 Equations of Motion

The governing equations of the first-order theory will be derived using the dynamic
version of the principle of virtual displacements:

T
0= / (8U + 8V — 6K) dt (3.4.5)
0

where the virtual strain energy 6U, virtual work done by applied forces 6V, and the
virtual kinetic energy 6 K are given by

h
_ 2 0) (1) 0) (1)
oU = % {/;% |:0-.’L‘.1,‘ (6513: + 26€Im> +(7'yy (6€yy —+ Z6€yy)
+ Ouy (6’)/(0) + zé'y(l)) + széfy( ) + ‘Tyz5v§,2)] dz}da:dy (3.4.6)

h
5V = — / (g5 + a¢) 6] ddy — / / ® [Gran (Stp + 26hm)
Q0 To _g

+ 0ps (bus + 2605) + 00w | dzds (3.4.7)

h

6K//5
QJ-4

uo + Zd)m) (5’&0 + Z(S(;Br) + (1}0 + Z(f)y) (51'}0 + zéqSy)
+ u')oéu')ol dz dzdy (3.4.8)

where all variables were previously introduced [see Eqgs. (3.3.16)—(3.3.18) and the
paragraph following the equations].
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Substituting for dU, 6V, and §K from Eqgs. (3.4.6)-(3.4.8) into the virtual work
statement in Eq. (3.4.5) and integrating through the thickness of the laminate, we
obtain

T
0= / { / [Nmaegf_;) + Mogbell) + Nyybeld) + Myy6e(l) + Nuy6v Q) + Moy 67L)
0 Qo ’

+ Qzé’}éoz) + Qy(‘f’yg(!g) — qbéwy — Ip (pdtp + Vodv + wodi)
- Il (%5%0 + ¢5y5i’0 + é¢zu0 + 6§.byi)0) - 12 <¢z6¢x + ¢y6¢y)} dxdy

_ / ( Nunbtin + Npsdtg + Mypnbn + Mpsbds + Qnéwo) ds}dt (3.4.9)
Ly

where ¢ = q, + g, the stress resultants (Ngz, Nyy, Npy, Mys, Myy, Myy) and the
inertias (Iy, I1, I2) are as defined in Eq. (3.3.20), (Npn, Nus, Mpn, Mys) are as defined

in Eq. (3.3.29a,b), and
0 A
x 2 Ozxz
= d 3.4.10
{Qy} /_%{oyz} 2 ( a)

The quantities (Qz, Qy) are called the transverse force resultants.

Shear Correction Factors

Since the transverse shear strains are represented as constant through the laminate
thickness, it follows that the transverse shear stresses will also be constant. It
is well known from elementary theory of homogeneous beams that the transverse
shear stress varies parabolically through the beam thickness. In composite laminated
beams and plates, the transverse shear stresses vary at least quadratically through
layer thickness. This discrepancy between the actual stress state and the constant
stress state predicted by the first-order theory is often corrected in computing
the transverse shear force resultants (Q;,Q,) by multiplying the integrals in Eq.
(3.4.10a) with a parameter K, called shear correction coefficient:

{g:; } _ K _%% {ZZ } dz (3.4.10b)

This amounts to modifying the plate transverse shear stiffnesses. The factor K
is computed such that the strain energy due to transverse shear stresses in Eq.
(3.4.10b) equals the strain energy due to the true transverse stresses predicted by
the three-dimensional elasticity theory.

For example, consider a homogeneous beam with rectangular cross section, with
width b and height h. The actual shear stress distribution through the thickness of
the beam, from a course on mechanics of materials, is given by

2
-Safi (2], et
= 2bh h 27 T2

Q
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where () is the transverse shear force. The transverse shear stress in the first-order
theory is a constant, of, = @Q/bh. The strain energies due to transverse shear
stresses in the two theories are

1 3Q?
c __ c \2 _
Us TG /A (07.)" dA = 5G13bh

1 2 Q?
f_ f _
Ui =36n /A ("“) dA 2G 13bh

The shear correction factor is the ratio of U to US, which gives K = 5/6. The
shear correction factor for a general laminate depends on lamina properties and
lamination scheme.

Returning to the virtual work statement in Eq. (3.4.9), we substitute for
the virtual strains into Eq. (3.4.9) and integrate by parts to relieve the virtual
generalized displacements (ug, dvo, dwo, 8¢z, 6¢y) in Qp of any differentiation, so
that we can use the fundamental lemma of variational calculus; we obtain

T .
o= [ [ (e Ny~ o~ i)
_ (ny,x + Nyyy — Iotp — Ilg}gy) Svo
_ (wa,x + Myyy — Qu — Ingy — 11&0) Sbo
-

Mayz+ Myyy — Qy — Ly — 1150) Sy

- (Qx,z + Qy,y + N(’wo) +q— Iol'[)()) 6w0:i dxdy
+f ! / [ (Nun — Nun) St + (N — ) b1 + (@ — @n) b0
+ (M,m - Mm) S + (Mm - Mns) 5¢$] dsdt (3.4.11)

where N (wp) and P(wp) were defined in Eq. (3.3.24), and the boundary expressions
were arrived by expressing ¢, and ¢, in terms of the normal and tangential rotations,
(Pn, ¢s):

Gz = Ngdp — Nyds , Gy = NyOn + Nzbhs (3.4.12)

The Euler-Lagrange equations are obtained by setting the coefficients of dug,
dvg, dwo, ¢, and d¢, in Qg to zero separately:

ONgz  ONgy Oy | 0%,
: = I I
buo oz oy o T o
AN, ON, %vy ¢
v : 2y Yo, =
vo oz oy o Thae
0Q, 0Q 8%wyg
dwo : <Y = ly—=
wo 5 + By + N(wp) +q = I 5
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. OMy,  OMy, P, d*ug
8¢y o T 3y _Qz—I2W+IIW
OM,, OM, % 9%vo
6 . : zy —yy — oy [ —y I —_— .4.1
Oy 5r oy OvT Ry Thgn (3-4.13)

The natural boundary conditions are obtained by setting the coefficients of du,,
dug, dwyg, 6¢p, and d¢s on T to zero separately:

Nnn“Nnn:Oa an—an:O7 Qn‘QnZO

My — Mpp =0, Mps— Mps =0 (3.4.14a)

where

Qn = Qzng + Qyny + Plwy) (3.4.14b)

Thus the primary and secondary variables of the theory are

primary variables: Up, Us, WO, Pn, Pg
secondary variables: Ny, Nps, Qn, Mun, Mpg (3.4.15)

Note that Q;, defined in Eq. (3.4.14b) is the same as that defined in Eq. (3.3.31b).
This follows from the last two equations of (3.4.13).

The initial conditions of the theory involve specifying the values of the
displacements and their first derivatives with respect to time at t = 0:

0 0 0 0 0
Up =Up, Us = Ug, Wy = Wy, ¢n:¢)n7 ¢8:¢s
. .0 . N -0 0 10
Up =Uy, Us = Ug, W = Wq, ¢n = ¢n7 QSS = ¢S (3416)

for all points in Q.

3.4.3 Laminate Constitutive Equations

The laminate constitutive equations for the first-order theory are obtained using the
lamina constitutive equations (3.3.12a) and the following relations:

B 16y 0u1® (O e = gy (&)Y
Tyz _ | Qu Qs Yz | |[€1a €24 O
Tz 45 55 Yoz 15 25 E,
where [see Eq. (2.4.10)]
Qa4 = Quq 05> 0 + Qs5sin

Qa5 = (Qs5 — Qua) cos Osin §
Q55 = Qaasin® 0 + Qss cos? 0 (3.4.17b)

€14 = (€15 — eg4) sinf cosh, €zq = o4 cos? O + e15sin? 0

€15 = €15 cos® 6 + €94 sin? 0, e = (615 — 624) sin @ cos 8 (3417C)
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The laminate constitutive equations in Eqgs. (3.3.36) and (3.3.37) are valid also
for the first-order laminate theory. In addition, we have the following laminate

constitutive equations:

Oyz
{ } K Z / { Oz }
or 0 »
Qy — Ags Ags VYyz Q
{ o =K a4 0 Q?’ (3.4.18)
where the extensional stiffnesses A44, Ags, and Ass are defined by
%
(Aaa, Ass, Ass) = /h(Q44,Q45,Q55) dz
2
N ., B -
= Z/ kﬂ( z(llzcl)a z(llg)vQ55)) dz
k=1" %k
> ~(k) Ak)
= Z 44 > ¥45 5 55 )(Zk+1 - 2k) (3.4.19a)
k=
and the piezoelectric forces QF and Qf are defined by
(k)
N o1 Ts s k) [ &=
Qf} / M1 [E1s €24 0]
= _ _ & dz 3.4.19b
{Qf ,; 5 €15 €5 0 SZ ( )

When thermal and piezoelectric effects are not present, the stress resultants
(N’s and M’s) are related to the generalized displacements (ug, vo,wo, @z, Py) by

the relations

e OJwg
Nio A A Agg] 6_uQ +3 (aw )?
Nyy 0= 1 A1z Az Ags T 3 (G)?
Ngy Ag Az Ass 3—“Q + ‘9—”‘1 + %Q%Q
i, %
Bi1 B2 Bis 2r
+ | Bi2 B2 B En (3.4.20)
Bie B B ] 3¢-’c + 9
P o
Mgz By1 B2 Big | e T 2(_%)
My, $=|Bi By B 6”0 +5(%0)?
Mzy Big Bzs Bes ] 8—”9 + 3—"9 + ‘B‘;O %“;Q
; ¢z
D11 D12 Dis g)f
D12 Dy Do By (3.4.21)
Dig Do Degs | 6¢x + 64’1/
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an
Qy } [A44 A45] + by .
=K 3.4.22
{ Rz Ags Ass 8—“3’3 + ¢z ( )
When thermal and piezoelectric effects are present, Egs. (3.4.20) and (3.4.21)

take the same form as Eq. (3.3.40), and Eq. (3.4.22) will contain the column
of piezoelectric forces given in Eq. (3.4.18).

3.4.4 Equations of Motion in Terms of Displacements

The equations of motion (3.4.13) can be expressed in terms of displacements
(ug,vo, Wo, ¢z, ¢y) by substituting for the force and moment resultants from Eqs.
(3.4.20)-(3.4.22). For homogeneous laminates, the equations of motion (3.4.13)
take the form (including thermal and piezoelectric effects)

2 2 2 2
An (8 u0+8w08 w0>+A12(8 Vo +6w08w0)+

Ox? Ox 0Ox? Oyox Oy Oyox
Ao 9%uyg N 9%vy n 0wy Owy n Owo 0%wo
Oyor  0x* = 0x% Oy Ox Oyox

% - o2 92 - 920,
By ¢ + Bia ¢y+316< ¢'+ (b‘/)-i-

1022 Oyox Oxdy  Ox?
A 82’660 (‘9w0 82w0 627}0 + (9’11)0 82w0
0xdy  Ox Oxdy Oy? Oy 0y?
A 82u0 8200 827,00 811)0 8&’0 02100
66 oy  0x0y 0zdy Oy ox Oy
P e ¢y Pop | 020,
ch?:c@y + B Oy? + Bes By2 | Oyox |
ONL ~ ONJ, ONE  ONf, 0%ug 0?¢, ‘
<—8$ + oy )\ + ay |~ Io—— 72 +14 pYe (3.4.23)

\ ( vy Owo 3221)0)

8QU() Bwo 8211)()
A1g A
16 ( 0x? + Ox 0Ox2 + A Oyox + Oy Oyox

A <823u0 N vy 0*wg Owp N OJwyg 82100)

oyor T 0z° T 022 oy | oz Oydx
¢ d*¢ F¢y %0
Bis—~ + B Y +B z Y
107522 + 526 OyOx + Des Oxdy + 0x? +

2 2 2 2
A12<0 Ug +6w08 ZU()> +A22 (8 v0+8w08 ’LU())+

Ox0y  Ox Oxzdy oy? oy 0Oy?

OQUO 821)0 8211}0 8w0 8w0 32’11)()
Asg + +
oy2  Oxdy Oxdy Oy ox 0y?
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¢y o, Fhs | 079y
31288 +B2282+32 3y2+3x8y —

P
ONG, | ONL\ (9N ONR\ w9,
Ox oy ox Oy ot?

(3.4.24)

2 o 2 0

oQr 8@5) Py

N(w) +q — <a—:f 5 (3.4.25)

82UO awo 62100 82’U0 8w0 82w0
B B
1 <3x2 Tz 022 ) T2\ Gyar T oy oo ) T

B 82u0 + 82’00 82w0 8’(1)0 ng 32’1110
Oyoxr = 0x? 0x? Oy Oz Oyox

82¢m 02¢y a2¢$ 82(752’!
Du ox? * D128y8x + D Oxdy + ox? i

82UQ 811)0 62w0 82’1}0 (921)0 62100

B B
16 <8$0y+ oz dazoy | T\ 52 T oy a2 )T

B 82u0 + 821)() 62100 6’(1}0 8w0 (9211)0

0y?  0xdy Oxdy Oy or Oy?

% %9y 9%¢ %
xZ D X Y _

Disgzay T P25 00\ G + 50,

8’&)0

ow
K Ass <_8—:}:2 +¢r ) — KAss ( + ¢y)
T

aMxm aMg;/ 8M91;: 8 P P
<6x - 8y>_<8a¢ Ty @

024, 0*u
afg + =2 (3.4.26)

ug  Owg 0%wy vy dwg wy
Blﬁ(axz * 0z a2 ) TP\ oyar T oy oyor ) T

B 8211,0 4 82?)0 + 32100 8?1}0 6w0 82100
Oyoxr  Ox? ox? Oy Ox Oyox

% by %, ¢y 0%y
Diegz + Prsga, + Do |\ 500, + 502 | T

=1
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82u0 (911)() 3211)0 82’00 8w0 32w0
B
12 (8:683/ T o awoy ) T2\ B2 T ey a2 ) T

82u0 82’00 02w0 8w0 awo 82w0
B +
oy  0xz08y Ox0y Oy ox Oy?

62 - 82 2 . 82
DIQi +D22 ¢y + D26 <8 ¢ + d)y) —

Oxdy Oy? oy Ozdy
dwyg Owg
K Ays <E + ¢z> — KAy <Ty + ¢y> -
8MzTy N 8M£ B 8M£J N 8M£, _or
Ox Oy Oz dy Y
9% 0%y
=1 YT 4.27
2o T (3.4.27)

Equations (3.4.23)—(3.4.27) describe five second-order, nonlinear, partial
differential equations in terms of the five generalized displacements. Hence,
the first-order laminated plate theory is a tenth-order theory and there are ten
boundary conditions, as stated earlier in Eqs. (3.4.14) and (3.4.15). Note that the
displacement field of the classical plate theory can be obtained from that of the
first-order theory by setting

Gz = 5, ond by =5 (3.4.28)

Conversely, the relations in Eq. (3.4.28) can be used to derive the first-order theory
from the classical plate theory via the penalty function method (see Chapter 10).

Example 3.4.1:

The linearized equations of motion for cylindrical bending according to the first-order shear
deformation theory are given by setting all derivatives with respect to y in Egs. (3.4.23)-(3.4.27):

e R T

=1 862;0 +1 a;j;z (3.4.29)
o+ oo+ PuoS e B - T - O

= I 0;1;0 +1 8;:;’!1 (3.4.30)
311(?;;20 + Big %2:20 + D1y %ijz + D1g O;;;y — K Ass (% + ¢z)
— K Ay56, — 8154} - 8](;450 +QF =1, 0;21 + I 8;;;0 (3.4.31)
Big %2;20 + Bee 882;20 + Dis 8;{;[ + Dgg d;;z;y — KAy
- KA (% + %) - azg}, - 8](;/;’1’1 +Qp =1 a;:;y +1 882;;0 (3.4.32)
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52,
K Ass (d 2o 4+ 6¢T> +KA456;¢;J +(,—% (N Bwo)

Ox? ox 0 oz
aQr 82wq
_ z 4.
+gq e Iy 512 (3.4.33)

3.5 Laminate Stiffnesses for Selected Laminates

3.5.1 General Discussion

A close examination of the laminate stiffnesses defined in Eqs. (3.3.38) and (3.4.19a)
show that their values depend on the material stiffnesses, layer thicknesses, and
the lamination scheme. Symmetry or antisymmetry of the lamination scheme and
material properties about the midplane of the laminate reduce some of the laminate
stiffnesses to zero. The book by Jones [44] has an excellent discussion of the laminate
stiffnesses for various types of laminated plates. In this section, we review selective
lamination schemes for their laminate stiffness characteristics.

Before we embark on the discussion of laminate stiffnesses, it is useful to introduce
the terminology and notation associated with special lamination schemes. The
lamination scheme of a laminate will be denoted by («a/3/v/6/¢/---), where « is
the orientation of the first ply, 3 is the orientation of the second ply, and so on (see
Figure 3.5.1). The plies are counted in the positive z direction (see Figure 3.3.1).
Unless stated otherwise, this notation also implies that all layers are of the same
thickness and made of the same material.

A general laminate has layers of different orientations 6 where -90° < 0 <
90°. For example, (0/15/-35/45/90/--45) is a six-ply laminate. General angle-ply
laminates (see Figure 3.5.2) have ply orientations of § and -6 where 0° < 6§ < 90°,
and with at least one layer having an orientation other than 0° or 90°. An example

I

bo |3

>l
Y

DO | >

|

Figure 3.5.1: A laminate with general stacking sequence.
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of angle-ply laminates is provided by (15/-30/0/90/45/-45). Cross-ply laminates
are those which have ply orientations of 0° or 90° (see Figure 3.5.3). An example of
a cross-ply laminate is (0/90/90/0/0/90). For layers with 0° or 90° orientations, the
layer stiffnesses Q16, Q26, Qa5 are zero. Hence, A = Agg = Ays = Dig = Dag = 0.

When ply stacking sequence, material, and geometry (i.e., ply thicknesses) are
symmetric about the midplane of the laminate, the laminate is called a symmetric
laminate (see Figure 3.5.4). For a symmetric laminate, the upper half through
the laminate thickness is a mirror image of the lower half. The laminates (-
45/45/45/-45)=(-45/45)s and (45/-45/-45/45) = (45/-45),, with all layers having
the same thickness and material, are examples of a symmetric angle-ply laminate,
(0/90/90/0) = (0/90) is a symmetric cross-ply laminate, and (30/-45/0/90,/90/0/-
45/30)=(30/-45/0/90); is a general symmetric laminate.

t, &

AN
[N}
o |

(
)
(
)

Y
8

=

/
(
\

DO

05008008

9

\ I

Figure 3.5.2: A general angle-ply laminate.

Do |~

] \_//\\_/'\

DO

19 S(S1SC/SHONS)

N—r"1

Yz

Figure 3.5.3: A cross-ply laminated plate with the 0° and 90° layers.
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2

2
173

> x

tk+1=tk

h
tr 1=ty 2
ty=t;

Y.

