

A Tutorial on Helmholtz Machines

Kevin G. Kirby
Department of Computer Science, Northern Kentucky University

June 2006

 2

Preface

“When one understands the causes, all vanished images can easily
be found again in the brain through the impression of the cause.

This is the true art of memory…”

Rene Descartes, Cogitationes privatae.
Quoted in Frances Yates, The Art of Memory (1966)

Helmholtz machines are artificial neural networks that, through many cycles of sensing and
dreaming, gradually learn to make their dreams converge to reality, and, in the process, create a
succinct internal model of a fluctuating world.

This tutorial is meant to provide a comfortable introduction for readers with backgrounds in
computer science or mathematics, at a level roughly the same as the artificial intelligence
textbook of Russell and Norvig [1]. The description here is expanded from the work of Dayan
and Hinton [2,3,4,5], with some change of notation and a path of exposition that I hope readers
will find helpful. My attempt to provide “comfortable” reading means I include a lot of
necessary background information (to keep one from having to pull down an old textbook), a
lot of calculational detail (to keep one from having to grab a pencil), and explicit pseudocode.

To minimize prerequisites, I have trimmed out very important discussions of the relationship of
Helmholtz machines to the EM algorithm, to autoencoders, to variational learning in Bayesian
networks, to information geometry, and to models of the cerebral cortex. This material is meant
to lead a reader up to, but not into, that literature.

I wrote this tutorial for a workshop I gave at the Kunsthochschule für Medien at Cologne in
June 2006. The thesis of this workshop was that Helmholtz machines can play aesthetic and
pedagogical roles that transcend their use in “applications.” To date they are, I believe, under-
appreciated and under-explained. The slides from my lecture partly address the former aspect;
this tutorial is meant to partly address the latter. Comments to kirby@nku.edu are welcome.

 3

1. Notation and Review of Basic Probability for Machine Learning

Bit vectors appear in bold lowercase: e.g., d ∈ {0,1}N. This subject matter is all about
assigning probabilities to bit vectors, that is, about functions p: {0,1}N → [0,1], with p(d) ≥ 0
and ∑d p(d) = 1, where the sum runs over all 2N bit vectors d. Such a probability assignment
gives the distribution of a discrete random variable D: p(d) = Prob[D = d], the probability
that the random bit vector D takes on the specific value d.

When using a probability assignment to a pair of bit vectors, p: {0,1}L ×{0,1}M → [0,1], we
will write p(xy) for p(x,y). This describes the joint probability distribution of two random bit
vectors X and Y, with p(xy) = Prob[X= x and Y=y].

Several derived quantities come from this p(xy). First, we can define

p1(x) ≡ ∑y p(xy) and p2(y) ≡ ∑x p(xy).

This process of summing over one argument is called marginalization. By a common abuse of
notation, we just call these functions p(x) and p(y), respectively, distinguishing them
informally by the names of their arguments. As it turns out, p(x) = Prob[X= x] and p(y) =
Prob[Y= y]. The random variables X and Y are independent if p(xy) = p(x)p(y).

A second useful quantity is p(x|y) ≡ p(xy) / p(y). Then p(x|y) = Prob[X= x, given Y=y], a
conditional probability. Note that if X and Y are independent, then p(x|y) = p(x).

These often-used formulas follow from the definitions above:

p(xy) = p(x|y) p(y)

p(x) = ∑y p(x|y) p(y)

p(xy|d) = p(x|yd) p(y|d)

)|(
)(
)()|(yx

x
yxy p

p
pp =

The last of these is Bayes Theorem; it assumes, of course, that p(x) > 0.

A random bit vector D with distribution p(d) can itself be described as a joint distribution over
all N bits in d: p(d) = p(d1d2…dN). It is often the case here that each bit is an independent and
identically distributed (“IID”) random variable. Independent, as above, means that p(d1d2…dN)
= p(d1)p(d2)…p(dN). Identically distributed, here, means that there is some constant
probability value p0 such that for all i=1,2…N:

p(di)= p0 when di = 1
p(di)= 1 – p0 when di = 0

 4

This IID property means that one can write, for any specific bit vector d, the compact
expression:

∏ −−=
i

dd ii ppp 1
00)1()(d (1.1)

It is often convenient to recast a probability value p (running from 0 to 1) into a quantity we
can call surprise: s ≡ – log p. An event occurring with probability 1 has zero surprise, and an
event with probability 0 has infinite surprise. Surprise is never negative.

A function of bit vectors f(d) turns D into another random variable f(D). The expected value of
this function as you apply it to bit vectors drawn with probability p(d) is given by the weighted
average

〈f(D)〉 = ∑d p(d) f(d). (1.2)

The expected value of the surprise is called the entropy:

H(D) ≡ 〈– log p(D)〉 = – ∑d p(d) log p(d) (1.3)

To fully define the expression on the right, one takes 0 log 0 ≡ 0.

When a random variable has low entropy, the outcomes you tend to observe offer little surprise.
This occurs, for example, when one particular bit vector occurs with probability near 1, and all
the other bit vectors occur with probability near 0. By contrast, when a random variable has
high entropy, the observed outcomes tend to have a lot of surprise. This occurs, for example,
when all the bit vectors occur with equal probability.

