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ABSTRACT

An increasingly large fraction of Internet services are hosted on a
cloud computing system such as Amazon EC2 or Windows Azure.
But to date, no in-depth studies about cloud usage by Internet ser-
vices has been performed. We provide a detailed measurement
study to shed light on how modern web service deployments use
the cloud and to identify ways in which cloud-using services might
improve these deployments. Our results show that: 4% of the
Alexa top million use EC2/Azure; there exist several common de-
ployment patterns for cloud-using web service front ends; and ser-
vices can significantly improve their wide-area performance and
failure tolerance by making better use of existing regional diversity
in EC2. Driving these analyses are several new datasets, includ-
ing one with over 34 million DNS records for Alexa websites and
a packet capture from a large university network.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Network]: General; C.4 [Perfo-
rmance of Systems]: Metrics—performance measures

General Terms

Measurement
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1. INTRODUCTION

Up until a few years ago, web services were hosted in heteroge-
neous server clusters or co-location centers that were widely dis-
tributed across different network providers and geographic regions.
Today, web services are increasingly being deployed in infrastruc-
ture-as-a-service (IaaS) clouds such as Amazon EC2, Windows
Azure, and Rackspace. Industry and the media claim that over 1%
of Internet traffic goes to EC2 [31] and that outages in EC2 are
reputed to hamper a huge variety of services [4, 6,24, 35].
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Despite the popularity of public IaaS clouds, we are unaware of
any in-depth measurement study exploring the current usage pat-
terns of these environments. Prior measurement studies have quan-
tified the compute, storage, and network performance these clouds
deliver [29, 30], evaluated the performance and usage patterns of
specific services that are hosted in these clouds, e.g., Dropbox [23],
or examined cloud usage solely in terms of traffic volume [28].

We present the first in-depth empirical study of modern IaaS
clouds that examines laaS cloud usage patterns and identifies ways
in which cloud tenants could better leverage laaS clouds. We focus
specifically on web services hosted within IaaS clouds, which our
study (unsurprisingly) indicates is a large and important use case
for IaaS.

We first examine who is using public laaS clouds. We generate
a dataset of cloud-using domains using extensive DNS probing in
order to compare the IPs associated with websites on Alexa’s top
1 million list [1] against published lists of cloud IP ranges. This
identifies that ~40K popular domains (4% of the Alexa top mil-
lion) have a subdomain running atop Amazon EC2 or Windows
Azure, two of the largest public clouds. We extract an additional
~13K cloud-using domains from a one week packet capture from
a large university network, and we use this capture to characterize
the network traffic patterns of cloud-hosted web services. These
results indicate that a large fraction of important web services are
already hosted within public [aaS clouds.

We proceed to dissect how these services are using the cloud.
EC2 and Azure both have a veritable potpourri of features, includ-
ing virtual machines, load balancers, platform-as-a-service (PaaS)
environments, content-distribution networks (CDNs), and domain
name services. They also give tenants the choice of deploying
their services in several different regions (i.e., geographically dis-
tinct data centers), and EC2 provides several different “availability
zones” within each region. We couple analysis of DNS records with
two different cloud cartography techniques [34] to identify which
features, regions and zones web services use. We identify several
common front end deployment patterns and report estimates of the
percentages of Alexa subdomains using each of the patterns. In par-
ticular, we find that about 4% of EC2-using web services use load
balancers and 8% of them leverage PaaS. Only 5% of the DNS
servers used by cloud-using subdomains run on VMs inside EC2
or Azure. We also show that 97% of the subdomains hosted on
EC2 and 92% of the subdomains hosted on Azure are deployed
in only a single region. Counted among these are the subdomains
of most of the top 10 (by Alexa rank) cloud-using domains. Ser-
vices deployed in EC2 also appear to make limited use of different
availability zones: our measurements estimate that only 66% of
subdomains use more than one zone and only 22% use more than
two. This lack of redundancy means that many (even highly ranked
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Figure 1: Deployment patterns for web services.

Alexa) services will not tolerate single-region or even single-zone
failures.

Finally, we use a series of PlanetLab-based [17] active measure-
ments and simulations to estimate the impact of wide-area route
outages and the potential for wide-area performance improvement.
We find that expanding a deployment from one region to three
could yield 33% lower average latency for globally distributed cli-
ents, while also substantially reducing the risk of service downtime
due to downstream Internet routing failures.

The remainder of our paper is organized as follows. We first pro-
vide background on Amazon EC2 and Windows Azure and discuss
the primary datasets we use in our study (§2). We then examine
who is using the cloud (§3), and which cloud features, regions, and
zones are used by the cloud-using web services we identified (§4).
Based on these observations, we proceed to estimate the wide-area-
failure tolerance of current web service deployments and the poten-
tial for performance improvement (§5). Finally, we discuss related
work (§6) before concluding (§7).

2. MEASUREMENT SCOPE & DATASETS

Public IaaS clouds, such as Amazon EC2, Windows Azure, and
Rackspace, allow tenants to dynamically rent virtual machine (VM)
instances with varying CPU, network, and storage capacity. Cloud
tenants have the option of renting VMs in one or more geographi-
cally distinct data centers, or regions. Some clouds, such as EC2,
further divide these regions into multiple distinct availability zones.
Each zone has separate compute and power infrastructure to make
certain failure modes zone-specific and to allow cloud tenants to
replicate their deployments across multiple zones for smooth fail-
over.

Beyond simple VMs, laaS providers, as well as third parties,
offer a wide-range of value-added features: load balancers (e.g.,
Amazon Elastic Load Balancer and Azure Traffic Manager), plat-
form-as-a-service environments (e.g., Amazon Elastic Beanstalk,
Heroku, and Azure Cloud Services), content-distribution networks
(e.g., Amazon CloudFront and Azure Media Services), DNS host-
ing (e.g., Amazon route53), etc. The result is a complex ecosystem
of interdependent systems operating at multiple layers of abstrac-
tion, and, in turn, a large variety of possible deployment patterns
for cloud tenants. In this paper, we study four popular deployment
patterns. We describe these using a series of examples.

In Figure 1, we show the steps involved in a client accessing an
EC2-hosted web service that is using one or more of the aforemen-
tioned features. When a client wants to access a web service, it
first performs a DNS lookup of the service’s domain name. The
response may contain an IP address associated with a VM (deploy-
ment pattern P7), a load balancer (P2), or a platform-as-a-service

(PaaS) node (P3). With P2, the client request is subsequently di-
rected to a VM!. Tenants using P/—P3 may also rely on additional
VMs or systems (dashed lines) to handle a client’s request; these
additional components may or may not be in the same region or
availability zone (indicated by the gray boxes). An object returned
to a client (e.g., a web page) may sometimes require the client to
obtain additional objects (e.g., a video) from a content-distribution
network (P4).

We focus on studying the front end portions of web service de-
ployments within the above four deployment patterns (indicated
by the thicker lines in Figure 1). These portions are encountered
within the initial few steps of a client making a request. We leave an
exploration of deployment/usage patterns covering the later steps
(e.g. back-end processing) for future work.

2.1 Datasets

We use two primary datasets: (i) a list of cloud-using subdo-
mains derived from Alexa’s list of the top 1 million websites, and
(i) packet traces captured at the border of the UW-Madison cam-
pus network. Both datasets leverage the fact that EC2 [12] and
Azure [8] publish a list of the public IPv4 address ranges associ-
ated with their IaaS cloud offerings. Below, we provide details on
our Alexa subdomains and packet capture datasets. We augment
these data sets with additional traces and active measurements to
aid specific analyses; we describe these at the appropriate places in
subsequent sections.

Top Cloud-Using Subdomains Dataset. Our first dataset is a list
of subdomains which use EC2 or Azure and are associated with do-
mains on Alexa’s list of the top 1 million websites [1]. We consider
a subdomain to use EC2 or Azure if a DNS record for that subdo-
main contains an IP address that falls within EC2 or Azure’s public
IP address ranges.

To construct this dataset, we first identified the subdomains as-
sociated with each domain on Alexa’s list of the top 1 million web-
sites. We started with Alexa’s top 1 million list from Feburary 6,
2013 and attempted to issue a DNS zone transfer (i.e., a DNS query
of type AXFR) for each domain on the list. The query was suc-
cessful for only about 80K of the domains. For the remaining do-
mains, we used dnsmap [16] to identify subdomains by brute-force.
Dnsmap uses a pre-defined word list, which we augmented with
the word list from knock [15], to construct potential subdomain
names. Dnsmap then runs DNS queries to check if the potential
subdomains actually exist. This brute-force approach misses some
subdomains, but it allows us to provide a lower bound on the num-
ber of subdomains which use public IaaS clouds and explore the
deployment patterns of these known cloud-using subdomains. We
distributed this task to 150 globally-distributed PlanetLab nodes,
producing a list of 34 million valid subdomains.

