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PREFACE

Think about the difference quotient definition of the derivative of a
function from the real number field to itself. Now change the word “real”
to “complex.” Use the very same difference quotient definition for
derivative. This turns out to be an amazing definition indeed. The
functions which are differentiable in this complex sense are called
holomorphic functions.

This book initiates a basic study of such functions. That is all I can do in
a book at this level, for the study of holomorphic functions has been a
serious field of research for centuries. In fact, there’s a famous unsolved
problem, The Riemann Hypothesis, which is still being studied to this day;
it’s one of the Millennium Problems of the Clay Mathematics Institute.
Solve it and win a million dollars! The date of the Riemann Hypothesis is
1859. The Clay Prize was announced in 2000.

I’ve entitled this book Computational Complex Analysis. The adjective
Computational does not refer to doing difficult numerical computations
in the field of complex analysis; instead, it refers to the fact that
(essentially pencil-and-paper) computations are discussed in great detail.

A beautiful thing happens in this regard: we’ll be able to give proofs of
almost all the techniques we use, and these proofs are interesting in
themselves. It’s quite impressive that the only background required for
this study is a good understanding of basic real calculus on two-
dimensional space! Our use of these techniques will produce all the basic
theorems of beginning complex analysis, and at the same time | think will
solidify our understanding of two-dimensional real calculus.

This brings up the fact that two-dimensional real space is equivalent in a
very definite sense to one-dimensional complex space!






CHAPTER 1
INTRODUCTION

SECTION A: COMPLEX NUMBERS

C, the field of COMPLEX NUMBERS, is the set of all expressions of
the form x +iy, where

x,yeR
| is a special number
addition and multiplication: the usual rules, except

e [P=-1

The complex number 0 is simply 0+70. C is a field, since every
complex number other than 0 has a multiplicative inverse:

1 x-iy

x+iy x*+y?

CARTESIAN REPRESENTATION:
.VA

e z=x+iy islocated at
(X,y)E]RZ

v
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POLAR REPRESENTATION:

S

X

|z|=+/x* + y* = the modulus of z.

The usual polar angle 6 is called “the” argument of z: |argz| .
All the usual care must be taken with argz, as there is not a unique
determination of it. For instance:

Or —7m - 2017rm

arg(l—i—i):%or 1 or 2 0 1

THE EXPONENTIAL FUNCTION | is the function from C to C
given by the power series

ooZn
exp(z) =3, —
n=0 111
ZZ 3
=1+z+—+—+- .
2 6

We shall soon discuss power series in detail and will see immediately that
the above series converges absolutely. We will use the notation
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e” for exp(z)

PROPERTIES

o |7 =¢e”e" | (known as the functional equation for exp)

o if zeR, e”isthe usual calculus function
e if t €R, then we have Euler’s formula

e’ =cost +isint

We can easily give a sort of proof of the functional equation. If we ignore
the convergence issues, the proof goes like this:

e -(£2) 52

S

IN]

change dummy

Il

s

N
3N
N—
7~ N\
1M
2 (3
N——

©  Zz"w"
= Z _I_I multiply the series
Proof #1 of mn=0 ' N
© m_. . n
eZ+W _ EZEW B 7w | |
- Z Z diagonal summation
=0 m+n=l m'n'
:ili & "W o iem
=0 UV o m\(l — m)!
© 1 l l .
- Z— Z z"w " binomial coefficient
=0 [V m=0\ m -
> (z +w)
= Z binomial formula
1=0 [!

zw definition

Il
)
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What a lovely proof! The crucial functional equation for exp essentially
follows from the binomial formula! (We will eventually see that the
manipulations we did are legitimate.)

Geometric description of complex multiplication:

The polar form helps us here. Suppose z and w are two nonzero complex
numbers, and write

z =|z|e" (@=argz) ;
w =|wl|e"” (p=argw)

Then we have immediately that
zw =|z||w| e

We may thus conclude that the product zw has the polar coordinate data

jzw|=|z]w]|

arg(zw)=arg(z)+arg(w) .
Thus, for a fixed w # 0, the operation of mapping z to zw

e multiplies the modulus by |w/|,
e adds the quantity argw to argz.

In other words, zw results from z by

e stretching by the factor |w|, and
e rotating by the angle argw .
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PROBLEM 1-1

Let a,b,c be three distinct complex numbers. Prove that these numbers
are the vertices of an equilateral triangle <

a+b'+c*=ab+bc+ca

(Suggestion: first show that translation of a,b,c does not change the
equilateral triangle nature (clear) and also does not change the algebraic
relation. Then show the same for multiplication of a,b,c by a fixed non-

zero complex number.)

More C notation:

A

[ A4

» Complex conjugateof z=x+1y
isZ=x—-1y .

The real part of z, denoted Re(z), is equal to x; the imaginary part of
z, denoted Im(z), is equal to y . Notice that bothRe(z) and Im(z) are
real numbers.

 z+Z7Z=2Re(z)




Chapter 1: INTRODUCTION 6

e z-z=2ilm(z)
o ZW =ZW
. |z|2 =27

We can therefore observe that the important formula for |zw| follows
purely algebraically:

‘ZW‘Z =(zw)(zw) = zwzw = zZZww = ‘Z‘Z ‘W‘Z :

PROBLEM 1-2

Now let a,b,c be three distinct complex numbers each with modulus
1. Prove that these numbers are the vertices of an equilateral triangle
<

a+b+c=0

(Suggestion: 0= (a+b+c) =--- ; use Problem 1-1)

Remark: The centroid of a triangle with vertices a,b,c is the complex
number

a+b+c
3

The situation of Problem 1-2 concerns a triangle with centroid O and the
same triangle inscribed in the unit circle. The latter statement means that
the circumcenter of the triangle is 0.
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PROBLEM 1-3

Let a,b,c,d be four distinct complex numbers each with modulus 1.
Prove that these numbers are vertices of a rectangle &

a+b+c+d=0

PROBLEM 1-4

Suppose the centroid and the circumcenter of a triangle are equal.
Prove that the triangle is equilateral.

PROBLEM 1-5

Suppose the centroid and the incenter of a triangle are equal. Prove
that the triangle is equilateral.

PROBLEM 1-6

Suppose the incenter and the circumcenter of a triangle are equal.
Prove that the triangle is equilateral.

More about exponential function: In the power series for exp(z) split the
terms into even and odd terms:
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n n n
> Z . Z . Z
Z_ —
-3t -3 L3
n=0 111 n=0 1IN n=0 11
n even n odd

=:cosh z +sinh z

In other words,

z —Z z —Z

e +e . e —e
coshz:T, sinhz =

HYPERBOLIC COSINE HYPERBOLIC SINE

It is simple algebra to derive the corresponding addition properties, just
using e”™ =e”e" . For instance,

2sinh(z+w)=e"" —e*™"
=e’e” —e’e"”
= (cosh z +sinh z)(coshw +sinhw)
— (cosh z —sinh z)(coshw —sinhw)

algebra . . . .
= cosh zcoshw + cosh zsinhw +sinh zcoshw +sinh zsinhw

_ mn + n + n _ n
=2sinh zcoshw + 2cosh zsinhw

Thus,

o sinh(z+w)=sinhzcoshw+coshzsinhw .
Likewise, o cosh(z +w ) =cosh zcoshw +sinh zsinhw .

Trigonometric functions: By definition for all z e C we have

Lz e P
COSZ'_HZ:%,( 1) 2!
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o ZZn+1
sinz = -1)" ——
E,( ) (2n+1)!

(The known Maclaurin series for real z lead to this definition for complex
zZ.)

There is a simple relation between the hyperbolic functions and the
trigonometric ones:

cosh(iz)=cosz

sinh(iz)=isinz

Conversely,

cos(iz) = cosh z

sin(iz)=isinhz

The definitions of cos and sin can also be expressed this way:

We also immediately derive

o sin(z+w):sinzcosw+coszsinw ,
o cos(z+w):coszcosw—sinzsinw .

L notice!
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PROBLEM 1-7
e Show that | sinh z |’=sinh® x +sin® y .
Likewise,

e show that |coshz ['=(?)* +(?)* .

More geometrical aspects of C:

We shall frequently need to deal with the modulus of a sum, and here is
some easy algebra:

|Z+w|2 =(z+w)(z+w)
=(z+w)(Zz+w)
=ZZ +2ZW +ZwW +Ww

=z +2Re(zw)+|w |* .

I will call this the

LAW OF COSINES: ||z +w| =|z| +2Re(zw) +|w|

As an illustration let us write down the equation of a circle in C. Suppose
the circle has a center a € C and radius r>0. Then z is on the circle
& |z — a| = r. That is, according to the above formula,

|Z|2 —2Re(za) +|ar|2 =r°.
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Dot product formula
r relating R* and C:

*a | z-w = Re(zw)

!

R*dot product

ROOTS OF UNITY This is about the solutions of the equation

z" =1, where n is a fixed positive integer. We find n distinct roots,
essentially by inspection:

2k

z=e " fork=01,.,n-1 .

These are, of course, equally spaced points on the unit circle.

£ Simple considerations of basic polynomial
o7 algebrashow that the polynomial z” —1 is
exactly divisible by each factor z—e" 7,
' Therefore,
2mi(n-1) n—1 i
e Z”—lz]_[(z—62 %) ,
k=0

an identity for the polynomial z" —1.

COMPLEX LOGARITHM | This is about an inverse “function” for

exp. In other words, we want to solve the equation e” =z for w. Of
course, z =0 is not allowed.
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Quite easy: represent w =u+iv in Cartesian form and z = re" in polar
form. Then we need

u+iv

e =re"’

6,ueiv — rei@ ,

this equation is true < e =r and e" =e".
As r>0,we have u=Ilogr. Then v =60+ 2xz-integer .

As 0 =argz, we thus have the formula w =logr+i(@+2zn), and we
write

Logz:lgg|z|+iargz

COMPLEX LOG USUAL REAL LOG

Thus, logz and arg z share the same sort of ambiguity.

Properties:
o &% =z (no ambiguity)
e loge” =z (ambiguity of 2z ni)
e log(zw)=logz +logw (with ambiguity)
e log(z")=nlogz (with ambiguity)
E.Q. Iog(1+i\@):I092+i§ ,

log(—6)=log6+ir ,
log(re*) =logr+ié .

MOBIUS TRANSFORMATIONS | This will be only a provisional
definition, so that we will become accustomed to the basic manipulations.
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We want to deal with functions of the form

_az+b
cz+d

£(2)

Where a,b,c,d are complex constants. We do not want to include cases
where £ is constant, meaning that az + b is proportional to cz+d. l.e.
meaning that the vectors (a,5) and (¢,d) in R* are linearly dependent.

A convenient way to state this restriction is to require

b
det[a a’j =ad — bc # 0. This we shall always require.
c

: : az+b »
Easy calculation: if g(z)=————, then the composition
cz+d

fog ((fog)(z) = f(g(z))) corresponds to the matrix product

a b\a b
c d)\c d

a b Aa Ab i : :
If = (with 4 #0), then these two matrices give the
c d Ac Ad

same transformation.
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C=Cu foo} 1S called the extended complex plane, and we then also
define

(we will have much more to say about these formulas later.)

The functions we have defined this way are called Mo0bius
transformations. Each of them gives a bijection of € onto €. And each of
them has a unique inverse:

f(z):az+b:>f‘1(z): dz—-b |
cz+d —cZ+a

PROBLEM 1-8

Let C be the circle in C with center a € C, radius r > 0. (From page
10 we know z e C < |Z|2 —2Re(za)+ |ar|2 =r’)

. : .1
We want to investigate the outcome of forming — for all z € C.
VA

Dz{lzeC} :
z

1. If 0 C, define
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Prove that D is also a circle, and calculate its center and radius:

center =?
radius =?

2. If 0 C, then instead define

D={l|zeC,z;tO} :

zZ

What geometric set is D? Prove it.

More about the extended complex plane € = C U {oo}:

This enjoys a beautiful geometric depiction as the unit sphere in R3, by
means of stereographic projection,

which we now describe. There are (0,0,1) unit
several useful ways of defining this - sphere
projection, but | choose the following: ‘

Let R’ be given Cartesian coordinates —e -
— 1 (Z O) 0 C
(x,y,t),where z=x+iy. ;

Project unit sphere onto C from the
north pole (0,0,1). SIDE VIEW

Straight lines through the north pole which are not horizontal intersect the
plane ¢ =0 and the unit sphere and set up a bijection between C and the
unit sphere minus (0,0,1), as shown in the figure.
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When z — o the projection p —(0,0,1). Thus, by decreeing that the
north pole corresponds to some point, we are led to adjoining o to C.

Thus € is “equivalent” to the unit sphere in R*. So C is often called the
Riemann Sphere.

More about Mo6bius transformations:

e Baby case: given 3 distinct complex numbers a,b,c, it is easy to
find a Mobius £ such that

f(a)=0
f(b)=w
f(c)=1

In fact, £ is uniquely determined, and we must have

z—ac-b

(#) F(2) -

z—-bc—a

e Embellishment: we can even allow a or 5 or ¢ to be oo, and again
there is a unique MObius £ . Here are the results:

f(0)=0 f(a)=0 f(a)=0

FB) =  £(2) = =2 Floo) =00 £(2) = 22| F(b) =00 : F(2) = 222
z—b c—a z—b

f(c)=1 f(c)=1 f(0)=1

(Remark: each case results from (3] by replacing a, b, c by oo formally.)

e General case: given 3 distinct points a,b,c € C and also 3 distinct
points a',b’,c" € C, then there is a unique Mobius £ such that
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f(a)=a'
f(b)=>b'
f(c)=c" .

Proof: Use the previous case twice.

a E a
b|"" > b
c c'
0 0
o0 o0
1 1

Then f=h'og
QED

Mobius transformations and circles:

: : : : 1
According to Problem 1-8 the image of a circle under the action of z —» —
VA

Is another circle (or straight line). The same is true if instead of —, we use
VA

any Mobius transformation. Let
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Case 1 c¢=0 Then we may as well write f(z)=az+b. This
transformation involves multiplication by |a|, rotation by arga, and
translation by b. Thus, circles are preserved by £ .

: b
Case2 c¢#0  Then we may as well write (z)= 270 where

1z+d
ad —b#0. But then

a(z+d) b-ad b-ad
= + =a+
z+d z+d z+d

f(2)

so £ is given by translation, then reciprocation, then multiplication, then
translation. All operations preserve “circles” if we include straight lines.

PROBLEM 1-9

Start from the result we obtained on page 11: if n>2 is an integer,
then

n-1 i
Z"—lz[_[(z—e2 %) :

k=

o

1. Prove that for any z,w e C

2. Prove that
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3. Prove that

n-1 i —7i

z"—w' = (—i)”_1 ]_[(e Tz e %W) .
k=0

4. Replace z by e” and w by e and show that

: = wk
sinnz =2""[]sin| z+— | .
k=0 n

5. Show that
-1 7wk n
sin—=
k=1 n 2™
z—w =2krm
6. Prove that cosz =cosw < or forsome ke Z.
z4+w =2kr
z-—w =2krx
7. Prove that sinz =sinw < or forsome ke Z.

Z4+w =7
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SECTION B: LINEAR FUNCTIONS ON R?

An extremely important part of the subject of linear algebra is the
discussion of linear functions. By definition, a linear function from one
vector space to another is a function £ which satisfies the two conditions

f(p)+£(q) .
af (p) .

f(p+q)
f(ap)

These equations have to hold for all p and g and for all scalars a.
For example, the linear functions from R to R are these:
f(t)=mt ,

where m e R. Notice that mt + b is not a linear function of ¢ unless
b =0. Such a function is said to be an affine function of ¢.

Our focus in this section is linear functions from R* to R*. From
multivariable calculus, we know that linear functions from R” to R™ can
be described economically in terms of matrix operations, the key
ingredient being mxn matrices. Where m=n=2 (our case), these
operations produce a unique representation of any linear function
f:R* > R? in the form

f(x,y)=(ax+by.cx+dy)

Moreover, this linear function has an inverse <

b
det(a j;to .
c d
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le, &
ad—-bc+0 .

This determinant is also called the determinant of the linear function £,
and written det £ .

It’s a useful and easy exercise to phrase all this in complex notation. This
is easily done, because

Z+Zz zZ—Z
and y = —
21

X =

The simple result is
) ¢ f(z)=Az+BZ ,
where A and B are complex numbers.

We need to see the condition for / to have an inverse:

PROBLEM 1-10

f as defined by ¥ has an inverse <
[A]#[B] .

In fact, prove that det £ =|A[" ~|B|".

In fact, complex algebra enables us to calculate the inverse of f easily:
just imagine solving the equation
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W= f(z)
for z as a function of w . Here’s how:

Az+Bz=w ,
conjugate: Bz+AZ=w :

eliminate Z : K(AZ + BZ) — B(Ez+A2) —Aw -Bw .
This becomes
(IA]" ~[B] )z =Aw -Bw .

Thus,

P R
A8 [Af B
and this expresses £ as a linear function in complex notation.

CRUCIAL REMARK: It’s elementary but extremely important to
distinguish these two concepts:

e linear functions from R?* to R?,
e linear functions from C to C.

For in terms of our complex notation, £ is a linear function from R? to R?
since

f(tz)=tf(z) forall real ¢.
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In contrast, £ is a linear function from C to C <

f(tz)=tf(z) for all complex ¢.

(R? is a real vector space of dimension 2, but C is a complex vector space
of dimension 1 ... in other words, C is a field.) This agrees with the
definition of linear function, which contains the condition

f(ap)=af (p). Here a is any scalar: for R* a is real but for C a is
complex.

Thus, the linear function f(z):Az+BZ is a linear function from
CtoCe= B=0.

REMARK: £ preserves the orientation of R* < detf >0« |A|>|B.
Loosely speaking, this condition requires £ to have more of z than z.

SECTION C: COMPLEX DESCRIPTION OF ELLIPSES

This material will not be used further in this text, but I’ve included it to
provide an example of using complex numbers in an interesting situation.

You are familiar with the basic definition and properties of an ellipse
contained in R?*:

Semiminor Axis
/ o)
b a Focus

.Center
° Semimajor Axis
. Focus
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We’re assuming 0< b < a. Recall the distance from the center of the
ellipse to each focus is va’ — b .

A standard model for such an ellipse is given by the defining equation

Parametrically, this ellipse can also be described as

X =acosé ,
y =bsing .

Let’s convert this parametric description to complex notation:

X+ly =acos@+ibsing
e 4 o f e _ ot ’ |
=a +b Euler’s equation

2 2
:a;bem+a_be% .

This formula represents the ellipse as the image of the unit circle under
the action of the linear function

a+b a-b _
= Z+ Z .

f(z) > >

That ellipse is of course oriented along the coordinate axes. It’s quite
interesting to generalize this. So, we let £ be any invertible linear function
from R” to R*, and use complex notation to write

f(z)=Az+BzZ ,
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where A and B are complex numbers with |A| = |B| (see Section B). Then
we obtain an ellipse (or a circle) as the set

{Aei‘g +Be™|0¢ R} :
This ellipse is centered at the origin.

Now we give a geometric description of this ellipse. First, write the polar
representation of A and B:

A=|Ale"
B=|Ble"” .

Then
f(eie) _ |A|ei(a+9) T |B|ei(ﬂ—¢9) .

