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NOTATION GLOSSARY

R field of real numbers
R+ set of nonnegative real numbers
Rn

+ set of nonnegative real vectors of size n
Rm×n

+ set of m× n nonnegative real matrices
⇐⇒ if and only if

:= equal by definition to
dim X dimension of X
〈·, ·〉 generic inner product
‖ · ‖p p-norm (1 ≤ p ≤ +∞)
‖ · ‖2 Euclidean norm (vectors) / spectral norm (matrices)
D(A|B) generalized Kullback-Leibler divergence
ei unit vector ei = (0 0 . . . 1︸︷︷︸

i−th position

. . . 0)T

1m×n vector or matrix of all ones
Ik k× k identity matrix
XT transpose of matrix X
Xij element located at the ith row and the jth column of X
Xi: ith row of the matrix X
X:j jth column of the matrix X
vec(X) vector formed by stacking the columns of X into one

vector
rank(X) rank of matrix X
rankUVT (X) nonnegative rank of matrix X
rankVVT (X) completely positive rank of matrix X
det X determinant of square matrix X
trace(X) trace of square matrix X



viii NOTATION GLOSSARY

λk(X) k-th eigenvalue of matrix X
σ(X) set of eigenvalues of the matrix X
ρ(X) maxi |λi(X)|
σmax(X) maximal singular value of matrix X
σmin(X) minimal singular value of matrix X
A⊗ B Kronecker product between matrices A and B
A ◦ B Hadamard product between matrices A and B
[A]
[B]

Hadamard division between matrices A and B

[A]+ projection of A onto the nonnegative orthant
D(v) diagonal matrix with v on the main diagonal

Abbreviations and acronyms

NMF Nonnegative Matrix Factorization
SNMF Symmetric Nonnegative Matrix Factorization
SSNMF Semi-Symmetric Nonnegative Matrix Factorization
WNMF Weighted Nonnegative Matrix Factorization
SVD Singular Value Decomposition



INTRODUCTION

In every single second in this modern era, tons of data are being gener-
ated. Think of the number of online people writing their blogs, designing
their homepages and sharing their experiences through many other dig-
ital supports: videos, photos, etc. Think also of the data generated when
decoding genes of living creatures and the data acquired from the outer
space or even from our own planet, etc.

Data only become useful when having been processed. In front of
this fast-growing amount of data, there are several approaches for data
processing: applying classical methods, designing more powerful com-
puting structures such as distributed computing, multicore processors,
supercomputers, etc. But the growing amount and complexity of accu-
mulated data seems to outweigh the growth of computing power which
is, at the present time, roughly doubling every year (cfr. Moore’s Law
[90]). One very popular approach is called model reduction which tries
to reduce the complexity while keeping the essentials of the problem (or
data).

Besides, different types of data require different models to capture
the insight of the data. Using the right model saves a lot of time. Of
course, a model believed to be right will stand until a better model is
found. An ideal model may not exist. For instance, using dominant
subspaces with the Singular Value Decomposition (SVD) [50] has been
proposed as the best model to reduce the complexity of data and compli-
cated systems. It offers the least error (with respect to some measures)
with the same reduced complexity, compared to other models. But
it is not the only one since the conic representation or conic coding
[82] is also extensively used. Its properties favour the additive model of
some types of data while SVD-related techniques do not. In this thesis,
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we focus on finding the best reduced conic representation of nonnega-
tive data through Nonnegative Matrix Factorization (NMF). We will go
through several issues that are considered as the building blocks for the
nonnegative matrix factorization (NMF).

For nonnegative data, we will see that this additive model offers a
closer physical representation to the reality than other techniques such as
the SVDs. But this is not for free. On the one hand, SVD decomposition
is known to have polynomial-time complexity. In fact, it can be done in
a polynomial number, i.e. nm min(m, n), of basic operations for a full
decomposition, where n and m are the dimensions of the matrix data [50].
When only a partial SVD decomposition is needed, iterative methods
can be applied with the computational load of mnr basic operations per
iteration, where r, 1 ≥ r ≥ min(m, n), is the reduced dimension of the
decomposition. Their convergence speed, represented by the number of
iterations needed, has been being improved drastically, which allows
us to process massive data sets. On the other hand, NMF factorization
has been recently proved to have a nondeterministic polynomial - NP
computational complexity [121] for which the existence of a polynomial-
time optimal algorithm is unknown. However, iterative methods with
low computational load iterations are still possible. There are iterative
methods whose computational load per iteration is roughly equivalent
to the one of SVD, i.e. mnr, such as [81], [86], etc. as well as the one
described in this thesis. But only acceptable solutions are expected rather
than the optimal one. And restarts maybe needed. The main aspects
that differentiate these methods are then: to which solution they tend to
converge? how fast they converge? and how to drive them to converge to
solutions that possess some desired properties?

Part-based analysis

An ordinary object is usually a collection of simple parts connected by
some relations between them. Building objects from basic parts is one of
the simplest principle applicable to many human activities. Moreover,
human vision is designed to be able to detect the presence or the absence
of features (parts) of a physical object. Thanks to these parts, a human
can recognize and distinguish most of the objects [15].



INTRODUCTION 

Without taking into account the possible relations between parts
and assuming that we can establish a full list of all possible parts of all
possible objects, then there is one unified formula for composing the
objects:

Objecti = Part1(bi1) with Part2(bi2) with . . . ,

where

bij =
{

present if part i is present in object j
absent if part i is absent from object j.

Then we can represent object i by a list (bi1, bi2, . . .) that can be simplified
by replacing the status present and absent by 1 and 0. This model can be
improved by taking into account the quantity of parts inside an object.
The final recipe for making an object is then something like

Objecti = bi1 × Part1 + bi2 × Part2 + . . .

where bij ≥ 0.
In reality, only some objects are available through observations. The

task is then to detect parts from observed objects and to use the detected
parts to reconstitute these objects. This simple idea appears in many
applications and will be illustrated in the following examples.

Image learning

Digital image processing has been a hot topic in recent years. This
includes face recognition [54], optical character recognition [70], content-
based image retrieval [109], etc. Each monochrome digital image is a
rectangular array of pixels. And each pixel is represented by its light in-
tensity. Since the light intensity is measured by a nonnegative value, we
can represent each image as a nonnegative matrix, where each element
is a pixel. Color images can be coded in the same way but with several
nonnegative matrices.

An example is the Cambridge ORL face database. It contains 400
monochrome images of a front view of the face of 40 persons (10 images
per person). The size of each image is 112× 92 with 256 gray levels
per pixel. Some randomly selected images are shown on the left of the
following figure.
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We want to decompose those images as:

Imagei = bi1 × Feature1 + bi2 × Feature2 + . . .

where bij ≥ 0 are the participation weight of feature j in image i. A
procedure similar to that proposed in [80] is used to extract a list of per-
tinent features on which some sparsity constraints are imposed. These
features are shown on the right of the above figure. Each of the images
in the database is then reconstructed by a nonnegative mixture of those
features.

The method that was used to construct these features guarantees not
only a good reconstruction of images but also the nonnegativity of the
features. Therefore, each feature can be considered again as an image.
Together with the participation of each feature in an image, one can
establish the composition of every image in a very comprehensible way.

Document classification

Textual data is an important source of information. The smallest mean-
ingful units of texts are words. A sequence of words constitutes a
document. Usually, each document is about a specific topic or category.
In some cases, for instance news, school courses, etc, these categories are
specified. But in others such as blogs, discussion groups, they may not
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Topic 1 Topic 2 Topic 3 Topic 4
court president flowers disease

government served leaves behavior
council governor plant glands
culture secretary perennial contact

supreme senate flower symptoms
constitutional congress plants skin

rights presidential growing pain
justice elected annual infection

be listed. Moreover, a classification is hardly unique, several different
classifications can be defined. For instance, news articles can be classi-
fied not only with topics such as: economics, cultures, sports, sciences,
etc. but also according to the geographical regions (Asia, Europe, Africa,
etc).

Without a grammar, a text can be seen as a set of words combined
with their number of occurrences. Given a collection of texts, one wants
to automatically discover the hidden classifications. The task is then to
try to explain a text as:

Texti = bi1 × Topic1 + bi2 × Topic2 + . . .

where bij can be considered as the similarity or the participation of topic
j to text i. Topics are characterized by a list of keywords, which describe
their semantics.

The above table shows some topics discovered by Nonnegative
Matrix Factorization from 30991 articles from the Grolier encyclopedia
and reported in Nature [80]. In each column of the table, a discovered
topic is represented by a list of keywords taken from the 15276-word
vocabulary. Both topics and their keywords are automatically retrieved.

In reality, the topic of a document is often not pure, in the sense that
each document can belong to a number of topics. Carrying on with the
above example, the “Constitution of the United States” entry is, in fact,
semantically a mixture of different categories with some weights. Their
experiment shows that it is strongly related to the first two topics and
weakly (almost not) related to the last two. And this matches perfectly
our intuition.
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Having discovered a list of topics and their participation in each
document, one can not only decide to which topics a document belongs,
but also deal with the polysemy of words, detect new trends, reveal
hidden categories, etc.

Why nonnegativity?

As we have seen, for the part-based analysis, the presence or absence
of parts creates recipes for making an object. This existential status of
parts is represented by nonnegative numbers, where 0 represents an
absence and a positive number represents a presence with some degree.
Furthermore, the objects are also represented by a set of nonnegative
numbers, e.g., numbers of occurrences or light intensities. Because of
that, nonnegativity is a crucial feature that one needs to maintain during
the analysis of objects.

The part-based analysis is also referred to as the additive model
because of the absence of subtractions in the model. This follows from
the construction of an object:

Objecti = bi1 × Part1 + bi2 × Part2 + . . .

Allowing subtractions, i.e., bij < 0 for some i, j implies that any part can
be interpreted as either a positive or a negative quantity. When each
part belongs to a vector space, this is true since the orientation does
not change the spanning space. But for other types of data such as: the
concentrations of substances, absolute temperatures, light intensities,
probabilities, sound spectra, etc. negative quantities do not arise. De-
composing nonnegative objects with general methods like the Singular
Value Decomposition significantly alters the physical interpretation of the
data. Other analysis tools like the Principal Component Analysis require
some features which nonnegative objects by their nature never or hardly
possess, such as zero sum, orthogonality etc.

While much evidence from existing applications shows the appeal of
the part-based method, the lack of algorithmic understandings prohibits
extensions to larger scale problems and to other types of data. This gave
us enough motivations to focus on a better tool for nonnegative data
through a thorough study of nonnegative matrix factorization. This tech-
nique allows us to approximate nonnegative objects, stored in columns
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of a nonnegative matrix A, by the product of two other nonnegative
matrices U and V:

A ≈ UVT.

This factorization captures all the key ideas from the above examples
of the part-based analysis. Columns of U define the extracted parts (or
image features or document topics, etc.). The matrix V describes the
participations of those parts in the original objects (or images, document,
etc.).

The idea of approximating a nonnegative matrix A by the product
UVT of two nonnegative matrices U and V is not new. In fact, it is
a generalized method of the well-known K-Means method [88] from
1967, applied to nonnegative data. Suppose we have n nonnegative data
vectors a1,. . . , an and r initial centroids u1, . . . , ur representing r clusters
C1, . . . , Cr, what the K-Means method does is to repeat the following
two steps until convergence:

1. For each ai, assign it to Cj if uj is the nearest centroid to ai,
with respect to Euclidean distance.

2. For each uj, replace it with the arithmetic mean of all ai in
Cj.

We can construct a matrix U by putting all the vectors uj in the
columns of U and create a matrix V such that

Vij =
{

1 if ai ∈ Cj
0 otherwise,

It turns out that the K-Means method tries to minimize the Euclidean
distance between matrices A and UVT. Moreover, because each column
of U is a mean of some nonnegative vectors, both matrices U and V are
nonnegative. Mathematically, we solve

min
U,V
‖A−UVT‖2

F

where A and U are nonnegative matrices, V is a binary matrix in which
each row of V contains one and only one element equal to 1 and ‖A−
UVT‖2

F denotes the Euclidean distance between A and UVT. Two above
iterative steps of the K-Means method are, in fact, the optimal solution
of the following subproblems:
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(P1) minU ‖A−UVT‖2
F,

(P2) minV ‖A−UVT‖2
F

with the special structure of V.
Nonnegative matrix factorization is different from the K-Means

method only in the structure matrix V. Instead of binary matrix as
above, in NMF, V taken to be a normal nonnegative matrix. This little
difference offers more flexibility to NMF as well as more difficulty to
optimally solve the two above subproblems. However, we will still see
the same iterations (P1) and (P2) in a number of NMF algorithms in this
thesis.

K-Means had been being applied successfully to many problems long
before the introduction of NMF factorization in the nineties. Therefore,
it is not surprising that the NMF, the generalized version of K-Means,
has recently gained a lot of attention in many fields of application.
We believe that preserving nonnegativity in the analysis of originally
nonnegative data preserves essential properties of the data. The loss
of some mathematical precision due to the nonnegativity constraint is
compensated by a meaningful and comprehensible representation.
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Thesis outline

The objective of the thesis is to provide a better understanding and to
propose better algorithms for nonnegative matrix factorization. Chapter
2 is about various aspects of the nonnegative matrix factorization prob-
lem. Chapters 3 and 4 are about its algorithmic aspects. And the last
three chapters are devoted to some extensions and applications. Here is
the outline of each chapter:

• Chapter 1: Preliminaries. Some basic results and concepts used
throughout the thesis are presented. Known results are shown
without proof but references are given instead. This chapter is also
a concise introduction to the main notations.

• Chapter 2: Nonnegative matrix factorization. This chapter is
devoted to the introduction, the optimality conditions, the repre-
sentations of the factorization, the solution for some easy cases,
and the characterization of local minima of the nonnegative matrix
factorization problem. The exact nonnegative factorization and
nonnegative ranks are also discussed. Some interesting extensions
of the factorization are also introduced such as: multilayer nonneg-
ative matrix factorization and nonnegative tensor factorization.

• Chapter 3: Existing algorithms. In this chapter, investigations
are carried out to clarify some algorithmic aspects of the existing
algorithms such as: the multiplicative updates, gradient based methods
and the alternating least square. Other algorithmic aspects like
initializations and stopping conditions are also treated.

• Chapter 4: Rank-one residue iteration. This chapter is an exten-
sion of the report [62], where we proposed to decouple the problem
based on rank-one approximations to create a new algorithm. A
convergence analysis, numerical experiments and some extensions
were also presented for this algorithm. Two other independent
reports [31] and [49] have also proposed this algorithm. Numerical
experiments are summarized at the end of the chapter to compare
the performance of the newly proposed method to existing ones.
It is seen that this method has good and fast convergence, and is
suitable for large-scale problems. Moreover, it does not require
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any parameter setting, which is an advantage over some other
methods.

• Chapter 5: Nonnegative matrix factorization with fixed row and
column sums. We introduce a new problem in nonnegative matrix
factorizations where row and column sums of the original matrix
are preserved in approximations. After some discussions of the
problem, we prove that by using the generalized Kullback-Leibler
divergence, one can produce such a factorization naturally. This
also links the proposed method to Probabilistic Latent Semantic
Analysis (pLSA) [65] and creates some applications such as: ap-
proximation of stochastic matrices, approximation that preserves
the Perron vectors, etc.

• Chapter 6: Weights in nonnegative matrix factorization. This
chapter incorporates weights into the nonnegative matrix fac-
torization algorithms. We also extend the multiplicative rules
to take weights into account. We also point out a link between
the weighted Euclidean distance and the weighted generalized
Kullback-Leibler divergence. A numerical experiment is carried
out on the database of human facial images where weights are
added to emphasize some image parts.

• Chapter 7: Symmetry in nonnegative matrix factorization. Some
symmetric structures are imposed on the nonnegative matrix fac-
torization. While solving the exact symmetric nonnegative matrix
factorization is a hard problem, related to the class of completely
positive matrices, approximating methods can nevertheless be
designed. Several variants are treated. At the end, we mention
two applications: graph clustering and nonnegative factorization
of the correlation matrices.

Some conclusions drawn from our research end the thesis.
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1

PRELIMINARIES

This chapter introduces the basic results and concepts used throughout
this thesis. Known results are only stated without proof.

1.1 Matrix theory and linear algebra

A m × n real matrix is a m-row and n-column table containing real
scalars. We have a square matrix when the number of rows is equal to
the number of columns. The set of m× n real matrices is denoted by
Rm×n. In this thesis, all matrices are real. We use uppercase letters for
matrices. The ith row of the matrix A is denoted by Ai:. The jth column
of the matrix A is denoted by A:j. The element at the intersection of the
ith row and the jth column of the matrix A is denoted by Aij or [A]ij.

A column vector is a matrix of only one column. Likewise, a row
vector is a matrix of only one row. Unless explicitly stated otherwise,
a vector is always a column vector. The set of all size-n vectors is Rn.
Vectors are denoted by lowercase letters except when they are parts of a
matrix as described in the preceding paragraph.

A n× n square matrix A is said to be symmetric if Aij = Aji, for all
i, j. A diagonal matrix D is a square matrix having nonzero elements
only on its main diagonal (i.e., Aij = 0 for i 6= j). We use Dx to denote
a diagonal matrix with the vector x on its main diagonal (i.e. Aii = xi,
i = 1, . . . , n).

Here are some special matrices:
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• Matrices whose elements are all 1: 11×n, 1m×1, 1m×n.

11×n = (1, 1, . . . , 1) 1m×1 = (1, 1, . . . , 1)T 1m×n = 1m×111×n.

• Unit vectors

ei = (0, 0, . . . ,

ith position︷︸︸︷
1 , . . . , 0)T.

• Identity matrices In: diagonal matrices where diagonal elements
are equal to 1.

• Permutation matrices: square matrices having on each row and
each column only one nonzero element which is equal to 1.

• Selection matrices: any submatrices of permutation matrices.