To limit the list of subdomains to cloud-using subdomains, we
performed a series of DNS lookups using the UNIX dig utility.
We first performed a single DNS lookup from one PlanetLab node
(chosen from our set of 150 nodes) for each subdomain. If the
DNS record contained an IP address within EC2 or Azure’s public
IP ranges®, we included it on our list of the top cloud-using subdo-
mains. This resulted in a list of 713K cloud-using subdomains. We
then performed a DNS lookup for each of the cloud-using subdo-
mains on every node in a set of 200 globally-distributed PlanetLab
nodes. Figure 2 shows the geographic location of these PlanetLab

'Or Paa$ nodes, as is done by Amazon Elastic Beanstalk and Azure
Traffic Manager.

2We assume the IP address ranges published by EC2 and Azure are
relatively complete.



Figure 2: PlanetLab nodes used for DNS lookups

nodes, which are spread across North America, South America,
Europe, Asia, and Australia. The queries were performed March
27-29, 2013. These distributed DNS queries help ensure that we
gather a comprehensive set of DNS records for each cloud-using
subdomain and capture any geo-location-specific cloud usage.

We refer to the list of cloud-using subdomains, and their associ-
ated DNS records, as the Alexa subdomains dataset.

Packet Capture Dataset. Our second primary dataset is a se-
ries of packet traces captured at the border of the University of
Wisconsin-Madison campus network’. We captured full IP packets
whose source or destination IP address fell within the public ad-
dress ranges published by EC2 and Azure. The capture was per-
formed from Tuesday, June 26 to Monday, July 2, 2012 giving
us a full week of traffic and a total of 1.4TB of data. The total
Internet traffic averaged approximately 7Gbps during the capture,
with about 1% of the traffic going to/coming from EC2 or Azure.
Due to the relatively low rate of traffic being captured, no loss oc-
curred during the capture process (according to tcpdump and coun-
ters reported by the border router). To protect user privacy, we
anonymized the IP addresses of clients within the university net-
work, and we only report aggregate statistics.

Since our traces contain full packets, we were able to perform an
in-depth analysis of network and transport layer information (e.g.,
IP addresses, protocols, ports), application layer information (e.g.,
HTTP hostnames, HTTP content-type, HTTPS certificates), and
packet payloads. We extracted relevant information from the traces
using Bro [33], a network monitoring and traffic analysis tool. We
refer to these traces as the packet capture dataset.

We recognize that a packet trace from a single campus vantage
point may not reflect the “typically” usage patterns of services de-
ployed in IaaS clouds. Correspondingly, we only leverage the pack-
et capture for analysis which cannot be conducted using our Alexa
subdomains dataset—namely, protocol usage (§3.1), popularity es-
timates based on traffic volume and flow counts (§3.2), and flow
characteristics (§3.3).

3. WEB-FACING CLOUD TENANTS

In this section, we explore what applications are being hosted
on public IaaS clouds. We start by analyzing the packet capture
to identify the types of applications being hosted. This analysis
suggests (unsurprisingly) that web applications represent a large,
important set of cloud tenants. We then turn to examining which
of the most popular websites are using clouds. We view popularity
both globally, via the Alexa top website rankings, and locally, via
the volume of traffic associated with each domain in the packet cap-
ture. We also analyze the traffic patterns of cloud-using services,
including flow characteristics and content types served.

3The university has seven /24 IP blocks and one /16 IP block

Cloud | Bytes | Flows
EC2 81.73 | 80.70
Azure | 18.27 19.30

[ Total | 100 [ 100 |

Table 1: Percent of traffic volume and percent of flows associated
with each cloud in the packet capture.

EC2 Azure Overall
Protocol Bytes | Flows || Bytes | Flows || Bytes | Flows
ICMP 0.01 0.03 0.01 0.18 0.01 0.06

HTTP (TCP) 16.26 | 70.45 || 59.97 | 65.41 || 24.24 | 69.48
HTTPS (TCP) || 80.90 6.52 || 37.20 6.92 || 72.94 6.60
DNS (UDP) 0.11 | 10.33 0.10 | 11.59 0.11 | 10.58
Other (TCP) 2.40 0.40 2.41 1.10 2.40 0.60
Other (UDP) 0.28 0.19 0.31 | 14.77 0.28 3.00

[ Towl [ 100] 100 ] 100 ] 100 | 100 [ 100

Table 2: Percent of traffic volume and percent of flows associated
with each protocol in the packet capture.

3.1 Protocols and Services

We first examine the fraction of bytes and flows in the packet
capture that are associated with each cloud (Table 1). We only
consider flows that were initiated within the university and destined
for EC2 or Azure. We observe that the majority of cloud traffic,
both as measured by volume and number of flows, is EC2-related:
81.73% of bytes (80.70% of flows) are associated with EC2, while
Azure accounts for 18.27% of bytes (19.30% of flows).

Next, we use the packet capture to study the application-layer
protocols used by cloud tenants. Table 2 shows the percentage of
bytes (and flows) using a specific protocol relative to the total num-
ber of bytes (and flows) for EC2, Azure, and the capture as a whole.

We observe that more than 99% of bytes in the packet capture are
sent and received using TCP, with less than 1% of bytes associated
with UDP or ICMP. The vast majority of this TCP traffic is HTTP
and HTTPS. The proportion of HTTPS traffic is far higher than
that seen for general web services in the past (roughly 6% [18]);
as we will show later, HTTPS traffic is dominated by cloud stor-
age services. Interestingly, the majority of Azure’s TCP traffic is
HTTP (59.97%) while the majority of EC2’s TCP traffic is HTTPS
(80.90%)

The breakdown by flow count is less skewed towards TCP, with
UDP flows accounting for 14% of flows in the packet capture. This
is largely due to DNS queries, which account for 11% of flows but
carry few bytes.

As one would expect, public IaaS clouds are also used for non-
web-based services. In the packet capture, we find a small fraction
of non-HTTP(S) TCP traffic and non-DNS UDP traffic going to
both EC2 and Azure. This traffic includes SMTP, FTP, IPv6-in-
IPv4, SSH, IRC, and other traffic that Bro could not classify.

Summary and implications. While we analyze a single vantage
point, our measurements suggest that web services using HTTP(S)
represent an important set of WAN-intensive cloud tenants. The
extent to which compute-intensive workloads (that may not result
in a large impact on network traffic) are prevalent as cloud tenants
remains an interesting open question. In the following sections we
dig into what tenants are hosting web services on public clouds as
well as diving deeper into their traffic patterns.

3.2 Popular Cloud-Using (Sub)Domains

Cloud-using Alexa domains. We now consider what subset of the
Alexa top 1 million websites use the cloud to (partly) host their
services. Recall that Alexa provides an estimate of the most pop-



[ Provider | #Domains (%) | # Subdomains (%) |
EC2 only 3,277 (8.1%) 685,725 (96.1%)
EC2 + Other 34,721 (86.1%) 21,628 (3.0%)
Azure only 184 (0.5%) 6,328 (0.9%)
Azure + Other 1,858 (4.6%) 225 (<0.01%)
EC2 + Azure 293 (0.7%) 7 (<0.01%)

[Totl [ 40,333 (100.0%) | 713,910 (100.0%) ]
EC2 total 38,291 (94.9%) 707,357 (99.1%)
Azure total 2,335 (5.8%) 6,557 (0.9%)

Table 3: Breakdown of domains and subdomains based on their use
of EC2, Azure, and/or other hosting services.

ular domains worldwide. Their ranking is based on the number
of unique visitors and the number of page views over the last 3
months, aggregated at the domain level* [1]. Using our Alexa sub-
domains dataset, we can determine which Alexa sites are hosted in
EC2/Azure.

We find that 40,333 (>4%) of the domains on Alexa’s top 1
million list have a subdomain that uses EC2 and/or Azure. Un-
der these domains, there are a total of 713,910 cloud-using subdo-
mains. Note that these are lower bounds on cloud use, since our
analysis approach (see §2.1) means we do not flag as cloud-using
any domains that use a layer of indirection (e.g., via services like
CloudFlare [11]) before requests are sent to EC2 or Azure.

Table 3 provides a breakdown of the domains and subdomains
in terms of whether they use EC2, Azure, or other hosting ser-
vices (the last indicating IP addresses not associated with EC2 or
Azure). Note that “other” could in fact be public clouds besides
EC2 and Azure. A subdomain is marked as EC2 only if it always
resolves only to IP addresses within EC2; similarly for Azure. We
mark a subdomain as EC2+Azure, EC2+Other, or Azure+Other if
it resolves to IP addresses associated with the appropriate subset of
EC2, Azure, and other. Domains are counted as EC2 only if all of
their subdomains only use EC2; similarly for Azure. Domains are
marked as EC2+Azure, EC2+Other, or Azure+Other if they have
subdomains associated with the indicated subset of EC2, Azure,
and other.

The vast majority of cloud-using domains (94.9%) use EC2, and
the majority of these domains use other hosting for some of their
subdomains (i.e., EC2 + Other). Only 5.8% of domains use Azure.
Additionally, a small fraction (0.7%) of cloud-using domains use
both EC2 and Azure; hence the EC2 total and Azure total rows in
Table 3 sum to more than 100%. A list of the top 10 (by Alexa rank)
EC2-using domains appears in Table 4. This list will be used in sev-
eral later sections with results specific to EC2, which is why we ex-
cluded the four top Azure domains that would otherwise have been
in the top 10: live.com, msn.com, bing.com, and microsoft.com.