The modulus of 7 (e ) is largest when the unit complex numbers satisfy

i(a+0) _

e — e

That is, when

a+60=LF—-60 mod2r ;

that is, when

For such & we have
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F(e”)==(|Al+ B |

In the same way, the modulus of £ (&) is smallest when

el(@0) _ _ ai(s-0)
_ ei(ﬂ+7r—¢9) .
This occurs precisely when
+ —
0 = m mod
P T odr
2 2

For such@ we have

F(e”)==(a-)e ¥

th
=i(|A|-[B))e > .
Here’s a representative sketch:
- i&ﬂ
i(|a]-[Bl)e 2
° s
o (|A]+[B)e 2
/\
4
0
jath
—(lal+[B)e > @ asp

*=i(a|-[B])e 2

26
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Of course, |A|-[B|=0. And we have a circle precisely when
A=0orB=0.

Now assume it’s really an ellipse: AB # 0. Then we have this data:

semimajor axis has length |A|+|B

semiminor axis has length HA| —|B|
center =0.

Therefore, the distance from the origin to each focus equals

LA+ (B - (14|~ B])* =2/l -

And the foci are the two points

s
12 f[A]Ble’ 2
= +2,|Ale” [Ble”
= +2J/AB .

Another way of giving this result is that the two foci are the two square
roots of the complex number 4AB:

2+/AB .
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DIFFERENTIATION

SECTION A: THE COMPLEX DERIVATIVE

Now we begin a thrilling introduction to complex analysis. It all
starts with a seemingly innocent and reasonable definition of derivative,
using complex numbers instead of real numbers. But we shall learn very
soon what an enormous step this really is!

DEFINITION: Let £ be a complex valued function defined on some
neighborhood of a point zeC. We say that £ is complex-
differentiable at z if

f(z+h)-f(z)

lim
h—0
heC

_ CRUCIAL!
exists.

In case this limit exists, it is called the complex derivative of f at z, and
Is denoted either

df
' —_—
(z) or —

This truly seems naive, as it’s completely similar to the beginning
definition in Calculus. But we shall see that the properties of f which
follow from this definition are astonishing!

28
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What makes this all so powerful is that in the difference quotient the
denominator ~ € C must be allowed simply to tend to 0, no restrictions

on “how” or particular directions: merely |b| —0.

BASIC PROPERTIES:

o f'(z) exists = £ is continuous at z.

For if f(z+h)-f(z)

has a limit, then since 2 — 0, the numerator

must also have limit 0, so that

limf(z+h)=£(z).

h—0

e fandg differentiable = £ + gis too, and (f+g)' =f'+g" .
e PRODUCT RULE: also £z is differentiable, and

(&) =f'+f'g .

Proof:

o Z—Z =1 and then we prove by induction that for n=1,2,3,...
Z
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e QUOTIENT RULE:

[ij =M provided that g =0 .
g g

e CHAIN RULE: If g isdifferentiable at z and £ is differentiable at
£(z) then the composite function £ og is differentiable at z,and

(fo8) (z)=r"(2(2))&'(2)

All these properties are proved just as in “real” Calculus, so I have chosen
to not write out detailed proofs for them all.

EXAMPLES:
e MObius transformations — directly from the quotient rule

(QZ * bj = Lbc;\ notice the determinant!
cz+d (cz+d)

e EXxponential function
First for A— 0 we have

has limit 1 as A#— 0. Thus,
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ez+17 . ez ; el] . 1 ;
=e —>e
h h
Conclusion:
de’ .
=e
dz
e Trigonometric and hyperbolic functions (follow immediately from
exp)
dsinz dcosz :
=C0SZ , =—-sinz
dz dz
dsinhz dcoshz .
=coshz |, =sinhz
dz dz

SECTION B: THE CAUCHY-RIEMANN EQUATION

i and i and i
dz O0x oy

By an audacious — but useful — abuse of notation we write

F(2)=F(x+iy) = F(x.p)

This sets up a correspondence between a function defined on C and a
function defined on R?, but we use the same name for these functions!

Now suppose that /'(z) exists. In the definition, we then restrict A to be
real ... the limit still exists, of course, and we compute
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f(z+]1)—f(z) f(X+b,y)—f(X,y)

f'(z)=lim =lim
h—0 ]] h—0
heR heR
of
oY)

Likewise, let A =it be pure imaginary:

f(z+it)-f(z)

f'(z)=lim _ =lim :

t—0 It t—0 \t
teR teR

100 k)

| Oy o4

We thus conclude that

fr(z):gzlg
ox 1oy

This second equality is a famous relationship, called

THE CAUCHY-RIEMANN EQUATION:

or _1of
ox ioy

WARNING - everyone else calls this the Cauchy-Riemann equations,
after expressing f in terms of its real and imaginary partsas f =u+iv.
Then we indeed get 2 real equations:
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ou ov
ox oy
ov _ ou
ox oy

In a very precise sense, the converse is also valid, as we now discuss.

We suppose that f is differentiable at (X,y) in a multivariable calculus

: : . .. of
sense. This means that not only do the partial derivatives exist — and

0x
or at (x,) ), but also they provide the coefficients for a good linear

oy
approximation to £ (z +4)— £ (z) for small |A]:

I_ f(z+b)—f(z)—2§(z)b1

h—0 |]7|

heR?

of
——(z)h
8y(Z) 2 0

(Remember: z=x+iy is fixed.) We have denoted A=A, +ih, .

That definition actually extends to R” just as well as R*. But in R* we
have an advantage in that we can replace the denominator |11| with the

complex number A without disturbing the fact that the limitis 0.

I_ F(z+h)—F(z)- L (2)n - (2)h,
pald 7

heC
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Now assume that the Cauchy-Riemann equation is satisfied. Then we may

replace or byig and conclude that

oy 0x
F(z+h)~F(2)-2L(2) (b +in)
Ih”T(} ];aX =0

heC
l.e.,

Iimf(z+b)—f(z) _ af(z) |
III;)CO h ox

Therefore, we conclude that £'(z) exists, so f is differentiable in the
complex sense!

Cauchy-Riemann equation in polar coordinates:

We employ the usual polar coordinates

X =rcosé ”
(Z=re ) (r >0 of course)

y =rsind
and then again abuse notation by writing £ = £(x, y) as
f=f(rcosé,rsind) ,

and then computing the r and @ partial derivatives of this composite
function and designating them as g_f and % (terrible!). Then the chain
r

rule gives
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(of of 8X of 8y of of .
cosd+—sind ,
or 0Ox or 8y or ox oy

<
or _of aX of oy 6f( r sinf) +g(rcosﬁ) :
66’ 10)¢ 86? oy 060 oOx oy

Now suppose f satisfies the Cauchy-Riemann equation and substitute
of 8f

oy ox
of 5f(0036,+ ising),
) or ox
or _ g( —r sin@ +ircoso) .
L00 Ox
Thus,
8f g i0
or ox
1f_of
iro0 ox
We conclude that
polar coordinate form of
of = l of the Cauchy-Riemann
or _1r o6 equation

!

. : of
Our calculations show that since P =f,
X
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f’(Z) =€_i9g=_l —ieg
or Ir 00
EXERCISE Prove that or = 1aor implies the original
or ir o0
Cauchy-Riemann equation.

Complex logarithm:

We have derived the defining equation
logz =log|z|+iargz .
In terms of polar coordinates,
logz=Ilogr+ié .

We pause to discuss an easy but crucial idea. When we are faced with the
necessity of using log or arg, we almost always work in a certain region

of C \{0} in which it is possible to define argz in a continuous manner.

A typical situation might be the following: exclude the nonnegative real
axis and define argz sothat O <argz <2x:

S S S s
4////

Then we would have e.g.

log(-1)=7i, Iog(ei):1+i%, Iog(—i):%, etc.
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In such a situation log z is also a well-defined function of z, and the polar
form of the Cauchy-Riemann equation applies immediately:

iIogZ:i(longrié?):1 :

or or r
0 0 . :
—Ilogz=—-©(logr+i@)=i;
00 : 69( ) )
h iIogz—iilogz
thus or iroo °
. : w1l 1 1
Thus, logz has a complex derivative, which equals e —=——=— .
r re Z

We have thus obtained the expected formula

dlogz 1
dz z

(Be sure to notice that although log z is ambiguous, the ambiguity is the

» : d L
form of an additive constant 2711, so —Z annihilates that constant.)
VA
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SECTION C: HOLOMORPHIC FUNCTIONS

Now an extremely important definition will be given and discussed:

DEFINITION: Let D < C be an open set, and assume that D£>(C is

f
a function which is of class C'. That is, 8_ and z are defined at
ox oy

each point D and are themselves continuous functions on .

Suppose also that the complex derivative £ '(Z) exists at every

point z e D.

Then we say that £ is a holomorphic function on D.

So of course, we have at our disposal quite an array of holomorphic
functions:

o EXP
and sinh, cosh, sin, cos
e all Mobius transformations
e log
e all polynomials in z: f(z)=a,+a,z+...+a,z

i ) i olynomial
e all rational functions in z: poly

n

polynomial

REMARKS:

1. We do not actually need to say that D is an open set! The very
existence of f'(z) is that
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f,(z):“mf(z+b)—f(z)

and this requires £(z+ /) to be defined for all sufficiently small
|4, and thus that £ be defined in some neighborhood of z.

2. The assumption that £ eC' can be dispensed with, as a fairly
profound theorem implies that it follows from just the assumption

that £ ’(Z) exists for every z € D. (We won’t need this refinement
in this book.) (It’s called Goursat’s theorem.)

3. “Holomorphic” is not a word you will see in most basic books on
complex analysis. Usually those books use the word “analytic.”

However, I want us to use “analytic” function to refer to a function which
in a neighborhood of each z, in its domain can be represented as a power

series

with a positive radius of convergence.

e It is pretty easy to prove (and we shall do so) that every analytic
function is holomorphic.

e A much more profound theorem will also be proved — that every
holomorphic function is analytic.

DEFINITION (from Wikipedia):
https://en.wikipedia.org/wiki/Holomorphic_function#cite_ref-1

In mathematics, a holomorphic function is a complex-valued
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functionof one or more complex variables that s
complex differentiable in a neighborhood of every point in
its domain. The existence of a complex derivative in a
neighborhood is a very strong condition, for it implies that any
holomorphic function is actually infinitely differentiable and
equal to its own Taylor series (analytic). Holomorphic functions
are the central objects of study in complex analysis.

Though the term analytic functionis often used interchangeably
with "holomorphic function,” the word "analytic" is defined in a
broader sense to denote any function (real, complex, or of more
general type) that can be written as a convergent power series in
a neighborhood of each point in its domain. The fact that all
holomorphic functions are complex analytic functions, and vice
versa, is a major theorem in complex analysis.

40

PROBLEM 2-1
Let D be the open half plane

D={zeC|Re(z)>0} .

Let £ be the function defined on D by £(z)=z*. Of course, £ is
holomorphic.

1. Prove that £ is a bijection of D ontoaset D' C .

2. What is D'?

3. The inverse function £ maps D’ onto D. We’ll actually prove
a general theorem asserting that inverses of holomorphic
functions are always holomorphic. But in this problem, I want
you to prove directly that £~ is holomorphic.
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4. For every real number 0 <a <o let Z, be the straight line
L ={zeC|Re(z)=a}
Prove that the images £(Z,) are parabolas.

5. Prove that the focus of each parabola £(Z, ) is the origin.
6. For each real number 5 let M, be the ray

M,={zeC|Im(z)=b} .

Since £ is conformal, the sets (M, ) and the parabolas £(Z,)
are orthogonal to one another.

Describe the sets £(M,).

SECTION D: CONFORMAL TRANSFORMATIONS

Roughly speaking, the adjective conformal refers to the preservation of
angles. More specifically, consider a situation in which a function F from
one type of region to another is differentiable in the vector calculus sense.
And consider a point p and its image F(p). Calculus then enables us to

move tangent vectors at p to tangent vectors at #(p)... some sort of
notation like this is frequently used:

h(atangent vectorat p) - DF (p)h .
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Here DF(p) is often called the Jacobian matrix of £ at p, and the
symbol DF(p)b refers to multiplication of a matrix and a vector.

Then if A4, and A, are nonzero tangent vectors at p, they have a certain
angle @ between them:;

N

p.
we are interested in the angle between the images under F of these
tangent vectors:

DF(p)h,

F(p) DF (p)h,
If this angle is also @ and this happens at every p and for all tangent
vectors, we say that F is a conformal transformation. Tersely,

conformal means angle preserving

Examples from multivariable calculus:

Mercator projections of the earth;
stereographic projections.

Now we particularize this for holomorphic functions. So, assume that £
is holomorphic and that a fixed point z we know that £'(z) 0. Let the

polar form of this number be
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f'(z)=Ae" (where A>0,aeR) .

By definition

f’(z):limf(z+h)_f(z) |

Rewrite this relationship as
f(z+h)=f(z)+f'(z)h approximately.

This means that £ transforms a tangent vector A at z to the vector at
f(z) given by

f’(z)h :

In other words, directions A at z are transformed to directions f’(z)b at
£(z): £'(z)h

'f(2)

This action does two things to A: (1) multiplies its modulus by A and (2)
rotates it by the angle «.

We conclude immediately that £ preserves angles:
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L -f(z)

The moduli of all the infinitesimal vectors at z are multiplied by the same
positive number A4.

SUMMARY: Every holomorphic function £ is conformal at every z
with £'(z)#0 . Infinitesimal vectors at z are magnified by the

f'(Z)|.

positive number

Example: f(z)=2
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But notice that f’(O):O and £ does not preserve angles at 0 — instead,
it multiplies them by 3.

SECTION E: (COMPLEX) POWER SERIES

1. Infinite series of complex numbers

We shall need to discuss > a, , where a, e C . Convergence of such

n=0

series is no mystery at all. We form the sequence of partial sums

Sy=a,++a, ,

and just demand that

lims, =L exist.

N—w

Then we say

>.a, =L is convergent.

n=0
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Equivalently, we could reduce everything to two real series, require
that they converge, and then

>a,=>Re(a,)+i3Im(a,) .

n=0 n=0

Necessarily, if a series converges, then lima =0 (for

1N—>0

a, =Sy, —Sy,—>L—L=0)

Converse i1s, of course, false: the “harmonic series” 1+ +14+4+4---
diverges.

Absolute convergence is what we will usually see. We say that > a,

n=0

converges absolutely if Z|3,,| converges. Then there is an important
n=0

THEOREM: If a series converges absolutely, then it converges.

(The basic calculus proof relies on the completeness of R.)

. Most important example of a power series — the GEOMETRIC
SERIES

> z", where zeC .

n=0

By our necessity condition, if this series converges, then z” — 0. That

IS, |Z|” =(z"| >0 . That is, |Z| <1.

Conversely, suppose |z|<1. Then
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1_ N+1
sy=1l+z+---+2z" = (z #1 of course)
1-=z
B 1 ZN+1
1-z 1-z
N+1 |Z|N+1

Now simply note that

— 0 because |z|<1 .

1-=2 _|1—Z|

SUMMARY: 3 z” converges <|z|<1 . And then it converges
n=0

absolutely, and

o 1
zZ'=—
HZ—(:) 1-z
. DEFINITION: A power series centered at z, is an infinite series of the
form
Z_(:)a” (Z—Zo)n :

where the coefficients a, are complex numbers.

Y Usually in developing the properties of such series, we will work
with the center z, =0.

Simple warning: the first term in this series is not really ao(z—zo )0,
but it is actually a lazy way of writing the constant a,. A more
legitimate expression would be
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a,+Ya,(z-z,) ..noone ever bothers.

n=1

THEOREM: (easy but crucial!): If a power series
i az"
n=0

converges when z = z,, and if |z,| <|z,|, then it converges absolutely
when z = z,.

(easy) Proof: Za z, converges = lima, z; =0

n—x0

Therefore,

Since H <1, the geometric series Z[
Z n=0

Z\anzz”
n=0
That is,

>.a. z, converges absolutely.
n=0

QED
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RADIUS OF CONVERGENCE

It is an easy but extremely important fact that every power series has
associated with it a unique 0 <R < oo such that

{|Z| <R = the power series converges absolutely at z,

|Z| >R = the power series diverges at z.

This is a quick result from what we have just proved.

There is actually a formula for R in general, but it will not be needed by
us. Just to be complete, here is that formula:

1

limsup|a,

n—o

R= |%

Useful observation: suppose |z| < R, where R is the radius of convergence

of Yaz". Choose any z, such that |z| <|z,| <R. Then from the
n=0

preceding proof we have an estimate

|an| < C‘Zl_”

Now consider the quantity na z":

< Cn(ﬂ]n
|Z1|

NOTICE

‘nanz”
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Since ﬂ < 1,the real series
|Zl|

3 Z

A
converges. (We can actually appeal to the basic calculus ratio test to check
this.) Therefore,

Z‘nanz” <o .
0

Thus, not only does iaﬂz” converge absolutely, but the series with

n=0

larger coefficients na, also converges absolutely... remember,

Z|<R.

CONCLUSION: | multiplying the coefficients a, of a power series
by n does not change the radius of convergence

RATIO TEST

We just mentioned this result of basic calculus, namely, suppose that a

series of positive numbers icn has the property that
0

. C .
lim—2L = /¢ exists.
1n—>0 CH

Then,
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{f < 1= the series converges, (6 =1: no conclusion j

( >1= the series diverges. in general

And now we apply this to power series ianz” with the property that

n=0

) 2| .
Ilm|”—+1 — ( exists.
1n—>0o0 an

Then we can apply the ratio test to the series |a z"|, since
0
- an Zn+1
lim ==L
1n—>o0 anZ

Thus,

{E |z| <1= convergence,

(|z|>1= divergence.

That is, the radius of convergence of the power series equals

R=2
(

EXAMPLES:

e exp(z)

i
M

5 [N
=
!
8
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—

R=1

—_
I
N
Il
OMS
N
5

R=0

[
OMS
S
N
IN]

Also, convergence for |z| =R can happen variously:

iZ” diverges for all |z| =
0
o0 Zn
4> = converges for all |z| =
T n
iz— diverges for z =1, converges for all other |z| =
T n

\ we do not actually know this
at the present time in this
book, but we’ll see it soon.

SIMPLE PROPERTIES OF POWER SERIES

Let f(z)= ianz” have radius of convergence R,
0

g(z)= ibﬂz” have radius of convergence R, .
0

0

SUM f(z)+g(z)=>(a,+b,)z" hasradius of convergence

0

>min(R,,R,).

PRODUCT f(z)g(z)= icﬂz” has radius of convergence
0

>min(R,,R,),
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n
where ¢, = kz_é)akbn_k

DERIVATIVE | For |z|<R,, the function £ has a complex derivative,
and

f'(z)=Y na,z"" ... notice same radius of convergence.
1

v We will soon be able to prove the fact about products and this fact
about 1'(z) with very little effort, almost no calculations involved. But |

want to show you a direct proof for £'(z). So, let |z| <R, be fixed, and

heC with small modulus, so that in particular |z|+|A|<R,. Then we
compute

f(z+h)-f(z)- hY naz" = i[aﬂ (z+h) -a,z" - nanz“b}
1 1
=Sa [(z +h) —z" - nz”_lb]
2
binomial theorem = iaﬂ ﬁ: a z" p* — 7" —Hanh:|
n=2 _k:O k

Divide by 4

flz+h)-1(2) —ina z"! :hia {f(njz”’%“}
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It follows easily that £'(z) exists and equals f“narnz”‘1 .
1

Therefore, | every power series is holomorphic on its
open disc of convergence.