Figure 3.5.4: A symmetric laminate.

Note that symmetric laminates are also denoted by displaying only the lamination
scheme of the upper half. The symmetric laminate (—25/35/0/90/90/0/35/-25) is
denoted as (-25/35/0/90),.

An unsymmetric or asymmetric laminate is a laminate that is not symmetric.
An antisymmetric laminate is one whose lamination scheme is antisymmetric
and material and thicknesses are symmetric about the midplane. Examples of
antisymmetric angle-ply and cross-ply laminates are provided, respectively, by (-
30/30/-30/30/-30/30)= (-30/30)3 and (0/90/0/90/0/90)= (0/90)s.

Laminate stiffnesses A;; depend on only on the thicknesses and stiffnesses of
the layers but not on their placement in the laminate. On the other hand, laminate
stiffnesses D;; depend not only on the layer thickness and stiffnesses but also on their
location relative to the midplane. For example, both (0/90), and (90/0)s laminates
will have the same in-plane stiffnesses A;;. However, (0/90), laminate will have
larger bending stiffnesses D;; about an axis perpendicular to the fiber direction than
the (90/0)s laminate, because the 0° layers are located farther from the midplane in
the (0/90), laminate. Both A;; and D;; are always positive. Laminate stiffnesses B;;
also depend on the layer thickness, stiffnesses and location relative to the midplane,
and they can be negative, depending on the lamination scheme and the number of
layers.

3.5.2 Single-Layer Plates

Here we discuss some special cases of single-layered configurations and their
stiffnesses. The special single layer plates discussed here include: isotropic, specially
orthotropic (i.e., the principal material coordinates coincide with those of the plate),
generally orthotropic (i.e., the principal material coordinates do not coincide with
those of the plate), and anisotropic. The bending-stretching coupling coefficients
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B;j and the shear stiffnesses A6, Age, D1, and Dgyg can be shown to be zero for
all single-layer plates except for generally orthotropic and anisotropic single-layer
plates. The units of N; and M;, in the U.S. Customary System (USCS), are lb-in.
and lb-in/in., respectively.

Single Isotropic Layer

For a single isotropic layer with material constants F and v [G = 5(—1%/—)] and
thickness h, the nonzero laminate stiffnesses of Egs. (3.3.38) and (3.4.19a) become

Eh 1—v 1-v
An = ——, A2 =vAn, Ax = An, A = Anr, Ag = Ass = A
1-v 2 2
En3 1-v
Dy = ——" _ Diy=wvDi, Dy = Di1, Dgs = D 3.5.1
U ) 12 =vD11, D2 11, Des 11 (3.5.1)
The plate constitutive equations for the classical and first-order theories become
Nz [ An vAn 0 el
Nyy = I/Au All . 0 EZ(!(?)/) (lb/m) (352)
val LN T e 10
My} [Du wDy 0 o
My ¢ =|vDn Du 0 ely) ¢ (Ib-in/in.) (3.5.3)
—v
Ma:y 0 0 T-Dll 721)
0)
Qyl _ p1—-V[An O ’Yggz .
{Qm =K 5 0 Ap %(3) (Ib-in) (3.5.4)
The nonzero thermal stress resultants {N7} and {M7T} are given by
Ea 3 Ea 3
T _ NT _ T _ T _
N =N = § AT dz, ME, = My, = =5 y ATz dz  (3.5.5)

Single Specially Orthotropic Layer

For a single specially orthotropic layer, the stiffnesses can be expressed in terms
of the @;; and thickness h. The nonzero stiffnesses of Eqgs. (3.3.38) and (3.4.19a)

become

A1 = Quih, Az = Qi2h, Az = Q2h
Ass = Qesh, Agq = Qaah, Ass = Qss5h

Q11h3 Q12h3 Qaoh3 Qesh®
Dy , D12 12 Doy 15 Des 12

where Q;; are the plane-stress-reduced stiffnesses, and they are given in terms of
the engineering constants [see Eq. (3.3.11b)] as

(3.5.6)

E vy E
QH:—I—‘* QlQ_L 2

) - ) 22 —
1 — 11900 1 — vy9v9 1 — 11909
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Qo6 = G12, Qua = G2, Q35 = G13 (3.5.7)
The plate constitutive equations for the classical and first-order theories become
N, T Qll Q12 0 5%3%
Nyy 0 =h Q2 Q2 0 ey (3.5.8)
Nzy 0 0 Q66 'Ya(f:(;)
My B3 Qu Q2 0 5%33;
My, ¢ = 2 Q12 Q22 O Eyy (3.5.9)
Mg, 0 0  Qes %(:ly)
Qy } [Q44 0 J "o
=Kh 3.5.10
(o 0 Qs |40 (3:5.10)
The nonzero thermal stress resultants are given by
NL Q11 Q12] { Qi } 3
o= AT d 3.5.11
{ N, } [Qm @] laz) /) & ‘ ( 2)
R

Uird=as GHa) o oo

Single Generally Orthotropic Layer

For a single generally orthotropic layer (i.e., the principal material coordinates do
not coincide with those of the plate), the stiffnesses can be expressed in terms of the
transformed coefficients @;; and thickness h. The nonzero stiffnesses are (B;; = 0)

_ V. h3 _ _
Aij = Qijh, Dy = Qzljz s Aga = hQua, Ass = hQss (3.5.12)
The plate constitutive equations are
Nzg (A Az A 6%)
Nyy = A12 A22 A26 E]Sy) (3513)
Ny | A1 Aze  Aes ryﬂ(cg)
Mgy [ D1y D12 Dis E%c)
My, 8= | D12 Dy Do | { el (3.5.14)
Mgy | D16 D2 Des @
Qy } [A44 A45] 7152)
=K 3.5.15
{ Qa Ass Ass| | A9 ( )

The thermal stress resultants for this case are given by

Ngz Qu le Qm Qgy
Nj &= Qiz Q2 Q% ayy o [

) ATd> (3.5.16)
NL, Qe Q26 Qo6 | 20y

roj (ST
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A similar expression holds for {MT}.

If the temperature increment is linear through the layer thickness, AT = Ty+2T4,
the thermal stress resultants have the form

N%;I: [Qu Q12 Qi) [ s
Ngy ¢ =1Q12 Q2 Qo ayy ¢ Toh
NI, LQIG Qo6 Qo] | 20y
M, Qi1 Q2 Q6] [ Qax 3
T ~ =~ = T}h
My, +=|Qi2 Qa2 Q% Qyy 5 (3.5.17)
M, [ Q16 Q26 Qosl \ 20y

Single Anisotropic Layer

For a single anisotropic layer, the stiffnesses are expressed in terms of the coefficients
C,; and thickness h. The nonzero stiffnesses are (Bj; = 0)

Ci;h?
12

Aij = Cijh., Dij = (3518)

for i, = 1,2,3,4,5 and 6 [see Eq. (2.4.3a)]. The plate constitutive equations are
the same as in Egs. (3.5.13)-(3.5.16) with the plate stiffnesses given by Eq. (3.5.18).

Example 3.5.1:

The material properties of boron-epoxy material layers are
Ey, =30 x 106 psi, By = E5 =3 x 10°% psi, Gip = G13 = 1.5 x 10° psi

Goz = 0.6 x 10° psi, v15 =0.25, 113 = 0.25, ve3 = 0.25 (3.5.19)

The matrix of elastic coefficients for the material is [see Eq. (1.3.44)]

30.508 1.017 1.017 O 0 0
1.017 3.234 0834 O 0 0
] = 1.017 0.834 3.234 O 0 0 msi
0 0 0 06 0 0
0 0 0 0 15 0
0 0 0 0 0 1.5

The plane stress-reduced elastic coefficient matrix in the material coordinates is

30.189 0.755 O 0 0
0.755 3.019 0 0 0

Q] = 0 0 06 0 0 | msi
0 0 0 15 0
0 0 0 0 1.5

The transformed stiffness matrix [Q] for 8 = 60° is given by

4.993 5573 0 0 3101
5.573 18578 0 0 8664

Qo= | O 0 1275 0.390 0 msi
0 0 039 0825 0

3.101 8.664 0 0 6.318
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The laminate stiffnesses A;; and D;; for 4,57 = 1,2,6 may be computed using Eq. (3.5.12). The
transverse shear stiffnesses Ay, Ags, and Ags are given by A;; = Qq;h for 4,5 =4,5.
Suppose that the thermal coefficients of expansion of the material are

a1 =2.5x107% in./in./°F , ap =8.0 x 1078 in./in./°F (3.5.20)

The transformed coefficients are
Qg 6.625
Qyy =<{ 3875 3 x107% in./in./°F
20y ) goo —4.763

3.5.3 Symmetric Laminates

When the material properties, locations, and lamination scheme are symmetric
about the midplane, the laminate is called a symmetric laminate. If a laminate is not
symmetric, it is said to be an unsymmetric laminate. Due to the symmetry of the

layer material coefficients Ql(f) , distances zx, and thicknesses hy about the midplane
of the laminate for every layer, the coupling stiffnesses B;; are zero for symmetric
laminates (see Figure 3.5.5). The elimination of the coupling between bending
and extension simplifies the governing equations. When the strain-displacement
equations are linear, the equations governing the in-plane deformation can be
uncoupled from those governing bending of symmetric laminates. Further, if there
are no applied in-plane forces or displacements, the in-plane deformation (i.e.,
strains) will be zero, and only the bending equations must be analyzed. From
production point of view, symmetric laminates do not have the tendency to twist
from the thermally induced contractions that occur during cooling following the
curing process.

DO | >~

> x

Ptag-

N |

V.

Figure 3.5.5: A symmetric cross-ply laminate.
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The force and moment resultants for a symmetric laminate, in general, have
the same form as the generally orthotropic single-layer plates [see Eqs. (3.5.13)-
(3.5.15)]. For certain special cases of symmetric laminates, the relations between
strains and resultants can be further simplified, as explained next.

Symmetric Laminates with Multiple Isotropic Layers

When isotropic layers of possibly different material properties and thicknesses are
arranged symmetrically from both a geometric and a material property standpoint,
the resulting laminate will have the following laminate constitutive equations for
the classical or first-order theories:

NI:E -All A12 0 Efgi]ﬂ)
Ny 0= |An Ay 0 |[{ Y (3.5.21a)
Ny [0 0 Aes] |40
My [Din D1z 0 esa
My, p=|Dip Dy 0 |{elY (3.5.21b)
Mo ) L0000 Desl |40
0
Qyl _ p|Aa O Yyz
{Qz =K 0 Ass] |49 (3.5.21c¢)

where the laminate stiffnesses A;; and D;; are defined by Eqs. (3.3.38) and (3.4.19a)
with

E
Qn _Q22 = 7_ le —Q26 =
S _ B Sy At _ Ak B
— = - 3.5.22
QlQ 1— l/g ) 44 Q Q66 2(1 4 I/k) ( )

The thermal stress resultants for this case are given by
T L Zk I ) (k')
{%%3 } = Z/ - [Q“ 912] {a” } AT dz (3.5.23)
vy Zia Q12 Qu Qyy

and similar expression holds for {M7T}.
If AT =Tp + 217, then Eq. (3.5.23) can be written as

NL An A12}{azac} {MT } [Du D12}{O¢m}
T T 3.5.24
{ NT } 0 [AIQ A22 Oy MT 1 DlQ DQQ Qyy ( )
Symmetric Laminates with Multiple Specially Orthotropic Layers

A laminate composed of multiple specially orthotropic layers that are symmetrically
disposed, both from a material and geometric properties standpoint, about the
midplane of the laminate does not exhibit coupling between bending and extension
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i.e., B;; = 0. The laminate constitutive equations are again given by Egs. (3.5.21a-
c), where the laminate stiffnesses A;; and D;; are defined by Egs. (3.3.38) and
(3.4.19a) with

o . i Ty
1 = ) = ) =
1- sz’/écl 1— Vf2’/§1 1- sz’/gl
~(k ~(k ~(k ~(k ~(k
Qge‘) =0, Qgﬁ) =0, Qéo‘) = G’f2, 514) = G’263, gs) = G]fs (3-525)

Such laminates are also called specially orthotropic laminates. The thermal stress
resultants have the same form as those given in Eq. (3.5.23).

A common example of specially orthotropic laminates is provided by the regular
symmetric cross-ply laminates, which consist of laminae of the same thickness and
material properties but have their major principal material coordinates (i.e., x;
and z2) alternating at 0° and 90° to the laminate axes z and y: (0/90/0/90/---).
The regular symmetric cross-ply laminates necessarily contain an odd number of
layers; otherwise, they are not symmetric. Of course, a general symmetric cross-ply
laminate can have either an even or odd number of layers: (0/90/0/90/90/0/90/0)
or (0/90/90/0/0/90/90/0) (see Figure 3.5.5).

Symmetric Laminates with Multiple Generally Orthotropic Layers

Laminates can be composed of generally orthotropic layers whose principal material
directions are aligned with the laminate axes at an angle 6 degrees. If the thicknesses,
locations, and material properties of the layers are symmetric about the midplane
of the laminate, the coupling between bending and extension is zero, B;; = 0, and
the laminate constitutive equations are given by Egs. (3.5.13)—(3.5.15). Note that
the coupling between normal forces and shearing strain, shearing force and normal
strains, normal moments and twist, and twisting moment and normal curvatures is
not zero for these laminates (i.e., Aip, A2, D16, and Dag are not zero). An example
of a general symmetric laminate with generally orthotropic laminae is provided by
(30/-603/155/-603/30), where the subscript denotes the number of layers of the
same orientation and thickness.

Regular symmetric angle-ply laminates are those that have an odd number of
orthotropic laminae of equal thicknesses and alternating orientations: (a/-a/a/—
aja/---), 0° <o < 90° (see Figure 3.5.6). A general symmetric angle-ply laminate
has the form (8/8/~/---)s, where 6, 3, and v can take any values between —90° and
90°, and each layer can have any thickness, but they should be symmetrically placed
about the midplane. It can be shown that the stiffnesses A1g. Agg, D1g, and Dog of
a regular symmetric angle-ply laminate are the largest when the number of layers
N is equal to 3, and they decrease in proportion to 1/N as N increases. Thus, for
symmetric angle-ply laminates with many layers, the values of Aig, A2, D1g, and
Dag can be quite small compared to other A;; and D;;.

A laminate composed of multiple anisotropic layers that are symmetrically
disposed about the midplane of the laminate does not have any stiffness
simplification other than B;; = 0, which holds for all symmetric laminates.
Stiffnesses A6, A26, D16, and Dgg are not zero, and they do not necessarily go
to zero as the number of layers is increased.
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Figure 3.5.6: A symmetric angle-ply laminate.

In general, symmetric laminates are preferred wherever they meet the application
requirements. Symmetric laminates are much easier to analyze than general or
unsymmetric laminates. Further, symmetric laminates do not have a tendency to
twist due to thermally induced contractions that occur during cooling following the
curing process.

Example 3.5.2:

A general symmetric laminate (30/0/90/-45), of total thickness 1 in. and made of boron-epoxy
layers [see Eqgs. (3.5.19) and (3.5.20) for material properties] has the following laminate stiffnesses:

15491  3.565  0.468 1.683 0.303 0.409
[A]=| 3.565 12.095 —0.923|10° Ib/in., [D]= |0.303 0.604 0.141 | 105 Ib-in.
0.468 —0.923  4.311 0.409 0.141 0.366

The transverse shear stiffnesses are (in 106 1b/in.)
Agq = 09938, Ays =-0.0151, Ag5=1.1063

The thermal stress resultants are (T # 0,77 = 0)

NZT, 57.241 M, 0
NI %=1 50.307 3 106Ty Ib/in., ¢ MT 3 =< 0 p Ib-in./in.
NI, -0.929 MZ, 0

A symmetric cross-ply laminate (0/90/0/90), of boron-epoxy layers has the stiffnesses
16.604 0.755 O 1.808 0.063 0

0.755 16.604 0 | 108 1b/in., [D]= [0.063 0.959 0 | 105 Ib-in.
0 0 L5 0 0 0125

(A} =

The transverse shear stiffnesses are (in 108 1b/in.)

A44 == 105, A45 = 00. A55 = 1.05
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Note that the cross-ply laminate considered here is equivalent to (0/90/0/90/0/90/0) where all
layers except the middle layer having a thickness of /8 and the middle layer (90) has a thickness
of h/4; here h is the total thickness of the laminate.

A symmetric angle-ply laminate (30/-30/45/-45) of boron-epoxy layers has the stiffnesses

14.379 6.376 0 1.461 0.481 0.256
[A]=| 6376 7.586 0 |10%Ib/in., [D]= |0.481 0.470 0.126 | 105 Ib-in.
0 0 7122 0.256 0.126 0.543

The transverse shear stiffnesses are

Agq = 0.9375 x 10% 1b/in., Ags = 0.0 Ib/in., Ass = 1.1625 x 10° 1b/in.

Example 3.5.3:

Consider a symmetric laminate (0/90)s made of boron-epoxy layers of thickness 0.005 in. Suppose
that the laminate is subjected to loads such that it experiences only nonzero strain of €2 = 103
in./in. We wish to determine the forces and moment resultants.

The only nonzero strain is €z = EQ(D?E). Hence the force resultants in the laminate are given by

sz All A12 0 Eig)
Nyy ¢ = | A2 Aaz 0 6152)

Nay 0 0 Agl (4@
0.3321 0.0151 0 1,000 332.1
= [ 0.0151 0.3321 0 0 = 15.1 Ib/in.
0 0 0.03 0 0

All moments will be zero on account of the fact that there are no bending strains and the coupling
stiffnesses B;; are zero.

Now suppose that the laminate is subjected to loads such that it experiences only nonzero strain
of 5&) = 0.1. Hence, the only nonzero strain is €,, = sgﬂ)z. Then the force resultants are zero, and
the moment resultants are given by

M. Dy Dip 0O ell)
Myy p=1|D12 Dy O 8,%,)

Mgy 0 0 Desl | 4D
17.862 0.503 07 (0.1 1.7862
=| 0503 4.277 0|< 0.0 p» =< 0.0503 % Ib-in./in.
0 o 1] Loo 0

3.5.4 Antisymmetric Laminates

Although symmetric laminates are more desirable from an analysis standpoint, they
may not meet the design requirements in some applications. For example, a heat
shield receives heat from one side and thus requires nonsymmetric laminates to
effectively shield the heat. Another example that requires coupling is provided by
turbine blades with pretwist. Moreover, the shear stiffness of laminates can be
increased by orienting the layers at angle to the laminate coordinates.

