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Abstract

We propose a new self-tuning or adaptation algorithm
for PID controllers based on a theory of adaptive inter-
action. The theory develops a simple and effective way
to perform gradient descent in the parameter space.
One version of the tuning algorithm requires no knowl-
edge of the plant to be controlled. This makes the algo-
rithm robust to changes in the plant. It also makes the
algorithm universally applicable to linear and nonlinear
plants. The algorithm achieves the tuning objective by
minimizing an error function. Because of its simplicity,
the overhead for adding self-tuning is negligible. We
applied this algorithm in an automotive product man-
ufactured by Hitachi to satisfy performance require-
ments for both cold start and normal operation. Simu-
lation results are presented to show the validity of the
approach.
Keywords: PID controller, adaptive control, self-
tuning

1 Introduction

Although control theory has made great advance in
the last few decades, which has led to many sophis-
ticated control schemes, PID control still remains the
most popular type of control being used in industries
today. This popularity is partly due to the fact that
PID controllers have simple structures and very well
understood principles. Furthermore, a well-tuned PID
controller can have excellent performance. Here, the
words “well-tuned” must be emphasized because the
performance of a PID controller is crucially dependent
on the tuning process.

For the convenience of discussion, we would like to clas-
sify PID tuning into two (perhaps overlapping) classes:
(1) initial “off-line” tuning and (2) continuous “on-line”
self-tuning. Since our approach is more likely to be
used for the second class, we will focus our discussions
on this class. We believe that there are at least two rea-
sons for having an on-line self-tuning. First, the objec-
tives and hence requirements of a PID controller often
changes during the different stages of control. This is
quite evident from our experience with automotive con-
trol systems. The control objectives during the “cold
start” is often different from the“normal operation”.
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We believe that this is also true for many general sys-
tems. For example, we often want a system to have a
fast response time initially, but then put more emphasis
on reducing steady-state error. Fast response time and
small steady-state error are often conflicting objectives
and require different set of parameters for the PID con-
troller. Therefore, PID control can be improved greatly
if we will set the parameters initially to ensure fast re-
sponse time and then tune the parameters to reduce
steady-state error. We indeed applied this self-tuning
PID controller in an automotive product manufactured
by Hitachi. The result is a much improved controller.
The second reason for on-line self-tuning is that the
plant to be controlled often changes from time to time.
This is especially true if the plant is a nonlinear system
with changing operation points. When this is the case,
our approach provides a simple and effective method
for adaptation of such changes.

Our approach is based on a recently developed theory of
adaptive interaction [5]-[8]. Using this theory, the con-
trolled system is decomposed into four subsystems con-
sisting the plant, the proportional, integral and deriva-
tive control. The parameters of the PID control, Kp,
Kj, and Kp are viewed as the interactions between
these four subsystems. A general adaptation algorithm
developed in the theory of adaptive interaction is ap-
plied to self-tuning these coefficients. The algorithm is
simple and effective.

To apply this self-tuning algorithm, the only informa-
tion needed about the plant is its Fréchet derivative.
For linear systems, the Fréchet derivatives can be easily
calculated. Furthermore, simulation results show that
in many cases, the Fréchet derivative can be replaced
by a constant that is then absorbed into the adaptation
coefficient. Using this approximated self-tuning algo-
rithm, we can eliminate any dependence on the plant
model and hence make the algorithm universal to a
large class of systems.

Another way to investigate our self-tuning algorithm
is to to view the self-tuning PID controller as a non-
linear controller because the parameters Kp, Kj, and
Kp are changing continuous according to the adapta-
tion dynamics. In general, we do not require that Kp,
K, and Kp convergent to some constants. In fact,
we will let them change as the inputs or disturbances
change. Because of this property, our self-tuning PID
controllers can do more than conventional PID con-
trollers. For example, they can stabilize systems than
cannot be stabilized by conventional PID controllers.

We investigated the effectiveness of our self-tuning PID
controllers by simulation for a large class of systems, in-
cluding linear and nonlinear plants, stable and unstable
plants, and plants with delays. We also simulated sys-



tems with noise and saturation. In the simulations,
we used both the Fréchet self-tuning algorithm and the
approximated self-tuning algorithm. In all these simu-
lations, we have not found any case where the closed-
loop systems is unstable. We encourage the readers to
try for themselves.

This introduction will not be completed without giv-
ing references to other approaches to PID tuning. They
are listed at the end of the paper. To compare our ap-
proache to other approaches is however a difficult task
for two reasons: First, there are just too many ap-
proaches to PID tuning; and secondly, our approach is
quite different from conventional approaches. There-
fore, any omission in this regard is not intentional.

This paper is organized as follows. In Section 2, we will
briefly present the theory of adaptive interaction that
forms the basis of our approach. In Section 3, we derive
the Fréchet self-tuning algorithm and the approximated
self-tuning algorithm. We also prove the stability of the
closed-loop system with the self-tuning PID controller.
In Section 4, we present some simulation results for
various types of systems.