54

PROBLEM 2-2

A power series centered at 0 is often called a Macl/aurin series.

In the following exercises simplify your answers as much as

possible.

1. Find the Maclaurin series for

(1-2)"

2
2. Find the Maclaurin series for (3 z J )
-z

3. Find the Maclaurin series for e”sin z.

4. Let w=e", (1+oo+oo2 =O)
e’ + e +ev”
s .

Find the Maclaurin series for

5. Find explicitly i(—l)n ﬂ
n=0 n!

o S5n
6. Find explicitly > an :
n=0
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MORE BASIC RESULTS ABOUT POWER SERIES:

First, a very simple theorem which will have profound consequences!

THEOREM: Suppose that f(z)= iaﬂ (z—2z,)" is a power series
0

with a positive radius of convergence. And suppose that (Z) =0
for an infinite sequence of points z converging to z, .

Then f =0. In other words, a, =0 for all n. o

Proof: We assume z, =0 with no loss of generality. Our proof is by
contradiction, so we suppose that not all a2, =0. Then we have a, = 0 for

a smallest N, so that

f(z)= 3 az"
n=N

[e0)
— ZN Z anZn—N
n=N

=z"g(z)

where g(z) is the power series

g(Z): iamkzk

—a +ay Z+
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Then £(z)=0and z# 0= g(z)=0. Therefore, our hypothesis implies
that g(z):O for an infinite sequence of points z converging to 0. But
limg(z)=g(0)=a,. Thus, a, =0. Contradiction.

z—0

QED

TAYLOR SERIES:

Again, we suppose that f(z):ian(z—zo)" is a power series with
0

positive radius of convergence. Then we observe

f(ZO):aO ;

f'(z) inan(z—zo)n_l, so f'(z,)=a, ;
1

f"(z)=Yn(n-1)a,(z-2z,)"

2

, 50 f"(z,)=2a, .

In this manner, we find

Therefore,

The right side of this equation is called the Taylor series of £ centered at

z,.

(If z, =0, itis called the Maclaurin series of £.)
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Changing center of power series:
First, a couple of examples:

Example 1: £(z)= iz” for |z| <R =1, the geometric series.
0

Let’s investigate an expansion of f (Z) centered

* 0 }1 instead at —1. Thus, we write
1
f(Z) = 1— (sum of geometric series)
B 1
%=(2+%)

21

3, Z+4
%
_|_

= Z(Z /j (a different geometric series),
%

: : : : 1| 3
and this series converges in the disk [z + —|< S Therefore,

(z+5)

=2
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1 . .
Example 2: f(z)=—, and we want to express this in a power series
z

centered at z, = 0. Then as in the preceding example, we write

1
f =
(#) z,+(z—z,)
1
B zZ—Zz

A very general theorem:

radius R
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Let £(z)=Ya,(z—2z)" be a power
0

series with radius of convergence R,
and assume |z, —z|<R. Then

f(z):ibﬂ(z—zl)” and the radius
0

of convergence of this new series is
>R —|Z1 —ZO|.

These ideas lead us to an important:

Although it is easy enough
to prove this theorem with
basic manipulations we
already know, such a proof
Is tedious and boring. We
will soon be able to prove
this theorem and many
other with almost no effort
at all!

DEFINITION: Suppose f is a C-valued function defined on an open
subset D — C, and suppose that for every z, € D we are able to write

f(z):ian(z—zo)" forall |z —z,|<R(z,),
n=0

where R(z,) is some positive number. Then we say that £ is (complex)

analyticon D.

It is then quite clear that every analytic function is holomorphic.

After we obtain Cauchy’s integral formula, we will see that the exact

converse is valid:
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v every holomorphic function is analytic!

We conclude this chapter with the important Taylor series for the
logarithm. We’ll treat log(1—z). The principle involved here is based on

simple single-variable calculus:

LEMMA: Suppose f has partial derivative of first order which satisfy
of of
a—ngzo on a rectangle (x,,x, )x( . 7).

Then £ is constant on that rectangle.

THEOREM: Suppose D c C is an open connected set and D5 C
has partial derivatives of first order which satisfy

of _of

— Oon D.
ox 0oy

Then £ is constant on D.

Proof: By the lemma, £ is constant on all closed rectangles contained
inD. Since D is connected, £ is constant on D.

QED

COROLLARY: Suppose D C is an open connected set and

D 5> C is holomorphic on D with £'(z)=0 for all ze D. Then £ is
constant.

Illustration: For |z|<1 the number 1—z can be chosen to have

T T d -1 & d = z"
——<arg(l-z)<—. Then —log(l-z)=——="DNY 2" =—TT>H> ",
2 g( ) 2 dz g( ) 1-2z Z(): a’zzlln
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Thus Iog(l—z)+iz— satisfies the hypothesis of the ’
z I

corollary for |z| <1, and is thus constant. At z =0 it
equals 0. Therefore,

0e®

¥

—@

'

00 Z”
log(1-z)=->~— -
09(1 Z) ; n for |Z|<1 1-Zzin this disc



CHAPTER 3
INTEGRATION

In this chapter we begin with a review of multivariable calculus for R?,
stressing the concept of line integrals and especially as they arise in
Green’s theorem. We then easily derive what Green’s theorem looks like
using complex notation. A huge result will then be easily obtained: the
Cauchy Integral Theorem.

SECTION A: LINE INTEGRALS

REVIEW OF VECTOR CALCULUS:

The particular thing we need is called line integration or path integration

or contour integration. It is based on curves in R”, which we’ll typically
denote by ». These will need to be given a parametrization (at least in

theory, if not explicitly) so that » can be thought of as a function defined
on an interval [a,b] = R with values in R":

[a,b] H>R”

We’ll need y to be piecewise C'. Its shape in R” may look something
like this:

o7 ()

y(a)
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Notice that as ¢ varies from a to &, y(t) moves in a definite direction.

d . .
And y’(t) =47 represents a vector in R” which is tangent to the curve.
dt

Thinking of ¢ as time, this vector is called the velocity of the curve at time

t.
y'(¢)
w/

For any 1 <i < n we then define the line integral of a function £ along
7, in the x, direction, as

[ fdx, =[] f(y(¢))y/(¢)dt .
Here we are using the standard coordinate representation

7(6)=(r(£),7,(2)).

The chain rule shows that this result i1s independent of “reasonable”
changes of parametrization. But if we replace ¢ by —¢, the curve is traced
in the opposite direction, so that

fdx, =-[ fdx, .

REVERSED
v

A loop is a curve with y(a)=y(b):

y(a)=7(b)
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Complex-valued £: No difficulty with this at all, as the integral of a
complex-valued function is given as

[*(g(£)+ih(t))de =" g(¢)de +i[ b(¢)dt .

Special notation for R?: Usually use x and y instead of x, and x,.

Example:

1 71
Zdx= | —d(coso
J =] temso)

CCW unit
circle

@27

=| e (-sind)do

J0

21

=| (cos@—ising)(—sind)do

J0

2
=O+ij Sin?0do = ri .

0

Example: Let y = clockwise circle with center 0 and radius r. Then

27
J-iza’yz— 1 d(rsin@)
e

Z 0 (re'g )2

1 P27 )

=—=| e?*cosfdo

hd | rdo

_ _l .Zﬂe_zig ei@ + e—it‘) de
rdJdo 2
1 2 —-i0 -3i60

=] (e +e )a'<9

=0 .
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Example:
ia 1+ia _
L e’dx = jol e‘dx +0+ jlo e ™ dx +0
dx =0 e
— [« :(1—6"7)]0 e*dx
:(1—6”)(6—1) .
0 1
rectangle

Of special importance to us is Green’s Theorem:

If D is a “reasonably nice” bounded
region, then we can consider oD, the
D boundary of D, as a curve or a union of
curves, and we always give it the
orientation or direction which keeps D

notice the choice on the left.
of orientation of ¥

the coordinate T

axes! > i > v

Then for a C* function £ we have
of
—dxdy = | fdy
J-DJ.8X v JD v

of
—dxdy =—| fdx .
J-DJ. 8)/ 4 aJ;)

Usually these are presented as a single formula:
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og of
GREEN: ”D(a_i_gjdfx'dy = [ (fdx + gdy)

Remember: £ and g are allowed to be complex-valued functions.

Complex line integrals: Not only can the functions we are integrating be
complex valued, but also we can integrate with respect to dz: just think
dz =d(x+iy)=dx+idy . Then we write

Lfdz = J.yde+ i_[yfdy ,
Most important example:
1 1 1 i0
L —dz ... parametrize with z =re", 0<0<2r:
Z

1 1

27 i
ccw jy;a’z:jo re” d(r69>
circ;le of | 0° \ o1 y
e =), e rie"do)
’ ’ = ["ido =2ri .
| la’Z = 27i
1

Special application of Green: use a function £ and g =if":

HD(i Z—i —%)dxdy = fdx+ifdy .
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Rewrite:

of 10f

., fdz =i, (————jd){dy

ox [0y

Hmmm: notice the interesting combination in the integrand on the left
side! (Think about Cauchy-Riemann!)

PROBLEM 3-1

We know that there is a unique Mobius transformation £ of C
which satisfies

F(0)=-1,
-<f(oo) ,
f(z) 0.

This Mébius function is called the Cayley transformation.

b
1. Write explicitly £(z)= azT

(i.e.find a,b,c,d).
cz+d

2. Prove that f(R U {oo}) = the unit circle.

3. Prove that /(open upper half plane) = open unit disc.
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@ v v ‘ W:f(Z) R .—1 .O 1.
0 0--1
o —>1 i
w plane -
i—>0

4. For several values of y > 0 sketch the image of the straight lines
in the upper half plane.

{f(x+iy)|zeRU{w}]

SECTION B: THE CAUCHY INTEGRAL THEOREM

The fundamental theorem of calculus and line integrals

There’s a simple theorem in R” vector calculus concerning the line

integral of a conservative vector field. Its proof relies on the FTC and
looks like this:

[ (7(0))de = £(4(8)) (1))
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THE FUNDAMENTAL THEOREM OF CALCULUS AND
LINE INTEGRALS

Lety beacurvein C and f a holomorphic function. Then

(FTC) | f'(z)dz = £ (final point of y) - £ (final point of y)

Proof: Let y =y(¢) fora<t<b . Then by definition

At the end of Section A we used Green’s theorem to prove that

of 1of

fdz =i ———— |dxdy .
s =il 32 oy

QED
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Notice that if £ is holomorphic, then the Cauchy-Riemann equation,

of 1of

— =———, gives a zero integrand on the right side of the Green equation,
ox 1dy

so that [ fdz=0. We now state this as a separate theorem:

THE CAUCHY INTEGRAL THEOREM

Suppose D c C is a “reasonably nice” bounded open set with
boundary 6D consisting of finitely many curves oriented with D
on the left. Suppose f is a holomorphic function defined on an
open set containing D'\w 0D . Then

_[andZ =0 .

We are now going to use this
theorem to prove a truly
amazing theorem, Cauchy’s
integral formula, which will be

the basis for much of our subsequent
study.

We assume the hypothesis exactly as above, but in addition we assume
that a point z, € D is fixed ... remember that D is open, so z, ¢ 6D:
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We want to apply the Cauchy integral theorem to the function

f(z)

]
zZ -2z,

but this function is not even defined at z, .

The way around this difficulty is extremely clever, and also a strategy that
Is often used in similar situations not just in complex analysis, but also in
partial differential equations and other places. It is the following

ruse: extract a small disc centered at z,! Namely, let E be the closed disc

of radius & centered at z,:
EZ{ZEC‘ ‘Z—ZO‘SE} .

Then for sufficiently small & we see that

E < D since D is open, and we may apply the

Cauchy integral theorem to the difference
D\E .

We obtain

0= f(Z) dz -

zZ—z,
| D\E)

E is called a
safety
disc.

Now 5( D \E) Is the disjoint union of 6D and JE, so we have, using the

correct orientation,
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0:_[ 12) 4y j 12) 4,

zZ-2z,

clockwise
circle

Move the second integral to the left side and reverse the direction of the
circle oE:

zZ-z
oE 0

counter-clockwise
circle

Fascinating equation! The right side is independent of &, and thus so is
the left side!

Parametrize 0E: z = z, + €', 0< 0 < 2x, S0 the left side equals

2 f(z,+c€’) . o |
L ( °gew )gue"cm:ujj f(z,+c€")do .

This can be rewritten as

- . 1 T i
271 times EL’Z f(z0 +gee)d<9

=271 times the average of f on JE .

This does not depend on &! Yet, it has a clear limitas £ — 0, since £ is
continuous at z,: namely, 2zif(z,). Therefore,
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BEWARE: notation change comingup—  z, is replaced by z,
z isreplaced by ZETA: £

Final result:

THE CAUCHY INTEGRAL FORMULA

Same hypothesis as the Cauchy integral theorem.
Then forevery z € D

_ 1 [ £(9)
f(Z)_Zm'a.Lg“—zdél

PROBLEM 3-2
Give examples of two power series centered at 0 as follows:

f (z) has radius of convergence 1,
g (z) has radius of convergence 2,
f (z)g(z) hasradius of convergence 10.

SECTION C: CONSEQUENCES OF THE CAUCHY
INTEGRAL FORMULA

We now derive very quickly many astonishing consequences of the
Cauchy integral formula.



Chapter 3: INTEGRATION 74

1. Holomorphic functions are C*
This is rather stunning given that the definition of holomorphic
required £ to be of class c¢* and satisfy the Cauchy-Riemann equation.
The key to this observation is that the dependence of £(z) on z was

relegated to the simple function

For z € D (open set) and ¢ € 0D, the function Is quite well

 —z
behaved and we have for fixed ¢

d 1 _ 1
dz ¢ —z (é’_z)z

Therefore, by performing a’i through the integral sign we obtain
A

We already knew £7( z) existed, but now our same observation shows
that £7(z) has a complex derivative (we didn’t know that before), and
that
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Flz)= Zfri i (2@)3 e

Continuing in this manner, we see that

., ! £(<)
£ )(Z)_zma.[)(g_z)”“ ¢ .

QED
In particular,

2. £ holomorphic = 7' is holomorphic

Now we can also fulfill the promise made near the end of Chapter 2
(page 59):

3. Every holomorphic function is analytic

. We establish a

Once again, the key to this is the nature of ;
—Z

power series expansion in a disc centered at an arbitrary point z, € D.
As D is open, there exists a > 0 such that |¢ — z|> 4 for allg € dD.

We then suppose that
LA

|Z—Z0|<3- ;0 Oé’

Looking for geometric series, we have oD

1 1

¢-z ({-2)-(2-27)

BIG SMALL
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1 1
é/—Zol_Z—ZO
éV_Zo
_ 1 i zZ-Zz, ’
G —2z, 0\ § — 2z,
© Z—Z 5
:Z ( O)m—l
=0 (é/_zo)
- zZ—Z
Since |2_20 S‘ 0‘<1 for all {€dD, we have uniform
g_zo d

convergence of the geometric series (rate of convergence same for all
¢ € 0D) and we conclude that

()= | AOS 0 ae

0
= Z C (Z -z, )n ’ (interchanged order of
n=0 g summation and integration)

where the coefficients are given by

1 £(<)
Cn = - n+1 dé/
27 a-‘;(é'—zo)

I
(By the way, notice from 1 that ¢, =—|f( )(ZO). Therefore, we have
n

actually derived the Taylor series for £.)
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Clearly, the radius of convergence of this power series is at least a ...
of course, it might be larger.

1

1—-sinz

1
singzl, so Problem 1-8 yields SiHZZl@Z:[Z](—I—E]?Z. We

EXAMPLE:

is holomorphic wherever sinz#1. And

conclude that

. , o« o
-3z . i S
' 2

2

2

1 z : : V4
—— =) ¢, z" with radius of convergence —.
1-sinz o 2

(Did not need to calculate any of the coefficients.)

Next, a converse to Cauchy’s integral theorem:

4. MORERA’S THEOREM

Suppose £ is a continuous function defined on an open set D c C,
with the property that for all loops » contained in D,

Lf(z)a’z =0 .

Then £ is holomorphic.
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(This theorem and its proof are similar to the result in vector calculus
relating zero line integrals of a vector field to the vector field’s having
zero curl.)

Proof: This theorem is local in nature, so it suffices to prove it for the
case in which D is a disk. Let z, = center of D, and define the function

on D

g(z)=[f({)d<, where y =any pathin D from z, to z.

4

Our hypothesis guarantees that g(z) depends only on

z, not on the choice of y. Now assume z € D is fixed

and ~eC is so small that z+/he D: then g(z+h) z*
can be calculated using the straight line from z, to z | >
and then from z to z + A,

§+b

0

g(z+h)=g(z)+["F(¢)dS |
Parametrize the line segment from z to z+ h as z+th, 0<t <1. Then

g(z+h)-g(z)=[ f(z+th)hdt
=hf, f(z+th)dt .

Therefore,

g(z+h)-g(z)

= [ f(z+th)dt .

Since £ is continuous at z, the right side of this equation has limit £(z)
when A — 0. Thus, the left side has the same limit. We conclude that
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g'(z) exists,and g'(z)=£(z) .

Since f is continuous, so is g'. Thus g is holomorphic. By 2, f is

holomorphic.
QED

Y REMARK: the proof of Morera’s theorem shows that the only hypothesis

actually needed is that £ be continuous and that in small discs contained
in D,

jyde:O

for all triangles » contained in the disk!

PROBLEM 3-3

[ J
seCcz .
COSZ

This function is holomorphic in some disc centered at 0. Therefore,
it has a Maclaurin representation near 0.

1. Prove that only even terms z*” are in this representation.

2. Find its radius of convergence.

* 3. This expansion is customarily expressed in this form:
2n
s Z

secz =), 2n)! :

n=0

—_

Prove thatall s, > 0.The s,’s are called secant numbers.
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Here are given s,,s,,..., s, "
1, 1,5, 61, 1385, 50521, 2702765, 199360981, 19391512145,
2404879675441, 370371188237525, 69348874393137901,
15514534163557086905, 4087072509293123892361,
1252259641403629865468285, 441543893249023104553682821,
177519391579539289436664 789665

(https://oeis.org/search?q=secant+numbers&language=english&go=Search)

e’ =e’e bis

We gave Proof #1 on page 3. Now two more proofs.
Proof #2:

For fixed w e C consider the function
f(z) —e”Ma?

This holomorphic function has f'(z)=e""e”—e"™e” =0 by the
product rule, so £(z)= constant. This constant = £(0)=¢e" . Thus,

Z+w

e’"e” =" forall wand all z .

