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Abstract—Multi-goal motion planning under motion and sen-
sor uncertainty is the problem of finding a reliable policy for
visiting a set of goal points. In this paper, the problem is
formulated as a formidable traveling salesman problem in the
belief space. To solve this intractable problem, we propose an
algorithm to construct a TSP-FIRM graph which is based on the
feedback-based information roadmap (FIRM) algorithm. Also,
two algorithms are proposed for the online planning of the
obtained policy in the offline mode and overcoming changes in
the map of the environment. Finally, we apply the algorithms
on a physical nonholonomic mobile robot in the presence of
challenging situations like the discrepancy between the real and
computation model, map updating and kidnapping.

I. INTRODUCTION

The multi-goal path planning objective is to guide the robot
to visit a sequence of goal points while the traversed path is
optimized. These goal points have the main role in the plan-
ning and are representative of the environment. For example,
they can be points of a structure which should be inspected
[1], parts of an environment containing important information
of it [2] or they can be positions where a service robot
should do its tasks [3]. Many problems, such as environment
exploration, search, inspection and coverage can be modeled as
a multi-goal path planning problem. In this paper, we assume
background information such as a prior map, semantic map or
a layout of the environment is available to help the robot.

Many studies have accomplished on methods of solving and
modeling robotics problems as a multi-goal motion planning.
Reference [4] uses an improved self-organizing map-based
algorithm for the TSP in the polygonal domain. In [5], a
generalized traveling salesman problem with neighborhoods
is adopted. In [6] the coverage problem is modeled as a
multi-goal path planning problem in an environment with
incomplete prior map information. Reference [2] uses the
multi-goal motion planning for the environment exploration.
Despite the much work on the topic, they mostly focus on
finding a short and obstacle free path, and neglect uncertainties
in the motion planning. This is while many real robotics
problems are involved with uncertainties and ignoring them
may cause poor results or even failure in many applications.

In this paper, we take into account the motion and ob-
servation uncertainties in the planning. Motion and sensor
uncertainties transform the motion planning in the state space

to a challenging sequential decision-making problem in the
belief space where the state of the robot is available as a
probability distribution function over all possible states. The
presence of uncertainty leads us to planning in the belief space
rather than state space. In [7], the path planning and resource
allocation under uncertainty is considered, but it is limited
to the discrete space. Reference [8] adds auxiliary nodes to
the vicinity of goal nodes to reduce the uncertainty in the
multi-goal path planning, but the uncertainty on the edges
and the replanning ability are ignored. Hence, we model the
multi-goal path planning problem as an asymmetric TSP in
the belief space where some background information about
the environment is available. However, solving this problem is
notoriously difficult and intractable, because the path between
two edges is not the direct line connecting them, edges cost
are not deterministic, and finding the path between each two
goal nodes needs motion planning in the belief space.

In order to solve the problem, we utilize the Feedback-based
Information RoadMap (FIRM) algorithm proposed in [9], [10].
FIRM is a motion planning algorithm which formulates the
problem as a Partially Observable Markov Decision Process
(POMDP) framework and helps to obtain a policy for driving
the robot from an initial belief to a target belief. In [11] FIRM
is implemented on a physical robot, and they have shown
that the FIRM outperforms other motion planning algorithms
in the belief space. By using FIRM a graph is obtained,
called TSP-FIRM graph, which helps for decision making
and obtaining the best policy for searching the goal points
using background information of the environment. Then, we
propose an algorithm for executing the obtained policy online.
Another important challenge that the robot faces in the online
mode is the necessity of online replanning when the initial
information changes owing to finding new obstacles or the
robot’s belief changes due to factors such as deviation from
the planned path, missing observation causing high uncertainty
and kidnapping. Therefore, we propose some methods to
overcome these situations and also an algorithm is provided
for the case when the map is updated. Finally, we adapt the
proposed algorithms to a nonholonomic unicycle robot and
evaluate them by implementing on a physical robot. In what
follows, we first provide some preliminaries about POMDP
and FIRM. Then, we formulate the problem and propose our
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algorithm, and we implement the algorithm on a nonholonomic
mobile robot.