The distribution of Alexa ranks for cloud-using domains is skewed:

higher ranked domains are more likely to be cloud-using than lower
ranked domains. Notably, 42.3% of cloud-using domains have
ranks in the first 250,000 sites versus only 16.2% of the bottom
250K domains.

The most frequent prefix used by cloud-using subdomains in our
Alexa subdomains dataset is www (3.3% of all cloud-using subdo-
mains). The other top 10 prefixes (each <1%) are, in order: m,
ftp, cdn, mail, staging, blog, support, test, and dev. The majority of
subdomains are hosted either only in the cloud or only elsewhere,
although a small fraction (3%) appear to be hosted both on EC2 and
other providers, what we might call a hybrid-cloud deployment.

“Except for domains hosting personal sites, e.g., wordpress.com,
where subdomains are ranked individually.

Rank | Domain Total # Subdom | # EC2 Subdom
9 amazon.com 68 2
13 linkedin.com 142 3
29 163.com 181 4
35 pinterest.com 24 18
36 fc2.com 89 14
38 conduit.com 40 1
42 ask.com 97 1
47 apple.com 73 1
48 imdb.com 26 2
51 haol23.com 45 1

Table 4: Top 10 (by Alexa rank) EC2-using domains, their total
number of subdomains, and the number of EC2-using subdomains.

High traffic volume domains. We complement the above with an
analysis of the top domains seen in the packet capture, as measured
by traffic volume. We use Bro to extract hostnames within HTTP
requests and common names within the server certificates embed-
ded in HTTPS flows’. Aggregating the hostnames and common
names by domain, we find 13,604 unique cloud-using domains:
12,720 use EC2 and 885 use Azure. Of these 13,604 domains,
6902 were also identified as cloud-using via the Alexa dataset;
the remainder were not in the Alexa top 1 million. Table 5 lists
the highest 15 such domains in terms of traffic volume. A few
tenants are responsible for a large fraction of the traffic. Most
notably, dropbox.com accounts for almost 70% of the combined
HTTP(S) traffic volume. This also explains why HTTPS (used
by dropbox.com) dominates HTTP in terms of volume (though not
number of flows, refer to Table 2).

It is informative to compare our analysis of top EC2-using do-
mains by traffic volume to the analysis by DeepField networks [28],
which was conducted three months before we collected the packet
capture. They used data from customers of their network analysis
products. Seven of the domains on our top 15 list also appear within
the top 15 on DeepField’s list (indicated with a (d) in Table 5).

Summary and implications. A substantial fraction of the world’s
most popular websites rely in whole or in part on public [aaS clouds,
especially EC2. Most cloud-using domains have some subdomains
hosted on a cloud service while other subdomains are hosted else-
where. Perhaps surprisingly a small, but noticeable fraction of sub-
domains use both a cloud and other hosting solutions. Finally, traf-
fic volume appears to be dominated by a few cloud tenants (we
discuss traffic patterns more next). Depending on how tenants’ de-
ploy their services (e.g., how many and which regions they use),
these observations have implications for availability of web-based
cloud-resident services. We explore the underlying deployments in
more detail in §4.

3.3 Traffic Patterns

Our packet capture enables us to analyze not only who is running
on the cloud, but also the traffic patterns between clients in our
university and cloud-resident web services.

Flow-level properties. We first study the number of flows observed
for various cloud-using domains in the packet capture. Figures 3a
and 3b show CDFs of the number of HTTP and HTTPS flows, re-
spectively, per-domain across our entire packet capture. We ob-
serve that ~50% of domains have fewer than 1,000 HTTP flows,
and more than 80% of domains have fewer than 1,000 HTTPS
flows. Upon further analysis, we found that the top 100 cloud-
using domains are responsible for about 80% of the HTTP flows

>TLS encryption hides the hostname associated with the underly-
ing HTTP requests, so we use the common names found in TLS
server certificates as a proxy.



EC2 Azure
Domain Rank Traffic (%) Domain Rank | Traffic (%)
dropbox.com (d) 119 | 595.0 (68.21) | atdmt.com 11,128 | 27.0(3.10)
netflix.com (d) 92 14.8 (1.70) msn.com 18 | 20.9 (2.39)
truste.com (d) 15,458 9.2 (1.06) microsoft.com 31 19.7 (2.26)
channel3000.com 29,394 6.4 (0.74) msecnd.net 4,747 13.5 (1.55)
pinterest.com (d) 35 5.1(0.59) s-msn.com 25,363 12.5(1.43)
adsafeprotected.com (d) | 371,837 4.7 (0.53) live.com 7| 11.8(1.35)
zynga.com 799 3.9 (0.44) virtualearth.net 147,025 9.2 (1.06)
sharefile.com 20,533 3.6 (0.42) dreamspark.com 35,223 7.1(0.81)
z00lz.com 272,006 3.2 (0.36) hotmail.com 2,346 6.3 (0.72)
echoenabled.com (d) - 2.7(0.31) mesh.com - 4.5(0.52)
vimeo.com 137 2.3 (0.26) wonderwall.com - 3.2 (0.36)
foursquare.com 615 2.2 (0.25) msads.net - 2.5(0.29)
sourcefire.com 359,387 1.9 (0.22) aspnetcdn.com 111,859 2.3 (0.26)
instagram.com (d) 75 1.5(0.17) windowsphone.com 1,597 2.0 (0.23)
copperegg.com 122,779 1.5(0.17) windowsphone-int.com - 2.0 (0.23)

Table 5: Domains with highest HTTP(S) traffic volumes (in GB) in the packet capture. Percentages are relative to the total HTTP(S) traffic
across both clouds in the capture. Domains marked with (d) appeared on DeepField’s Top 15 [28].
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Figure 3: CDFs for HTTP/HTTPS flow counts and sizes.
Content Bytes % | mean max
(GB) (KB) [ (MB)
text/html 579 | 24.10 16 3.7
text/plain 56.2 | 23.37 5 24.4
image/jpeg 25.6 | 10.64 20 18.7
application/x-shockwave-flash | 20.8 8.660 36 22.9
application/octet-stream 18.9 7.85 29 | 2,147
application/pdf 7.6 3.15 656 25.7
text/xml 7.5 3.10 5 4.9
image/png 7.1 2.94 6 24.9
application/zip 6.8 2.81 | 1,664 | 5,010
video/mp4 5.3 221 | 6,578 143

Table 6: HTTP content types by byte counts (in GB), as well as
mean (in KB) and max (in MB) object sizes.

in EC2, and nearly 100% of the HTTP flows in Azure; a long tail
follows for both clouds (CDF excluded for brevity).

Flow sizes and durations generally appear to fit heavy-tailed dis-
tributions (we omit durations in Figure 3 for brevity); similar prop-
erties have been observed for flows in other networking contexts
(e.g., in data centers [21]). We note interesting differences between
HTTP and HTTPS: in particular, HTTPS flows are larger and last
longer than HTTP flows across both EC2 and Azure (e.g., median
sizes for EC2 are 10K and 2K, respectively). This is expected given
our observation that a large percentage of HTTPS traffic is from file
storage services. In both cases, we see large flows that are more
than a few MB in size and long flows that last for a few hours.

Content types. We next look at the types of content served by web-
facing cloud tenants. We use Bro to extract the Content-Type and
Content-Length fields from replies in HTTP flows. Unfortunately,
we cannot extract these details for HTTPS flows because the HTTP
headers are encrypted. The top content types, by byte count, for
HTTP flows are shown in Table 6, along with the mean and max
content sizes. About half of all content is html or plain text, and
these type of objects are generally smaller in size. The majority of
the remaining content is a mixture of images, Flash, generic binary
data (i.e., octet-stream), PDFs, and XML; these objects are gener-
ally much larger. This suggests that EC2 and Azure HTTP traffic
is primarily conveying web sites, and not (say) for file transfer. We
see that some objects can be very large in size; e.g., we see binaries
that are 5GB in size, and even some plain text files that are as large
as 24MB.

Summary and Implications. We find that most flows arise from
the top few domains. A majority of the flows are short, and HTTPS
flows are generally larger in size and last longer than their HTTP
counterparts. Most web services appear to be using the cloud to
serve html or plain text content. These observations have impli-
cations for content delivery systems targeted toward cloud-resident
services. For instance, the predominance of plain text and HTML
traffic (as opposed to compressed images, binaries, videos, etc.)
points to the fact that compression could be employed to save WAN
bandwidth and improve content delivery latency [18].

4. TENANTS’ DEPLOYMENT POSTURE

In this section, we attempt to understand how tenants use the
cloud for deploying their front ends. We start by analyzing the de-
ployment patterns employed by cloud-using (sub)domains. We first
focus on the four patterns identified in Figure 1. We then quantify
how many, and which, regions and availability zones are leveraged
by cloud-using (sub)domains’ front ends.