The general class of antisymmetric laminates must have an even number of
orthotropic laminae if adjacent laminae have equal thicknesses and alternating
orientations: (6/-6), 0° < # < 90°. Due to the antisymmetry of the lamination
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scheme (see Figure 3.5.7) but symmetry of the thicknesses of each pair of layers, this
class of antisymmetric laminates has the feature that Ajg = Agg = Dig = Dag = 0.
The coupling stiffnesses B;; are not all zero; they go to zero as the number of layers
is increased. Foa general antisymmetric laminate, the relations between the stress

resultants and the strains are given by

A A O

Ny 5101) By Bz Big
Ny, ¢ = |A12 Az O 8?(,y + | Biz2 B2 B
ny 0 0 A66 79(:%) B16 B26 BGG
0
Mz, Bi1 B2 Bis 5%5:) Dy D2 O
Myy = BlZ ng B26 €yy) + D12 D22 0
My, Big DBz Bes 7;‘3 0 0 Des
(@) -slr 2108
Qq 0 Ass| |49
The thermal force resultants are given by
N7, L iz Qu Qu2 Qw (k) Qgy (k)
L ¢ %
Ny, 22 / Q12 Q2 Q% Qyy ATdz
NI, k=1"%k Qe Q2 Qoo 201y
Similar expression holds for {MT}.
x5
ty
£ h
2
b Y -
I -
Lpa1=th
h
tp =tz 2
tp=t,

Figure 3.5.7: An antisymmetric laminate.

(3.5.27)
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In the following pages, we discuss some special cases of the class of antisymmetric
laminates described above (i.e., laminates that have an even number of orthotropic
laminae, each pair having equal thicknesses and alternating orientations).

Antisymmetric Cross-ply Laminates

A special case of antisymmetric laminates are those which have an even number
of orthotropic layers with principal material directions alternating at 0° to 90° to
the laminate axes. Such laminates are called antisymmetric cross-ply laminates.
Examples of antisymmetric cross-ply laminates are (0/90/0/90/ - --) with all layers
of the same thickness, and (0/90/90/0/0/90) with layers of the thicknesses
(h1/ha/h3/h3/ha/h1). Note that for every 0° layer of a given thickness and location,
there is a 90° layer of the same thickness and location on the other side of the
midplane (see Figure 3.5.8). For these laminates, the coupling stiffnesses B;; have
the properties

Bso = —Bi1, and all other Bij =0 (3.5.28)

The relations between the stress resultants and the strains are

Nz (A1 Az O Ea(v?a]v) B 0 0 €33

Nyy ¢ = | A1z Az 0 @Y+l 0o -By 0 el

Noy) L0 0 4] 40 0o o of [,
(3.5.29a)

M, ‘B, 0 0 5%) Dy D 0 eé})

My,t=|0 -By 0 &5,16) + D1y Dy 0 Eggl)

My, Lo 0 o] [LO 0 0 Del [0
(3.5.29b)

Qy Ay O 'Yz(/g)

{QZ}ZK[ 0 A55] N0 (3.5.30)
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Figure 3.5.8: An antisymmetric cross-ply laminate.
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A regular antisymmetric cross-ply laminate is one that has an even number of
layers of equal thickness and the same material properties and which have alternating
0° and 90° orientations. For these laminates, the coupling coefficient By approaches
zero as the number of layers is increased.

Antisymmetric Angle-ply Laminates

An antisymmetric angle-ply laminate has an even number of orthotropic layers with
principal material directions alternating at 6 degrees to the laminate axes on one side
of the midplane and corresponding equal thickness laminae oriented at —6 degrees on
the other side. When § = 0, —6 should be interpreted as 90° or vice versa. A regular
antisymmetric angle-ply laminate is one that has an even number of layers of equal
thickness and material properties. An example is given by (-45/40/-15/15/-40/45).

For antisymmetric angle-ply laminates without 90° layers, the stiffnesses can be
simplified as

Ag = Agg = D1g = Dog = 0; Biy = By = Big = Bgg =0 (3.5.31)
The relations between the stress resultants and the strains are
Nig (A A 07 (e 0 0 Bl [
Ny p=1Ain Ay 0 [{D P4+ 0 0 Byl|{eld)? (3532
Ne) Lo 0 Al |,0) B Bs 0] |,0
Mzac [0 0 BIG- 65:2:) -Dll D12 0 Egzlx)
My 6=10 0 By|{el) p+|Dia D 0 | el b (3533)
M. zy | Big Bog 0 | ’Y:S:?/) L 0 0 Dgg ’Yu(v%/)
Qy} {A44 0 } %(/2)
=K 3.5.34
{ Qz 0 A55 %(f? ( )

For a fixed laminate thickness, the stiffnesses B1g and Bag go to zero as the number
of layers in the laminate increases.

Example 3.5.4:

A regular antisymmetric cross-ply laminate (0/90/0/90/0/90/0/90) of boron-epoxy layers has the
laminate stiffnesses

16.604 0.755 0 ‘ -0.849 0 0
[A]=| 0.755 16.604 0 |10 Ib/in., [B] = 0 0.849 0 10° b

0 0 1.5 0 0 0

1.384 0.063 0 Ags 1.050)

[D]= (0063 1384 0 [1081b-in, { Ay » = 0 108 Ib/in.
0 0 0125 Ass 1.050

Note that if the same 0° and 90° layers are positioned differently, say (0/90/90/0/90/0/0/90), then

the coefficients B;; would vanish (why?).

An antisymmetric angle-ply laminate (-45/45/30/0/0/ -30/-45/45) of boron-epoxy layers has
the laminate stiffnesses

17.281 5.172 0

0 0 -0194]
[A]=] 5172 7.093 0 |10%Ib/in., [B] = 0 0 0.067 | 10% b

0 0 5.917 —0.194 0.067 0
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0.951 0.575 0 Ayy 0.881

[D]=10575 0792 0 |10%Ib-in., { Ass » = 0 109 1b/in.
0 0  0.637 Ass 1.219

A general antisymmetric laminate (30/0/90/45)as = (30/0/90/-45/45/ 0/90/-30) of total

thickness 1 in. and composed of boron-epoxy layers has the following laminate stiffnesses and
thermal resultants:

15491 3565 0 ~0425 0  —0.842
[A] = [ 3.565 12.095 0 } 108 Ib/in., [B] = [ 0 0.425 _0.233] 108 1b
0 0 4311 —0.842 -0.233 0
1470 0303 0 Aga 0.9938
[D] = l0.303 0.816 0 ] 108 1b-in., {A45} :{ 0 }1061b/in.
0 0 0.366 Ass 1.1063

NZ, 5573.6 MT, 48.113

_ 6 . _ 6 . .
NI & =4 59585 »10° Ib/in,, MZL, > =< —48.113 5 10° Ib-in./in.
NI 0 MT, 121.78

3.5.5 Balanced and Quasi-Isotropic Laminates

A laminate is said to be balanced if for every layer in the laminate there exists,
somewhere in the laminate, another layer with identical material and thickness but
opposite fiber orientation. The two layers are not necessarily symmetrically located
with respect to the midplane. Thus, the unsymmetric laminate (+35/0)r =(35/—
35/0) as well as the symmetric laminate (+£35/0)s are balanced laminates. The
characteristic feature of any balanced laminate is that the in-plane shear stiffnesses
Ai1e and Agg are zero. The reason is that Q16 and QQo¢ from opposite orientations of
the pair of layers are of opposite sign and therefore the net contribution from the
pair to A1 and Asg is zero:

(Qi6)g = — (Q16)(_g), (Q26)g = — (Q26)(_g)

For a general balanced laminate, the laminate constitutive relations are not that
much simpler than for a general laminate. However, for a symmetric balanced
laminate they are given by Egs. (3.5.13)—(3.5.15) with A1 = Agg = 0.

Laminates consisting of three or more orthotropic laminae of identical material
and thickness which are oriented at the same angle relative to adjacent laminae
exhibit in-plane isotropy in the sense that A;; = A2, Ags = (A11 — A12)/2, and
Aie = Age = 0. Such laminates are called quasi-isotropic laminates. Examples
of quasi-isotropic laminates are provided by (90/45/0/-45) and (60/0/-60) (see
Example 3.3.2). When the bending-stretching coupling coefficients are zero, the
relations between force resultants and membrane strains are the same as those for
isotropic plates. The stress resultants are given by

Ny Al A 0 5%)5)6)
Nyy = A12 AH 0 E?(,;y)
Nzy 0 0 (All — Alg)/Q ’Ygg};)
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Problems

3.1 Suppose that the displacements (u,v,w) along the three coordinate axes (z,9,2z) in a
laminated beam can be expressed as

u(z,z) = up(z) + 2 |co ddwo +01¢(I)]
v(z,2) =0
w(z, z) = wo(z) (1)

where (up,wp) denote the displacements of a point (z,y,0) along the z and z directions,
respectively, and ¢ denotes the rotation of a transverse normal about the y—axis. Show that
the nonzero linear strains are given by

Exx = Ez,) + zegr), 262, = 26(0) (2a)

where

( _dug (1) _ d<1>

Exx dCE y Ex _CO dI2

046,22 29 = (14¢ )~+c1¢ (2b)

3.2 (Continuation of Problem 3.1) Use the principle of virtual displacements to derive the
equations of equilibrium and the natural and essential boundary conditions associated with
the displacement field of Problem 3.1, when the beam is subjected to axial distributed load
p(z) and transverse distributed load g(x). In particular, show that

ANy

bug : =0
4o dx tp
d
6¢ %(c]Mxx)_lea: =0
d? dQ.
511)0 : m(COJ\Jzz)—(I-i-Co)W—q:O (3)
and the boundary conditions are of the form
Ng;gz or ug
c1Mzx or ¢
d
s (coMzz) + (1 +¢9)Qx or wy
d’wg
cogMyy or iz (4)
where
Nz = / [o dA, M., = / OgxZ dA, Q:r = / 0z, dA (‘5)
A A A
Note that the displacement field (1), hence the equations of equilibrium (3), contain those
of the classical (Euler-Bernoulli) beam theory (¢ = —1, ¢; = 0) and the first-order

(Timoshenko) beam theory (cg =0, ¢; = 1).

3.3 (Continuation of Problem 3.1) Assume linear elastic constitutive behavior and show that the
laminated beam’s constitutive equations are given by

sz _ All Bll gz(t(i) — ( )
{sz } - [311 Dy | Y Qo = 2Ag5ce (62)
where
(A11,B11,D11) =/ Ei(1,2,2%) dA, A55=/G13 dA (6b)
A A
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3.4

3.5

3.6

3.7

MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

The 3-D equilibrium equations of a kth layer, in the absence of body forces, can be expressed
in index notation as
do5p | Ooks
Ga:ﬁ 69:3

=0 ()

dok,  dok,
Oz Ox3 v (2)

where summation on repeated subscripts (o, = 1,2) is implied. Integrate the equations
over the thickness (zx,2zp+1) With respect to z = x3 to obtain:

aN )
“ag (k+1) ) —
Ty +o o, =0 (3)
50k
;2 +olst ol =0 (4)
for k=1,2,---,N and ,3 = 1,2 (z; = 2,79 = y,x3 = 2z), where N is the total number of
layers, and
ZE+1 Zk+1
(NCE’;),M( >) / (1,2)0%) dz, Q% :/ o) dz (5)
2K Zk
o = 0i;(zp, 2) (6)
(Continuation of Problem 3.4) Multiply the equilibrium equations

aaiﬁ dogs _
8:::/, + (9123 -

with z and integrate over the lamina thickness to obtain the third equation

oM
8;; + U(k+1)z il — Ut(llij)zk —Qk=0 (2)

Starting with a linear distribution of the displacements through the laminate thickness in
terms of unknown functions (ug, vg,wq, F1, Fa, F3)

u(z,y,2,t) = uo(z,y,t) + 2Fi(z,y,t)
v(w,y,z,t) = 110(30, y»t) + ZFZ(:E» y»t)
w(m,y,z,t) = ’wo(iﬂ, y»t) + ZF3(x7y7t)

determine the functions (Fy, Fy, F3) such that the Kirchhoff hypothesis holds:

ow _o Ou_ Ow Ov_ Ow
8z ' 8z oz’ 0z Oy
Consider a single, orthotropic layer plate (Qqs = 0), and assume that the material

coordinates coincide with the plate coordinates. Compute the stresses (0ze,Oyy,0zy) using
the constitutive equations of the first-order plate theory, and then use the equilibrium
equations of the three-dimensional elasticity theory to determine the transverse stresses
(0uz,0yz,042) as a function of the thickness coordinate.
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3.8 Consider a single, orthotropic layer plate (Q5 = 0), and assume that the material coordinates
coincide with the plate coordinates. According to the first-order theory, the strain energy
due to transverse shear stresses is given by

/ / UIL‘Z,YTz + O—yz'y( )) dZd.'Edy

/ / {Q55 ’hz)) + Quq (’)’yz ) ] dzdzdy
Qo L

_ Q2

=55 / ( A44 dxdy

Compute U, using the transverse shear stresses obtained in Problem 3.7 from the three-
dimensional elasticity, and equate it with U, to determine the shear correction coeflicient,

K.
3.9 Consider the equations of motion of 3-D elasticity [see Eq. (1.3.26)] in the absence of body
forces:
00z n 002y | 00z, &
or " oy T 0z Mo
00zy | O0yy 00y d%v
+ o, — Poag
Ox oy 0z ot
00y | Boy. | B0..  O%w
ox + Oy + gz P2

Integrate the above equations with respect to z over the interval (=h/2,h/2) and express the
results in terms of the force resultants defined in Eq. (3.3.20a). Use the following boundary
conditions:

=0

h
= 07 Uyz(xa Zl’ 5)

h
=0, 0y(a,y,—5)

h h
sz($,y7—§> =0, Ur‘l?z(xvya §)

h
022 (2, Y, — %) = —qp, ozz(x,y@) =g

h
3)
Next, multiply the equations of motion with z and integrate with respect to z over the
interval (—h/2, h/2) and express the results in terms of the moment resultants defined in Eq.
(3.3.20a).

3.10 Show that the membrane strains {?} and the moment resultants {M} in the classical or first-
order laminated plate theory can be expressed in terms of force resultants { N} and bending
strains {el} as

{%) = [A]7* ({N} - [Bl{e!})
{M} = ([B)[A]"") {N} — ([BI[AI"![B] - [D]) {"}

These equations bring out the bending-extensional coupling for laminates with nonzero [B].
For example, when the bending strains are zero, the applied in-plane forces induce bending
moments for laminates with nonzero coupling coefficients [B].

3.11 Show that if B;; = 0 (e.g., for symmetric laminates), the equation of motion governing the
transverse deflection wyg in the classical laminate theory is

g *w Ftwyg

HMw
0 16 5230y +2(D12+2D66)8 26 5 4D268 5y 3 +D228—y4

ox4

952 2 2 2
N(w) =g - 2% +120—<—aw°+8w) ne (%+%)

Di1 +4D

ot? ot2 \ 9x2 oy? ot2 \ ox Ay
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3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24
3.25

3.26

3.27
3.28
3.29

MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

Show that for a general laminate composed of multiple isotropic layers, the laminate stiffness
Aig, Agg, Big, Bag, D1g, and Dqg are zero, and that Asg = Aqq, Bog = B11, and Doy = Dy;.
Show that for a general laminate composed of multiple specially orthotropic layers, the
laminate stiffness A1g, Aog, B1ig, B2g, D16, and Dog are zero.

Show that for antisymmetric laminates the stiffnesses, Aig, A2g, D16, and Dog are zero, and
the coupling stiffnesses B;; are not zero.

Show that for antisymmetric cross-ply laminates, the coupling stiffnesses B;; have the
properties: Bgg = —Bj; and all other B;; = 0.

Show that for antisymmetric angle-ply laminated plates, the following stiffnesses are zero:
Are, A26, D16, D26, B11, Bz, B2, and Bgg.

Show that for laminates (a/3/8/a/B/a/a/B) where —90° < o < 90° and -90° < 3 < 90°,

coefficients B;; are zero.

The material properties of AS/3501 graphite-epoxy material layers are:
E; =140 x 103 MPa, Fy =10 x 103 MPa, G5 =7 x 103 MPa

G13 =7 x 103 MPa, Ggs =7 x 103 MPa, v15 = 0.3
a; =-0.3x10"% m/m/° K, ay =28 x 1076 m/m/° K

Determine the stiffnesses [A], [B], and [D] for the antisymmetric laminate (0/90) composed
of equal thickness (0.5 mm) layers.

Determine the stiffnesses [A], [B], and [D] for an antisymmetric laminate (—45/45) composed
of equal thickness (0.5 mm) layers of AS/3501 graphite-epoxy layers (see Problem 3.18 for
the material properties).

If the laminate of Problem 3.18 is heated from 20° to 90°, determine the thermal forces and
moments generated in the laminate, if it were restrained from free expansion.

If the laminate in Problem 3.19 is made of four layers (—45/45/-45/45) of thickness 0.25 mm
each, show that the stiffnesses [A] and [D] remain unchanged. Compare the stiffnesses Bi;
for the two laminates (do they increase or decrease in values?).

Suppose that a four-layer (0/90)s symmetric laminate is subjected to loads such that the only
nonzero strain at a point (z,y) is sg(pg) = 1034 in./in. The material properties of a lamina are
(typical of a graphite-epoxy material) Fy = 20 msi, Fy = 1.30 msi, Gj2 = 1.03 msi, 192 = 0.3.
Assume that each layer is of thickness 0.005 in. Determine the state of stress (0zz, Oyy, Ozy)
with respect to the laminate coordinates in each layer. Interpret the results you obtain in
light of the assumed strains.

Compute the stains and stresses in the principal material coordinate system of each layer for
the problem in Problem 3.22.

Compute the stress resultants N’s and M’s for the problem in Problem 3.22.

Repeat Problem 3.22 for the case in which the laminate is subjected to loads such that the
(1) _

only nonzero strain at a point (z,y) is e,/ = (1/12) /in.

Compute the stains and stresses in the principal material coordinate system of each layer for
the problem in Problem 3.25.

Compute the stress resultants N’s and M’s for the problem in Problem 3.25.
Determine the displacement associated with the assumed strain field in Problem 3.25.

Suppose that a six-layer (+45/0)s symmetric laminate is subjected to loads such that the only
nonzero strain at a point (x,y) is Ei?v) = 103y in./in. The thickness and material properties
of a lamina are the same as those listed in Problem 3.22. Determine the state of stress

(0wz, Oyy, 0zy) and force resultants.
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3.30 Repeat Problem 3.29 for the case in which the laminate is subjected to loads such that the

1)

only nonzero strain at a point (z,y) is €3,/ = (1/12) /in.

3.31 Suppose that a three-layer (£45/0) unsymmetric laminate is subjected to loads such that

the only nomnzero strain at a point (z,y) is 5,(3.) = 10-3 in./in. The thickness and material
properties of a lamina are the same as those listed in Problem 3.22. Determine the state of
stress (0zz,0yy, 0zy) and stress resultants.

References for Additional Reading

1.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

Cauchy, A. L., “Sur l'equilibre et le mouvement d’une plaque solide,” Ezercises de
Mathematique, 3, 328-355 (1828).

. Poisson, S. D., “Memoire sur I'equilibre et le mouvement des corps elastique,” Mem. Acad.