When one has a conditional probability assignment p(x|y), one speaks of a conditional entropy,
but the definition is the same:

H(X|y) = – ∑x p(x|y) log p(x|y). (1.4)

Given two probability assignments pA(d) and pB(d), one way to quantify how different they are
is to use the Kullback-Leibler divergence, also known as the relative entropy, from A to B:

KL[pA(D) , pB(D)] = ∑
d d

dd
)(
)(log)(

B

A
A p

pp (1.5)

This is equal to zero when pA = pB, and is never negative. Using the properties of the logarithm
and the definition of expectation above, we see that

KL[pA(D) , pB(D)]= 〈– log pB(D)〉A – 〈– log pA(D)〉A

 5

In other words, the KL divergence from A to B is simply the difference in surprise, as averaged
by A. This is not a symmetric function: KL[pA(D) , pB(D)] ≠ KL[pB(D) , pA(D)], so the terms
“difference” or “divergence” are used, rather than the term “distance.”

One way to see the asymmetry in KL divergence is to look at the function A(p,q) ≡ kl(p,q) –
kl(q,p), where p and q are probability vectors (vectors with positive components summing to
1), and

kl(p , q) ≡ ∑
i i

i
i q

pp log

The plot below shows A([x,1−x]T, [0.85, 0.15]T). If the KL divergence were symmetric, this
curve would be a horizontal line. Note that the degree of asymmetry is very small when p and
q are nearly equal (at x = 0.85).

One remark about notation, for those fussy enough, like me, to care. It will be easiest to say
“the random bit vector d” even though “the random bit vector D” is the technically correct
phrasing, as bold capital letters denote random variables. (Precisely, a random bit vector D is a
function from a sample space into {0,1}n; whereas d is merely an element of {0,1}n.) One
surviving use for the upper/lower case distinction is exemplified in equations 1.2 – 1.5, where
capital letters are placeholders for bound variables. For example, the notation H(X|y) correctly
suggests that we view H(X|y) as a one-argument function of the bit vector y. Such
placeholders are necessary because function names (e.g. “H”, “p”) are overloaded in the
common notations of probability theory, so functions must be disambiguated by the names of
their arguments.

x

 6

2. Notation and Review of Layered Neural Networks

Consider a neural network with 3 layers. We will draw it vertically.

In a linear neural network, the patterns x, y, d are vectors of real numbers. The input pattern x
passes through the connection weight matrix W to produce the pattern y. In turn, y passes
through the connection weight matrix V to produce the pattern d. Each neuron computes a
weighted sum of its inputs, plus an additional bias weight. This yields the following:

∑
=

++=
L

k
Ljkjkj wxwy

1
1, , or simply: y = W[x|1]

∑
=

++=
M

j
Mijijk vyvd

1
1, , or simply: d = V[y|1]

where the notation [a|1] denotes a column vector a with a 1 appended on the end. This means
the last column of the weight matrices W and V hold the bias weights. Accordingly, the output
pattern of each layer is an affine transformation of the its input pattern. (An affine
transformation is a linear transformation followed by a translation.)

The simplest nonlinearity to introduce into this network is to take the linearly transformed
input pattern and push it through a nonlinear squashing function such as the logistic or
“sigmoid” function:

σ(u) = 1 / 1 + e–u.

x ∈ RL

y ∈ RM

d ∈ RN

xk

yj

di

wjk

vij

W

V

 7

Let the vector function σ be defined by applying σ to each component. Then the neural
network processes patterns as follows:

y = σ (W[x|1])
d= σ (V[y|1])

Since σ yields a number between 0 and 1, we can move from interpreting this value as the
output of a real-valued neuron, to the probability that a binary-valued neuron produces the
output 1 (that is, the probability that is “fires”). Then we can write:

y = SAMPLE[py] where py = σ (W[x|1]) (2.1a)

 d= SAMPLE[pd] where pd = σ (V[y|1]) (2.1b)

where SAMPLE[p] is a stochastic function that yields 1 with probability p, and 0 with
probability 1–p. SAMPLE[p] applies SAMPLE to each component of a vector. Because the
range of the function σ never reaches 0 or 1, a neuron will never fire (or not fire) with
complete certainty. This kind of layered stochastic network will be the starting point for the
Helmholtz machine.

3. Top-Down Pattern Generation

The world, as the Helmholtz machine sees it, is made of up patterns of flickering bits, with
each bit pattern d appearing with some probability p(d). Since d can take on an exponential
number of values, specifying p(d) requires a lot of information. Or it would require a lot of
information if the world were completely random. In fact, there may be much less information
here that it seems, and the Helmholtz machine attempts to exploit this fact.

Start with a data distribution p(d). We want to explain it, or, equivalently, be able to
communicate it in a compressed form. In neural representational learning we do the following.
We assume a general form for generative distributions that probabilistically produce d from the
casual chain 1 x y d. This chain will be implemented as a layered neural network, as
illustrated in the previous section. The constant 1 at the start of the chain indicates that the
pattern x is not regarded as an input to the network, but is stochastically generated from a
constant bias input value of 1. Only the layer holding d is connected to the world; the layers
holding x and y are considered hidden layers.

A generative distribution G requires specification of three distributions:

 pG(x) - via a bias vector producing internal causes
 pG(y|x) - via connection weights from the top to middle layer
 pG(d|y) - via connection weights from the middle to bottom layer

 8

Writing x y d is a way of saying we have conditional independence of x and d given y,
which, by definition, is

pG(xd|y) = pG(x|y) pG(d|y). (3.1)

A relation that captures the causal chain more directly by saying that x influences d only
through y is

pG(d|xy) = pG(d|y).