4.1 Deployment Patterns

In this section, we use the DNS records from our Alexa sub-
domains dataset and a variety of heuristics to detect and quantify
usage of the deployment patterns outlined in Figure 1. Specifi-
cally, we estimate the use of virtual machines (VMs), platform-as-
a-service (PaaS) environments, load balancers, content-distribution
networks (CDNSs), and domain name servers within the front ends
of web services hosted in both EC2 and Azure. In general, we dis-
cuss EC2 and Azure separately because of differences in the cloud
architectures.
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Figure 5: CDF of the # of DNS servers used per subdomain.

VM front end in EC2. Each VM instance in an IaaS cloud com-
bines a set of virtual resources (CPU core(s), memory, local stor-
age, and network bandwidth) whose capacity depends on the in-
stance type. In EC2 each instance is assigned an internal IP address
within a region-specific private network; EC2 tenants may option-
ally assign a public (i.e., Internet-routable) IP address to a VM.

We identify usage of VMs as directly-reachable web service front
ends—i.e., deployment pattern P/ (Figure 1a)—by examining if
the DNS query for an EC2-using subdomain directly returns an IP
address (instead of a CNAME), which we then associate with a VM
instance. We find that 505,578 (72%) EC2-using subdomains lever-
age front end VMs. Figure 4a shows a CDF of the number of front
end VM instances used by each EC2-using subdomain; this CDF
only includes subdomains which use front end VMs. We observe
that about half of such subdomains use 2 front end VMs and 15%
use 3 or more front end VMs.

Aggregating by domain, we find that 52% of EC2-using domains
have at least one subdomain which uses at least one front end VM.
If we sum the number of front end VMs used across all subdomains
of a given domain, we find that 10% of domains which use front end
VMs in EC2 use 3 or more front end VMs in total.

PaaS front end in EC2. PaaS systems offer a hosted environ-
ment for deploying web applications, avoiding the need for ten-
ants to manage low-level system details. PaaS systems are fre-
quently built atop existing IaaS infrastructure: e.g., Amazon’s Elas-
tic Beanstalk [5] and Heroku [14] both run atop EC2. A Beanstalk
environment always includes an Amazon Elastic Load Balancer
(ELB) instance (discussed in more detail below), reflecting deploy-
ment pattern P2 (Figure 1b, replace VMs with PaaS nodes). A
Heroku environment may or may not include an ELB, reflecting
usage of deployment patterns P2 or P3 (Figure 1), respectively.

We say that a subdomain uses Beanstalk or Heroku if the subdo-
main’s DNS record has a CNAME that (i) includes ‘elasticbeanstalk’
or any of ‘heroku.com’, ‘herokuapp’, ‘herokucom’, and ‘herokussl’
and (if) resolves to an IP in EC2’s public IP address range. In the
case of Heroku without ELB, the IPs to which the CNAME resolves
represent PaaS nodes; we associate these IPs with the subdomain
whose DNS record contains the corresponding CNAME.

A total of 201,666 (28%) EC2-using subdomains in our Alexa
subdomains dataset contain a CNAME in their DNS record. Ap-
plying the above filters for PaaS, we find that 60,273 (8%) EC2-

using subdomains use a front end PaaS environment in EC2. Of
these, over 97% (59,991) are using Heroku; only 3% use Elastic
Beanstalk. Amazon always includes an ELB in a Beanstalk envi-
ronment, but Heroku only sometimes leverages ELBs—only 3% of
subdomains (1,850) which use Heroku also use ELB. We therefore
conclude that, in the case of EC2, PaaS systems are predominantly
used according to deployment pattern P3 (Figure 1c).

We now focus on the 58,141 (59,991 - 1,850) subdomains that
use Heroku without ELB. We find that these are associated with
just 94 unique IPs. Although we have no insight into the number of
worker instances used by Heroku, this shows that Heroku is multi-
plexing PaaS functionality among a relatively large number of sub-
domains: in particular, we find that about one-third of subdomains
using Heroku share the CNAME ‘proxy.heroku.com’.

Load balancer front end in EC2. Load balancers divide traffic
among a set of “worker” VMs or PaaS nodes, as reflected in de-
ployment pattern P2 (Figure 1b). Amazon Elastic Load Balancers
(ELBs) [13] are Amazon-managed HTTP proxies. An EC2 tenant
requests an ELB in a specific region and subsequently associates
VM instances, in one or more zones, with this ELB. The ELB auto-
matically round-robins requests among zones and among the VMs
in each zone. In fact, traffic is routed to zone-specific ELB proxies
by rotating the order of ELB proxy IPs in DNS replies. ELB can
also be used with Paa$S, as discussed above.

When a subdomain uses an ELB, the subdomain’s DNS record
contains a CNAME ending in ‘elb.amazonaws.com’; the CNAMEs
resolve to IP addresses for one or more ELB proxies. We identify
ELB-using subdomains in our Alexa subdomains dataset based on
the presence of such CNAME:s; we refer to each distinct CNAME
as a “logical ELB instance”. We also associate with the subdomain
the IPs of the specific ELB proxies to which the CNAME resolves;
we refer to these as “physical ELB instances”.

We find that 27,154 (4%) EC2-using subdomains use ELB as
their front end. Of the subdomains that use ELB, 280 (1%) use
it in the context of Elastic Beanstalk and 1,850 (6.8%) use it with
Heroku. Aggregating by domain, we find that 9,851 (26%) EC2-
using domains use front end ELB(s).

Across all ELB-using subdomains, we observe 15,703 physical
ELB instances (i.e., distinct IPs associated with ELB CNAMEs).
Hence, while each subdomain has its own logical ELB(s), the phys-
ical ELB proxies that perform the actual load balancing appear to
be shared across multiple, even unrelated, subdomains. In particu-
lar, we analyzed the number of subdomains per physical ELB and
found that ~4% of the physical ELB instances are shared by 10 or
more subdomains.

Figure 4b shows a CDF of the number of physical ELB instances
associated with each subdomain; this CDF only includes subdo-
mains which use ELB. We observe that about 95% of ELB-using
subdomains are associated with 5 or fewer physical ELB instances.
A few ELB-using subdomains (e.g., dl.outbrain.com and m.netflix.
com) use many physical ELB instances: 58 and 90, respectively.

Front ends in Azure. Azure’s architecture differs from EC2 inso-
far as clients cannot distinguish whether a web service uses a VM,
PaaS, or load balancer front end. In Azure, VMs and PaaS environ-
ments are both encompassed within logical “Cloud Services” (CS).
An individual CS may contain (i) a single VM, (i) a collection of
related VMs, or (iii) a PaaS environment. Each CS is assigned a
unique DNS name ending with ‘cloudapp.net’ and a correspond-
ing public IP address. Traffic sent to this public IP goes through
a transparent proxy—which performs NAT and, optionally, load
balancing—before directing traffic to a VM or PaaS node. Thus,
a CS may reflect deployment patterns P/, P2 (with VMs or PaaS



nodes), or P3 (Figure 1), all of which appear the same from a client
perspective.

We examine the DNS records for Azure-using subdomains in the
Alexa subdomains dataset to identify subdomains which use a CS
(i.e., VM, PaaS, or load balancer) front end. If the DNS query
for an Azure-using subdomain either directly returns an IP address
or returns a CNAME ending in ‘cloudapp.net’, then we say the
subdomain uses a CS front end. We associate the directly returned
IP or the CNAME, and its corresponding IP, with a CS instance.

A total of 1,153 (17%) Azure-using subdomains directly resolve
to an IP address and 5,404 (82%) Azure-using subdomains contain
a CNAME in their DNS record. Applying the above filters for CS,
we find that 4,581 (70%) Azure-using subdomains use a CS front
end. Aggregating by domain, we find that 57% of Azure-using
domains have at least one subdomain which uses a CS front end.

Azure also offers a unique feature (which has no parallel in EC2)
for load balancing across front ends: Azure Traffic Manager (TM)
[9] uses DNS to direct traffic to different CSs, which may be spread
across multiple regions. TM can, based on a tenant’s preference,
do performance-based load balancing (finding the CS closest to
the client), failover load balancing (picking the next active CS), or
simple round-robin load balancing. When a subdomain uses TM,
its DNS record contains a CNAME ending in ‘trafficmanager.net’,
similar to ELB. However, TM performs all load balancing using
DNS—unlike ELB which uses a combination of DNS and physi-
cal proxies—so TM CNAME:s resolve directly to a CNAME for a
specific CS (e.g., ‘abc.cloudapp.net’). We find that only 100 (2%)
Azure-using subdomains (corresponding to 52 domains) use TM.

The aforementioned CNAME-based filters for ELB, Beanstalk,
Heroku, CS, and TM were not applicable to 116,323 (16%) EC2-
using subdomains, and 1,938 (30%) Azure-using subdomains. We
are investigating techniques to understand the deployment patterns
underlying these subdomains.

Content distribution networks. We now focus on the use of CDNs,
which we illustrated in deployment pattern P4 (Figure 1d). Note
that CDNs can be employed alongside any of the other three de-
ployment patterns.