Sci., 8(2), 357-570 (1829).

- Kirchhoff, G., “Uber das Gleichgwich und die Bewegung einer Elastischen Scheibe,” J. Angew.

Math., 40, 51-88 (1850).

- Basset, A. B., “On the Extension and Flexure of Cylindrical and Spherical Thin Elastic Shells,”

Philosophical Transactions of the Royal Society, (London) Ser. A, 181 (6), 433-480 (1890).

Goodier, J. N., “On the Problem of the Beam and the Plate in the Theory of Elasticity,”
Transactions of the Royal Society of Canada, 32, 65-88 (1938).

Reissner, E., “On the Theory of Bending of Elastic Plates,” Journal of Mathematical Physics,
23, 184-191 (1944).

. Reissner, E., “The Effect of Transverse Shear Deformation on the Bending of Elastic Plates,”

Journal of Applied Mechanics, 12, 69-77 (1945).

. Reissner, E., “Reflections on the Theory of Elastic Plates,” Applied Mechanics Reviews, 38(11),

1453~1464 (1985).

. Bollg, E., “Contribution au Probleme Lineare de Flexion d’une Plaque Elastique,” Bull. Tech.

Suisse. Romande., 73, 281-285 and 293-298 (1947).

Hencky, H., “Uber die Berucksichtigung der Schubverzerrung in ebenen Platten,” Ing. Arch.,
16, 72-76 (1947).

Hildebrand, F. B., Reissner, E., and Thomas, G. B., “Notes on the Foundations of the Theory
of Small Displacements of Orthotropic Shells,” NACA TN-1833, Washington, D.C. (1949).

Mindlin, R. D., “Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic,
Elastic Plates,” Journal of Applied Mechanics, Transactions of ASME, 18, 31-38 (1951).

Vlasov, B. F., “Ob uravneniyakh teovii isgiba plastinok (On the Equations of the Theory of
Bending of Plates),” Izv. Akd. Nauk SSR, OTN, 4, 102-109 (1958).

Panc, V., Theories of Elastic Plates, Noordhoff, Leyden, The Netherlands (1975).

Reissner, E. and Stavsky, Y., “Bending and Stretching of Certain Types of Aeolotropic Elastic
Plates,” Journal of Applied Mechanics, 28, 402-408 (1961).

Stavsky, Y., “Bending and Stretching of Laminated Aeolotropic Plates,” Journal of
Engineering Mechanics, ASCE, 87 (EMS6), 31-56 (1961).

Dong, S. B., Pister, K. S., and Taylor, R. L., “On the Theory of Laminated Anisotropic Shells
and Plates,” Journal of Aeronautical Science, 29(8), 969-975 (1962).

Yang, P. C., Norris, C. H., and Stavsky, Y., “Elastic Wave Propagation in Heterogeneous
Plates,” International Journal of Solids and Structures, 2, 665-684 (1966).

Ambartsumyan, S. A., Theory of Anisotropic Plates, translated from Russian by T. Cheron,
Technomic, Stamford, CT (1969).



162 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Whitney, J. M. and Leissa, A. W., “Analysis of Heterogeneous Anisotropic Plates,” Journal
of Applied Mechanics, 36(2), 261-266 (1969).

Whitney, J. M., “The Effect of Transverse Shear Deformation in the Bending of Laminated
Plates,” Journal of Composite Materials, 3, 534-547 (1969).

Whitney, J. M. and Pagano, N. J., “Shear Deformation in Heterogeneous Anisotropic Plates,”
Journal of Applied Mechanics, 37(4), 1031-1036 (1970).

Reissner, E., “A Consistent Treatment of Transverse Shear Deformations in Laminated
Anisotropic Plates,” AIAA Journal, 10(5), 716718 (1972).

Librescu, L., Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-Type
Structures, Noordhoff, Leyden, The Netherlands (1975).

Reissner, E., “Note on the Effect of Transverse Shear Deformation in Laminated Anisotropic
Plates,” Computer Methods in Applied Mechanics and Engineering, 20, 203-209 (1979).

Reddy, J. N., Energy Principles and Variational Methods in Applied Mechanics, Second
Edition, John Wiley, New York (2002).

Librescu, L. and Reddy, J. N., “A Critical Review and Generalization of Transverse Shear
Deformable Anisotropic Plate Theories,” Euromech Colloquium 219, Kassel, Germany, Sept.
1986, Refined Dynamical Theories of Beams, Plates and Shells and Their Applications, 1.
Elishakoff and H. Irretier (Eds.), Springer—Verlag, Berlin, pp. 32-43 (1987).

Whitney, J. M., “Shear Correction Factors for Orthotropic Laminates Under Static Load,”
Journal of Applied Mechanics, 40(1), 302-304 (1973).

Bert, C. W., “Simplified Analysis of Static Shear Correction Factors for Beams of Non-
Homogeneous Cross Section,” Journal of Composite Materials, 7, 525-529 (1973).

Chow, T. S., “On the Propagation of Flexural Waves in an Orthotropic Laminated Plate and
Its Response to an Impulsive Load,” Journal of Composite Materials, 5, 306-319 (1971).
Srinivas, S. R., Joga Rao, C. V., and Rao, A. K., “An Exact Analysis for Vibration of Simply—
Supported Homogeneous and Laminated Thick Rectangular Plates,” Journal of Sound and
Vibration, 12, 187-199 (1970).

Wittrick, W. H., “Analytical Three-Dimensional Elasticity Solutions to Some Plate Problems
and Some Observations on Mindlin’s Plate Theory,” International Journal of Solids and
Structures, 23, 441-464 (1987).

Whitney, J. M. and Sun, C. T., “A Higher Order Theory for Extensional Motion of Laminated
Composites,” Journal of Sound and Vibration, 30, 85-97 (1973).

Sun, C. T. and Whitney, J. M., “Theories for the Dynamic Response of Laminated Plates,”
ATAA Journal, 11(2), 178-183 (1973).

Lo, K. H., Christensen, R. M., and Wu, E. M., “A Higher Order Theory of Plate Deformation,
Part 2; Laminated Plates,” Journal of Applied Mechanics, 44, 669-676 (1977).

Krishna Murty, A. V., “Higher Order Theory for Vibration of Thick Plates,” AIAA Journal,
15(12), 1823-1824 (1977).

Murthy, M. V. V., “An Improved Transverse Shear Deformation Theory for Laminated
Anisotropic Plates,” NASA Technical Paper 1903, 1-37 (1981).

Reddy, J. N., “A Simple Higher-Order Theory for Laminated Composite Plates,” Journal of
Applied Mechanics, 51, 745-752 (1984).

Reddy, J. N., “A General Non-Linear Third-Order Theory of Plates with Moderate Thickness,”
International Journal of Non-Linear Mechanics, 25(6), 677-686 (1990).

Noor, A. K. and Burton, W. S., “Assessment of shear deformation theories for multilayered
composite plates,” Applied Mechanics Reviews, 42(1), 1-13 (1989).

Carrera, E., “An Assessment of Mixed and Classical Theories on Global and Local Response
of Multilayered Orthotropic Plates,” Composite Structures, 50, 183-198 (2000).



42.

43.

44,

46.

47.

48.

49.

CLASSICAL AND FIRST-ORDER THEORIES 163

Carrera, E., “Developments, Ideas, and Evaluations Based upon Reissner’s Mixed Variational
Theorem in the Modeling of Multilayered Plates and Shells,” Applied Mechanics Reviews,
54(4), 301-329 (2001).

Carrera, E., “Theories and Finite Elements for Multilayered, Anisotropic, Composite Plates
and Shells,” Archives of Computational Methods in Engineering, 9(2), 87-140 (2002).

Jones, R. M., Mechanics of Composite Materials, Second Edition, Taylor and Francis,
Philadelphia, PA (1999).

5. Lekhnitskii, S. G., Anisotropic Plates, Translated from Russian by S. W. Tsai and T. Cheron,

Gordon and Breach, Newark, NJ (1968).

Ashton, J. E. and Whitney, J. M., Theory of Laminated Plates, Technomic, Stamford, CT
(1970).

Vinson, J. R. and Sierakowski, R. L., The Behavior of Structures Composed of Composite
Materials, Kluwer, The Netherlands (1986).

Whitney, J. M., Structural Analysis of Laminated Anisotropic Plates, Technomic, Lancaster,
PA (1987).

Vasiliev, V. V., Mechanics of Composite Structures, Translated from Russian by L. 1. Man,
Taylor and Francis, Washington, DC (1988).

. Ochoa, O. O. and Reddy, J. N., Finite Element Analysis of Composite Laminates, Kluwer,

The Netherlands (1992).

51. Reddy, J. N. (Ed.), Mechanics of Composite Materials. Selected Works of Nicholas J. Pagano,

Kluwer, The Netherlands (1994).

. Reddy, J. N. and Miravete, A., Practical Analysis of Composite Laminates, CRC Press, Boca

Raton, FL (1995).






4

One-Dimensional Analysis
of Laminated Composite Plates

4.1 Introduction

There are two cases of laminated plates that can be treated as one-dimensional
problems; i.e., the displacements are functions of just one coordinate: ( 1) laminated
beams, and (2) cylindrical bending of laminated plate strips. When the width
b (length along the y-axis) of a laminated plate is very small compared to the
length along the z-axis and the lamination scheme, and loading is such that the
displacements are functions of = only, the laminate is treated as a beam (see Figure
4.1.1). In cylindrical bending, the laminated plate is assumed to be a plate strip
that is very long along the y-axis and has a finite dimension a along the z-axis (see
Figure 4.1.2). The transverse load ¢ is assumed to be a function of z only. In such a
case, the deflection wg and displacements (ug,vg) of the plate are functions of only
z, and all derivatives with respect to y are zero. The cylindrical bending problem
is a plane strain problem, whereas the beam problem is a plane stress problem.

In this chapter we develop exact analytical solutions for the two classes of
problems. An ezact solution of a problem is one that satisfies the governing
equations at every point of the domain and the boundary and initial conditions
of the problem. A numerical solution is one that is obtained by satisfying the
governing equations and boundary conditions of the problem in an approximate
sense. The solutions obtained with any of the variational methods (see Chapter 1)
and numerical methods, such as the finite difference, finite element, and boundary
element methods, are termed numerical solutions. An exact solution can be either

q(x)
q(x)
/< u ,,/,—/""'J i\( h l—————— —-p'
b : ,_;/«—»/’/////"l h 2 Yz

Figure 4.1.1: Geometry of a laminated beam.
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e

Figure 4.1.2: Geometry of a plate strip in cylindrical bending.

closed-form or an infinite series. Closed-form solutions are those that can be
expressed in terms of a finite number of terms. For example, u(z) =2 —x + 32 +
4sinnrwz is a closed-form solution, whereas a solution in the form of a convergent

series
(o @)

u(z) = Z an sinnmz (4.1.1)

n=1
where a,, are real numbers, is not a closed-form solution because the number of
terms in the series is not finite. Since the series solution, in reality, is evaluated
for a finite number of terms, it is, in a sense, approximate. The finite-sum series

solution
N

un(z) = Z ap sinnme (4.1.2)
n=1
will be termed an analytical solution, although it is approximate because not all
terms of the series (4.1.1) are included in (4.1.2). For all practical purposes, it is
“exact.”
Due to their one-dimensional nature, analytical — exact as well as numerical
— solutions can be developed for a number of laminated beams and plate strips.
The analytical solutions presented here for simple problems serve as a basis for
understanding the response. In addition, the results can serve as a reference
for verification of computational methods designed to analyze more complicated
problems.
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4.2 Analysis of Laminated Beams Using CLPT

4.2.1 Governing Equations

Here we consider the bending of symmetrically laminated beams according to CLPT.
For symmetric laminates, the equations for bending deflection are uncoupled from
those of the stretching displacements. If the in-plane forces are zero, the in-plane

displacements (ug,vg) are zero, and the problem is reduced to one of solving for
bending deflection and stresses.

In deriving the laminated beam theory we assume that
My, = Mz, =0 (4.2.1)

everywhere in the beam. The classical laminated plate theory constitutive equations
for symmetric laminates, in the absence of in-plane forces, are given by [see Eqgs.

(3.3.44))
2wy
My Dy Dy Dy a%xz
Myy = — D12 D22 D26 _6??1@ (422&)
Mgy Dig Das  Deg] | 90%wo
Ozdy
or, in inverse form, we have
azwo * * *
8‘9295 11 12 Dis My
W‘i = — 1o D3y, Dig My, (4.2.2b)
2%@ 16 D3 Dggl \ My
0y

where D} denote the elements of the inverse matrix of D;j. In view of the
assumption (4.2.1), we have

32 wo (92 wo .

* 021”0
W = —Dllj\/-{mza W -

~ DYy My, 255y~ ~ DisMos (4.2.3a)

where

DIy =(D22Dgs — D6 D3s) / D*

D7y = (D1gD26 — D12Dgs) / D*

Dig =(D12D26 — D32 D1g) / D*

D* =D11D1 4+ D1aDy+ DigDs , Dy = DayDgg — DagDog

Dy =D1gD2s — D12Dgs , D3 = D13Dag — DagD1g (4.2.3b)

Equations (4.2.3a) indicate that the transverse deflection wg cannot be independent
of the coordinate y due to the Poisson effect (D},) and anisotropic shear coupling
(D7g)- These effects can be neglected only for long beams (i-e., when the length-to-
width ratio is large). The length-to-width ratio for which the transverse deflection
can be assumed to be independent of y is a function of the lamination scheme. For
angle-ply laminates this ratio must be rather large to make the twisting curvature
negligible.
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In the following derivations we assume that the laminated beam under
consideration is long enough to make the effects of the Poisson ratio and shear
coupling on the deflection negligible. Then the transverse deflection can be treated
only as a function of coordinate x (along the length of the beam) and time ¢:

wo = wo(z,t) (4.2.4)
Then we can write 92
wi *
axZO = —D7 Mg (4.2.5)

In order to cast Eq. (4.2.5) in the familiar form used in the classical Euler-Bernoulli
beam theory, we introduce the quantities

12 b bh?
M = bM,,, Q=0>bQ,, E’ = = ) = — 4.2,
Q Q xx h3DI1 Inyfl 9y 12 ( 6)
and write Eq. (4.2.5) as
0?wo M b 8wy
Froa —ngfyy or M(z)= —Emlyyw (4.2.7a)
and the shear force and bending moments are related by
OMy, oM
- = 4.2.
Q 5 Q o (4.2.7b)

where b is the width and h is the total thickness of the laminate.
The equation of motion of laminated beams can be obtained directly from Eq.
(3.3.25) by setting all terms involving differentiation with respect to y to zero:

0% M, . 0%wy &%wy 8wy
New—— = [ — I 4.2.8
gz T ggr 1T 0 T Rgpa (4.2.82)
or, for symmetrically laminated long beams, we have
62 b 6211)0 & 82100 N 2 82w0 ~ 84w0
—-8? (E‘Tm[yya—wi’ + bNxxW +q= IO 81:2 — IQ 8.’1328112 (428b)
where N, is the applied axial load, and
5o
(j = bq, I() = bIo, .[2 = bIQ, Ii =} N ,O(Z)l dz (2 = O, 1, 2) (4.2.8C)
-3
The boundary conditions are of the form
. . Owg
Geometric : specify wy , . (4.2.9a)
x
oM

Force : specify @ = B M (4.2.9b)
x



ONE-DIMENSIONAL ANALYSIS OF LAMINATED COMPOSITE PLATES 169

Equations (4.2.7)-(4.2.9) are identical, in form, to those of the Euler—Bernoulli
beam theory of homogeneous, isotropic beams. Hence, the solutions available for
deflections of isotropic beams under various boundary conditions can be readily
used for laminated beams by replacing the modulus E with E%, and multiplying
loads and mass inertias with b. Note that the rotary (or rotatory) inertia I is not
neglected in Egs. (4.2.8a-c).

4.2.2 Bending

For static bending without the axial force, N,z = 0, Egs. (4.2.7a) and (4.2.8b) take
the form [cf., Eqgs. (1.4.47b) and (1.4.45b); see Figure 1.4.1 for the sign convention]

d2wy M p o dlwg
da? ~  EU I, Evalyqua =4 (4.2.102,1)

where ¢ = bg. Equation (4.2.10a) is the most convenient when it is possible to
express the bending moment M in terms of the applied loads. For indeterminate
beams, use of Eq. (4.2.10b) is more convenient.

General Solutions

The general solutions of Eqs. (4.2.10a,b) are obtained by direct integration. We
obtain from Eq. (4.2.10a)

z n
EY I,wo(z) = — / [ / M({)d{] dn + biz + by (4.2.11a)

o Lo

and from Eq. (4.2.10b)
b x 3 U] (S
B Lywo(z) = / / / / G(u)dp | dC| dn o dg
o (Jo [Jo \Jo
{173 1‘2

+cl€ —|-027 + 3%+ ¢y (4.2.11b)

The constants of integration, by, b2, and ¢; through ¢4, can be determined using the
boundary conditions of the problem. The boundary conditions for various types of
supports are defined below:

dM
Free : RQ=——=0, M=0
dx
Simply Supported : wg=0, M=0
d
Clamped :  wp =0, % =0 (4.2.11¢)
x

Calculation of Stresses

The in-plane stresses in the kth layer can be computed from the equations [see
Eqgs. (3.3.12a) and (4.2.2b)]

= = - 2w
0z } Qn Qiz Q1™ _aa?ﬁg
Tyy =2 |Q12 Q22 Q% — 5
Oy Qe Q26 Qoo _ 90w

Ozdy
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Q2 Q22 Q2
Qs Q2 (oo

* * *
D12 D22 D26

[Qu Q12 Qlﬁ
Dig D3 Dgg

k * * *
()l: 11 D12 D16

M
{ 0 } (4.2.12a)
0

€T)z ~(k * ~(k * ~(k *

ol (x,2) = ( ) (le)Du + Q5 Dl + QEG)Dlﬁ)
( )z ( Ak ~ (k) yx

ogy (@,2) = b (le)D L+ Q% DL+ Qgs)Dm)

iz =(k " — « "
H(E]@j) (z,2) = (b ) (Q(lﬁ)Dll + Q%)Dm + Q66)D16) (4.2.12b)

O‘IN

or

In general, the maximum stress does not occur at the top or bottom of a laminated
beam. The maximum stress location through the beam thickness depends on the
lamination scheme. As will be seen later in this section, the 0° layers take the most
axial stress.

The stresses given by Eq. (4.2.12b) are approximate for the purpose of analyzing
laminated beams. They are not valid especially in the free-edge zone, where the
stress state is three dimensional. The width of the edge zone is about the order of
the thickness of the beam.