This follows from (3.1) and the relations derived in section 1:

)|(
)(
)(

)|(
)|()|(xyd

xy
xyd

yx
yxdyd G

G

G

G

G
G p

p
p

p
pp ===

This conditional independence means can get the joint distribution, which is the complete
description of behavior, merely by multiplying together the 3 “givens” of the generative
distribution for 1 x y d :

 pG(xyd) = pG(yd|x) pG(x)
 = [pG(d|yx) pG(y|x)] pG(x)
 = pG(d|y) pG(y|x) pG(x)

Conversely, we can get the 3 “givens” from the joint as well:

pG(x) = ∑yd pG(xyd)
pG(y|x) = pG(xy) / pG(x) = ∑d pG(xyd) / ∑yd pG(xyd)
pG(d|y) = pG(yd) / pG(y) = ∑x pG(xyd) / ∑xd pG(xyd)

So we can just speak of pG(xyd) as the generative distribution, packaged nicely in a single
function (though unpacking it into the three “directional” factors is more useful).

The ultimate quantity of interest here is not any of these four quantities in themselves, but
pG(d) = ∑xy pG(xyd). The goal is to make the network’s pG(d) as close as possible to the real
data distribution p(d).

In a Helmholtz machine, the bottom layer holding d is called the data layer. The layers above
are called hidden layers. Generation of a data pattern d begins with a pattern x at the top layer.
The network generates it by sampling pG(x). This is implemented by having a single bias input
(equal to 1) coming into each neuron k in the top layer, with bias weight bG

k. We collect these
in a vector bG. Similarly, pG(y|x) is determined by weight matrix WG and pG(d|y) is determined
by weight matrix VG.

This is shown in the figure on the next page. The data layer is highlighted to indicate that it is
the one layer that interfaces with the outside world.

 9

The set of network connection weight matrices (bG , WG, VG) is nothing but a way to specify
(pG(x), pG(y|x), pG(d|y)), or, equivalently, pG(xyd). Of course, this is a highly constrained form
for a probability distribution. The pG(d) they produce may not be capable of conforming
exactly to the observed p(d), but the machine will try to get it as close as possible.

We get the directional probabilities from the neural network weights as follows, based on
equations 1.1 and 2.1:

∏ −−=
k

x
kG

x
kGG

kk xpxpp 1)](1[)()(x where ()G
kkG bxp σ=)(

∏ −−=
j

y
jG

y
jGG

jj ypypp 1)]|(1[)|()|(xxxy where ⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

=

+

L

k
Lj

G
kjk

G
jG wxwyp

1
1,)|(σx

∏ −−=
i

d
iG

d
iGG

ii dpdpp 1)]|(1[)|()|(yyyd where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

+

M

j
Mi

G
jij

G
iG vyvdp

1
1,)|(σy

where σ is the sigmoid function σ-(u) = (1 + exp –u)–1.

Call x by itself the “cause.” Call xy (the state of all the hidden units) the “explanation” of d.
Of course, the actual number of neurons in each layer is unrestricted. And we can imagine
variants of Helmholtz machines with more or fewer layers, different activation functions,
lateral connections, and so on [6]. But for the purposes of this tutorial, we concentrate on the
architecture depicted above.

x

y

d

xk

yj

di

wG
jk

vG
ij

WG

VG

1

bG
k bG

1

 10

4. Energy

Now let us look at the interesting ways the probabilities involved are interrelated in the
generative distribution. Given the role of explanations, one might ask about the probability of
an explanation xy given some fixed piece of generated data d:

∑
==

xy
xyd

xyd
d

xyd
dxy

)(
)(

)(
)(

)|(
G

G

G

G
G p

p
p

p
p (4.1)

With the innocuous abbreviation

EG(xy;d) ≡ − log pG (xyd)

equation (4.1) becomes

∑ −
−

=

xy
dxy

dxydxy
)];([exp

)];([exp)|(
G

G
G E

Ep

This rewrite is more than just cosmetic. If we use the suggestive name generative energy for
EG(xy;d), an analogy to statistical physics emerges.

Suppose the state of a physical system fluctuates among a set of states { q1, q2, … }. One sign
that the system is in thermal equilibrium is that the probability of finding the system in a state
qi is related to its energy E(qi) according to a rule called the Boltzmann distribution:

∑ −
−

=

i
i

i
i TqE

TqEqp
]/)([exp

]/)([exp)(

where T is the temperature. The denominator is known as the partition function Z.

In formal, non-physical systems one can go backwards and devise an “energy” function so that
the probability distribution over the states can be said to obey a Boltzmann distribution. This
then enables one to plunder statistical physics for useful theorems and relationships.

So we declare that EG(xy;d) ≡ − log pG (xyd) will be known as the energy of the explanation
xy of the data pattern d. We are taking the temperature to be T=1. The energy is the surprise
associated with the occurrence of a particular complete state. The semicolon in the argument
list of EG(xy;d) is meant to suggest the way we will use it below: as a function of x and y, with
d held fixed. Since the energy function is just the negative log of the full joint distribution, we
can recover all the pieces of the generative distribution from the energy function, so the energy
function is a third way to “package” the generative distribution G.

Incidentally, the partition function Z (the denominator) is just pG(d), the ultimate quantity of
interest in this whole enterprise.

