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CHAPTER 2 2

Neural and Conceptual
Interpretation of PDP Models

P. SMOLENSKY

Mind and brain provide two quite different perspectives for viewing
cognition. Yet both perspectives are informed by the study of parallel
‘distributed processing. This duality creates a certain ambiguity about
the interpretation of a particular PDP mode!l of a cognitive process: Is
each processing unit to be interpreted as a neuron? Is the model sup-
posed to relate to the neural implementation of the process in some
less direct way?

A closely related set of questions arises when it is observed that PDP
models of cognitive processing divide broadly into two classes. In loca/
models, the activity of a single unit represents the degree of participa-
tion in the processing of a known conceptual entity—a word, a word
sense, a phoneme, a motor program. In distributed models, the strength
of patterns of activity over many units determine the degree of participa-
tion of these conceptual entities. [n some models, these patterns are
chosen in a deliberately arbitrary way, so that the activity of a single
unit has no apparent "meaning” whatever—no discernible relation to
the conceptual entities involved in the cognitive process. On the sur-
face, at least, these two types of models seem quite different. Are they
as different as they seem? How are they related?

This chapter begins with a brief consideration of the neural interpre-
tation of PDP models of cognition. These considerations serve mostly
to lay out a certain perspective on the PDP modeling world, to make
some distinctions 1 have found to be valuable, to introduce some
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terminology, and to lead into the main question of this chapter: How
are distributed and local PDP models related? The chapter ends with a
discussion of how, using the framework of PDP models, we might
forge a mathematical relationship between the principles of mind and
brain.

The following technique will be used to relate distributed to local
models. We take a distributed model of some cognitive process, and
mathematically formulate a conceptual description of that model, a
description in terms of the conceptual entities themselves rather than
the activity patterns that represent them. From some perspectives, this
amounts to taking an account of cognition in terms of neural processing
and transforming it mathematically into an account of cognition in
terms of conceptual processing. The conceptual account has a direct
relation to a local model of the cognitive process, so a distributed
model has been mapped onto a local model.

The mathematical formulation of the conceptual description of a dis-
tributed model is straightforward, and the mathematical resuits reported
in this chapter are ail quite elementary, once the appropriate mathemati-
cal perspective is adopted. The major portion of this chapter is therefore
devoted to an exposition of this abstract perspective on PDP modeling,
and to bringing the consequent mathematical observations to bear on
the cognitive issues under consideration.

The abstract viewpoint presented in this chapter treats PDP models
as dynamical systems like those studied in mathematical physics. The
mathematical concepts and techniques that will be used are those of
linear algebra, the study of vector spaces; these techniques are dis-
cussed in some detail in Chapter 9. The formal parts of the discussion
will be confined to footnotes and italicized passages; these may be
skipped or skimmed as all results are discussed conceptually in the main
portion of the text, which is self-contained.

NEURAL AND CONCEPTUAL INTERPRETATIONS

The interpretation of any mathematical mode! involves the mapping
of a mathematical worid into some observable part of the real world.
The ambiguity in the interpretation of PDP models arises because the
mathematical world of the model can be mapped into two observable
worlds: the neural world and the world of cognitive behavior.

The neural world relevant here is discussed in Chapter 20—a world
of receptor cells, neurons, synaptic contacts, membrane depolarizations,
neural firings, and other features of the nervous system viewed at this
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level of description. The mathematical world is that described in
Chapter 2—a world of processing units, weighted connections, thresh-
old and sigmoidal functions, and activation.

Least precisely prescribed is the world of cognitive behavior. This
world is mapped by experiments that probe perceptual behavior, rea-
soning and problem solving behavior, skilled motor behavior, linguistic
behavior, memory task behavior, and the like. PDP models have been
interpreted in terms of all these aspects of behavior, and to understand
the common basis for these interpretations we must adopt a fairly
general—and rather imprecise—way of speaking about cognition.

The connection between the formal structure of PDP models and
cognitive behavior rests on theoretical knowledge consteucts
hypothesized to underlie this behavior. Consider perception first.
Interpreting sensory input can be thought of as consideration of many
hypotheses about possible interpretations and assigning degrees of confi-
dence in these hypotheses. Perceptual hypotheses like "a word is being
displayed the first letter of which is 4," "the word ABLE is being
displayed," and "the word MOVE is being displayed" are tightly inter-
connected; confidence in the first supports confidence in the second
and undercuts confidence in the third. Thus assignment of
confidence —inference—is supported by knowledge about the positive
and negative evidential relations among hypotheses. This same kind of
knowledge underlies other cognitive abilities; this kind of inference can
support problem solving, the interpretation of speech and stories, and
also motor control. The act of typing ABLE can be achieved by letting
"the word 4BLE is to be typed" support "the first letter to be typed is
A" and inhibit "the first letter to be typed is M.

This way of thinking about cognition can be summarized by saying
that behavior rests on a set of internal entities called hypotheses that
are positively and negatively related in a knowledge base that is used
for inference, the propagation of confidence. The hypotheses relate
directly to our way of thinking about the given cognitive process; e.g.,
for language processing the hypotheses relate to words, syntactic
categories, phonemes, meanings. To emphasize that these hypotheses
are defined in terms of our concepts about the cognitive domain, [ will
call them conceptual hypotheses or the conceptual entities, or simply con-
ceprs; they are to be distinguished from the mathematical and neural
entities—units and neurons—of the other two worlds.

The internal structure of the neural. mathematical, and conceptual
worlds we have described are quite similar. Table 1 displays mappings
that directly relate the features of the three worlds. Included are all the
central defining features of the PDP models—the mathematical
world—and the corresponding features of the portion of the neural and
conceptual worlds that are directly idealized in PDP models.
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TABLE |

THE MAPPINGS FROM THE MATHEMATICAL WORLD TO
THE NEURAL AND CONCEPTUAL WORLDS

Neural Mathematical Conceptual

neurons units hypotheses

spiking {requency activation degree of confidence
spread of spread of propagation of

depolarization
synaptic contact
excitation/inhibition
approximate additivity

of depolarizations

spiking thresholds

activation
connection
positive/ negative
weight

summation
of inputs

activation spread

conlidence: inference

conceptual - inferential -
interrelations

positive/ negative
inferential relations

approximate additivity
of evidence

independence from

threshold G irrelevant information
limited sigmoidat limited range of
dynamic range function F processing strength

393

In Table 1, individual units in the mathematical world are mapped on
the one hand into individual neurons and on the other into individual
conceptual hypotheses.! These two mappings will be taken to define the
local neural interpretation and the local conceptual interpretation of PDP
models, respectively. These are two separate mappings, and a particular
PDP model may in fact be intended to be interpreted with only one of
these mappings. Using both mappings for a single model would imply
that individual concepts, being identified with individual units, would
also be identified with individual neurons.

In addition to the local mappings there are also distributed mappings
of the mathematical world into each of the neural and conceptual
worlds. In a distributed conceprual interpretation, the confidence in a

| What is refevant to this chapter are the general features, not the details, of Table L.
The precision with which the mappings are described is sufficient for present purposes.
For u more precise uccount of the relation between the mathematics of certain PDP
models and the mathematics of inference, see Hinton, Sejnowski, and Ackley (1984).
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- conceptual hypothesis is represented by the strength of a pattern of
activation over a set of mathematical units, In a distributed neural
interpretation, the activation of a unit is represented by the strength of
a pattern of neural activity of a set of neurons.

It must be emphasized that the choices of neural and conceptual
interpretations are truly independent. Some neural models (e.g., Hop-
field, 1982) may have no direct conceptual interpretation at all; they are
intended as abstract models of information processing, with no cogni-
tive domain implied and therefore no direct connection with a concep-
tual world. The reading model of McClelland and Rumelhart (1981;
Rumelhart & McClelland, 1982; see Chapter 1) has an explicit local
conceptual interpretation; we can choose to give it no neural interpreta-
tion, a local neural interpretation (implying individual neurons for indi-
vidual words), or a distributed neural interpretation. The Hinton
(1981a) and J. A. Anderson (1983) models of semantic networks have
explicitly distributed conceptual interpretations; they can be given a
local neural interpretation, so that the patterns over units used in the
models are directly interpreted as patterns over neurons. They can also
be given a distributed neural interpretation, in which the units in the
model are represented by activity patterns over neurons so that the
concepts—patterns over units—correspond to new patterns over neu-
rons.

The nature of the patterns chosen for a distributed interpretation—
either neural or conceptual—can be important (although it is not
always; this is one of the results discussed later). A distributed
interpretation will be called quasi-local if none of the patterns overlap,
that is, if every pattern is defined over its own set of units. Quasi-local
distributed interpretation, as the name impiies, forms a bridge between
local and distributed interpretation: a quasi-local neural interpretation
associates several neurons with a single mathematical unit, but only a
single unit with each neuron.

