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ABSTRACT
This paper presents an LDA-style topic model that captures
not only the low-dimensional structure of data, but also
how the structure changes over time. Unlike other recent
work that relies on Markov assumptions or discretization of
time, here each topic is associated with a continuous distri-
bution over timestamps, and for each generated document,
the mixture distribution over topics is influenced by both
word co-occurrences and the document’s timestamp. Thus,
the meaning of a particular topic can be relied upon as con-
stant, but the topics’ occurrence and correlations change
significantly over time. We present results on nine months
of personal email, 17 years of NIPS research papers and
over 200 years of presidential state-of-the-union addresses,
showing improved topics, better timestamp prediction, and
interpretable trends.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.2.8 [Database
Management]: Database Applications—data mining

General Terms
Algorithms, experimentation

Keywords
Graphical models, temporal analysis, topic modeling

1. INTRODUCTION
Research in statistical models of co-occurrence has led to the
development of a variety of useful topic models—mechanisms
for discovering low-dimensional, multi-faceted summaries of
documents or other discrete data. These include models
of words alone, such as Latent Dirichlet Allocation (LDA)
[2, 4], of words and research paper citations [3], of word
sequences with Markov dependencies [5], of words and their
authors [11], of words in a social network of senders and
recipients [9], and of words and relations (such as voting

ACM SIGKDD-2006 August 20-23, 2005, Philadelphia, Pennsylvania, USA

patterns) [15]. In each case, graphical model structures are
carefully-designed to capture the relevant structure and co-
occurrence dependencies in the data.

Many of the large data sets to which these topic models
are applied do not have static co-occurrence patterns; they
are instead dynamic. The data are often collected over
time, and generally patterns present in the early part of
the collection are not in effect later. Topics rise and fall in
prominence; they split apart; they merge to form new top-
ics; words change their correlations. For example, across 17
years of the Neural Information Processing Systems (NIPS)
conference, activity in “analog circuit design” has fallen off
somewhat, while research in “support vector machines” has
recently risen dramatically. The topic “dynamic systems”
used to co-occur with “neural networks,” but now co-occurs
with “graphical models.”

However none of the topic models mentioned above are aware
of these dependencies on document timestamps. Not model-
ing time can confound co-occurrence patterns and result in
unclear, sub-optimal topic discovery. For example, in topic
analysis of U.S. Presidential State-of-the-Union addresses,
LDA confounds Mexican-American War (1846-1848) with
some aspects of World War I (1914-1918), because LDA is
unaware of the 70-year separation between the two events.
Some previous work has performed some post-hoc analysis—
discovering topics without the use of timestamps and then
projecting their occurrence counts into discretized time [4]—
but this misses the opportunity for time to improve topic
discovery.

This paper presents Topics over Time (TOT), a topic model
that explicitly models time jointly with word co-occurrence
patterns. Significantly, and unlike some recent work with
similar goals, our model does not discretize time, and does
not make Markov assumptions over state transitions in time.
Rather, TOT parameterizes a continuous distribution over
time associated with each topic, and topics are responsible
for generating both observed timestamps as well as words.
Parameter estimation is thus driven to discover topics that
simultaneously capture word co-occurrences and locality of
those patterns in time.

When a strong word co-occurrence pattern appears for a
brief moment in time then disappears, TOT will create a
topic with a narrow time distribution. (Given enough ev-
idence, arbitrarily small spans can be represented, unlike



schemes based on discretizing time.) When a pattern of
word co-occurrence remains consistent across a long time
span, TOT will create a topic with a broad time distribu-
tion. In current experiments, we use a Beta distribution over
a (normalized) time span covering all the data, and thus we
can also flexibly represent various skewed shapes of rising
and falling topic prominence.

The model’s generative storyline can be understood in two
different ways. We fit the model parameters according to a
generative model in which a per-document multinomial dis-
tribution over topics is sampled from a Dirichlet, then for
each word occurrence we sample a topic; next a per-topic
multinomial generates the word, and a per-topic Beta dis-
tribution generates the document’s time stamp. Here the
time stamp (which in practice is always observed and con-
stant across the document) is associated with each word in
the document. We can also imagine an alternative, cor-
responding generative model in which the time stamp is
generated once per document, conditioned directly on the
per-document mixture over topics. In both cases, the likeli-
hood contribution from the words and the contribution from
the timestamps may need to be weighted by some factor, as
in the balancing of acoustic models and language models
in speech recognition. The later generative storyline more
directly corresponds to common data sets (with one times-
tamp per document); the former is easier to fit, and can also
allow some flexibility in which different parts of the docu-
ment may be discussing different time periods.

Some previous studies have also shown that topic discov-
ery can be influenced by information in addition to word
co-occurrences. For example, the Group-Topic model [15]
showed that the joint modeling of word co-occurrence and
voting relations resulted in more salient, relevant topics.
The Mixed-Membership model [3] also showed interesting
results for research papers and their citations.