 11

5. Free Energy

Now the goal of Helmholtz machine learning is to find a G (that is, find bG , WG, and VG) that
makes pG(d) as close to p(d) as possible. When this happens, the machine will have made a
generative model of the world. So we want to find a G that minimizes the function

Φ(G) ≡ KL[p(D), pG(D)] (5.1)

It would be nice if we could find a G such that Φ(G) = 0, but this is unlikely to happen since
the feedforward neural network implementation of G constrains the distribution. Minimizing
(5.1) is somewhat simpler than it looks, since if we use the definition of KL divergence we get

Φ(G) = ∑
d d

dd
)(

)(log)(
Gp
pp =)(log)(dd

d
pp∑ –)(log)(dd

d
Gpp∑

where the first term does not depend on G and thus can be ignored in our optimization of G.
What’s left is nothing but the expected surprise of the data generated by the network, weighted
by the real-world probability of the data:

Φ0 (G) ≡ 〈–log pG (D)〉 = –)(log)(dd
d

Gpp∑ . (5.2)

As we sample patterns in the real world we keep track of how surprising it would be if the
machine generated that pattern. This accumulated surprise as we sample will get smaller as the
machine learns to model the world, as pG(d) moves closer to p(d).

So now our optimization problem is one of finding a G that minimizes this expected surprise
Φ0 (G). As is common in neural network learning, we will use a gradient descent algorithm.
That means we will need to compute various gradients ∇ of Φ0 (G). Since any gradient
operator ∇ is linear, we will have

∇Φ0 =)](log[)(dd
d

Gpp∑ −∇ . (5.3)

In gradient descent optimization we will make a lot of little changes proportional to ∇Φ0. Since
the gradient consists of a p(d)-weighted sum of the gradients of – log pG(d), our descent
algorithm can just sample a d from the real world p(d) distribution, then add in an increment
proportional to ∇[–log pG(d)]. As we keep adding these up, sampling according to p(d), we
get the same weighted sum as in equation (5.3). So finding the various gradients of – log
pG(d) is all we need to do to prepare a gradient descent algorithm to make p approach pG.

Accordingly, we turn our attention to minimizing – log pG(d), the generative surprise, and
rearrange it to get an interesting new form:

 – log pG (d) = – log pG (d) 1
= – log pG (d) [∑xy pG(xy|d)]
= – ∑xy pG(xy|d) log pG (d)

 12

= – ∑xy pG(xy|d) log [pG (xyd) / pG (xy|d)]
= – ∑xy pG(xy|d) log pG (xyd) + ∑xy pG(xy|d) log pG(xy|d)
= ∑xy pG(xy|d) EG(xy;d) – HG(XY|d)
= 〈 EG(XY;d) 〉G – HG(XY|d)

The first term is the average generative energy of explanations we observe with a pattern d
when we let the generative distribution operate. The second term is the entropy of explanations
we observe with a pattern d when we let the generative distribution operate.

In statistical physics, the Helmholtz free energy of a system with average energy 〈E〉,
temperature T, and entropy H, is given by:

F = 〈E〉 – TH

Since the expression for – log pG (d) above displays it as “average energy minus entropy,” it
is analogous to a Helmholtz free energy with temperature 1. We can call this quantity the free
energy of d in G:

FG(d) ≡ – log pG (d) = 〈 EG(XY;d) 〉G – HG(XY|d). (5.4)

Thus there is a three-way identification here dealing with machine-generated patterns:

free energy of pattern ↔ surprise of pattern ↔ average energy minus entropy

So we see that to minimize the KL divergence from the real world data distribution to the
Helmholtz machine data distribution means, according to (5.3) above, that we need to
minimize 〈FG(D)〉, the generative free energy averaged according to the real world distribution.

At this point it would seem that gradient-descent learning in a Helmholtz machine all boils
down to calculating some derivatives of FG(d). Specifically, we need to calculate three sets of
derivatives:

)(dGG
k

F
b∂
∂)(dGG

jk

F
w∂
∂)(dGG

ij

F
v∂
∂

To calculate these derivatives we need to express FG(d) in terms of the weights via the
formulas for pG(x), pG(y|x), pG(d|y) at the end of section 3. Try out the math. Things don’t seem
to work out very well; the equations do not “clean up nice” and give us simple expressions for
the derivatives. We must think a little more deeply.

 13

6. Variational Free Energy

We pause now and consider another distribution pR(xy|d), which can be any arbitrary
distribution for the moment. We have no need for a full joint pR(xyd) in what follows. In
particular, there is no role for pR(d).

For fixed data pattern d, compute the Kullback-Leibler divergence of explanations from pR to
the generative distribution pG:

KL[pR(XY|d), pG(XY|d)] ≡ ∑xy pR(xy|d) log
)|(
)|(

dxy
dxy

G

R

p
p

 = ∑xy pR(xy|d) log pR(xy|d) – ∑xy pR(xy|d) log pG(xy|d)

 = ∑xy pR(xy|d) log pR(xy|d) – ∑xy pR(xy|d) log
)(

)(
d

xyd

G

G

p
p

 = –HR(XY|d) – ∑xy pR(xy|d) log pG(xyd) + ∑xy pR(xy|d) log pG(d)

 = –HR(XY|d) + ∑xy pR(xy|d) EG(xy;d) + ∑xy pR(xy|d) log pG(d)

 = –HR(XY|d) + 〈 EG(XY;d) 〉R + log pG(d) ∑xy PR(xy|d)

 = –HR(XY|d) + 〈 EG(XY;d) 〉R – FG(d).

Rewrite this to get the free energy FG(d), and juxtapose this with the previous section’s
expression for the same quantity:

FG(d) = 〈 EG(XY;d) 〉G − HG(XY|d)
FG(d) = 〈 EG(XY;d)〉R − HR(XY|d) – KL[pR(XY|d), pG(XY|d)]

So what’s going on? We have a simple expression for the generative Helmholtz free energy,
and then a more complicated expression for the same thing involving a whole new quantity, the
distribution pR. As it turns out, this involves us in something called a variational method.

Since KL divergences are never negative, we have 〈 EG(XY;d) 〉R − HR(XY|d) − FG(d) ≥ 0,
i.e.