Both Microsoft and Amazon run their own CDNSs, which we fo-
cus on studying. Amazon’s CloudFront CDN [3] uses a different
public IP address range than the rest of EC2. Hence, we determine
if a subdomain uses CloudFront by observing if its DNS records
contain one or more IPs in CloudFront’s IP range. Azure’s CDN [7]
uses the same IP address ranges as other parts of Azure, so we de-
tect whether a subdomain uses the Azure CDN based on whether a
subdomain’s DNS records contain CNAMESs with ‘msecnd.net’.

We find 7,622 subdomains (corresponding to 5,988 domains) use
CloudFront and 68 subdomains (corresponding to 54 domains) use
Azure’s CDN. Despite the much smaller number of domains using
Azure’s CDN, there is still a significant volume of traffic associated
with msecnd.net in our packet capture dataset (Table 5). Azure’s
CDN is clearly being used within some Microsoft properties, per-
haps to host embedded content or cookies.

Domain name servers. The first step in accessing a cloud-resident
service is to resolve its name (Figure 1). In what follows, we exam-
ine cloud-resident subdomain’s use of DNS, focusing on the extent
to which they rely on cloud providers for DNS services as well.
We identifed the “location” of a cloud-using subdomain’s au-
thoritative name server(s) as follows: For each DNS record associ-
ated with a given subdomain in our Alexa subdomains dataset, we
extract all the domains specified in the NS records. We then per-
formed a DNS lookup on each of these domains from 50 globally-
distributed PlanetLab nodes. We flushed and reset the cache of

Cloud Feature # Domains | # Subdomains | # Inst.
VM 19.9K (52.5%) | 505.6K (71.5%) | 28.3K
ELB 9.9K (25.9%) 27.1K (3.8%) | 15.7K

EC2 |BeanStalk (w/ ELB) 188 (0.5%) | 280 (< 0.01%) 455

Heroku (w/ ELB 622 (1.6%)|  1.9K(03%)| 24K
Heroku (no ELB) | 13K (3.5%)| 58.1K (3.2%) 97

N CS 863 (37.0%)| 4.5K (68.3%)] 790
zare ™ 32 (2.2%) T00 (1.5%) 78

Table 7: Summary of cloud feature usage.

# Cloud Front-end ELB | Use
Rank Domain Subdom | VM | PaaS | ELB | IPs | CDN

9 amazon.com 2 0 1 2 27 0
13 linkedin.com 3 0 1 1 1 0
29 163.com 4 0 0 0 0 4%
35 || pinterest.com 18 4 0 0 0 0
36 fc2.com 14 10 0 4 68 0
38 conduit.com 1 0 1 1 3 0
42 ask.com 1 1 0 0 0 0
47 apple.com 1 1 0 0 0 0
48 imdb.com 2 0 0 0 0 1
51 hao123.com 1 0 0 0 0 1*

Table 8: Cloud feature usage for the highest ranked EC2-using do-
mains (* indicates use of a CDN other than CloudFront).

the local resolver between each DNS lookup, and we added the
‘norecurse’ flag to each DNS query to minimize the influence of
caching. We compare the resulting IP addresses to the public IP
address ranges for EC2, CloudFront, and Azure.

We observe a total of 23,111 name servers supporting the 713K
cloud-using subdomains in our Alexa subdomains dataset. Many
subdomains use the same name servers, leading to a smaller set
of name servers than subdomains. Figure 5 shows a CDF for the
number of name servers used by each cloud-using subdomain; we
observe that nearly 80% of subdomains use 3 to 10 name servers.
We categorize the name servers as follows: 2,062 were hosted in
CloudFront, which appears to host Amazon’s route53 DNS service
as many of these name servers had ‘route53’ in their domain name;
1,239 were running inside EC2 VM instances; 22 were hosted in-
side Azure VM instances or Azure CS; and 19,788 were hosted
outside any of EC2, CloudFront, or Azure;

The above analyses are summarized in Table 7 which shows
how many (sub)domains in our Alexa subdomains dataset use each
cloud feature. We also show the number of instances (identified by
IP address) of that feature.

Analysis of top domains. As notable exemplars, Table 8 gives a
detailed breakdown of the cloud feature usage of the most popu-
lar (according to Alexa rankings) EC2-using domains. We observe
that the majority of subdomains associated with the top domains
have VM or ELB front ends. Of those using ELB front ends, ama-
zon.com and fc2.com use ELB the most (i.e., there are more phys-
ical ELB IPs associated with these domains). Three of the top do-
mains have subdomains which use a CDN, but only one of these
domains uses the CloudFront CDN.

Summary and implications. In summary, we find that the major-
ity (71.5%) of EC2-using subdomains use a VM front end (deploy-
ment pattern P/); hence most EC2 tenants are using EC2 as a true
[aaS cloud. Only a small fraction use an ELB front end (3.8%) or
PaaS front end (8.5%). Due to limited use, failures of value-added
features are unlikely to have a major impact on EC2-using subdo-
mains. In Azure, we are able to identify the usage of VM, PaaS, or
load balancing front ends (we cannot distinguish which) for 70%
of subdomains. A small fraction (1.5%) of Azure-using domains



[Region [Location [# Dom [ # Subdom |
ec2.us-east-1 Virginia, USA 25,722 521,681
ec2.eu-west-1 Ireland 6,834 116,366
ec2.us-west-1 N. California, USA | 3,950 40,548
ec2.us-west-2 Oregon, USA 1,548 15,635
ec2.ap-southeast-1 | Singapore 1,800 20,871
ec2.ap-northeast-1 | Tokyo, Japan 2,223 16,965
ec2.sa-east-1 Séao Paulo, Brazil 625 14,866
ec2.ap-southeast-2 | Sydney, Australia 313 554
az.us-east Virginia, USA 268 862
az.us-west California, USA 161 558
az.us-north Illinois, USA 590 2,071
az.us-south Texas, USA 1,072 1,395
az.eu-west Ireland 564 1,035
az.eu-north Netherlands 573 1,205
az.ap-southeast Singapore 379 632
az.ap-east Hong Kong 333 502

Table 9: EC2 and Azure region usage Alexa subdomains

leverage TM to balance traffic across different front ends. The ma-
jority of DNS servers used by cloud-using subdomains reside out-
side of EC2 or Azure, giving subdomains the option of routing traf-
fic to different resources (in another cloud or a private data center)
in the event of cloud failure.

4.2 Region Usage

EC2 and Azure give tenants the choice of using one or more
geographically distinct regions (i.e., data centers). Regions provide
a mechanism for robustness in the case of catastrophic failures, e.g.,
regional power or service outages [4, 6,24, 35]. In this section,
we examine how many, and which, of the eight regions offered by
each cloud provider are leveraged by the front ends of cloud-using
(sub)domains.

We ascertain the region(s) used by each subdomain in the Alexa
subdomains dataset by comparing the IP addresses associated with
that subdomain against the per-region IP address ranges published
by EC2 [12] and Azure [8]. We only consider IPs associated with
VM, PaaS, and ELB/TM.

Figure 6a shows a CDF (note the Y-axis starts at 90%) of the
number of regions used by each subdomain in the Alexa subdo-
mains. Over 97% of EC2-using and 92% of Azure-using subdo-
mains exclusively use one region. Across all domains (Figure 6b),
the trend of low region usage is largely the same, although, the
fraction of Azure-using domains that only use one region (83%) is
smaller than the fraction of subdomains that only use one region
(92%).

The number of (sub)domains (from the Alexa subdomains) in
each region are shown in Table 9. We observe that the usage of
EC2 regions is heavily skewed towards a few regions: 74% of EC2-
using subdomains use US East and 16% use Europe West. Azure,
relatively speaking, has a more even distribution of subdomains
across regions, but each region has significantly fewer subdomains.
The most used Azure regions are US South and US North.

Analysis of top domains. We now focus on region usage of subdo-
mains corresponding to the most popular (according to Alexa rank-
ings) domains. Our analysis is summarized in Table 10. As with
the rest of our results above, we see that in all but two cases, subdo-
mains appear to use a single region. The exceptions are msn.com
and microsoft.com, where 11 of the 89 subdomains and 4 of 11
subdomains, respectively, use two regions each. No popular subdo-
main uses three or more regions. We also note that in some cases, a
domain may deploy different subdomains across different regions:
e.g., live.com’s 18 subdomains are spread across 3 regions. Con-
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Figure 6: (a) CDF of the number of regions used by each subdo-
main (b) CDF of the average number of regions used by the subdo-
mains of each domain.

# Cloud | Total #

Rank Domain Subdom | Regions | k=1 | k=2
7 live.com 18 3 18 0
9 amazon.com 2 1 2 0
13 linkedin.com 3 2 3 0
18 msn.com 89 5 78 11

20 bing.com 1 1 1 0
29 163.com 4 1 4 0
31 microsoft.com 11 5 7 4
35 pinterest.com 18 1 18 0
36 fc2.com 14 2 14 0
42 ask.com 1 1 1 0
47 apple.com 1 1 1 0
48 imdb.com 2 1 2 0
51 hao123.com 1 1 1 0
59 go.com 4 1 4 0

Table 10: Region usage for the top cloud-using domains. The third
column is the number of cloud-using subdomains; fourth is the total
number of regions used by a domain; and the K = 1 and k =
2 columns are the number of subdomains which use one or two
regions, respectively.

trarily, there are domains whose subdomains are all deployed in one
region (e.g., pinterest.com).