In the classical beam theory, the interlaminar stresses (0,,0,,) are identically
zero when computed using the constitutive equations. However, these stresses do
exist in reality, and they can be responsible for failures in composite laminates
because of the relatively low shear and transverse normal strengths of materials
used. Interlaminar stresses may be computed using the equilibrium equations of
3-D elasticity [see Eq. (1.3.27)]:

00z N 00 gy N 00,

B Bo'xy 80’yy aayz
0= Oz * oy * 0z
0= 002z  O0y:  80u (4.2.13)

Ox Oy 0z

For each layer, these equations may be integrated with respect to z to obtain the
interlaminar stresses within each layer (2 < z < 241):

(k) (k)
oA - [ (2 B ) et (4.2.140)
Zk
z (k) (k)
o= [ (%G ) ae )
2k
6a(k) 9ok
o) — _ yz (k)
otk / ( 5ot | detH (4.2.14c)

where (ag(;x),og;y),ag(,y)) are known from Eq. (4.2.12), and G®), F*) and H®) are
constants.



ONE-DIMENSIONAL ANALYSIS OF LAMINATED COMPOSITE PLATES 171

For beams, all variables are independent of y and v = 0. Hence, derivatives with
respect to y are zero. For example, from Egs. (4.2.14a,c) and (4.2.12b), we obtain

2 _ .2
o®(w, 2) = —Qu(2) (1Y D1, + Q5 D1, + Q1 Dis) (Z Z’“) +G® (4.2.15a)
d z [ = _ . 3 3
ngz)(IwZ) = Q (Q 1 + Q12 T2 + Q(lj(c))Dl(;;) (Z ) + H (4 2. 10}))

where Egs. (4.2.6) and (4.2.7b) are used to replace dM/dzx with Q = bQ,, and G

and H®) are the integration constants, which are evaluated using the boundary and

interface continuity conditions. For layer 1, the constants should be such that o,

and o, equal the shear and normal stresses at the bottom face of the laminate. For

example, if the laminate bottom is stress free, we have G =0 and HY = 0. The

C(?n)stants G*®) and H®) for k = 2,3, -- are determined by requiring that ot and
k

o:, be continuous at the layer interfaces (see Figure 4.2.1):

UQ(CIZ)('Tv Zk7+1) = Ua(c];_H)(xv Zk+1)> Ug;)(mv Zk-l-l) = J.(z};+l)($’ Zk+1)

q j\
M
- = == - s > X _(g—Q—O
le a o @+q=0
(a) l‘ q dx )
Z M l M =514 %
QNS :
Q Q

Sign convention

(b)
(k+1) _ (k)
ex = Op
(k+1) (k)
2z — Oz

Figure 4.2.1: (a) Sign convention. (b) Equilibrium of interlaminar stresses in a
laminated beam.
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This gives, for £k =1,2,---, the result

2

2
~(k * ~(k) ~* ~ (k) 7% Z —Z
GO — —Q,(x) (@D, + G DY, + Q) 16)( hl k) L a®

= ¥ (x, 2111) (4.2.16a)

d 23 =23
gk = QI (Qu Di, + Q1]§)D 12+ Q16)D16) <L16‘_k> +H®
= oé’;’ (2, 2541) (4.2.16b)
Note from Egs. (4.2.15a,b) that the transverse shear stress o, is quadratic and
normal stress ¢, is cubic through the thickness of each lamina. The distributions

are described by different functions in different layers but they are continuous across
layers.

Example 4.2.1 (Simply supported beam):

Consider a simply supported beam with a center point load (see Figure 4.2.2). This case is known

as the three-point bending. The deflection is symmetric about the point z = a/2. The expression

for the bending moment is

(Fob)x
2 b

Substituting this expression into Eq. (4.2.11a) and evaluating the integrals, we obtain

M(z) = for 0<z< (4.2.17)

N e

Fybx3
Eb, I,wo(z) = - 012 +c1z+cy

The constants ¢; and ¢y are evaluated using the boundary conditions of the problem
dwg
0)=0, —2(a/2) =
wO( ) " dz (a/ )

We obtain (c; = Fyba?/16,cy = 0)

wolz) = KP;)SGT [3 (g) —4 (5)3] (4.2.18)

The deflection is the maximum at = = a/2, which is given by

F0b0,3
mar = To o = We 4.2.1
w 48EL I, " (4.2.19)

This expression can be used to determine the modulus of the material in terms of the measured
center deflection w., applied load Fj, and the geometric parameters of the laminated beam in a
three-point bend test:
b Foba3
¢ 4bh3w.

The maximum in-plane stress oz, occurs at z = a/2 (M(a/2) = Fyba/4)

(4.2.20)

Ua(nI;) (a/2,2) = FOaz (Q(k)D + Q(k)sz 4+ QE? 1‘6) (4.2.21)
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e

at x=0 at x=a
wy=M=0 w,=M=0

Figure 4.2.2: Three-point bending of a laminated beam (see Figure 4.2.1a for the
sign convention).

Example 4.2.2 (Clamped beam):

Consider a laminated beam, clamped at both ends, and subjected to uniformly distributed load
acting downward, g = ¢o (see Figure 4.2.3). The deflection is symmetric about the point z = a/2.
We have from Eq. (4.2.11b) the result

4 3 72
(z) = % ta e foarte
The constants ¢, through ¢4 are evaluated using the boundary conditions of the half (because of
the symmetry) or full beam. For the full beam case we have

b
E:ca;lyywo

_ _ dwy _ dwyg _
wO(O) =0, wO(a) =0, dr (0) - 07 dr (0“) =0
and for the half beam model we have
B dwg o dwy a, a, dM _ d3wg a,
wo(0) =0, Woy=0, Woty_o =M _ g1, L0 g
Either set of boundary conditions will yield the same solution. We obtain (¢; = —qgba/2, ¢y =

qoba?/12, c3 =cq =0)

o=z (5 ()] w2
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Figure 4.2.3: Clamped beam under uniformly distributed load.

The deflection is the maximum at x = a/2, which is given by

qoba*

maer — G511 7 4.2.2
v 384E%, I, (4.2.23)

The maximum bending moment, and hence the maximum in-plane stress 0z, occurs at x = 0, a:
qoba? (:L) (z)2 qoba?
M - = 1 — — — = -
() 12 [ 0{a) T0La) |+ Mmes 12

2
ol (0,2) = -7 () D}y + Q1Y Dz + Q1 D) (1:2.24

Expressions for the transverse deflection of laminated beams with simple supports, clamped
edges, and clamped-free (cantilever) supports and subjected to a transverse point load or uniformly
distributed load are presented in Table 4.2.1. The maximum deflections and bending moments
are also listed (note that the loads are assumed to be applied in the downward direction). Recall
that wo(z) is taken positive upward and M (z) is positive clockwise on the right end. When
both point load and uniformly distributed load are applied simultaneously, the solution can be
obtained by superposing (i.e., adding) the expressions corresponding to each load. Expressions for
other boundary conditions can be found in textbooks on a first course in reformable solids. The
effects of material properties and stacking sequence are accounted for through the bending stiffness
Eb I,y = b/D%,, as can be seen from Eqgs. (4.2.6) and (4.2.3b).
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Table 4.2.1: Transverse deflections of laminated composite beams with various boundary
conditions and subjected to point load or uniformly distributed load (acting
downward) according to the classical beam theory.

Laminated Beam Deflection, wq(x) Wmae and
A'{Tll,(t‘b
e Hinged-Hinged
Central point load s [3 (%) —4 (%)3] we,,. = Zl??cl
¢F0 N 7(;1.0,:1: = _%03
I 1
% 1l
Uniform load #0200+ ()] W = 72
r * * * * * *‘ 'qo A/I'r(;l,(mr = _%(54
e a <
L) >

e Fixed-Fixed

Central point load Tk [3 (%)2 -4 (%)3] W, = llmq
¢F0 A{V(TJLG,.’KT = %CS
“if e
:;?: < ::rﬁ
Uniform load o ()22 ()] I
nifor 1oa s [(2)° - ()] Wi = 72
9o ]\/I‘Iglal - 1_12(:4
FETTTTRTT)
[P a >l g
~ L}
o Fixed-Free
Point load at free end G [3 (%)2 - (%)3] we, . = %(:1
t JVFO A‘{v(?)iar =C3
ﬁ!: = >
Uniform load 5% [6 (f[)z -4 (f)3 + (%)4] Wy = %(32
o MY, = 3¢
AYIIIVIVY mer 2
G » = o

Superscript “c” refers to the center (at z = a/2), “a” to the end z = a, and “0” refers to x = 0.
The constants in the expressions for the deflection are defined as

Fyba3 ~ qoba*

c1 = cy = ¢c3 = —Fpba, ¢4 = —qoba?
1 B I,y 2 Et.l,, 3 ova, ¢4 q0
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Figures 4.2.4 and 4.2.5 show the maximum normal stress distribution, as predicted by Eq.
(4.2.12b), through the thickness of (0/45/-45/90)s (0° corresponds to outer layers) and (90/45/—
45/0)s (90° corresponds to outer layers) laminated beams, respectively, subjected to three-point
bending (Fy = 1.0,b = 0.2,a = 1.0,h = 0.1). The following layer material properties are used
(Ey =1 msi):

% =25, G2 =G13=0.5EF3, Go3=0.2E;, v=0.25 - (4.2.25)
The maximum normal stress distribution in an orthotropic beam (with eight 0° layers) is shown in
the figures by dashed lines. It is clear the 0° layer carries the most axial stress while the 90° layer
carries the least axial stress, in proportion to their axial stiffness.

Figures 4.2.6 and 4.2.7 show the effect of stacking sequence on maximum transverse shear
stress, as predicted by Eq. (4.2.15a), for laminates (0/45/-45/90)s and (90/45/-45/0)s, respectively
(Fp =1.0,b=10.2,a = 1.0,h = 0.1). The parabolic distribution of transverse shear stress through an
orthotropic beam is shown in dashed lines for comparison. The maximum stress value is dependent
on the stacking sequence and considerably different from that in a homogeneous beam.

4.2.3 Buckling

A beam subjected to axial compressive load Nyw = —Nggc remains straight but
shortens as the load increases from zero to a certain magnitude. If a small additional
axial or lateral disturbance applied to the beam keeps it in equilibrium, then the
beam is said to be stable. If the small additional disturbance results in a large
response and the beam does not return to its original equilibrium configuration, the
beam is said to be unstable. The onset of instability is called buckling (see Figure
4.2.8). The magnitude of the compressive axial load at which the beam becomes
unstable is termed the critical buckling load. If the load is increased beyond this
critical buckling load, it results in a large deflection and the beam seeks another
equilibrium configuration. Thus, the load at which a beam becomes unstable is of
practical importance in the design of structural elements. Here we determine critical
buckling loads for laminated straight beams. The equation governing buckling of
laminated beams is also given by Eq. (4.2.8b), wherein the applied transverse load
and inertia terms are set to zero, and axial force is assumed to be unknown. In
addition, the deflection is measured from onset of buckling, and it is termed buckling
deflection.

Setting Ny = —N?

22> @ = 0, and all inertia terms to zero in Egs. (4.2.8b), we
obtain the equation

&AW BNO. W
dz* = Eb I, dz?

where W denotes the buckling deflection. Equation (4.2.26) is obtained from the
nonlinear equilibrium equation

=0 (4.2.26)

B 1, T

d2w0
zelyy g T bNm(WO)W =0

by substituting wo = w§ + W, where w§ is the original equilibrium (prebuckling)
deflection and W is the buckling deflection. Note that w§ satisfies the equation
. .

dw§ d?w§

[The reader is asked to verify the result in Eq. (4.2.26).]

E° I

ey =0
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Figure 4.2.4: Maximum normal stress, —o;;(a/2,z), distribution through the
thickness of a symmetrically laminated (0/445/90)5 beam.
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Figure 4.2.7: Variation of transverse shear stress (-o0;,) through the thickness of
a symmetrically laminated 90/+45/0)s beam subjected to three-
point bending (see Figure 4.2.6 for data).
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Figure 4.2.8: Buckling of laminated beams under various edge conditions.

Integrating Eq. (4.2.26) twice with respect to z, we obtain

W bN?
— LW =K K. 4.2.27
a2 ' BRIy, v ( )

The general solution of Eq. (4.2.27) is

W(x) = c1sin \px + 3 cos \px + c3x + ¢4 (4.2.28)
where 0
bN K K
2 T 1 2
b= y 3= 5, 4= o (4.2.29)
E:lgr[yy )‘g )\IQ)

and the constants c¢1, ¢2, ¢3, and ¢4 can be determined using the boundary conditions
of the beam.

We are interested in determining the values of A, for which there exists a nonzero
solution W(z), i.e., when beam experiences deflection. Once such a ), is known
(often there will be many), the buckling load is determined from Eq. (4.2.29):

Eb. I
NO, = <%yy) Y (4.2.30)

The smallest value of N2, which is given by the smallest value of A, is the critical
buckling load. The buckling shape (or mode) is given by W(z). In the following,
we consider beams with different boundary conditions to determine )\, and then the
critical buckling load for each beam.
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Example 4.2.3 (Simply supported beam):

For a simply supported beam, the boundary conditions are

wp(0) =0, wpla) =0, Mz:(0)=0, My.(a)=0 (4.2.31a)
These boundary conditions imply
&?w 2w
_ _ - - 4.2.31
wo =0, w=0, w0 =0, W @=0 (1:2:31b)
We have
W(0)=0: c3+c4=0
W”(O) =0: —coA? =0 which implies ¢y =0, c4 =0
W(a)=0: cysinha+cza=0
W”(@)=0: c¢;sinha=0 which implies ¢3 =0 (4.2.32)
For a nontrivial solution, the condition
¢y sin \pa = 0 implies that \pja =nm, n=1,2, ... (4.2.33)
and the buckling load is given by
2
BNO, = EP_I,, (%”) (4.2.34a)
The buckling mode is
. nwx
W(x) = ¢y sin raltie! #0 (4.2.34b)
The critical buckling load becomes (n = 1)
7T 2 Egzjyy 7['2 E:I;zh‘g
N = (E) e (D) 22 (4.2.35)
and the buckling mode (eigenfunction) associated with it is
. TT
W(x) = ¢y sin -
Example 4.2.4 (Clamped beam):
When the beam is fixed at both ends, the boundary conditions are
wo(0) =0, T¥0(0) =0, wola)=0, P00y =0 (4.2.36a)
T odx ’ T dz
which can be expressed as
dw dw
= ——— — = — = 4.2.
W(0)=0, —(0)=0, W(a)=0, ——(a)=0 (4.2.36b)
We have
W(O0)=0: cg+cg=0
W' (0)=0: ciAy+c3=0
Wi(a)=0: c¢ysind,a+cgocosha+csa+cqg =0
W'(a)=0: c1AcosAya—codysinAya+cg =0 (4.2.37)
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Expressing these equations in terms of constants c; and ¢y, we obtain

¢y (sin Adpa — Apa) 4 co (cos Apa — 1) =0
c1 (cos Apa — 1) — cg sin Apa =0 (4.2.38a)

For a nontrivial solution, the determinant of the coefficient matrix of the above two equations
must be zero (eigenvalue problem):

_|sinApa — Apa cosApa —1
cos Apa — 1 —sin Apa

=Apa sin Apa + 2cos Apa — 2 (4.2.38b)

The solution of equation (4.2.38b), known as the characteristic equation, gives the eigenvalues
€n = Xpa, and the buckling load is calculated from Eq. (4.2.30). Equations (4.2.38b) is a
transcendental equation, i.e., nonlinear equation involving trigonometric functions. A plot of
the function f(e,) = en sine, + 2cose, — 2 against e, shows that f(e,) is zero at e, =
0,6.2832(= 2m),8.9868,12.5664(= 4~),15.4505,67, - (A2,_1a = 2nw). Hence, the critical (i.e.,
smallest) buckling load is [see Eq. (4.2.30)]

N, — (e_")z Efelyy ) _ (2_7?)2 Eb 1y,
or a b a —b
72 Eb h3
= <?)< o2 > (4.2.39)

Table 4.2.2 contains governing equations for A, with some typical values, and
values of the constants ¢y, ¢z, ¢3, and ¢4 for several combinations of simply supported
(hinged), clamped (fixed), and free-edge conditions. For example, for the critical
buckling load of a cantilever beam (i.e., fixed at one end and free at the other end),
the boundary conditions are

d
wo(0) = 0, %(0) =0, Qu(a)=0, My(a)=0 (4.2.40a)
which are equivalent to
W =0, d—W:0 atz =0
dx

=0 atz=a (4.2.40b)

3w aw ?w
M) =0 T
( dx3 % dx ) T dx?

The critical buckling load is given by

Ncr =

< 4l >2 B2 Ty _ mhPER,

o = (4.2.41)



182 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

Table 4.2.2: Values of the constants and eigenvalues for buckling of laminated

composite beams with various boundary conditions (A\? =
bNO /Eb I, = (en/a)?). The classical laminate theory is used.

X

End conditions at Constantst Characteristic equation
r=0and z=a and values* of e,, = A\na
e Hinged-Hinged c1#0,c0=c3=c4=0 sine, =0
e, =nm
¢ Fixed-Fixed c1 =1/(sinen — en) ensine, = 2(1 — cosen)
Cc3 = —vl/)\n
" = ey = -
4 - co = —cq4 = 1/(cose, — 1) en = 2m,8.987,4x, - - -
e Fixed-Free cp=c3=0 cose, =0
A co=—-c4 #0 en = (2n—1)mw/2
o
e
o Free-Free cg=c3=0 sine, =0
C————— c2#0, ca#0 €n =NT
e Hinged-Fixed ¢1 =1/encosen, c3= -1 tane, = en
— cg=c4=0 en =4.493,7.725,- -
w ¥

t See Eq. (4.2.28): W (x) = ¢; sin \yx + ¢ cos \pZ + ¢32 + c4.
*For critical buckling load, only the first (minimum) value of e = Aa is needed.
4.2.4 Vibration
For natural vibration, the solution is assumed to be periodic
wo(z,t) = W(z)e™!, i=+v—-1 (4.2.42)

In the absence of applied transverse load ¢, the governing equation (4.2.8b) reduces
to

W - AW . . d*W
b _ 2 2
Equation (4.2.43) has the general form
d*W d*W
—_ —_ = = 4.2.44
P +q = W =0 ( )

where A A .
p=FE T, q=uwl—bNy, r=uwl (4.2.45)
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The general solution of Eq. (4.2.44) is

W (z) = ey sin Ax + ¢2 cos Az + c3 sinh ux + ¢4 cosh px (4.2.46a)

1 1
A= \/27) (q +1/¢* + 4pr>, p= \/% (—q +y*+ 4277") (4.2.46Db)

and c1, ¢2, c3, and ¢4 are constants, which are to be determined using the boundary
conditions.