Note that, in contrast to other work that models trajecto-
ries of individual topics over time, TOT topics and their
meaning are modeled as constant over time. TOT captures
changes in the occurrence (and co-occurrence conditioned
on time) of the topics themselves, not changes in the word
distribution of each topic. While choosing to model individ-
ual topics as mutable could be useful, it can also be dan-
gerous. Imagine a subset of documents containing strong
co-occurrence patterns across time: first between birds and
aerodynamics, then aerodynamics and heat, then heat and
quantum mechanics—this could lead to a single topic that
follows this trajectory, and lead the user to inappropriately
conclude that birds and quantum mechanics are time-shifted
versions of the same topic. Alternatively, consider a large
subject like medicine, which has changed drastically over
time. In TOT we choose to model these shifts as changes
in topic co-occurrence—a decrease in occurrence of topics
about blood-letting and bile, and an increase in topics about
MRI and retrovirus, while the topics about blood, limbs, and
patients continue to co-occur throughout.

Furthermore, in comparison to more complex alternatives,
the relative simplicity of TOT is a great advantage—not
only for the relative ease of understanding and implement-
ing it, but also because this approach can in the future be

naturally injected into other more richly structured topic
models, such as the Author-Recipient-Topic model to cap-
ture changes in social network roles over time [9], and the
Group-Topic model to capture changes in group formation
over time [15].

We present experimental results with three real-world data
sets. On over two centuries of U.S. Presidential State-of-the-
Union addresses, we show that TOT discovers topics with
both time-localization and word-clarity improvements over
LDA. On the 17-year history of the NIPS conference, we
show clearly interpretable topical trends, as well as a two-
fold increase in the ability to predict time given a document.
On nine months of the second author’s email archive, we
show another example of clearly interpretable, time-localized
topics, such as springtime faculty recruiting. On all three
datasets, TOT provides more distinct topics, as measured
by KL divergence.

2. TOPICS OVER TIME
Before introducing the Topics over Time (TOT) model, let
us review the basic Latent Dirichlet Allocation model. Our
notation is summarized in Table 1, and the graphical model
representations of both LDA and our TOT models are shown
in Figure 1.

Latent Dirichlet Allocation (LDA) is a Bayesian network
that generates a document using a mixture of topics [2].
In its generative process, for each document d, a multino-
mial distribution θ over topics is randomly sampled from a
Dirichlet with parameter α, and then to generate each word,
a topic zdi is chosen from this topic distribution, and a word,
wdi, is generated by randomly sampling from a topic-specific
multinomial distribution φzdi . The robustness of the model
is greatly enhanced by integrating out uncertainty about the
per-document topic distribution θ and the per-topic word
distribution φ.

In the TOT model, topic discovery is influenced not only by
word co-occurrences, but also temporal information. Rather
than modeling a sequence of state changes with a Markov
assumption on the dynamics, TOT models (normalized) ab-
solute timestamp values. This allows TOT to see long-range
dependencies in time, to predict absolute time values given
an unstamped document, and to predict topic distributions
given a timestamp. It also helps avoid a Markov model’s
risk of inappropriately dividing a topic in two when there is
a brief gap in its appearance.

Time is intrinsically continuous. Discretization of time al-
ways begs the question of selecting the slice size, and the
size is invariably too small for some regions and too large
for others.

Avoiding discretization, in TOT each topic is associated
with a continuous distribution over time. Many possible
parameterized distributions are possible. Our earlier exper-
iments were based on Gaussian. All the results in this paper
employ the Beta distribution (which can behave versatile
shapes), for which the time range of the data used for pa-
rameter estimation is normalized to a range from 0 to 1.
Another possible choice of bounded distributions is the Ku-
maraswamy distribution [7]. Double-bounded distributions
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alternate view for Gibbs sampling

Figure 1: Three topic models: LDA and two perspectives on TOT

SYMBOL DESCRIPTION
T number of topics
D number of documents
V number of unique words
Nd number of word tokens in document d
θd the multinomial distribution of topics

specific to the document d
φz the multinomial distribution of words

specific to topic z
ψz the beta distribution of time specific

to topic z
zdi the topic associated with the ith token

in the document d
wdi the ith token in document d
tdi the timestamp associated with the ith

token in the document d (in Figure 1(c))

Table 1: Notation used in this paper

are appropriate because the training data are bounded in
time. If it is necessary to ask the model to predict in a
small window into the future, the bounded region can be
extended, yet still estimated based on the data available up
to now.

Topics over Time is a generative model of timestamps and
the words in the timestamped documents. There are two
ways of describing its generative process. The first, which
corresponds to the process used in Gibbs sampling for pa-
rameter estimation, is as follows:

1. Draw T multinomials φz from a Dirichlet prior β, one for
each topic z;

2. For each document d, draw a multinomial θd from a Dirich-
let prior α; then for each word wdi in document d:

(a) Draw a topic zdi from multinomial θd;

(b) Draw a word wdi from multinomial φzdi ;

(c) Draw a timestamp tdi from Beta ψzdi .