Analysis of subdomain deployment vs. customer location. An
interesting question about cloud service deployment is whether sub-
domains are deployed near their customers? The answer to this
question reveals whether current cloud services are deployed in an
“optimal” manner, because deploying a service near customers usu-
ally leads to better client network performance (lower latency and
higher throughput).

To answer this question, we leverage the client geo-location in-
formation provided by the Alexa web information service [2]. For
example, at the time of writing, Alexa reported that 47% of clients
accessing pinterest.com are from the United States, 10.4% from In-
dia, 3.2% from the United Kingdom, 3.1% from Canada, and 2.1%
from Brazil. For each domain, we define the “customer country”
as the country where the largest fraction of clients are located. We
assume the customer country is the same for all of a website’s sub-
domains, as Alexa does not track subdomains separately. For in-
stance, the United States is the customer country for pinterest.com
(and its subdomains) based on our definition.

We performed the analysis for all of the cloud-using subdomains
(about 713K) in our dataset. Our measurement methodology was
able to successfully identify approximately 538K (75% of the to-
tal) subdomains’ customer country. We find that 252K (47%) sub-
domains’ customer country is not the same as the country where
this subdomain is hosted. Moreover, 174K (32%) subdomains are
not even hosted on the same continent as the subdomains’ customer
country. This implies that a large fraction of web services are prob-



Zone of probe destination
Instance type | ec2.us-east-la | ec2.us-east-1c | ec2.us-east-1d
tl.micro 0.6/0.6 14/1.5 1.9/2.0
ml.medium 0.5/0.6 1.571.6 2.0/2.1
ml.xlarge 04705 14/15 1.8/19
m3.2xlarge 04705 1.571.7 1.9/72.0

Table 11: RTTs (least / median) in milliseconds over 10 probes
from a micro instance in ec2.us-east-1a to an instance with a certain
type (rows) and zone (columns).

ably not deployed in an optimal manner in terms of network per-
formance. We suspect that the current deployment posture is af-
fected by computing, storage, and network costs and/or how long
the cloud region has existed. In §5, we explore how much opportu-
nity exists for improving wide-area performance through changes
in region usage.

Summary and implications. Our key finding in this section is that
most popular domains and subdomains appear to be using a sin-
gle region. This has significant implications on both the robustness
and performance of cloud-using web services. From an availability
perspective, an outage of EC2’s US East region would take down
critical components of at least 2.3% of the domains (61% of EC2-
using domains) on Alexa’s list of the top 1 million websites. This
is a lower bound, as our results do not include dependencies be-
tween domains. From a performance perspective, our analysis of
web service deployment and customer locations reveals that a con-
siderable fraction of client traffic may travel farther than necessary
due to suboptimal provisioning.

4.3 Availability Zone Usage

Within each region of EC2, cloud tenants have the choice of de-
ploying across multiple zones. EC2 zones offer a means for im-
proving service robustness as they are claimed to use separate com-
pute, network, and power infrastructure so that a failure in any of
these will not affect more than one zone. There seems to be no
equivalent of zones in Azure.

We now focus on determining the zone deployment for EC2-
using services’ front ends. Unlike the regions, which are easily dis-
tinguished based on the IP address of a subdomain and the adver-
tised ranges [8,12], there is no direct way to associate an IP address
to a zone. We therefore turn to cloud cartography techniques [34].
We use two methods to identify zones: network latency and prox-
imity in the internal addresses to instances with a known zone (i.e.,
VMs we launched).

Latency-based identification. The first technique (originally used
in [34]) aims to estimate whether a target physical instance (e.g.,
VM instance, physical ELB instance, etc.) is in the same zone as
an instance under our control by measuring the RTT to the target.
The RTT will be significantly smaller when both instances are in
the same zone, compared to when they are in different zones, pre-
sumably reflecting a longer path in the latter case. We performed a
simple experiment to confirm that RTTs follow this trend. We setup
an m1.micro instance in the ec2.us-east-1a zone and measured the
RTT (over 10 trials) to one instance of each type in each of the three
zones ec2.us-east-1a, ec2.us-east-1c, and ec2.us-east-1d. Table 11
shows both the minimum and median RTTs. It is clear that the in-
stances in the same availability zone have the smallest RTTs (about
0.5ms) regardless of the instance type. We repeated this experiment
in each of the EC2 regions with similar results.

Our experiment corroborates similar previous ones [34] regard-
ing the efficacy of latency-based zone estimates. However, there
are several complicating factors when attempting to deploy this

Region #tgt IPs [# resp. [| 1t zn |29 zn| 3" zn | % unk
ec2.us-east-1 34,1941 25,085 ]| 11,592 | 2,835]10,658 | 16.6
ec2.us-west-1 3,663 | 2,471 1,050 | 1,367 N/A| 32.5
ec2.us-west-2 1,869 | 1,679 600 755 324 10.1
ec2.eu-west-1 8,581 | 7,023 || 1,935| 2,095| 2,993| 18.2

ec2.ap-northeast-1 2,558 1,260 1,129 N/A 131| 50.7
ec2.ap-southeast-1 2,296 | 1,987 968 | 1,019 N/A| 13.5
ec2.ap-southeast-2 333 298 146 1521 N/A| 105
ec2.sa-east-1 701 616 376 240 N/A| 12.1

Table 12: Estimated distribution of instance IPs across zones using
latency method (7" = 1.1). Second column is total number of IPs
derived from subdomains, followed by the number that responded
to probes, and the estimates of how many were in each of the zones.
The final column is the percentage of the responding IPs for which
no zone could be estimated.

methodology for zone measurement in practice. First, our and
prior experiments used a limited number of otherwise idle EC2
instances—RTT times may be significantly more noisy across a
broader set of instances and for more heavily loaded instances.
Second, in some regions (ec2.us-east-1) we are unable to run an
instance in each zone. Nevertheless, we perform, to the best of
our knowledge, the first use of latency-based zone measurement at
scale.

For each region, we launch three m1.medium instances in each
zone from which to perform probes; we refer to these as probe in-
stances. In ec2.us-east-1, we use ten additional m1.small instances
in each zone because a large fraction of IPs are in this region.
This region proved more challenging, due to a higher density of
instances, a lack of full coverage of zones by probe instances, and
more network noise. For each target physical instance in a region,
we first map the public IP address to an internal IP address via an
appropriate DNS query from a probe instance in that region. We
then use hping3 to perform 10 TCP pings from a probe instance in
each zone in the region to both the internal IP address and the pub-
lic IP. While probes are very lightweight, we nevertheless limited
the frequency of our probing, and the probing process was repeated
5 times on each probe instance. The experiment was performed
over the course of five days (April 4th to April 8th, 2013). The
minimal RTT is taken as the probe time. For a region with k zones
(for ec2.us-east-1 we have £ = 3, even though it has five zones),
we end up with k probe times %1, ..., tx and we let ¢ be such that
t; < tjforalli # j € [1..k]. If there exists no such ¢ (due to
a tie), then we mark the target IP (physical instance) as having un-
known zone. If ¢; is less than a threshold 7" then we conclude that
the target physical instance is in zone ¢. Otherwise, we mark the
target as having an unknown zone.

Setting 7' = 1.1, we end up with a zone estimate for physical
instance IPs from our Alexa subdomains dataset in most regions.
The results are shown in Table 12. The technique worked well
for all regions except for ec2.ap-northeast-1. The unknown rate is
affected by two factors: (i) Whether we can set up instances in all
zones; for example, we can not set up instances in ec2.ap-northeast-
1’s zone #2 after January, 2013, but, according to our observation in
January, the number of IPs in zone #1 and zone #2 is quite similar.
(if) How many times we repeat the probes to reduce network noise;
with more probe data, the unknown rate can be further reduced.

Address-proximity-based identification. We supplement the la-
tency measurements with sampling using our own accounts and an
estimation mechanism based on proximity of a target internal IP
address to a sampled IP address. As shown in prior work [34], it
is very likely that two instances running in the same /16 subnet are
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Figure 7: Sampling data for address proximity measurement.

co-located in the same zone (and are potentially even of the same
instance type). We launched 5096 instances (in aggregate over the
course of several years) under a number of our AWS accounts. The
result is a set of account, zone label, internal IP triples (a;, zi, ip;)
fori € [1.. X]. A complicating factor is that, for a; # a; (differ-
ent accounts), it may be that the EC2-provided zone labels are not
the same. Meaning, for account a; it may be that the ec2.us-east-1a
is not the same actual zone as ec2.us-east-1a for account a;. Let Z
be the set of zone labels.