From Egs. (4.2.46b), we have

2
(2p/\2 — q) =q¢>4+4pr or pX =g P —r=0 (4.2.47a)

2
(2p;1,2 + q) =¢+4pr or ppt+qut—r=0 (4.2.47b)

Substituting for p, ¢, and r from Eq. (4.2.45) into Eq. (4.2.47a,b) and solving for

w?, we obtain

b P v I
W2 — )4 E.L.fI?/y <1 + 1) , P = % , R = 2)\2 (4.2.48a)
I() 14 Rl Emfyy’\ [0
Eb I <1 — Pg) bN. I
2 4 | Epaplyy rz 2
w’ = L , P= , Ro=-= 4.2.48b
8 ( Iy ) 1 - Ry 2 B Lyyu? ’ IOM | )

The two expressions for w in Eqs. (4.2.48a,b) are the same and hence either one can
be used to calculate the frequency once A is known.

When the applied axial load is zero, the frequency of vibration can be calculated
from

b I % Eb Top?
o = 3Bty ( T2AT N aBaely () T (4.2.49)
Iy Io + Ip)\? Iy Iy — Iyp?

It is clear from the first expression that rotary inertia decreases the frequency of
natural vibration. If the rotary inertia is neglected, we have A = y and

b T
w = Nag, ap= 1/% (4.2.50)
0

In the following discussion beams with both ends simply supported or clamped
are considered to illustrate the procedure to evaluate the constants ¢; through ey,
and more importantly, to determine A so that Eqgs. (4.2.46)—(4.2.48) can be used to
find w. The smallest frequency w is known as the fundamental frequency. For other
boundary conditions, the reader is referred to Table 4.2.3. For boundary conditions
other than simply supported, one must solve a transcendental equation for e,, = A\, a.
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Table 4.2.3: Values of the constants and eigenvalues for natural vibration of
laminated composite beams with various boundary conditions (\: =

w2ly/E? Iy = (en/a)?). The classical laminate theory without
rotary inertia is used.

End conditions at Constants’ Characteristic equation
z=0and z=a and values of e,, = A\pa
¢ Hinged-Hinged c1#0, co=c3=c4=0 sine, =0
H En =0T
e Fixed-Fixed ¢ = —cg = 1/(sine, —sinhe,) cosencoshe, —1=0
74 g ~cg =c¢4 = 1/(cosen — coshey,) en = 4.730,7.853, - -
“%
o Fixed-Free ¢1 = —c3 = 1/(sine, +sinhey,) cosepcoshe, +1=0
b —cy =c4 = 1/(cosen + coshey,) e, = 1.875,4.694, - -
o I'ree-Free ¢1 =c3 =1/(sine, —sinhey) cosepcoshe, —1=0
—— cg =c4 = —1/(cosen — coshe,) en = 4.730,7.853, - - -
¢ Hinged-Fixed ¢y =1/sinen, c3 = 1/sinhe, tane, = tanhe,
I f;0 c2=c4=0 en = 3.927,7.069, - --
# re
¢ Hinged-Free ¢y =1/sinen, cg = —1/sinhe, tane, = tanhe,

”E:m cp=c4 =0 en = 3.927,7.069, - - -

t See Eq. (4.2.46a): W(x) = ¢y sin Az + ¢o cos Az + cg sinh pux + ¢4 cosh px.

Example 4.2.5 (Simply supported beam):
For a simply supported beam, the boundary conditions in Eq. (4.2.31b) give
Cop =C3 =C4 = 0 (4251)
nw

c1 sin Aa = 0, which implies A = e (4.2.52)

Substituting for A from Egs. (4.2.45) and (4.2.46a) into Eq. (4.2.48a), we obtain

nw\ 2 bNm 1
wn={(—] a — 4.2.53a
( a ) 0 ( 2EL Iy v (2z)2 ( )

If the rotary inertia is neglected, we obtain

nmw 2 szr
= (== SR A 4.2.
Wn ( . ) % \[1+ gt (4.2.53b)

Thus the effect of the axial tensile force N, is to increase the natural frequencies. If we have a very
flexible beam, say a cable under large tension, the second term under the radical in Eq. (4.2.53b)
becomes very large in comparison with unity; if n is not large, we have

W —y | = (4.2.53¢)
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which are natural frequencies of a stretched laminated cable. We also note from Eq. (4.2.53b)
that frequencies of natural vibration decrease when a compressive force instead of a tensile force is
acting on the beam.

When N, = 0, we obtain from Eq. (4.2.53a)

nm\ 2 1
o= () a0 [— L
a 1+(n_{:1’)272

(4.2.54)

0
nm 2 [Eb Iy, 1_ fQ(%E)Q
lo (22)2fy + Iy

Thus, rotatory inertia decreases frequencies of natural vibration. If the rotatory inertia is neglected,

we obtain
2 b
Wy = (E> Bialyy (4.2.55)
a I

Example 4.2.6 (Clamped beam):

For a beam clamped at both ends, the boundary conditions in Eq. (4.2.36) lead to

co+cg =0, Ay +puc3=0 (4.2.56)
and the eigenvalue problem
sinXa — (%) sinh pa cos Aa — cosh pa erl _J0 (4.257)
cos A\a — cosh pa —sinAa — ({%) sinh pa caf |0 o

where relations (4.2.56) are used to eliminate c3 and c4. For nonzero c¢; and cy, we require the
determinant of the coefficient matrix of the above equations to vanish, which yields the characteristic
polynomial
—2+ 2cos Aa cosh pa + (é - %) sin Aasinh pa =0 (4.2.58)
I

The solution of this nonlinear equation gives A and p. Then the natural frequency of vibration can
be calculated from Eq. (4.2.48a) or (4.2.48b); if the applied axial force is zero, Eq. (4.2.49) can be
used to calculate the frequency of vibration.

For natural vibration without rotatory inertia and applied in-plane force (i.e., ¢ = 0 in Eq.
(4.2.46b) and A = ), Eq. (4.2.58) takes the simpler form

cosAacoshAda —1=0 (4.2.59)

Equation (4.2.59) is satisfied for the following values of A:
A1a =4.730, Aoa =7.853, -, Apa=(n+ %)ﬂ' (4.2.60)

Maximum transverse deflections, critical buckling loads, and fundamental natural frequencies
of various laminated beams, according to the classical beam theory, are presented in Table 4.2.4 for
simply supported (hinged-hinged), clamped (fixed-fixed), and cantilever (clamped-free) boundary
conditions. In the case of bending, the point load is Fb, where Fj is the line load across the width
of the beam (force/unit length), and the distributed line load along the length is gyb, where gq is the
intensity of the distributed load (force/unit square area). In Table 4.2.4, the first row corresponds
to deflections due to point load Fj, and the second row corresponds to deflections due to uniformly
distributed load gq. Also, on the second and third rows, frequencies corresponding to a/h = 100
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and a/h = 10 are listed when rotary inertia is included. All other frequencies were computed by
neglecting the rotary inertia. The following nondimensionalizations are used:

W = Winaz Eoh® x 102 /ggat (Fo = goa)

N = N2.a%/Eyh®, & = wia®\/Iy/Exh3 (4.2.61)

The stiffness in a laminate is largest in the fiber direction because Ey > F5. Also, the bending
stiffness increases with (cube of) the distance of the 0° layers from the midplane. Thus, the
0°—laminated beam is stiffer in bending than the 90°—laminated beam, and therefore, 0° beam
has smaller deflection and larger buckling load and natural frequencies when compared to the 90°
beam. Since the 0° laminae are placed farther from the midplane in (0/90), laminate, it has smaller
deflection and larger buckling load and natural frequencies when compared to the (90/0)s beams.
Similarly, due to the placement of the 0° layers, laminate A is stiffer than laminate B, and laminate
B is stiffer than laminate C'. Symmetric angle-ply laminated beams (6/-6), have the same stiffness
characteristics as (-6/0),, and they are less stiff compared to the symmetric cross-ply laminated
beams.

Table 4.2.4: Maximum transverse deflections, critical buckling loads, and
fundamental frequencies of laminated beams according to the
classical beam theory (E1/FEs = 25, G12 = G13 = 0.5E;, Gog =
0.2E2, Vig = 025)

Hinged-Hinged Clamped-Clamped Clamped-Free
Laminate W N @ ] N @ w N @
0 1.000 20.562 14.246 0.250 82.247 32.292  16.000 5.140 5.074
0.625 14.245 0.125 32.291 6.000 5.074
14.187 32.129 5.071
90 25.000 0.822 2.849 6.250 3.290 6.458 400.00 0.205 1.015
15.625 3.125 150.00
(0/90) 1.134 18.127 13.375 0.283 72.507 30.320 18.149 4.532 4.764
0.709 0.142 6.806
(90/0), 6.239 3.296 5.703 1.560 13.183 12.929 99.821 0.824  2.032
3.899 0.780 37.433
(45/ — 45) 14.308 1437 3.766 3.577 5.748 8537 22893 0.359 1.341
8.942 1.788 85.847
Laminate A 1.607 12790 11.236 0.402 51.162 25.469 25.721 3.197  4.002
1.005 0.201 9.645
Laminate B 2.801 7.341 8512 0.700 29.366 19.296 44.813 1.835 3.032
1.751 0.350 16.805
Laminate C 7.945 2.588 5.054 1.986 10.351 11.456 127.13 0.647  1.800
4.966 0.993 47.673

Laminate A = (0/+45/90)s, Laminate B = (45/0/-45/90),, Laminate C' = (90/+45/0)s.
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We note that for clamped-clamped and clamped-free beams, the calculation of natural
frequencies require the solutions of transcendental equations for A. For the case where rotary
inertia is negligible, the roots of these equations are given in Table 4.2.3. To see the effect
of rotary inertia, Eq. (4.2.58) were solved for A and the frequencies were calculated. From
the frequencies listed in rows 2 and 3 of Table 4.2.4, it is clear that the effect of rotary
inertia on fundamental frequencies is negligible for small length-to-height ratios. Except for
second and third rows, all other frequencies listed in the table were calculated by neglecting
the rotary inertia, in which case the values of A; given in Table 4.2.3 are applicable.

4.3 Analysis of Laminated Beams Using FSDT
4.3.1 Governing Equations

Here we consider the bending of symmetrically laminated beams using the first-
order shear deformation theory. When applied to beams, FSDT is known as the
Timoshenko beam theory. The governing equations can be readily obtained from
the results of Section 3.4.

The laminate constitutive equations for symmetric laminates, in the absence of
in-plane forces, are given by [see Egs. (3.4.21) and (3.4.22)]

felory
My Dy Dip Dag oz
Myy = D12 D22 D26 3 -2 (431&)
way Dig Doy Des 3%1 + 2 ()¢y
Q Au A [ B2 +4y
vl K * 4.3.1b
{Qx} {A45 A551|{M+¢33} ( )
or, in inverse form, we have
% * * *
59& 11 12 16 M
6_y = iz D3 Dsg My, (4.3.2a)
Gk by | _ 1 [AL Al
awo Y { iy 4} {Qy } (4.3.2b)
+ ¢r K 45 55 Q:r

where K is the shear correction coefficient, Dlj’ (i,7 = 1,2,6) denote the elements

of the inverse of [D], and A}, (i,j =4,5) denote elements of the inverse of [A]:

Ass Ay Ass

Al = ak Azs = 0 Als = 1 A= Ay Ass — AgsAgs (4.3.3)

As in Section 4.2, we assume that My, = M;, = @, = ¢, = 0 and both wy and
¢, are functions of only x and ¢:

wo = ’LU()(CI?, t)s Gy = qsx(xat) (434)
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From Eq. (3.4.1) the displacement field takes the form (when the in-plane
displacements ug and vy are zero)

u(z, z) = z¢z(x), w(z,2) = wo(x) (4.3.5a)

and the linear strain-displacement relations give

0y ow
g = za% , 24, = a_af’ + by | (4.3.5b)
From Eqs. (4.3.2a,b) we have
0pr Jwo Ak
. a¢ 12
E; Ly 5 M(z), M(z)=0bM,,, E,, TN (4.3.7a)
ow 1
b ——Q — = b g
KGP_bh ( 0y ¢x) Q). Q) =0, Ch = iy (4.3.7b)
The equations of motion from Eq. (3.4.13) are
0Qs | g, Lwo o & (4.3.8)
bz g2 1T 0o >
My, P s
— = Jp— 4.3.8b
T (4.3.8b)

Using Eq. (4.3.7) in Eq. (4.3.8), the equations of motion can be recast in terms of
the displacement functions:

Pwy 0o - 0wy . 0%wg
K b x i 5 _ O Wo
G, bh < 32 + oz ) + bN, 52 +4=1I 52
92¢ ow - (‘)2¢
b z b 0 - z
where ) )
g=1bq, Iy=0>ly, I =0l (4.3.9¢)

4.3.2 Bending

Note that when the laminated beam problem is such that the bending moment M (x)
and @Q(z) can be written readily in terms of known applied loads (like in statically
determinate beam problems), Eq. (4.3.7a) can be utilized to determine ¢,, and
then wp can be determined using Eq. (4.3.7b). When M(z) and Q(x) cannot be
expressed in terms of known loads, Egs. (4.3.9a,b) are used to determine wg(z) and
¢z(z). In the latter case, the following relations prove to be useful.
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For bending analysis, Eqs. (4.3.9a,b) reduce to

2
KG_bh <d;“° +%) +4=0

dz? dz
2 dw
EY.1,, o KG?_bh (d—x" + ¢w) =0 (4.3.10a, b)

Integrating Eq. (4.3.10a) with respect to x, we obtain

dw

KGb_bh <d—$° + qs:c) =— /: G6)de + 1 (4.3.11)

Substituting the result into Eq. (4.3.10b) and integrating with respect to z, we
obtain

b d¢z rorm
B 1y, 0 =~ [ [Ta©dedn + v + o (13.12a)
dx o Jo
b z ¢ oo 2
B Iyba(z) = — / / / A dedndC + 1+ ca + ¢y (4.3.12b)
0 0 0

Substituting for ¢(x) from Eq. (4.3.12b) into Eq. (4.3.11), we arrive at

dwg . 1 z ¢ orn . T2
dr B, [—/0 /0 /0 q(&§)d&dnd¢ + c1 5 +02$+C3}

+ m [— /D " 4(6)de + cl] (4.3.13a)

1 z & mou z3 x?
wo(z) = — p—— —/ / / / G(¢)d¢dudndé + c1— + co— + c3x + ¢4
Eolyy | Jo Jo Jo Jo

6 2
—1 AP d¢d.
+ KRG {—/0 | a¢rdcds + exe

where the constants of integration c¢; through ¢4 can be determined using the
boundary conditions of the beam.

It is informative to note from Eq. (4.3.13) that the transverse deflection of the
Timoshenko beam theory consists of two parts, one due to pure bending and the
other due to transverse shear:

(4.3.13Db)

wo(x) = wh(z) + wi(z) (4.3.14a)
where

3 2

wb() 1 /76/5/’7/“A(<)dgddd€ o T o o
r = —— — _ - —

z g
wp(z) = m [—/O /0 G(¢)d¢dg + crz (4.3.14b)
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The pure bending deflection w§(z) is the same as that derived in the classical beam
theory [cf., Eq. (4.2.11b)]. When the transverse shear stiffness is infinite, the
shear deflection w{(z) goes to zero, and the Timoshenko beam theory solutions
reduce to those of the classical beam theory. In fact, one can establish exact
relationships between the solutions of the Euler-Bernoulli beam solutions and
Timoshenko beam solutions (see [27-29]). These relationships enable one to obtain
the Timoshenko beam solutions from known classical beam solutions for any set of
boundary conditions (see Problems 4.33 and 4.36).

The expressions for in-plane stresses of the Timoshenko beam theory remain the
same as those in the classical beam theory [see Eq. (4.2.12b)]. The expressions
given in Eqs. (4.2.15a,b) for transverse shear stresses derived from 3-D equilibrium
are also valid for the present case.

The transverse shear stress can also be computed via constitutive equation in
the Timoshenko beam theory. We have

Q(z)
b

o) (2, 2) = Q) Az (4.3.15)

Example 4.3.1 (Simply supported beam):

Here we consider the three-point bending problem of Section 4.2 (see Figure 4.2.2). For this case,
the bending moment [see Eq. (4.2.17)] and shear forces are

ngI dM Fob a
= == -0 <z<Z 3.
M (zx) 5 Q(zx) I 5 0793_2 (4.3.16)
Using Eq. (4.3.16) for M in Eq. (4.3.7a) and integrating with respect to x, we obtain
__Feb o
P = a5,
By symmetry, u; = ug + z2¢s is zero at x = a/2. This implies that ¢, (a/2) = 0. Hence
Foba2
€] = ——r—
IGEEIIQ‘Q
and the solution becomes
Fyba? z\2 a
o(z) = — 1-4(Z , 0<z< = 4.3.17
9:(2) = ~TgEn 1. [ (a) Osesy (4.3.17)

It is interesting to note from Eq. (4.3.17) that the rotation function ¢,(z) is the same as the
slope —dwg/dx from the Euler-Bernoulli beam theory (i.e., ¢, is independent of transverse shear
stiffness). Consequently, the bending moment [see Eq. (4.3.7a)], and therefore the axial stress, is
independent of shear deformation. In fact, ¢, is independent of shear deformation for all statically
determinate beams and indeterminate beams with symmetric boundary conditions and loading (see
Wang [27]). However, for general statically indeterminate beams, the rotation ¢, will depend on
the shear stiffness KG?%,bh (see Problem 4.11).

Substituting for ¢, into Eq. (4.3.7b), we obtain

dwo Foba2 x 2 F()b
dwg _ _Foba” |\, (x __Fob 431
dz _ 16Eb,1,, 4(a> BPTER)) (4.3.18a)
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Let us denote the first expression in (4.3.18a) by

dwp Fyba? z\?
= o |! 4(@) b () (4.3.18b)

In light of Eq. (4.3.14a), the first part of Eq. (4.3.18a) can be viewed as the slope (or rotation) due
to bending and the second one due to transverse shear strain:

dwg _ dwlh  dw] )

Indeed, dw§/da can be interpreted as the transverse shear strain [cf., Eq. (4.3.5b)]

dwg dw dw? dw
0 0 0 8} _ .
T 0z dr . dr + ¢ (2) = Va2 (4.3.19)

Note from Eq. (4.3.18a) that, in contrast to the classical beam theory, the slope dwy/dz at the
center of the beam in the Timoshenko beam theory is nonzero. We have (I, = bh3/12)

dwo a Fob
e I 4.3.20
dx (2) 2K G, bh (4.3.20)
However, dwg/dm = —¢, is zero at x = a/2. Integrating Eq. (4.3.18a) with respect to z, we arrive
at the expression
wo(z) = _Foba® 3(5) —4(5)3 4 Foba (f) (4.3.21)
O ™ 48EY T, a a 2KGb_bh \a -

where the constant of integration is found to be zero on account of the boundary condition
wp(0) = 0. Note that the first part (w}) is the same as that obtained in the classical beam
theory [cf., Eq. (4.2.18)].

The maximum deflection occurs at z = a/2 and it is given by

w _ FobCL3 F()ba
mer = 4REY I, | 4KGEbh
_ Fpbad Eb, h\?
= BELI,, [1 + (A’ng <E) (4:3:22)

Equation (4.3.22) shows that the effect of shear deformation is to increase the deflection. The
contribution due to shear deformation to the deflection depends on the modulus ratio EY,_/G?%, as
well as the ratio of thickness to length h/a. The effect of shear deformation is negligible for thin
and long beams.