The graphical model is shown in Figure 1(c). Although,
in the above generative process, a timestamp is generated
for each word token, all the timestamps of the words in a
document are observed as the same as the timestamp of
the document. One might also be interested in capturing
burstiness, and some solution such as Dirichlet compound
multinomial model (DCM) can be easily integrated into the
TOT model [8]. In our experiments there are a fixed number
of topics, T; although a non-parametric Bayes version of
TOT that automatically integrates over the number of topics
would certainly be possible.

As shown in the above process, the posterior distribution of
topics depends on the information from two modalities—
both text and time. The parameterization of the TOT
model is

θd|α ∼ Dirichlet(α)

φz|β ∼ Dirichlet(β)

zdi|θd ∼ Multinomial(θd)

wdi|φzdi ∼ Multinomial(φzdi)

tdi|ψzdi ∼ Beta(ψzdi).

Inference can not be done exactly in this model. We employ
Gibbs sampling to perform approximate inference. Note
that we adopt conjugate prior (Dirichlet) for the multino-
mial distributions, and thus we can easily integrate out θ and
φ, analytically capturing the uncertainty associated with
them. In this way we facilitate the sampling—that is, we
need not sample θ and φ at all. Because we use the contin-
uous Beta distribution rather than discretizing time, spar-
sity is not a big concern in fitting the temporal part of the
model. For simplicity and speed we estimate these Beta dis-
tributions ψz by the method of moments, once per iteration
of Gibbs sampling. We could estimate α and β from data,
but, again for simplicity, we use fixed symmetric Dirichlet
distributions (α = 50/T and β = 0.1) in all our experiments.

In the Gibbs sampling procedure above, we need to calculate
the conditional distribution P (zdi|w, t, z−di, α, β,Ψ), where
z−di represents the topic assignments for all tokens except



wdi. We begin with the joint probability of a dataset, and
using the chain rule, we can get the conditional probability
conveniently as

P (zdi|w, t, z−di, α, β,Ψ) ∝ (mdzdi + αzdi − 1)

× nzdiwdi + βwdi − 1PV
v=1(nzdiv + βv)− 1

(1− tdi)
ψzdi1−1t

ψzdi2−1

di

B(ψzdi1, ψzdi2)
,

where nzv is the number of tokens of word v are assigned to
topic z, mdz represent the number of tokens in document d
are assigned to topic z. Detailed derivation of Gibbs sam-
pling for TOT is provided in Appendix A.

Although a document is modeled as a mixture of topics,
there is typically only one timestamp associated with a docu-
ment. The above generative process describes data in which
there is a timestamp associated with each word. When fit-
ting our model from typical data, each training document’s
timestamp is copied to all the words in the document. How-
ever, after fitting, if actually run as a generative model, this
process would generate different time stamps for the words
within the same document.

An alternative generative process description, (better suited
to generate an unseen document), is one in which a single
timestamp is associated with each document, generated, by
rejection or importance sampling, from a mixture of per-
topic Beta distributions over time with mixtures weight as
the per-document θd over topics. The graphical model for
this alternative generative process is shown in Figure 1(b).

Using this model we can predict a time stamp given the
words in the document. To facilitate the comparison with
LDA, we can discretize the timestamps (only for this pur-
pose). Given a document, we predict its timestamp by
choosing the discretized timestamp that gives maximum like-
lihood which is calculated by multiplying the probability of
all word tokens from their corresponding topic-wise Beta
distributions over time.

It is also interesting to consider obtaining a distribution over
topics, conditioned on a timestamp. This allows us to see
the topic occurrence patterns over time. By Bayes rule,
E(θzi |t) = P (zi|t) ∝ p(t|zi)P (zi) where P (zi) can be esti-
mated from data or simply assumed as uniform. Examples
of mean topic distributions θd conditioned on timestamps
are shown in Section 5.

In both generative processes, a tunable hyper-parameter is
the relative weight of the time modality versus the text
modality. (This is particularly important in the second pro-
cess, where the generation of one timestamp would otherwise
be overwhelmed by the plurality of words generated; here a
natural setting is the inverse of the number of words in the
document). Such a hyper-parameter is common in many
generative models that combine modalities, such as speech
recognition, and the Group-Topic model [15].

3. RELATED WORK
Several studies have examined topics and their changes across
time. Rather than jointly modeling word co-occurrence and
time, many of these methods use post-hoc or pre-discretized
analysis.

The first style of non-joint modeling involves fitting a time-
unaware topic model, and then ordering the documents in
time, slicing them into discrete subsets, and examining the
topic distributions in each time-slice. One example is Grif-
fiths and Steyvers’ study of PNAS proceedings [4], in which
they identified hot and cold topics based on examination of
topic mixtures estimated from a LDA model.