When w =0 we obtain e“e” =1, so that e”™ =e"e”.
QED

Proof #3:

e Let w R be fixed. Then the analytic function of z,


https://oeis.org/search?q=secant+numbers&language=english&go=Search
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equals O for all real z from basic calculus. This occurrence of an infinity
of zeros near 0 = the analytic function is O: (see Section E of
Chapter 2 p. 55)

e”™ —e’e” =0 forallzeC,all welkR .

e Now let z € C be fixed. Then the analytic function of v,

equals O for all real w, as we’ve just proved. Therefore, as above, it’s 0
forall weC.
QED

Basic estimates for complex integrals:

a. Consider a complex-valued function f=£(¢) fora<t<b, and its
integral

I=["f(t)dt .
Write I in polar form,
[=|l|e” for some O R .
Then

1|=€e1
— e“ejjf(t)dt (def. of I)

_ J‘b efmf(t)dt (efm is a constant)
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=Re["e™f(t)dt (it's already real)

= Re(e“gf(t))dt (def. of complex integration)
<[l|lef(t)|at

Ple(eae

Thus, we have

[ F(e)ae| <[] (¢) -

b. Line integrals: let the curve y be parametrized as ;/:7(1“) for
a<t<b. Assume |£(t) <C forall z=y(t). Then

[f(z)dz

e

= £ (7 (0))r'(¢)at]
<[} (r(2))

=CL|y (¢)|at
=CL, where L =length of y .

y'(t)dt  tya

Thus,

[, fdz|<max|f| + length of y .
e

P.S. More generally, we see that nydz‘ <[ |£]|dz|, where

| dz| =|dx +idy| = \/(a’X)Z +(dy)" =d(arclength).
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Now we continue with consequences of the Cauchy integral formula. Last
time we listed 4 of them, so now we come to

5. Mean value property of holomorphic functions:

Let £ be holomorphic on an open set Dc C and
suppose a closed disc |z —z,| < r is contained in D.

Then the Cauchy formula gives in particular

i
c=zgr
(ccw)

The usual parametrization ¢ = z, + re"” yields

ire’do

£(z) 1J~2ﬂf(zo+1‘ei9)

27r1 Jo re'

27
- LJ‘ f(zo + reie)dé?, the average of £ on the circle.
27 Jo

Before the next result, here’s an important bit of terminology:

an entire function (or entire holomorphic function) is a
function which is defined and holomorphic on all of C.

6. LIOUVILLE’S THEOREM

An entire function which is bounded must be constant.
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Proof: Let £=£(z) be entire and suppose |£(z) <C for all zeC,
where C is constant.

Let z € C be arbitrary, and apply Cauchy’s formula using the disk with
center z and radius R. Then from page 76 we have

R £(¢)
f(ZO)_Zﬂ-i C—ZO:R(é/_Z)Zdé/ | R z

(ccw)

Therefore, we estimate

1 7 C

£'(z) < d¢]
2z g_}:R|§_Z|2
1

- C
o R’ a¢]

-7}k

= 21 CZ « length of circle

2

:LCZ e« 2R
27 R
_¢

=
Simply let R — oo to conclude that £'(z)=0. Thus £'=0 on all of C,

so f is constant.
QED

Here is a natural place to talk about harmonic functions. These in general
are functions u defined on R” which satisfy Laplace’s equation

Viu=0.
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In a standard orthonormal coordinate system, this equation is

2
ﬁu_ol

~ =
8X/.

n
2
Jj=1

Holomorphic functions are harmonic. For the Cauchy-Riemann equation

of _1of _ & _1.3f
ox ioy ox’ ioxoy

1 o°f
_Tayax
10 (1of
‘75(75]
B O’f
__8y2 ,
so that
o’'f O°'f
+ =0 .
ox* oy’

Here we insert an elegant proof of the

Fundamental Theorem of Algebra

Let P be a polynomial with complex coefficients and positive degree.
Then there exists z € C such that P(z)=0.

Proof: We suppose to the contrary that for all z e C, P(z)# 0. Normalize
P to be “monic” — that is,
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n

P(z)=z"+cz""+-+c, ,
where N >1. Then

Iimif):l :

Z—>0 Z

1. ) .
Therefore, the function E IS a bounded entire function. Aha! Liouville’s

theorem implies that it is constant! Therefore, P(z) is constant. That’s a
contradiction.

QED

REMARK: Since P(Zl)Z 0 for some z_, it’s simple polynomial algebra
which shows that the polynomial P(z) is divisible by the polynomial
z—z,: P(z)=(z-2z)Q(z), where Q is a polynomial of one less
degree than P. If Q has positive degree, then again we conclude that for
some z,, Q(z)=(z-z,)R(z), Where R is again a polynomial.
Continuing in this way we have a factorization of P into linear factors:

P(2)=cll(2-2,)

k=1

(Some z, ’s may be repeated, of course.)

Later we’ll give a much different proof of the FTA in which the complete
factorization will appear instantaneously!

Before we continue with consequences of the Cauchy integral

: : : 1
formula, we pause to rethink the holomorphic function T, For |z| <1
—Z

we can simply write



87 Chapter 3: INTEGRATION

0

= Zz” , the geometric series.

0

1
1-2z

This equation is valid < |z|<1.

1

Now suppose |z|>1. Then 1 is dominated by z, so we write

1 1 1
1-z -z1-1

valid <:>|2| >1.

The procedure we have just reduced is useful in the following more
general situation:

suppose £ is holomorphic in an open set D which contains a closed
annulus r, <|z|<r,. For r, <|z|<r, we then employ

the Cauchy integral formula to write £(z) in terms of o7/ .
path integrals along |z| = r, counterclockwise and along ' / | 1/ A
|z| = r, clockwise: '
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e For | = r, We write

111 g7
(-z (1-% g™

so that the corresponding integral becomes

1~ . [ F(6)
Tmzz J'ng.

n=0 ‘é":rz
ccw

e For |g|=r, We write

1 -1 1 = ("
-z z1-5 iz

VA

so that the corresponding integral becomes

1 - —n-1 n
R

We can of course change the sign by performing the path integral the

opposite direction.

We also change the dummy index n2 in the latter seriesby —n—1= 4, so

that & ranges from —o to —1, with the result being
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12 £
27i k:z_ooz j g @ -

¢l=r;
ccw

. . f : ..
One more adjustment: the function C:(Ti) is holomorphic in the complete

annulus r, <|¢|<r,, SO its path integral over a circle of radius r is

independent of r, thanks to Cauchy’s integral theorem. We therefore
obtain our final result,

)¢ f(z)zicnz”,forr1 <|z|<r, .
where
1 (¢
Cn:z—ﬂ'i J é/(n-rl)dé/ (1‘1<1‘<1”2)
g

TERMINOLOGY: a series of the form ¥%&, containing z” for both
positive and negative indices n, is called a Laurent series.

We now formulate what we have accomplished. As usual, we may
immediately generalize to an arbitrary center z, instead of O.

7. LAURENT EXPANSION THEOREM:

Let 0<R, <R, <o, and assume that # is a holomorphic function in
the open annulus centered at z,:

R, <|Z—ZO|<R2 : V /(e Y/
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Then for all z in this annulus

f(z)= 5 c,(z-z,)"

nN=—0

where ¢, is given by

1 £($)
Cn n+1 dé/ !
cir (S

27
and r is any radius satisfying R, < r <R, .

Here’s an important quick corollary:

8. RIEMANN’S REMOVABLE SINGULARITY THEOREM

Let £ be a holomorphic function defined in a “punctured” disc
0<|z-z]<R, and assume £ is bounded. Then there is a limit

f(z,)=lim £ (z) and the resulting function is holomorphic in the full

zZ—2Z,

disc |Z—ZO|<R.

Proof: Suppose ‘f(z)‘ <C for o0<|z-z]|<R. Apply the Laurent
expansion theorem with R, =0 and R, =R. Then for any index n<-1,
we can estimate ¢, this way: forany 0 < r <R,

el e

: (4
27 ‘Zfzo‘:r(é/_zo) 1
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1
S_
272_ rn+1

« length of circle

C
But when r—0, ——>0 since n<0. Thus ¢, =0 for all n<O0.
r

Therefore, we have the result that
f(z)=>c,(z-z,) for0<|z—z]|<R.

Clearly then, lim £(z)=c, and if we define 7 (z,)=c,,

z—2z,

f(z)= ic‘n(z—zo)" for |z —z|<R .
n=0
QED

Problem 3-4 The Bernoulli numbers

1. Show that the function of z given as has a removable

e’ -1
singularity at the origin.

2. Therefore, this function has a Maclaurin expansion, which we write
in this form:
Z

_ i&zn The B ’s are called the
e’ -1 on! Bernoulli numbers

Find the radius of convergence of this series.
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: B : :
3. Use the equation z = (ez — 1)2—”’2” to derive a recursion formula
n!
n=0

for the B, ’s:

k-1 Kk
Z( ]BH:O fork>2 .
n=0\ 1

4. Prove that B, =0 forall odd » > 3.

A z
+=
e—-1 2

HINT: examine

Isolated singularities

Let z, e C be fixed, and suppose £ is a function which is holomorphic
for 0<|z-zJ|<R. Then £ is said to have a singularity at z;, simply
because £(z,) is undefined. We actually say that # has an isolated
singularity at z, since £ is holomorphic in the disc |z — z | <R except at
z, (where it is undefined).

We then know that £ has a Laurent expansion of the form

f(z)= > c,(z-2z,)", validfor o<|z-z|<R .

n=—0
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There is a convenient classification of isolated singular points according
to the appearance of ¢, with n<0 in the Laurent expansion. They are

divided into 3 distinct categories as follows:

R = removable singularities, meaning that for all » <0, ¢, =0.

P = poles, meaning that some ¢, =0 with n <0, but there are
only finitely many such ¢, ...all the remaining ¢, with n<0
are 0.

E = essential singularities, meaning that ¢, =0 for infinitely
many n<0.

It is of utmost importance to have a complete understanding of these
categories, so we devote the next few considerations to this.

REMOVABLE SINGULARITIES

In this case, the Laurent expansion is
f(z)= icﬁ(z—zo)" for |z—z,| <R
n=0
The right side of this equation defines a function analytic for the entire

disc |z —z,|<R. Therefore, we remove the singularity of # defining
f(z,)=c,-

Of course, we have the great removable singularity theorem of
Reimann, which asserts that if we assume only that # is bounded near z,,

then its singularity at z, is removable. Thus, we have these equivalent
situations:

0
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e the singularity at z, is removable
e £ isbounded near z,
e limf(z) exists

Except in the trivial case that # =0, notall ¢, = 0. Say that ¢, =0 with
N =0 minimal. Then we may write

f(z)=c,(z~-2z,)" + higher order terms

N

=(z-2) &(2) ,

where g is holomorphic and g(z,)=0. We then say that # has a zero
at z, of order . (Of course, / =0 is allowed.)

POLES

In this case there exists & < 0 such that ¢, = 0 but all ¢, before that are
0. Therefore, we may write

o]

Z Cn(Z_Zo)n

n=N
o)N i Crik (Z_Zo)

ZO)N _ z),

where g is holomorphic for |z — z | <R and g(z,)=0. We then say that
£ has apole at z, of order —/V ...in this case -V >1.

£(2)

k

N

VA

x~

Il
N
g

(
(

We then have these equivalent situations:
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e the singularity at z, is a pole
e limf(z)=o

z—>z,

(The former of these implies the latter, but we’ll soon prove the reverse
implication.)

EXAMPLES:

e CSCZz hasa pole at 0 of order 1

s
e S€CZ hasapole at 5 of order 1

has a pole at 0 of order 1

has a removable singularity at 0

4

e’ -1

1
e ——— hasapole at 0 of order 3

Z(ezz —1)

ESSENTIAL SINGULARITIES

The Laurent expansion

f(z)= > c,(z-2z,)

11=—00

is neither of the first two kinds: z, is neither a removable singularity nor
a pole.

In this situation, the behavior of £ as z — z, is quite interesting:



Chapter 3: INTEGRATION 96

CASORATI-WEIERSTRASS THEOREM

Suppose £ has an essential singularity at z,. Then for any w e C
there exists a sequence z_, z,,--- such that

limz, =z, and limf(z,)=w .

k—o© k—o

Proof: We proceed by contradiction. Thus, we first suppose there
exists w e C for which no sequence {z,} exists with

z, >z,and f(z,) >w .

This means that for z near z,, £(z) cannot be arbitrarily close to w ...
in other words, £ (z) must stay a positive distance away from w .

o If w=oo,thismeansthat £(z) mustbe bounded for z near z,. The
removable singularity situation holds, so z, is a removable

singularity for £ . Contradiction.

e |If weC(C, then there exists r>0
such that for z sufficiently near
z,, ‘f(z)—w‘ >r.

N
%0

Then consider the function
f(z) —w

in this neighborhood of z,. It is bounded (by l) and thus its singularity
r

at z, is removable. That is, it agrees with a holomorphic function near z,
and it may be written as
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(7-2) &(2).

where g is holomorphic and nonzero. Therefore,

f(Z)—W=(Z—ZO)7N 2(7) .

As is holomorphic, this equation shows that the Laurent series for

g(2)
£ hasnoterms (z—2z,) for n<-N. Contradiction.

QED

DISCUSSION: This classification into the 3 types of isolated
singularities is quite definitive and complete. However, as wonderful as
Casorati-Weierstrass theorem is, it doesn’t come close to the much more
profound result known as

PICARD’S GREAT THEOREM: if £ has an isolated essential
singularity at z,, then for every w € C with at most one exception,

there exists a sequence z, —z, such that f(z,)=w for all
k=1273,....

(The example e’% has the exception w =0.)
This theorem is “beyond the scope of this book.”

PROBLEM 3-5

1. Show that sinh z=w has a solution z for every w. Do this by
deriving a “formula” for z in terms of w . This formula will involve
a choice of square root and choice of log but don’t worry about these
details at the present time.
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2. Do the same for the equation tanh z =w , but notice that there’s one
exception (actually, two) for w .

3. The function sinl has an essential singularity at 0 . Verify directly
A

for this function the truth of the great Picard theorem.

This theorem is “beyond the scope of this course.”

Complex Powers:

The goal is to devise a reasonable definition of z“ where « is allowed to
be complex. Though it makes no sense to “raise Z to the power o ,” we
still use that terminology.

WARNING: when dealing with this subject it’s very important not to
use the notation e” in the usual way, but instead to use the terminology
from the beginning of the book,

(o] Zn
exp(z) = Z{)F .

A good way to figure out what our definition should be is the use of
desired properties of logarithm, namely

Iog(z“):alogz :
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Then we use the “inverse” of log to come to our definition:

o

z” :=exp(alogz)

This makes some sense as long as z =0, so we’ll always make that

assumption. Of course, z“ is usually not a unique complex number, due
to the ambiguity in log z. For other values could be

exp(a(logz +2n7i))=exp(alog z)exp(2nria) .

This will be independent of the integer n < « is an integer, and then
z“ has its usual meaning.

Now we list some properties of this definition.

1. If a isan integer, z“ has its usual meaning. For all other « € C, z“
Is ambiguous, no matter what z is.

In particular, Y =1

2. 1" =exp(arlog1) =exp(a(2nxi)), so

1% has all the values exp(2nric)

3. i' =exp(ilogi)= exp(i(0+'§+2nniD = exp(—%—Znﬂj, o)
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- . 1
I' has all the values exp| | even integer —5 |

(all are real numbers).

provided the same 10g z is used in all 3 places it
appears.

77 =7

5. z°w” =(zw)" - sort of true: be careful!

6. In open sets — C which do not contain O and which do not “wind
around 0,” logz can be defined in terms of a
continuous value for argz. Then logz
becomes a holomorphic function, as we o 0
know, so also the composite function z%
is holomorphic.

And we compute its derivative by the chain rule:

!

z") =exp(alogz)(alog z)

—

A

«
z

and we write

az” _ az* (same log z on each side).

az
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7. Taylor series

As in the above discussion, we take % <argz < % in this

0" 1 | disc. Then we have inductively for n=0,1,2,...
(i Hz“ =a(a-1)-(a-n+1)z"" .
dz

In particular, at z=1 we find a(a—a)---(a—n+1) (sincel” =1). So
we obtain the Taylor series

. ala-1)-(a-n+1) .
z —Z - (z-1)" for|z-1|<1 .

n=0

That coefficient is given this notation

[aj a(a—-1)(a—n+1)

n!

n

and is still called a binomial coefficient:

(e, (%) (),

Replacing z by 1+ z yields a “binomial” formula,

n=0\ Il

(1+z)a:§j(ajz” for|zj<1. V//4 )
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(If «=0,1,2,... this series is finite, going only from 0<n<e«. It’s a
polynomial, and this result is the classical binomial formula. Otherwise,
the radius of convergence equals 1.)

PRINCIPAL DETERMINATION OF ARG & LOG: this is what we say
when we are in the open set C~ (—0,0]:

—r<argz <r.
1 =1, logx is real for 0 < x < oo

PROBLEM 3-6

Prove this polynomial identity:

(a+ﬁ] ) i{aj[ ’ j ' HINT: very easy problem!

n o\ kK )\ n—

BRANCH POINTS

All the holomorphic functions which somehow involve logz have a
definite type of “singular” behavior near 0. But these are clearly not
isolated singularities. For these functions are not actual functions (single-
valued) in any region which includes all z satisfying 0 <|z| < &.

Instead, we say that these functions have a branch point at 0. That’s a
well-chosen descriptive word, for as we follow their behavior on a loop
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surrounding O they can exhibit a change because of the change in a
continuous determination of arg z .

. 1 1 m
For instance zé has 2 values, zé has 3 values; 24 has n values,
assuming the integers m and n have no common prime factor. However,

If o isirrational, z“ has infinitely many values.

We say that the above functions have branching of order 2,3, n, and «,
respectively.

You can imagine that things can become more and more complicated. For

instance, think about 7" near the origin.

Of course, we can also see branch points at other points, such as in the
function (z—1)% +(z+1)%, which has branch points at 1 and —1. Or

1
(zz +1)A with branch points at i and —i.



CHAPTER 4
RESIDUES (PART )

We are preparing to do some truly amazing things with our theory, but
first we need an important definition. This is all in the context of a
holomorphic function with an isolated singularity at z,. Let # be such a

function. We are then going to define a complex number based on this
situation, but we do it in 3 separate ways, and we’ll observe that these 3
ways yield the same number.

SECTION A: DEFINITION OF RESIDUES

Definition 1: Let 5 be any small loop surrounding z, one time in the
CCW sense: then our number equals

This number does not depend on y, thanks to Cauchy’s integral theorem.
To see this, surround z, with a very small circle: in the region between »

and this circle we have from Cauchy’s theorem

R J.}/f(Z)dZ-F | f(z)dz=0.
@ i

circle

Thus
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Lf(z)dz = [ f(z)dz,
circle

so the left side does not depend on .

Definition 2: Consider the Laurent expansion of £ near z,:

f(z)=i;c,,(z_zo)" .

Then our number equals

That is, we focus our attention on the Laurent expansion:

and 1t’s ¢_, we use.

This agrees with the first definition since

dz
—Z

fyf(z)dz = ian(Z—Zo)n dz = c_1f7
—0 Z 0

=2ric_, .

Definition 3: This definition relies on trying to integrate £(z) as an
“indefinite integral” near z,. The trouble is precisely with the term

C
-1 For

zZ—2z,
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c (Z — 7 )17+1
f(z)dz = - 2 :
J‘ (Z) Z 17;1 n—+ 1 @

Thus, the number we want is the unique a  C such that

undefined

= the derivative of a

f(z)-

zZ—Z,
holomorphic function in the region
O<‘Z—zo|<r,80m6r>0.