1.1.1 Matrix manipulation

Here are some basic matrix operators

• Matrix transpose AT:
[
AT]

ij := Aji. A is a symmetric matrix

⇔ AT = A.

• Matrix addition C = A + B: Cij := Aij + Bij.

• Matrix product C = A.B: Cij := ∑k Aik.Bkj. The product dot is
often omitted.

• Matrix vectorization of A ∈ Rm×n

vec(A) =

 A:1
...

A:n

 ∈ Rmn.

• Kronecker product of matrix A ∈ Rm×n and matrix B

A⊗ B =

 A11B . . . A1nB
...

. . .
...

Am1B . . . AmnB

 .



1.1 MATRIX THEORY AND LINEAR ALGEBRA 

An important relation between the matrix product and the Kro-
necker product is the following [118]:

vec(AXBT) = (B⊗ A)vec(X).

We write A < B if Aij < Bij for all i, j and similarly for A ≤ B, A > B
and A ≥ B. We use A < α, A > α, A ≤ α and A ≥ α , where α ∈ R, as
abbreviations of A < α1m×n, A > α1m×n, A ≤ α1m×n and A ≥ α1m×n.
The absolute matrix |A| is defined as: [|A|]ij = |Aij| for all i, j.

We define the inner product of the two real vectors x, y ∈ Rn as a real
functional:

〈x, y〉 = ∑
i

xiyi = xTy.

Nonzero vectors x, y ∈ Rn are said to be orthogonal if their inner product
is zero:

〈x, y〉 = 0.

Considering a general matrix A ∈ Rm×n as a vector: vec(A) ∈ Rmn, we
can also define the inner product of two real matrices of the same size:

〈A, B〉 = vec(A)Tvec(B) = ∑
ij

AijBij = trace(ATB),

where the trace of A (trace(A)) is the sum of all the diagonal elements
of A. This implies the following useful relation:

〈I, ABC〉 =
〈

AT, BC
〉

=
〈

BT AT, C
〉

=
〈

CTBT AT, I
〉

= trace(ABC).

A square matrix A is said to be invertible if there exists a matrix B
such that

AB = BA = I,

where B is called the inverse of A and is denoted by B = A−1. While
not all matrices have an inverse, the pseudo-inverse (or Moore-Penrose
pseudoinverse) is its generalization, even to rectangular matrices. The
uniquely defined pseudo-inverse A+ of the matrix A satisfies the fol-
lowing four conditions:

AA+A = A, A+AA+ = A+, (AA+)T = AA+ and (A+A)T = A+A.
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In particular, if AT A is invertible, then A+ = (AT A)−1AT.
The matrix sum C = A + B is defined as Cij = Aij + Bij. This

operator is said to be elementwise or entrywise since each entry of the
result matrix C depends only on entries of A and B at the same position.
This is contrary to the usual matrix product C = AB where the relations
are no longer local. A simpler matrix product that is elementwise is
called the Hadamard Product or Schur Product C = A ◦ B where Cij =
AijBij and A, B and C are m× n matrices. This helps considerably to
simplify matrix formulas in many cases. Here are some properties of
the Hadamard product [67]:

• A ◦ B = B ◦ A

• AT ◦ BT = (A ◦ B)T

• (a ◦ b)(c ◦ d)T = (acT) ◦ (bdT) = (adT) ◦ (bcT)

The following are some relations of the Hadamard product with other
operators:

• 1T(A ◦ B)1 = 〈A, B〉

• A ◦ B = PT(A⊗ B)Q, where P and Q are selection matrices

P = (e1 ⊗ e1 e2 ⊗ e2 . . . em ⊗ em)

and
Q = (e1 ⊗ e1 e2 ⊗ e2 . . . en ⊗ en).

Roughly speaking, A ◦ B is a submatrix of A⊗ B.

From the definition of the Hadamard product, we can define other
elementwise operators:

• Hadamard power: [A◦r]ij = Ar
ij, r ∈ R.

• Hadamard division: C =
[A]
[B] = A ◦ B◦−1.
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1.1.2 Vector subspaces

A linear subspace E of Rn is the set of all linear combinations of a set of
vectors V = {v1, v2, . . . , vk} of Rn:

E =

{
k

∑
i=1

αivi | αi ∈ R

}
.

E is also called the span of V and V is called a spanning set of E. Given
a subspace E, there are many spanning sets. Among them, a set from
which no vector can be removed without changing the span is said to be
linear independent and a basis of E. The cardinality of a basis of E is fixed
and is called the dimension of E.

For example:

E = span
({

(1, 2, 1)T, (1, 0, 0)T
})

is a subspace of R3 and dim(E) = 2 since
{
(1, 2, 1)T, (1, 0, 0)T} is linear

independent. Following this, the rank of a m× n matrix A can also be
defined as the dimension of the subspace spanned by the columns of A:

rank(A) = dim (span(A:1, A:2, . . . , A:n)) ≤ min(m, n).

A linear subspace is closed under addition and scalar multiplication, i.e.,

u, v ∈ E ⇒ u + v ∈ E,
u ∈ E, α ∈ R ⇒ αu ∈ E.

1.1.3 Eigenvalues and eigenvectors

Central concepts in matrix analysis are eigenvalues and eigenvectors of
a square matrix. They provide essential information about the matrix.
Related concepts for rectangular matrices are so-called singular values
and vectors. They play a crucial role in low-rank approximations that
retain dominating characteristics of the original matrix.

Definition 1.1. A scalar λ ∈ C is an eigenvalue of the matrix A ∈ Cn×n

if there exists a nonzero vector x ∈ Cn such that Ax = λx. The vector x
is called the associated eigenvector of the eigenvalue λ.
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An n× n matrix has exactly n eigenvalues (multiplicity counted).
The set of all the eigenvalues is denoted by σ(A). The maximum modu-
lus of σ(A) is the spectral radius of A and is denoted by ρ(A):

ρ(A) = max{|λ| | λ ∈ σ(A)}.

In this thesis, only eigenvalues and eigenvectors of some symmetric
matrices are investigated. For those matrices, the following well-known
results can be established:

Theorem 1.2 (Spectral Theorem). Let A be a real symmetric matrix. All
eigenvalues and eigenvectors of A are real.

Moreover, for a real symmetric matrix A, if all the eigenvalues of
A are nonnegative (respectively nonpositive), A is said to be positive
semidefinite (respectively negative semidefinite). If all the eigenvalues are
positive (respectively negative), A is said to be positive definite (respec-
tively negative definite).

A very useful tool in matrix analysis is the Singular Value Decomposi-
tion defined in the following theorem:

Theorem 1.3. For any matrix A ∈ Rm×n, there exist orthogonal matrices
U ∈ Rm×m and V ∈ Rn×n such that

A = UΣVT; (1.1)

Σ =



σ1 0
. . . Or×(n−r)

0 σr

O(m−r)×r O(m−r)×(n−r)


, (1.2)

where the singular values σi are real and non-increasing scalars :

σ1 ≥ . . . ≥ σr > 0. (1.3)

Proof and algorithms can be found in [50]. Moreover, the columns
of U and V are the eigenvectors of AT A and AAT, respectively.
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1.1.4 Norms

A norm is used to measure the magnitude of a vector or a matrix. A norm
on Rn (or Rm×n) is a real functional ‖.‖ on Rn (or Rm×n) that satisfies
the following four conditions:

‖x‖ ≥ 0, ∀x ∈ Rn (or Rm×n);
‖x‖ = 0⇐⇒ x = 0;
‖αx‖ = |α|‖x‖, ∀x ∈ Rn (or Rm×n) and ∀α ∈ R;
‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ Rn (or Rm×n).

A most common norm is the Euclidean norm or the Frobenius norm
derived from the inner product:

‖x‖F =
√
〈x, x〉,

where x can be either a vector or a matrix. This norm plays the central
role in least squares problems, where one tries to minimize an error
measured by this norm.

Popular norms are instances of the Hölder norms (p-norm):

‖x‖p =

(
n

∑
i=1
|xi|p

)1/p

, p = 1, 2, . . .

where the most commonly used are p = 1, p = 2 and p = ∞:

1-norm: ‖x‖1 = |x1|+ |x2|+ . . . + |xn|
2-norm: ‖x‖2 =

√
|x1|2 + |x2|2 + . . . + |xn|2

∞-norm: ‖x‖∞ = maxi |xi|.

For vectors, the 2-norm (‖.‖2) is also the Frobenius norm (‖.‖F). But this
is no longer true for matrix p-norms, which are induced from vector
p-norms :

‖A‖p = max
x 6=0

‖Ax‖p

‖x‖p
.

It is proved that [67]

1-norm: ‖A‖1 = maxj ∑i |Aij|
2-norm: ‖A‖2 =

[
ρ(AT A)

]1/2

∞-norm: ‖A‖∞ = maxi ∑j |Aij|.
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Since the main problem treated in this thesis is a constrained least
squares problem, the Frobenius norm will be extensively used. Other
norms will also be used to add more constraints on the main problem.

1.1.5 Convex cone and polyhedral cone

A set C ⊂ Rn is call a convex cone if it is closed under the addition and
the nonnegative scalar multiplication, i.e.

u, v ∈ C ⇒ u + v ∈ C,
u ∈ C, α ≥ 0 ⇒ αu ∈ C.

A polyhedral cone is a convex cone nonnegatively generated by a finite
set of vectors V = {v1, v2, . . . , vk} of Rn:

C =

{
k

∑
i=1

αivi | αi ∈ R+

}
.

In this relation, C is also called the span of V and V is call a spanning set
of C. There exists a set V̄ ⊂ V that nonnegatively generates C and from
which no vector can be removed without changing the cone. V̄ is called
the frame of C and its cardinality is called the dimension of C.

1.1.6 Nonnegative matrices

Matrices whose elements are all nonnegative are called nonnegative
matrices. We use Rn

+ and Rm×n
+ to denote the set of n-dimensional

nonnegative vectors and the set of m× n nonnegative matrices, respec-
tively. These subsets are, indeed, polyhedral cones and usually called
the nonnegative orthants.

A nonnegative matrix is called row-allowable if it has no zero row.
Similarly, a nonnegative matrix is called column-allowable if it has no
zero column. A nonnegative matrix is said to be column (row) stochastic
if all the column (row) sums are equal to one. A nonnegative matrix is
said to be doubly stochastic if it is column stochastic and row stochastic.

The most important result for nonnegative matrices is the following:

Theorem 1.4 (Perron-Frobenius, see [8]). Let A be a square nonnegative
matrix. There exist a largest modulus eigenvalue of A which is nonnegative
and a nonnegative eigenvector corresponding to it.
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This vector is usually referred to as the Perron vector of the nonnega-
tive matrix. For a rectangular nonnegative matrix, similar results can be
established for the largest singular value and its corresponding singular
vectors.

Given a subset V ⊂ Rm×n and a matrix A ∈ Rm×n, the nearest ele-
ment of V to A ( with respect to a distance) is called the projection of
A on V, denoted by PV(A). When the target subset V is the nonnega-
tive orthant and the considered distance is the Euclidean distance, the
projection of A is denoted by [A]+ and defined as:

[[A]+]ij =
{

Aij if Aij > 0
0 otherwise

= max(0, Aij).

1.2 Optimization

Before presenting some basic results about optimization, we review the
concept of convex sets and convex functions.

1.2.1 Convex set and convex function

Definition 1.5 (Convex sets). A set Ω is said to be convex if and only if
for every u, v ∈ Ω, we have

αu + (1− α)v ∈ Ω, for all α ∈ [0, 1].

Clearly, the convex cones and the polyhedral cone ares, by con-
struction, convex sets, which implies that the set of m× n nonnegative
matrices (the nonnegative orthant Rm×n

+ ) is also a convex set. The set
Rm×n

+ is one of the main objects used in this thesis.

Definition 1.6 (Convex functions). A function f defined on a convex
set Ω is said to be convex if for every u, v ∈ Ω and every α ∈ [0, 1], the
following holds:

f (αu + (1− α)v) ≤ α f (u) + (1− α) f (v).

If for every α ∈ (0, 1) and u 6= v, the following holds:

f (αu + (1− α)v) < α f (u) + (1− α) f (v),

then the function is said to be strictly convex.
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For more details about convex sets and convex functions, see [21].

1.2.2 Optimality conditions

Now, we summarize some basic results on the optimization problem

min
x∈Ω

f (x),

where f is a real-valued function taken on the feasible set Ω ⊂ Rn.
We distinguish two types of minima.

Definition 1.7 (Local minimum). A point x∗ ∈ Ω is said to be a local
minimum of f over Ω if there exists an open neighborhood N(x∗) of x∗

such that for all x ∈ N(x∗) ∩Ω, f (x) ≥ f (x∗). It is considered a strict
local minimum if for all x ∈ N(x∗) ∩Ω and x 6= x∗, f (x) > f (x∗).

Definition 1.8 (Global minimum). A point x∗ ∈ Ω is said to be a global
minimum of f over Ω if for all x ∈ Ω, f (x) ≥ f (x∗). A point x∗ ∈ Ω is
said to be a strict global minimum of f over Ω if for all x ∈ Ω, x 6= x∗,
f (x) > f (x∗).

Usually, unless f has some convexity properties, finding the global
minimum is a very difficult task that needs global knowledge of the
function f . On the other hand, finding local minima requires only
knowledge of the neighborhood. The necessary conditions for local
minima can also be easily derived by differential calculus. This explains
why in our minimization problem we will try to find a local minimum,
instead of a global one.

In order to set up necessary conditions satisfied by local minima,
the basic idea is to look around a point using the concept of feasible
directions. From a point x ∈ Ω, a vector d is a feasible direction if there
is an ᾱ > 0 such that x + αd ∈ Ω for all α ∈ [0, ᾱ]. We have the following
first-order necessary conditions:

Proposition 1.9 ([87]). Let Ω be a subset of Rn and f be a continuously
differentiable function on Ω. If x∗ is a local minimum of f over Ω, then for
every feasible direction d at x∗, we have

(∇ f (x∗))Td ≥ 0. (1.4)
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Conversely, every point that satisfies the condition (1.4) is called a
stationary point. When x∗ is an interior point of Ω, then every vector d is
a feasible direction and (1.4) implies ∇ f (x∗) = 0.

If Ω is convex, to create all the feasible directions, one can use the
vectors d = x− x∗, for every x ∈ Ω. This will generate all the feasible
directions at x∗, since from the convexity of Ω, we have

x∗ + αd = x∗ + α(x− x∗) = αx + (1− α)x∗ ∈ Ω, for all α ∈ [0, 1].

Therefore, a point x∗ is said to be a stationary point if it satisfies

(∇ f (x∗))T(x− x∗) ≥ 0, ∀x ∈ Ω.

For the special case where f and Ω are convex, every local minimum
is also a global minimum. Furthermore, the set of all such minima is
convex. For more results and implications, see [87].

1.2.3 Karush-Kuhn-Tucker conditions

Let us consider the following constrained optimization problem:

min
hi(x)=0
gj(x)≤0

f (x),

where hi(x) = 0, (i = 1, . . . , k) are k equality constraints and gj(x) ≤ 0
(j = 1, . . . , m) are m inequality constraints. The following is known as
Karush-Kuhn-Tucker necessary conditions (or KKT conditions):

Proposition 1.10 ([13]). Let x∗ be the local minimum of the above problem.
Suppose that f , hi and gj are continuously differentiable functions from Rn

to R and ∇hi(x∗) and ∇gj(x∗) are linearly independent. Then there exist
unique constants µi (i = 1, . . . , k) and λj (j = 1, . . . , m), such that:

∇ f (x∗) + ∑k
i=1 µi∇hi(x∗) + ∑m

j=1 λj∇gj(x∗) = 0,
λj ≥ 0, j = 1, . . . , m
λjgj(x∗) = 0, j = 1, . . . , m.

This constrained problem is often written in its associated Lagrange
Function:

L(x, µi, . . . , µk, λ1, . . . , λm) = f (x) +
k

∑
i=1

µihi(x) +
m

∑
j=1

λjgj(x)
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where µi (i = 1, . . . , k) and λj (j = 1, . . . , m) are the same as those in the
KKT conditions and are called Lagrange multipliers.

1.2.4 Coordinate descent algorithm on a convex set

We briefly describe a method for solving the following problem

min
x∈Ω

f (x),

where Ω ⊂ Rn is a Cartesian product of closed convex sets Ω1, Ω2, . . . ,
Ωm, where Ωi ⊂ Rni (i = 1,. . . ,m) and ∑i ni = n. The variable x is also
partitioned accordingly as

x =

 x1
...

xm

 ,

where xi ∈ Ωi. Algorithm 1 is called the coordinate descent algorithm.
If we assume that Step 4 of Algorithm 1 can be solved exactly and

Algorithm 1 Coordinate descent

1: Initialize xi
2: repeat
3: for i = 1 to m do
4: Solve xi = argminξ∈Ωi

f (x1, . . . , xi−1, ξ, xi+1, . . . , xm)
5: end for
6: until Stopping condition

the minimum is uniquely attained, then we have the following result.
Because this result is extensively used in this thesis, we include here its
proof taken from Proposition 2.7.1 in [13].

Theorem 1.11 (Convergence of Coordinate Descent Method). Suppose
that f is a continuously differentiable function over the set Ω described above.
Furthermore, suppose that for each i and x ∈ Ω, the solution of

min
ξ∈Ωi

f (x1, . . . , xi−1, ξ, xi+1, . . . , xm)

is uniquely attained. Let {xk} be the sequence generated by Algorithm 1. Then
every limit point is a stationary point.
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Proof. Let

zk
i =

(
xk+1

1 , . . . , xk+1
i , xk

i+1, . . . , xk
m

)
.