Since quasi-local interpretations are special cases of distributed
representations, the methods applied in this chapter to the general case
of distributed representations could also be applied to quasi-local
representations. Certain similarities to local representations can be
expected to emerge, but the general results to be discussed suggest that
it is a mistake to assume that the mathematical properties of the local
and quasi-local cases will be essentially the same.

The primary reason for displaying Table 1 is to emphasize that the
neural and conceptual bases for interest in PDP models are completely
independent. Even if all neural interpretations are eliminated empiri-
cally, or if no neural interpretation is given a model at all, a conceptual
interpretation remains a strong independent source of cognitive
relevance for a PDP model.
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At the same time, the independence of the neural and conceptual
mappings makes it quite striking that both contact exactly the same class
of mathematical models. Why should this be? Is it that we have
ignored crucial features of the two worlds, features which would lead to
quite different mathematical abstractions? A more encouraging possi-
bility is this: Perhaps we have captured the essence of neural processing
in PDP models. Perhaps implicit in the processing of neural firing pat-
terns is another mathematical description, a description in terms of the
concepts represented in those patterns. Perhaps when we analyze the
mathematics of this conceptual description, we will find that it has the
mathematical structure of a PDP model —that because of special proper-
ties of PDP models, at both the neural and conceptual levels of descrip-
tion, the mathematical structure is the same.

This wildly optimistic scenario (depicted schematically in Figure 1)
will be called the hypothesis of the isomorphism of the conceptual and
neural levels—the isomorphism hypothesis for short. We will find that it
is in fact exactly true of the simplest—one might say the purest—PDP
models, those without the nonlinear threshold and sigmoidal functions.
For models with these nonlinearities, we shall see how the isomorphism

Neural World Conceptual World

final state

initial

srate
pdp model pdp model
#1 #2
"ower level model” "higher level model”

FIGURE 1. The dashed line indicates a mapping [rom a PDP model representing neural
states to a PDP model representing conceptual states, The mapping is an isomorphism if,
when the two models start in corresponding states and run for the same length of time,
they always end up in corresponding states.
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hypothesis fails, and explore a phenomenon within these models that
distinguishes between the neural and conceptual levels.?

It is an open empirical question whether the conceptual entities with
which we understand most cognitive processes are represented by the
firing of a single neuron, by the firing of a group of neurons dedicated
to that concept, by a pattern of firing over a group of neurons involved
in representing many other concepts, by neural features other than
firing, or by no neural features at all. The purpose of this chapter is to
show how to use PDP models as a mathematical framework in which to
compare the implications of assumptions like those of local and distrib-
uted models.

The plan of attack in this chapter is to compare two related
mathematical models, each of which can be given either neural or con-
ceptual interpretations. They can be thought of as describing a single
neural net with both a local and a distributed model, or as implement-
ing inference over a single set of conceptual hypotheses using both a
local and a distributed model. The comparison of these two models will
thus tell us two things. [t will show how a description of a neural net
in terms of its patterns compares with a description in terms of its indi-
vidual neurons. It will also provide information about how behavioral
predictions change when a local model of a set of concepts is converted
to a distributed model.

The comparison between the two mathematical models will constitute
an investigation of the isomorphism of levels hypothesis. Model 2 will
be a description of the dynamics of the patterns of activation of Model 1;
the hypothesis is that the description at the higher level of patterns
(Model 2) obeys the same laws as—is isomorphic to—the description at
the lower level of individual units (Model 1). To permit ail the
relevant interpretations to apply, I shall call Mode! 1 simply the lower-
leve! model and Model 2 the higher-level model.

2 Strictly speaking, an isomorphism insists not only that there be a mapping between the
neural and conceptual world that preserves the dynamics, as indicated by Figure 1, but
also that the map establish a one-to-one correspondence between states in the (wo
worlds. Actually, it seems reasonable to assume that the neural world is a larger space
than the conceptual world: that a conceptual state lumps together many neural states, or
that the set of possible neural states includes many that have no conceptual counterpart.
This would render the "conceptual level” a "higher" levei of description. These con-
siderations will manifest themselves {ormally in the section "Pattern Coordinates,” but for
now the relation of isomorphism, despite its symmetry, serves (o emphasize the true
strength of the hypothesis under consideration.
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FROM NETWORK OF PROCESSORS TO
DYNAMICAL SYSTEM

This section introduces the perspective of PDP models as dynamical
systems. Traditionally, a PDP model is viewed as a network of proces-
sors communicating across links; [ will call this the computational
viewpoint. To illustrate the difference between the computational and
dynamical system perspectives, it is useful to consider a prototypical
dynamical system: a collection of billiard balls bouncing around on a
table.

A common exercise in object-oriented computer programming is to
fill a video screen with billiard balls bouncing off each other. Such a
program creates a conceptual processor for each billiard ball. Each
"ball" processor contains variables for its "position" and "velocity,"
which it updates once for each tick of a conceptual clock. These pro-
cessors must exchange messages about the current values of their vari-
ables to inform each other when "bounces" are necessary.

Billiard balls can be seen from a compultational viewpoint as proces-
sors changing their local variables through communication with other
processors. Physics, however, treats the position and velocity values
simply as real variables that are mutually constrained mathematically
through the appropriate "laws of physics." This is characteristic of the
dynamical system viewpoint.

To view a PDP model as a dynamical system, we separate the data
and process features of the units. The activation values of the units are
seen merely as variables that assume various values at various times,
like the positions and velocities of billiard balls. The changes in these
variables over time are not conceptualized as the result of prescribed
computational processes localized in the units. [n fact the processes by
which such changes occur are unanalyzed; instead, mathematical equa-
tions that constrain these changes are analyzed.

The equations that determine activation value changes are the ana-
logs of the laws of physics that apply to billiard balls; they are the "laws
of parallel distributed processing" that have been described in Chapter
2. A version of these equations can be written as follows. Let u,(r)
denote the activation of unit v at time ¢. Then its new value one unit
of time later is given by

u,(t+ 1) = FIZLW,,Gu, ()] (1A)
m
Here F is a particular nonlinear sigmoid function, an increasing S-

shaped function that takes a real number as input (the net activation
flowing into a unit) and gives as output a number in the range [—m, M|
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(the new activation of the unit). G is a nonlinear threshold function:
G(x) = x unless x is less than a threshold, in which case G(x) = 0.
W,, is the strength of the connection from unit u fo unit v,

The "knowledge" contained in a PDP model lies in the connection
strengths {Wm} or weight matrix, W. The nonlinear functions F and G
encode no knowledge about the cognitive domain of the model, and
serve 1o control the activation spread in non-domain-specific ways.

Thus the heart of a PDP model is its weight matrix; the rest of the
machinery can be viewed as bells and whistles added to get the weight
matrix to be "used properly" during inference. The purest PDP
models, from this point of view, consist only of the weight matrix;
from the preceding equation, F and G are removed:

u,(t+1) = 2 W,,u,(0).
"

The absence of the controlling nonlinearities make these models diffi-
cult to use for real modeling, but for our analytic purposes, they are
extremely convenient. The main point is that even for nonlinear
‘models with F and G present, it remains true that at the heart of the
model is the linear core, W. For this reason, [ will call the dynamical
systems governed by the preceding equation quasi-linear dynamical sys-
tems. In this chapter, the analysis of PDP models becomes the analysis
of quasi-linear dynamical systems. These systems will be viewed as ela-
borations of linear dynamical systems.

KINEMATICS AND DYNAMICS

Investigation of the hypothesis of the isomorphism of levels is a
purely mathematical enterprise that bears on the questions of interpret-
ing PDP models. This section provides an introduction to the
mathematical structure of dynamical systems.

There are two essential components of any dynamical system. First,
there is the srate space S, the set of all possible states of the system. [n
our case, each state s in S is a pattern of activation, i.e., a vector of
activation values for all of the units. The second component of a
dynamical system is a set of trajectories s,, the paths through § that
obey the evolution equations of the system. These trajectories can start
at any point sy in S. For activation models, sg is the initial activation
pattern determined by the input given to the model (or its history prior
to our observation of it), and the corresponding trajectory s, is the
ensuing sequence of activation values for all later times, viewed as a
path in the state space S. (This "path" is a discrete set of points
because the values of ¢ are; this fact is not significant in our
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considerations.) The evolution equations for our quasi-linear dynamical
systems are Equations 1A of the previous section.

Corresponding to these two components of dynamical systems are
two sets of questions. What is the state space S? Is it finite or infinite?
Bounded or unbounded? Continuous or discrete? How can the points
in S be uniquely labeled? What structures relate points to one another?
These properties define the geometry of state space, what [ will call the
kinematics of the dynamical system. In kinematics, the evolution equa-
tions and trajectories are ignored; time plays no role. Only the proper-
ties of the points in state space themselves are considered.

The questions in the second set pertain to the trajectories. Are they
repetitive (periodic)? Do they tend to approach certain special states
(limit points)? Can we define quantities over S that differ from trajec-
tory to trajectory bul are constant along a trajectory (conserved quanti-
ties)? These are the questions about the system’s dynamics, and their
answers depend strongly on the details of the evolution equations.