Definition: The residue of £ at z, is the number defined in all 3 of the
above definitions. We denote it as

Res(f,zu)

We now list a number of properties and examples.

1. If £ is holomorphic at z, (i.e., z, is a removable singularity of 7),
then

Res(f,z,)=0.

1 :
2. Res( ,Zoj =1 . (Most basic case.)
Z -2,

3. Res((z—zo)",zo):O ifneZ,n=-1.
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1
4. Res[eﬂO] =1

5. Res(sinl,Oj =1.
z

6. Res(cosl,oj =0.
Z

7. If £ is an even function,
Res(£,0)=0 .

8. Suppose £ has a simple pole (i.e., pole of order 1) at z,. Then we have

so that

and the left side has limit ¢, as z — z,:

S%EEE Res (f,zo)zz@u(z—zo)f(z)

9. A corollary is now the following, which is the handiest special case!
Suppose we know that
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f(z):%,

where both numerator and denominator are holomorphic at z,, and
b(z,)=0, b'(z,)=0. Then z, is a simple pole for £, and our
previous result yields

Res (£,z,)= !LnZ] (2 _;E;;(Z)
)

For the record,

b'(zo) b'(z,)#0.

cos0=1,
_ Co0Sz .
10. Res(cotz,0)=1 since COtZ :siT and sin0=0,
YA
sin'(0)=1.

Res(cotz,nr)=1 (Cosn”j
cos nr

n

11. Res(cscz,nr)=(-1)
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12. Res( 1 szl

z ]

e —1

13, Res[ z 0)::0

z ]

e —1

1
14. Let’s compute the residue at 0 of e/Z, where a = 0. None of
a—-z

our easy examples apply, so we resort to series:

111 ¢
a—z_al_Z_ T a™t
a
Loaq
er =2 ——
0 n:Z

. : 1
Multiply these series and look for the — terms:
A

11 11 11
b
all a*2! 2’3l

0

This equals —1+ZkikI , SO

k=0 a

1
Res( 1 eyz,Oj:ea -1.

a—2z

Incidentally,
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1

1 =
Res( e%,aj:—ea.
a—2z

Now we come to a major theorem. Before stating it, let’s be sure we
completely understand the context.

As in the Cauchy integral theorem, we deal with a “nice” bounded open
set D < C, whose boundary éD consists of finitely many curves. We also
assume that 7 is holomorphic on an open set containing D woD except
for finitely many isolated sinqularities z,,...,z,, all contained in the open

set D.

Then we have the

RESIDUE THEOREM
1

- fapf(z)dz = ];Res(f,zk)

The proof is an easy application of the Cauchy integral theorem if we first
remove from D small, closed discs £, centered at the z,’s. Let the

resulting open set be denoted

D=D\)E, D
k=1
Since £ is holomorphic on D', Cauchy’s theorem yields

1
0= Z—Eij.anf(z)dz '
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But o0’ =D U | J 9, , SO we obtain
k=1

1 n 1
0= z—ﬂijwf(z)dz +1{z=12—7ﬂjaEkf(Z)dZ .
¥ clockwise

But

1 1
%J@Ekf(z)dz = _ﬁIaEkf(Z)dZ
clockwise counterclockwise

=—Res(f,z,). (def ofresidue)

This proves the theorem.

QED

PROBLEM 4-1

function

z"+1
Also, compute the sum of all the residues.

Z=Z

(z-2z,)" £(z) has a removable singularity at z,. Prove that

1. For any positive integer n, find all the singularities of the

and calculate all the corresponding residues.

2. Suppose that £ has a pole at z, of order <. The function
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3. Using the principal determination of log, calculate the residues of
log z

— at each of its singularities.
(ZZ + 1)

4. For any nonnegative integer n, calculate the residues of
(zz +1)7”71 at each of its poles. Present your answer with the

2
binomial coefficient ( n] displayed prominently.
n

5. Find the residues of csc” z at z =0 for n=1,2,3.4,5.

(Thatis, | — 1 .)
sinzZ

REMARK ABOUT THE RESIDUE THEOREM: It contains the Cauchy
integral formula. (Of course, we actually used the Cauchy integral
theorem in its proof.) For consider the usual scene for the Cauchy
formula:

£ holomorphic
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f
We write the expected integral 21i j (g)dg“ and notice that for fixed
T

-z
(¢)
-z
isolated singularity, at z. And it’s the easy case

oD

z € D the function Is a holomorphic function of £ with one

es| 08) |- _12)  _1(2)_pyy
R [C—Z’ j ddé/(é/_z) 1 f( )

So indeed, the residue theorem =

iji JDZ(—(Z) de=1f(2)

WHAT’S AHEAD FOR US: The residue theorem is an amazing tool for
accomplishing all sorts of things in complex analysis. It can produce
wonderful theoretical results and also astonishing computations. We
could present these in either order. However, | prefer the computational
aspects first, because these techniques will give us lots of practice in
dealing with our new concept of residues, and | think will also give us a
nice change of pace in the middle of the book.

So here we go!

SECTION B: EVAULATION OF SOME DEFINITE
INTEGRALS

1. An example for babes:
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0

dx =r.

A quite elementary integral in basic calculus is j T 1
X+

Now we approach it in an entirely different way, much more
complicated than actually necessary for such a problem . . . but the
technique will lead the way for more interesting situations.

e Define the holomorphic function f(Z)= . This function

z°+1
has isolated singularities at i and —i.
e Devise a clever path. Here it is:
for large R we hope to
approximate the desired
integral, and we have a
pole of £ inside.
: 9,
The residue theorem
gives immediately .R .0 g
®
1 1 1 .
- [ — dZ:Res( - ’Ij
2715 z° +1 z°+1
_1
2z z=i
_1
2l

Thus,

J‘ dz
- = .
»Z°+1
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e Let R — oo, We have

J‘R dx J‘ dz
. + . =7 .
RrRX +1 z°+1

semicircle

The real integral is just what we want. We do not want to evaluate
the semicircular integral, but instead to show that it has limit O
as R — . So, we employ the basic estimate for line integrals:

J‘ 1
z°+1

semicircle

(see Ch 3,

< max
pg. 81)

- « length of curve.

z°+1

The length of the curve is zR. And for |z| =R we have from the
triangle inequality

‘ZZ +1‘ Z‘Zz‘—1=|Z|2 —1=R*-1.
Thus, we achieve the estimate

7R

Rz 1—)0aSR—>oo.

e Final result:

i R dx
lim . =7 .
RoeJ px+1

2. A more challenging example:
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Use the above template for ———.
z +1 7
The denominator has (simple) zeros

at the fourth roots of —1=e":

eﬂ% | e37z%_ | 65”%- | 6771'% |

pul |
>
pul J

and the residue of £ at each one equals:

The residue theorem =

1 dZ . 7 37i
: J’ —— =sum of residues at e 7 and e 7
27Z'| vy Z + 1
eﬁ% e3ﬁ%

4 4
1+1 =1+i

NN

4
-iV2

.

Thus,

dz o -2 o
Lz4+1_” 4 | 2

Again, the integral on the semicircle has modulus bounded by
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Conclusion:
3. Another:
1
Use f(z)= .
( ) z°+1

Six poles this time:

7i/ . 57
eé,l,e A, etc.

Everything works the same way. The sum of the three residues is

Chapter 4: RESIDUES (PART I)

R
f —0
R"-1
J”” dx &
x'+1 2
®
L @
- ——i
Q09
°

1 z 1
= = —— VA
62° Z6 o 6Z

_ 1 e%+i+esm6}
6L

:_1 £+l+i+i+L
6_ 2 2 2

L=
6 3
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So the integral we obtain is 27i (—éj = 2?7[:

.x°+1 3

J'°° dx 27

. Another:

1

z =i

Let’s try f(Z) =

The three poles are roots of z* =i=e”2 =e"72 = 2. So we obtain
7 Sri 37
z=e A,e @e Z8

This time we save a small amount of work
by using the lower semicircle, so we deal |
with one residue only. The residue at -i
equals

lece
~

So, the residue theorem givesJ‘ —
y Z° —1 3

Again, the integral on the semicircle tends to 0 as R — oo, so our
limiting equation is

J““’ dx 277l
0 X3_| 3 .
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Reverse the direction:

J“’C dx 27i

o X —i 3

(P.S. We could have solved it this way:

0 0 3 H © H
J‘ C;’X.:J' X6+|dX:O+iJ‘ 6a'X :27z|
o X —1 X +1

X +1 3

from the preceding example.)

© a-1

dx, aaeR.

5. Long detailed discussion of another example: j
o x+1

a. Convergence issues:

Near o the integrand is approximately x“, so we require ¢ <1.

Near O the integrand is approximately x“, so we require ¢ > 0.

Thus, 0<a <1.

b. Choose a holomorphic function:

a-1

z
Let f (Z):—l, but we realize we’ll have to cope with the
Z +

ambiguity in
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z“ =exp(alogz) = exp(a(log |z|+iarg z))
=|z|" exp(icargz) .
Cc. Residues:

z=0 1is a branch point, not an isolated singularity. There is an
isolated singularity at z=-1, and the residue is easy:

B - (_1)a—1 e 3
Res(f,-1)= = (-1)
=—exp(icrarg(-1)) .
d. Path of integration:

Rather tricky! We need to have the positive real axis as part of the
path, we need it to surround -1, and we need O to be outside!

Here is what we do:
radius R

» 1s the boundary of the shaded

region.
In this region we should use the /L[ LN
) { | A . S -28
choice of argz so that 1 /50 N
0 <argz <27 . Then we have \ radius £

s

Res(f,—1)=—exp(iar)=—e"" .

e. Residue theorem yields immediately that
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a-1
j 7 dz=—27xie"
,Z+1

f. R>w

The integral on the circle is bounded by

a—1
max‘f(z) « 277R = max « 27R
2R 2R |z + 1
a—1
< R « 27R X7 27Re
R-1

Since a <1 thistendsto 0 as R — .

g €¢—>0

The integral on the circle is bounded by

a-1

&
max o 27TE

2= |z +1]

é;a—l
approx
< o 2me = 2me’ .

1-¢

Since o >0 thistendsto 0 as ¢ = 0.

REMARK: our criteria for convergence of the desired integral match
perfectly with what is needed in the line integral as R — o0, & — 0.

h. We have remaining two integrals along the positive real axis.

In the “upper” one z = x with argument 0, so it becomes
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00 a—1 o0 a—1
j z a'sz‘ X dx =1.
0o Zz+1 o X+1

But in the “lower” one z = x with argument 27, so it becomes

o0 -1 00 a-1 ia27z

z“ x“e o

—j dz = —-‘- s dx=-€e"*1,
0o z+1 o Xx+1

I. Summary: the equation in e. becomes in the limit
[-e“¥1=-27xie"" .
Solve for I:

B —2rie"” 27

I

- 027~ _iarx -lar
1-e€

e —-¢€
T

sinar

o a—1
CONCLUSION: .[X dx=—2" for0<a<1

0o X+1 Sin ar

This is just about the easiest example of this type of analysis,
but | have gone to great detail to justify all the reasoning. After
some practice this should become almost routine for you.

REMARK: Problem 4-1, #5 ... to find the residues

Res(csc” Z,O) forn=1,2,... .

The easy cases are
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n=1: simple pole, residue=1.

n=2,4,6,... even function, residue=0.

n =3 Here’s a beautiful and elegant technique, which I choose to call

integration by parts. It’s based on the fact that if £ is a holomorphic
function on a closed path 5, then

Lf’(z)dz =0 .

This is a FTC fact, see Chapter 3 Section B, page 69. Now apply this to a
product £z of holomorphic functions:

0= () dz =] fodz+| fg'dz ,

or

o “INTEGRATION
J,fldz =~[ fg'dz . BY PARTS”

In the case of functions with isolated singularities at z,, when we use a
small circle » surrounding z, we obtain

Res(fg,z,)=—-Res(fg',z,)

Now we try this on csc’ z near z, =0. Then

!
., sin” z
sin” z = - secz

SO
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sin z

Res(sin‘3 z,O) = Res sec'z,Oj

a2
Sin "z
= Res

secztan Z,Oj

|
sin” z
= Res

sec’ z,O) .

Look what just happened! We started with a pole of order 3, and now we
have a pole of order 1! So, we’re in the easy case,

2
Res se(.: Z,O = 1 :1.
2sIinz 2cos0 2

REMARK: “Integration by parts” is somewhat a misnomer. For
Definition 3 gives the result immediately that a derivative of a
holomorphic function has zero residue, since on page 105 we simply take
a = 0. Nonetheless, | like the IBP name for this principle, as the result is
so reminiscent of such a procedure.

6. Integrals of a certain form:

" a(X) « a,b are polynomials
_[ —b(X) dx where: . degree b > degree a + 2
O «b#0 on[0,0)cR

Such situations can always be handled with residue theory, so we’ll derive
a general result and then apply it to a particular example.

The approach is quite clever! We define
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f(z)= a(7) log z

b(2)

and use this type of path:

Just as in example 5 on page
119, we use O <argz <2r.

{0e |,

/ <—radius R
radius &

The integrals on the two circles tend to O in the limit as
£ — 0 and R — oo. The extra factor of 10g z is of very little concern, since

log z| =|log|z| +iarg z| <|log|z| + 27 .

So, when |z| =R we have log z| <logR+27 < 2logR
and for |z|=¢ |Iogz|£|logg|+27z§2Iog1
&

for R > o0 and € — 0. Thus, on the circle |z| =R We have

constant constant » logR
<—>"" . logR« 27R < - 9

2

f(z)dz

|zl=R
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which tends to 0 as R -« ... since logR — o0 much slower than R.
And on the circle |z| — ¢ we have a similar estimate

1 1
<constant « log— « 27& <constant « £log— .
g g

L:gf (z)dz

Again, thistendsto 0 as ¢ — 0.

Thus, we apply the residue theorem and then let R —»> o0, ¢ -0, and
obtain in the limit

J.wﬁlogxdx —j‘wﬁ[logX-FZﬂ'i]dX
0 b(X) 0 b(X)

= 271 times sum of the residues off(z) :
Notice that on the path (0,00) above this path logz =logx (argz=0),

but on the path (0,0) below the axis, logz =log|z|+27i, because
argz =2l

So when we subtract the integrals, 109 x disappears, and we’re left with

—Zﬂijwa(X) dx .

o b(x)

Divide by —2i to achieve the formula

Jm a(X) dx = —the sum of all residues of 3(2) logz

~b(x) b(z)




127 Chapter 4: RESIDUES (PART I)

(Here O<argz <2x.)
(Though it doesn’t matter!)

EXAMPLE: Let a > 0 and consider

dx .

I:J.o ()(Jrar))((x2 +1)

All our requirements are met. The poles are located at —a,i, and —i, and
they are all simple! When the residues are computed we obtain

z —alog(-a)
R logz,—a |=
e{(z+a)(z2 +1) 97 aj 1 (az+1)
—a(loga+ 7 )
- a*+1 ’
at i we have the residue
ilogi 2 iz iz(a-i)

(i+a)2i (a+i)2i 4(a+i) 4(32+1)'

And at —i

Pz
—ilog(—-i) 2 3iz  3iz(a+i)

(-i+a)2(-i) (a—-i)(-2i) 4(a—i)_4(32+1)'

When we add these three residues, we obtain
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\ lra+n 3ira-3rx
{(—aloga—am)+= + == }

_ 1 —aloga—z}
at+1 2]

Therefore, we obtain from the formula the result that for a2 > 0

" x aloga+7
j dx = —=
0 (X+3)(X2+1) a’+1

REMARK: Many examples we demonstrate can actually be done with
single variable calculus. This is a good example, as are 1,2,3,4. We could
even find the indefinite integral first. Regardless, these techniques are
exceedingly beautiful even in such cases!

PROBLEM 4-2

For any integer n > 2, compute the integral

. ax
.[o X" +x 4 x+1

DISCUSSION: This fits what we have just done, with a(z)=1 and

b(z)=z"+z""+---+z+1. Here’s an approach using lots of
calculations:
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n+l

-1
b(z)= z 50 poles occur when z** =1 (and z = 1). |
Z_
suggest defining

27i

a):eﬂ-"l,

so that poles are o* for 1<k <n.

e Residues of logz are happily

b(z)

logw* klogw 27 k
b’(a)k) b'(a)") n+1b( )

For z = w* we have

A +1
b(z)=— - .
() o ot =z WV

o Formula of page 126 => our integral equals

n . 2k k n

—n+1 n+1 (n-|—1)

e Algebra: SHOW THAT the term () on the preceding line equals

‘ @ o’
(,;:(H—*_l)( 2 T T 2]'

a —w o —w

zb'(z)
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e Finish: Greatly simplify to get the final answer in the form

(n+1)sin(??) '

7. Principal value integrals refer to reasonable attempts to define a sort of
integral even when the integrand is not actually integrable. There are
two different situations where this may occur. Here are illustrations of
these types:

e

1 o :
Type 1: | —dx does not actually exist, since the two “sub-integrals”
1 X

do not exist;

°1 1
—dx =—o0 and —dx =400
-1X 0 X

So, what we may do is first delete a symmetric interval about 0 and
then perform a limit:

“dx (°dx ¢
I +I = log|x||  +log|x
-1 X e X -

e
&

=(loge—-0)+(1-loge)
=1 .

So, the limit as ¢ — 0 does exist, and is called the principal value
integral. Notation:

E‘d_X_

-1 X

PV 1.
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0

Type 2: j ZX N dx again does not exist, for
o X+

0 0
j ZX dx =—o and J- 2X dx =+
X +1 o X +1

But we can define a principal value by integrating from —Rto R and
then letting R — oo. Notation:

PV| —=
X +1

dx =0 .

The residue theorem can often be of use in calculating such integrals.
I’1l give as an example a typical situation, and we’ll see others.

So, assume £ (z) is a rational function of z for which degree of
denominator > 2 + degree of numerator, just as on page 124.

Furthermore, if # has any real poles, assume they are simple.

We shall then apply the residue theorem when our line integral has this
form:
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We are of course familiar with the large semicircle. The new twist is
that we have semicircles of small radius centered at the real (simple)
poles of f.

R is so large that all the real poles of £ are between —R and R, and all
the poles with imaginary part greater than 0 satisfy | z| < R. The residue

theorem then gives immediately the equation
[ f(z)dz =27,
e

where we have denoted

R= Y Res(f,z).

Im(z)>0

Because of the restriction on degrees of denominator and numerator of
£, we can let R — oo and obtain

j’yf(z)dz =27IiR

where y_ represents the real axis with semicircular arcs of radius &
situated about the real poles of 7.

It is fascinating to see what happens when we let &£ — 0. We can deal
with each real pole individually. So, look at a pole at x, e R and the

portion of y, from a to b, when a< x, <b:
o> o | °
d Xo b

Parametrize the semicircle as z = x, + €', where @ travels from
7 to 0. We obtain
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[ f(x)dx +j'7(:f(X0 + geig)igei9d¢9+ Ii+gf(X)dX .

a

The first plus third of these integrals will have the limitas £ — 0:

PVj:f (x)dx... provided the limit exists!