Step 4 of Algorithm 1 implies

f (xk) ≥ f (zk
1) ≥ f (zk

2) ≥ · · · ≥ f (zk
m−1) ≥ f (zk

m), ∀k. (1.5)

Let x̄ = (x̄1, . . . , x̄m) be a limit point of the sequence {xk}. Notice that
x̄ ∈ Ω because Ω is closed. Equation (1.5) implies that the sequence
{ f (xk)} converges to f (x̄). It now remains to show that x̄ minimizes f
over Ω.

Let {xk j | j = 0, 1, . . . } be a subsequence of {xk} that converges to x̄.

We first show that {xk j+1
1 − x

k j
1 } converges to zero as j → ∞. Assume

the contrary or, equivalently, that {zk j
1 − xk j} does not converges to zero.

Let γk j = ‖zk j
1 − xk j‖. By possibly restricting to a subsequence of {k j},

we may assume that there exists some γ̄ > 0 such that γk j ≥ γ̄ for all

j. Let s
k j
1 = (z

k j
1 − xk j)/γk j . Thus, z

k j
1 = xk j + γk j s

k j
1 , ‖sk j

1 ‖ = 1, and s
k j
1

differs from zero only along the first block-component. Notice that s
k j
1

belongs to a compact set and therefore has a limit point s̄1. By restricting

to a further subsequence of {k j}, we assume that s
k j
1 converges to s̄1.

Let us fix some ε ∈ [0, 1]. Notice that 0 ≥ εγ̄ ≥ γk j . Therefore,
xk j + εγ̄s

k j
1 lies on the segment joining xk j and xk j + γk j s

k j
1 = z

k j
1 , and

belongs to Ω because Ω is convex. Using the fact that z
k j
1 minimizes f

over all x that differ from xk j along the first block-component, we obtain

f (z
k j
1 ) = f (xk j + γk j s

k j
1 ) ≤ f (xk j + εγ̄s

k j
1 ) ≤ f (xk j).

Since f (xk j) converges to f (x̄), Equation (1.5) shows that f (z
k j
1 ) also

converges to f (x̄). We now take the limit as j tends to infinity, to obtain
f (x̄) ≤ f (x̄ + εγ̄s̄1) ≤ f (x̄). We conclude that f (x̄) = f (x̄ + εγ̄s̄1), for
every ε ∈ [0, 1]. Since γ̄s̄1 6= 0, this contradicts the hypothesis that f
is uniquely minimized when viewed as a function of the first block-

component. This contradiction establishes that x
k j+1
1 − x

k j
1 converges to

zero. In particular, z
k j
1 converges to x̄.
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From Step 4 of Algorithm 1, we have

f (z
k j
1 ) ≤ f (x1, x

k j
2 , . . . , x

k j
m), ∀x1 ∈ Ω1.

Taking the limit as j tends to infinity, we obtain

f (x̄) ≤ f (x1, x̄
k j
2 , . . . , x̄

k j
m), ∀x1 ∈ Ω1.

Using Proposition 1.9 over the convex set Ω1, we conclude that

∇1 f (x̄)T(x1 − x̄1) ≥ 0, x1 ∈ Ω1,

where ∇i f denotes the gradient of f with respect to the component xi.

Let us now consider the sequence {zk j
1 }. We have already shown

that z
k j
1 converges to x̄. A verbatim repetition of the preceding argument

shows that x
k j+1
2 − x

k j
2 converges to zero and ∇1 f (x̄)T(x1 − x̄1) ≥ 0, for

every x2 ∈ Ω2. Continuing inductively, we obtain ∇i f (x̄)T(xi − x̄i) ≥
0, for every xi ∈ Ωi and for every i. Adding these inequalities, and
using the Cartesian product structure of the set Ω, we conclude that
∇ f (x̄)(x− x̄) ≥ 0 for every x ∈ Ω.

1.3 Low-rank matrix approximation

Low-rank approximation is a special case of matrix nearness problem
[58]. When only a rank constraint is imposed, the optimal approximation
with respect to the Frobenius norm can be obtained from the Singular
Value Decomposition.

We first investigate the problem without the nonnegativity constraint
on the low-rank approximation. This is useful for understanding prop-
erties of the approximation when the nonnegativity constraints are
imposed but inactive. We begin with the well-known Eckart-Young
Theorem.

Theorem 1.12 (Eckart-Young). Let A ∈ Rm×n (m ≥ n) have the singular
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value decomposition

A = PΣQT, Σ =



σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn
...

...
...

0 0 . . . 0


where σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 are the singular values of A and where
P ∈ Rm×m and Q ∈ Rn×n are orthogonal matrices. Then for 1 ≤ r ≤ n, the
matrix

Ar = PΣrQT, Σr =



σ1 0 . . . 0 . . . 0
0 σ2 . . . 0 . . . 0
...

...
. . .

...
...

0 0 . . . σr . . . 0
...

...
...

. . .
...

0 0 . . . 0 . . . 0


is a global minimizer of the problem

min
B∈Rm×n rank(B)≤r

1
2
‖A− B‖2

F (1.6)

and its error is
1
2
‖A− B‖2

F =
1
2

n

∑
i=r+1

σ2
i .

Moreover, if σr > σr+1 then Ar is the unique global minimizer.

The proof and other implications can be found for instance in [50].
The columns of P and Q are called singular vectors of A, in which
vectors corresponding to the largest singular values are referred to as
the dominant singular vectors.

Let us now look at the following modified problem

min
X∈Rm×r Y∈Rn×r

1
2
‖A− XYT‖2

F, (1.7)
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where the rank constraint is implicit in the product XYT since the di-
mensions of X and Y guarantee that rank(XYT) ≤ r. Conversely, every
matrix of rank less than r can be trivially rewritten as a product XYT,
where X ∈ Rm×r and Y ∈ Rn×r. Therefore Problems (1.6) and (1.7) are
equivalent. But even when the product Ar = XYT is unique, the pairs
(XRT, YR−1) with R invertible, yield the same product XYT. In order to
avoid this, we can always choose X and Y such that

X = PD
1
2 and Y = QD

1
2 , (1.8)

where PTP = Ir×r, QTQ = Ir×r and D is r × r nonnegative diagonal
matrix. Doing this is equivalent to computing a compact SVD decompo-
sition of the product Ar = XYT = PDQT.

As usual for optimization problems, we calculate the gradient with
respect to X and Y and set them equal to 0.

∇X = XYTY− AY = 0 ∇Y = YXTX− ATX = 0. (1.9)

If we then premultiply AT with ∇X and A with ∇Y, we obtain

(AT A)Y = (ATX)YTY (AAT)X = (AY)XTX. (1.10)

Replacing ATX = YXTX and AY = XYTY into (1.10) yields

(AT A)Y = YXTXYTY (AAT)X = XYTYXTX. (1.11)

Replacing (1.8) into (1.11) yields

(AT A)QD
1
2 = QDPTPDQTQD

1
2 and (AAT)PD

1
2 = PDQTQDPTPD

1
2 .

When D is invertible, this finally yields

(AT A)Q = QD2 and (AAT)P = PD2.

This shows that the columns of P and Q are singular vectors and
Dii
′s are nonzero singular values of A. Notice that if D is singular, one

can throw away the corresponding columns of P and Q and reduce it to
a smaller-rank approximation with the same properties. Without loss of
generality, we therefore can focus on approximations of Problem (1.7)
which are of exact rank r. We can summarize the above reasoning in the
following theorem.
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Theorem 1.13. Let A ∈ Rm×n (m > n and rank(A) = t). If Ar (1 ≤ r ≤ t)
is a rank r stationary point of Problem 1.7, then there exists two orthogonal
matrices P ∈ Rm×m and Q ∈ Rn×n such that:

A = PΣ̂QT and Ar = PΣ̂rQT

where

Σ̂ =



σ̂1 0 . . . 0
0 σ̂2 . . . 0
...

...
. . .

...
0 0 . . . σ̂n
...

...
...

0 0 . . . 0


, Σ̂r =



σ̂1 0 . . . 0 . . . 0
0 σ̂2 . . . 0 . . . 0
...

...
. . .

...
...

0 0 . . . σ̂r . . . 0
...

...
...

. . .
...

0 0 . . . 0 . . . 0


and the σ̂′i s are unsorted singular values of A. Moreover, the approximation
error is:

1
2
‖A− Ar‖2

F =
1
2

t

∑
i=r+1

σ̂2
i .

This result shows that, if the singular values are all different, there are
n!

r!(n−r)! possible stationary points Ar. When there are multiple singular
values, there will be infinitely many stationary points Ar since there
are infinitely many singular subspaces. The next result will identify the
minima among all stationary points. Other stationary points are saddle
points whose every neighborhood contains both smaller and higher
points.

Theorem 1.14. The only minima of Problem 1.7 are given by Theorem 1.12
and are global minima. All other stationary points are saddle points.

Proof. Let us assume that Ar is a stationary point given by Theorem 1.13
but not by Theorem 1.12. Then there always exists a permutation of
the columns of P and Q, and of the diagonal elements of Σ̂ and Σ̂r such
that σ̂r+1 > σ̂r. We then construct two points in the ε-neighborhood of
Ar that yield an increase and a decrease, respectively, of the distance
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measure. They are obtained by taking:

Σr(ε) =


σ̂1 + ε . . . 0 . . . 0

...
. . .

... . . .
...

0 . . . σ̂r . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0

 , Ar(ε) = PΣr(ε)QT

and

Σr(ε) =



σ̂1 . . . 0 0 . . . 0
...

. . .
...

... . . .
...

0 . . . σ̂r ε
√

σ̂r
... 0

0 . . . ε
√

σ̂r ε2 . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 . . . 0


, Ar(ε) = PΣr(ε)QT.

Clearly Ar(ε) and Ar(ε) are of rank r. Evaluating the distance measure
yields

‖A− Ar(ε)‖2
F = 2σ̂rε2 + (σ̂r+1 − ε2)2 +

t

∑
i=r+2

σ̂2
i

= ε2[ε2 − 2(σ̂r+1 − σ̂r)] +
t

∑
i=r+1

σ̂2
i

<
t

∑
i=r+1

σ̂2
i = ‖A− Ar‖2

F

for all ε ∈ (0,
√

2(σ̂r+1 − σ̂r)) and

‖A− Ar(ε)‖2
F = ε2 +

t

∑
i=r+1

σ̂2
i >

t

∑
i=r+1

σ̂2
i = ‖A− Ar‖2

F

for all ε > 0. Hence, for an arbitrarily small positive ε, we obtain

‖A− Ar(ε)‖2
F < ‖A− Ar‖2

F < ‖A− Ar(ε)‖2
F

which shows that Ar is a saddle point of the distance measure.
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When we add a nonnegativity constraint in the next section, the
results of this section will help to identify stationary points at which all
the nonnegativity constraints are inactive.
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2

NONNEGATIVE MATRIX
FACTORIZATION

This chapter is a presentation of the Nonnegative Matrix Factorization
problem. It consists of the formulation of the problem, the description
of the solutions and some observations. It gives the basics for the rest
of this thesis. Some observations are studied more carefully in other
chapters.

One could argue that the name Nonnegative Matrix Factorization
maybe misleading in some cases and that Nonnegative Matrix Ap-
proximation should be used instead. The term “Factorization” maybe
understood as an exact decomposition such as Cholesky decomposition,
LU decomposition, etc. where the input matrix is exactly factorized
as a product of other matrices. However, “Nonnegative Matrix Factor-
ization” has become so popular that it does stand for the problem of
approximating a nonnegative matrix by a product of two nonnegative
matrices. We continue to use this term and refer to Exact Nonnegative
Matrix Factorization for the exact case.

2.1 Problem statement

Nonnegative Matrix Factorization was first introduced by Paatero and
Tapper in [97]. But it has gained popularity by the works of Lee and
Seung [80]. They argue that the nonnegativity is important in human
perceptions and also give two simple algorithms for finding a nonnega-
tive representation for nonnegative data. Given an m× n nonnegative
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matrix A (i.e. Aij ≥ 0) and a reduced rank r (r < min(m, n)), the nonneg-
ative matrix factorization problem consists in finding two nonnegative
matrices U ∈ Rm×r

+ and V ∈ Rn×r
+ that approximate A, i.e.

A ≈ UVT.

Looking at the columns of A, one sees that each of them is approxi-
mated by a conic combination of r nonnegative basis vectors that are the
columns of U

A:i ≈
r

∑
j=1

VijU:j.

We can consider the columns of U as the basis of the cone U completely
contained inside the nonnegative orthant. And each column of A is
approximated by an element of U, typically the closest element to the
column. We can also exchange the role of U and V to point out that
each row of A is approximated by an element of V, typically the closest
element to the row, where V is the cone generated by the column of V.

There are several ways to quantify the difference between the data
matrix A and the model matrix UVT. But the most used measure is the
Frobenius norm:

F(A, UVT) =
1
2
‖A−UVT‖2

F =
1
2

m

∑
i=1

n

∑
i=1

(
Aij − [UVT]ij

)2

which is also referred to as the Euclidean Distance.
Suppose that U is fixed, the function F(U, V) = 1

2‖A−UVT‖2
F can

be seen as a composition of the Frobenius norm and a linear transforma-
tion of V. Therefore, F is convex in V. Likewise, if V is fixed, F is convex
on U.

Throughout this thesis, the nonnegative matrix factorization problem
will be studied with a bias to the Frobenius norm. The main problem is
the following:

Problem 2.1 (Nonnegative matrix factorization - NMF). Given a m× n
nonnegative matrix A and an integer r < min(m, n), solve

min
U∈Rm×r

+ V∈Rn×r
+

1
2
‖A−UVT‖2

F.
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Where r is called the reduced rank. From now on, m and n will be
used to denote the size of the target matrix A and r is the reduced rank
of a factorization.

We rewrite the nonnegative matrix factorization as a standard non-
linear optimization problem:

min
−U≤0 −V≤0

1
2
‖A−UVT‖2

F.

The associated Lagrangian function is

L(U, V, µ, ν) =
1
2
‖A−UVT‖2

F − µ ◦U − ν ◦V,

where µ and ν are two matrices of the same size of U and V, respectively,
containing the Lagrange multipliers associated with the nonnegativity
constraints Uij ≥ 0 and Vij ≥ 0. Then the Karush-Kuhn-Tucker condi-
tions for the nonnegative matrix factorization problem say that if (U, V)
is a local minimum, then there exist µij ≥ 0 and νij ≥ 0 such that:

U ≥ 0 , V ≥ 0, (2.1)
∇LU = 0 , ∇LV = 0, (2.2)
µ ◦U = 0 , ν ◦V = 0. (2.3)

Developing (2.2) we have:

AV −UVTV − µ = 0, ATU −VUTU − ν = 0

or
µ = −(UVTV − AV), ν = −(VUTU − ATU).

Combining this with µij ≥ 0, νij ≥ 0 and (2.3) gives the following
conditions:

U ≥ 0 , V ≥ 0, (2.4)
∇FU = UVTV − AV ≥ 0 , ∇FV = VUTU − ATU ≥ 0, (2.5)

U ◦ (UVTV − AV) = 0 , V ◦ (VUTU − ATU) = 0, (2.6)

where the corresponding Lagrange multipliers for U and V are also the
gradient of F with respect to U and V.
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Since the Euclidean distance is not convex with respect to both vari-
ables U and V at the same time, these conditions are only necessary. This
is implied because of the existence of saddle points and maxima. We
then call all the points that satisfy the above conditions, the stationary
points.

Definition 2.2 (NMF stationary point). We call (U, V) a stationary point
of the NMF Problem if and only if U and V satisfy the KKT conditions
(2.4), (2.5) and (2.6).

Alternatively, a stationary point (U, V) of the NMF problem can also
be defined by using the condition in Proposition 1.9 on the convex sets
Rm×r

+ and Rn×r
+ , that is〈(

∇FU
∇FV

)
,
(

X−U
Y−V

)〉
≥ 0, ∀ X ∈ Rm×r

+ , Y ∈ Rn×r
+ , (2.7)

which can be shown to be equivalent to the KKT conditions (2.4), (2.5)
and (2.6). Indeed, it is trivial that the KKT conditions imply (2.7). And
by carefully choosing different values of X and Y from (2.7), one can
easily prove that the KKT conditions hold.

Representing a rank-k matrix by the product UVT is, in fact, rarely
used due to the loss of the uniqueness of the presentation. Because a
nonnegative factorization is, by definition, in this form, the rest of the
section tries to fix the uniqueness problem and to establish some simple
relations between the approximations.

Let us consider the simplest nonnegative factorization problem
where the matrix A is just a scalar a. The problem (of rank one) is
then to find two scalar x and y whose product approximate a. Prob-
lem 2.1 admits only exact approximations (a− xy)2 = 0, and we have
infinite number of solutions given by the graph xy = a (Figure 2.1).

If we impose the unit norm condition on x (i.e. ‖x‖ = 1), then for
this particular case, there will be only one solution (x = 1 and y = a).

To extend this scaling technique to higher dimensions, we continue
to constrain the first factor U to have unit-norm columns. But this no
longer guarantees the uniqueness of the approximations. Moreover, it is
not easy to determine when and how the uniqueness is obtainable.

Two approximations (U1, V1) and (U2, V2) are said to be equivalent
iff they yield the same product, i.e. U1VT

1 = U2VT
2 .
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Figure 2.1: Graph a = xy

From a stationary point (U, V), if we can find an invertible matrix S
such that Û = US ≥ 0 and V̂ = V(S−1)T ≥ 0, have we constructed an
equivalent stationary point (Û, V̂)? By plugging the matrices Û and V̂
into the KKT conditions, we can see that the answer is not always easy.
Indeed, if Û and V̂ are made to be nonnegative, then according to the
KKT conditions (2.5) and (2.6), we should also have:

(UVTV − AV)(S−1)T ≥ 0,
(VUTU − ATU)S ≥ 0,
(US) ◦

[
(UVTV − AV)(S−1)T] = 0,

(V(S−1)T) ◦
[
(VUTU − ATU)S

]
= 0.