[t may seem that the questions of dynamics are the real ones of
interest. However, it is useful to consider kinematics separately from
dynamics for two reasons. First, the link between kinematics and
dynamics is strong: The kinds of evolutionary equations that can sensi-
bly be assumed to operate in a dynamical system are limited by the
geometry of its state space. For example, geometrical structures
expressing the symmetries of spacetime or elementary-particle state
spaces restrict severely the possible evolutionary equations: This is the
basis of the theory of relativity and gauge field theories of elementary
“particles. In our case, imposing boundedness on the state space will
eventually lead to the breakdown of the isomorphism of levels. The
second reason to emphasize kinematics in its own right is that the ques-
tions of interpreting the dynamical system have mostly to do with inter-
preting the states, i.e., with kinematics alone.

In this chapter we are concerned primarily with interpretation, and
the discussion will therefore center on kinematics; only those aspects of
dynamics that are related to kinematics will be considered. These
aspects involve mainly the general features of the evolution
equations—the linearity of one component (W) and the nonlinearity of
the remaining components (F,G). More detailed questions about the
trajectories (such as those mentioned above) address the behavior of the
system rather than its interpretation, and will not be considered in this
chapter.?

3 1. A. Anderson, Silverstein, Ritz, and Jones (1977) show the power of concepts from
linear algebra for studying the dynamics of PDP models. Some of their results are
closely related (o the general observations about nonlinear models 1 will make in the last
portion of this chapter.
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KINEMATICS

The first question to ask about a state space is: How can the
points—states—be labeled? That is, we must specify a coordinate system
for S, an assignment to each activation state s of a unique set of
numbers.

Each such s denotes a pattern of activation over the units. Let us
denote the activation value of the vth unit in state s by u,(s); this was
formerly just denoted u,. These functions {u,} form the unit coordi-
nates for S. Each function u, takes values in the set of allowed activa-
tion values for unit ». In the standard PDP model, this is the interval
[—m, M]. One could also consider binary units, in which case the func-
tions u, would take values in the set {0,1} (or {—1,1} ). In any event,
if all units are of the same type, or, more specifically, if all have the
same set of atlowed values, then all unit coordinates take values in a
single set.

It is sometimes helpful to draw a very simplified example of a state
space S. Using unit coordinates, we can plot the points of § with
respect to some Cartesian axes. We need one such axis for each u,,
i.e., each unit. Since three axes are all we can easily represent, we
imagine a very simple network of only three units. The state space for
such a network is shown in Figure 2. In Figure 2A, the case of activa-
tion values in [~m, M] is depicted. In this case, S is a solid cube (with
side of length m+M). Figure 2B depicts the case of binary activation
values {0,1}; in this case, S is the eight vertices (corner points) of a
cube. Except where specified otherwise, in the remainder of this
chapter the standard case of continuous activation values will be
assumed.

Thus if the network contains N units, S is an N-dimensional space
that can be thought of as a solid hypercube. Any other point of V-
space outside this hypercube is excluded from § because it corresponds
to activation for at least one unit outside the allowed range. Thus,
states with "too much" activation have been excluded from S.

"Too much" has so far been defined according to each unit individually; it is
interesting to consider whether states shouid be excluded if they correspond (o "too
much” activation among the units collectively. This would amount to excluding
Sfrom S even some of the points in the hypercube.

Here are two ways one might eliminate states with 100 much activation in fotal.
The first way is to require that of the complete set of N units, only N,y can be
active (i.e., have nonzero activation) at any one time. As Figure 3 shows, this
removes much of the hypercube and leaves S with a rather bizarre shape. This S is
topologicaily quite different from the original hypercube.
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FIGURE 2. 4: The solid cube bounded by —m and M forms the standard state space for
PDP models containing continuous units. B: The eight corners of the cube bounded by 0
and | forms a modified state space, corresponding to PDP models containing binary
units.

A less unusual approach is to define "too much activation in total” by the
condition

Z ’ “vl > axe

This results in an S that is depicted in Figure 4. Unlike the bizarre S of Figure 3,
this new S is not topologically distinct from the original hypercube.

Imposing this kind of limitation on total activation would turn out to have much
less of an effect on the dynamics of the model than would the limitation on the
number of active units.
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FIGURE 3. If only two ol three units are ailowed to have nonzero activation, the state
space is formed from three intersecting planes.

Redefining the "total activation" to be the Euclidean distance of the plotted point
Jrom the origin would not change the conclusion that S is not topologically distinct
Jrom the hypercube. [n fact, limiting the Euclidean distance or the sum of activa-
tions, or using the original hypercube, are all special cases of defining S to be a
“ball* with respect to some meiric in N -space. [t is a fact that all such balls are
topologically equivalenr (e.g., Loomis & Sternberg, 1968, p. 132).

In the remainder of this chapter, S will denote the standard hyper-
cube as depicted in Figure 2A, the state space of the general nonlinear
activation model. The state space of the simplified, linear, activation
model will be denoted S;. This space, as we shall see in the next sec-
tion, is simply all of N-dimensional Euclidean space, where N is again
the number of units in the network. (For example, there is no need to
draw S, because, for N = 2, il is the entire plane of the paper!) S is
clearly a subset of S ; in S, the unit coordinates of any state fall within
the restricted range [—m, M, while in §; the unit coordinates can be
any real numbers. '

The unit coordinates provide a convenient description of S for many
purposes. However, it is important to realize that points of S can also
be described with an infinitude of other coordinate systems. In a dis-
tributed interpretation, new coordinates that give a simple description
of these patterns will turn out to be better than unit coordinates for
interpreting states of the system. We shall construct these pattern
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FIGURE 4. This solid octahedron is the state space obtained by restricting the sum of
the magnitudes of the units’ activations to be less thun a .

coordinates shortly, but this construction uses a property of S we must
now discuss: its vector space structure.

VECTOR SPACE STRUCTURE

A central feature of parallel distributed processing is its exploitation
of superposition of knowledge during computation. Each unit that
becomes active exerts its influence in parallel with the others, super-
imposing its affects on those of the rest with a weight determined by its
level of activation. As we shall see, in linear models, this is a
mathematically precise and complete account of the processing. As
emphasized in the section "From Network of Processors to Dynamical
System," even nonlinear PDP models are quasi-linear systems, and
knowledge is used in the same fashion as in linear models. Thus super-
position plays a crucial role in all PDP models.

Superposition is naturally represented mathematicaily by addition. In
the simplest case, addition of individual numbers represents super-
position of unidimensional quantities. Adding multidimensional quanti-
ties (like states of activation models) is mathematically represented by
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vector addition. The concepts of vector and vector addition are best
viewed together, as data and process: *Vector" formalizes the notion of
"multidimensional quantity" specifically for the purpose of "vector
addition. 4

Actually, the notion of superposition corresponds to somewhat more
than the operation of addition: Superposition entails the capability to
form weighted sums. This is important for parallel distributed process-
ing, where the complete state of the system typically corresponds to a
blend of concepts, each partially activated. Such a state is mathemati-
cally constructed by summing the states corresponding to the partially
activated concepts, each one weighted by its particular degree of
activation.

Using unit coordinates, the operation of weighted summation is sim-
ply described. The activation of a unit in a state that is the weighted
sum of two other states is simply the weighted sum of the activations of
that unit in those two states. In other words, the unit coordinates of
the weighted sum of states are the weighted sum of the unit coordi-
nates of the states. Given two states s, and s,, and two weights w| and
w4, the weighted sum s is written

s =ws + WS,
What [ have already said about the unit coordinates is then written
u,(s) = wu,(sy) + wyu,(sq).

Using unit -coordinates, the evolution equation of quasi-linear sys-
“tems, Equation 1A, can be written

U, (s,41) = FIN W, Glu, (s, )], (1B)
n

The reason all the unit coordinates u, of the state s,.; are guaranteed
to lie in the allowed range [—m, M] is that the function F takes all its
values in that range. This nonlinear function is what ensures that the
trajectories do not leave the bounded cube § of states. [f F were
absent, then the coordinate u, would just be the weighted sum (with
weights W, for all values of ) of the quantities G(u, (+)); this need

4 [t is common to use the term "vector" for any multidimensional quantity, that is, a
quantity requiring more than one real number to characterize completely. This is, how-
ever, not faithful to the mathematicai concept of vector unless the quantity is subject to
superposition. The precise meuning of "superposition" is captured in the axioms for the
operation of "addition" that defines it (see Chapter 9).



22. NEURAL AND CONCEPTUAL INTERPRETATION 405

not lie in the allowed range.5 So in the simplified linear theory in which
F and G are absent, the evolution equation

u,(s,,) = W, u,(s,) 2A)
m

imposes no restriction on the range of values of the coordinates; trajec-
tories may wander anywhere in N -space.