II. PRELIMINARIES

A. POMDP Problem

Decision making under uncertainty is formalized as
POMDP or equivalently the stochastic control with imperfect
state information problem. By defining the one-step-cost,
c (bk, uk), as the cost of taking action uk at belief bk where
the action uk = πk (bk) is a function of current belief, called
policy or planner, POMDP problem can be defined as the
following minimization problem:

J (·) = min
Π

∞∑
k=0

E [c (bk, π (bk))]

π∗ = argmin
Π

∞∑
k=0

E [c (bk, π (bk))]

s.t. bk+1 = τ (bk, π (bk) , zk) , zk ∼ p (zk | xk)

(1)

where J (·) is the optimal cost-to-go function and τ is a
function for estimating the next belief based on the current
observation and the last belief and action. The dynamic
programming equations of (1) can be written as follows:

J (b) = min
u

{
c (b, u) +

∫
B
p (b′ | b, u) J (b′) db′

}
, ∀b ∈ B

π∗ (b) = argmin
u

{
c (b, u) +

∫
B
p (b′ | b, u) J (b′) db′

}
,∀b ∈ B

.

(2)

B. A Short Review On FIRM

FIRM is a graph based algorithm for the path planning in
the belief space and is independent of the initial belief, in
other words, it is a multi-query algorithm. FIRM helps to
reduce the MDP over the entire belief space to a tractable
MDP over a graph. The FIRM graph node is a small region,
B = {b : ‖b− b′‖ ≤ ε}, around the sampled belief b′. Also,
FIRM graph edges are local controllers which each one is a
concatenation of the node controller and the edge controller.
The feedback structure of the local controller helps to drive the
belief to the target node of the edge. Briefly, we have a graph
with the set of nodes, V =

{
Bi
}N
i=1

, and the set of edges
M =

{
µij
}

. For each FIRM node, Bi, it is assumed that the
cost-to-go of all beliefs in the node are approximately equal.
Therefore, the transition cost, C

(
bic, µ

ij
)
, and the transition

probability, Pg
(
Bj | Bi, µij

)
, which is the transition proba-

bility from Bi to Bj using the local controller µij are defined
as:

∀b ∈ Bi,∀i, j

B
i = C

(
bic, µ

ij
)
≈ C

(
b, µij

)
Pg
(
· | Bi, µij

)
:= P

(
· | bic, µij

)
≈ P

(
· | b, µij

) (3)

where bic is a point in Bi. By using this approximation and
considering the failure set, F , e.g. obstacles, the intractable
DP equation 2 is simplified as:

Jg
(
Bi
)

= min
µ∈M(i)

Cg
(
Bi, µ

)
+ Jg (F )Pg

(
F | Bi, µ

)
+
∑
j

Pg
(
Bj | Bi, µ

)
Jg
(
Bj
)
, ∀i

πg
(
Bi
)

= argmin
µ∈M(i)

Cg
(
Bi, µ

)
+ Jg (F )Pg

(
F | Bi, µ

)
+
∑
j

Pg
(
Bj | Bi, µ

)
Jg
(
Bj
)
, ∀i

(4)
where Pg

(
F | Bi, µ

)
is the probability of hitting the failure

set. The FIRM graph offline construction algorithm and the
online planning algorithm are presented in [10, Algorithm 3]
and [10, Algorithm 4]. Also, the replanning algorithms of
FIRM are presented in [11, Algorithm 1] and [11, Algorithm
2].

III. MULTI-GOAL MOTION PLANNING UNDER
UNCERTAINTY

A. Problem Formulation

In order to formulate the multi-goal path planning problem
in the belief space, first we assume the environment is obstacle
free, F = ∅, and there are Ng goal points. We consider the
bi, i ∈ V as the belief of i-th goal point, and subsequently
Bigoal as the i-th goal region where the system stops as the
robot’s belief enters into it. We define the one-step-cost, the
cost of taking the action u at the belief x, as:
ci (b, u) = 0 if b ∈ Bigoal
ci (b, u) = E [c (x, u) |H]

=

∫
X
c (x, u) p (x|H) dx ≥ ε > 0

if b /∈ Bigoal

(5)
where Hk = {z0:k, u0:k−1} is the data history. We take a
positive value for the one-step-cost before reaching the goal
region to avoid the robot to stop before reaching it and to trap
in an infinite cycle. Consequently, the problem is formulated
as follows:

min
{p,Π}

Ng∑
i=1

Ng∑
j=1

pij

∞∑
k=0

E
[
cj
(
bik, π

(
bik
))]

s.t.