The second style of non-joint modeling pre-divides the data
into discrete time slices, and fits a separate topic model in
each slice. Examples of this type include the experiments
with the Group-Topic model [15], in which several decades
worth of U.N. voting records (and their accompanying text)
were divided into 15-year segments; each segment was fit
with the GT model, and trends were compared. One diffi-
culty with this approach is that aligning the topics from each
time slice can be difficult, although starting Gibbs sampling
using parameters from the previous time slice can help, as
shown in [13]. Somehow similarly, the TimeMines system
[14] for some TDT tasks (single topic in each document)
tries to construct overview timelines of a set of news stories.
χ2 test is performed to identify days on which the number
of occurrences of named entities or noun phrases produces
a statistic above a given threshold; consecutive days under
this criterion are stitched together to form an interval to be
added into the timeline.

Time series analysis has a long history in statistics, much of
which is based on dynamic models, with a Markov assump-
tion that the state at time t+ 1 or t+ ∆t is independent of
all other history given the state at time t. Hidden Markov
models and Kalman filters are two such examples. For in-
stance, recent work in social network analysis [12] proposes
a dynamic model that accounts for friendships drifting over
time. Blei and Lafferty present a version of their CTM in
which the alignment among topics across time steps is mod-
eled by a Kalman filter on the Gaussian distribution in the
logistic normal distribution [1]. This approach is quite dif-
ferent from TOT. First, it employs a Markov assumption
over time; second, it is based on the view that the “mean-
ing” (or word associations) of a topic changes over time.

The Continuous Time Bayesian Network (CTBN) [10] is an
example of using continuous time without discretization. A
CTBN consists of two components: a Bayesian network and
a continuous transition model, which avoids various granu-
larity problem due to discretization. Unlike TOT, however,
CTBNs use a Markov assumption and are much more com-
plicated.

Another Markov model that aims to find word patterns in
time is Kleinberg’s “burst of activity model” [6]. This ap-
proach uses a probabilistic infinite-state automaton with
a particular state structure in which high activity states
are reachable only by passing through lower activity states.
Rather than leveraging time stamps, it operates on a stream
of data, using data ordering as a proxy for time. Its state
automaton has a continuous transition scheme similar to
CTBNs. However, it operates only on one word at a time,
whereas TOT finds time-localized patterns in word co-occurrences.

TOT uses time quite differently than the above models.
First, TOT does not employ a Markov assumption over time,



but instead treats time as an observed continuous variable.
Second, many other models take the view that the “mean-
ing” (or word associations) of a topic changes over time; in-
stead, in TOT we can rely on topics themselves as constant,
while topic co-occurrence patterns change over time.

Although not modeling time, several other topic models have
associated the generation of additional modalities with top-
ics. For example, the aforementioned GT model conditions
on topics for both word generation and relational links. As
in TOT, GT results also show that jointly modeling an ad-
ditional modality improves the relevance of the discovered
topics. Another flexible, related model is the Mixed Mem-
bership model [3], which treats the citations of papers as
additional “words”, thus the formed topics are influenced
by both words and citations.

4. DATASETS
We present experiments with the TOT model on three real-
world data sets: 9 months of email sent and received by the
second author, 17 years of NIPS conference papers, and 21
decades of U.S. Presidential State-of-the-Union Addresses.
In all cases we fix the number of topics T = 50.

4.1 State-of-the-Union Addresses
The State of the Union is an annual message presented by
the President to Congress, describing the state of the coun-
try and his plan for the future. Our dataset1 consists of the
transcripts of 208 addresses during 1790-2002 (from George
Washington to George W. Bush). We remove stopwords and
numbers, and all text is downcased. Because the topics dis-
cussed in each address are so diverse, and in order to improve
the robustness of the discovered topics, we increase the num-
ber of documents in this dataset by splitting each transcript
into 3-paragraph “documents”. The resulting dataset has
6,427 (3-paragraph) documents, 21,576 unique words, and
674,794 word tokens in total. Each document’s time stamp
is determined by the date on which the address was given.

4.2 A Researcher’s Email
This dataset consists of the second author’s email archive of
the nine months from January to September 2004, including
all emails sent and received. In order to model only the new
text entered by the author of each message, it is necessary
to remove “quoted original messages” in replies. We elimi-
nate this extraneous text by a simple heuristic: all text in a
message below a “forwarded message” line or timestamp is
removed. This heuristic does incorrectly delete text that are
interspersed with quoted email text. Words are formed from
sequences of alphabetic characters; stopwords are removed,
and all text is downcased. The dataset contains 13,300 email
messages, 22,379 unique words, and 453,743 word tokens in
total. Each document’s timestamp is determined by the day
and time the message was sent or received.

4.3 NIPS Papers
The NIPS proceeding dataset (provided to us by Gal Chechik)
consists of the full text of the 17 years of proceedings from
1987 to 2003 Neural Information Processing Systems (NIPS)
Conferences. In addition to downcasing and removing stop-
words and numbers, we also removed the words appearing
1http://www.gutenberg.org/dirs/etext04/suall11.txt

less than five times in the corpus—many of them produced
by OCR errors. Two letter words (primarily coming from
equations), were removed, except for “ML”, “AI”, “KL”,
“BP”, “EM” and “IR.” The dataset contains 2,326 research
papers, 24,353 unique words, and 3,303,020 word tokens in
total. Each document’s timestamp is determined by the year
of the proceedings.