We thus take the following straightforward approach to merge
data across multiple different accounts. Consider a pair of accounts
a, b. Find the permutation my_,,: Z — Z that maximizes the num-
ber of pairs of /16 IPs ip; /16 = ip;/16 such that a; = a, a;j = b
and Tp—q(2;) = z;. This can be done efficiently by ordering all
triples of the accounts a and b by IP address, and inspecting the
zone labels associated to each account for nearby IP addresses. One
can repeat this for all pairs of accounts and solve the integer pro-
gramming problem associated with finding an optimal set of per-
mutations , but it proved effective to take the simpler approach
of finding mp_,, for one pair, merging the pair’s triples by apply-
ing mp_,, appropriately, and then repeating with the next account c,
etc. The outcome of applying this process to samples from ec2.us-
east-1 is shown in Figure 7. Each binned IP address is a point, with
the distinct colors representing distinct availability zones.

We now apply the sampling data to the physical instances from
the Alexa subdomains dataset. If we have at least one sample IP
in the same /16 subnet as the IP associated with a target physical
instance, we conclude that the target instance is in the same zone
as the sample instance. Otherwise, we mark the target instance
as having an unknown zone. With this approach, we are able to
identify the zone for 79.1% of the EC2 physical instances in the
Alexa subdomains dataset.

Treating these zone identifications as ground truth, we check the
accuracy of the latency-based zone identifications. Table 13 shows
for each EC2 region the total number of physical instances in the
Alexa subdomains dataset, the number of instances for which the
two zone identification approaches agree, the number of instances
whose zone cannot be identified using one or both methods, the
number of instances where the two methods disagree, and the error
rate of the latency-based method. The error rate is defined as the
number of mismatched instances / (the total number of instances -
the number of unknown instances). We observe that latency based
method’s overall error rate is 5.7%. Its error rate is less than 3.9%

Region count | match | unknown | mismat. | error rate
all 37876 | 28640 7494 1742 5.7%
ec2.ap-northeast-1 |[ 1260 965 295 0 0.0%
ec2.ap-southeast-1 || 1987 [ 1558 428 1 <0.1%
ec2.ap-southeast-2 298 201 97 0 0.0%
ec2.eu-west-1 6102 | 3359 1597 1146 25.0%
ec2.sa-east-1 616 0 616 0 N/A
ec2.us-east-1 23518 | 19228 3748 542 2.7%
ec2.us-west-1 2417 2032 385 0 0.0%
ec2.us-west-2 1678 | 1297 328 53 3.9%

Table 13: Veracity of latency-based zone identification.

Region 15t zone 270 zone 3*4 zone
#Dom | #Sub | #Dom | #Sub | #Dom | #Sub
ec2.us-east-1 16.1|419.0 6.2 1554 9.5{292.9
ec2.us-west-1 1.6 332 3.0 374 N/A| N/A
ec2.us-west-2 09| 134 1.0 9.6 0.8 7.3
ec2.eu-west-1 23| 77.0 29| 639 45| 98.7

ec2.ap-northeast-1 04| 3.7 1.3 11.3 15| 129
ec2.ap-southeast-1 09| 11.3 1.2 19.1| N/A| N/A
ec2.ap-southeast-2 02| 03 02| 03| NA| NA
ec2.sa-east-1 05| 144 02| 89| N/A| NA

Table 14: Estimated number of domains and subdomains using var-
ious EC2 zones. Some regions only have 2 zones.

(a) subdomain (b) domain
1 e 1 -
08/ 09 [ -
= 0.6 / = 08,
8 04 ¢ 8 077
0.2 0.6
0 0.5

2 4 6 8 10 12

number of zones

2 4 6 8 10 12

number of zones

Figure 8: (a) CDF of the number of zones used by each subdomain
(b) CDF of the average number of zones used by the subdomains
of each domain.

for all regions except Europe West®. In particular, the error rate in
the US East region (where the majority of the instances reside) is
quite low (2.7%).

Combined identification. We combine the two zone identifica-
tion methods to maximize the fraction of physical instances whose
zone we can identify. We give preference to our address-proximity-
based zone identifications, and use our latency-based identifica-
tions only for instances whose zone cannot be identified using the
former method. Combining the two methods allows us to identify
the EC2 availability zone for 87.0% of all physical EC2 instances
in the Alexa subdomains dataset.

Table 14 summarizes the number of (sub)domains using each
region and zone. In all but one region (Asia Pacific Southeast 2), we
observe a skew in the number of subdomains using each zone in a
region. Asia Pacific Northeast and US East regions have the highest
skew across their three zones: 71% and 63% fewer subdomains,
respectively, use the least popular zone in those regions compared
to the most popular zone.

We also look at the number of zones used by each (sub)do-main.
Figure 8a shows a CDF of the number of zones used by each sub-
domain. We observe that 33.2% of subdomains use only one zone,
44.5% of subdomains use two zones, and 22.3% of subdomains use

SWe were unable to decrease the error rate for Europe West even
after gathering additional latency measurements.



Rank domain # subdom | # zone | k=1 | k=2 | k=3
9 amazon.com 2 4 0 0 2
13 linkedin.com 3 5 1 1 1
29 163.com 4 1 4 0 0
35 || pinterest.com 18 3 10| 0 8
36 fc2.com 14 5 1 [ 11 ] 2
38 conduit.com 1 2 0 1 0
42 ask.com 1 1 1 0 0
47 apple.com 1 1 1 0] 0
48 imdb.com 2 1 2 0 0
51 hao123.com 1 1 1 0 0

Table 15: Zone usage estimates for top using zones. Column 4 is
estimated total number of zones used by all subdomains. Columns
4-6 indicate the estimated number of subdomains that use k differ-
ent zones.

three or more zones. Of the subdomains that use two or more zones,
only 3.1% use zones in more than one region. Figure 8b shows
the average number of zones used by the subdomains of each do-
main. We observe that most domains (70%) only use one zone for
all subdomains; only 12% of domains use two or more zones per
subdomain on average.

Even for the top EC2-using domains, a large fraction of their
subdomains only use a single zone (Table 15). For example, 56% of
pinterest.com’s EC2-using subdomains and 33% of linkedin.com’s
are only deployed in one zone.

Summary and implications. Our two key findings in this sec-
tion are that (/) the majority of EC2-using subdomains only use
one (33.2%) or two (44.5%) zones, and (i) the subdomains using a
given EC2 region are not evenly spread across the availability zones
in that region. The former implies that many EC2-using subdo-
mains would be completely unavailable if a single zone failed, and
many others would be severely crippled: e.g., a failure of ec2.us-
east-la would cause 16.1% of subdomains to be completely un-
available. Our later key finding implies that an outage of a par-
ticular zone in a region may have a greater negative impact than
an outage of a different zone in the same region: e.g., a failure of
ec2.us-east-1a would impact ~419K subdomains, while a failure
of ec2.us-east-1b would only impact ~155K.

5. WIDE-AREA PERFORMANCE AND
FAULT TOLERANCE

Our results in the last section revealed that several services, even
highly ranked Alexa domains, appear to use only a single region or
even just a single availability zone. In this section, we explore the
impact of these choices on web services’ wide-area performance
and tolerance to failures. We focus on EC2-using web services.

5.1 Wide-area Performance

The choice of region(s) by a cloud service may impact perfor-
mance in at least two ways. First, clients’ geo-distribution may be
poorly matched to particular regions; such clients may experience
poor latency and throughput compared to a more judicious deploy-
ment. Second, there could be temporary changes in which region
performs best for a client due to congestion [19] or routing prob-
lems [36].

While the impact of diverse deployment of services (e.g., via
CDNs) has been previously studied in other settings [27], we are
unaware of any studies that assess its impact for the available di-
versity of modern public IaaS clouds. We therefore perform mea-
surements to help us answer the following two questions: (i) To
what extent does the choice of region impact performance experi-
enced by clients of a web service? (ii) To what extent does the use
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Figure 9: Average throughput between representative clients and
EC2 regions in the US.
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Figure 10: Average latency between representative clients and EC2
regions in the US.

of multiple regions (or zones) improve the client-perceived perfor-
mance?

Latency measurements. To study per-region latency performance,
we set up 40 m1.medium instances, 2 in each of the 20 availability
zones available to us on EC2. We selected 80 geographically dis-
tributed PlanetLab [17] nodes as stand-ins for real clients and we
used the hping3 utility to conduct 5 TCP pings to each of the 40 in-
stances, from which we derive the average RTT. Pings that timed
out were excluded from the calculations of the average. Probing
was performed once every 15 minutes for three consecutive days.

Throughput measurements. We used the same set of 40 m1.med-
ium EC2 instances and 80 PlanetLab nodes to measure throughput.
We divided the PlanetLab nodes into two groups of 40. Each node
in each group performed an HTTP get of a 2 MB file to one of the
40 EC2 instances (which were running Apache web server). At any
given time, only one HTTP connection was established with each
EC2 instance to avoid contention across throughput measurements.
In particular, the clients in each group performed an HTTP get op-
eration every 11.25 seconds; the download was canceled if it took
more than 10 seconds. Each client accessed all 40 servers in each
round, which means it took 450 seconds for one group to finish a
round of downloading the file from each of the servers. So, in total,
it took 15 minutes for 80 clients to perform one round of through-
put measurements. The final throughput is measured as file_size
/ download_time. We ran the measurements for three consecutive
days, for a total of 288 data points per client. The throughput mea-
surements were intermingled with the latency measurements.