Example 4.3.2 (Clamped beam):

Consider a laminated beam fixed at both ends and subjected to uniformly distributed transverse
load ggb as well as a point load Fyb at the center, both acting downward. For this case, the boundary
conditions are (using half beam)

a a Fob ba ba  Fyb
u(0,2) =0, 1L(§,Z):O, w(0,2) =0, Qw(E,z):(%+qog )~q02 = 3

(4.3.23)
which in turn imply that

a
2

) =0, wy(0) =0, KG'.bh (dﬂ + ¢w) (5) =2 (4.3.24)
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The solution is

bale) =00 [_2 (2)+3(2)’- (g)]

s (8" () w329
i =zl (G- ()] i () ()]

A 0] ()

The maximum deflection is at = /2 and is given by [cf., Eq. (4.2.23)]

o — gobat goa’ Fyba3 Fya
"% T 384EL, I, ' 8KGY,h ' 192ED 1,  4KGb,h
qobat Fyba3
= 4. .
[384E’;z1w T 1oeEe 1, | 1Y) (4.3.272)

where § is the positive parameter that characterizes the contribution due to the transverse shear

strain to the displacement field
E? h\?
S=4 (chz) (3) (4.3.27b)

Table 4.3.1 contains expressions for transverse deflections and maximum transverse deflections
of laminated beams according to the first-order shear deformation theory. By comparison to the
classical theory (see Table 4.2.1), it is clear that the shear deformation increases the deflection.

Table 4.3.2 contains maximum transverse deflections % of various laminated beams according
to the Timoshenko shear deformation beam theory. The effect of length-to-height (or thickness)
ratios of the beam on the deflections can be seen from the results. Thin or long beams
do not experience transverse shear strains. Clamped beams show the most difference in
deflections due to transverse shear deformation (i.e., accounting for the transverse shear strain).
The effect of shear deformation on maximum deflection can be seen from Figures 4.3.1 and
4.3.2, where the nondimensionalized maximum deflection, @ = wmazE2h3/gpat (Fy = qqa),
of a simply supported beam is plotted as a function of length-to-height ratio a/h for various
laminated beams under a point load and uniformly distributed load, respectively.  The
material properties of a lamina are taken to be those in Eq. (4.2.25). The effect of shear
deformation is more significant for beams with length-to-thickness ratios smaller than 10.

4.3.3 Buckling

For buckling analysis, the inertia terms and the applied transverse load q in Egs.
(4.3.9a,b) are set to zero to obtain the governing equations of buckling under
compressive edge load Ny, = —N2 :

=0 (4.3.28a)

W dx . d2W
Kngbh( > bNzz

it a dz?
d?x d
E;;Ilyyd—w2 ~ KG®_bh (% + X) =0 (4.3.28b)
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Table 4.3.1: Transverse deflections of laminated composite beams with various
boundary conditions and subjected to point load or uniformly
distributed load (acting downward) according to the shear
deformation theory.

Foba® . qoba* Foba qoba’®
C1 = ) 2 = , S1= T hp §2 = b
ES Iy E}leyy KG3, bh G?.,bh
Laminated Beam Deflection, wq(z) Max. Deflection
e Hinged-Hinged
Central point load % [3 (5) —4 (%);] Z%Cl + 21151
Fy +% (2) atz =%
> a 2
Uniform load 5 [(f) _2(%)d+(§)4] 321a + 38

XXIXZXITRN +3[(2)- ()] atz=3%
AN (]
% o 7

e Fixed-Fixed

Central point load o [3 (§)2 4 (%)3] e+ 1sy
R 5 +4 (%) atz =3
——+¢

2
Uniform load 52 [(5)2 — (%)] shzco + k5o
. z z)2 . —_a
T (- (] o=
H—G’—Nﬁ

e Fixed-Free

Point load at free end ¢ [3 (5)2 - (§)3] %cl + 81
“ 7o +s1 (%) atz=a
e
ey

Uniform load % [6(%)2—4(§)3+(f)4J tea+ 3so

do

ITTTT21Y +7[(25) - (3)7] aa=a

l——2 |

ay
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Table 4.3.2: Maximum transverse deflections of laminated beams according to

the Timoshenko beam theoryJr (E1/Es = 25, G1a = G13 = 0.5E,,
G23 == O‘2E2, Vg = 025)

Hinged-Hinged Clamped-Clamped Clamped-Free

Laminate ¢ — 100 20 10 100 20 10 100 20 10
0 1.001 1.150 1.600 0.256 0.400 0.850 16.02 16.60 18.40
0.628 0.700 0.925 0.128 0.200 0.425 6.01 6.30 7.20
90 25.015 25.375 26.500 6.265 6.625 7.750 400.00 401.50 406.00
15.633 15.813 16.375  3.132 3.312 3.875 150.00 150.75 153.00
(90/0), 1.143 1.348 1.991 0.292 0498 1.141 1818 19.01 21.58
0.713 0.816 1.137 0.146 0.249 0.570 6.82 7.23 8.52
(45/ — 45), 14.316 14.522 15.165  3.585  3.791  4.434 228.96 229.78 232.35

8.947 9.049 9371 1.793 1.895 2217 85.86 86.28  87.56

TThe first row of each laminate refers to nondimensionalized maximum deflections under point load
(Fob) and the second one refers to maximum deflections under uniformly distributed load (ggb).
The deflection is nondimensionalized as W = Wmaz(E2h?/gga?) x 102 (Fy = gpa).

Solving Eq. (4.3.28a) for dX' /dx one obtains

dX d*W
b _ bopy a0 ) W
KGy.bhr = (KGh.bh— BN, ) 3 (4.3.29)
Integration with respect to x yields
w
KGb bhX(z) = — (Kngbh - be;w) ‘Z—x + K, (4.3.30)

Next differentiate Eq. (4.3.28b) with respect to z and substitute for dX' /dz from
Eq. (4.3.29) to obtain the result

e d> [(1 bND_ )dQW]

W qr2 |\© KGY_bh | dz?
A*W bN? ?w
—KGb_bh —(1- oz =
G l dz? ( Kngbh) | =0
or 0 4 2
bN. dw d“W
Eb T, 11— 2 NO = = 4.3.31
za yy( Kngbh) gt T ONaaT iz =0 (4.3.31)
The general solution of Eq. (4.3.31) is
W(zx) = c18in Az + co cos A\x + c3x + ¢4 (4.3.32)
where
bN? NEb I
2 T 0 _ Yy
( - chzbh) zalyy ( + KGggzbh)

and ¢; through ¢4 are constants of integration, which must be evaluated using the
boundary conditions.
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Figure 4.3.1: Transverse deflection (w) versus length-to-thickness ratio (a/h) of
simply supported beams under center point load.
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Figure 4.3.2: Transverse deflection (w) versus length-to-thickness ratio (a/h) of
simply supported beams under uniformly distributed load.
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Example 4.3.3 (Simply supported beam):

For a simply supported beam, the boundary conditions are [see Eq. (4.2.31a)]
dx dx

In view of Eq. (4.3.29), the above conditions are equivalent to

2w 2w
The boundary conditions in Eq. (4.3.34b) lead to the result c; = ¢cg3 = ¢4 = 0, and for ¢; # 0 the
requirement

sinAa =0 implies Aa =n7 (4.3.35)
Substituting for A from Eq. (4.3.35) into Eq. (4.3.33) for N2, we obtain

ki 2]

nm\2 KGb,bh
- o (2)° | ;

a KGY,bh+ Eb, Iy (25
2
2 Eb I, (2=
= E2, Iy, (E) 1- w () . (4.3.36)
a KGY bh+ Eb, Iy (25)

The critical buckling load is given by the minimum (n = 1)

I E
bNer = E8 Iy (3)2 1- ) 5 (4.3.37)
a KGY,bh + Eb, Iy (%)

It is clear from the result in Eq. (4.3.37) that shear deformation has the effect of decreasing the
buckling load [cf., Eq. (4.2.35)].

Example 4.3.4 (Clamped beam):

For a beam fixed at both ends, the boundary conditions are
W(0)=0, W(a)=0, x(0)=0, X(a)=0 (4.3.38)

In order to impose the boundary conditions on X, we use Eq. (4.3.30). The constant K; appearing
in Eq. (4.3.30) can be shown (see Problem 4.10) to be equal to Ky = —c3(bNY,). The boundary
conditions yield

cog+cy =0, cysinda+cacosda+cza+cyg =0

bND, _
- (“z?am)*cl —e=0
bNO, .
B (1 - m) (Acy cos Aa — AcgsinAa) —c3 =0

Expressing ¢; and ¢y in terms of ¢3 and ¢4, noting that

1_ bNO, 1
KGb_bh ~— 1 A2Eb,I
1+ xagzb];ly

and then setting the determinant of the resulting algebraic equations among c¢; and cp to zero, we
obtain
N ED, Iy

2(cosAa — 1) (1 + KGb_bh

) + Aa sinAa =0 (4.3.39)
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Once the value of Aa is determined by solving the nonlinear equation (4.3.39), the buckling load
can be readily determined from Eq. (4.3.33).

4.3.4 Vibration

For natural vibration, we assume that the applied axial force and transverse load
are zero and that the motion is periodic. Equations (4.3.9a,b) take the form

2w dx .
KG®_bh - 2[oW = 4.3.4
zz ( dz? + dﬁ:’) +w iy 0 ( 0a)
2)( R
ngzyyd— — KGY_ bh (ﬂ + X) +w?hX =0 (4.3.40b)
dz? dz

We use the same procedure as before to eliminate X' from Eqs. (4.3.40a,b). From
Eq. (4.3.40a), we have

d*w
dx?

Kngbh‘fl—X = —Ipw*W — KG®_bh
T

(4.3.41)

Substitute the above result into the derivative of Eq. (4.3.40b) for dX'/dz and obtain
the result

4 Eb 7 . 2 27, A
Eb I d*w " ( IzInyO +1—2> de w _ (1 w2 )I0w2W =0 (4342&)

e KGb_bh dx? - KGb_bh
or 4 2
d*Ww d“W
— — —TW =0 4.3.42b
el e ( )
where
=EY 1 _( Eelw +é Iow?, 7= 1—~~—“’2IA2 Tow?  (4.3.42c)
P= ety 9=\ G pn T, ) 1 KGbbh ) *° a
The general solution of Eq. (4.3.42b) is
W (z) = c1sin Az 4 ¢g cos Az + c3 sinh ux + ¢4 cosh px (4.3.43a)

where

1 1
A \/2p (q+ \a +4pr>, I \/2p ( q+1/q +4pr) (4.3.43b)

and c1, ¢, c3, and ¢4 are constants, which are to be determined using the boundary
conditions. Note that we have

2
(2/\21) — q) = ¢’ +4pr or pN—gA2—r=0 (4.3.44)
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Alternatively, Eq. (4.3.42a) can be written, with W given by Eq. (4.3.43), in terms
of w as

Puwt—Qu*+R=0 (4.3.45a)
where
I Eb. I I Eb I
P=__=~_ = (14 [ 2=V 4“2 )2 = | === ¥ A1 (4.3.45b
Kabon @[T (Kagzbh * 10) » B Iy ( )

Hence, there are two (sets of) roots of this equation (when I # 0)

(%) = % (Q _Jor o 4PR> (W) = % (Q Q2 4PR) (4.3.46)

It can be shown that Q% — 4PR > 0 (and PQ > 0), and therefore the frequency
given by the first equation is the smaller of the two values. When the rotary inertia
is neglected, we have P = 0 and the frequency is given by

R . Eb I, Eb 1
W= 0= ll + (M) )\2] , R= (M) Al (4.3.47)
0 KGb_bh Iy

Example 4.3.5 (Simply supported beam):

For a simply supported beam, the boundary conditions in Eq. (4.3.34b) yield ¢3 = ¢3 = ¢4 =0 and
. S nmw
¢y sin Aa = 0, which implies A, = o (4.3.48)

Substitution of A from Eq. (4.3.48) into Eq. (4.3.47) and the result into Eq. (4.3.46a,b) gives two
frequencies for each value of A\. The fundamental frequency will come from Eq. (4.3.46a).

When the rotary inertia is neglected, we obtain from Eq. (4.3.47) the result

(!%)QE!I):Q:IZ/H

n=|— —xE s 1- 4.3.49
=) VT, \/ KGLbh+ (22 EL, L, (1349

Thus, shear deformation decreases the frequencies of natural vibration [see Eq. (4.2.55)].

Example 4.3.6 (Clamped beam):

Using Eq. (4.3.40a) and expression (4.3.43a) for W (x), dX/dz can be determined in terms of the
constants c¢; through c4, which then can be integrated with respect to x to obtain an expression
for X. Using the boundary conditions in Eq. (4.3.38), we obtain

co+¢c4 =0, cysinda—+ cycosda+ cgsinhpa + ¢4 coshpa =0

S1161 — S22¢3 =0, Sy1c1 — S1160 — Sagez — S2acq =0 (4.3.50a)
where R .
S11 = p (lgw? = N2KGE,bhY), Sap = A (Iogw? + p? KGY,bh) (4.3.50b)

Eliminating ¢s and ¢4 from the above equations, and setting the determinant of the resulting
equations among c¢; and ¢y to zero (for a nontrivial solution), we obtain
Sy2 Su

—2 + 2 cos Aa cosh pa + sin Aa sinh pa (— —) =0 (4.3.51)
S11 S22
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Table 4.3.3 contains critical buckling loads and fundamental frequencies of various
laminated beams according to the Timoshenko beam theory. The first row of each
laminate refers to the nondimensionalized critical buckling load, the second row
refers to nondimensionalized fundamental frequencies with rotary inertia, and the
fourth row refers to fundamental frequencies without rotary inertia. The numbers
in rows 3 and 5 refer to the fundamental frequencies calculated using the frequency
equations of the classical laminate theory (for the simply supported boundary
conditions, the frequency equations are the same in both theories). The following
nondimensionalizations are used:

N = N2.(a®/Exh3), @ = wia®\/Iy/Exh3 (4.3.52)

The frequency equations (4.3.51) of the Timoshenko theory depend, for clamped-
clamped and clamped-free boundary conditions, on the lamination scheme and
geometric parameters (through S;;), whereas those of the classical laminate theory
[see Eqgs. (4.2.58) and (4.2.59)] are independent of the beam geometry or material
properties. Thus, there are two different things that influence the frequencies in the
Timoshenko theory: (i) the effect of transverse shear deformation [see Eqs. (4.3.47)
and (4.3.49)], and (ii) the values of A, which are governed by different equations
than those of the classical theory (for clamped-clamped and clamped-free beams).
The second effect is not significant, as can be seen from rows 3 and 5 of Table
4.3.3. Also, for clamped-clamped and clamped-free boundary conditions, the effect
of rotary inertia on the frequencies is not as obvious as it was in the case of simply
supported beams, where the rotary inertia would decrease the frequencies. From the
results presented in Table 4.3.3, it appears that rotary inertia may actually increase
the frequencies slightly.

The effect of length-to-height (or thickness) ratios of the beam on critical
buckling loads N and fundamental frequencies @ is shown in Figures 4.3.3 and 4.3.4,
respectively, for various lamination schemes. The material properties used are those
listed in Eq. (4.2.25). Transverse shear deformation has the effect of decreasing
both buckling loads and natural frequencies. Thus, the classical laminate theory
overpredicts buckling loads and natural frequencies. This is primarily due to the
assumed infinite rigidity of the transverse normals in the classical laminate theory.
Note that the assumption does not yield a conservative result; i.e., if one designs a
beam for buckling load based on the classical laminate theory and if no safety factor
is used, it will fail for a working load smaller than the critical buckling load.

Once again we note that the relationships between the classical beam theory
and the Timoshenko beam theory may be used determine the deflections, buckling
loads and fundamental frequencies according to the Timoshenko beam theory from
those of the Euler-Bernoulli beam theory [29]. Such relationships exist only for
isotropic beams, and the reader may find it challenging to develop the relationships
for bending, buckling and vibration of laminated beams (see Section 5.5 of [29]).
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Table 4.3.3: Critical buckling loads (N) and fundamental frequencies ()
of laminated beams according to the Timoshenko beam theory
(El/E2 == 25, G12 = G13 = 0.5E2, G23 - O.2E2, Vig = 025)

Hinged-Hinged Clamped-Clamped Clamped-Free

Laminate £ — 100 20 10 100 20 10 100 20 10
0 N 20.461 18.304 13.768 80.655 55.070 27.656 5.134 4.987 4.576
cD(fQ # 0) 14.210 13.430 11.635 31.899 25.327 17.212 5.070 4.930 4.528
14.210 13.430 11.635 32.110 28.506 22.140 5.070 4.965 4.675
(D(fg =0) 14.211 13.441 11.657 31.824 24.636 16.680 5.063 4.813 4.229
14.211 13.441 11.657 32.113 28.547 22.186 5.070 4.966  4.680
90 0.822 0.812 0.784 3.283 3.135 2.747 0.205 0.205 0.203
2.848 2.829 2771 6450 6.260 5.761 1.015 1.012 1.004
2.848 2.829 2.771 6.454 6.356 6.079 1.015 1.012 1.005
2.848 2.832 2.781 6449 6.232 5.681 1.015 1.009 0.993
2.848 2.832 2.781 6.455 6.370 6.125 1.015 1.013 1.006
(90/0), 18.015 15.689 11.179 70.748 44.716 20.800 4.525 4.362  3.922
13.334 12.434 10.488 29.857 22.672 14.837 4.758 4.594 4.132
13.334 12.434 10.488 30.106 26.041 19.504 4.759 4.636 4.307
(45/-45), 1436 1.419 1.369 5.737 5478 4.802 0.359 0.358 0.355

3.765 3.739 3.663 8526 8275 7.616 1341 1338 1.326
3.765 3.739 3.663 8531 8402 8.036 1341 1.338 1.328

4.4 Cylindrical Bending Using CLPT
4.4.1 Governing Equations

Consider a laminated rectangular plate strip, and let the x and y coordinates be
parallel to the edges of the strip. Suppose that the plate is long in the y—direction
and has a finite dimension along the z—direction, and subjected to a transverse
load ¢(z) that is uniform at any section parallel to the x—axis. In such a case,
the deflection wy and displacements (ug,vg) of the plate are functions of only z.
Therefore, all derivatives with respect to y are zero, and the plate bends into a
cylindrical surface. For this cylindrical bending problem (see Figure 4.1.2), the
governing equations of motion according to the linear classical laminate plate theory
(CLPT) are given by [see Example 3.3.1; Egs. (3.3.48)]

82’11,0 (921}0 8371)0 8NT 821,60 6311)0
A A — B — Iz — [, -1 4.4.
Mgz TG TP T T T e T Nogae (44.1a)
9%ug %o &Bwy  ONI &%y
Aig—= + A - B — Y= 4.4.1b
1652 T A6 5. 167923 o 0512 ( )
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Figure 4.3.3: Nondimensionalized critical buckling load (N) versus length-to-
thickness ratio (a/h) of simply supported beams.
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Figure 4.3.4: Nondimensionalized fundamental frequency (@) versus length-to-
thickness ratio (a/h) of simply supported beams.
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PPug 0°vg 0*wyg 0 [~ Owg PMT
B B Dii——+ — [ Npz
g T P165.3 118x4+8x( (93:) o2 1
8211)0 8 wo 8311,0
= Jp——— — [ I 4.4.1
o2~ 2o20e T os0e (4.4.1c)
where Nm is an applied axial load, and

L Zk+1 2 (k)

(Io, I1, Io) = Z/ (1,2,2%)py dz (4.4.1d)
— J 2z

For a general lamination scheme, the three equations are fully coupled. In the
case of cross-ply laminates, the second equation becomes uncoupled from the rest.
In the general case, Egs. (4.4.1a-c) can be expressed in an alternative form by
solving the first two equations for u” and v” and substituting the results into the
third equation

A(_{);;C"%Q = B% + Age 8]8\;T - A 82]7” + Aeﬁfoa(; Awfoaavo
- Aesh% (4.4.2a)
A% = C@;’u;o AnagT AleagT + 1411106’82 141610882“0
+ A1glh % (4.4.2b)
gt = B + O~ (= Bl i+ Ot~
+ (I - Bll) 6‘?;322 - 82;3? + ;% (Nm%) + (4.4.2¢)
where

A = A1 A¢s — A16A1s, B = B11A4ss — BigA1s, C = A11B16 — A16B11

_ _ . B - C

D=Dy;—-B;1B-B B=—,6 C=—

11 11 16C, 1 1

Note that C = 0 for a cross-ply laminate (Ajg = Big = D1g = 0), and v is identically
zero unless N;;Fy is at least a linear function of z.