5. EXPERIMENTAL RESULTS
In this section, we present the topics discovered by the TOT
model and compare them with topics from LDA. We also
demonstrate the ability of the TOT model to predict the
timestamps of documents, more than doubling accuracy in
comparison with LDA. We furthermore find topics discov-
ered by TOT to be more distinct from each other than LDA
topics (as measured by KL Divergence). Finally we show
how TOT can be used to analyze topic co-occurrence con-
ditioned on a timestamp.

5.1 Topics Discovered for Addresses
The State-of-the-Union addresses contain the full range of
United States history. Analysis of this dataset shows strong
temporal patterns. Some of them are broad historical is-
sues, such as a clear “American Indian” topic throughout the
1800s and peaking around 1860, or the rise of “Civil Rights”
across the second half of the 1900s. Other sharply localized
trends are somewhat influenced by the individual president’s
communication style, such as Theodore Roosevelt’s sharply
increased use of the words “great”, “men”, “public”, “coun-
try”, and “work”. Unfortunately, space limitations prevent
us from showing all 50 topics.

Four TOT topics, their most likely words, their Beta dis-
tributions over time, their actual histograms over time, as
well as comparisons against their most similar LDA topic
(by KL divergence), are shown in Figure 2. Immediately we
see that the TOT topics are more neatly and narrowly fo-
cused in time; (time analysis for LDA is done post-hoc). An
immediate and obvious effect is that this helps the reader un-
derstand more precisely when and over what length of time
the topical trend was occurring. For example, in the left-
most topic, TOT clearly shows that the Mexican-American
war (1846-1848) occurred in the few years just before 1850.
In LDA, on the other hand, the topic spreads throughout
American history; it has its peak around 1850, but seems to
be getting confused by a secondary peak around the time
of World War I, (when “war” words were used again, and
relations to Mexico played a small part). It is not so clear
what event is being captured by LDA’s topic.

The second topic, “Panama Canal,” is another vivid exam-
ple of how TOT can successfully localize a topic in time, and
also how jointly modeling words and time can help sharpen
and improve the topical word distribution. The Panama
Canal (constructed during 1904-1914) is correctly localized
in time, and the topic accurately describes some of the is-
sues motivating canal construction: the sinking of the U.S.S.
Maine in a Cuban harbor, and the long time it took U.S.
warships to return to the Caribbean via Cape Horn. The
LDA counterpart is not only widely spread through time,
but also confounding topics such as modern trade relations
with Central America and efforts to build the Panama Rail-
road in the 1850s.



Mexican War Panama Canal Cold War Modern Tech

states 0.02032 government 0.02928 world 0.01875 energy 0.03902
mexico 0.01832 united 0.02132 states 0.01717 national 0.01534
government 0.01670 states 0.02067 security 0.01710 development 0.01448
united 0.01521 islands 0.01167 soviet 0.01664 space 0.01436
war 0.01059 canal 0.01014 united 0.01491 science 0.01227
congress 0.00951 american 0.00872 nuclear 0.01454 technology 0.01227
country 0.00906 cuba 0.00834 peace 0.01408 oil 0.01178
texas 0.00852 made 0.00747 nations 0.01069 make 0.00994
made 0.00727 general 0.00731 international 0.01024 effort 0.00969
great 0.00611 war 0.00660 america 0.00987 administration 0.00957

mexico 0.06697 government 0.05618 defense 0.05556 program 0.02674
government 0.02254 american 0.02696 military 0.03819 energy 0.02477
mexican 0.02141 central 0.02518 forces 0.03308 development 0.02287
texas 0.02109 canal 0.02283 security 0.03020 administration 0.02119
territory 0.01739 republic 0.02198 strength 0.02406 economic 0.01710
part 0.01610 america 0.02170 nuclear 0.01858 areas 0.01585
republic 0.01344 pacific 0.01832 weapons 0.01654 programs 0.01578
military 0.01111 panama 0.01776 arms 0.01254 major 0.01534
state 0.00974 nicaragua 0.01381 maintain 0.01161 nation 0.01242
make 0.00942 isthmus 0.01137 strong 0.01106 assistance 0.01052

Figure 2: Four topics discovered by TOT (above) and LDA (bottom) for the Address dataset. The titles are
our own interpretation of the topics. Histograms show how the topics are distributed over time; the fitted
beta PDFs is shown also. (For LDA, beta distributions are fit in a post-hoc fashion). The top words with
their probability in each topic are shown below the histograms. The TOT topics are better localized in time,
and discover more event-specific topical words.

The third topic shows the rise and fall of the Cold War, with
a peak on the Reagan years, when Presidential rhetoric on
the subject rose dramatically. Both TOT and LDA topics
mention “nuclear,” but only TOT correctly identifies “so-
viet”. LDA confounds what is mostly a cold war topic (al-
though it misses “soviet”) with words and events from across
American history, including small but noticeable bumps for
World War I and the Civil War. TOT correctly has its own
separate topic for World War I.