Thus we see that the kinematical restriction of state space to the
bounded region S has lead to the insertion of the bounded (and there-
fore nonlinear) function F into the dynamical equation. If state space
is extended to all of N-space, i.e. Sy, then the linear dynamical equa-
tion above is permissible.

The linear evolution equation can be written more transparently in terms of state
vectors rather than unit coordinates. Define N vectors w u Oy
u,(w,) =W,
W, is the vector of weights on connections from unit . It is also the activation
vector that would exist at time t-+1 [f ar time t, unit . had activation 1 and all
other units had activation 0. Now because the evolution is linear, the state at time
t=+1 produced by a general activation pattern at time t is just the weighted sum of
the parerns that would be set up by individual unit activations at the units, with the
weights equal to the actual activation of the units. That is,

St = U, (8w,
m

(This vector can be seen to obey the linear evolution equation given above by
evaluating its vth unit coordinate, using the rule for coordinates of weighted sums,
and the defining coordinates of the vectors W ,.)

This equation explicitly shows the blending of knowledge that characterizes paral-
lel distributed processing. The vector W, s the output of unit w; it is the
"knowledge" contained in that unit, encoded as a string of numbers. The state of
the system at time t+1, S,.\, is created by forming a weighted superposition of all
the pieces of knowledge stored in all the units. The weight for unit @ in this super-
position determines how much influence is exerted by the knowledge encoded by that
unit.  This weight, according to the previous equation, is U, ( S, ). Thatis just the
degree to which unir . is active at time t .

Another useful form for the linear evolution equation uses matrix
notation: '

u(t+1) =W u(t). : (2B)

5 By imposing special restrictions on the weights, it is possible to ensure that the
weighted sum lics in S, and then the nonlinearity F cun be eliminated. But like F, these
restrictions would also have strong implications for the dynamics.
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u is the ¥ x1 column matrix of unit coordinates u,, and W is the
N x N matrix of values W,,. This matrix is relative to the unit coor-
dinates; shortly we shall switch to other coordinates, changing the
numbers in both the square matrix W and the column matrix u.

PATTERN COORDINATES

Now we consider activity patterns used in a distributed neural or con-
ceptual interpretation. For concreteness, consider the pattern
<+1,—-1,+1,—1> over the first four units. To denote this pattern, we
define a vector p the first four unit coordinates of which are
<+1,~1,+1,—1>; the remaining unit coordinates are zero. Now con-
sider the state s with unit coordinates <.3,-.3,.3—.3,0,0,...,0>.
This state can be viewed in two ways. The first is as the superposition
of four states: u; with unit coordinates <1,0,0, ...,0>, u; with unit
coordinates <0,1,0,...,0>, etc.,, with weights respectively
+.3,=.3,+.3, and —.3. This is the unit view of s. The second view is
simpler: s is simply .3 timesp:

s =.3p.

This is the pattern view of s.

The general situation is comparable. If there is a whole set of dis-
tributed patterns, each can be represented by a vector p;. Any given
state s can be represented in two ways: as the superposition of the vec-
tors u,, with weights given by the unit coordinates of s, or as a super-
position of pattern vectors p;. If the patterns comprise a distributed
conceptual interpretation, the weights in this latter superposition indi-
cate the system’s confidence in the corresponding conceptual
hypotheses.

Let’s consider a slightly less simplified example. Let p, be the vector
p above, and let p, correspond to the activation pattern
<+1+1,+1.+1> over the first four units. Then the state s with unit
coordinates <.9,.6,.9,.6,0,0, . . ., 0> can be viewed either as

s = .9ui + .6u2+ .9u3+ .6u4
or as
s = ‘15p1+ .75p2.

The first representation shows the activation pattern of units, while the
second shows s to be a weighted sum of the two patterns with respec-
tive strengths .15 and .75.
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It is useful to consider this example geometrically as well as algebrai-
cally. In Figure 5, s is drawn (only the first two unit dimensions are
depicted). The projections of this vector onto the unit axes (defined by
the vectors u, and u,) are .9 and .6, while the projections onto the vec-
tors p; and p, are .15 and .75. These conceptual vectors define the
axes of the pattern coordinate system for state space.

In a PDP model with a distributed interpretation, the interpretation
of the state of a system requires the use of the pattern coordinate sys-
tem. The mathematics of linear algebra (discussed in Chapter 9) tells
how to convert state descriptions from unit coordinates to pattern coor-
dinates, and vice versa. All that is required is the specification of the
patterns.

Before considering the conversion between unit and patiern coordinates, one
observation needs to be made. Consider a distributed conceptual interpretation.
(Exactly the same considerations apply to a distribuied neural representation.) If
confidence in a group of conceptual hypotheses are (o be separable, then the pattern
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FIGURE 5. The unit basis vectors u; and u, define the axes [or the unit coordinate sys-
tem. The state s has unit coordinates <.9,.6>. The patlern vectors py and p, define the
axes for the pattern coordinate system. The state s has pattern coordinates <.13,.75>.
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vectors representing them must be linearly independemt. Suppose, for example, that
p3 is not independent of pland P,;say

p; = .4pl+ .3[)2

Then the state s representing confidence .2 in Hypothesis 1, .15 in Hypothesis 2,
and 0 confidence in Hypothesis 3,

§ = .2pl + .15p2+ Op3 ,

will be identical to the state representing confidence .5 in Hypothesis 3, and 0 confl-
dence in Hypotheses | and 2: E

s = Opl+ 0p2+ .Sps.

Thus Hypothesis 3 is not separable from Hypotheses 1 and 2; in fact any of the
three hypotheses can be written as a superposition of the other two, so it is better to
say that the Hypotheses I, 2, and 3 are not independently represented by the
activation patterns described by the vectorspy , Py , P3.

Thus we must assume that the distributed representation involves a set of separ-
able hypotheses that are represented by a linearly independent set of vectors { p; }.
Therefore if there are N units, so that state space is N -dimensional, there may be
at most N conceptual vectors. [f there are exactly N such vectors, then { p; } forms
a basis for S Every state in Sy is uniquely expressible as a superposition of the
paiterns, and therefore interpretable in terms of the conceptual hypotheses. [f there
are fewer than N conceptual vectors, then there will be states of the model that are
not conceptually interpretable, since no superposition of the vectors {p ,-} will equal
the state. This may be no problem if the dynamics of the model (i.e., W) tends to
keep trajectories away from such states.

When a distributed interpretation involves fewer than N patterns, only the vectors
in a subspace of the state space Sy are interpretable, and the patiern coordinates
allow description only of this subspace. This reduction in expressivity is to be
expected in a passage from a lower- to higher-level description. In any event, when
there are fewer than N patterns, extra pattern vectors can be freely created
to expand {p,-} to a complete basis. To simplify the analysis, we shall assume
this to be done, noting that states involving these extra vectors are not completely
interpretable.

The unit and pattern coordinates of a state s are the components of
the vector s with respect to the unit basis {u,} and the pattern basis
{p;}, respectively. To translate between these bases, we need the
change-of-basis matrix P defined by the entries

Pi =u,(p;).

The ith column of this matrix is simply the pattern of activation over
the units defining the ith pattern. Then the unit coordinates of a state
s, the components of s with respect to the unit basis {u,}, can be
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computed from the conceptual components of s, the components of s
with respect to the pattern basis {p, }, by

u =Pp. (3A)

In this matrix equation, u and p are the N x | column matrices of coor-
dinates of s in the unit and pattern systems, respectively.

To compute the pattern coordinates from the unit ones, we need the
inverse matrix of P:

p =P lu. (3B)

The existence of an inverse of P is guaranteed by the linear independence of the

{p;}.
Let's consider a simple case with two units supporting the two patterns < [,2>
and < 3,1>. Here the pattern matrix is

p-3

Thus the state S| representing .5 of pattern one and .3 of pattern two has pattern
coordinates <.53,.3> and unit coordinates

=l -1

‘The two coordinate systems and S| are shown in Figure 6.

FIGURE 6. The states, in the pattern and unit coordinates.
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To go from unit coordinates to pattern coordinates, we use the inverse of the pat-
tern matrix;

S
T 4 =20
Thus the state S, with unit coordinates < 4,3> has pattern coordinates

n= 201 -1

(1t is easily verified that <4,3> is the sum of <1,2> and <3,1>!) The state S,
is shown in Figure 7.

The evolution Equation 2B for the linear model can now be
transformed, by multiplication by P~!, from unit to pattern coordinates:

pU+1 =1Ip(). (4A)

Here the matrix W of interunit connection weights has become the
matrix

[ =P 'WP. (5)

The meaning of this matrix is clear upon writing the evolution equation
out in component form

pt+1) = 21,-,-p,- (). (4B)
J

FIGURE 7. The state s, in the unit and patlern coordinates.
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Thus, 1; is the interconnection strength from pattern j to pattern i. In
a distributed conceptual interpretation, this number expresses the sign
and strength of the evidential relation from the jth conceptual
hypothesis to the ith conceptual hypothesis. Thus I governs the propa-
gation of inferences. '

The important result is that the evolution equation for the linear model
has exactly the same form in the pattern coordinate system as it had in the
unit coordinates.