This limit does indeed exist, as we see from analyzing the second
integral:

from page 107 we have

Res(f,x,)=lim(z-x,)f(z)

Z—X,

since x, is a simple pole. Thus

Res(f,x,)=limee’f(x, + gem) (uniformly w.r.t. )

e—0

and we therefore obtain

|imI:f(X0 +ce" )ize’dd = ["iRes(f, x,)d6

e—0

=—riRes(f,x,) .
Doing this for each pole thus yields the formula
Igigolj’yg f(z)dz=PV| f(x)dx -7,

where



Chapter 4: RESIDUES (PART I) 134

R = Res(f,x) .

xelR

Thus, we have derived the result, that under the given restrictions on
f,

PV[" f(x)dx=2ri Y Res(f,z)+ri) Res(f, x)

Im(z)>0 xelR

EXAMPLE: f(z)= . The real pole is at —1, and the residue

z2+1

: 1 L n : :
there is 3,73 The other pole to consider is e”s, with residue
Z
1 1 2izg 1 1 143
—2:—324:— ———i . Thus, we have to calculate
3z° 3 3( 2 2
Zni(—l—Lj+ﬂ—i so we have
6 23) 3 3

“ dx T
PV I -
X +1 3

PROBLEM 4-3

For 0 <a <1 calculate

o0 a—1
PVI X dx .
0o 1—-x
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RECOMMENDATION:

—
I
N
(=

" el R
with

O<argz <27

. Integrals involving exponentials (and trig functions):

This is an extremely important type of definite integral, and we’ll gain
extra proficiency in our techniques as well as in our use of exp. First,
we’ll look at two rather typical examples.

0

Example 1:"- €

ia

- dx .
x“+1

First, recall the simple equation ‘ew‘ = e™" . Therefore,

iax — eRe(iaX) _ e—lm(aX) _ e—XIm(a)

e

So, if Im(a) = 0, the integrand blows up exponentially as x — oo or as

x — —oo, and we have no existing integral. Therefore, we definitely
must assume that ae R .
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iaz

We are led to define f(z)=

——, a holomorphic function with

z°+1
isolated simple poles at +i.
Let’s try our familiar
semicircle: knowing we’ll
need to worry about the path ®i
|z| =R, We examine
® @ ®
-R 0 R
eiaz —Im(az)

@)=y

z* +1‘ ‘Zz +1‘

—alm(z) —alm(z)

e €

zz\—f R? -1

IA

We’ll be in bad trouble if 2 <0! (Since Im(z)=R.) Therefore, we
also assume a > 0. Then we have for |z| =R

and we conclude that since the length of the semicircle is zR, the line
integral

—>0 as R—>w.

f(z)dz| <
[ Aoy =2
‘IfTLEZ)>O

Thus, the residue theorem implies (after letting R — o) that
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J-O:of(X)dX = ZniRes(f(z), i)

) 6)iai
=27l— =re
2l

—da

Thus, we obtain

0 eIaX
j - dx =nme? for a>0.
X +1

Finish: if a <0 we obtain immediately by conjugation the result ze”.
Therefore, we have in general

I i dy=xe " forallaeR
X +1

What a terrific result! If 2 =0 this is a very elementary integral since

arctan had derivative . But for a#0 there’s no convenient

2

x +1
indefinite integral.
© XeiaX
Example 2:-‘- ——dx
X" +1

Again, we must assume that a € R. We will also first deal with the case
a>0. (The case a =0 is quite different, as

j ZX dx
X +1

exists only in the principal value sense --- and clearly is 0.)
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Thus, we define

ze
flz)= :
(2) z'+1
. . ie" 1,
The residue at z =i is =o€ ®)
|

We employ the same semicircular path, and we first try to estimate the
line integral along |z| =R

—almz
f(z)dz|< L|dz|
2R 2R 2| -1
|m_Z>0 |m_Z>0
- RZR N [ e mniR g
- J0
2 o T
— R? 1 e—aRsinede .
- J0

Uh oh! We can no longer simply use the estimate _e‘aRs‘”" <1, so we have
to be cleverer. Not knowing how to integrate e ™"’ , we employ a useful

estimate. First, we can integrate from 0 to % only and double the answer

to get the estimate

ZRZ 7/, _—aRsin %5 —aRsin
= _1j04e R < 3[72e M g

for large R. Then we estimate sin& from below by observing its graph:
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sing>2? foro<g<Z .
T 2

0 %
Therefore, we find

—aR26
[re™mdo< (7 e * do
—aR26 T

<[Fe = do=-—"—
IO 2aR

Conclusion: the line integral of 7 (=) along the semicircle has modulus
no bigger than

Thus, we again obtain from the residue theorem

[© f(x)dx = ZﬂiReS(f(Z),i)

=271

2

—a

= rle
Here is the result for all aeR:

. rie? fora>0,
J‘ Xze dx =40 for a=0 (PV integral) ,
X +1

—rie? fora<0 .
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SUMMARY: Using Euler’s formula e™ =cosax +isinax, we see
that the symmetry of the integrands gives the two results in this form:

" coSax a

- dx = re ™" foraeR,
Jox +1

_ re® fora>0,
*” xSInax

- dx =<0 fora=0,
Jo x +1

—re? fora<0 .

: * xsin
REMARK:  The integrals j XZ 2
- X +1

integrals, as the integrand is an even function of x. However, they are
Improper integrals as they are not absolutely integrable:

J.

Two more examples involving trigonometric functions:

dx are not principal value

xSinax
x+1

dx = (fora=0).

e The first can be found in almost every textbook on complex analysis.
It’s the integral

*sinax
j dx ,where asusual aeR.
0 X

This integral is of course 0 if a=0. Otherwise, it is an improper
integral, since
J

sinax

dx =oo. (Not hard to show.)

X
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Thus, it has to be interpreted as

o
i sinax
Ilmj dx .

The choice of holomorphic function is crucial! We must not choose
sinaz

, because of its large modulus when Imz = 0. Therefore, the
Z

logical choice is
elaz
flz)=—.
(2)==

(This actually introduces a pole at 0.) Prior experience leads us to
assume at first that 2 > 0 and to choose a path like this:

Our earlier estimates on page 138
show that the integral along |z| =R

tends to O, since a>0. Thus, the
residue theorem gives

j_gf(X)dX+ j f(Z)dZ+LOOf(X)dX=O.

—0o0
clockwise
semicircle

Then our work on page 133 yields in the limitas £ -0
PV[” f(x)dx —ziRes(£,0)=0 .

This residue is 1, so our result is
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o iax

PV dx =m1 fora>0.

-0 X

l.e.,

* cosax +isinax )
PVJ- dx =7l .

—0 X

All that survives from this equation is

dx=x fora>Q0.

J‘“" sinax
- X

Note: no PV is left, as that goes only with the cosine term. Or we could
have taken the imaginary part of each side.

Since the integrand is even as a function of x, we obtain

“sinax T
j dx =— fora>0.
D, ¢

Finally, since sinax is an odd function of a, our final result is

% fora>0,
j SmaXdX:<O fora=0,
o X
_Z fora>0 .
2

N

e Our second example is the integral
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dx

2

J“”l—cosax
0 X

(This is a proper integral, thanks to the boundedness of the integrand

as z — 0 and its decay at oo like x™))

Our experience leads us to assume a > 0 and to choose

1_ iaz

ZZ

f(z) =
This function has a simple pole at z =0, with

Res(f,O):Res(ﬂ,Oj
=—ia .

Using the same path as above and letting R — o, £ — 0, we obtain

PVJMO 1_‘? XdX=7Z'i(—ic'1)=7Z'c’I .
. X

And then Euler’s formula gives

*1-cosa
j —ZXdX=7Z'a fora>0.
o X
Final result:
“1—cosaxy 7r|3‘
—de=— forallaeR
0 X
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(A standard trig identity =

., ax
J.OOZSanZ . 7[|a|
2 )
0 X 2

and thus (a — 2a)

.2
J‘(:C SlI;ZEIX dx — @ )

PROBLEM 4-4

Calculate

PVI Cosalidx foraeR .
0

2
X —




CHAPTER 5
RESIDUES (PART I1)

SECTION A: THE COUNTING THEOREM

We now consider some astonishing theoretical consequences of the
residue theorem.

Here is the situation we are going to be discussing. We will have a “nice”
simple closed path yinC . It can be

regarded as the oriented boundary of a

“nice” bounded open set D D

4

We also will have a function £ defined in an open set containing D u y,

and we assume that £ is holomorphic except for finitely many poles (no
essential singularities allowed.)

Furthermore, we assume that on y our function £ has no zeros and no
poles. It therefore makes sense to form the line integral

f'(z)
Lmdz

(The denominator is never 0 for z € y and the numerator is continuous
on y.)

Then we have
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THE COUNTING THEOREM

Assuming the above hypothesis,

1 ia’Z = NUMBER OF ZEROS OF £ IN D

27i ;/f
— NUMBER OF POLESOF £ IN D .

Here these numbers are counted according to their multiplicities.

Proof: The residue theorem (page 110) asserts that the LHS of this
equation equals

_ f'(z L .
the sum of the residues of L at all its singularities in D.

f(2)

So, we must examine these singularities. They occur precisely at points
z, € D such that either z, is a zero of f or z, isapole of £ .

If z, is a zero of £ of order m>1: We then write the Taylor series of f
centered at z,

f(z)=Yc(2-2) (c,#0).

k=m
Then we factor (z-z,)" from the RHS to arrive at

f(2)=(z-2,)"2(2),
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where g is holomorphic in a neighborhood of z, and g(z,) 0. Then

f'(z) (z-2z, )" g'(2)+m(z -z, )mflg(z)
f(z) (z-2,)m(z)
_8'(z), m
g(z) z-z,
E. Holomorphic near z,

f’ : :
Thus, (z) has a simple pole @) at z, with

£(z)
e 7.2,

If z, isa pole of £ of order n>1: In the very same manner we can

factor £ in the form

F(z)=(z-2,)" h(z)

where £ is holomorphic in a neighborhood of z, and A(z,)=0. Then

f'(z) (Z—ZO)]]'(Z)—I](Z—ZO)_H_lh(Z)
f(z) (z-2z,) " h(z)
K(z) o
h(z) z-z,
ﬁ:. Holomorphic near z,

f’ . :
Then (z) has a simple pole ®) at z, with

f(2)
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Res(%,zoj:—n :

. . f'(z L L
Conclusion: when we sum the residues of % at all its singularities in
Z
D, we are obtaining the total order of all the zeros of £ in D minus the
total order of all the poles of £ in D.

QED

An interesting corollary of this result depends on a way of interpreting the

!

. f :
line integral of rk At any point z, ey, f(z

,) is not zero and is

holomorphic and not zero in a small disc centered at z,. Thus, there is a
continuous determination of arg £ (z) in this disc. (See the discussion on
page 36.) And therefore, log £ (z) becomes a holomorphic function, with
derivative

%Iogf(z) = I;’((j)) .

Now if we start at some point z, € y with a choice of argf(z,) and
extend that choice continuously as we traverse y, then arg £ (z,)at the

end of the path will be the original choice +2zN, for some integer N.
Then we may write

jiz)dz=logf(z)

£(2)

But of course, log £ (z) =log|f(z)|+iargf(z), so there is no net change

—logf(z)

end of y beginning of y *

in log|£ (z)| and we have
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Z

f B =i(arg£(z))

endofy i (argf(z))

startof y *

Our counting theorem is thus equivalent to

THE ARGUMENT PRINCIPLE

Under all the same hypothesis,

CHANGE OF ARG £(z) AROUND y

27
= NUMBER OF ZEROS OF f IN D

— NUMBER OF POLES OF £ IN D

EXAMPLE: apply this to the holomorphic function P =P(z), where P

is a polynomial of degree n, and y is a large circle |z| =

Then

P(z)=cz" + lower order terms,
so for |z| =

P(z)

=z"(1+small terms).

Let z = Re":
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M = R"€" (1+small terms),
C
so that argP(Z) is approximately nf. Thus, the change in argP(Z)

c
around this circle is approximately 2z n. Thus, the LHS of the argument
principle is approximately n. Thus, we have a second proof of the
fundamental theorem of algebra:

a polynomial of degree n has precisely n complex zeros,
counted according to multiplicity.

PROBLEM 5-1

Recall the definition of the Bernoulli numbers: from Problem 3-4,

In the solution of problem #4 we discover that

Ecoth(zj = iBiz”.
2 2) iw(2k)!

1. Now prove that the Laurent expansion of cotz centered at 0 is

= B, k 2k _2k-1
=y —=£ (-1) 2
cotz ]{Z:;) (2]{)!( ) 2%z
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2. Verify the trigonometric identity
tan z =cotz —2cot2z .

3. Now prove that the Maclaurin expansion of tan z is

4. Prove that

B,,(-1)"" >0 forall k>1.

B,=1 131:_1 132:1 134:_i B6zi
Short list: . 2 . 6 69130 42

B-——— B, =— B, =——""

* 30 Y 66 " 2730

Illustrations of the argument principle:
We do two of these...both to locate which guadrants of C contain zeros
of a polynomial.

e f(z)=2"-6z"+18z"-162z+10
(An example with real coefficients.) Of course,  has 4 zeros.
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First, note that / has no real zeros. There are several ways
to see this. Here’s an ad hoc way: for z e R

f(z)zzz(zz—6Z+9)+9Zz—16z+10

z*(z-3) +(92° -162+10)>0

always >0 always positive since discriminant
=16"-4-9.-10=256-360 <0

We are going to write £ (z)=|f(z)|e"”, where 9(z) stands for an
argument of £(z). We’ll do this on the coordinate axes as well as
on a large circle |z|=R.

|z| =R: Quite easy, since £(Re" )=R"e" (1+small quantity) for

large R. Thus @ ~ 4t, so that as ¢ increases by % 6 increases by

27, approximately.

Real axis: Also quite easy, since £(x)>0 forall x R. Thus, we
actually can choose & =0 on the real axis.

Imaginary Axis: This becomes significant (no pun intended):

f(iy)=y"+6iy’-18y*—16iy +10.

Thus, for y eR, f(iy)=(r"-18y*+10)+i(6y°-16y). We
notice that this is nonzero for y € R, so @ is well defined and
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6y’—16y

tand = —; - :
y =18y°+10

We roughly sketch this, noting that it’s odd as a function of y, so
we can restrict attention to y > 0. The denominator changes sign at
two places, and we note that when the numerator vanishes for a

16 8 :
value of y >0, then y?* = v = 3 There the denominator equals

2
(gj —18-§+10:%—38<0 :
3 3 9

Here’s a sketch of tan@:

den >0 den < 0 den > 0

Starting with
0=0 at

y =0,

note the 0 =0 0=-z
values
of @ at | ﬁ d
crucial

places. T 37

[ ]
[
Y
'
I
|
N
=

num < 0 num > 0

Summary of changes in 9:
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AG=-2rm
AG=0 1 AG=0
>—O—>
N
AG=-2rm

Impose the approximate changes on |z| =R, R large:

I

AG=0 AO=4r

AG

1N

0 AO=4r

These approximate values are good enough, and the argument
principle locates the number of zeros in each quadrant:

0‘2
012
o f(z)=2"+5iz*+7

Same strategy. In this case it’s clear there are no zeros on the
coordinate axes.
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: ) 9
|z|=R: For large R @ increases by approximately 77[ on each

quadrant.

5x*

x°+7

Real axis: f(x)=x"+7+5ix", tanfd=

Graphs of tané

T
0="=
2

9y’ +5y*

Imaginary axis: £ (iy)=9iy" +5iy*+7, tan@=

o="
2

Summary of changes in 9:




Chapter 5: RESIDUES (PART II) 156

—7T
—>—0 ->—

4 4

. Argument principle yields
~ number of zeros per quadrant:

6r 4 2]2
312

MATHEMATICA output:

{{x~ -1.255504501880301" -0.27198147935082784 i},
{x— -1.012461828409084" -0.5403423271892956 i},
{x— -0.8920069996513834" +1.0379290053741679"i},
{x— -0.34036461818177277" +1.0240247108970417"i},
{x— -0.08570449919877836" -1.4126419862113073 i},
{x— 0.44338217546397485" -0.9488109790334857 i},
{x— 0.8038223045822586" +1.1975545074749976 i},
{x— 0.9608045914177918" +0.3811634298839924 i},
{x— 1.3780333758572947" -0..4668948818452832"i},
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PROBLEM 5-2

1. Consider the quadratic polynomial f(z)=z"+iz+2-i. It has

two zeros. Determine which quadrants they are in. (Use the
argument principle, no calculators, no “quadratic formula”.)

2. For any positive numbers a,b,c consider the polynomial
f(z)=2z"+az’ + bz + c. How many zeros does it have in the first

quadrant?

3. Suppose A€ C has Re(4)>1.

a. Show that the equation
e’ +z=41
has exactly one solution satisfying Re(z)=> 0.
b. Show that the solution is real < A is real.

4. Let £ be an entire holomorphic function. Use logz defined by
0 <argz < 2x.Prove that forany R >0

[ £(2)logzdz=2zi[ f(x)dx .

|z|=R
C

We continue with the counting theorem and the argument principle. We’re
now going to derive an especially useful corollary of the results called
Rouché’s theorem. Just for convenience we’ll restrict attention to
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functions holomorphic on an open set containing DU  — in other words,

our functions will have no isolated singularities — they’re simply
holomorphic.

(We continue with the picture and notation from the beginning of this
chapter.)

SECTION B: ROUCHE’S THEOREM

ROUCHE’S THEOREM

Suppose the functions £ and g are holomorphic as discussed above,
and assume that

‘g(z)‘ < ’f(z)’ forall zey.

Then £ and £+ g have the same number of zeros in D. (As always,
counted according to multiplicity.)

Proof using the argument principle: As z traverses y, £(z) varies in

C\{0} and winds around 0 a number N times, where N = the number of
zeros of finD. The assumption
&(z)|<f|(z) forzey always yields a
picture like this: 7 />
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and this prevents £ (z)+ g(z) from gaining or losing any circuits around
0. Thus, £(z)+ g(z) also winds around 0 the same number N times.
QED 1

Proof using the counting theorem: (My favorite proof.) Note again that
the hypothesis |g(z)| <|f(z)| on y implies that both

f(z)#0ony
and
f(z)+g(z)=0o0ny .
The counting theorem thus shows that

i. iafz:#ofzerosoffinD
27l 7f

and

dz = # of zeros of £+ g inD.

1I(f+gy

2midy f+g
So, we need to show these two integrals are equal. That is, that
I (fg) r
y f+g f

dz =0

The integrand equals
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f’+g’_f’_f(f’+g')—(f+g)f’

fv+g (Frg)f
_ g’
(f+g)f
_fg'-gf’ f
A f+g

:(éj. £,
f) f+g

We are thus led to define the function

h(z)= g(7) for z in an open set containing 7 .

£(2)

So, our integrand equals

P
1+8, 1+h
(1+b)'

This quotient of course equals

1+ A
hypothesis, the values 1+ 4(z) lie in the disc |w —1| <1.

160

. Ahal Since |h(z)<1 by
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o . —7T
, ~. Inparticular, we can choose argw to be between -

| y , and % so that logw is holomorphic. Thus, with this

choice the function log(1+ 4(z)) is holomorphic for
. Z near y . In particular,

L 1?;11 az = L%(Iog@ +h(z)))dz=0

because of the fundamental theorem of calculus (Ch3, page 69).
QED 2

Elegant version: This introduces a parameter 0 <¢ <1 to gradually move
from 7 (z) to £(z)+g(z). Namely, consider the function ~ (¢) by

Z+tg d
Z .