Lastly, the rightmost topics in Figure 2, “Modern Tech,”
shows a case in which the TOT topic is not necessarily
better—just interestingly different than the LDA topic. The
TOT topic, with mentions of energy, space, science, and
technology, is about modern technology and energy. Its em-
phasis on modern times is also very distinct in its time dis-
tribution. The closest LDA topic also includes energy, but

focuses on economic development and assistance to other
nations. Its time distribution shows an extra bump around
the decade of the Marshal Plan (1947-1951), and a lower
level during George W. Bush’s presidency—both inconsis-
tent with the time distribution learned by the TOT topic.

5.2 Topics Discovered for Email
In Figure 3 we demonstrate TOT on the Email dataset.
Email is typically full of seasonal phenomena (such as paper
deadlines, summer semester, etc.). One such seasonal exam-
ple is the “Faculty Recruiting” topic, which (unlike LDA)
TOT clearly identifies and localizes in the spring. The LDA
counterpart is widely spread over the whole time period,
and consequently, it cannot separate faculty recruiting from
other types of faculty interactions and collaboration. The
temporal information captured by TOT plays a very impor-
tant role in forming meaningful time-sensitive topics.



Faculty Recruiting ART Paper MALLET CVS Operations

cs 0.03572 xuerui 0.02113 code 0.05668 check 0.04473
april 0.02724 data 0.01814 files 0.04212 page 0.04070
faculty 0.02341 word 0.01601 mallet 0.04073 version 0.03828
david 0.02012 research 0.01408 java 0.03085 cvs 0.03587
lunch 0.01766 topic 0.01366 file 0.02947 add 0.03083
schedule 0.01656 model 0.01238 al 0.02479 update 0.02539
candidate 0.01560 andres 0.01238 directory 0.02080 latest 0.02519
talk 0.01355 sample 0.01152 version 0.01664 updated 0.02317
bruce 0.01273 enron 0.01067 pdf 0.01421 checked 0.02277
visit 0.01232 dataset 0.00960 bug 0.01352 change 0.02156

cs 0.05137 email 0.09991 code 0.05947 paper 0.06106
david 0.04592 ron 0.04536 mallet 0.03922 page 0.05504
bruce 0.02734 messages 0.04095 version 0.03772 web 0.04257
lunch 0.02710 data 0.03408 file 0.03702 title 0.03526
manmatha 0.02391 calo 0.03236 files 0.02534 author 0.02763
andrew 0.02332 message 0.03053 java 0.02522 papers 0.02741
faculty 0.01764 enron 0.03028 cvs 0.02511 email 0.02204
april 0.01740 project 0.02415 directory 0.01978 pages 0.02193
shlomo 0.01657 send 0.02023 add 0.01932 nips 0.01967
al 0.01621 part 0.01680 checked 0.01481 link 0.01860

Figure 3: Four topics discovered by TOT (above) and LDA (bottom) for the Email dataset, showing improved
results with TOT. For example, the Faculty Recruiting topic is correctly identified in the spring in the TOT
model, but LDA confuses it with other interactions among faculty.

The topic “ART paper” reflects a surge of effort in col-
laboratively writing a paper on the Author-Recipient-Topic
model. Although the co-occurrence pattern of the words in
this topic are strong and distinct, LDA failed to discover a
corresponding topic—likely because it was a relatively short-
lived phenomena. The closest LDA topic shows the general
research activities, work on the DARPA CALO project, and
various collaborations with SRI to prepare the Enron email
data set for public release. Not only does modeling time
help TOT discover the “ART paper” task, but an alterna-
tive model that relied on coarse time discretization may miss
such topics that have small time spans.

The “MALLET” topic shows that, after putting in an in-
tense effort in writing and discussing Java programming for
the MALLET toolkit, the second author had less and less
time to write code for the toolkit. In the corresponding
LDA topic, MALLET development is confounded with CVS
operations—which were later also used for managing ver-

sions and collaboration on writing research papers.

TOT appropriately and clearly discovers a separate top-
ics for “CVS operations,” seen in the rightmost column.
The closest LDA topic is the previously discussed one that
merges MALLET and CVS. The second closests LDA (bot-
tom right) discusses research paper writing, but not CVS.
All these examples show that TOT’s use of time can help
it pull apart distinct events, tasks and topics that may be
confusingly merged by LDA.

5.3 Topics Discovered for NIPS
Research paper proceedings also present interesting trends
for analysis. Successfully modeling trends in the research
literature can help us understand how our field evolves, and
measure the impact of differently shaped profiles in time.