In particular, for a permutation matrix S, these conditions are easily
checked. In this case, all the columns of U and V are retained in Û
and V̂, but in a permuted order, which generate essentially the same
point. Note that S can not be a nonnegative monomial matrix (i.e. matrix
created from a permutation matrix by replacing some elements equal
to 1 by other positive numbers), since Û and U are constrained to have
unit-norm columns.

For general S, the study of the uniqueness of the stationary point is
no longer easy and might be treated only on a case-by-case basis. For
example, we remark that at some (stationary) points (U, V), S must
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be a permutation matrix, otherwise, the nonnegativity of (Û, V̂) will
not be met. This implies that we can not generate other equivalent
approximations. The following result helps to identify a class of them.

Lemma 2.3. If U and V both contain a r× r monomial matrix, then S can
only be the permutation matrices.

Proof. The assumption implies that we can select r rows of U to form an
r× r monomial matrix Ur and r rows of V to form an r× r monomial
matrix Vr. Then the nonnegativity constraint implies

UrS ≥ 0 and Vr(S−1)T ≥ 0.

Since, Ur and Vr are nonnegative monomial matrices, both S and S−1

must be nonnegative. This is only possible when S is a monomial ma-
trix1. Moreover, U and US are constrained to have unit-norm columns,
S can only be permutation matrices.

Another way to consider the set of equivalent stationary points is
to identify them by all the possible exact factorization of the matrix
Â = UVT where (U, V) is one known entry of the set. But there is no
easy method to construct this set.

A better representation of the stationary point is similar to the singu-
lar value decomposition. We can use a triplet (U, D, V) to represent a
NMF stationary point. So, instead of solving Problem 2.1, we solve the
following problem:

(u∗i , d∗i , v∗i )
r
i=1 = argmin

ui≥0 uT
i ui=1

vi≥0 vT
i vi=1

di≥0

‖A−
r

∑
i=1

diuivT
i ‖2

2,

1We have S ≥ 0 and S−1 ≥ 0 and the off-diagonal elements of SS−1 = Ir and
S−1S = Ir are zero. As a consequence, if Sij > 0, we can conclude that S−1

jk = 0 and

S−1
li = 0 for k 6= i and l 6= j. Because S−1 is invertible hence can not contain zero

rows and columns, S−1
ji is the only positive element on the jth row and ith column of

S−1. Reciprocally, S−1
ji > 0 implies Sij is the only positive element on the ith row and

jth column of S. Since S can not contain zero rows and columns, repeating the above
reasoning through all the nonzero elements of S yields the desired result.
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or in matrix representation, U and V is nonnegative matrices with unit-
norm columns and D is a nonnegative diagonal matrix. The matrix
A is then approximated by UDVT. With this, we can also sort the
components in decreasing order of the value of Dii (i.e. D11 ≥ D22 ≥
· · · ≥ Drr). This helps to compare equivalent solutions.

In Chapter 4, we use this representation to design our iterative algo-
rithm and point out its advantages.

2.2 Solution

There are two values of reduced rank r for which we can trivially identify
the global solution which are r = 1 and r = min(m, n). For r = 1, a
pair of dominant singular vectors are a global minimizer. And for
r = min(m, n), (U = A, V = I) is a global minimizer. Since most of
existing methods for the nonnegative matrix factorization are descent
algorithms, we should pay attention to all local minimizers. For the
rank-one case, they can easily be characterized.

2.2.1 Rank one case

The rank-one NMF problem of a nonnegative matrix A can be rewritten
as

min
u∈Rm

+ v∈Rn
+

1
2
‖A− uvT‖2

F (2.8)

and a complete analysis can be carried out. It is well known that any
pair of nonnegative Perron vectors of AAT and AT A yields a global
minimizer of this problem, but we can also show that the only stationary
points of (2.8) are given by such vectors. The following theorem excludes
the case where u = 0 and/or v = 0.

Theorem 2.4. The pair (u, v) is a local minimizer of (2.8) if and only if u and
v are nonnegative eigenvectors of AAT and AT A respectively of the eigenvalue
σ = ‖u‖2

2‖v‖2
2.

Proof. The if part easily follows from Theorem 1.13. For the only if part
we proceed as follows. Without loss of generality, we can permute the
rows and columns of A such that the corresponding vectors u and v
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are partitioned as (u+ 0)T and (v+ 0)T respectively, where u+, v+ > 0.
Partition the corresponding matrix A conformably as follows

A =
(

A11 A12
A21 A22

)
,

then from (2.5) we have(
u+vT

+ 0
0 0

)(
v+
0

)
−
(

A11 A12
A21 A22

)(
v+
0

)
≥ 0

and (
v+uT

+ 0
0 0

)(
u+
0

)
−
(

AT
11 AT

21
AT

12 AT
22

)(
u+
0

)
≥ 0

implying that A21v+ ≤ 0 and AT
12u+ ≤ 0. Since A21 , A12 ≥ 0 and

u+, v+ > 0, we can conclude that A12 = 0 and A21 = 0. Then from (2.6)
we have:

u+ ◦ (‖v+‖2
2u+ − A11v+) = 0 and v+ ◦ (‖u+‖2

2v+ − A+
11u+) = 0.

Since u+, v+ > 0, we have:

‖v+‖2
2u+ = A11v+ and ‖u+‖2

2v+ = AT
11u+

or

‖u+‖2
2‖v+‖2

2u+ = A11AT
11u+ and ‖u+‖2

2‖v+‖2
2v+ = AT

11A11v+.

Setting σ = ‖u+‖2
2‖v+‖2

2 and using the block diagonal structure of A
yields the desired result.

Theorem 2.4 guarantees that all stationary points of the rank-one
case are nonnegative singular vectors of a submatrix of A. These results
imply that a global minimizer of the rank-one NMF can be calculated
correctly based on the largest singular value and corresponding singular
vectors of the matrix A.

For ranks other than 1 and min(m, n), there are no longer trivial
stationary points. In the next section, we try to derive some simple char-
acteristics of the local minima of the nonnegative matrix factorization.
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2.2.2 Characteristics of local minima

The KKT conditions (2.6) help to characterize the stationary points of the
NMF problem. Summing up all the elements of one of the conditions
(2.6), we get:

0 = ∑
ij

(
U ◦ (UVTV − AV)

)
ij

=
〈

U, UVTV − AV
〉

=
〈

UVT, UVT − A
〉

. (2.9)

From that, we have some simple characteristics of the NMF solutions:

Theorem 2.5. Let (U, V) be a stationary point of the NMF problem, then
UVT ∈ B

( A
2 , 1

2‖A‖F
)
, the ball centered at A

2 and with radius = 1
2‖A‖F.

Proof. From (2.9) it immediately follows that〈
A
2
−UVT,

A
2
−UVT

〉
=
〈

A
2

,
A
2

〉
which implies

UVT ∈ B
(

A
2

,
1
2
‖A‖F

)
.

Theorem 2.6. Let (U, V) be a stationary of the NMF problem, then

1
2
‖A−UVT‖2

F =
1
2
(‖A‖2

F − ‖UVT‖2
F)

.

Proof. From (2.9), we have
〈
UVT, A

〉
=
〈
UVT, UVT〉. Therefore,

1
2

〈
A−UVT, A−UVT

〉
=

1
2
(‖A‖2

F − 2
〈

UVT, A
〉

+ ‖UVT‖2
F)

=
1
2
(‖A‖2

F − ‖UVT‖2
F).
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Theorem 2.6 also suggests that at a stationary point (U, V) of the
NMF problem, we should have ‖A‖2

F ≥ ‖UVT‖2
F. This norm inequality

can be also found in [25] for less general cases where we have ∇FU = 0
and ∇FV = 0 at a stationary point. For this particular class of NMF
stationary point, all the nonnegativity constraints on U and Vare inac-
tive. And all such stationary points are also stationary points of the
unconstrained problem, characterized by Theorem 1.13.

We have seen in Theorem 1.13 that, for the unconstrained least-
square problem the only stable stationary points are in fact global min-
ima. Therefore, if the stationary points of the constrained problem are
inside the nonnegative orthant (i.e. all constraints are inactive), we can
then probably reach the global minimum of the NMF problem. This can
be expected because the constraints may no longer prohibit the descent
of the update.

The equality of ‖A‖2
F ≥ ‖UVT‖2

F implied by Theorem 2.6 is only
obtained when we have an exact factorization (i.e A = UVT) and it will
be the subject of the next section.

Let Ar be the optimal rank-r approximation of a nonnegative matrix
A, which we obtain from the singular value decomposition, as indicated
in Theorem 1.13. Then we can easily construct its nonnegative part
[Ar]+, which is obtained from Ar by just setting all its negative elements
equal to zero. This is in fact the closest matrix in the cone of nonnegative
matrices to the matrix Ar, in the Frobenius norm (in that sense, it is
its projection on that cone). We now derive some bounds for the error
‖A− [Ar]+‖F.

Theorem 2.7. Let Ar be the best rank r approximation of a nonnegative matrix
A, and let [Ar]+ be its nonnegative part, then

‖A− [Ar]+‖F ≤ ‖A− Ar‖F.

Proof. This follows easily from the convexity of the cone of nonnegative
matrices. Since both A and [Ar]+ are nonnegative and since [Ar]+ is the
closest matrix in that cone to Ar we immediately obtain the inequality

‖A− Ar‖2
F ≥ ‖A− [Ar]+‖2

F + ‖Ar − [Ar]+‖2
F ≥ ‖A− [Ar]+‖2

F

from which the result readily follows.
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If we now compare this bound with the nonnegative approximations
then we obtain the following inequalities. Let U∗VT

∗ be an optimal
nonnegative rank r approximation of A and let UVT be any stationary
point of the KKT conditions for a nonnegative rank r approximation,
then we have :

‖A− [Ar]+|2F ≤ ‖A− Ar‖2
F =

n

∑
i=r+1

σ2
i ≤ ‖A−U∗VT

∗ ‖2
F ≤ ‖A−UVT‖2

F.

2.3 Exact factorization and nonnegative rank

In this section, we will take a brief look at a stricter problem where
we are interested only in the solutions where the objective function
is zero. This means that the matrix A is exactly factorized by UVT

(i.e. A = UVT) with the same nonnegativity constraints on the factors.
The smallest value of r, the inner rank of the factorization UVT, that
factorizes correctly A is called the nonnegative rank of A, denoted by
rank+

UVT (A). In [33], a nice treatment of the problem is carried out.
The existence of an exact factorization of inner rank r is equivalent

to determining rank+
UVT (A). For any r > rank+

UVT (A), we can trivially
construct an exact nonnegative factorization from the factorization UVT

of inner rank r by adding zero columns to the factors U and V.
For the nonnegative rank, the following results are well known and

can be found in [33]. First, an upper bound and a lower bound of this
number are easily computed.

Lemma 2.8. Let A ∈ Rm×n
+ . Then

rank(A) ≤ rank+
UVT (A) ≤ min(m, n).

Proof. Since we can not construct the same matrix with lower rank then
the first inequality holds. The second comes from one of the trivial
factorizations Im A and AIn.

In certain cases, the first equality holds. For the rank-one nonnega-
tive matrix A, we know that it can be represented by uvT, where u and
v are nonnegative. This implies that rank+

UVT (A) = rank(A) = 1. It is
still true for a rank-two matrix, which is proved in [33] and [3].
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Lemma 2.9. Let A ∈ Rm×n
+ where rank(A) = 2. Then

rank+
UVT (A) = 2.

Proof. Since A ≥ 0, the cone spanned by the columns of A is a con-
vex polyhedral cone contained in the nonnegative orthant. Moreover,
rank(A) = 2 implies that the cone is contained in a two dimensional
linear subspace. Therefore its spanning set, i.e. the columns of A, can be
reduced to only two vectors called u1 and u2. Every column of A is then
represented by

A:i = V1iu1 + V2iu2, with V1i, V2i ≥ 0.

Creating U = (u1 u2) and V = {Vij} gives the desired rank-two non-
negative factorization UVT.

The two spanning vectors u1 and u2 in the proof of the preceding
lemma are indeed a pair of columns of A that has the largest angle
between them, i.e.

(u1 u2) = argmin
A:i A:j

AT
:i A:j

‖A:i‖‖A:j‖
.

V is computed by solving a least square, which yields

V = ATU(UTU)−1 ≥ 0.

So far, we have seen that when rank(A) is 1, 2 or min(m, n), we can
construct an exact nonnegative matrix factorization with the same rank.
For matrices with other ranks, determining the nonnegative rank is very
difficult. Indeed, Vavasis in [121] has recently proved the NP-hardness
of the nonnegative matrix factorization. Therefore, all algorithms for
solving the exact problem are expected to have a non polynomial com-
plexity. In [116], a method is proposed to create nonnegative matrix
factorization via extremal polyhedral cones. Another possibility is using
the quantifier elimination algorithms [113] to check for the feasibility of
factoring a nonnegative matrix A by a nonnegative factorization of inner
rank less than r. All these algorithms are finite. One such algorithm is
given by Renegar [101] and was used in the nonnegative rank problem
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in [33]. Recently, the same method has been applied to the completely
positive rank [9] (cfr. Chapter 7). This method is quite generic and can
be applied to other factorizations in this thesis. Here, we describe briefly
how to derive the computational complexity bound for a nonnegative
factorization.

Consider a first-order formula over the reals having the form

(Q1x[1] ∈ Rn1) . . . (Qωx[ω] ∈ Rnω )P(y, x[1], . . . , x[ω]), (2.10)

where the quantifiers Qk ∈ {∀, ∃}, the vector y contains n0 free variables
(unquantified) and P is a boolean function constructed from M atom
true-false expressions

gi(y, x[1], . . . , x[ω]) ∆i 0, i = 1, . . . , M

with gi are polynomials of degree less than d and comparison operators
∆i ∈ {<,≤, =, 6=,≥, >}. Then the Renegar algorithm requires at most
(Md)2O(ω) ∏k nk multiplications and additions and at most (Md)O(∑k nk)

evaluations of P.
These complexity bounds are derived from the known constants ω,

n0, n1, M and d that can be easily computed for the standard nonnegative
matrix factorization in the following lemma.

Lemma 2.10 ([101]). The Renegar algorithm requires at most (6mn)2O(1)m2n2

multiplications and additions and at most (6mn)O(mn) evaluations of P to
determine the feasibility of factorizing A by a nonnegative factorization UVT

of inner rank r.

Proof. We need to eliminate the quantifiers of the following formula:(
(UT, VT) ∈ Rr×(m+n)

)
P(A, (UT, VT))

where P(A, (UT, VT)) =∧
ij

(
∑

k
UikVjk = Aij

) ∧(∧
ik

(Uik ≥ 0)

)
∧

∧
jk

(
Vjk ≥ 0

) .

This configuration gives: ω = 1, n0 = mn, n1 = r(m + n) ≤ 2mn,
M = mn + r(m + n) ≤ 3mn and d = 2. And the bounds follow.
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The result implies that the problem of determining the nonnega-
tive rank can be solved in finite time by looping through r = 1, 2, . . . ,
min(m, n), since the upper bound of the nonnegative rank is min(m, n).

The above lemma can be easily extended for other nonnegative ma-
trix factorizations such as: multilayer nonnegative matrix factorization
and nonnegative tensor matrix factorization in the next section, sym-
metric and semi-symmetric matrix factorization in Chapter 7. For each
problem, ω = 1, n0 is equal to the number of elements of the target
matrix (or tensor), n1 is the total number of elements of all the factors,
M = n0 + n1 and d is equal to the number of factors. Simple countings
then yield upper complexity bounds for Renegar algorithm for each
feasibility problem.

Similar to the nonnegative rank, the completely-positive rank
(rankUUT (A)) and the semi-symmetric nonnegative rank (rankUSUT (A))
(crf. Chapter 7) can be also computed in finite time using the Renegar
algorithm. This is due to the existence of an upper bound on these ranks.

2.4 Extensions of nonnegative matrix factorization

The essence of the nonnegative matrix factorization is to represent non-
negative data by a nonnegative combination of nonnegative basis vec-
tors, usually called parts. To enlarge the representing capability of the
method, improvements are made on how these bases are combined and
on the structure of the bases. More specifically, in the standard non-
negative matrix factorization, each data vector A:j ∈ Rn

+ is represented
by

A:j = ∑
i

VjiU:i, with Vji ∈ R+ and U:i ∈ Rn
+.

We can list here two constructions of U:i that may improve the perfor-
mance of the nonnegative matrix factorization.

2.4.1 Multilayer nonnegative matrix factorization

We can assume that the U:i is approximated based on another set of
bases X:t. Again, each U:i is constructed by a nonnegative combination
of X:i’s. So we can write

U ≈ XX1
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where X and X1 are nonnegative. With the same reasoning, one can
assume that X:i’s are not the primitives and constructed by another set
of bases [X1]:i’s, and so on. This gives the formulation of the multilayer
nonnegative matrix factorization:

Problem 2.11 (Multilayer nonnegative matrix factorization).

min
Xi≥0 V≥0

1
2
‖A− X0X1 . . . XkVT‖2

F,

where A is the nonnegative data matrix and V and Xi’s are nonnegative
matrices of compatible sizes.

This problem was studied in a number of works, e.g. [36], [29].
Another related problem is the Archetypal Analysis [35], where the above
problem is restricted to only three layers, wherein the first layer consists
of the data themselves. Each data column is approximated by a convex
combination of a set of archetypes that are, in turn, convex combinations
of the data columns. The problem to be solved is the following:

min
X≥0 V≥0

XT1=1 V1=1

1
2
‖A− (AX)VT‖2

F,

where each column of AX is an archetype.
For the multilayer nonnegative matrix factorization, one can use

algorithms proposed in [36], [29] or the algorithm proposed in Section
4.6.1 to construct an approximation.