THE ISOMORPHISM HYPOTHESIS HOLDS IN LINEAR
SYSTEMS

The analysis at the end of the preceding section shows that for a
linear model the evolution equation has exactly the same form in pat-
tern coordinates as in unit coordinates. In other words, there is an exact
isomorphism between the lower and higher levels of description in linear
models.

This isomorphism has been viewed so far as a mapping between two
descriptions of a given model. It can also be viewed as a mapping
between the behavior of two different PDP models. One is the original
model with which we began, a model supporting a distributed interpre-
tation, having N units with interconnection weight matrix W. Let’s call
this the lower-level model, M. The higher-level model M, has a unit for
every pattern of the distributed interpretation and has interconnection
matrix [. The law governing its processing (Equation 4) is exactly the
same as that of the lower-level model (Equation 2).

The isomorphism maps states of the lower-level model into states of
the higher-level model. Take any state s, of the lower-level model. To
find the corresponding state s;, of the higher-level model, express s, in
pattern coordinates. The coordinate for the ith pattern-its strength in
state s, —gives the activation in state s, of the ith unit of A,. (In
other words, the ith partern coordinate of s, equals the ith unit coordi-
nate of's,.)

So for example if the state s of the lower-level model is a superposition of the first
two patterns, say,
s =.6 p,+ 3p )

then the corresponding state in the higher-level model would have activation .6 in
Unit [, .3 in Unit 2, and 0 elsewhere.

The mapping between the lower- and higher-level models is an iso-
morphism because the evolution equation for one model is mapped into
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the evolution equation of the other, so that the behavior of one model
is exactly mapped onto that of the other. That is, if the two models
start off in corresponding states, and are subject to corresponding
inputs, then for all time they will be in corresponding states.®

The significance of the behavioral equivalence of the two models can
be brought out in an example. Consider a linear version of the letter
perception model (that is, remove the nonlinearities from the equations
of the model, maintaining the original nodes and interconnections). As
originally proposed, this model, M,, has a local conceptual interpreta-
tion. Suppose we wanted to rebuild the model with a distributed con-
ceptual interpretation, with hypotheses about words and letters
represented as activation patterns over the units of a model M.

First, each conceptual hypothesis (i.e., unit in the original model)
would be associated with some specific activation pattern over units in
M,. The inference matrix of M), , which gives the positive and negative
strengths of connections between conceptual hypotheses in the original
model, would be algebraically transformed (following Equation 5),
using the activation patterns defining the distributed interpretation.
This new matrix defines the correct weights between units in 4. This
sets up the lower-level model.

To run the model, inputs are chosen and also an initial state. Both
are originally specified in conceptual terms, and must be algebraically
transformed to M, (following Equation 3A). This defines the inputs
and initial state of the lower-level model. Then the lower-level model
is run for a length of time. The model’s response to the input is deter-
mined by taking the final state, representing it in pattern coordinates,
and reading off the activations of the corresponding conceptual
hypotheses. :

What the isomorphism tells us is that after all this effort, the result
will be exactly the same as if we had simply run the higher-level model.

The higher-level model can be viewed as a conceptual description of
the lower-level model in which details of the "implementation patterns”
have been ignored. The behavioral isomorphism implies that these
details have no effect at all on the behavior of the model. However,
the two models do implement the same processing differently, and they
will differ in how they respond to modifications of the processing
mechanism itself. Thus the behavioral effect of destroying a unit will

6 [[ the lower-level model has external inputs to the units, exactly the same transforma-
tion that maps states of M, to states of M), also maps inputs of M; to inputs of M. This
can be verified by taking the matrix form of the new linear evolution equation,

ult+1) =Wul) +i,

where i is the ¥ x | column matrix of external inputs, and performing the same opera-
tions us in the preceding section to transform it from the unit to pattern basis.
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be different for the two models, and the demands on connection adap-
tation, i.e., learning will differ. Understanding these phenomena in
terms of the lower- and higher-level models provides an opportunity
to exploit more of the power of the techniques of linear algebra.
They will be discussed in the following two sections, which can be
skipped without diminishing the comprehensibility of the subsequent
discussion.

LOCALIZED DAMAGE AND THE ISOMORPHISM OF
LEVELS

Suppose we remove one unit from the lower-level model. What will
be the corresponding modification in the isomorphic higher-level
model? That is, what will be the effect on the model’s ability to pro-
cess the patterns that are meaningful in the distributed interpretation?

Removing unit v can be viewed as insisting that it have activation
zero and no incoming connections. This amounts to allowing only
states s that have

u,(s) =0.

This change in the kinematics of the system brings with it a change in
the dynamics. We need to follow this change through, transforming it
to the higher-level model.

The evolution equation must be changed so that only allowed states are reached;
this amounts to saying that the activation of unit v will never change from zero.
This can be done as follows. The column matrix W u (t) has for its vth element
the inputs coming in to unit v rather than this for the vth element inu (t + 1) we
want zero. So we apply a "damage matrix" that " projects out" the component along
u,:

- T
D, =1-u,u,.
(Here 1 is the unit or identity matrix, andT is the matrix transpase operation.) The
new evolution equation becomes

u(e+1) =D, Wule).

Introducing D is equivalent to the more obvious step of replacing the vih row of
W by zeroes, or of simply removing it altogether, along with the vih element of u.
However, it is difficult to map these surgeries onto the higher-level model to see what
they correspond to. By instead performing the "damage" by introducing a new linear
operation (multiplication by D), we can again use simple linear algebra and trans-
parently transform the "damage” to the pattern basis.
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We can view D as a projection onta the states orthogonal fo u, if we introduce
the inner product in which the unit basis vectors are orthonormal. Then the inner
product of two states s ands', (s,s’), can be easily computed using the column
matricesu and ' of the unit cooordinates of these states:

(s,s) =uTvu.

While the unit basis is orthonormal, the pattern basis may not be. The relevant
matrix is M with elements

M; = (p;.p;) = 2u,(p;) u,(p;) = Zpuipujv

M =PTP.

UM is the unit matrix 1, then the pattern basis is orthonormal, also, and the inner
product of two states S ands' can be computed using the column matrices p and p
of their pattern coordinates using the same simple formula as in the unit coordinates:

(s,s) =pTp {orthonormal patterns only].

Otherwise one must use the general formula of which this is a special case:
(s,s’) =pTMp.

(Sinceu = Pp, this is justuT u'.)
Now we apply the standard procedure for changing the dynamical equation to the
pattern basis. This gives

p(t+1) =Dy Ip().

Here, the "damage vector" d is the column matrix of pattern coordinates of u,,:
d =P 'u,

and Dy is again the matrix that orthogonally projects out d:
Dy =1-dd"M.

(If the pattern basis is not orthonormal, the inner product matrix M must appear in
the orthogonal projection matrix D; if the pattern basis is orthogonal, then M = 1
s0 it has no effect.)

So the corresponding damage in the higher-level model is removal of the pattern
represented by d : All allowed states will be orthogonal to this pattern. [ntroducing D
here is equivalent to making a change in the inference matrix 1 that is more compli-
cated than just converting a row (o zeroes. All connections coming into the patterns
that employ the deleted unit will be altered in a rather complicated way; 1 is replaced

Thus corresponding to the damage produced in the lower-level model
by removing unit v is the removal of ail states in the higher-level
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model that are not orthogonal to a particular state of the higher-level.
units. This state corresponds under the isomorphism to u,; it
represents exactly the superposition of lower-level patterns in which the
activations on all lower-level units exactly cancel out to 0, except for
the removed unit, which ends up with an activation of 1.

Let’s return to the two-unit example from the section " Pattern Coordinates." Sup-
pose the first unit is removed. This eliminates the horizontal axis from the state
space; that is, now only states that have zero x-coordinate are allowed. This is
shown in Figure 8. How does this look in pattern coordinates? The damage vector
d has unit coordinates < 1,0>. lis conceptual coordinates are therefore

29 -1

(The weighted sum of the two patterns, with weights <—.2,.4>, is seen to be 0 on
the second unit, 1 on the first.) Thus in the pattern coordinates, the damage has
been 1o remove the state <—.2,.4>, leaving only states orthogonal to it. This of
course is just a different description of exactly the same change in the state space:

see Figure 9.

Thus removing a lower-level unit corresponds to removing a pattern
of activation over the higher-level units; under a distributed conceptual
interpretation, this amounts to removing "pieces of concepts" —the
pieces relying on that unit.