(4.4.2d)

If the in-plane inertias are neglected, Eq. (4.4.2¢) for wq is uncoupled from those
of ug and vg. In the absence of thermal forces and axial loads, Eq. (4.4.2c) will have
the same form as Eq. (4.2.8b). Therefore, the solutions developed in Sections 4.2.2
through 4.2.4 are also valid for cylindrical bending with appropriate change of the
coefficients.
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4.4.2 Bending

For static bending analysis, Eqs. (4.4.2a-¢) reduce to

d2u0 d3w0 dNT dNT
dr2 =B P + A66 d;I — Alﬁ d;y (443&)
dQU() dg wo ng; dNT

A dr2 = s + A1 dx — Ag d;I (443b)
d*wg  -d®NT NI @2MT

Do g =B 3t + 00 — — %+ (4.4.3¢)

Equation (4.4.3c) governing wg is uncoupled from those governing (ug,vo).
Equation (4.4.3c) closely resembles that for symmetrically laminated beams [see Eq.
(4.2.10b)]. While Eq. (4.4.3c) is valid for more general laminates (symmetric as well
as nonsymmetric), it differs from Eq. (4.2.10b) mainly in the bending stiffness term.
Hence, much of the discussion presented in Section 4.2 on exact solutions applies to
Eq. (4.4.3c). The limitation on the lamination scheme in cylindrical bending comes
from the boundary conditions on all three displacements of the problem. When both
edges are simply supported or clamped, exact solutions can be developed without
any restrictions on the lamination scheme. For clamped-free laminated plate strips,
satisfaction of the boundary conditions places a restriction on the lamination scheme,
as will be seen shortly.

Since Eq. (4.4.3c) is uncoupled from Egs. (4.4.3a,b), it can be integrated, for
given thermal and mechanical loads, to obtain wg(z), and the result can be used in
Eqgs. (4.4.3a) and (4.4.3b) to determine ug(x) and vp(z):

Bwy  ~dNL  _dNI ~— amT @
D—— = AN / d 4.4.4
dz’ dr C dx g 1)y (Qdta (44.4a)
T dNT dNL, - dMZL
Ly - B/o a() d+ G122+ =2 — BT oy (44.4D)
Pug [T dNL  dANg, . dME
L :C/o a() dE+Co 2 E 4+ =M - CT Iy (14.40)
where _
BB BB . B
=2 1A — 22 A =
Gy + Ags, F1 o) 16 D
BC BC ., C
2= 16, F2=—-+4n, C D
ay = B’Cl, b] = C’cl (445)
Further integrations lead to
d NN )
AZ0 - B/O (/0 a(n) dn> de + GyINT, + FUNT — BMT, + ayr+az  (4.4.6a)

. [T 3 R
A= = c/ (/ a(n) d77> d€ + GoN], + FoN], — CM, + bz +by  (4.4.6b)
0 0
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d? _ _ z 4
DWH;O = BNL + CNg;/ ~ ML + /0 (/0 a(n) dn) dé + 1z + ¢ (4.4.6¢)
and
x| e ] z T
Aw@) =B [ ["(["a(© dc) dnfag+ 61 [ NI+ 1 [ NE (e
. )
-B ; MZE (€)de + al% + axzx + a3 (4.4.7a)
oz [ € ] x x
@) =& [ [(["a©) ac) dn|d¢ +Ga [ NL(©de + Fy JARAAGEE
z 2
_é /0 MI()dE + b1 + by + by (4.4.7b)
d T & n _ T _ T
pe- | [ [ ([0 ac) an|ae+ B [ NEae + ¢ [ NG e)ae
T 2
— /0 MZ (&)de + 1= + eom + ¢ (4.4.7¢)

2

Duwy(z) =/0x {/Og Von (/Ocq(u)d#> d¢
vo [ ( /05 ny(n)dn> &~ [0 ( / ‘ Mfz(n)dﬂ) de
x3 ZEQ

+C1€+62?+C3$+C4

If the temperature distribution in the laminate is of the form
AT(x,2z) =To + 214
where Ty and 17 are constants, then we have

Zk+1 _

L
Njp =3 / (Q110az + Qracyy + 2Q1604,) ¥ AT dz
k=17 %k

= AclpTo + BflpTl

L Re+1  _ _ _
NI =% / (@160 + Qasryy + 2Qss0ay) ™ AT dz
k=1"7%k

= A Ty + BITy

L Zk4+1 _ _ _
Mg, = Z/ (Qu10er + Qra0yy + 2Q16azy)(k) ATz dz
k=1" %k

= B?TO + D?Tl

dn} ds+B/: (/OE fo(n)dn> dt

(4.4.7d)

(4.4.8)

(4.4.9a)

(4.4.9D)

(4.4.9¢)
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where

Rk+1  _

L
A=) / (Q100z + Qjauyy +2Qj60ay) ") d2
k=1"7%k

Zk41

L
B]T = Z / (leam + ngayy + 2Qj6a;,;y)(k) z dz
k=1"7%k

Zk+1 —

L
DJT = Z / (lea;vx + ngayy + 2Qj6a$y)(k) 22 dz (4.4.10)
k=1" %k
In addition, if ¢ = qg, expressions in Eqs. (4.4.7) become

3
.z
A’LL()(.Z‘) = BqOF + Gy (A’{TO + B’{Tl) rz+ K (A(?TO + Bng) x
A (T T z?
—3(31 To + Dy T1)$+GL1? + asx + as
~ 1173 $2
=Bq— +a1— + asx + a3 (4.4.11a)

6 2
3

Avo(z) = é’qo% + Gy (ATTy + BT Ty)z+ Fy (AL Ty + BY Ti)a

2
~C (BT + D) $+bl% + by + b

3 2

=Cag s + bl% + boa: + by (4.4.11b)
Dwo(z) = qog + B (AT Ty + BI'Ty) %2 +C (Af Ty + B{T) %2
- (BT + D) %2 +cl%3 +c2%2 + sz + e
qug—z+cl%3+ég%2+03x+04 (4.4.11c)

The constants of integration a;, b;, and ¢; can be determined using the boundary
conditions.

The in-plane stresses in each layer can be computed using the constitutive
equations, and the transverse stresses can be determined using equilibrium equations

of 3-D elasticity [see Eqs. (4.2.13) and (4.2.14)]. For a cross-ply laminate the only
nonzero strain is €;,.

Example 4.4.1 (Simply supported plate strip):

For a plate strip with simply supported edges at © = 0 and z = a, the boundary conditions are (see
Table 4.4.1)

Nr:c = 07 wo = Oy A4:r:c =0 (4412)
where )
duo d?)o d wo .
sz = A1 — —_ = — NT 4.1
117+ A 7y~ Bu 72 za (4.4.13a)

2
A (4.4.13b)

du, dv
Nyy:Aud*xO*'A%d—;*Bm 2~ N
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Ny = A1 + Ags ‘2“0 Big dj _NT, (4.4.13¢)
Mg = Budd +B G‘Z’O Dnd W pT (4.4.14a)
M,, = Bu% + B%% - D dd“’“ Mz, (4.4.14b)
M, BlGZ“O + 366‘% -D Gdd - M (4.4.14c)

From Eqs. (4.4.12), (4.4.13a), and (4.4.14a) it follows that, for an arbitrary lamination scheme and
dvg/dx = 0, we must have at z = 0,a

dug dv d2wyg
= =NT, 6 =0— = MZ, 4.4.1
Wo 07 dJ’ wzs o ’ dz2 ( 58‘)
Dy NI, — B ML, - By NI — A MT,
Ngj‘; — 114z 11 Mgy , MTr — 11 V2o 11 %z 4.4.15b
A11D11 _BllBll o AllDllfBllBll ( )

Since only the derivatives of ug and vg are specified at the boundary points, the solution for uy and
vo can be determined only with an arbitrary constant (i.e., rigid body motion is not eliminated).

Using boundary conditions (4.4.15) in Eq. (4.4.11a-c), we obtain

uo(x) = /5) qg‘; [2 (g)d _3 (g)z] +NT 24 ag (4.4.16a)
vo(z) = ACD q‘i‘; [2 (93 -3 (2)2} + bs (4.4.16b)
wio) =55 | (2) -2 ()" + (2)]

n 1\4%_“2 [(2)2 _ (g)} (4.4.16¢)

where the constants a3 and b3 can be interpreted as rigid body displacements. The constants can
be determined by setting ug(0) = 0 and vg(0) = 0, which give ag = b3 = 0.

The stress resultants for any x are then given by substituting Eqgs. (4.4.16) into Egs. (4.4.13)
and (4.4.14):

New =0, Ny =A1gNL — BigMZL, — NI, (4.4.17a)

2 2 .
Ny = B0 (A12B + AseC - BraA) [(2) —(-—)}

2AD a
+ AygNE, — BigMZ, (4.4.17b)
2 2
L N I
Mzm - 2 I:(a) (a>} (4.4.17C)
My = 0% (BL6B + BysC — DigA) (9)2 - (f)
Y7 2AD a a
+ B1gNT, — D1g ML, — M7, (4.4.17d)
a? z\2 [z
Myy = g?4D (B12B + BagC — D12 A) [(a) - (;)}

+ Blngw — DlgMg; - ng (4.4.17¢)
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The maximum transverse deflection occurs at = = a/2, and it is given by

5qpa?t N MT a2
384D 8

Wrnar =

(4.4.18)

In order to see the effect of the bending-stretching coupling on the transverse deflection, the
reciprocal of the bending stiffness D [see Eq. (4.4.2d)] is expressed as

11 (Du)__1_ D+ B11B + Bj4C
D DL\ D) D D

Hence, the maximum deflection can be expressed in the form

(4.4.19)

Wmaxe =

5qpat 14 B11B + BgC _ MT a?
384D;, D 8

For symmetric laminates the coupling terms are zero, and the maximum deflection is given by

_ 5ggat MZT a2
Wmar = 5557~ —

384D, 8

(4.4.20)

It can be shown that the expression BB + BigC is always positive. Therefore, it follows that
the effect of the coupling is to increasc the maximum transverse deflection of the plate strip. For
example, for antisymmetric cross-ply laminates, we have A1g = Agg = B1g = Bog = Dy = Dog =0,

B=DBj1/A;;,C=0,and D= Dy — B%l /A11. Thus the maximum deflection becomes

5qgal B2 MT a2
maxr = T3 1+ — X 4.4.21
v 384Dy, AnDy, - B2 8 ( )

In the case of antisymmetric angle-ply laminates, we have A4 = Agg = B11 = Bog = Bjg = Bgg =

Dig =Dy =0, B=0, C = Byg/Ags, and D = Dy; — B%G/Aﬁﬁ. The maximum deflection becomes

4 B2 T 2
Wmaz = Sdoa (1 + 16 5 ) _ Mg,a (4.4.22)
16

384D, AgeD1; - B 8

Note that when the bending-stretching coupling terms are zero (e.g., for symmetric laminates),
the cylindrical bending and laminated beam solutions have the same form. The difference is only
in the bending stiffness term. The bending stiffness D;; used in cylindrical bending is given by

Eb_h3 Eb 3
Dy = zT = L 4.4.23
" 12(1 ‘szugm) 12[1_(Ul;y)2(E£1/E_2(;)] ( )

whereas the bending stiffness used in the beam theory is Et, I, = Eb%, bh?/12. Thus, the difference
is in the expression containing Poisson’s ratios, which is due to the plane strain assumption used
in cylindrical bending compared to the plane stress assumption used in the beam theory. The
difference between the two solutions will be the most for laminates containing angle-ply layers,
where v, can be very large.

Analytical solutions for beams under uniform transverse load with other
boundary conditions may be obtained from Eqs. (4.4.11a-c). For loads other than
uniformly distributed transverse load, one must use Egs. (4.4.7a-d).
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Table 4.4.1: Boundary conditions in the classical (CLPT) and first-order shear

deformation (FSDT) theories of beams and plate strips.

The

boundary conditions on ug and vy are only for laminated strips

in cylindrical bending.

Edge Condition CLPT FSDT
z? free Ne=0  Ni= Ne=0  Ny=0
—— Mxx—O _dex =0 Mxxzo x =0
dx
dUO dUO
wO:O dx =0 w0:O dx =0
zf simple support ug=0 wo=0 ug=0 wo=0
e G de dvo
& =0 Me=0 r =0 Mu=0
uO:O 1)0:0 Lto:() l)()=0
dw

4.4.3 Buckling

The equilibrium of the plate strip under the applied in-plane compressive load

Nz = —NQ2, can be obtained from Egs. (4.4.2a-c) by omitting the inertia terms
and thermal resultants
d*U  _dPW
— =B—— 4.4.24
dz? dz3 ( )
d*v W
— =C—=- 4.4.25
dz? da® ( )
d*W W
D——r = —-N),—— 4.4.2
d$4 rr de ( 6)

where (U,V,W) denote the displacements measured from the prebuckling

equilibrium state.

Equation (4.4.26), which is uncoupled from (4.4.24) and (4.4.25), can be
integrated twice with respect to = to obtain

d*W
p&
dz?

+ N2 W = K1z + K

(4.4.27)
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where K7 and K5 are constants. The general solution of Eq. (4.4.27) is
W(z) = e1sin Az + ca cos Az + c3x + ¢4 (4.4.28)
where ¢3 = K1/A\%, ¢y = Ko/A?, and
0

N,
A= - or NO, = D)? (4.4.29)

The three of the four constants cj,co,c3,¢4, and A are determined using (four)
boundary conditions of the problem. Once A is known, the buckling load can be
determined using Eq. (4.4.29). The results of Section 4.2.3 are applicable here

with b = 1 and nglyy = D. Here we consider only the case of simply supported
boundary conditions for illustrative purposes.

Example 4.4.2:

When the plate strip is simply supported at x = 0, a, from Eq. (4.4.15a) we have

dU av 2w ;
W =0, e =0, — =0, 71;2-_0 (4.4.30)

Use of the boundary conditions on W gives ¢g = ¢3 = ¢4 = 0 and the result

[ NO 2
sin Aa = sin( %) =0, or N9 . =D (%) (4.4.31)

The critical buckling load N, is given by (n = 1)

(4.4.32)

w2 Bllg'l‘Blﬁé
Ner = Dugg (1 T Dud

Thus the effect of the bending-extensional coupling is to decrease the critical buckling load.

Recall from Section 4.2.3 that when both edges are clamped, A is determined by solving the
equation
Aa sinAa+2cosha—-2=0 (4.4.33)

The smallest root of this equation is A = 2m, and the critical buckling load becomes

472

Nep = Dyj— (1 - (4.4.34)

al

B11B + B1sC
D11A

4.4.4 Vibration

For vibration in the absence of in-plane inertias, thermal forces, and transverse load,
Eq. (4.4.2c) is reduced to

twg - Oty 0wy - Q%wy
- B Nee 0z

(4.4.35)

where I, = I — BI. For a periodic motion, we assume

wo(z,t) = W(z)et, i=+—1 (4.4.36)
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where w is the natural frequency of vibration. Then Eq. (4.4.35) becomes

d*w - d*W
pZ = _ N, L2
dz4 dz?

o d*W

= Iow*W ~ I
0w 2 e

(4.4.37)

Equation (4.4.35) has the same form as Eq. (4.2.43). Hence, all of the results of
Section 4.2.4 are applicable here with b =1 (Iy = Iy, Io = I3) and Efm[yy =D. We
summarize the results here for completeness.

The general solution of Eq. (4.4.37) is
W (z) = ¢ sin Ax + ¢ cos Az + c3 sinh pux + ¢4 cosh px (4.4.38)

where

p=D, q=I5Lw?— Ny, r=Iw? (4.4.40)

and cj,c2,c3, and ¢4 are integration constants, which are determined using the
boundary conditions. For natural vibration without rotary inertia and applied axial
load, the equation for A = u reduces to

N =\ /r/p (4.4.41)

If the applied axial force is zero, the natural frequency of vibration, with rotary
inertia included, is given by

D Io\?
2 4 2
=A== 1-— 4.4.42
v Iy ( Iy + 12/\2) ( )

When rotary inertia is neglected, we have

w =N/ D (4.4.43)
Iy

For a simply supported plate strip, A, is given by A, = 2% and from Eq. (4.4.42) it follows that

_(nm\* |D 1
wTW(?) \/% T+ ()2 (5 1) (4.4.44)

Note that the rotary inertia has the effect of decreasing the natural frequency. When the rotary

inertia is zero, we have
2
nm | D

Example 4.4.3:
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For a plate strip clamped at both ends, A must be determined from [see Egs. (4.2.56)—(4.2.60)]
) AN . .
—2 4 2cos Aacosh pa + e X) sin Aasinh pa =0 (4.4.46)

For natural vibration without rotary inertia, Eq. (4.4.46) takes the simpler form
cosAacosh da —1 =10 (4.4.47)

The roots of Eq. (4.4.47) are
Ara =4.730, Aoa =7.853, Aza=10.996, ---, Apa=~(n+ %)ﬂ' (4.4.48)

In general,