2.4.2 Nonnegative Tensor Factorization

Data is, by its nature, not only restricted to nonnegative vectors, i.e. one-
dimensional data. Each data can also be points in higher dimensions,
for example m× n nonnegative matrices. And the additional model can
be adapted to handle such data

Aj ≈∑
i

VjiUi,

where Vji ≥ 0 and Aj, Ui’s ∈ Rm×n
+ .
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If we further restricted Ui’s to a nonnegative combination of some
rank-one nonnegative matrices represented by xjyT

j where xj ∈ Rm
+ and

yj ∈ Rn
+. Then the problem of finding xj, yj and Vij from Ai’s is an

example of the following Nonnegative Tensor Factorization problem:

Problem 2.12 (Nonnegative Tensor Factorization).

min
uij∈R

ni
+

1
2
‖A−

r

∑
j=1

u1j ? u2j ? . . . ? udj‖2
F

where A ∈ R
n1×n2×...×nd
+ and a ? b stands for the outer product between

two vectors or tensors a and b.

A algorithm will be presented in Section 4.6.2. Other methods are in
[124], [104] and [32].
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EXISTING ALGORITHMS

In this chapter, we briefly describe a number of existing algorithms for
the nonnegative matrix factorization problem and related issues such as:
algorithm initializations, stopping conditions and convergence.

We choose typical algorithms in three main categories: the multi-
plicative updates, the alternating least squares methods and the gradient
based methods. This list is established based on the popularity of the al-
gorithms in practice. The earliest algorithm is the alternating least squares
method proposed by Paatero [97] for the positive matrix factorization. But
the the attention of this part-based analysis technique really took off
after the introduction of the multiplicative updates of Lee and Seung [80].
The problem was then rebaptised to nonnegative matrix factorization. The
simplicity of the multiplicative updates and the interpretability of the
result helped to spread the influence of the nonnegative matrix factor-
izations to almost all research fields: image processing [59] [53] [83],
text processing [128] [103], music transcription [108], video analysis
[34], bioinformatics [46], chemistry [45], etc. It was solved using the
standard projected gradient method only in [86], where some advantages
in large-scale problems are reported. Recently, a revised version of the
alternating least squares has been proposed in [12] offering a faster im-
plementation by sacrifying the convergence property. Other attempts try
to make a change of variable to eliminate the nonnegativity constraints.
For example, in [26], u → x2 is used and two gradient algorithms are
proposed. But they are, reportedly, not very efficient. Here we analyze a
recently proposed method: the rank-one residue iteration algorithms that
will be investigated in details in Chapter 4. Fast convergence property
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without hidden parameters would make this method a good choice
for the current and future applications. Its variants derived through-
out the last four chapters of this thesis demonstrate its flexibility when
additional constraints are imposed.

We classify algorithms into two categories according to the search
space: Full-space search and (Block-)Coordinate search. Algorithms like
standard gradient methods can belong to both categories.

Algorithms in the former category try to find updates for both U
and V at the same time. This requires a search for a descent direction in
the (m + n)r-dimensional space. Note also that the nonnegative matrix
factorization problem in this full space is not convex but the convergence
of algorithms using the full-space search might be easier to be proved.

Algorithms in the latter category, on the other hand, find updates
for each (block) coordinate in order to guarantee the descent of the
objective function. Usually, search subspaces are chosen to make the
objective function convex so that efficient methods can be applied. Such
a simplification might lead to the loss of some convergence properties.
Most of the algorithms use the following column partitioning:

1
2
‖A−UVT‖2

F =
1
2

n

∑
i=1
‖A:,i −U(Vi,:)T‖2

2, (3.1)

which shows that one can minimize with respect to each of the rows
of V independently. The problem thus decouples into smaller convex
problems. This leads to the solution of quadratic problems of the form

min
v≥0

1
2
‖a−Uv‖2

2, (3.2)

which is called Nonnegative Least Squares (NNLS).
Updates for the rows of V are then alternated with updates for the

rows of U in a similar manner by transposing A and UVT.
We begin the chapter with the description of the three categories of

algorithms. More emphasis is put into the multiplicative rules, since they
are very popular but still lack a good convergence property. We will try
to explain why this method may fail to converge to a local minimum. We
end the chapter with two short discussions of the stopping conditions
and the initialization methods.



3.1 LEE AND SEUNG ALGORITHM 

All the described algorithms are numerically compared at the end of
Chapter 4, where a new algorithm is analyzed.

3.1 Lee and Seung algorithm

The most popular algorithm for the NMF problem are the multiplicative
rules (Algorithm 2) suggested by Lee and Seung [80].

To formulate these rules, we choose to fix one of the factors (i.e. U or
V) and try to minimize the cost function with respect to the other factor.
The following development illustrates how to formulate the updating
rule for V. We first assume that U and V are positive and will come back
to this later.

Since the cost function can be decoupled as follows :

1
2
‖A−UVT‖2

F =
1
2

n

∑
i=1
‖A:i −U(V:i)T‖2

2,

one can minimize it with respect to each of the rows of V separately.
This results in solving a sequence of quadratic problems as follows:

min
v≥0

F(v) where F(v) =
1
2
‖a−Uv‖2

2.

Consider a current approximation v̄ > 0 of the solution and formulate
the following problem:

min
v≥0

F̄(v) = min
v≥0

1
2

[
‖a−Uv‖2

2 + (v− v̄)T Hv̄(v− v̄)
]

(3.3)

where Hv̄ = Dx −UTU with x =
[UTUv̄]

[v̄] . Because we can prove the
positive semidefiniteness of Hv̄, we have F̄(v) ≥ F(v) for all v and
especially F̄(v̄) = F(v̄). Furthermore, the function is also convex.

We set the derivative of F̂(v) to zero, i.e.

∇v F̄ = UTUv−UTa + Hv̄(v− v̄) = 0

in order to obtain the minimizer v∗:

(UTU + Hv̄)v∗ = UTa− Hv̄v̄.
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F(v)

v

F(v) = F(v)

F(v)

F(v )*

F(v )*

v*0

Figure 3.1: Non-increasing multiplicative update

Since UTU + Hv̄ = DUTUv̄D−1
v̄ and Hv̄v̄ = 0, we conclude

v∗ = v̄ ◦
[
UTa

]
[UTUv̄]

. (3.4)

Since v∗ is the global minimizer of F̄(v), we have F̄(v∗) ≤ F̄(v̄).
Moreover, F̄(v) is constructed to satisfy F̄(v) ≥ F(v) for all v. This
implies that F(v∗) ≤ F̄(v∗) ≤ F̄(v̄) = F(v̄) or we have a descent on the
cost function. This can be summarized in Figure 3.1. The function F̄ is
usually called the auxiliary function.

Solving for all rows of V results in the desired updating rule for V.
The updating rule for U can be derived similarly. And these updates are
the two alternating steps in Algorithm 2.

The additional term in (3.3) can also be seen as a penalty function to
prevent the solution of the optimization problem from zero. Moreover,

the matrix Dx −UTU with x =
[UTUv̄]

[v̄] can be seen as an approximation
of the Hessian matrix UTU.

The above development can be summarized in the following Theo-
rem:
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Algorithm 2 Multiplicative Rules (Mult)

1: Initialize U0, V0 and k = 0
2: repeat

3: Uk+1 = Uk ◦ [AVk]
[Uk(Vk)TVk]

4: Vk+1 = Vk ◦ [ATUk+1]
[Vk(Uk+1)TUk+1]

5: k = k + 1
6: until Stopping condition

Theorem 3.1. The Euclidean distance ‖A−UVT‖2
F is non-increasing under

the updating rules of Algorithm 2.

Theorem 3.1 is a shortened version of the one in the original paper of
Lee and Seung [80]. The original theorem has an additional part claiming
that the Euclidean distance is unchanged under the multiplicative rules
only when it is at a stationary point. This is, in fact, not necessarily true,
since if it converges, only the conditions (2.4) and (2.6) are satisfied at
the fixed point. No proof is provided to show that the conditions (2.5)
can be met. There are two main obstacles in the investigation of the
convergence of these multiplicative rules.

The first one is that these multiplicative rules fail to make a sufficient
descent of the cost function. To see this, we can rewrite (3.4) as a variable
metric method [13]:

v∗ = v̄ ◦
[
UTa

]
[UTUv̄]

= v̄ ◦
[
UTa + UTUv̄−UTUv̄

]
[UTUv̄]

= v̄ ◦
(

1 +

[
UTa−UTUv̄

]
[UTUv̄]

)

= v̄− [v̄]
[UTUv̄]

◦ (UTUv̄−UTa)

= v̄− Dv̄∇v̄F, (3.5)

where Dv̄ is a positive diagonal matrix with Dii = [v̄]i
[UTUv̄]i

. With this
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update, a necessary condition for a sufficient descent is that the eigen-
values of matrix Dv̄ (i.e. Dii) must be bounded above and away from
zero [13]. But this is not true for Dv̄ in general. Hence, the limit points
of the algorithm may not be stationary.

The second obstacle is the possibility of zeros in U and V when
considering the conditions (2.5). The situation that we want to avoid is

∇Vij F < 0 while Vij = 0 (3.6)

for some (i, j) at a limit point. With the assumption that the initial U and
V are positive, this problem might not happen because if, for some k:

∇Vk
ij

F < 0 or [Vk(Uk)TUk]ij − [AUk]ij < 0,

we have from the update:

Vk+1
ij = Vk

ij
[AUk]ij

[Vk(Uk)TUk]ij
> Vk

ij > 0.

This is also supported by the following Lemma [85]:

Lemma 3.2. If U0 and V0 are positive and A is both row-allowable and
column-allowable (see Section 1.1.6), then Uk and Vk are positive.

But in practice, when using a finite precision system of number,
only numbers whose magnitude is larger than the constant εM (the
smallest representable number of a number system) can be represented
by nonzero numbers. Otherwise, they will be rounded to zero. And
since we can not bound Vk

ij away from zero, it could be smaller than εM

hence represented by 0. Once Vk
ij = 0, the multiplicative updates will

not make it positive again. The algorithm will then be probably trapped
into a non-stationary point.

One way to avoid this is to look at every Uij = 0 (or Vij = 0), if the
corresponding element of the gradient is negative, we can set Uij = ε (or
Vij = ε) with ε > εM as suggested in [85] or making a gradient descent
step to the inside of the nonnegative orthant.

Remark: it is possible that [Vk(Uk)TUk]ij = 0 for some (i, j), which
results in some zero-division exceptions. We investigate two following
possible situations:
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• When Vk
ij > 0, [Vk(Uk)TUk]ij = 0 implies that

0 = ∑
lt

Vk
itU

k
ltU

k
lj ≥ Vk

ijU
k
ljU

k
lj = Vk

ij ∑
l

Uk
ljU

k
lj.

This occurs only when Uk
:j = 0, which is due to a rank-deficient

approximation and can be fixed by generating a substitution for
Uk

:j.

• When Vk
ij = 0, we have a 0/0 situation where

∇Vij F = −[AUk]ij ≤ 0.

Then, we should not replace [Vk(Uk)TUk]ij by ε (a small positive
constant with ε > εM) as suggested by many works, because this
will keep Vk+1

ij = 0 which is unfavorable for the multiplicative

updates. Setting Vk+1
ij = ε > εM is definitely a better choice.

The multiplicative rules are also extended to the weighted nonneg-
ative matrix factorization (see Chapter 6), to the generalized Kullback-
Leibler divergence (see Chapter 5) and to a broader class of cost function
namely Bregman divergence [36]. Many other extensions can be found
in [59], [119], [83], [122], [68], etc.

3.2 Alternating least squares methods

The first algorithm proposed for solving the nonnegative matrix factor-
ization was the alternating least squares method [97]. It is known that,
fixing either U or V, the problem becomes a least squares problem with
nonnegativity constraint.

Since the least squares problems in Algorithm 3 can be perfectly
decoupled into smaller problems corresponding to the columns or rows
of A, we can directly apply methods for the Nonnegative Least Square
problem to each of the small problem. Methods that can be applied are
[79], [44], [24], etc.

A direct application of Theorem 1.11 can show that if the subproblem
(3) and (4) in Algorithm 3 are exactly and uniquely solved, every limit
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Algorithm 3 Alternating Least Square (ALS)

1: Initialize U and V
2: repeat
3: Solve: minV≥0

1
2‖A−UVT‖2

F
4: Solve: minU≥0

1
2‖AT −VUT‖2

F
5: until Stopping condition

Algorithm 4 Inexact Alternating Least Square (IALS)

1: Initialize U and V
2: repeat
3: Solve for U in equation: UVTV = AV
4: U = [U]+
5: Solve for V in equation: VUTU = ATU
6: V = [V]+
7: until Stopping condition

point of Algorithm 3 is a stationary point of the nonnegative matrix
factorization problem.

But even with the faster implementation of these algorithm, they
can not match other methods in terms of running time. A modification
has been made by replacing an exact solution of the nonnegative least
squares problem by the projection of the solution of the unconstrained
least squares problem into the nonnegative orthant [12] as in Algorithm
4. This speeds up the algorithm by sacrifying the convergence property.
Figure 3.2 is a typical example of the convergence of the Alternating
Least Squares and the Inexact Alternating Least Squares. One can see
that while the earlier always makes a descent update, the latter does
not. The exact method also produces better approximation errors. But
with the same number of iterations, it spends significantly more time
than the inexact version does (3.435s vs. 0.02s). Note that the solver for
the nonnegative least squares problem in this example is the standard
Matlab function lsqnonneg. For a faster solver such as [24], it is reported
that the exact method is still far behind in terms of the running time. In
practice, the exact Alternating Least Squares is seldomly used because it
is very inefficient. And its inexact version does not, in general, converges
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Figure 3.2: Alternating Least Square (ALS) vs. Inexact Alternating Least Square
(IALS)

to a stationary point. It is suggested to use the inexact version as a
warming-up phase of a hybrid algorithm [48].

Two other versions namely Alternating Constrained Least Square
and Alternating Hoyer-Constrained Least Square are also given in [12].

3.3 Gradient descent

We can consider the nonnegative matrix factorization as a nonlinear
optimization problem on a convex set, which is the nonnegative orthant.
We also know that the projection on this set is very simple and consists of
setting any negative element to zero. In this case, the Projected Gradient
scheme is often used and characterized by the following three basic
steps in each iteration:

• Calculating the gradient ∇F(xk),

• Choosing the step size αk,

• Projecting the update on the nonnegative orthant Rn
+:

xk+1 = [xk − αk∇F(xk)]+,

where xk is the variable. The last two steps can be merged in one
iterative process and must guarantee a sufficient decrease of the objective
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function as well as the nonnegativity of the new point. This generates
an inner loop inside each iteration.

We will present two simple ways to carry out this idea in the non-
negative matrix factorization. Both methods use the negative gradient
as the basic search direction. Only the stepsizes are different.

In Section 3.3.3, some issues of the implementation will be pointed
out. Especially for the case where one chooses to use the gradient
method in alternating iterations, i.e. minimizing with respect to U and
to V in an alternating fashion.

3.3.1 Line search using Armijo rule (Line)

Algorithm 5 Line search (Line)

1: Initialize x0, σ, β, α0 = 1 and k = 1
2: repeat
3: αk = αk−1
4: y = [xk − αk∇F(xk)]+
5: if F(y)− F(xk) > σ

〈
∇F(xk), y− xk〉 then

6: repeat
7: αk = αk · β
8: y = [xk − αk∇F(xk)]+
9: until F(y)− F(xk) ≤ σ

〈
∇F(xk), y− xk〉

10: else
11: repeat
12: lasty = y
13: αk = αk/β
14: y = [xk − αk∇F(xk)]+
15: until F(y)− F(xk) > σ

〈
∇F(xk), y− xk〉

16: y = lasty
17: end if
18: xk+1 = y
19: k = k + 1
20: until Stopping condition

In order to ensure a sufficient descent, the following projected gradi-
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ent scheme with Armijo criterion [86] can be applied to minimize

x∗ = argmin
x

F(x).

Algorithm 5 needs two parameters σ and β that may affect its con-
vergence. It requires only the gradient information, and is applied in
[86] for two different strategies : for the whole space (U, V) (Algorithm
FLine) and for U and V separately in an alternating fashion (Algorithm
CLine). With a good choice of parameters (σ = 0.01 and β = 0.1) and a
good strategy of alternating between variables, it was reported in [86]
to be the faster than the multiplicative rules.

3.3.2 Gradient Projection using first order approximation

In order to find the solution to the problem:

x∗ = argmin
x

F(x)

we can also approximate at each iteration the function F(X) using:

F̃(x) = F(xk) +
〈
∇xF(xk), x− xk

〉
+

L
2
‖xk − x‖2

2,

where L is a Lipschitz constant, the smallest value of L satisfying F(x) ≤
F̃(x), ∀x.

Because of this inequality, the solution of the following problem

xk+1 = argmin
x≥0

F̃(x)

also is a point of descent for the function F(x) since

F(xk+1) ≤ F̃(xk+1) ≤ F̃(xk) = F(xk).

Since the constant L is not known a priori, an inner loop is needed.
Algorithm 6 presents an iterative way to carry out this scheme. As in
the previous algorithm this also requires only the gradient information
and can therefore can be applied to two different strategies: to the
whole space (U, V) (Algorithm FFO) and to U and V separately in an
alternating fashion (Algorithm CFO).