The same analysis can be run in reverse, to show that "removing a
higher-level unit" (e.g., a concept) amounts to performing a rather
complicated change in the weight matrix that has the effect of eliminat-
ing from the state space those states not orthogonal to the pattern
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FIGURE 8. When Unit | is destroyed, the two-dimensional stale spuce shrinks to the
one-dimensional space with zero activation [or the destroyed unit.
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FIGURE 9. In pattern coordinates, the destruction of Unit | is described as the removal
of the state <—.2,.4>, leaving only the states orthogonal (o it.

corresponding to the deleted higher-level unit. In short, localized dam-
age in one model is distributed damage in the other. Geometrically,
the picture is similar in the two cases; localized damage removes the
states orthogonal to a coordinate axis, while distributed damage
removes the states orthogonal to a vector that is not a coordinate axis.
Since the higher-level coordinates simply employ different axes than
the lower-level coordinates, the picture makes good sense.

LEARNING OF CONNECTIONS AND THE
ISOMORPHISM OF LEVELS

One major conceptual distinction between local and distributed
interpretations is that in the former case the individual elements of the
interconnection matrix can be readily interpreted while in the latter case
they cannot. In a version of the reading model with a local conceptual
interpretation, the positive connection from the unit representing "the
first letter is 4" and that representing "the word is ABLE" has a clear
intuitive meaning. Thus the connection matrix can be set up intui-
tively, up to a few parameters that can be adjusted but which have clear
individual interpretations. By contrast, the interconnection matrix of
the modified reading model defined in the section "The Isomorphism
Hypothesis Holds in Linear Systems," with a distributed conceptual
interpretation, had to be obtained by algebraically transforming the
original interconnection matrix: This matrix cannot be obtained by
intuition, and its individual elements (the connection strengths
between individual units in the distributed model) have no conceptual
interpretation.

This way of generating the interconnection matrix for the distributed
model seems to give a primal status to the local model. There is,
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however, another way to produce the interconnections in the distrib-
uted model: through a learning procedure. The two procedures I will
discuss are the original Hebb learning procedure and its error-correcting
modification, the delta rule.

[ will only briefly and imprecisely discuss these two learning pro-
cedures; a fuller discussion is presented in Chapter 2, Chapter 8, and
Chapter 11. In the Hebb procedure, the interconnection strength
between two units is increased whenever those units are simultaneously.
active. This can be implemented by adding to the strength the product
of the units’ activation. In the delta rule, this is modified so that what
is added to the strength is the product of the input unit’s activation and
the difference between the output unit’s activation and the value it
should have according to some outside "teacher."

The relevant results about these procedures, for present purposes,
are these: The delta rule will eventually produce the interconnection
matrix that minimizes the error, measured relative to the teacher. The
Hebb procedure will give essentially the same result in the special case
that the activation patterns the model must respond to are mutually
orthogonal. In this case, the error-correction feature of the delta rule is
superfluous.

There is an intuitive explanation of this result. Suppose a new input
activation pattern must be associated with some output pattern. In gen-
eral, that input pattern will, by virtue of previously learned associations,
"produce some output pattern. The deita rule adds into the interconnec-
tions just what is needed to modify that output pattern, to make it the
correct one. The Hebb procedure adds connections that will themselves
produce the output pattern completely from the input pattern, ignoring
connections that have already been stored. If the new input pattern is
orthogonal to all the already learned patterns, then a zero output pattern
will be produced by the previously stored associations. 7 That is why,
with orthogonal inputs, the simple Hebb procedure works.

The point is that in general, the delta rule will produce the correct
interconnection matrix for a distributed model, as it will for a local
model. This represents a degree of parity in the status of the two
models. However, this parity has its limits. The Hebb rule will in gen-
eral not produce the correct matrix for a distributed model, unless the
patterns have been carefully chosen to be orthogonal. (A simple exam-
ple of such orthogonality is a strictly local model in which each input is
uniquely represented by a single unit.)

Thus the lower- and higher-level models may differ in whether Hebb
learning works; this is because what is local to the connection between

7 Orthogonality means that the inputs to each output unit cancel each other out com-
pletely.
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two units in one model will in general not be local in the other, and
some special arrangement—orthogonality of patterns—is needed to
ensure that nonlocalities do not cause any problems.

This issue of the orthogonality of the patterns relates back to kinematics. To
analyze what the individual components of the interconnection matrix need to be, it is
necessary to add to the vector space of states the additional geometric structure of an
inner product; it is this that tells whether states are orthogonal. The inner product
is defined so that the unit basis is orthonormal. When the pattern basis is ortho-
normal as well, the transformation from unit to pattern coordinates is a rotation,
and it preserves the constraints on the interconnection matrix elements. In particu-
lar, the adequacy of the Hebb procedure is invariant under the transformation from
the lower- to higher-level model. - In the general case, when the pattern basis is not
orthonormal, this invariance is broken.

NONLINEARITY AND RESTRICTED STATE SPACE

Having established the validity of the isomorphism of levels
hypothesis for linear PDP models, it is time to consider quasi-linear
systems with nonlinearities. To understand the effects of these non-
linearities, it is helpful to go back to kinematics.

The state space S; of linear PDP models is all of N-space, where N
is the number of units in the model. By contrast, the standard state
space S of general PDP models is the solid hypercube in N -space
described in the section "Kinematics." This represents states in which
each unit has activation within the limited range [—m, M]. Such a re-
striction is motivated within the neural interpretation by the limited
range of activity of individual neurons; it is motivated within the con-
ceptual interpretation by the desirability of limiting the possible influ-
ence of a single conceptual hypothesis. (PDP models are feedback sys-
tems that tend to be difficult to control unless activation values have a
ceiling and floor. Nonlinearities also allow multilayer PDP networks to
possess greater computational power than single-layer networks: see
Chapter 2.)

Whatever the motivation, the restriction of states to the cube S,
instead of allowing all states in N-space S;, means that the general
linear evolution equation (with unrestricted weight matrix W) is un-
acceptable. Introducing the nonlinear sigmoidal function F of Equation
1 with range [—m, M solves this problem by brute force.

Unlike S, the hypercube S looks quite different in different coordi-
nate systems. In unit coordinates, all coordinates are limited to
[—m M1, with a different set of axes, like those of pattern coordinates,
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the allowed values of a given coordinate vary, depending on the values
of the other coordinates. (See Figure 10.) No longer is it possible for
the description of the system to be the same in the two coordinate sys-
tems. As we shall see explicitly, the exact ismorphism of levels that
holds for linear models breaks down for nonlinear models.

Another characterization of the kinematic effect of restricting S to a
hypercube is that now states can be distinguished according to their
position relative to edges, faces, corners, and so on. Choosing to
represent a concept, for example, by a point in the corner of S will pro-
duce different behavior than choosing a point in the middle of a face.
These distinctions simply cannot be made in the linear state space S; .

A crucial effect of limiting the state space to S is that now some
superpositions of states will be in § while others will not; it will depend
on the position of the states relative to the boundary of the hypercube.
Because some patterns cannot superimpose, i.e., coexist, they must
instead compere for the opportunity to exist. Other patterns can coexist,
so the choice of patterns in an interpretation will matter. In particular,

FIGURE 10. In unit coordinates, the allowed values of u, are [~m M| regardless of the
value of wy. [n the pattern coordinates shown, the ailowed values of p, depend on the
vatue of py, as shown by the two diagonal bars. These bars correspond to two different
values of py, and their length indicates the allowed values of p4.
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the choice of nonoverlapping patterns (e.g., over single units) —a local
or quasi-local interpretation—will produce different behavior than the
choice of overlapping patterns—a genuinely distributed interpretation.

Take for concreteness the allowed unit coordinate range [—m,M] o be
F1+1].

Consider for example a local conceptual interpretation in which Concepts 1 and 2
are represented by Units 1 and 2, respectively. In unit coordinates, then, the

representation  of  the  hypotheses are  <1,0,0,0,...,0>  and
<0,1,0,0,...,0>. Then the superposition of these two states is simply
<1,1,0,0, . ..,0>. This falls within S, and is therefore kinematically allowed.
By contrast, consider the simple distributed representation in which the two
hypotheses — are  respectively  represented by <1,1,0,0,...,0> and
<1~1,00,...,0>. Now the superposition of the w0 states s
<2.0,0,0,...,0> which is kinematically forbidden. The situation is graphi-

cally depicted in Figure 11.

The basic observation is that superimposing states representing maximal confi-
dence in two conceptual hypotheses is kinematically allowed when the corresponding
patterns do not overlap—always true in a local interpretation—but kinematically
Sforbidden when they do overlap—sometimes true in a genuinely distributed
interpretation.

The kinematic restriction that states stay inside the hypercube has a dynamical
consequence in the sigmoidal function F. It will now be verified that F does indeed
lead 1o a greater difficulty in superposing < 1,1> and < 1,—1> than in super-
“posing < 1,0> and < 0,1>. (All coordinates in this note will be unit coordinates.)

