Ch41b 2018: Lecture 5 Figures (Part 1)

Nuclear Magnetic Resonance Spectroscopy (Chapter 13, Loudon)

CCE Division Liquid NMR Facility

500 MHz NMR

Prof. John D. Roberts (1918-2016)

¹H NMR Spectrum of Methyl *t*-Butyl Ether

NMR Spectra of Ethanol

¹H NMR Spectrum of 2-Bromopropene

89.56 MHz

0.05 ml: 0.5 ml CDCl₃

Summary

Ch41b 2018: Lecture 6 Figures (Part 2)

Nuclear Magnetic Resonance Spectroscopy (Chapter 13, Loudon)

The ¹H NMR Spectrum

Proton NMR provides these types of information:

- 1. the number of sets of *chemically equivalent and* non-equivalent protons
- 2. the *number of protons* within each set (or their relative ratios)
- 3. the *chemical environments* of each set of protons (chemical shift)

Summary

Chemical Shift

NMR Spectra of Alkenes

The ¹H NMR Spectrum

Proton NMR provides these types of information:

- 1. the number of sets of *chemically equivalent and* non-equivalent protons
- 2. the *number of protons* within each set (or their relative ratios)
- 3. the *chemical environments* of each set of protons (chemical shift)
- 4. the number of adjacent sets of protons or connectivity

¹H NMR spectra of 1-bromo-2,2-dimethylpropane and 1,1-dichloroethane

¹H NMR spectrum of methyl propanoate

Coupling Constants Can Report on Stereochemical Relationships: *Cis* vs. *Trans*

Why Splitting Occurs

Splitting Patterns

 The intensities of split signals have well defined ratios.

Number of equivalent adjacent protons	Number of lines in splitting pattern (name)		e line ir splittin					
0	1 (singlet)				1			
1	2 (doublet)				1	1/		
2	3 (triplet)			1	2	1		
3	4 (quartet)		1		3	3	1/	
4	5 (quintet)		1	4	6	4	1	
5	6 (sextet)	1	5		10	10	5	1/
6	7 (septet)	1	6	15	20	15	6/	1

Ch41b 2018: Lecture 7 Figures (Part 3)

Nuclear Magnetic Resonance Spectroscopy (Chapter 13, Loudon)

Multiplicative Splitting: Spectrum of Styrene

Spectrum of 1-bromo-3-chloropropane

Spectrum of 1-iodopropane

Dynamic Systems: The Time Dependence of NMR

 Both diastereotopic protons can be observed if the rate of chair interconversion is reduced by lowering the temperature.

Fast Proton Transfers: NMR Spectra of Ethanol

H/D Exchange to Study Protein Structure

H/D Exchange

D₂O
Time

Dynamic regions exchange rapidly

Structured regions exchange slowly

Quench & Digest

Quench pH 2.5 0 °C

Quenching locks in deuterium and unfolds the protein

Digestion localizes the information

©2013 David Weis

NMR of Other Nuclei

 Many other spin active nuclei may also be observed by NMR.

Isotope	Relative sensitivity	Natural abundance, %	Observation frequency $ u_{ extsf{n}}$, MHz*	Gyromagnetic ratio [‡]
¹H	(1.00)	99.98	300	26,753
¹³ C	0.0159	1.10	75	6728
¹⁹ F	0.834	100	282	25,179
31p	0.0665	100	122	10,840

^{*} At magnetic field $B_0 = 70,500$ gauss. * In radians gauss⁻¹ s⁻¹ defined in Eq. 13.17.

Proton-Decoupled ¹³C NMR

Chemical Shift in ¹³C NMR

¹H and ¹³C NMR Spectra of 1,2,2-trichloropropane

¹³C NMR Spectrum of Ethyl Benzoate

25.16 MHz

0.5 ml : 1.5 ml CDCl₃

ppm	Int.	标记碳
166.54	194	1
132.80	418	2
130.62	244	3
129.57	1000	4
128.34	801	5
60.90	353	6
14.33	294	7

DEPT ¹³C NMR Spectrum of Citronellal

Magnetic Resonance Imaging

No harmful x-rays: Magnets and radiowaves

Imaging of biological tissue Detection of tumors Visualization of brain function

Ch41b 2018: Lecture 8 Figures (Part 4)

Nuclear Magnetic Resonance Spectroscopy (Chapter 13, Loudon)

Steps for Solving Structures

- Write down the molecular formula, molecular mass (MS) & determine the unsaturation number if possible.
- 2. Identify functional groups or fragments (IR, NMR).
- 3. Determine the number of nonequivalent sets of protons or carbons (¹H & ¹³C NMR). Use the integrals and molecular formula to calculate how many protons or carbons correspond to each absorption.
- 4. Write out partial structures and possible complete structures.
- Use spectra to confirm or disprove the proposed structure(s).

Practice Problem

The molecular formula for an unknown compound is $C_7H_{16}O_4$. Data for the ¹H NMR are shown below. What is the structure of the compound?

- d 1.93 (t, J = 6 Hz)
- d 3.35 (s)
- d 4.49 (t, J = 6 Hz)
- Relative integral 1:6:1