A main difference with the previous algorithm is its stopping crite-
rion for the inner loop. This algorithm requires also a parameter β for
which the practical choice is 2.
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Algorithm 6 First order approximation (FO)

1: Initialize x0, L0 and k = 0
2: repeat
3: y = [xk − 1

Lk
∇F(xk)]+

4: while F(y)− F(xk) >
〈
∇F(xk), y− xk〉+ Lk

2 ‖y− xk‖2
2 do

5: Lk = Lk/β
6: Y = [xk − 1

Lk
∇F(xk)]+

7: end while
8: xk+1 = y
9: Lk+1 = Lk · β

10: k = k + 1
11: until Stopping condition

3.3.3 Implementation

The most time-consuming job is the test for the sufficient decrease, which
is also the stopping condition for the inner loop. As mentioned at the
beginning of the chapter, the above methods can be carried out using
two different strategies:

Full space search: The exact evaluation of F(x) = F(U, V) = ‖A−
UVT‖2

F need O(mnr) operations. When there is a correction y = (U +
∆U, V + ∆V), we have to calculate F(y) which also requires O(mnr) op-
erations. Hence, it requires O(tmnr) operations to determine a stepsize
in t iterations of the inner loop.

Coordinate search: when V is fixed, the Euclidean distance is a
quadratic function on U:

F(U) = ‖A−UVT‖2
F = 〈A, A〉 − 2

〈
UVT, A

〉
+
〈

UVT, UVT
〉

= ‖A‖2
F − 2 〈U, AV〉+

〈
U, U(VTV)

〉
.

The most expensive step is the computation of AV, which requires
O(mnr) operations. But when V is fixed, AV can be calculated once
at the beginning of the inner loop. The remaining computations are
〈U, AV〉 and

〈
U, U(VTV)

〉
, which requires O(nr) and O(nr2 + nr) oper-

ations. Therefore, it requires O(tnr2) operations to determine a stepsize
in t iterations of the inner loop which is much less than O(tmnr) oper-
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ations. This is due to the assumption r � n. Similarly, when U fixed,
O(tmr2) operations are needed to determine a stepsize.

If we consider an iteration is a sweep, i.e. once all the variables are
updated, the following table summarizes the complexity of each sweep
of the described algorithms:

Algorithm Complexity per iteration
Mult O(mnr)
FLine O(tmnr)
CLine O(t1nr2 + t2mr2)
FFO O(tmnr)
CFO O(t1nr2 + t2mr2)
ALS O(2rmnr)∗

IALS O(mnr)

where t, t1 and t2 are the number of iterations of inner loops, which
can not be bounded in general. For algorithm ALS, the complexity is
reported for the case where the active set method [79] is used. Although
O(2rmnr) is a very high theorical upper bound that count all the possible
subsets of r variables of each subproblem, in practice, the active set
method needs much less iterations to converge. One might as well
use more efficient convex optimization tools to solve the subproblems
instead of the active set method.

3.4 Scaling and stopping criterion

For descent methods, several stopping conditions are used in the lit-
erature. We now discuss some problems when implementing these
conditions for NMF.

The very first condition is the decrease of the objective function.
The algorithm should stop when it fails to make the objective function
decrease with a certain amount :

F(Uk+1, Vk+1)− F(Uk, Vk) < ε or
F(Uk+1, Vk+1)− F(Uk, Vk)

F(Uk, Vk)
< ε.

This is not a good choice for all cases since the algorithm may stop at a
point very far from a stationary point. Time and iteration bounds can
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also be imposed for very slowly converging algorithms. But here again
this may not be good for the optimality conditions. A better choice is
probably the norm of the projected gradient as suggested in [86]. For
the NMF problem it is defined as follows :

[∇P
X]ij =

{
[∇X]ij if Xij > 0
min(0, [∇X]ij) if Xij = 0

where X stands for U or V. The proposed condition then becomes∥∥∥∥( ∇P
Uk

∇P
Vk

)∥∥∥∥
F
≤ ε

∥∥∥∥( ∇U1

∇V1

)∥∥∥∥
F

. (3.7)

We should also take into account the scaling invariance between U and
V. Putting Ū = γU and V̄ = 1

γ V does not change the approximation
UVT but the above projected gradient norm is affected:∥∥∥∥( ∇P

Ū
∇P

V̄

)∥∥∥∥2

F
= ‖∇P

Ū‖
2
F + ‖∇P

V̄‖
2
F =

1
γ2 ‖∇

P
U‖2

F + γ2‖∇P
V‖2

F (3.8)

6=
∥∥∥∥( ∇P

U
∇P

V

)∥∥∥∥2

F
.

Two approximate factorizations UVT = ŪV̄T resulting in the same
approximation should be considered equivalent in terms of precision.
One could choose γ2 := ‖∇P

U‖F/‖∇P
V‖F, which minimizes (3.8) and

forces ‖∇P
Ū‖F = ‖∇P

V̄‖F, but this may not be a good choice when only
one of the gradients ‖∇P

Ū‖F and ‖∇P
V̄‖F is nearly zero.

In fact, the gradient
(
∇U
∇V

)
is scale dependent in the NMF problem

and any stopping criterion that uses gradient information is affected by
this scaling. To limit that effect, we suggest the following scaling after
each iteration:

Ũk ← UkDk Ṽk ← VkD−1
k

where Dk is a positive diagonal matrix:

[Dk]ii =

√
‖V:i‖2

‖U:i‖2
.
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This ensures that ‖Ũ:i‖2
F = ‖Ṽ:i‖2

F and hopefully reduces also the differ-
ence between ‖∇P

Ũ‖
2
F and ‖∇P

Ṽ‖
2
F. Moreover, it may help to avoid some

numerically unstable situations.
The same scaling should be applied to the initial point as well

(U1, V1) when using (3.7) as the stopping condition.

3.5 Initializations

We know that the nonnegative matrix factorization problem is not con-
vex, and hence expect it to have local minima. Moreover, starting from a
point too far from the stationary points costs any iterative method many
iterations before getting close to one such stationary point. A good initial
approximation could not only shift the interest to good local minima
but would also help to reduce the number of iterations. Several tech-
niques are proposed in the literature. Among them, an application of
the Spherical K-Means algorithm [127] to generate an initial point shows
a nice improvement but is too expensive. This is not surprising since
K-Means is in fact an instance of NMF factorization, as we mentioned
in the introduction. Other interesting methods proposed in [2] provide
some ideas but have a small improvement over the random initialization.
The best reported method is the SVD-centroid which requires a partial
SVD decomposition of the original matrix, which is not always available
and needs to be computed. Recently proposed method [20] takes the
rank-r SVD decomposition UΣVT of the target matrix A, removes all the
negative values of U and V and creates a simple rank-2r nonnegative
factorization as an initialization. Although a loose upper bound of the
error can be derived, this method again needs a SVD decomposition.
These mentioned methods is reported to behave well for some specific
datasets and algorithms, but they may not be as good when applied to
other cases. A deeper investigation will be necessary.

Since nothing is known about the distribution of the minima, we
believe that a random initialization maybe a good starting point. In fact,
in most existing applications, a random initialization is used because of
its simplicity. We have to point out that, using directly a random initial-
ization is very naive, and a preprocessing step can improve significantly
the quality of the initial point. For example, the following step can be
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applied to algorithms which are sensitive to scalings (multiplicative
updates and gradient methods):

α :=
〈

A, U0VT
0
〉〈

U0VT
0 , U0VT

0

〉 , U0 = U0
√

α, V0 = V0
√

α,

where the scaling factor α is in fact the optimal solution of the problem:

min
α
‖A− αU0VT

0 ‖2
F.



4

RANK-ONE RESIDUE ITERATION

In the previous chapter, we have seen that it is very appealing to decou-
ple the problem into convex subproblems. But this may “converge” to
solutions that are far from the global minimizers of the problem.

This chapter is an extension of the internal report [62], where we
proposed to decouple the problem based on rank-one approximations to
create a new algorithm. A convergence analysis, numerical experiments
and some extensions were also presented for this algorithm. During
the completion of the revised version of this report, we were informed
that two other independent reports [31] and [49] had also proposed this
algorithm.

This algorithm has several advantages : it allows us to formulate
a very simple basic subproblem, which can be solved in closed form,
seems to have useful convergence results and can be extended to more
general types of factorizations such as for nonnegative tensors. More-
over, the experiments in Section 4.7 suggest that this new method out-
performs the other ones in most cases.

Here, we present an introduction and an analysis of this algorithm,
compare it with existing algorithms and test new extensions.

4.1 Motivation

NMF problem is, in fact, a least square problem with nonnegativity con-
straints. The classical nonnegative least square problem [79] is defined
as below:
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Problem 4.1 (NNLS).
min
x≥0
‖Ax− b‖2

F.

As we can see NMF problem can be decoupled into several problems
4.1. Therefore it is quite natural to apply any method for the above
problem to solve the NMF problem. The standard one is the active
set method proposed by Lawson and Hanson [79]. But even with the
improved version by Bro and Jong [24], using this for NMF problem still
appears very slow.

One of the main reasons lies in the reusability of the computations.
The decoupling helps to break the NMF problem into smaller problems
but for many methods, solving a decoupled NNLS problem may not
help for solving other NNLS problems. We are talking about solving a
number of separate nonnegative least square problems

min
x≥0
‖A:,i −Ux‖2

F, i = 1, 2, ..., n.

The active set method actually consists in solving a sequence of normal
equations where a number of pseudo-inverse matrices need to be com-
puted. These computations could be reused to speed up solving for
multiple columns of A [74][24].

These methods start with all the columns of U to solve the nor-
mal equation UTUx = UT A:,i where one needs to compute U+ =
(UTU)−1U. At each iteration, several columns of U are removed creat-
ing smaller matrices U1, U2, . . . Then, Ui+ = (UiTUi)−1Ui are computed.
Clearly, keeping and reusing all (Ui)+ matrices is impossible for large
problem, since the number of those matrices might be 2r, total number
of possible subsets from r columns of U.

In [44], a different strategy is deployed to create an iterative method.
At each iteration, only one element xi is updated. The elementary prob-
lem to be solved is:

Problem 4.2.
min

xi∈R+
‖xiU:,i − ri‖2

F,

where ri = A:,i −∑j 6=i xjU(:, j) is the residue vector.
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The optimal solution to this problem is trivially given by

x∗i = max

( 〈
ri, U:,i

〉
〈U:,i, U:,i〉

, 0

)
.

In fact, this is an instance of Problem 4.1 where U has only one column.
And U+

:,i = U:,i
〈U:,i ,U:,i〉 can be reused when there are multiple columns of A.

We will use this idea to create an iterative method for the standard
NMF problem and derive other NMF problems. An iterative method
for Nonnegative Tensor Factorization (NTF) will also be derived.

4.2 Column partition of variables

Let the ui’s and vi’s be respectively the columns of U and V. Then the
NMF problem can be rewritten as follows :

Problem 4.3 (Nonnegative Matrix Factorization). Given a m× n non-
negative matrix A, solve

min
ui≥0 vi≥0

1
2
‖A−

r

∑
i=1

uivT
i ‖2

F.

Let us fix all the variables, except for a single vector vt and consider
the following least squares problem:

min
v≥0

1
2
‖Rt − utvT‖2

F, (4.1)

where Rt = A−∑i 6=t uivT
i . We have:

‖Rt − utvT‖2
F = trace

[
(Rt − utvT)T(Rt − utvT)

]
(4.2)

= ‖Rt‖2
F − 2vTRT

t ut + ‖ut‖2
2‖v‖2

2. (4.3)

From this formulation, one now derives the following lemma.

Lemma 4.4. If [RT
t ut]+ 6= 0, then v∗ := [RT

t ut]+
‖ut‖2

2
is the unique global mini-

mizer of (4.1) and the function value equals ‖Rt‖2
F −

‖[RT
t ut]+‖2

2
‖ut‖2

2
.
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Proof. Let us permute the elements of the vectors x := RT
t ut and v such

that

Px =
(

x1
x2

)
, Pv =

(
v1
v2

)
, with x1 ≥ 0, x2 < 0

and P is the permutation matrix. Then

‖Rt − utvT‖2
F = ‖Rt‖2

F − 2vT
1 x1 − 2vT

2 x2 + ‖ut‖2
2(vT

1 v1 + vT
2 v2).

Since x2 < 0 and v2 ≥ 0, it is obvious that ‖Rt − utvT‖2
F can only be

minimal if v2 = 0. Our assumption implies that x1 is nonempty and
x1 > 0. Moreover [RT

t ut]+ 6= 0 and ut ≥ 0 imply ‖ut‖2
2 > 0, one can then

find the optimal v1 by minimizing the remaining quadratic function

‖Rt‖2
F − 2vT

1 x1 + ‖ut‖2
2vT

1 v1

which yields the solution v1 = x1
‖ut‖2

2
. Putting the two components

together yields the result

v∗ =
[RT

t ut]+
‖ut‖2

2
and ‖Rt − utvT

∗ ‖2
F = ‖Rt‖2

F −
‖[RT

t ut]+‖2
2

‖ut‖2
2

.

Remark 1: The above lemma has of course a dual form, where one
fixes vt but solves for the optimal u to minimize ‖Rt − uvT

t ‖2
F. This

would yield the updating rules

vt ←
[RT

t ut]+
‖ut‖2

2
and ut ←

[Rtvt]+
‖vt‖2

2
(4.4)

which can be used to recursively update approximations ∑r
i=1 uivT

i by
modifying each rank-one matrix utvT

t in a cyclic manner. This problem is
different from the NMF, since the error matrices Rt = A−∑i 6=t uivT

i are
no longer nonnegative. We will therefore call this method the Rank-one
Residue Iteration (RRI), i.e. Algorithm 7. The same algorithm was inde-
pendently reported as Hierarchical Alternating Least Squares (HALS)
[31] and Alternating NMF (ANMF) [49].
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Algorithm 7 (RRI)

1: Initialize ui’s, vi’s, for i = 1 to r
2: repeat
3: for t = 1 to r do
4: Rt = A−∑i 6=t uivT

i
5:
6: if [RT

t ut]+ 6= 0 then
7: vt ← [RT

t ut]+
‖ut‖2

2
8: else
9: vt = 0

10: end if
11:
12: if [Rtvt]+ 6= 0 then
13: ut ← [Rtvt]+

‖vt‖2
2

14: else
15: ut = 0
16: end if
17: end for
18: until Stopping condition

Remark 2: In case where [RT
t ut]+ = 0, we have a trivial solution for

v = 0 that is not covered by Lemma 4.4. In addition, if ut = 0, this solu-
tion is no longer unique. In fact, v can be arbitrarily taken to construct a
rank-deficient approximation. The effect of this on the convergence of
the algorithm will be discussed further in the next section.

Remark 3: Notice that the optimality of Lemma 4.4 implies that
‖A−UVT‖ can not increase. And since A ≥ 0 fixed, UVT ≥ 0 must be
bounded. Therefore, its component uivt

i (i=1. . . r) must be bounded as
well. One can moreover scale the vector pairs (ui, vi) at each stage as
explained in Section 3.4 without affecting the local optimality of Lemma
4.4. It then follows that the rank one products uivT

i and their scaled
vectors remain bounded.
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4.3 Convergence

In the previous section, we have established the partial updates for each
of the variable ui or vi. And for a NMF problem where the reduced rank
is r, we have in total 2r vector variables (the ui’s and vi’s). The described
algorithm can be also considered as a projected gradient method since
the update (4.4) can be rewritten as:

ut ←
[Rtvt]+
‖vt‖2

2
=

[(A−∑i 6=t uivT
i )vt]+

‖vt‖2
2

=
[(A−∑i uivT

i + utvT
t )vt]+

‖vt‖2
2

=
[(A−∑i uivT

i )vt + utvT
t vt]+

‖vt‖2
2

=
[

ut −
1
‖vt‖2

2
∇ut

]
+

.

Similarly, the update for vi can be rewritten as

vt ←
[

vt −
1
‖ut‖2

2
∇vt

]
+

.

Therefore, the new method follows the projected gradient scheme
described in the previous section. But it produces the optimal solution
in closed form. For each update of a column vt (or ut), the proposed
algorithm requires just a matrix-vector multiplication RT

t ut (or Rtvt),
wherein the residue matrix Rt = A − ∑i 6=t uivT

i does not have to be
calculated explicitly. Indeed, by calculating RT

t ut (or Rtvt) from ATut
(or Avt) and ∑i 6=t vi(uT

i ut) (or ∑i 6=t ui(vT
i vt)), the complexity is reduced

from O(mnr + mn) to only O (mn + (m + n)(r− 1)) which is majored
by O(mn). This implies that the complexity of each sweep through
the 2r variables u′ts and v′ts requires only O(mnr) operations, which is
equivalent to a sweep of the multiplicative rules and to an inner loop
of any gradient methods. This is very low since the evaluation of the
whole gradient requires already the same complexity.

Because at each step of the 2r basic steps of Algorithm 7, we compute
an optimal rank-one nonnegative correction to the corresponding error
matrix Rt the Frobenius norm of the error can not increase. This is a
reassuring property but it does not imply convergence of the algorithm.

Each vector ut or vt lies in a convex set Ut ⊂ Rm
+ or Vt ⊂ Rn

+.
Moreover, because of the possibility to include scaling we can set an
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upper bound for ‖U‖ and ‖V‖, in such a way that all the Ut and Vt
sets can be considered as closed convex. Then, we can use the following
Theorem 4.5, to prove a stronger convergence result for Algorithm 7.

Theorem 4.5. Every limit point generated by Algorithm 7 is a stationary
point.

Proof. We notice that, if ut = 0 and vt = 0 at some stages of Algorithm 7,
they will remain zero and no longer take part in all subsequent iterations.
We can divide the execution of Algorithm 7 into two phases.

During the first phase, some of the pairs (ut, vt) become zero. Be-
cause there are only a finite number (2r) of such vectors, the number of
iterations in this phase is also finite. At the end of this phase, we can
rearrange and partition the matrices U and V such that

U = (U+ 0) and V = (V+ 0),

where U+ and V+ do not have any zero column. We temporarily remove
zero columns out of the approximation.