Ng∑
j=1

pij = 1 (i 6= j, i ∈ V )

Ng∑
i=1

pij = 1 (i 6= j, j ∈ V )∑
pij ≤ |s| − 1 (s ⊂ V , 2 ≤ |s| ≤ Ng − 2)

pij ∈ {0, 1} (i, j) ∈ A
bk+1 = τ (bk, π (bk) , zk)

(6)
where V and A are the set of graph’s vertex and arc,
respectively.



B. Multi-Goal Belief Space Planning Using FIRM

As mentioned before, solving the optimization problem in
(6) is intractable. Therefore, we exploit FIRM to solve ATSP
in the belief space.

1) ATSP With Multi-Path On The FIRM Graph: To con-
struct the TSP-FIRM graph, we form a Probabilistic Road
Map (PRM) including the goal points and the sampled nodes

V =

{{
vj
}Ns
j=1

,
{
vigoal

}Ng
i=1

}
. Therefore, we design a sta-

bilizer (node controller) for each node in V . Consequently, a
TSP-FIRM graph with the nodes

{
Bi
}Nt
i=1

and the edges, i.e.
local controller, M =

{
µij
}

is constructed. Ns is the number
of sampled nodes and Nt = Ns+Ng is the number of all TSP-
FIRM nodes. In the obtained graph the path between each two
goal nodes can be more than one. Therefore, the optimization
over the entire belief space is simplified as stated below:

min
{p,y,Πg}

Ng∑
i=1

Ng∑
j=1

pij
∑
q∈Qij

∞∑
k=0

E
[
Cgj
(
Bik, π

g
(
Bik
))]

yqij

s.t.

Ng∑
j=1

pij = 1 (i 6= j, i ∈ V )

Ng∑
i=1

pij = 1 (i 6= j, j ∈ V )∑
pij ≤ |s| − 1 (s ⊂ V , 2 ≤ |s| ≤ Ng − 2)

pij ∈ {0, 1} (i, j) ∈ A
yqij ∈ {0, 1} q ∈ Qij , (i, j) ∈ A∑
q∈Qij

yqij = 1 for each (i, j)

P
(
Bik+1 | Bik;πg

(
Bik
))

(7)
where Qij is the set of all paths between the goal points i and
j, and ykij is set to one if the path is selected.

2) Asymmetric TSP on FIRM: Although the optimization
problem in (7) is more tractable than (6), but it is not straight-
forward to solve still, because the selected path between each
two goal nodes, y, and the optimal policy to move from
one goal node to another goal node, Πg , are defined as
decision variables in the optimization. In order to cope with
this difficulty, we use FIRM to find the optimal policy and
the best path between each two goal nodes by solving the DP
equation (4). Now, we can write the (7) as follows which is

the common asymmetric traveling salesman problem:

min
{p}

Ng∑
i=1

Ng∑
j=1

pijJ
g
j

(
Bi0
)

s.t.

Ng∑
j=1

pij = 1 (i 6= j, i ∈ V )

Ng∑
i=1

pij = 1 (i 6= j, j ∈ V )∑
pij ≤ |s| − 1 (s ⊂ V , 2 ≤ |s| ≤ Ng − 2)

pij ∈ {0, 1} (i, j) ∈ A

.

(8)
3) Considering Obstacles in Planning: There are three

types of obstacles in the environment. In the first type,
obstacles are known in advance and their positions are given in
the initial map. In the second type, some areas are potentially
obstacle and it is risky to move on them. The last type of the
obstacles are completely unknown and the robot detects them
in the online mode. After detecting the unknown or potentially
obstacles areas, the robot estimates their positions and updates
its map. In order to incorporate potentially obstacle areas in
the planning, the one-step cost in (5) is rewritten as:
ci (b, u) = 0

if
((
b ∈ Bigoal

)
or (F happens)

)
and (b /∈ Fsus)

ci (b, u) ≥ β > ε > 0 if (b ∈ Fsus)
β > ci (b, u) ≥ ε > 0 if otherwise

.