FG(d) ≤ 〈 EG(XY;d) 〉R − HR(XY|d)

Define the variational free energy (from R to G) as

 FR
G(d) ≡ 〈 EG(XY;d) 〉R − HR(XY|d) (6.1a)

 = FG(d) + KL[pR(XY|d), pG(XY|d)] (6.1b)

 14

Compare the first of these to equation 4.5:

 FG
G(d) = FG(d)

This is so important, let’s paraphrase all this:

variational free energy from R to G = average energy of G in R − entropy of G
 = surprise in G + divergence from R to G
 ≥ free energy of G

 variational free energy from G to G = free energy of G

Were the variational free energy FR

G(d) minimized on both R and G, we would find that pR →
pG and FG(d) would be minimized.

So far nothing in this section has assumed anything about where pR(xy|d) comes from. Now is
the time to pin it down.

7. Bottom-Up Pattern Recognition

Call pR(xy|d) the recognition distribution, and assume it follows a causal chain d x y.
That means we can factor pR(xy|d) = pR(x|y) pR(y|d). Let these two factors be determined by
upward connections in the Helmholtz machines, called the recognition weights, VR and WR.
Analogously to the equations for generation (at the end of section 3), we have the equations of
recognition:

∏ −−=
k

x
kR

x
kRR

kk xpxpp 1)]|(1[)|()|(yyyx where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

+

M

j
Mk

R
j

R
kjkR wywxp

1
1,)|(σy

∏ −−=
j

y
jR

y
jRR

jj ypypp 1)]|(1[)|()|(dddy where ⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

=

+

N

i
Nj

R
i

R
jijR vdvyp

1
1,)|(σd

Since the pattern d is an input, there are no bias weights coming into the data layer from below.
Thus unlike the generative case there are only two equations here. The resulting neural network,
with both generative and recognition connections, is shown below.

 15

8. Learning

We saw in section 5 that a Helmholtz machine can learn the structure of the world by
minimizing its own generative free energy FG(d). The idea is to use a gradient descent method
for this. However, calculation of gradients is complicated if one uses the direct form of FG(d).
That led us to turn to the variational free energy FR

G(d), involving a separate recognition
distribution. Minimizing FR

G(d) simultaneously minimizes the free energy FG(d) and the KL
divergence from pR(XY|d) to pG(XY|d), which will make recognition and generation
approximate inverses of each other.

Each iteration in this revised gradient descent algorithm will involve two phases, one involving
the generative weights and one involving the recognition weights. That is, we alternately make
small changes in G and in R.

In the first phase, to be called the “wake” phase, we make a small change in the generative
weights to decrease the variational free energy from equation (6.1b):

 FR
G(d) = FG(d) + KL[pR(XY|d), pG(XY|d)].

There is one free variable here: d. Where does it come from? We sample it from the real world
p(d) (not from the generative distribution), as our original goal was to minimize 〈FG(d)〉 where
the average is taken according to the real world distribution. So we sample a d from the world
and tweak the bG, WG, VG so as to decrease FR

G(d).

In the second phase, to be called the “sleep” phase, we make a small change in the recognition
weights to decrease not FR

G(d) but a slightly different quantity that approximates it:

)(~ dG
RF = FG(d) + KL[pG(XY|d), pR(XY|d)].

d

y

x

VR ↑

WR ↑

VG ↓

WG ↓

bG ↓

 16

Note the order of the KL arguments is switched! Since the KL divergence is not symmetric,
this is a nontrivial kludge. It gives us only one term involving R, rather than two– a very
efficient form which simplifies the learning algorithm.

These adjustments will occur by gradient descent. So we now turn to evaluation of the
derivatives of FR

G(d) and)(~ dG
RF in order to derive the algorithm.

9. Wake

For the wake phase we will take the derivatives of the variational free energy with respect to
generative weights. Let’s write FR

G(d) in the form from equation (6.1a):

)(dG

RF = 〈 EG(XY;d) 〉R − HR(XY|d)

 = ∑xy pR(xy|d) EG(xy;d) − const(R)

noting that the entropy depends only on R, so can be considered a constant as we now focus on
dependence on G.

Let the symbol ∇G stand for any derivative with respect to the generative biases and weights
(i.e. for ∂/∂bG

k, ∂/∂wG
jk, or ∂/∂vG

ij). Then:

∇G)(dG
RF = ∇G ∑xy pR(xy|d) EG(xy;d) − ∇G const(R)

 = ∑xy pR(xy|d) ∇G EG(xy;d)
 = 〈 ∇G EG(XY;d) 〉R (9.1)

Now our gradient descent learning algorithm will sample a pattern d from the world (according
to p(d)) then update the weights by the small step downhill – ε∇G)(dG

RF , where ε > 0 is small.
How do we evaluate this? The right hand side just above says we just sample ∇GEG(xy;d)
where x and y are drawn from the recognition distribution.