During the second phase, no column of U+ and V+ becomes zero,
which guarantees the updates for the columns of U+ and V+ are unique
and optimal. Moreover, 1

2‖A − ∑r
i=1 uivT

i ‖2
F is continuously differen-

tiable over the set U1 × . . .×Ur ×V1 × . . .×Vr, and the Ui’s and Vi’s
are closed convex. A direct application of Theorem 1.11 proves that
every stationary point (U∗+, V∗+) is a stationary point. It is then easy to
prove that if there are zero columns removed at the end of the first phase,
adding them back yields another stationary point: U∗ = (U∗+ 0) and
V∗ = (V∗+ 0) of the required dimension. However, in this case, the rank
of the approximation will then be lower than the requested dimension
r.

In Algorithm 7, variables are updated in this order: u1, v1, u2, v2,
. . .. We can alternate the variables in a different order as well, for ex-
ample u1, u2, . . ., ur v1, v2, . . ., vr, . . .. Whenever this is carried out in a
cyclic fashion, the Theorem 4.5 still holds and this does not increase the
complexity of each iteration of the algorithm.

As pointed above, stationary points given by Algorithm 7 may
contain useless zero components. To improve this, one could replace
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utvT
t (≡ 0) by any nonnegative rank-one approximation that reduces the

norm of the error matrix. For example, the substitution

ut = ei∗ vt = [RT
t ut]+, (4.5)

where i∗ = argmaxi ‖[RT
t ei]+‖2

2, reduces the error norm by ‖[RT
t ei]+‖2

2 >
0 unless Rt ≤ 0. These substitutions can be done as soon as ut and vt
start to be zero. If we do these substitutions in only a finite number of
times before the algorithm starts to converge, Theorem 4.5 still holds. In
practice, only a few such substitutions in total are usually needed by the
algorithm to converge to a stationary point without any zero component.
Note that the matrix rank of the approximation might not be r, even
when all ut’s and vt’s (t = 1 . . . r) are nonzero.

A possibly better way to fix the problem due to zero components is
to use the following damped RRI algorithm in which we introduce new
2r dummy variables wi ∈ Ui and zi ∈ Vi, where i = 1...r. The new
problem to solve is:

Problem 4.6 (Damped Nonnegative Matrix Factorization).

min
ui≥0 vi≥0
wi≥0 zi≥0

1
2
‖A−

r

∑
i=1

uivT
i ‖2

F +
ψ

2 ∑
i
‖ui − wi‖2

2 +
ψ

2 ∑
i
‖vi − zi‖2

2,

where the damping factor ψ is a positive constant.

Again, the coordinate descent scheme is applied with the cyclic
update order: u1, w1, v1, z1, u2, w2, v2, z2, . . . to result in the following
optimal updates for ut, vt, wt and zt:

ut =
[Rtvt]+ + ψwt

‖vt‖2
2 + ψ

, wt = ut, vt =
[RT

t ut]+ + ψzt

‖ut‖2
2 + ψ

and zt = vt (4.6)

where t = 1 . . . r. The updates wt = ut and zt = vt can be integrated in
the updates of ut and vt to yield Algorithm 8. We have the following
results:

Theorem 4.7. Every limit point generated by Algorithm 8 is a stationary
point of NMF problem 4.3.
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Algorithm 8 (Damped RRI)

1: Initialize ui’s, vi’s, for i = 1 to r
2: repeat
3: for t = 1 to r do
4: Rt = A−∑i 6=t uivT

i

5: vt ← [RT
t ut+ψvt]+
‖ut‖2

2+ψ

6: ut ← [Rtvt+ψut]+
‖vt‖2

2+ψ

7: end for
8: until Stopping condition

Proof. Clearly the cost function in Problem 4.6 is continuously differ-
entiable over the set U1 × . . .×Ur ×U1 × . . .×Ur ×V1 × . . .×Vr ×
V1 × . . .×Vr, and the Ui’s and Vi’s are closed convex. The uniqueness
of the global minimum of the elementary problems and a direct appli-
cation of Theorem 1.11 prove that every limit point of Algorithm 8 is a
stationary point of Problem 4.6.

Moreover, at a stationary point of Problem 4.6, we have ut = wt and
vt = zt, t = 1...r. The cost function in Problem 4.6 becomes the cost
function of the NMF problem 4.3. This implies that every stationary
point of Problem 4.6 yields a stationary point of the standard NMF
problem 4.3.

This damped version not only helps to eliminate the problem of zero
components in the convergence analysis but may also help to avoid zero
columns in the approximation when ψ is carefully chosen. But it is not
an easy task. Small values of ψ provide an automatic treatment of zeros
while not changing much the updates of RRI. Larger values of ψ might
help to prevent the vectors ut and vt (t = 1 . . . r) from becoming zero too
soon. But too large values of ψ limit the updates to only small changes,
which will slow down the convergence.

In general, the rank of the approximation can still be lower than
the requested dimension. Patches may still be needed when a zero
component appears. Therefore, in our experiments, using the undamped
RRI algorithm 7 with the substitution (4.5) is still the best choice.

This damping technique will be reused to create convergent algo-
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rithms in later chapters, when the uniqueness problem shows up again.

4.4 Variants of the RRI method

We now extend the Rank-one Residue Iteration by using a factoriza-
tion of the type XDYT where D is diagonal and nonnegative and the
columns of the nonnegative matrices X and Y are normalized. The NMF
formulation then becomes

min
xi∈Xi yi∈Yi

di∈R+

1
2
‖A−

r

∑
i=1

dixiyT
i ‖2

F,

where Xi’s and Yi’s are sets of normed vectors.
The variants that we present here depend on the choice of Xi’s and

Yi’s. A generalized Rank-one Residue Iteration method for low-rank
approximation is given in Algorithm 9. This algorithm needs to solve a
sequence of elementary problems of the type:

max
s∈S

yTs (4.7)

where y ∈ Rn and S ⊂ Rn is a set of normed vectors. We first introduce
a permutation vector Iy = (i1 i2 . . . in) which reorders the elements of y
in non-increasing order : yik ≥ yik+1 , k = 1 . . . (n− 1). The function p(y)
returns the number of positive entries of y.

Algorithm 9 GRRI

1: Initialize xi’s, yi’s and di’s, for i = 1 to r
2: repeat
3: for t = 1 to r do
4: Rt = A−∑i 6=t dixiyT

i
5: yt ← argmaxs∈Yt

(
xT

t Rts
)

6: xt ← argmaxs∈Xt

(
yT

t RT
t s
)

7: dt = xT
t Rtyt

8: end for
9: until Stopping condition
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Let us first point out that for the set of normed nonnegative vectors
the solution of problem (4.7) is given by s∗ = y+

‖y+‖2
. It then follows that

Algorithm 9 is essentially the same as Algorithm 7 since the solutions vi
and ui of each step of Algorithm 9, given by (4.4), correspond exactly to
those of problem (4.7) via the relations yi = ui/‖ui‖2, yi = vi/‖vi‖2 and
di = ‖ui‖2‖vi‖2.

Below we list the sets for which the solution s∗ of (4.7) can be easily
computed.

• Set of normed nonnegative vectors: s = y+
‖y+‖2

.

• Set of normed bounded nonnegative vectors {s}: where 0 ≤ li ≤ si ≤
pi. The optimal solution of (4.7) is given by:

s = max
(

l, min
(

p,
y+

‖y+‖2

))
.

• Set of normed binary vectors {s}: where s = b
‖b‖ and b ∈ {0, 1}n. The

optimal solution of (4.7) is given by:

[s∗]it =

{
1√
k∗

if t ≤ k∗

0 otherwise
where k∗ = argmax

k

∑k
t=1 yit√

k
.

• Set of normed sparse nonnegative vectors: all normed nonnegative
vectors having at most K nonzero entries. The optimal solution for
(4.7) is given by norming the following vector p∗

[p∗]it =
{

yit if t ≤ min(p(y), K)
0 otherwise

• Set of normed fixed-sparsity nonnegative vectors: all nonnegative vec-
tors s a fixed sparsity, where

sparsity(s) =
√

n− ‖s‖1/‖s‖2√
n− 1

.

The optimal solution for (4.7) is given by using the projection
scheme in [68].
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One can also imagine other variants, for instance by combining the
above ones. Depending on how data need to be approximated, one can
create new algorithms provided it is relatively simple to solve problem
(4.7). There have been some particular ideas in the literatures such as
NMF with sparseness constraint [68], Semidiscrete Matrix Decompo-
sition [76] and Semi-Nonnegative Matrix Factorization [38] for which
variants of the above scheme can offer an alternative choice of algorithm.

Remark: Only the first two sets are the normed version of a closed
convex set, as required for the convergence by Theorem 4.5. Therefore
the algorithms might not converge to a stationary point with the other
sets. However, the algorithm always guarantees a non-increasing up-
date even in those cases and can therefore be expected to return a good
approximation.

4.5 Regularizations

The regularizations are common methods to cope with the ill-posedness
of inverse problems. Having known some additional information about
the solution, one may want to imposed a priori some constraints to
algorithms, such as: smoothness, sparsity, discreteness, etc. To add
such regularizations in to the RRI algorithms, it is possible to modify
the NMF cost function by adding some regularizing terms. We will
list here the update for ui’s and vi’s when some simple regularizations
are added to the original cost function. The proof of these updates are
straight-forward and hence omitted.

• One-Norm ‖.‖1 regularization: the one-norm of the vector variable
can be added as a heuristic for finding a sparse solution. This is
an alternative to the fixed-sparsity variant presented above. The
regularized cost function with respect to the variable vt will be

1
2
‖Rt − utvT‖2

F + β‖v‖1, β > 0

where the optimal update is given by

v∗t =
[RT

t ut − β1n×1]+
‖ut‖2

2
.
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The constant β > 0 can be varied to control the trade-off between
the approximation error 1

2‖Rt − utvT‖2
F and ‖v‖1. From this up-

date, one can see that this works by zeroing out elements of RT
t ut

which are smaller than β, hence reducing the number of nonzero
elements of v∗t .

• Smoothness regularization ‖v − Bv̂t‖2
F: where v̂t is the current

value of vt and the matrix B helps to calculate the average of the
neighboring elements at each element of v. When v is a 1D smooth
function, B can be the following n× n matrix:

B =


0 1 . . . . . . 0
1
2 0 1

2 . . . 0
...

. . . . . . . . .
...

0 . . . 1
2 0 1

2
0 . . . 0 1 0

 . (4.8)

This matrix can be defined in a different way to take the true
topology of v into account, for instance v = vec(F) where F is a
matrix. The regularized cost function with respect to the variable
vt will be

1
2
‖Rt − utvT‖2

F +
δ

2
‖v− Bv̂t‖2

F, δ > 0

where the optimal update is given by

v∗t =
[RT

t ut + δBv̂t]+
‖ut‖2

2 + δ
.

The constant δ ≥ 0 can be varied to control the trade-off between
the approximation error 1

2‖Rt − utvT‖2
F and the smoothness of vt

at the fixed point. From the update, one can see that this works by
searching for the optimal update v∗t with some preference for the
neighborhood of Bv̂i, i.e., a smoothed vector of the current value
v̂t.

The two above regularizations can be added independently to each
of the columns of U and/or V. The trade-off factor β (or δ) can be
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different for each column. A combination of different regularizations on
a column (for instance vt) can also be used to solve the multi-criterion
problem

1
2
‖Rt − utvT‖2

F +
γ

2
‖v‖2

2 +
δ

2
‖v− Bv̂t‖2

F, β, γ, δ > 0

where the optimal update is given by

v∗t =
[RT

t ut − β1n×1 + δBv̂t]+
‖ut‖2

2 + δ
.

The one-norm regularizations as well as the two-norm regularization
can be found in [2] and [12]. A major difference with that method is that
the norm constraints is added to the rows rather than on the columns
of V or U as done here. However, for the two versions of the one-norm
regularization, the effects are somehow similar. While the two-norm
regularization on the columns of U and V are simply scaling effects,
which yield nothing in the RRI algorithm. We therefore only test the
smoothness regularization at the end of the chapter with some numerical
generated data.

In Chapter 7, a regularization will be added as an attempt to find a
symmetric nonnegative approximation.

4.6 Algorithms for NMF extensions

In Section 2.4, two important extensions are introduced. In this section,
we will derive the above algorithms to those extensions.

4.6.1 Multilayer nonnegative matrix factorization

We restate the multilayer nonnegative matrix factorization

min
Xi≥0

1
2
‖A− X1X1 . . . XN‖2

F, (4.9)

where A is the nonnegative data matrix and V and Xi’s are nonnegative
matrix of compatible sizes.
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We derive here a coordinate descent algorithm based on the above
rank-one iteration. We create some intermediate matrices:

Uk = X1X2 . . . Xk and Vk = XT
NXT

N−1 . . . XT
k , with k = 1, 2, . . . , N,

and U0 = Im and VN+1 = In.
With those matrices, restricting to only one factor Xk, Problem 4.9

can be related as follows:

min
Xk≥0

1
2
‖A−Uk−1XkVT

k+1‖2
F, with k = 1, . . . , N.

The updates for X1 and XN are easy. Since the problem becomes
exactly that of the two-factor factorization, i.e.

min
X1≥0

1
2
‖A− X1VT

2 ‖2
F and min

XN≥0

1
2
‖A−UN−1XN‖2

F.

To derive updates for the elements of Xk, k = 2, . . . , (N − 1), we
transform the product Uk−1XkVT

k+1 into a vector using the operator vec()

vec(Uk−1XkVT
k+1) = (Vk+1 ⊗Uk−1)vec(Xk).

Then the optimal Xk can be found by the following nonnegative least
square

min
vec(X)≥0

1
2
‖vec(A)− (Vk+1 ⊗Uk−1)vec(X)‖2

F

to which algorithms such as [79] and [24] can be applied. One can also
derive updates for each element of Xk, as done in [44], which gives the
following closed form update

[Xk]ij = max

(
0, [Xk]ij +

[Uk−1]T
:i E[Vk+1]:j

‖[Uk−1]:i‖2
2 ‖[Vk+1]:j‖2

2

)
,

where E = A−Uk−1XkVT
k+1.

The approach proposed here is different from that in [29, 32] where a
new layer is created by factorizing the last achieved layer using a NMF
algorithm. First, a NMF factorization is created: A ≈ X1A1. Then the
newly created matrix A1 is approximated by X2A2. This is repeated to
create X3, X4, . . . until the desired number of layers is reached. Clearly,
the approximation error will be higher than our proposed method, since
the cost function is minimized by taking into account all the layers.
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4.6.2 Nonnegative tensor factorization

If we refer to the problem of finding the nearest nonnegative vector to
a given vector a as the nonnegative approximation in one dimension,
the NMF is its generalization in two dimensions and naturally, it can be
extended to even higher-order tensor approximation problems. Algo-
rithms described in the previous section use the closed form solution
of the one dimensional problem to solve the two-dimensional problem.
We now generalize this to higher orders. Since in one dimension such
an approximation is easy to construct, we continue to use this approach
to build the solutions for higher order problems.

For a low-rank tensor, there are two popular kinds of factored tensors,
namely those of Tucker and Kruskal [5]. We only give an algorithm for
finding approximations of Kruskal type. It is easy to extend this to
tensors of Tucker type, but this is omitted here.

Given a d dimensional tensor T, we will derive an algorithm for
approximating a nonnegative tensor by a rank-r nonnegative Kruskal
tensor S ∈ R

n1×n2×...×nd
+ represented as a sum of r rank-one tensors:

S =
r

∑
i=1

σiu1i ? u2i ? . . . ? udi

where σi ∈ R+ is a scaling factor, uti ∈ R
nt
+ is a normed vector (i.e.

‖uti‖2 = 1) and a ? b stands for the outer product between two vectors
or tensors a and b.

The following update rules are the generalization of the matrix case
to the higher order tensor:

y = (. . . ((. . . (Rku1k) . . . u(t−1)k)u(t+1)k) . . .)udk (4.10)

σk = ‖[y]+‖2, utk =
[y]+
σk

, (4.11)

where Rk = T−∑i 6=k σiu1i ? u2i ? . . . ? udi is the residue tensor calculated
without the kth component of S and Rkuij is the ordinary tensor/vector
product in the corresponding dimension.

We can then produce an algorithm which updates in a cyclic fashion
all vectors uji. This is in fact a direct extension to Algorithm 7, one can
carry out the same discussion about the convergence here to guarantee
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that each limit point of this algorithm is a stationary point for the non-
negative tensor factorization problem and to improve the approximation
quality.

Again, as we have seen in the previous section, we can extend the
procedure to take into account different constraints on the vectors uij
such as discreteness, sparseness, etc.

The approach proposed here is again different from that in [29, 32]
where a similar cascade procedure for multilayer nonnegative matrix
factorization is used to compute a 3D tensor approximation. Clearly, the
approximation error will be higher than our proposed method, since the
cost function is minimized by taking into account all the dimensions.

4.7 Numerical experiments

Here we present several experiments to compare the different descent
algorithms presented in this paper. For all the algorithms, the scaling
scheme proposed in section 3.4 was applied.

4.7.1 Random matrices

We generated 100 random nonnegative matrices of different sizes whose
elements are uniformly distributed. We used seven different algorithms
to approximate each matrix:

• the multiplicative rule (Mult),

• alternating least squares using Matlab function lsqnonneg (ALS),

• a full space search using line search and Armijo criterion (FLine),

• a coordinate search alternating on U and V, and using line search
and Armijo criterion (CLine),

• a full space search using first-order approximation (FFO),

• a coordinate search alternating on U and V, and using first-order
approximation (CFO)

• an iterative rank-one residue approximation (RRI).
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Table 4.1: Comparison of algorithms: Time limit is 45 seconds. The given figures
are the average successful running time over 100 random matrices. The figure
0.02 (96) means that the algorithm returns a result with the required precision ε
within 45 seconds for only 96 (of 100) test matrices of which the average running
time is 0.02 seconds. 45 ∗ (0) means that the algorithm fails in all 100 matrices.