27z| f z +tg

Thus, N (t)= # of zeros of £+¢g in D. Therefore, N (¢) is an integer.

But it’s also a continuous function of ¢ because of its representation in
that particular integral form. Therefore, it must be constant. In particular,

N(0)=N(1).
QED 3

ILLUSTRATIONS:
1. FTA once again! Consider a polynomial of degree n:

P(z)=z"+a,,z"" +---+az+a,
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Let D be the disc with center O and radius R. Let

f(z)=2z", i 'R

g(z)=a,,z"" +-+az+a, .
For |z| =R with R>1,
8(2)|<(|a,.|++|a| )R =CR".
Thus, if also R > C, then for |z| =R,
g(2)|<R"=|f(z) .

Rouché’s theorem applies: P = f + g has the same number of zeros in
D as £ =Zz". The latter has n zeros (at 0). Thus, P has n zerosin D.

2. |23 +e?

zZ

z 3 7 .
e For|z]=2, |e =" £e2<8:|z| .50 z° +e” has three zeros in

|z| <2. (z° dominates)

o For |Z| =%,

Z

e :eR”Ze_%:.472... and ‘23‘:.421.... (e’

. . 3
dominates) Therefore, z° + e” has no zeros in |z| < —.
4

Now we begin an interesting investigation of what we might call
“mapping _properties of holomorphic functions.” First, we work an
exercise we could have done long ago — Chapter 2, page 32, when we first
mentioned the Cauchy-Riemann equation:
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THEOREM: Suppose £ is a holomorphic function defined on a
connected open set D, and suppose the modulus of £ is constant. Then
£is constant.

Proof: We're given that |£(z)|=C (constant) for all zeD. If C=0,
there’s nothing to prove, since then £(z)=0. So, we assume C > 0. Write
the hypothesis in the form

(note that or = @)_ That is,
0x Ox

In the same way,

Aha! The Cauchy-Riemann equation is £, =if,, so the second equation
becomes

Re(ifX?):O .

That is,
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Then Y& and % % =

£ f=0.

X

But £ =0, so we conclude £, =0. le,, £'(z)=0 forall zeD. Thus f

is constant. (Chapter 2, page 60)
QED

Next, we have the famous

MAXIMUM PRINCIPLE Let f be a nonconstant holomorphic function
defined on a connected open set D. Then the modulus |f(z)| cannot have
a local maximum value at any point of D.

Proof: Suppose to the contrary that there is a closed disc with
center z, and radius a > 0 such that for all z in this disc

The mean value property of holomorphic functions (Chapter 3, page 83)
yields the equation

f(ZO)_i

=3 joz”f(zo+rei9)a’9 for0<r<a .
T

Therefore,

£ (z2,)| S%IOZ” £z, +1‘ei9)‘a’9 .

Thus,
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0< i[;”( f(zo +1‘ei9)‘—‘f(zo)‘)d6? ,

but the integrand here is continuous and <0 — since its integral is >0, it
must be the case that the integrand is exactly O: thus,

‘f(zo +1‘ei9)‘ =|f(z,) forall0<@<2r .

And this is true for all 0<r<a. Thus, |f(z,+w) =|f(z,) for all
complex w such that |w|<a. Thus, |£| is constant on this disc. The

preceding theorem = £ is constant on this disc. Since D is connected, £
IS constant on D.

QED

MINIMUM PRINCIPLE Let f be a nonconstant holomorphic function
defined on a connected open set D. Suppose that the modulus |f(z,)| has
a local minimum value at a point z, e D. Then £(z,)=0.

Proof: We reason by contradiction, so we assume f£(z,)=0. Then

consider the function 1/.. It’s defined in a neighborhood of z, (since

e
f(z)=0 close enough to z; and is nonconstant and holomorphic. And
has a local maximum at z,, contradicting the maximum principle.
Therefore, £(z,)=0.

QED

Now we are going to discuss functions which are open mappings. This
is a description requiring £ to have the following equivalent properties:

(1) Forevery open set E, the image 7 (E) is open.
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(2) For every point z, in the domain of definition of £, there exist
0 >0 and &>0 such that for all w for which ‘w—f(zo)‘<g,
there exists z for which |z -z | <5 and £(z)=w.

z —_— \/ # ) f(ZO)

Think this way: “f preserves openness.”

EXAMPLE: RS R strictly increasing and continuous

NONEXAMPLE: RSR

NONEXAMPLE: constant function

SECTION C: OPEN MAPPING THEOREM

OPEN MAPPING THEOREM Every nonconstant holomorphic
function defined on a connected open subset of C is an open mapping.

Brute force proof: Let £(z,)=w,. Since the zeros of f(z)=w, are
isolated, there exists ¢ >0 such that in the closed disc

D

2

={ZHZ—ZO| S5}
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f(z) is never equal to w, except at the center. In particular, on the circle
C, =dD, the continuous function |£(z)-w,| is
positive. Since C, is closed and bounded, there exists a

0 ' positive lower bound ¢ >0:

Ne

AP ‘f(z)—wo‘z(s* forall eC

Z

2

Now we shall prove that for any w such that
£ | ’
|W - W0| <—, ugy
2
w =f(z) forsome z e D, . This will finish the proof of the theorem.

Tothisend define g(z)=f(z)—w,anonconstant holomorphic function
defined on an open set containing DZO. Two observations:

1. for ZECZO, ‘g(z)‘>%.
(Proof:
‘g(z)‘:‘f(z)—wo +(WO—W)‘
>|f(z)-w,|~|w, -w]|
25—|W0—W|

£
>&——

&
5 )

2 \g(zo)\:|wo_w|<§ .
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Since D, is closed and bounded, the continuous function ‘g(z)‘ attains
its minimum value at some point of DZO. The combination of (1) and (2)
shows that this minimum is not attained at any point of C, , and we

conclude that it is attained at a point z in the interior of D, : |z —z,)| <5 .

Therefore, the minimum principle = g(z)=0. Thatis, f(z)=w.
QED

PROBLEM 5-3

For this problem assume the Gaussian integral from vector
calculus:

fie‘fzdt —Jr.

Apply the Cauchy integral theorem to the function e and the
path

v/
i

4
.Re

0 R
a. Take great care in showing that the line integral je’zzdz along

the circular arc tendsto 0 as R — .

b. Conclude the Fresnel formulas

j;cos(xz)dx :j;sin(Xz)dX:\/é :
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OPEN MAPPING THEOREM bis

We continue discussing this terrific theorem, but now we give an
Elegant proof: We begin this proof with the same setup as we just did,
but now we use the counting theorem instead of the maximum principle
as our main tool. We have £(z)=w,, but now we let N = the number of

times f(z)=w, at z = z,. That s,
N = the order of the zero of £(z)-w, at z, .

Just for clarification, this means that the Taylor series of £(z) at z, has
the form

f(2)=w,+cy(2-2,)) +cy,(z-2) " +-,

where ¢, = 0. In other words,
(ZO)

< f (z
£

%

0 1

,)=0 for1<k<N-1,
2,)#0 .

The counting theorem (page 146) =

1_ j f(Z) dz =N .
27i c f(z)-w,

(We've applied the theorem to £ —w, rather thanto £.)
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all points in
° i —f> :’ f(CZU) are

0 /  outhere

= & r &
»

77 | radius &

Now we notice that if lw —w,|<e, then £(z)—w is never 0 on C,,» SO
the counting theorem again implies that

the number of times

iji j f(z,()z—)wdzz Flz)=w for
C,

|z —z|<6 .

The left side of this equation is a continuous function of w for
lw —w,| < &, since the denominator is never 0 for z € C,, - But it's an

integer! Therefore, it is constant! And thus equal to its value N at z,.

CONCLUSION: for |W—WO| < ¢, the equation f(z)=w has exactly N
solutions for |z — z,| < § (counted according to multiplicity).

QED bis
Notice how much better this result is than what we previously knew!
Before we needed to assume |w —w,| < % , but now only that [w —w| < &.

But the better aspect by far is that we now know the number of solutions
of £(z)=w . Not merely “at least one,” but now exactly N.
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SECTION D: INVERSE FUNCTIONS

Now we focus all our attention on the case in which £(z,)=w, just
one time, or N=1. Then for |w —w,| <& (in our notation), there is one
and only one z such that

f(z)=w and |z-z|<§ .

Rough sketch:
curve where‘f(Z) - WO| =&
&
f

—_—
BIJECTION BETWEEN

D THE SHADED

z, REGIONS

Thus £ is locally a bijection between a neighborhood of z, and a
neighborhood (a disc) of w,. In this situation we may say that there is an

inverse function £ defined near w, giving points z near z,:
f(z)=weorz="(w).

Thus we have easily established an inverse function theorem for
holomorphic functions! We are now going to analyze this .

First, suppose that g is a holomorphic function defined near z,, and try
to apply the residue theorem to the holomorphic function
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So we assume g is holomorphic in a neighborhood of the closed disc DZ0
and that |w —w,| < £. Then the function we are considering has just one
singularity in D, and it is the point (unique) where £ (z)—w =0. This is

a simple pole, so we calculate the residue to be

The residue theorem gives the result

1 18(E)f'(¢) ,_
— é[ O 46 =g 2)
In particular, when g(z)=z we obtain

1 (<)
27 J f(¢)-w

Zy

ad¢ =z .

That gives us an “explicit” formula for £

4 1 ¢r(¢)
d (W):Zﬂic F(Q)-w

Zy

dé| .

This formula alone shows that £ is holomorphic!

More about this later, but now we obtain the Taylor series for £,
centered at w,. We simply note that for ' <C, ,
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‘f(()—w0‘>g ,

so that for |w —w,| < ¢,

S

T modulus < 1

and we have a geometric series expansion

1 oz (W—Wo)n

£(§)-w Zo(f(g“)—wo)””'

Therefore,

Notice that, of course, ¢, = z,.
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PROBLEM 5-4

1. Apply the Lagrange-Biirmann expansion theorem (it’s

coming soon) to the function
f(Z) =1-e7,

with £(0)=0.

Also solve the equation explicitly near z =0, w =0, and write

down the Taylor series for £ (w).

Compare these results to compute forall n>1

1
Res| ———.0

(l—e‘z)n ,

. From page 122 in Chapter 4 we have the formula

j'SCX dx=—"— for0<a<1.
x+1 sinarzw

Manipulate this formula using real change of integration
variable to find a formula for

Bx

I—

“cosh x

dx for-1<f<1.

T
Express your result elegantly as =
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Continuation of the formula for £
We are still in the situation where £ is holomorphic in a neighborhood of
z,and £(z,)=w, and f'(z,) = 0. We’ve seen that £ has a holomorphic

inverse £~ mapping w, to z, and defined in a neighborhood of w,.

Moreover, if g is holomorphic in a neighborhood of z,, then

. 1 &)f'(¢)
£ (w))= j' ac. | . )
s\ W)= | Fomw 74 )t
Cs,
By applying geometric series to expand 1 In a power series
f(&)-w

centered at w,, we then obtain

where

and for n>1
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f' d 1

(F-w,)"  dzn(f-w,)

so that we can apply our so-called “integration by parts” residue formula
from page 123, Chapter 4 to write

g'(z)

cane{ n,zoJ :
n \(£(2)-w,)

The result we have obtained goes under the name of the

LAGRANGE-BURMANN EXPANSION

EXAMPLE: f(z)=ze”, £(0)=0

As f'(0)=1, £ isindeed one-to-one near 0, and our results apply.
(Preliminary: f'(z)=(1-z)e *,s0 f'(1)=0, S0 £ is not one-to-one
in any neighborhood of 1. So, we’ll try 6 =1 for the radius of the circle
in the z —plane.)
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For |z|=1 we have |f(z)=|e”|=€"">e", so we can take any

; 0<e<e™ forour radius in the w —plane.
Je,

. 1 f | A

0 EEEE— -. 6 [ X=

& ) ~d Ve d . —l
¢ _/ radius e
e

Then the Lagrange-Bulrmann coefficients for g(z)=z and n>1 are

radius 1

c :lRes 1 OJ

" n (Ze‘z)”’
=1Res en: ,Oj
n z

1 . n : : nz
=— (coeff1c1ent of z"" in the Maclaurin expansion of e )
n

n-1

- n(n-1)!

Thus, |w]|< 1 =

e
o nn—l
)= —w"
( ) ,;1 nl
First few terms:
8 5 &
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We fully expect this series to have radius of convergence ™. We can
verify this directly by using the ratio test:

REMARK: It appears that the above result is valid for |w|<e™, but that

it also should apply in the limit with w € R increasing to e, and giving
the expected z =1. That is,

n-1
n o

1=%
n=1

n!

It is rather easy to verify this result, but

CHALLENGE: Verify this equation directly. (I don’t know how!)
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PROBLEM 5-5

Let 1 <a < be a fixed real number. This problem is concerned
with trying to solve the equation

wz’—z+1=0
for z, where the complex number wis small. For w =0 we

obtain the unique solution z =1, and we want our solution to
remain close to 1 for small ‘W|

To fit the Lagrange-Burmann framework we define

f(z) _z-1 for z near 1,
Z&'

where we use the determination of z* given by

z* =exp(alogz), with -7 <argz<r .

_1 a-1
1. Prove that for |W| < % )
a

n=1 11 H_l

f-l(w):uil[ " ]W" .

2. For |w| sufficiently small, 7' (w) is close to 1, so we can
define log(f‘1 (W)) close to 0. Then calculate all the ¢,’s in

the Maclaurin series

log(£7(w))= gcnwﬂ .




Chapter 5: RESIDUES (PART II) 180

SECTION E: INFINITE SERIES AND INFINITE
PRODUCTS

Now we continue our theme of using the residue theorem in various ways,
first by a discussion of evaluating certain infinite series. We shall discover
a prominent role played by the function zcotzz.

This function is holomorphic on C except for its poles at the points where
sinzz ... namely the integers n € Z. At each such 1 we have

CoS7zz
Res(zcotzz,n)=Res| 7— n
sinzz

7 coszn
=—

7t COSmTn
=1.

We’re also going to require a couple of important estimates. We’ll use the
standard coordinate representation z=x +iy .

Re(z)=integer+4: Since cotzz is periodic with period 1, we may as

1 .
well assume Z=E+I_V . Then

T ;
cotrz = cot[E + myj

=—tan(ziy)
_sinziy

cosziy
_isinhzy
coshzy
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SO

|sinh 7z y| o1

cotrz| =
coshzy

Imz = y with | y| large: From Problem 1-7, page 10 we have

—— lcos(zx +7iy)|

‘Sin(ﬂ'X + ﬂiy)‘z

_ |cosh(izx - 7[}/)‘2
 fsinh (izx -7y )|

_sinh* 7y +cos® rx
sinh? 7y +sin’ rx

<sinh27zy+1
~ sinhzy
1
sinh? 7y
<2 (say) ,

=1+

since sinh® 7y —was | y| —> .

We are going to be interested in this rectangular path, which we call y,:
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iN
* <
—(N-I-%)JT. (0) Q(N-I-%)ﬂ'
| T
>

@
—iN
For large N we have for all z e y,
cot zz| < J2,
so that

|7Z'COt7Z'Z| <5.

Now consider any holomorphic function £ on C with finitely many
isolated singularities, which we’ll designate generically by ¢ .

Furthermore, suppose that £(z) — 0 as z — oo at a rate at least as fast as
2] ™

‘f(z)‘ <L for large |z| .

2
|z

We then apply the residue theorem to the product

f(Z)iZ'COt Tz
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inside y,, for large N, large enough to contain all the singularities of £ .
We obtain

jf( Jzcotnzdz = Y. ReS(f(Z)ﬂ'COtﬂ'Z,Z)

27l N z inside Yy

= iRes(f(Z)ﬂ'COtﬂ'Z,H)-l— > Res(f(z);rcotﬂz,g) .

¢ #integer

On the left side of this equation we have an estimate

C
< — « 5 «length of y,

(z)rcotnzdz

SC

+ ((2N+1)7 +2N)

—>0asN—>w.

Thus, when N — oo we obtain

—IlmZRes( (z )7Z'COt7Z'Z,11)+ > Res(f(z)ﬁcotﬂz,g“)

N—o ¢ #integer

Therefore, we write briefly

* | Res(f(z)zcotzz,n)= — Y Res(f(z)rcotrz,()

n=—w ¢ #integer

EXAMPLE: f(z) = where we assume ia ¢ Z. Our conditions

2P+ a3t

are met, so we obtain immediately
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2 1 i ]
5 :_Res(ﬂ'COtﬂ'Z Iaj_Res(ﬂ'COtﬂ'z —Iaj

) )
s 11° + &° z5+a° z5+a°

_mcotzia 7 cot(—zia)
2ia —2ia
B mrcotria

1a
cosria
lasin ria
cosh za
laisinh za
srcosh za
asinhza

=—7T

=—7T

Thus,

3 1 rwcothra
S nt+a a

P.S. We can let a — 0 to obtain

I | rcothza 1
ZZ 2 7 2
1N +a a a

_mcoshra 1
2

~ asinhza a

_ macoshra—sinhrza
B a’sinh za 1
_ macoshra—sinhrza

na’

and I’Hopital’s rule gives progressive fractions for a — 0:
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racosh za—sinhza

)
na’

scosh za + w*asinh ra — rcosh za
2 )

3ra
wsinhza
3ra ’
7’ cosh za
3

s
3

Thus, we find for a > 0,

REMARK: We’ll soon obtain this last result more easily, and at the same
time

and all the rest:

Now we apply ¥ to the holomorphic function
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where k is any positive integer. Thus, we obtain immediately

i Res[M,nj:O :

ZZk

For n#0 we have simple poles &), so we obtain

1 _ _Res(ﬂ'COtﬂ'Z ,0) |

2k 2k
n#0 11 Z

Since 2k is even, we can also write

i _ _lReS(ﬂ'COtﬂ'Z ’0) |

= n 2 z*

The function in question has a pole of order 2k +1 at 0, which would
make it difficult to compute the residue. However, we have a formula
already for the Laurent series of cotz! It’s from Problem 3-4:

o]

cotz=> Bi(—l)k 22k ,2k=1 (Bernoulli numbers)
k:o(Zk)!

Thus, the right side of the formula we have obtained equals
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wcotrz
2k

—1 « coefficient of l in
2 z 4

= —% . coefficient of z**™ in zcotzz
:_1 . ﬂi(—l)k 2k _2k-1
2 (2k)!

Thus, we have derived

i 1 _ [BZk (_1)k_1 221(1]7[21(
2k

(2k).

(Notice that this shows in another way that B,, (—1)1(_1 >0 fork>1.)

DEFINITION: the infinite series on the left side are special values of the
Riemann zeta function:

é’(z) = Z—Z converges absolutely if Rez >1.

(In this formula n™* =exp(—zlog ) and we use logneR.)

SOME VALUES: from page 151 we compute

72_2
£(2) =

72_4-
£(4) =90
5(6)= 945
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8

5(8)= 9250

10
T

§(10)=33zss

REMARK: The numbers ¢(3),4(5), etc. are not well understood. A
startling result was proved by Roger Apéry in 1979:

¢ (3) is irrational.