(9)
4) Multi-Goal Motion Planning Algorithm: Algorithm 1 is

the general algorithm of TSP-FIRM graph construction. Also,
algorithm 2 is presented for online planning and executing the
policy obtained in algorithm 1. For the case of finding new
obstacles in the online phase, the algorithm 3 is presented.
Algorithm 3 decides whether replanning or resolving ATSP is
necessary or not and helps the robot to update its map, graph
and policy.

IV. IMPLEMENTATION ON A MOBILE ROBOT

In this section, we consider generalizing and implementing
the proposed algorithms on nonholonomic unicycle mobile
robots. The main challenge in the roadmap-based algorithms
is designing a proper controller to steer the robot from a
start point toward a goal on the planned path. Reference [12]
shows that for the point-to-point stabilization problem (node
controller) a time-varying or a discontinuous controller is
needed. Therefore, we suggest a switching based controller for
the posture stabilization of the robot. However, what we need
first is designing an estimator for the robot state estimation
and constructing the TSP-FIRM nodes. In this implementation,
we consider Gaussian noise for the system, and we adopt a
Kalman filter for the state estimation.

A. TSP-FIRM Elements
In the following, we describe the elements which are

required in the construction of TSP-FIRM.



Algorithm 1: TSP-FIRM graph offline construction

Get the set of search points,
{
vigoal

}
;

Sample a set of stabilizer parameters V =
{
vi
}

;
Concatenate search points and stabilizer parameters,
V =

{
vi, vigoal

}
and construct their corresponding

stabilizers, M =
{
µi
}

;
Form FIRM nodes V =

{
Bi
}

;
Use local controlles for connecting the belief nodes;
Compute the transition cost Cg

(
Bi, µ

)
, transition

probabilities Pg
(
Bj | Bi, µ

)
and Pg

(
F | Bi, µ

)
for

each Bi and µ ∈M (i) by applying µ at Bi;

forall
{
vigoal

}
do

Solve the graph DP in Eq.(4) to compute pair(
πg

∗

i , J
g∗

i

)
to take the robot to the Bjgoal, j 6= i

end
Construct the TSP cost matrix and solve it, Tour∗;

Algorithm 2: TSP-FIRM graph online planning
Given an initial belief b0, operate the best policy π0, to
take the robot into one of the the search nodes,
Bstart = Bigoal;
Cur Goal← The neighbor of Bstart in the Tour∗ as

the next goal;
forall search nodes do

while B 6= Cur Goal do
Considering the robot is in the FIRM node B,

choose the local feedback policy µ (·) = πg (B)
where πg is the global feedback policy;

Continue applying the local controller µ (·) until
the system falls into a FIRM node B′ or it hits
the failure set;

if Collision happens then return Collision ;
Update current node B ← B′

end
Cur Goal← The neighbor of Cur Goal in the
Tour∗ as the next goal;

end

1) TSP-FIRM Nodes: To construct TSP-FIRM nodes, first
the PRM nodes are sampled, and the goal points are chosen.
Then, by linearizing the system around each node, we design
a stationary Kalman filter (SKF) and a switching based con-
troller in the belief space. Subsequently, the j-th TSP-FIRM
node Bj with the center bjc ≡

(
vj , P js

)
is obtained where the

P js is the covariance matrix obtained in the SKF. The Bj can
be shown as:

Bj =
{
b ≡ (x, P ) :

∥∥x− vj
∥∥ < δ1,

∥∥P − P js ∥∥m < δ2
}
(10)

where ‖·‖ and ‖·‖m are proper vector and matrix norms.
2) Local Controller: The local controller consists of the

edge and node controller. In the starting point of an edge,

Algorithm 3: TSP-FIRM graph updating in finding new
obstacles
Estimate obstacle position;
Update map;
F ← Retrieve surrounding edges of the obstacles;
forall edges, µ ∈ F do

f =
[
Cg
(
Bi, µ

)
,Pg

(
Bj | Bi, µ

)
,Pg

(
F | Bi, µ

)]
;