Performance across different regions. Figures 9 and 10 show the
latency and throughput measurements for 15 representative Plan-
etLab locations and for the three US EC2 regions. The PlanetLab
nodes are spread across the US and other parts of the world. We
make a few key observations: (i) Single-region deployments must
carefully choose aregion. For example, the two US west regions do
not offer equivalent “across-the-board” performance, with ec2.us-
west-1 offering better average latency and throughput (130 ms and
1143 KB/s) than ec2.us-west-2 (145 ms and 895 KB/s) (averaged
across all client locations). (ii) The charts show that the region
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Figure 11: Latencies between Boulder site and three EC2 US re-
gions. The best performing region changes over time.

chosen to serve content to a given client can have a significant per-
formance impact. For example, for the client in Seattle, using the
ec2.us-west-2 region can reduce latency by close to a factor of 6
and improve throughput by close to a factor of 5 compared to us-
ing ec2.us-east-1. (iii) We also note that the way a region is chosen
may depend on the client’s location: always choosing ec2.us-west-
1 for the Seattle client is a good idea, but for the client in Boulder,
the best choice of region may change dynamically (see Figure 11).

We now examine the relative benefits of, and choices underlying,
multi-region deployments in more detail. We start by deriving an
upper bound on the performance from a k-region deployment of a
service. To do this, we determine the best &k regions out of the 8, for
1 < k < 8. Using our measurement data we determine the overall
performance that the clients would have achieved given a routing
algorithm that picked the optimal region from the k for each client
and at each point in time. More specifically, for each value of k we:
(i) enumerate all size-k subsets of regions; (if) for each size-k sub-
set compute the average performance across all clients assuming
each client uses the lowest latency or highest throughput region of
the k at each time round (15 min); and (iii) choose from these the
size-k subset with lowest latency or highest throughput. Figure 12
shows the results. We find that while average performance can be
increased a significant amount by adding more regions to one’s de-
ployment, there is evidence of diminishing returns after £ = 3.
In particular, latency decreases by 33% when k = 3 compared to
k =1, but only decreases by 39% when k = 4.

We now examine what constitutes the best k regions to use. The
choice of best regions, by throughput, is as follows: ec2.us-east-
1 (k = 1); ec2.us-east-1,ec2.eu-west-1 (k = 2); ec2.us-east-1,
ec2.eu-west-1, ec2.us-west-1 (kK = 3); and ec2.us-east-1, ec2.cu-
west-1, ec2.us-west-1, ec2.ap-southeast-1 (k = 4). The choice
of best regions, by latency, is: ec2.us-east-1 (k = 1); ec2.us-
east-1,ec2.ap-northeast-1 (k = 2); ec2.us-east-1, ec2.ap-northeast-
1, ec2.us-west-1 (k = 3); and ec2.us-east-1, ec2.ap-northeast-1,
ec2.us-west-1, ec2.ap-southeast-1 (k = 4).

Performance across different zones. We also investigated the dif-
ference in performance should one use different zones in the same
region. We found that the zone has little impact on latency, with
almost equivalent average RTTs for all clients across the two days
(results omitted for brevity). For throughput, the variation appears
to be somewhat higher, but not as significant as that seen across
regions. We believe such variation is due to local effects, such as
contention on shared instances or network switches. This is sug-
gested as well by other recent measurements of EC2 performance
variability [25]. Moreover, in the next section we show that the
Internet path variability between zones is low as well.

Summary and Implications. We find that using multiple regions
can improve latency and throughput significantly. However, lever-
aging multiple regions may not be easy: while a given region al-
ways offers best performance for some clients, the choice of region
for other clients will have to adapt in an online dynamic fashion.
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Figure 12: Average latency/throughput across all clients using an
optimal k-region deployment.

Region AZ1(AZ2|AZ3
ec2.us-east-1 36 | 36 | 34
ec2.us-west-1 18 19 | n/a

ec2.us-west-2 19 [ 19 | 19

ec2.eu-west-1 10 11 13
ec2.ap-northeast-1 9 | na| 9
ec2.ap-southeast-1 || 11 12 | n/a
ec2.ap-southeast-2 || 4 4 | na

ec2.sa-east-1 4 4 | na

Table 16: Number of downstream ISPs for each EC2 region and
zone.

This could be achieved via global request scheduling (effective, but
complex) or requesting from multiple regions in parallel (simple,
but increases server load).

While a multiple region deployment helps improve web service
performance and protects against major cloud failures, cloud ten-
ants must also consider other factors in making their decision of
how many and which regions to use. First, cloud providers charge
for inter-region network traffic, potentially causing tenants to incur
additional charges when switching to a multi-region deployment.
Second, the design of particular cloud features may restrict how a
tenant’s data can be shared across regions: e.g., objects stored in
Amazon’s Simple Storage Service (S3) can only be stored in one
region at a time and Amazon Machine Images (AMIs) cannot be
shared between regions. Lastly, deployments that rely on fewer fea-
tures may be less susceptible to failures—e.g., deployments which
only use VMs, and not other services like Amazon Elastic Block
Storage or Amazon ELB, have not been affected by some major
outages [4, 6]—reducing the need for resiliency through the use of
multiple regions.

5.2 ISP Diversity

We now investigate tolerance to wide-area faults. Having in pre-
vious sections already established the reliance of many cloud-using
services on one zone or region, we now focus on diversity in the im-
mediate downstream ISPs at each EC2 zone. Greater diversity, and
an even spread of routes across downstream ISPs, generally indi-
cates greater tolerance to failures in Internet routing.

To do this study, we set up three m1.medium instances in each
of the available EC2 availability zones. Then we ran traceroute 50
times from each of these instances to each of 200 geographically
diverse PlanetLab nodes (Figure 2). Finally, we used the UNIX
‘whois’ utility to determine the autonomous system (AS) number
associated with the first non-EC2 hop, and we count that AS as
an immediate downstream ISP for the zone hosting the instance.
The discovered ASs constitute a lower bound for the true number
of ASs. Table 16 gives the number of distinct ASs seen for each
zone and region. We note that: (i) different zones in a region have
(almost) the same number of downstream ISPs; and (ii) the extent
of diversity varies across regions, with some connected to more
than 30 downstream ISPs and others connected to just 4. Except



for South America and Asia Pacific Sydney, other regions are well-
multihomed.

We also studied the spread of routes across downstream ISPs
(not shown). We found it to be rather uneven: even when using
well-connected regions — e.g., ec2.us-west-1 and ec2.eu-west-1—
we found that up to 31% (ec2.us-west-1) and 33% (ec2.eu-west-1)
of routes use the same downstream ISP.

Summary and Implications. Although individual regions are mul-
tihomed, the uneven spread of routes implies that local failures in
downstream ISPs can cause availability problems for large fractions
of clients of cloud-using web services. This could be overcome by
using multiple regions at once, or by leveraging dynamic route con-
trol solutions [20].

6. RELATED WORK

There have been several studies of the network characteristics
of data centers (DCs). For example, Kandula et al. [26] focus on
measuring the flow level characteristics. Benson et. al [21] stud-
ied three types of DCs: universities, private enterprise and pub-
lic cloud. They characterize the internal network traffic, and infer
the applications deployed in the DCs as well. Similarly, Mishra
et al. [32] characterize cloud backend workloads inside Google
compute clusters. Li et al. [29] benchmark and compare the com-
puting and storage service’s performance across different public
cloud providers. They also measure the network bandwidth be-
tween DCs. In roughly the same vein, Chen et al. [22] study the
wide-area traffic patterns between Yahoo! DCs. Our work, in con-
trast, is more “user-facing” than the above, in that we focus on char-
acterizing deployment patterns of the front ends of cloud-using web
services, the wide-area traffic they impose, and the implications of
these properties on client perceived performance and availability.
Our work therefore extends prior works on DC and cloud workload
characterization along important new axes.

7. CONCLUSION

In this work we performed the first extensive measurement study
of usage of modern infrastructure-as-a-service (IaaS) clouds, in
particular Amazon EC2 and Windows Azure. This measurement
study, which combined data from a university packet capture, in-
terrogation of DNS records for websites listed on the Alexa top
1 million list, and lightweight probing, confirms the oft-reported
anecdotes about the extent to which modern web services use these
cloud systems. We profile the deployment patterns observed for
popular web services. We uncover that, in many ways, these de-
ployments are somewhat precarious, as the vast majority of (even
very popular) websites use only one cloud region. In addition to
resiliency benefits, we show that multi-region deployments could
significantly increase latency and throughput performance in EC2.
Beyond providing a snapshot on the state of cloud usage, we be-
lieve our work will spark further research on tracking cloud usage,
as well as developing cloud-region-aware routing and deployment
mechanisms. Finally, we make all data sets used in this paper pub-
licly available [10], with the exception of the packet capture.
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