Figure 4 shows two topics discovered from the NIPS pro-
ceedings. “Recurrent Neural Networks” is clearly identified



Recurrent NN Game Theory

state 0.05963 game 0.02850
recurrent 0.03765 strategy 0.02378
sequence 0.03616 play 0.01490
sequences 0.02462 games 0.01473
time 0.02402 player 0.01451
states 0.02057 agents 0.01346
transition 0.01300 expert 0.01281
finite 0.01242 strategies 0.01123
length 0.01154 opponent... 0.01088
strings 0.01013 nash 0.00848

state 0.05957 game 0.01784
sequence 0.03939 strategy 0.01357
sequences 0.02625 play 0.01131
time 0.02503 games 0.00940
states 0.02338 algorithm 0.00915
recurrent 0.01451 expert 0.00898
markov 0.01398 time 0.00837
transition 0.01369 player 0.00834
length 0.01164 return 0.00750
hidden 0.01072 strategies 0.00640

Figure 4: Two topics discovered by TOT (above)
and LDA (bottom) for the NIPS dataset. For exam-
ple, on the left, two major approaches to dynamic
system modeling are confounded by LDA, but TOT
more clearly identifies waning interest in Recurrent
Neural Networks, with a separate topic (not shown)
for rising interest in Markov models.

by TOT, and correctly shown to rise and fall in prominence
within NIPS during the 1990s. LDA, unaware of the fact
that Markov models superceded Recurrent Neural Networks
for dynamic systems in the later NIPS years, and unaware
of the time-profiles of both, ends up mixing the two methods
together. LDA has a second topic elsewhere that also covers
Markov models.

On the right, we see “Games” and game theory. This is
an example in which TOT and LDA yield nearly identi-
cal results, although, if the terms beyond simply the first
ten are examined, one sees that LDA is emphasizing board
games, such as chess and backgammon, while TOT used its
ramping-up time distribution to more clearly identify game
theory as part of this topic (for example, the word “Nash”

Table 2: Average KL divergence between topics for
TOT vs. LDA on three datasets. TOT finds more
distinct topics.

Address Email NIPS
TOT 0.6266 0.6416 0.5728
LDA 0.5965 0.5943 0.5421

Table 3: Predicting the year, in the Address data
set. L1 Error is the difference between predicted
and true year. In the Accuracy column, we see that
TOT predicts exactly the correct year nearly twice
as often as LDA.

L1 Error E(L1) Accuracy
TOT 1.98 2.02 0.19
LDA 2.51 2.58 0.10

occurs in position 12 for TOT, but not in the first 50 for
LDA).

We have been discussing the salience and specificity of TOT’s
topics. Distances between topics can also be measured nu-
merically. Table 2 shows the average distance of word dis-
tributions between all pairs of topics, as measured by KL
Divergence. In all three datasets, the TOT topics are more
distinct from each other. Partially because the Beta dis-
tribution is rarely multi-modal, the TOT model strives to
separate events that occur during different time spans, and
in real-world data, time differences are often correlated with
word distribution differences that would have been more dif-
ficult to tease apart otherwise. The MALLET-CVS-paper
distinction in the email data set is one example. (Events
with truly multimodel time distributions would be modeled
with alternatives to the Beta.)

5.4 Time Prediction
One interesting feature of our approach (and one not shared
by state-transition-based Markov models of topical shifts) is
the capability of predicting the timestamp given the words
in a document. This task also provides another opportunity
to quantitatively compare TOT against LDA.

On the State-of-the-Union Address data set, we measure
the ability to predict the year given the text of the address,
as measured in accuracy, L1 error and average L1 distance
to the correct year (number of years difference between pre-
dicted and correct year). As shown in Table 3, TOT achieves
double the accuracy of LDA, and provides an L1 relative er-
ror reduction of 20%.

5.5 Topic Distribution Profile over Time
It is also interesting to consider the TOT model’s distribu-
tion over topics as a function of time. The time distribution
of each individual topic is described as a Beta (having flex-
ible mean, variance and skewness), but even more rich and
complex profiles emerge from the interactions among these
Beta distributions. TOT’s approach to modeling topic dis-
tributions conditioned on time stamp—based on multiple
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Figure 5: The distribution over topics given time
in the NIPS data set. Note the rich collection of
shapes that emerge from the Bayesian inversion of
the collection of per-topic Beta distributions over
time.

time-generating Betas, inverted with Bayes rule—has the
dual advantages of a relatively simple, easy-to-fit parame-
terization, while also offering topic distributions with a flex-
ibility that would be more difficult to achieve with a direct,
non-inverted parameterization, (one generating topic distri-
butions directly conditioned on time, without Bayes-rule in-
version).

The expected topic mixture distributions for the NIPS dataset
are shown in Figure 5. The topics are consistently ordered
in each year, and the heights of a topic’s region represents
the relative weight of the corresponding topic given a times-
tamp, calculated using the procedure described in Section 2.
We can clearly see that topic mixtures change dramatically
over time, and have interesting shapes. NIPS begins with
more emphasis on neural networks, analog circuits and cells,
but now emphasizes more SVMs, optimization, probability
and inference.