Recompute the transition cost , transition probability
and collision probability fnew =[
Cgnew

(
Bi, µ

)
,Pgnew

(
Bj | Bi, µ

)
,Pgnew

(
F | Bi, µ

)]
;

end
if any TSP-FIRM edge intersect obstacles then

if any search node is in the obstacle area then
Delete all TSP-FIRM nodes in the obstacle area ;
newTSP ← true;

end
Delete all edges and nodes intersect obstacles;
Update F and corresponding f ;
newPlanning ← true;

end
if exists µ ∈ F such that |fnew − f | ≮ αmin then

if exists µ ∈ F such that |fnew − f | ≮ αmax then
newTSP ← true;

end
newPlanning ← true;

end
if newPlanning then

Replace previous transition costs, transition
probabilities and collision probabilities with new
computed values;

if newTSP then
Recompute πg

∗
and its corresponding Jg

∗

between each search node;
Construct TSP cost matrix, solve it and assign
new goals sequence;

end
Replan(bcurrent);

else
Graph does not change

end

first the edge controller is activated and steers the robot to
the vicinity of the target node of the edge. Then, the node
controller is activated to stabilize the system in the target node.
We use a switching controller as the node controller. In order to
design the edge controller, first we design a series of nominal
states and control inputs to drive the robot from the start point
to the target point at the end of the edge. Since the unicycle
robot is linearly controllable along the PRM edge, a linear
controller can be utilized. Therefore, an LQG controller is
adopted to help the robot to track the path in the online mode.



3) Motion Model: The motion model of the unicycle mo-
bile robot is as:

Xk+1 = f (Xk, uk, wk) =

 xk + (Vk + nv) δt cos θk
yk + (Vk + nv) δt sin θk
θk + (wk + nw) δt


(11)

where the vector wk = (nv, nw)
T ∼ N (0,Qk) is the motion

noise. The motion noise of the system is considered as a
combination of a fixed uncertainty and a part proportional to
the control input values as:

Qk = diag
((
ηvVk + σVb

)2
, (ηwwk + σwb )

2
)

(12)

where in the implementation we take its parameters as ηv =
0.1, ηw = 0.01, σVb = 6 cm/s and σwb = 0.08 rad/s.

4) Sensor Model: we use a camera mounted on the robot
for sensing purpose. The camera detects some black and white
patterns called ArUco markers using ArUco library provided
in OpenCv [13] and computes the relative range and bearing
to the markers. The sensor model is:

jzk =
[∥∥jdk∥∥ , atan2

(
jd2k ,

jd1k

)
− θ
]T

+jv, jv ∼ N
(
0, jR

)
(13)

where jdk =
[
jd1k ,

jd2k

]T
:= [xk, yk]

T − Lj and jv is
the measurement noise of jth landmark. The measurement
noise, in addition to the fixed uncertainty is proportional to
the relative distance to the landmark and the angle between
the line connecting the camera to the landmark and the wall

jRk = diag
((
ηrd
∥∥jdk∥∥+ ηrφ |φk|+ σrb

)2
,(

ηθd
∥∥jdk∥∥+ ηθφ |φk|+ σθb

)2) . (14)

5) Transition Cost and Probability: The transition cost
and probability are computed using the sequential Monte
Carlo method. Although this method is time-consuming, it
is endurable owing to the offline construction of TSP-FIRM
graph. In order to define the transition cost, we consider the
estimation accuracy, Φij , the mean stopping time of local con-
troller, T̂ ij = E

[
T ij
]
, and the mean time that the robot moves

in the high-risk area, T̂ ijobs = E
[
T ij
]
. The estimation accuracy

is evaluated by the weighted trace of the estimation covariance
Φij = E

[∑T
k=1 tr

(
wP ijk

)]
where w = diag ([wx, wy, wθ])

is weighting matrix and P ijk is the system covariance at the
k-th time step. Consequently, the transition cost is obtained as
C
(
Bi, µij

)
= ξ1Φij +ξ2T̂ ij +ξ3T̂ ijobs where ξ1, ξ2 and ξ3 are

proper weighting coefficients.
6) Environment: The experiment has done in the second

floor of the Electrical Engineering department at K. N. Toosi
University of Technology. Fig. 1 and Fig. 2 show the map
of the environment and a real view of the environment,
respectively.