We turn to evaluating this gradient of the energy:

 ∇G EG(xy;d) = – ∇G log pG(xyd)
 = – ∇G log pG(x) pG(y|x) pG(d|y)
 = – ∇G log pG(x) – ∇G log pG(y|x) – ∇G log pG(d|y) (9.2)

The needed expressions for log pG(x), log pG(y|x), and log pG(d|y) are available from the last
equations in section 3 for the three layers of weights from the top down:

 17

 log pG(x) = ∏ −−
k

x
k

x
k

kk 1)1(log ξξ where ()G
kk bσξ ≡

 = ∑
k

kkx ξlog + ∑ −−
k

kkx)1(log)1(ξ

 log pG(y|x) = ∏ −−
j

y
j

y
j

jj 1)1(log ψψ where ⎟
⎠

⎞
⎜
⎝

⎛
+≡ ∑

=

+

L

k
Lj

G
kjk

G
j wxw

1
1,σψ

 = ∑
j

jjy ψlog + ∑ −−
j

jjy)1(log)1(ψ

 log pG(d|y) = ∏ −−
i

d
i

d
i

ii 1)1(log δδ where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≡ ∑

=

+

M

j
Mi

G
jij

G
i vyv

1
1,σδ

 = ∑
i

iid δlog + ∑ −−
i

iid)1(log)1(δ

The various connection weight derivatives that make up ∇G EG(xy;d) are then straightforward
to calculate. These calculations use the fact that if a = σ(b), then da/db = a (1–a).

)(log xGG
k

p
b∂
∂ = ∑∂

∂

K
KKG

k

x
b

ξlog + ∑ −−
∂
∂

K
KKG

k

x
b

)1(log)1(ξ

 =]log[kkG
k

x
b

ξ
∂
∂ +)]1(log)1[(kkG

k

x
b

ξ−−
∂
∂

 = kG
k

k b
x ξlog
∂
∂ +)1(log)1(kG

k
k b

x ξ−
∂
∂

−

 = kG
kk

k

b
x ξ
ξ ∂

∂ +)1(
)1(
)1(

kG
kk

k

b
x ξ
ξ

−
∂
∂

−
−

 = kG
kk

k

b
x ξ
ξ ∂

∂ – kG
kk

k

b
x ξ
ξ ∂

∂
−
−

)1(
)1(

 =)1(kk
k

kx ξξ
ξ

− –)1(
)1(
)1(

kk
k

kx ξξ
ξ

−
−
−

 =)1(kkx ξ− –)1(kk x−ξ
 = xk – ξ k.

)|(log xyGG
k

p
b∂
∂ = 0

)|(log ydGG
k

p
b∂
∂ = 0

 18

Similar calculations show that for the top-to-middle weights:

)(log xGG
jk

p
w∂
∂ = 0

⎩
⎨
⎧

+=−
=−

=
∂
∂

1,
,...,2,1,)(

)|(log
Lky

Lkxy
p

w jj

kjj
GG

jk ψ
ψ

xy

)|(log ydGG
jk

p
w∂
∂ = 0

And for the middle-to-bottom weights:

)(log xGG
ij

p
v∂
∂ = 0

)|(log xyGG
ij

p
v∂
∂ = 0

⎩
⎨
⎧

+=−
=−

=
∂
∂

1,
,...,2,1,)(

)|(log
Mjd

Mjyd
p

v ii

jii
GG

ij δ
δ

yd

Combining all this with equation (8.2) and writing them in vector form, we have

Gb
∇ EG(xy;d) = – (x – ξ)

GW
∇ EG(xy;d) = – (y – ψ) [x | 1] T

GV
∇ EG(xy;d) = – (d – δ) [y | 1] T

Keep note of where the quantities on the right hand side came from: d came from the world; x
and y came from the recognition distribution given d; and ξ, ψ and δ came from the generative
distribution given x and y.

This means gradient descent takes the form of very simple weight increments at each layer:

 bG += ε (x – ξ)
 WG += ε (y – ψ) [x | 1] T
 VG += ε (d – δ) [y | 1] T.

where ε is the learning rate. It is not unusual in “neural smithing” to allow learning rates to
vary from layer to layer and from iteration to iteration.

This rule has fortuitously turned out to be nothing but a variant of the classic delta rule, in
which the change of a connection weight is proportional to an outer product. That is, weight
matrices change according a form like M += abT. In components, this is

 19

mij += aibj

so the change in the connection between i and j only involves what happens at the neurons at
each end i and j. Indeed, algorithms for changing neural network weight matrices can only
fairly be called “neural network algorithms” if the weight changes are local in this way.

We can summarize the wake phase of an iteration in the following pseudocode.

10. Sleep

For the wake phase we will take the derivatives with respect to recognition weights of an
approximation)(~ dG

RF to the variational free energy FR
G(d):

)(~ dG

RF = FG(d) + KL[pG(XY|d), pR(XY|d)].

noting that the first term depends only on G, so can be considered a constant as we now focus
on dependence on R.

Let the symbol ∇R stand for any derivative with respect to the recognition weights (i.e. for
∂/∂wR

kj, or ∂/∂vR
ji). Then:

∇R)(~ dG

RF = ∇R KL[pG(XY|d), pR(XY|d)]
 = ∇R [∑xy pG(xy|d) log pG(xy|d) – ∑xy pG(xy|d) log pR(xy|d)]
 = – ∇R ∑xy pG(xy|d) log pR(xy|d)
 = – ∑xy pG(xy|d) ∇R log pR(xy|d)
 = – 〈∇R log pR(XY|d)〉G (10.1)

WAKE PHASE
 // Experience reality!

d = getSampleFromWorld()

 // Pass sense datum up through recognition network
 y = SAMPLE(σ (VR [d | 1] T))
 x = SAMPLE(σ (WR[y | 1] T))

 // Pass back down through generation network, saving computed probabilities
 ξ = σ (bG)
 ψ = σ (WG [x | 1] T)
 δ = σ (VG [y | 1] T)

 // Adjust generative weights by delta rule

bG += ε (x – ξ)
WG += ε (y –ψ) [x | 1]T

 VG += ε (d – δ) [y | 1]T

 20

Now our gradient descent learning algorithm will, given a pattern d, update the weights by the
small step downhill – ε∇R)(~ dG

RF , where ε > 0 is small. How do we evaluate this? The right
hand side just above says we just use a sample ∇R log pR(xy|d) where x and y are drawn from
the generative distribution. But exactly what d do we use here? We defer this question until we
have developed the update rule.