5.6 Topic Co-occurrences over Time
We can also examine topic co-occurrences over time, which,
as discussed in Section 1, are dynamic for many large text
collections. In the following, we say two topics z1 and z2
(strongly) co-occur in a document d if both θz1 and θz2
are greater than some threshold h (we set h = 2/T ); then
we can count the number of documents in which certain
topics (strongly) co-occur, and map out how co-occurrence
patterns change over time.

Figure 6 shows the prominence profile over time of those
topics that co-occur strongly with the NIPS topic “classifica-
tion”. We can see that at the beginning NIPS, this problem
was solved primarily with neural networks. It co-occurred
with the “digit recognition” in the middle 90’s. Later, prob-
abilistic mixture models, boosting and SVM methods be-
came popular.
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Figure 6: Eight topics co-occurring strongly with
the “classification” topic in the NIPS data set.
Other co-occurring topics are labeled as a com-
bined background topic. Classification with neural
networks declined, while co-occurrence with SVMs,
boosting and NLP are on the rise.

6. CONCLUSIONS
This paper has presented Topic over Time (TOT), a model
that jointly models both word co-occurrences and localiza-
tion in continuous time. Results on three real-world data
sets show the discovery of more salient topics that are as-
sociated with events, and clearly localized in time. We also
show improved ability to predict time given a document.
Reversing the inference by Bayes rule, yields a flexible pa-
rameterization over topics conditioned on time, as deter-
mined by the interactions among the many per-topic Beta
distributions.

Unlike some related work with similar motivations, TOT
does not require discretization of time or Markov assump-
tions on state dynamics. The relative simplicity of our ap-
proach provides advantages for injecting these ideas into
other topic models. For example, in ongoing work we are
finding patterns in topics and group membership over time,
with a Group-Topic model over time. Many other extensions
are possible.
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APPENDIX

A. GIBBS SAMPLING DERIVATION FOR
TOT

We begin with the joint distribution P (w, t, z|α, β,Ψ). We can
take advantage of conjugate priors to simplify the integrals. All

symbols are defined in Section 2.

P (w, t, z|α, β,Ψ)

= P (w|z, β)p(t|Ψ, z)P (z|α)

=

Z
P (w|Φ, z)p(Φ|β)dΦp(t|Ψ, z)

Z
P (z|Θ)p(Θ|α)dΘ

=

Z DY
d=1

NdY
i=1

P (wdi|φzdi )

TY
z=1

p(φz |β)dΦ

DY
d=1

NdY
i=1

p(tdi|ψzdi )

×
Z DY

d=1

0@NdY
i=1

P (zdi|θd)p(θd|α)

1AdΘ

=

Z TY
z=1

VY
v=1

φnzv
zv

TY
z=1

 
Γ(
PV
v=1 βv)QV

v=1 Γ(βv)

VY
v=1

φβv−1
zv

!
dΦ

×
Z DY

d=1

TY
z=1

θ
mdz
dz

DY
d=1

 
Γ(
PT
z=1 αz)QT

z=1 Γ(αz)

TY
z=1

θαz−1
dz

!
dΘ

×
DY
d=1

NdY
i=1

p(tdi|ψzdi )

=

 
Γ(
PV
v=1 βv)QV

v=1 Γ(βv)

!T  
Γ(
PT
z=1 αz)QT

z=1 Γ(αz)

!D DY
d=1

NdY
i=1

p(tdi|ψzdi )

×
TY
z=1

QV
v=1 Γ(nzv + βv)

Γ(
PV
v=1(nzv + βv))

DY
d=1

QT
z=1 Γ(mdz + αz)

Γ(
PT
z=1(mdz + αz))

Using the chain rule, we can obtain the conditional probability
conveniently,

P (zdi|w, t, z−di, α, β,Ψ)

=
P (zdi, wdi, tdi|w−di, t−di, z−di, α, β,Ψ)

P (wdi, tdi|w−di, t−di, z−di, α, β,Ψ)

∝
P (w, t, z|α, β,Ψ)

P (w−di, t−di, z−di|α, β,Ψ)

∝
nzdiwdi + βwdi − 1PV
v=1(nzdiv + βv)− 1

(mdzdi
+ αzdi − 1)p(tdi|ψzdi )

∝ (mdzdi
+ αzdi − 1)

nzdiwdi + βwdi − 1PV
v=1(nzdiv + βv)− 1

×
(1− tdi)

ψzdi1−1t
ψzdi2−1

di

B(ψzdi1, ψzdi2)

Since timestamps are drawn from continuous Beta distributions,
sparsity is not a big problem for parameter estimation of Ψ. For
simplicity, we update Ψ after each Gibbs sample by the method
of moments, detailed as follows:

ψ̂z1 = t̄z

„
t̄z(1− t̄z)

s2z
− 1

«
ψ̂z2 = (1− t̄z)

„
t̄z(1− t̄z)

s2z
− 1

«
where t̄z and s2z indicate the sample mean and the biased sample
variance of the timestamps belonging to topic z, respectively.