In that regard
> 1 7
— = _=-7(3),
;(Zk“)g ¢(3)

but we can actually compute

> () _~ (we'll this soon)
= . (WE rove tnis soon
o (2k+1)" 32 P

Another calculation: We now apply our formula to the function

B 1
£(7)= z(z-a)’

where a is any complex number other than an integer. From ¢ we
obtain immediately
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$ RQS(M J :‘RQS(M""}

e Z(Z—ar)’l7 z(z-a)

wcotra

= @ —

d

Therefore,

wcotrz O) B _7Z'C0t72'c'1
’ a

1
;n(n—a) +Res[z(z—a)

This remaining residue has a pole of order 2, but we can write

Z(zl_a) =(Zia_§j§

S0, we obtain
1
Res cotrz ol=t Res(ﬂ'COtﬂ'Z ,Oj—Res(ﬂCOtﬂz ’Oj
Z(Z —a) a z—a z
I I
1 0, because
; it’s an even
function
B B 1
aZ
So, we have
1 1 _7rCOt wa

mn(n—a) a a
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DIFFERENT VIEWPOINT: regard this as a formula for cot. Thus

1
rCotra=—+), a

a mon(a-n)
Adjustment:

1 . X a
rcotra=—+I1im
a No=, o n(a—n

n=0

1 .. N (1 1
=—+Ilim > | —+ j
a No»ep,N\n_a—n

n=0 \ odd

:1+I|m i 1 J

a N>»,-Nx\a—n

n=0

= I|m
N_”on -N\d— 1N

We rewrite this formula as

N

= 1
rcotrz= > ——

n=-w Z — 11

with the assumption that z # integer and the doubly infinite series is
taken in a “principal value” sense

. 1
lim > ( .
N=o o N\ Z—n

This formula is a dramatic display of two things about zcotzz:

1. simple pole at each n with residue 1,
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2. periodic with period 1.

(If we knew nothing about cot we would be tempted to concoct the infinite
series as a function satisfying these two conditions!)

PRODUCT REPRESENTATION OF SINE:
We begin with the preceding formula,

N
rcotrz =lim )
Now, Nz —n

This is valid for all z e C\Z. First, we rewrite it as

1 . N 1
rcotrz ——=I1im
zZ No>*p-NZ-—n

n=0

L A | N1
=lim +>
Nowp,1Z—n nms1Z+n  (changedn
. 1 1 to—n)
=> +
n=1\ Z — I Z+1Nn
o 1 1
= Z —

n=I\ N+ Z n—z

We prepare to integrate by first noting that the left side equals

rcoszz 1 d .
——————=—(logsinzz-log z)
sSinrtz z dz

d Sinzz
=—-Iog

dz Z

d SiInzz
=—TIog ;

dz 7wz
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Sinzz

we've supplied an extra 7 so that not only is the quotient
nZ

holomorphic near 0 (removable singularity), but also equals 1 at z =0.

We now integrate from O to z, avoiding all integers except 0. We obtain

log N7z _ i{log(l +£j+ Iog(l —iﬂ :
nzZ n=1 n n

There’s a great deal of ambiguity in this “equation,” all having to do with
the fact that the choice of logarithm involves additive constants 2N i for
integers N. For z =0 both sides are 0 (to within 2N i).

Notice, however, that for large n we have terms for which the principal
value of log may be used, and the corresponding Maclaurin expansions

then give

log 1+2=2-2 4
n) n 2n ’
2
VA VA Z
log|1—-—— |=——-— e,
J n n 2n’
so that the sum equals
2
VA
0——+
1]2

and the series converges.

Now we exponentiate, thus wiping away all ambiguity, since " =1.
Thus, we obtain
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SINTZ . N zZ Z
=lim[]|1+— || 1-—
wZ N—o0 1 n
N Z2
=lim[]|1-—
N—)oonzl nz
2
® Z
— II 1_n_7
n=1 n

Therefore,

SINTZz :ﬂ'ZH(l—?

n=1

|

Euler product
for sine

This amazing equation displays elegantly that sinzzz equals O precisely
when z € Z, and “factors” sinzz as if it were a polynomial divisible by

z—nftorall neZ.

1 : :
When we let z = 2 we obtain the equation

so that

or we might write
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| u
°
o
°

>
4

SHELS

3
2

N |-
S w

a formula that has the name Wallis’ product (1655).

A brief treatment of infinite products in general.
For given complex numbers c,,c,,--- we want to define

I1c, I|ch

n=1 N*)CO

We must take reasonable care in discussing this situation.

Casel  Assume that for all n, ¢,#0. We then institute the

requirement that the limit we have given be nonzero. It then follows that
necessarily

limec, =1 .

11—>0

: : 1
(Converse is false: consider ¢, = —— so that Hc —— —>0.)
n+1 N+1

We can then compute that
N N
log[[c, =2 logc,
1 1

and can assume that for large n we use the principal determination for
logc,. Then we also have the
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Proposition: Assume ¢, =0 for all n, and assume ¢, — 1. Then []c,

n=1

exists and is not 0 < > logc, converges.

n=1

General case:  Assume only that

limc, =1 .

1—>0

Then for sufficiently large n,, ¢, # 0 for n, < n <o, and we can use Case
1. So, we say that the infinite product

converges if

and we define

0 1, 0
HCn:( an( H Cn] b
n=1 n=1 n=n+1

(Thus, ﬁcn =0« some ¢, =0. Therefore, convergent infinite products

n=1

have very obvious zeroes!)



Chapter 5: RESIDUES (PART II) 196

PROBLEM 5-6

The technique described at the beginning of this section, page
180, can be applied with zcotrz replaced byrcsczz. Same

assumptions on f. It's easy to show that 7 cscrzis bounded
on y, so the line integral on y, tendsto 0 as N — « . You need

not prove those facts.

1

(z-a

where a is not

3 )

Apply all of that to the function £(z)=

an integer, and thus find the sum of the infinite series

- (-1)"
g
n—(n—a)
Now set a =— and thus calculate
= (=1)"
¢ (1)
=0 (2n+1)
PROBLEM 5-7

® 1
1. Calculate ]_[[1——2).

n=2 n

= (n’+1
2. Calculate H{Iz :
n=2\ 11 — 1
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o0

3. For |z| <1 calculate H(1+22n

n=0

4. Prove that forall zeC

coswz =[]
n=0

).

HINT: easy if you
are clever!




CHAPTER 6
THE GAMMA FUNCTION

This chapter introduces one of the most important “special functions” in
all of mathematics. It is always called by the capital Greek letter gamma,
just as a historical accident.

SECTION A: DEVELOPMENT
Here’s what I’ll call a basic definition: I" is the function defined by
0) T(z)=[ e‘t”'dt forRez>0.
In this definition we use the power ¢ with logs € R.The restriction

on the real part of z is to insure that the integral is (absolutely)
convergent near ¢t =0, as

o

(The convergence for large ¢ is assured, as e* dominates any power
of t.)

t|dt = [ t*"'dt <o <> Rez >0 .

(1) Recursion |I'(z+1)=2zI(z)| The proof is an easy exercise in

integration by parts:

[(z+1)= —jgotzd(e‘t ) =—t"e”" ] +[" e‘td(tz)
=0+ ezt "dz

=zI(z) .
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(2) I(n+1)=n!forn=0,1,2,--- Follows from (1), since

r(1)=["e dt=1.

(3) Analytic continuation The recursion enables us to define I"(z) for all
z € C except 0,—1,-2,--- . For we can define

F(Z)zM for Rez > —1, etc.
z

And then (1) continues to hold for all z except 0,-1,-2,---.

(4) Poles Thus, for example we see that I" has a pole at 0, and
Res(I",0)=1. Thus I" is a holomorphic function on all of C except

for poles at 0,—1,-2,-3,---. It’s given by the integral (0) for Rez > 0.

(5 Another method for analytic continuation For Rez>0 we
have the formula

I'(z)= jol et 'dt+[ et drt.

The second integral is actually an entire holomorphic function, since
t >1 allows any value for z. The first integral can be rewritten, still
for Rez >0, as

o (-1)"¢”
[ et dt = ij—( ) t”dt
n=0 H'

_ = (_1)” 1, z+n-1
_g—n! [ e7 " dt
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n 1
$ (-1) 1 -

— nl z+n

—~ nl z+n

We have used Rez>0 throughout that computation, but the
expression on the last line needs no such restriction! Therefore, analytic
continuation gives

= _1n 1 Ot g z—
F(z)zga(n!) Z+n+j1e tdt

valid for all z e C except 0,—1,-2,---. And we immediately read off
the residues at these (simple) poles:

Res(T',—n) = (_,jl)”

forall n=0,1,2,---.

SECTION B: THE BETA FUNCTION

(6) DEFINITION: For Rea>0 and Reb >0 we define

reek upper_, B(a,b) = 2J/2sin* cos™ 0d6 .

case beta

Change variable sin@ = /¢ to get also

B(a,b) =t (1-¢) dt .
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11
Note that B| —,— |=7 .
2 2

(7) Beta in terms of gamma
In the integral formula for " replace ¢ by x* to get

I(z)=2f e x**'dx for Rez>0.
Then we multiply

C(a)l(b)=4] e x*dx | e G
=4[ e y*dy « | € 2y
2

dummy change Fuiln14‘J‘ I e X yzalebeldXdy .

Now employ polar coordinates x = rcosé, y =rsiné, and the
calculus formula dxdy = rdrdé, to get

.yh

C(a)T(B) =4[ [ e 7 sin ™ 6 1 cos™ * 6 rdrd
=2[72sin* 9cos™ " 0d6 « 2[ e r* P dr
=B(a,b)l(a+b) .
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Thus,

That is, from (7),
ngoe"‘zdx —Jr .

or in other words,

[ e dx=r

(9) Another amazing formula Now we assume 0<a<1 and we take
b=1-a. Then

['(a)l(1-a)=B(a,1-a)
:Zj;%sinz"*‘1 gcos' ™ do
= 2[72tan*" 06 .

Now change variables:

¢t =tan@, so dt =sec’ ¢9d¢9=(1+tan2¢9)d6?=(1+t2)a’0 ,
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and we find

dt
t’+1
aY,
X T g
x+1 2\/;
a-1

o X
= d.
IOX+1 *

I'(a)[(1-a)=2[ t*"

=(1 .7[ (page 122, Ch4)
sinrza ’

All functions in sight are holomorphic, so we obtain this formula not
just forreal a, 0 <a<1, but also

T

F(Z)r(l _Z) B Sinrzz

for all zeC, z#integer. Notice that the poles of

- at
SiInzz

z=1,23,--- come from the factor I'(1-z), and its poles at

z=0,-1,-2,--- come from the factor r(z). We also retrieve the
residue calculation for z =—n, where n=0,1,2,---:

Res(I'(2)T(1-2),~n)= Res(sm’;z ,—nj ;

Res(I'(z),—n) «T'(1+n)= ! =(-1)";

COSmn

Res(I',—n)= (_1|) ,asin (5) .
n!
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(10) F(z) is never 0 (follows from (9)) Therefore,

Is an entire holomorphic function and has zeros

1
r(z)

only at 0,-1,-2,---, all of which are simple.

SECTION C: INFINITE PRODUCT REPRESENTATION

We begin with the original definition for Rez > 0:
[(z)=| et "dt .

We use the basic calculus fact

. tY
e‘=lim1-=—| .
n—>0 n

We skip the (rather easy) verification of passing the limit across the
integral sign, so here’s what we find:

n—w n

I(z)=lim j;£1—ijn tdr

Let n be fixed and change variable with ¢ = ns:

s (1 —ij" tdt = [ (1-s)" (ns)" nds

- o [[(1-s) (s) " ds
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=n’B(n+1,z)
,T(n+1)I(z)
[(n+1+2z)

()

[(n+1+z)

=n’n!

1
(n+z)(n-1+z)(1+z)z

=n’nl

Therefore, we conclude that

n’n!

r(z)= i z(1+2z)-(n+z)

This formula has been derived under the assumption that Rez >0.
However, the left side is holomorphic for all z except 0,—-1,-2,---, and it
Is possible to prove the same is true for the right side. Therefore, the
principle of analytic continuation implies that formula is actually valid for
all z e C except the nonpositive integers.

This formula is not quite an infinite product, and we now show how to
arrange it as such a product. So that we don’t have to continue to worry
about the poles, let’s rewrite it this way:

1 Iimz(1+z)---(n+z)
[(z) = n°n!
., 1+z 24z n+z
:Ilmn o 7 o ° cee
n—0 1 2 n

i n z
=limn?’z 1+— 1.
H( kj

=00 k=1
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Almost there! However, n~* has no limit as n — oo, nor does that finite
product. In fact,

© Z
1+—
fi(1+%]
diverges, because the infinite series
Z
log| 1+—
5 g( kj

diverges. This is essentially because Iog(l + %) z% for large &, and the

: : 1 .
harmonic series Z; diverges.

(Example: ﬁ(1+%j:2-g-§---n—+1:n+1—>oo. But it’s
k=1 n

interesting that alternating signs give

O P
HL“ k J_Z 2 3

so that

k=1 k

ﬁ[1+(_1)li=1.)
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This divergence can be fixed by multiplying the &™ factor by e 7 For

2
we have the Maclaurin series (1+g)e‘g:1—%+---, so that

2 2
(1+ j T2 and the series >’ z — converges.
k 2k 2k

Thus, we obtain

—zlimn < ][ 1+Z |e7k « [T
r7) z!ﬂl@n ll—[l(1+kje I1e

10 k=1 k=1

_ zlime M2 oan) ﬁ[“_kj T

1n—>0 k=1

=zlime*'™" . ]ﬁ[e%‘ . ]ﬂ[(1+%)e%‘

Now we use the classical “Euler constant,” also called the “Euler —
Mascheroni constant,”

n—>0 n

: 1 1
y=lim 1+5+---+——Iogn :

We’ve therefore derived the infinite product we were seeking:

L e 7
r2) ,,1(1*17)

Personal note: | first learned about I"(z) around 1960, from studying the

masterful A Course of Modern Analysis by Whittaker and Watson, 1902.
Their Chapter XII starts with the formula we’ve just derived as their
definition of I'(z).
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P.S. y=0.5772157... and no one knows whether y is a rational number!
Its decimal expansion has been calculated to over 29 billion digits!

PROBLEM 6-1
1. Prove that I""(1) = [ e ™" logtdt .
2. Provethat T'(1)=—y.

T

3. Prove that for all nonzero real y, 1“(:‘;/)]2 =

ysinhzy

SECTION D: GAUSS’ MULTIPLICATION FORMULA

We begin with the infinite product representation of given at the

1
r(z)
end of the preceding section:

1 —ze" | (1+£je%
I'(z) pole’ n

Then compute log of both sides, producing

—logI'(z) = Iogz+yz+i[log(1+%j—%j ;

n=1
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we need not specify which values of log we are using (except that the

convergence of the series requires Iog(l + ij to have limit 0 as 7 — o0).
n

The reason is we now differentiate with respect to z, removing all
additive constants:

_(IogF(Z))’=§+7+i( 1 _lj

n+z n

n=1

One more derivative produces
" 1 1
(logT'(2)) ==+

* zz(mlz)z |

Rewrite this as

Y % (IogF(Nz))" = Z#

We also obtain from ¥ that for any integer 0< kA <N—1
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logI’ z+§ ":i ]j -
(et S

% % % (IOQF(Z+§DH y !

mO(mN+k )2 '
+z
N

Therefore,

Observation: the integers mN+4k for m>0 and 0<kAk<N-1 are
precisely the integers n >0 counted exactly one time. We conclude that

(logT'(Nz)) = Nzlilog [F[z + %D] .

m=0

Integrate twice to obtain

N-1 k
logT'(Nz) = Iog(F(z+—D+c zZ+c
; N 1 2

for some ¢, and ¢, both independent of z.

Now you may finish the development:

PROBLEM 6-2

N-1 k
1. Prove that I'(Nz) = CEC'ZHF[Z-I-N] .

k=0
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2. Now replace z by z+1 and then divide the two equations.
Conclude that

e =NV,

N-1 k
[(Nz)=cN"]l| z+— | .
k=0 N
1 .
3. Now let z =— to obtain
N

_ vl L
1_cNHr[N].

Jj=1

4. Rewrite in the form

5. Multiply to obtain

el Zlel1- 2L
1_ch[r(N)r[1 N].

j=1

6. Conclude that

8. Therefore, show that
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9. Therefore, conclude

This is known as the Gauss Multiplication Formula.

PROBLEM 6-3

When & =2 we call that result the Gauss duplication formula

1
r(2z)=—2" zr(z)r[mlj .
2 2

Show that if z is a positive integer, then this formula is elementary

if we know F(%) = \/;.

SECTION E: ANOTHER REPRESENTATION OF I’

Again, we work using the fact that Is an entire function of z.

1
r(z)
Hermann Hankel, a contemporary of Riemann, found an integral

: 1 . N
representation of = valid for all z. Here is his method.

Let z € C be fixed. Consider the holomorphic function of w given by
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f(w)=€e"w™, where -z <argw <r .
That is, we are using the principal value of argw . Then

‘f(w)‘ = ") ‘W_Z

so £ tends to 0 exponentially as Re(w ) — —oo
and Im(w ) remains bounded.

As aresult, if ¥ is any curve of the following sort,

then we can perform the integral

I(Z):zziﬂi e"wdw .

Here is the result that we are going to prove:

THEOREM:

1 1
— w —Zd
[(z) 2ri ) erwdw

for any such curve y.
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REMARK: This terrific result displays the entire function in terms

1
I(z)
of the entire functions

-z —(Iog W)Z

w =€

are both entire functions.

Thus I(z) and

1
r(z)

Proof: It suffices to give the proof for Re(z)<1 thanks to analytic

continuation. Cauchy’s theorem and the exponential decay of e" as
Re(w)— o show that the integral I(z) is independent of the choice of
v . Therefore, it’s up to us to choose a convenient y . Let & >0 and choose
y =y, as shown:

oe

Then

27il(z) = f cedw [, dw+ fo cdw

—o0
argw=—rx argw=n

The middle of these three integrals is

j e“w idw .
‘W‘:E

We now show this has limit 0 as ¢ — 0: first, e” certainly has limit 1.
The crucial termis
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W—z — e—zlogw
_ e—(X+iy)(Iog e+ilogw) ’
SO
‘W—z :e—xlogg+yargw
=g e’
<g¥e’" .

Thus, this middle integral is bounded by a constant times & *« 27ze — 0
(since x <1).

Therefore, as I(z) doesn’t actually depend on &, we can let & — 0 to find
that

27Z'iI(Z)= T e"w i dw + T e"w dw .
arg;t(;o:—ﬁ arg [?V:ﬂ'

Let £t =—w . Then

o0
argw=—r arg

27il(z) = ? e ‘e (—dt)+ T e'e ™" (—dt)
0
_ J’i e—te—z(logt—iﬂ) (—dt) n J‘(:O e—te—z(logt+iﬂ) (—dt)
— J':’ e—te—zlogt (eiﬂ'Z . e—izrz )dt
=2isinzz| et dt

=2isinzzl'(1-z) (since Re(l—z)>0) .

Therefore,
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QED
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