2 Theory of Adaptive Interaction

The theory of adaptive interaction considers a complex
system consisting of N subsystems which we called de-
vices. Each device (indexed by n € N := {1,2,..., N})
has an integrable output signal y,, and an integrable in-
put signal z,,. The dynamics of each device is described
by a (generally nonlinear) causal® functional

Fn:&n = Yn, neN,

where X,, and ), are the input and output spaces re-
spectively. That is, the output y,(t) of the nth device
relates to its input Zn(t) by

Ya(t) = (Fn 02,)(t) = Fulzalt)], neN,
where o denotes composition.

We assume the Fréchet derivative of F, exists®>. We
further assume that each device is a single-input single-
output system3.

An interaction between two devices consists of a (gener-
ally non-exclusive) functional dependence of the input
of one of the devices on the outputs of the others and
is mediated by an information carrying connections de-
noted by c. The set of all connections is denoted by C.

1A functional F, : X — Yn is causal if yn(¢) depends only
on the previous history of zn, {za(7) : 7 < t}.

2the Fréchet derivative [15], F,|z], of Fp|z], is defined as a
functional such that

. |Fnlz + A] — Frlz] — Filz] o Ajj
limja||—0 Al =0.

3The assumption of single-input single-output is not as re-
strictive as it may seem. This is because the partition of system
into devices is arbitrary and up to the designer. Therefore, one
can often partition a multi-input multi-output system into sev-
eral single-input single-output systems.

We assume that there is at most one connection from
one device to another. Let pre. be the device whose
output is conveyed by connection ¢ and post. the de-
vice whose input depends on the signal conveyed by
connection ¢. We denote the set of input interactions
for the nth device by I, = {c : pre; = n} and the set
of output interactions by O, = {c : post. = n}. A
typical system is illustrated in Figure 1. In the figure,
for example, the set of input interactions of Device 2
is I = {c1,c3} and the set of output interactions is
Oz = {cs}. Also, c; connects Device 1 to Device 2,
therefore pre;, = 1, post., = 2.

For the purpose of this paper, we consider only linear
interactions, that is, we assume that the input to a
device is a linear combination of the output of other
devices via connections in I,, and possibly an external
input signal u,(£):

fL‘n(t) = u’ﬂ(t) + Z acyprec (t)v ne N1

c€l,

where o, is the connection weights.

With this linear interaction, the dynamics of the system
is described by :

Un(t) = Falun(t) + Y aclipre (H)], nEN.

cel,

To simplify the notation, in the rest of the paper, we
will eliminate when appropriate the explicit reference
to time ¢.

The goal of our adaptation algorithm is to adapt the
connection weights a, so that some performance index
E(y1, ..., Yn, U1, --., Un) as a function of the external in-
puts and outputs will be minimized. The algorithm is
given in the following theorem (8].

Theorem 1 For the system with dynamics given by

Yn = fn[un + Z Q’cyprec]y ne N,
celn
if connection weights o, are adapted according to

dE

U
b (3 iy o T o]
c 8%ts dE "
° fpost, [—Tpost,] © Ypost.

8€0post. dYposts
OF ,
- ay . ) ° }—postc [I:POStc] OYpre.» CE C,
posic

and the above equation has a unique solution, then the
performance index E will decrease monotonically with
time. In fact, the following is always satisfied

dE

da.’

dc:_’7 CEC,

where v > 0 is some adaptation coefficient.

The above theorem can be applied to a very general
class of systems. For example, its application to neural
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networks was reported in [5]-[8]. Using this algorithm,
a neural network can adapt without the need of a feed-
back network to back-propagate errors. The algorithm
hence provides a biologically plausible mechanism for
adaptation in biological neurons.

Since the PID control system is special case of the sys-
tems amendable to the above adaptation algorithm, the
algorithm can be significantly simplified as shown in the
next section.

3 Tuning Algorithm

For a PID control system, we decompose the system
into four devices as shown in Figure 2: Device 1 is
the proportional part with transfer function 1; Device
2 is the integral part with transfer function s~; De-
vice 3 is the derivative part with transfer function s;
and Device 4 is the plant. In some implementations,
the differentiation and integration are often modified
to improve the performances. For example, differen-
tiation is often preceded by a low-pass filter. As we
shall see, our algorithm applies equally well to such
modifications. In any case, there are three adaptive
connections: a, = Kp, K1, or Kp. Since for all these
connections, Opos, = Oy = (), the adaptation algo-
rithm of the previous section reduces to

OF

P Y
Qe =—"Yg——0©O 'Fpostc [Zpost.] © Ypre. -
aypoetc

We take our goal as to minimize the error?