So now we turn to evaluating the gradient of log pR(xy|d), using the layered nature of R we
introduced in section 7:

 ∇R log pR(xy|d) = ∇R log pR(y|d) pR(x|y)

 = ∇R log pR(y|d) + ∇R log pR(x|y) (10.2)

We get the needed expressions for log pR(y|d) and log pR(x|y) from the last equations in
section 7 for the three layers of weights from the top down:

 ∏ −−=
k

x
k

x
kR

kkp 1)1(log)|(log ξξyx where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

+

M

j
Mk

R
j

R
kjk wyw

1
1,σξ

 = ∑
k

kkx ξlog + ∑ −−
k

kkx)1(log)1(ξ

 ∏ −−=
j

y
j

y
jR

jjp 1)1(log)|(log ψψdy where ⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

=

+

N

i
Nj

R
i

R
jij vdv

1
1,σψ

 = ∑
j

jjy ψlog + ∑ −−
j

jjy)1(log)1(ψ

The various connection weight derivatives that make up ∇R log pR(xy|d) are then
straightforward to calculate. The algebra and elementary calculus follows the same pattern as
in the previous section. For the middle-to-top recognition weights:

)|(log yxRR
kj

p
w∂
∂ =

⎩
⎨
⎧

+=−
=−

1,
,...,2,1,)(

Mjx
Mjxx

kk

jkk

ξ
ξ

)|(log dyRR
kj

p
w∂
∂ = 0

For the bottom-to-middle recognition weights:

)|(log yxRR
ji

p
v∂
∂ = 0

)|(log dyRR
ji

p
v∂
∂ =

⎩
⎨
⎧

+=−
=−

1,
,...,2,1,)(

Niy
Nidy

jj

ijj

ψ
ψ

 21

Combining all this and collecting components in vector form, we have

RW
∇ log pR(xy|d) = (x – ξ) [y | 1] T

RV
∇ log pR(xy|d) = (y – ψ) [d | 1] T

This means gradient descent takes the form of very simple weight increments at each layer:

 WR += ε (x – ξ) [y | 1] T
 VR += ε (y – ψ) [d | 1] T.

As before, keep note of where the quantities on the right hand side came from: x and y come
from the generative distribution; and ξ and ψ come from the recognition distribution given x
and y. What about d? In the wake phase, we started at the beginning of the recognition causal
chain x ← y ← d, generating the explanation xy by sampling d from the world. By symmetry,
in the sleep phase we start at the beginning of the generative causal chain 1 → x → y→ d by
sampling x from the generative bias input and feeding it forward to produce the pattern d.

So again we have a delta rule, nicely symmetric with the sleep phase. In summary:

SLEEP PHASE
 // Initiate a dream !
 x = SAMPLE(σ (bG))

 // Pass dream signal down through generation network
 y = SAMPLE(σ (WG[x | 1] T))
 d = SAMPLE(σ (VG [y | 1] T))

 // Pass back up through recognition network, saving computed probabilities
 ψ = σ (VR [d | 1] T)
 ξ = σ (WR [y | 1] T)

 // Adjust recognition weights by delta rule
 VR += ε (y – ψ) [d | 1]T

 WR += ε (x – ξ) [y | 1]T

 22

11. The Algorithm

The sections above have led us to a learning algorithm for Helmholtz machines in the
following form. All we need to add is that it is customary to start all the weights at 0, so every
neuron initially has a 50-50 chance of firing regardless of its input (since σ(0)= ½).

If we kick away some of the scaffolding we used to get to this point, the optimization problem
begins to look quite simple itself. Equation (9.1) showed that the wake phase’s minimization of
the variational free energy just amounts to minimizing the expected energy, which means
maximizing 〈 log pG(XYd) 〉R . Equation (10.1) showed that the sleep phase’s minimization of
an approximation to the variational free energy just amounts to maximizing 〈log pR(XY|d)〉G.

In summary, we have the following bare-bones description:

We have found that one easy way to implement such a stochastic causal chain is through a
neural network, with connections running in opposite directions. And when the neurons use
sigmoid activation functions the derivatives of log probabilities of outputs with respect to
inputs always take on a simple delta rule form; this allows the wake-sleep algorithm to work
via simple local weight updates.

VG , WG , bG = 0
VR , WR = 0
repeat
 wake phase to change VG ,WG, bG
 sleep phase to change VR, WR
until
 KL[p(D), pG(D)] is sufficiently close to 0.

Given a generative distribution pG(xyd) and a recognition distribution pR(xy|d)
with the following causal structure

alternately maximize their expected “log likelihoods”, where the expectation is
taken against the other distribution:

〈 log pG(XYd) 〉R and 〈 log pR(XY|d)〉G

1 x y d
G G G

R R

 23

12. A Demonstration

We conclude with a quick confirmation that the code above actually works. This is a variant of
one example used in the Hinton-Dayan paper in Science [2]. The world consists of 3×3 images
of vertical and horizontal bars. Vertical bars occur with twice the probability of horizontal bars,
but within each category (horizontal or vertical) each of the possibilities occurs with the same
probability.

By contrast, Hinton and Dayan used 4×4 images, but all nonzero probabilities were identical,
so that the problem amounted to learning a binary classification. Here we set things up more
generally, to show the Helmholtz machine trying to match a nontrivial probability distribution.