Let F be the function that takes a vector, passes ail its unit coordinates through
F, and uses the resulting numbers as the unit coordinates of the output. [ will show
that F retards the growth in length of a vector along the edge (the <ct,0> direction
ore) more than along the diagonal (the <[, > direction ord). These retardation
Jactors are

__lel _ _«a
Re =177 = Fw
and
Ry =4l - _YB__ B

[F(d)] V2F(B) F(8)

As shown in Figure 12, these retardation factors are the reciprocals of the average
slope of the F curve between the origin and the X values « and 3, respectively.
Since the F curve is concave downward, as X increases, this average slope dimin-
ishes so its reciprocal increases. That is, the retardation will be greater as a and 3
grow; F squashes vectors more and more strongly the closer they get to the edge of
the state space. A fair comparison between the retardation along e and d requires
that these vectors be of equal length. [n that case, ¢ is greater than 3 (by a factor
0/\/5); this means the retardation is greater fore, i.e., along the edge.
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u
2
Uy +u,
A
S
o U ¢
Py
S
3 Py TP,y
Py

FIGURE 11. A: In a local interpretation in which Concepts | and 2 are represented by
vectors uy and u,, the superposition u; + u, lies in § (along the diagonal). 8: In a dis-
tributed interpretation in which Concepts | and 2 are represented by vectors py and p,,
the superposition p, + p, lies outside of § (in the direction of an edge).

Competition of patterns that are forbidden to superimpose—what [
will call natural competition—does not exist in linear models. The sub-
sequent discussion of nonlinear models will focus on natural competi-
tion and how it distinguishes between local and distributed models.

Natural competition resembles inhibition, which of course can be
present in linear models. There is a crucial difference, however. [nhi-
bition is explicitly inserted into the interconnection matrix. Competition
arises independently of the interconnection matrix; it depends on the
overlap of patterns and on the nonlinearity. Loosely, we can say that
whether two states naturally compete depends only on kinematics (their
position in state space relative to the edges of the space), and not on
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FIGURE 2. The slope of the solid line, F(8)/8, exceeds the siope of the dotted line,
Fla)/a, because < and F is concave downward (for positive inputs).

the dynamics (interconnection matrix); whether two states mutually
inhibit depends on the dynamics but not on the kinematics. If natural
competition is to be exploited computationally, distributed interpreta-
tions are needed.

For expository convenience, for the remainder of this chapter, except
‘where otherwise indicated, we take 4 = 1 and m = 1, so the allowed
activation range is [~1,1].

The plan for the remainder of this chapter is first to explicitly show
the breakdown of the isomorphism hypothesis for nonlinear models,
next to analyze natural competition and its effects, and finally to sum-
marize the results and discuss the value of a mathematical approach to
the mind/brain problem.

THE ISOMORPHISM HYPOTHESIS FAILS IN
NONLINEAR MODELS

To investigate the isomorphism hypothesis in nonlinear PDP models,
as before we take a model with a distributed interpretation and
‘transform the description from unit to pattern coordinates. We then
compare the new form of the evolution equation with the original form;
if the form has changed, the hypothesis fails. To start with, we restore
the nonlinear sigmoidal function F to the evolution equation; we will
discuss the thresholding function G later.
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Our evolution equation in unit coordinates is Equation 1A with G
removed:?

u, (t+1) = FIZW,,u, (1)]. (6A)
o

Using Equations 3 and §, this can be transformed to the pattern coordi-
nates:

pt+1) = EP“,,F[ZP,kEijpj (I)]. (6B)
, PR

Now in the linear case, when F is absent, the pattern matrices P~! and
P cancel each other out: the patterns don’t matter. By definition of
nonlinearity, here F prevents the cancellation, and the equation in pat-
tern coordinates is more complicated than it is in unit coordinates.
There is no isomorphism of levels. The choice of patterns can maltter
behaviorally. :

As in the linear case, we can construct a higher-level model, with
one unit for each pattern. The evolution equation for the higher-level
mode! is Equation 6B; it is not the equation for a PDP model, so the
higher-level model, while behaviorally equivalent to the lower-level
model, is not a PDP model. Here is how the higher-level model works.
The units add up the weighted sum of their inputs from other units,
using the inference matrix I, just as in the linear case. However, what
.happens next is complicated. To determine its new value, a unit must
find out what the weighted sum of inputs is for ail the other units, form
a weighted sum of these (with weights determined by the patterns), and
then pass the resulting value through the nonlinear function F. But
this is not the end. Now the unit must find out what number all the
other units have gotten out of F, then form a weighted sum of these
(again, with weights determined by the patterns). This finally is the
new value for the unit.

Thus, what distinguishes the higher- and lower-level models is that
the nonlinearity in the lower-level model is applied locally in each unit
to its weight sum of inputs, while in the higher-level model the non-
linearity is applied globally through consultation among all the units. It
is this nonlocal nonlinearity that makes the higher-level mode!l not a
PDP model.

8 Using the vector-vaiued function F defined in the previous section, the evoiution
equation can be written in a concise, coordinate-free form:

s+ =FUs)]

where U is the linear transformation on S which is represented by matrix W in unit coor-
dinates and by matrix I in pattern coordinates. This equation is the nonlinear generaliza-
tion of Equation 2B.
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The higher-level model just considered has the same behavior as and
different processing rules from the lower-level model. We can also
consider another higher-level model that has the same processing rules
as and different behavior from the lower-level model. This model also
has one unit for each pattern of the lower-level model, and also uses
the interconnection matrix I. However, each unit computes it new
value simply by passing its weighted sum of inputs through F, without
the added complications of consulting other units as in the other
higher-level model. Because these complications are removed, the
behavior of this model will be different from the lower-level model;
that is, if the two models were started in corresponding states and given
corresponding inputs, they would not continue to stay in corresponding
states. However, the linear core of this higher-level model uses the
correct matrix I, so its behavior should be related to that of the lower-
level model in meaningful ways. A more precise comparison has not
been carried out.’

NATURAL COMPETITION IN DISTRIBUTED
NONLINEAR MODELS

One aspect of the level isomorphism for linear models is that there is
no competition between patterns that share units; they simply super-
impose without conflict. As discussed in the section "Nonlinearity and
Restricted State Space," however, in nonlinear models, patterns that fall
on the boundary of the state space space—involving saturated units—
often cannot superimpose and remain in the state space. This gives rise
to natural competition between strong patterns that require common
units. ‘

In this section I will analyze a simple example of natural competition,
contrasting the cases of distributed and local models. [ will work
through the effect for a particular nonlinear function F, and then show
it obtains for all suitable functions F. [ will then show explicitly how

9 A possibility that deserves investigation is that the pattern coordinates determined by
specific activation patterns should be defined some way other than through superposition,
i.e., other than us a change of basis in a vector space. If this approach succeeded in sav-
ing the isomorphism hypothesis for the nonlinear case, it could destroy it for the linear
case, for which change of basis is guaranteed to leave the evolution equation invariant.
To save the isomorphism hypothesis in the noniinear case, however, the pattern coordi-
nates would probably have to be determined joinidy by the distributed patterns and the
nondinearitics; a successtul procedure might well reduce o change of basis in the limit as
the nonlinearity disappears.
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the effect can simulate inhibitory connections between units represent-
ing incompatible hypotheses in the higher-level model.

Consider a PDP model with a distributed interpretation involving the patterns
< 1,1> and < 1,—1>. A superposition of these two states with weights .3 and .2,
respectively, would produce, in a linear model, the state with unit coordinates
<.5,.1> (this state has pattern coordinates <.3,.2> of course). In the nonlinear
model, the numbers .5 and .1 are each passed through the function F to get the unit
coordinates of the new state. Consulting the F function of Figure 13, we see that
F(5) = .9 and F(.1) = .6, so the new state has unit coordinates <.9,.6>. The
pattern coordinates of this state, as shown in the section called " Pattern Coordi-
nates," are <.73,.15>. Thus the strength of pattern | relative to pattern 2 has
been amplified by the factor

15/.15
/.2

The dominance of the stronger pattern has been enhanced by the nonlinearity, just
as the dominance of stronger nodes is increased by mutual inhibition. This is
natural competition.

This competitive -effect is not present if the patterns do not overlap. In fact the
nonlinearity diminishes dominance in this case. [f the "patterns" are <1,0> and
< 0,1>—i.e., if the model is local—and we again consider combining .3 of the first
with .2 of the second, then the weighted sum is <.3,.2> and the new state, after
passing the unit coordinates through F, is <.78, .7> The "amplification” factor is
therefore

.78/.7
.3/.2

In other words, the nonlinearity is actually countercompetitive for local models.

= 3.33.

= .74.

FIGURE 13. An example of a sigmoidal function F.
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For these patterns, the conclusions that the amplification factor is greater than
one for the distributed model and less than one for the local model is not dependent
on the particular F values used above; they hold for any negatively accelerated F
Sunction. The distributed amplification is (letting .3 be replaced by x and .2 by y ):

WIF(x+y)+ Flx—=y)1/ %[Fx+y) = Fle—y)]
x/y '
Lettingx+y = w and x—y = z, this becomes

W(F(w) + F@)]/ HIFw) = F@)] _ ‘AlFw) + F@)1/ Y%hlw+z]
hlw+z]1/ hiw=1z] [Fiw) - F@)1/ w=z]

As shown in Figure 14, this is the ratio of the slopes of two lines that can be drawn
on the graph of F, and because F is negatively accelerated, this ratio must be greater
than one.