E=¢®=(u—w)?
We then obtain the following Fréchet tuning algorithm
Kp = -2(ys —uw)Fifza] oy
—2veF,[za] oY1

I

Similarly, we have

K = -2veFj[z4] oy
Kp = —2veF[z4oys.

Note that the self-tuning algorithm for P, I and D all
have the same form: It depends on the error e, the
Fréchet derivative Fj[x4], and the output of the device
¥i,1 = 1,2,3. It is independent of the natural of the
device, whether it is P, I, D, or anything else. There-
fore, any modification of differentiation or integration
will not change the adaptation algorithm.

To calculate the Fréchet derivative, let us consider the
functional y = F|z] of the following form

Fiel = [ ftatr),myar

40ther performance index can also be used, resulting in dif-
ferent self-tuning algorithms.

It can be shown ([15], page 175) that the Fréchet dif-
ferential of F is equal to its Gateaux differential which
is given by

8F (z; h):/0 Ja(2(T), T)R(T)dr,

where f; = gl. Therefore, the Fréchet derivative of F
at x is given gy

f'[ﬂ?]"h:/o Jo(z(T), T)R(T)dT.

For a linear time-invariant plant with transfer function
G(s), F is given by the convolution

Fla] = glt) * 3(t) = /0 (r)g(t — 7)dr,

where g(t) is the impulse response. Therefore the
Fréchet derivative

Flzjoh = ‘/(; g(t — T)h(7)dT = g(t) * h(t).

By simulation, we found that for many practical sys-

tems the Fréchet derivative can be approximated by
F'lz]o h = Bh,

where 3 is some constant.

Substitute the above approximation into the Fréchet
tuning algorithm, we obtain the following modified tun-
ing algorithm.

KP = —7en
K; = —vey:
Kp = —veys.

Here we have absorbed 24 into the adaptation coeffi-
cient . This modified algorithm can be implemented
as shown in Figure 3.

4 Simulation Results

‘We performed various simulations which show excellent
properties of our tuning algorithm. All the simulations
are performed using SIMULINK.

Stable Plant

we started our simulation with a linear stable plant
having the following transfer function
5000

G1) = IG5 1 100)

we first applied the modified tuning algorithm, which
worked very well. Figure 4 shows the results of a simu-
lation with the input u being a square wave of frequency
w = 1 and magnitude=1. The adaptation coefficient
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~ = 0.03. As shown in the figure, after tuning, the rise
time and overshoot are excellent.

For comparison, we also simulated the system using
the Fréchet tuning algorithm. We found that the re-
sults are very similar. In other words, the modified
algorithm worked very well.

In the simulation, we randomly picked the initial PID
gains Kp, K7, Kp. In fact, for the values we picked,
the closed-loop system is not stable initially. How-
ever, since our algorithm converges fast, it stabilizes
the system very shortly as shown in Figure 4. This
is significant because it may be difficult to determine
an initially stable PID gains if the systems is complex
and/or nonlinear.

Adaptation under noise

In order to study the effectiveness of our tuning al-
gorithm under noisy environment, we superimposed a
white noise signal with power=0.01 to the input x4 of
the plant. Simulation results show that noise has only
small effect on the tuning process.

Unstable Plant

We also simulated a plant with the following transfer
function 5000

s(s + 5)(s +100)°

This plant is open-loop unstable because of the pole
at the origin. For unstable plants, we cannot use the
Fréchet tuning algorithm, because the Fréchet deriva-
tive g(t) x h(t) is unstable. However, using the modified
tuning algorithm, we still obtained excellent results.

Gz(S) =

Systems with Time Delay

Our tuning algorithm also applies to systems with time
delay. By adding a delay of 0.2 second before the plant
with transfer function G;(s), we obtained simulation
results shown in Figure 5, where the input is a sine
wave of frequency w = 1 and magnitude=1. The adap-
tation coefficient -y = 0.3. We used the modified tuning
algorithm in our simulation. As shown in the figure, the
error decreases as tuning taking place.

Nonlinear Systems

If the plant is nonlinear, then it may be difficult to find
its Fréchet derivative. However, our modified tuning
algorithm can still be used. In Figure 6, we shown sim-
ulation results of a nonlinear plant with the following
dynamics.

Ua = —5ys + v3 + T4

Again the input is a sine wave of frequency w = 1 and
magnitude=1. The adaptation coefficient v = 10.

5 Conclusion

The PID tuning algorithm proposed in this paper has
many advantages in applications, most notably, its sim-

plicity and independence of the plant model. The sim-
ulation results shows that it performs very well un-
der various situations: linear or nonlinear plants; with
or without noise; stable or unstable plants; and with
or without time delay. In all these cases, the tuning
mechanism remains unchanged, a further proof of this
applicability. Because of the proprietary nature of the
information, we cannot report the application of this
approach to the Hitachi product at this time. How-
ever, we hope to do this in the near future.
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