B. Experiment Results

1) Offline Phase of TSP-FIRM: Fig. 3a shows the
constructed TSP-FIRM graph where red nodes are selected
goal points. The black and gray blocks represent the known

Fig. 1. Environment’s layout in real experiment.

Fig. 2. An overview of the real experiment’s environment

and potentially (false) obstacles, respectively. The red points
on the blocks depict the position of the landmarks. By
computing the transition cost and probability as well as the
failure probability, the best path and its cost-to-go value
between each two goal nodes are computed. Then, the
TSP matrix is formed and solved. The nominal sequence
of main goal points is obtained as [1, 2, 3, 4, 5, 6, 7, 1],
and the nominal path for searching the goal points is
[1, 10, 9, 8, 2, 11, 12, 3, 14, 5, 15, 6, 22, 7, 21, 17, 16, 4, 13, 3, 12,
11, 2, 8, 9, 10, 1].

2) Online Phase of TSP-FIRM: We place the robot near
to node 1 (laboratory entrance) and the robot starts to search
hallway according to the obtained policy in the offline mode.
Therefore, it visits goal points 1,2,3 and 5. When the robot
starts to move from goal node 5 to goal node 6, it detects un-
known obstacles near node 15. Therefore, it updates the map,
deletes node 15 and adds the current belief of the robot as the
permanent node 23 to the graph (Fig. 3b). It should be noted
that, in the replanning, we can add the current belief of the
robot to the graph if its covariance is close to the covariance
of the robot at this point. Then, the transition cost, transition
probability and failure probability of the newly added edge
and the neighboring edges of new obstacles is computed.
According to the large difference between the previous cost of
going from node 5 to 6 and the new one, the ATSP is resolved,
and the new search plan is obtained as [6, 7, 4, 1]. In resolving



(a) (b)

(c) (d)

Fig. 3. Updates in the Map and graph

the ATSP, we should add a constraint that the robot should
return to the start point again. Therefore, we add a dummy
node to ATSP where the cost of going from this node to the
current node and the cost of going from the start node to the
dummy node are set to zero. The cost of other outgoing and
incoming edges of the dummy node are set to zero. The robot
moves toward node 6 on the path [23, 5, 17, 16, 6], and then
it moves toward node 7 on the path [6, 22, 7]. However, the
robot observes few markers, thus gets highly uncertain about
its position and therefore starts gathering information and
detecting markers by small movements until the covariance
matrix decreases. Then, temporary node 24 is added to the
graph (Fig. 3c), and the robot makes a replanning to reach
node 7. After that, the robot moves toward node 4 and finally
the start point, node 1. However, the robot is kidnapped at a
point between node 8 and 9 and is placed on a point between
node 11 and 12. The robot after detecting the kidnapping starts
gathering information and makes an acceptable estimation of
its position. Then, node 24 is added temporarily (Fig. 3d), and
the robot makes a replanning to reach node 1. Therefore, it
moves toward node 11 and continues its path toward node 1.
The video of this experiment is available online at [14].

V. CONCLUSIONS

In this paper, we propose TSP-FIRM algorithm for the
problem of multi-goal motion planning in the belief space. The
problem is formulated as an asymmetric traveling salesman
problem in the belief space which is an intractable problem
to solve due to the computational burden. To cope with this

problem, we exploit FIRM algorithm and propose an algorithm
to generate the TSP-FIRM graph which makes the problem
more tractable. After solving the problem and obtaining the
policy for visiting goal points, we propose an algorithm
to execute the policy in the online mode. Furthermore, we
propose an algorithm to update the map, graph and policy
when a new obstacle is founded in the environment. Then,
we implement the proposed algorithm on a nonholonomic
mobile robot in a real environment where brings challenges
such as finding new obstacles, getting highly uncertain and
kidnapping. We use a Kalman filter for the robot localization.
Also, the switching based and the LQG controller is used for
the posture stabilization and path tracking, respectively. The
experiments results show the applicability and efficiency of
the proposed algorithms in finding the policy for searching
the goal points.
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