The local amplification is simply

F&x)/Fly) _ F)/x

x/y Fly)/y
This is the ratio of the average slope of F between the origin and X and between the
origin and y; as already pointed out in section 10, the negative acceleration of F

implies that this slope will be less for the greater interval (x), so the local amplifica-
tion is always less than one.

FIGURE 14. The slope of the solid line is [F(w) — F{z)l/{w — z). The point marked
x is the midpoint of this line—the vector average of the endpoints—with coordinates
< Valw+z],A[F(w)+F(z)]>. Thus the slope of the dashed line is
WIF(w) + Fz)]
Alw + z]

Since F is concave downward, the slope of the dashed line is greater (slope of dashed line
> slope of dotted line > slope of solid line).
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It is useful to explicitly relate natural competition to mutual inhibition; we shall do
this for the above case. The pattern coordinates of the state created in the nonlinear
model by superposing < 1,1> with strength x and <1,~1> with strength y are

py = %A[FGx + y) + Flx — y)]
py = A[F(x + y) = F(x — y)l.

Now let us substitute
Flx +y) = s, [x + y]
Flx = y) =s_ [x = yl.

Sy is the average slope of F between the origin and X + y, this is less than s_, the
average slope of F between the origin and X — y (see Figure 15). This substitution
gives, on regrouping,

Py =ax —vyy
Dy =ay —yx

where

a = 'h(s, +s_)
v =(s_— s.).

These equations, displayed graphically in Figure 16, show that the effect of the non-
linearity on the <Xx, y> combination is the same as having an inhibition of strength
«y between units representing the initial and final strengths of the different patterns,
along with an excitation of strength o between units for the initial and final values
of the same patterns. The magnitude of the inhibition vy depends on the difference in
average slope of F between the origin and x — y on the one hand and X + y on

FIGURE 15. Because F is negatively accelerated, the slope of the solid line, s_, is
greater than the slope of the dotted line, s..
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FIGURE 16. A network displaying the cffective inhibition produced by natural competi-
lion between overlapping patterns p, and p,.

the other. In the region sufficiently close to the origin that the graph of F is nearly
linear, vy is zero. Thus for sufficiently weak patterns there is no competition; how
weak is "sufficient" will depend on how large the linear range of F is.

The conclusion, then, is that with overlapping patterns like those
occurring in truly distributed models, F amplifies differences in the
strengths of patterns; with nonoverlapping patterns like those of local
or quasi-local models, F has the opposite effect. This is natural com-
petition at work.

When viewed at the higher level of patterns, natural competition acts
like inhibition between overlapping patterns. The nonlinearities
automatically create significant inhibition between strong patterns but
insignificant inhibition between weak patterns. So for a distributed con-
ceptual ‘interpretation, it is impossible to have a high degree of confi-
dence in more than one conceptual hypothesis represented on a given
set of units, but the system can simultaneously entertain without diffi-
culty a low degree of confidence in several such hypotheses. If we
think of the units on which conceptual hypotheses are represented as
some kind of semantic features, then two hypotheses that call for dif-
ferent values of the same features—two hypotheses represented by
overlapping patterns—are hypotheses that are semantically incompati-
ble. Thus distributed representation offers an attractive form of
automatic inhibition between mutually incompatible hypotheses.

These considerations suggest that we could try to make a higher-level
PDP model approximately behaviorally equivalent to a distributed non-
linear lower-level PDP model by inserting additional inhibitory weights
between units representing competing patterns. These extra weights
might approximately serve the function of the complicated noniocal
nonlinearity in the truly isomorphic non-PDP higher-level model. Of
course, assigning fixed magnitudes to those weights would only approx-
imate the real situation in the lower-level model in which the degree of
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competition varies with the strength of the patterns. With nonlinear
models, it does seem that higher-level models must incorporate some
form of complexity that goes beyond the standard PDP framework in
order to really capture the subtlety of the interaction of patterns in the
lower-level model; the degree of failure of the isomorphism hypothesis
seems to be significant.

The failure in the isomorphism hypothesis induced by F is com-
pounded by the nonlinear thresholding function, G. In the previous
section we saw that the nonlinearity introduced by F becomes nonlocal
in the higher-level model. Exactly the same analysis applies to the non-
linearity introduced by G.

It is interesting to consider whether a local thresholding of the activa-
tion of patterns in the higher-level model, since it can’t be created by
putting a local G in the lower-level model, can be affected some other
way. Natural competition functions like a threshold on inhibition.
When a concept is weakly present, it creates essentially no inhibition;
when it is strongly present, it generates considerable inhibition. Thus,
it is as though there were a threshold of activation below which a con-
cept is incapable of influencing other concepts inhibitively. The thresh-
old is not sharp, however, as there is a gradual transition in the amount
of inhibition as the concept strengthens.

‘CONCLUSION

If mind is to be viewed as a higher-level description of brain, some
definite procedure is needed to build the higher-level description from
the lower. One possibility is that the higher level describes collective
activity of the lower level, for example, patterns of activation over mul-
tiple lower-level units. In the analysis of dynamical systems, it is cus-
tomary to create such higher-level descriptions, using higher-level units
that are coilective aspects of many lower-level units. The higher-level
description employs new mathematical variables, each of which is
defined by combining many variables in the lower-level description.
This requires that the lower-level description be expressed in terms of
mathematical variables.

PDP models constitute an account of cognitive processing that does
rest on mathematical variables: the activation of units. Thus these
models can be described at a higher level by using the preceding
method. The lower-level description of the system amounts to a set of
variables and an evolution equation; the higher-level description is
created by defining new variables out of many old ones and substituting
the new variables for the old in the evolution equation.
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Analyzing PDP models in this way leads to several observations.
The core of the evolution equation, where the knowledge of the system
is employed, is linear. The dynamical systems corresponding to PDP
models are quasi-linear. A central kinematic feature of these systems is
that the state spaces lie in vector spaces, and linear operations play a
very special role. Superposition is fundamental to the way parallel dis-
tributed processing works. Linear algebra gives us both concepts for
understanding PDP models and techniques for analyzing them. It tells
us that there are many equally good coordinate systems for describing
the states, and how to transform descriptions from one coordinate sys-
tem to another. In particular, it suggests we consider a coordinate sys-
tem based on the patterns, and use this to frame our higher-level
description. It tells us how to transform the knowledge (interconnec-
tion matrix) from one level of description to the other. Linear algebra
tells us that linear operations are invariant under this kind of transfor-
mation, and therefore if the evolution equation is linear, its form will
be the same in the two descriptions. This is the isomorphism of levels
for linear PDP models.

Linear algebra also alerts us to the fact that edges to the state space
interfere with superposition. This leads to an evolution equation that
modifies pure linear superposition by adding nonlinear operations. The
breakdown of superposition at the boundaries of state space leads to
competition between states that cannot superpose. The lack of invari-
-ance of the bounded state space under linear operations leads to a
breakdown of the isomorphism of levels in the corresponding nonlinear
PDP models.!?

The concepts of linear algebra add considerably to our understanding
of PDP models, supplementing the insight that comes from simulating
PDP models on computers. We can analyze with precision, for exam-
ple, the effects of localized damage or of synaptic modification upon
the higher-level description of the processing. We can understand why
the choice of patterns doesn’t matter in linear models and why it does
in nonlinear models. We can even get some handle on what kind of
effects these choices have for nonlinear models, although the picture
needs much more clarification.

10 Note that the nonlinearity in quasi-linear systems is minor compared to that in highly
nonlinear systems. In PDP models, the knowledge is coniained in the linear part—it is
this part that is learned, for example, in adaptive models—while the nonlinearity is uni-
form across the units, and fixed {rom the outset. In a highly nonlinear model, the activa-
lion value of a unit would be a nonlinear {unction of the other activations, with parame-
lers encoding the unit’s knowledge that are used in arbitrary ways, rather than merely as
coefficients in a weighted sum. In such a model, superposition and lineuar algebra might
have no relevance whatever.
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The isomorphism of levels hypothesis constitutes a mathematically
analyzable question about the mind/brain duality, within the framework
of PDP models of cognition. These models serve well because of
their independent interpretations as models of neural and conceptual
processing.

While the isomorphism of levels hypothesis speaks to a fairly philo-
sophical issue, the analyses of this chapter show that no strong argu-
ment about the hypothesis can have validity unless it makes sharp
enough distinctions among models to differentiate between linear and
nonlinear PDP models: The matter demands a certain degree of
mathematical care. From an appropriate formal viewpoint, however,
we have seen that conceptual accounts of mind and physiological
accounts of brain can be two descriptions of a single cognitive system.
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