We take d ∈ {0,1}9 , so there are 512 possible patterns. To get the distribution above, we
assign probabilities as follows:

with p(d) = 0 for the other 500 patterns..

A Helmholtz machine in its initial state zero-weight state will generate all 512 patterns
uniformly, so that pG(d) = 1/512 ≈ 0.002 for every pattern d∈ {0,1}9. As the learning algorithm
proceeds, we expect pG(d) to approach the given p(d).

We simulate a 1-6-9 Helmholtz machine (so x ∈ {0,1}1 and y ∈ {0,1}6) using the algorithm
exactly as shown in the code in the previous sections. In the Hinton-Dayan 4×4 example the
code was tweaked with some neural smithing techniques (e.g. initializing certain weights to
specific nonzero values and adjusting some of the weight updates to keep certain weights
positive). Our implementation is pure vanilla.

With learning rates set to ε = 0.01 for the top (W) layer, and ε = 0.15 for the bottom (V) layer,
we run the algorithm for 60,000 iterations. (With a straightforward C++ implementation of the
algorithm, this takes about ten seconds on a typical 2006 model desktop computer.) We then
stop to evaluate the generative distribution, taking 100,000 samples to estimate probabilities.

The following table lists all the patterns the machine generates with estimated probability
pG(d) ≥ 0.0010:

high frequency: p(d) = 2/18 = 0.111
for each vertical bar pattern d

low frequency: p(d) = 1/18 = 0.056
for each horizontal bar pattern d

 24

 Pattern d World
p(d)

Helmholtz
Machine

pG(d)
[0 0 1 0 0 1 0 0 1] 0.1111 0.1075
[0 1 1 0 1 1 0 1 1] 0.1111 0.1070
[1 0 0 1 0 0 1 0 0] 0.1111 0.0999
[1 1 0 1 1 0 1 1 0] 0.1111 0.0981
[0 1 0 0 1 0 0 1 0] 0.1111 0.0955

vertical
bars

[1 0 1 1 0 1 1 0 1] 0.1111 0.0911
[0 0 0 1 1 1 1 1 1] 0.0556 0.0615
[1 1 1 0 0 0 1 1 1] 0.0556 0.0529
[0 0 0 1 1 1 0 0 0] 0.0556 0.0455
[1 1 1 1 1 1 0 0 0] 0.0556 0.0419
[0 0 0 0 0 0 1 1 1] 0.0556 0.0415

WORLD

horizontal
bars

[1 1 1 0 0 0 0 0 0] 0.0556 0.0391
[0 0 0 0 1 0 1 1 1] 0 0.0412
[1 1 1 1 0 1 0 0 0] 0 0.0287
[1 1 1 1 0 0 0 0 0] 0 0.0105
[0 0 0 0 1 1 1 1 1] 0 0.0079
[0 0 1 0 1 1 0 0 1] 0 0.0012
[0 0 1 1 0 1 0 0 1] 0 0.0011
[0 0 0 1 1 1 1 0 1] 0 0.0011
[1 1 0 0 1 0 1 1 0] 0 0.0010

other generated patterns

others 0 < 0.0010

The machine has clearly captured much of the world’s structure here: vertical bars appear with
higher probability than horizontal bars, all patterns in the world are generated by the machine,
and patterns not in the world occur with low probability and are mostly just a bit away from
real patterns. Yet, as experience with these machines has shown (e.g. [6]), the machine hasn’t
quite captured the world in what we might judge to be the most natural way, as shown by the
unreal pattern 000010111 with probability 0.0412. El sueño de la razon produce monstruos.

Recall from section 5 that we began our work by trying to minimize KL[p(D), pG(D)]. We can
track the change in this quantity as the learning process proceeds1; this is shown in the plot
below. The simulation stops to sample the generative distribution 10,000 times every 500
iterations and plots the KL divergence.

1 Since our sampling will, early in the learning process, occasionally estimate pG(d) = 0 for some d with p(d)>0,
we arbitrarily substitute a small value pG(d) = 10–6 << 1/512 in place of zero so the KL divergence will not blow
up. This is completely separate from the algorithm; it merely affects the display of results.

88%

 25

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10000 20000 30000 40000 50000 60000

iteration

K
L(

p,
pG

)

Since sleep-wake learning is based on steepest descent, it is amenable to many neural smithing
techniques from the savvy optimizer’s toolbox to improve performance further.

 26

References

1. Russell, S. and P. Norvig. 2003. Artificial Intelligence: A Modern Approach, 2nd Ed.

Prentice-Hall.

2. Hinton, G.E., P. Dayan, B.J. Frey and R.M. Neal. 1995. The wake-sleep algorithm for

unsupervised neural networks. Science 268: 1158-1161.

3. Dayan, P., G.E. Hinton, R.M. Neal, and R.S. Zemel. 1995. The Helmholtz machine. Neural
Computation 7:5,889–904.

4. Dayan, P. and L.F. Abbott. 2001. Theoretical Neuroscience: Computational and

Mathematical Modeling of Neural Systems. MIT Press.

5. Dayan, P. 2003. Helmholtz machines and sleep-wake learning. In M.A. Arbib, Ed.,

Handbook of Brain Theory and Neural Networks, Second Edition. MIT Press.

6. Dayan, P. and G.E. Hinton. 1996. Varieties of Helmholtz machine. Neural Networks 9:8,

1385-1403.

7. Ikeda, S., S.-I. Amari and H. Nakahara. 1999. Convergence of the wake-sleep algorithm. In

M.S. Kearns et al, Eds., Advances in Neural Information Processing Systems 11.