Mult ALS FLine CLine FFO CFO RRI
(m=30, n=20, r=2)

ε=10−2 0.02 0.40 0.04 0.02 0.02 0.01 0.01

(96)

ε=10−3 0.08 1.36 0.12 0.09 0.05 0.04 0.03

(74)

ε=10−4 0.17 2.81 0.24 0.17 0.11 0.08 0.05

(71)

ε=10−5 0.36 4.10 0.31 0.25 0.15 0.11 0.07

(64)

ε=10−6 0.31 4.74 0.40 0.29 0.19 0.15 0.09

(76)

(m=100, n=50, r=5)

ε=10−2 45∗ 3.48 0.10 0.09 0.09 0.04 0.02

(0)

ε=10−3 45∗ 24.30 0.59 0.63 0.78 0.25 0.15

(0) (96)

ε=10−4 45∗ 45∗ 2.74 2.18 3.34 0.86 0.45

(0) (0)

ε=10−5 45∗ 45∗ 5.93 4.06 6.71 1.58 0.89

(0) (0)

ε=10−6 45∗ 45∗ 7.23 4.75 8.98 1.93 1.30

(0) (0)
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Table 4.1 (cont.): Comparison of algorithms

Mult ALS FLine CLine FFO CFO RRI
(m=100, n=50, r=10)

ε=10−2 45∗ 11.61 0.28 0.27 0.18 0.11 0.05

(0)

ε=10−3 45∗ 41.89 1.90 2.11 1.50 0.74 0.35

(0) (5)

ε=10−4 45∗ 45∗ 7.20 5.57 5.08 2.29 1.13

(0) (0)

ε=10−5 45∗ 45∗ 12.90 9.69 10.30 4.01 1.71

(0) (0)

ε=10−6 45∗ 45∗ 14.62 11.68 13.19 5.26 2.11

(0) (0) (99) (99)

(m=100, n=50, r=15)

ε=10−2 45∗ 25.98 0.66 0.59 0.40 0.20 0.09

(0)

ε=10−3 45∗ 45∗ 3.90 4.58 3.18 1.57 0.61

(0) (0)

ε=10−4 45∗ 45∗ 16.55 13.61 9.74 6.12 1.87

(0) (0) (98) (99)

ε=10−5 45∗ 45∗ 21.72 17.31 16.59 7.08 2.39

(0) (0) (97) (92) (98)

ε=10−6 45∗ 45∗ 25.88 19.76 19.20 10.34 3.66

(0) (0) (89) (98) (98)

(m=100, n=100, r=20)

ε=10−2 45∗ 42.51 1.16 0.80 0.89 0.55 0.17

(0) (4)

ε=10−3 45∗ 45∗ 9.19 8.58 10.51 5.45 1.41

(0) (0)

ε=10−4 45∗ 45∗ 28.59 20.63 29.89 12.59 4.02

(0) (0) (86) (94) (69)

ε=10−5 45∗ 45∗ 32.89 27.94 34.59 18.83 6.59

(0) (0) (42) (68) (34) (90)

ε=10−6 45∗ 45∗ 37.14 30.75 36.48 22.80 8.71

(0) (0) (20) (60) (8) (87)
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Table 4.1 (cont.): Comparison of algorithms

Mult ALS FLine CLine FFO CFO RRI
(m=200, n=100, r=30)

ε=10−2 45∗ 45∗ 2.56 2.20 2.68 1.31 0.44

(0) (0)

ε=10−3 45∗ 45∗ 22.60 25.03 29.67 12.94 4.12

(0) (0) (99) (98) (90)

ε=10−4 45∗ 45∗ 36.49 39.13 45∗ 33.33 14.03

(0) (0) (2) (13) (0) (45)

ε=10−5 45∗ 45∗ 45∗ 39.84 45∗ 37.60 21.96

(0) (0) (0) (2) (0) (6) (92)

ε=10−6 45∗ 45∗ 45∗ 45∗ 45∗ 45∗ 25.61

(0) (0) (0) (0) (0) (0) (87)

(m=200, n=200, r=30)

ε=10−2 45∗ 45∗ 2.42 1.74 5.22 2.02 0.65

(0) (0)

ε=10−3 45∗ 45∗ 27.64 20.08 41.48 22.25 6.17

(0) (0) (99) (15)

ε=10−4 45∗ 45∗ 45∗ 45∗ 45∗ 45∗ 25.10

(0) (0) (0) (0) (0) (0) (90)

ε=10−5 45∗ 45∗ 45∗ 45∗ 45∗ 45∗ 30.42

(0) (0) (0) (0) (0) (0) (51)

ε=10−6 45∗ 45∗ 45∗ 45∗ 45∗ 45∗ 33.85

(0) (0) (0) (0) (0) (0) (32)
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For each matrix, the same starting point is used for every algorithm.
We create a starting point by randomly generating two matrices U and
V and then rescaling them to yield a first approximation of the original
matrix A as proposed in Section 3.4:

U = UD
√

α, V = VD−1√α,

where

α :=
〈

A, UVT〉
〈UVT, UVT〉 and Dij =

{ √
‖V:i‖2
‖U:i‖2

if i = j
0 otherwise

.

The algorithms are all stopped when the projected gradient norm is
lower than ε times the gradient norm at the starting point or when it
takes more than 45 seconds. The relative precisions ε are chosen equal to
10−2, 10−3, 10−4, 10−5, 10−6, 10−6. No limit was imposed on the number
of iterations.

For alternating gradient algorithms CLine and CFO, we use different
precisions εU and εV for each of the inner iteration for U and for V as
suggested in [86] where εU and εV are initialized by 10−3. And when the
inner loop for U or V needs no iteration to reach the precision εU or εV ,
one more digit of precision will be added into εU or εV (i.e. εU = εU/10
or εV = εV/10).

Table 4.1 shows that for all sizes and ranks, Algorithm RRI is the
fastest to reach the required precision. Even though it is widely used in
practice, algorithm Mult fails to provide solutions to the NMF problem
within the allocated time. A further investigation shows that the algo-
rithm gets easily trapped in boundary points where some Uij and/or
Vij is zero while ∇Uij and/or ∇Vij is negative, hence violating one of the
KKT conditions (2.5). The multiplicative rules then fail to move and
do not return to a local minimizer. A slightly modified version of this
algorithm was given in [85], but it needs to wait to get sufficiently close
to such points before attempting an escape, and is therefore also not
efficient. The ALS algorithm can return a stationary point, but it takes
too long.

We select five methods: FLine, CLine, FFO, CFO and RRI for a
more detailed comparison. For each matrix A, we run these algorithms
with 100 different starting points. Figure 4.1, 4.2, 4.3 and 4.4 show
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the results with some different settings. One can see that, when the
approximated errors are almost the same between the algorithms, RRI
is the best overall in terms of running times. It is probably because
the RRI algorithm chooses only one vector ut or vt to optimize at once.
This allows the algorithm to move optimally down on partial direction
rather than just a small step on a more global direction. Furthermore, the
computational load for an update is very small, only one matrix-vector
multiplication is needed. All these factors make the running time of the
RRI algorithm very attractive.
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Figure 4.1: Comparison of selected algorithms: 100 runs with 100 different initial
points

4.7.2 Image data

The following experiments use the Cambridge ORL face database as the
input data. The database contains 400 images of 40 persons (10 images
per person). The size of each image is 112× 92 with 256 gray levels per
pixel representing a front view of the face of a person. The images are
then transformed into 400 “face vectors” in R10304 (112× 92 = 10304)
to form the data matrix A of size 10304× 400. We used three weight
matrices of the same size of A (ie. 10304× 400). Since it was used in [80],
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Figure 4.2: Comparison of selected algorithms: 100 runs with 100 different initial
points
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Figure 4.3: Comparison of selected algorithms: 100 runs with 100 different initial
points
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Figure 4.4: Comparison of selected algorithms: 100 runs with 100 different initial
points

this data has become the standard benchmark for NMF algorithms.
In the first experiment, we run six NMF algorithms described above

on this data for the reduced rank of 49. The original matrix A is con-
stituted by transforming each image into one of its column. Figure 4.5
shows for the six algorithms the evolution of the error versus the num-
ber of iterations. Because the minimization process is different in each
algorithm, we will say that one iteration corresponds to all elements of
both U and V being updated. Figure 4.6 shows the evolution of the error
versus time. Since the work of one iteration varies from one algorithm
to another, it is crucial to plot the error versus time to get a fair compar-
ison between the different algorithms. In the two figures, we can see
that the RRI algorithm behaves very well on this dataset. And since its
computation load of each iteration is small and constant (without inner
loop), this algorithm converges faster than the others.

In the second experiment, we construct a third-order nonnegative
tensor approximation. We first build a tensor by stacking all 400 im-
ages to have a 112× 92× 400 nonnegative tensor. Using the proposed
algorithm, a rank − 142 nonnegative tensor is calculated to approxi-
mate this tensor. Figure 4.7 shows the result for six images chosen
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Figure 4.5: NMF: Error vs. Iterations

Figure 4.6: NMF: Error vs. Time

randomly from the 400 images. Their approximations given by the rank-
142 nonnegative tensor are much better than that given by the rank-8
nonnegative matrix, even though they require similar storage space:
8 ∗ (112 ∗ 92 + 400) = 85632 and 142 ∗ (112 + 92 + 400) = 85768. The
rank-8 truncated SVD approximation (i.e. [A8]+) is also included for
reference.

In the third experiment, we apply the variants of RRI algorithm
mentioned in Section 4.4 to the face databases. The following settings
are compared:
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Figure 4.7: Tensor Factorization vs. Matrix Factorization on facial data. Six
randomly chosen images from 400 of ORL dataset. From top to bottom: original
images, their rank− 142 nonnegative tensor approximation, their rank− 8 trun-
cated SVD approximation and their rank− 8 nonnegative matrix approximation.

• Original: original faces from the databases.

• 49NMF: standard factorization (nonnegative vectors), r = 49.

• 100Binary: columns of U are limited to the scaled binary vectors,
r = 100.

• 49Sparse10: columns of U are sparse. Not more than 10% of the
elements of each column of A are positive. r = 49.

• 49Sparse20: columns of U are sparse. Not more than 20% of the
elements of each column of A are positive. r = 49.

• 49HSparse60: columns of U are sparse. The Hoyer sparsity of
each column of U are 0.6. r = 49.
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Figure 4.8: Nonnegative matrix factorization with several sparse settings
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Figure 4.9: Bases from 100Binary setting
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• 49HSparse70: columns of U are sparse. The Hoyer sparsity of
each column of U are 0.7. r = 49.

• 49HBSparse60: columns of U are sparse. The Hoyer sparsity of
each column of U are 0.6. Columns of V are scaled binary. r = 49.

• 49HBSparse70: columns of U are sparse. The Hoyer sparsity of
each column of U are 0.7. Columns of V are scaled binary. r = 49.

For each setting, we use RRI algorithm to compute the corresponding
factorization. Some randomly selected faces are reconstructed by these
settings as shown in Figure 4.8. For each setting, RRI algorithm produces
a different set of bases to approximate the original faces. When the
columns of V are constrained to scaled binary vectors (100Binary), the
factorization can be rewritten as UVT = ÛBT, where B is a binary matrix.
This implies that each image is reconstructed by just the presence or
absence of 100 bases shown in Figure 4.9.

Figure 4.10 and 4.11 show nonnegative bases obtained by imposing
some sparsity on the columns of V. The sparsity can be easily con-
trolled by the percentages of positive elements or by the Hoyer sparsity
measure.

Figure 4.12 combines the sparsity of the bases (columns of U) and
the binary representation of V. The sparsity is measured by he Hoyer
measure as in Figure 4.11. Only with the absence or presence of these 49
features, faces are approximated as shown in the last two rows of Figure
4.8.

The above examples show how to use the variants of the RRI algo-
rithm to control the sparsity of the bases. One can see that the sparser
the bases are, the less storage is needed to store the approximation.
Moreover, this provides a part-based decomposition using local features
of the faces.

4.7.3 Smooth approximation

We carry out this experiment to test the new smoothness constraint
introduced in the previous section:

1
2
‖Ri − uivT‖2

F +
δ

2
‖v− Bv̂i‖2

F, δ > 0
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(a) (b)

Figure 4.10: Sparse bases 49Sparse20 and 49Sparse10. Maximal percentage of
positive elements is 20% (a) and 10% (b)

(a) (b)

Figure 4.11: Hoyer sparse bases 49HSparse60 and 49HSparse70. Sparsity of
bases is 0.6 (a) and 0.7 (b)



4.7 NUMERICAL EXPERIMENTS 

(a) (b)

Figure 4.12: Hoyer sparse bases 49HBSparse60 and 49HBSparse70. Sparsity
of bases is 0.6 (a) and 0.7 (b). V is binary matrix.

Figure 4.13: Smooth functions



 RANK-ONE RESIDUE ITERATION

where B is defined in (4.8).
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Figure 4.14: Randomly selected generated data

We generate the data using four smooth nonnegative functions f1,
f2, f3 et f4, described in Figure 4.13, where each function is represented
as a nonnegative vector of size 200.

We then generate a matrix A containing 100 mixture of these func-
tions as follows

A = max(FET + N, 0)

where F = [ f1 f2 f3 f4], E is a random nonnegative matrix and N is
normally distributed random noise with ‖N‖F = 0.2‖FET‖F. Four
randomly selected columns of A are plotted in Figure 4.14.

We run the regularized RRI algorithm to force the smoothness of
columns of U. We apply, for each run, the same value of δ for all the
columns of U: δ = 0, 10, 100. The results obtained through these runs are
presented in Figure 4.15. We see that, without regularization, i.e. δ = 0,
the noise is present in the approximation, which produces nonsmooth
solutions. When increasing the regularizing terms, i.e. δ = 10, 100, the
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Figure 4.15: Original functions vs. reconstructed functions

reconstructed functions become smoother and the shape of the original
functions are well preserved.

This smoothing technique can be used for applications like that
in [99], where smooth spectral reflectance data from space objects is
unmixed. The multiplicative rules are modified by adding the two-
norm regularizations on the factor U and V to enforce the smoothness.
This is a different approach, therefore, a comparison should be carried
out.

We have described a new method for nonnegative matrix factoriza-
tion that has a good and fast convergence. Moreover, it is also very
flexible to create variants and to add some constraints as well. The
numerical experiments show that this method and its derived variants
behave very well with different types of data. This gives enough moti-
vations to extend to other types of data and applications in the future.
In the last two chapters of this thesis, it is applied to weighted cost
functions and to symmetric factorizations.
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5

NONNEGATIVE MATRIX
FACTORIZATION WITH FIXED ROW

AND COLUMN SUMS

An important class of nonnegative matrices are stochastic matrices.
Typical applications of this are PageRank [23] used for ordering the web
pages, Markov Clustering [117] used for clustering vertices in a graph
and Hidden Markov Models [100] used for learning and predicting
sequential data. The number of such applications is growing, but the
size of the underlying problems is growing as well. The size of the
stochastic matrices representing Markov chains related to the web is e.g.
of the order of billions. In order to cope with such large-scale stochastic
matrices, one could use NMF to approximate a large stochastic matrix
by a lower-rank one.

We will begin with the introduction of the problem. We will show
that the constraint under which the row and column sums are preserved
is automatically satisfied by using the generalized Kullback-Leibler di-
vergence as the cost function for the NMF problem. In [42], a discussion
is made leading to the preservation of the matrix sum when using the
generalized Kullback-Leibler divergence in the NMF. But this is just a
straightforward result from the preservation of row and column sums,
which will be pointed out.
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5.1 Problem statement

The general NMF problem with preserved column and row sums is
described as follows:

Problem 5.1 (NMF with preserved column and row sums). Given a
m× n nonnegative matrix A, solve

min
U∈Rm×r

+ V∈Rn×r

UVT1n×1=A1n×1
VUT1m×1=AT1m×1

F(A, UVT)

where F(A, UVT) is the chosen “distance” function.

The additional constraints are linear in each factor U or V (not on
both). In fact, fixing for example U, they are linear on V. To see that they
are not convex on both U and V, taking two feasible points, i.e. (U1, V1)
and (U2, V2), their convex combinations α(U1, V1) + (1 − α)(U2, V2),
with α ∈ (0, 1) are, in general, not in the feasible set. When F is the
Euclidean distance, one can use alternating minimizations to solve this
problem, since the problem is convex in each of the factors U and V.

If we partition the variables as suggested in Chapter 4 and fix all
the variables ui’s and vi’s except for one vk, then the feasible set of vk
contains at most one element and could be empty. This means that we
can not modify one variable without modifying the others while staying
in the feasible set. In fact, the set of m× n rank-one nonnegative matrix
with predefined nonnegative row and column sums is very simple. Let
r and c be the vector of row sums and column sums respectively and
uvT is a candidate rank-one matrix. From the sum constraints we have:

uvT1n×1 = u‖v‖1 = r

and
vuT1m×1 = v‖u‖1 = c,

or u and v are parallel to r and c. Moreover,

(1T
n×1uvT1n×1) = ‖u‖1‖v‖1 = rT1n×1 = 1T

n×1c
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we have uvT = rcT

‖c‖1
. This implies that the rank-one solution to Problem

5.1 is independent of the choice of cost measure and is always

(u, v) =
1
‖c‖1

(αr,
1
α

c) with α > 0.

For higher ranks, one could eliminate these sum constraints by
rewriting a chosen variable pair (uk, vk) as a function of other vari-
ables. But this makes the cost function really complicated to analyze. In
this case, one might better use a generic optimization tool.

In the context of nonnegative matrix with predefined row and col-
umn sums, the Sinkhorn algorithm [107] is well-known for the diagonal
scaling problem: given a nonnegative square matrix A and two nonneg-
ative vectors r and c (∑i ri = ∑i ci), finding two positive diagonal matrix
D1 and D2 with appropriate size such that the scaled matrix B = D1AD2
satisfies B1 = r and BT1 = c. This means that the scaled matrix has c
and r as the vectors of column sums and row sums, respectively. The
process is very simple and consists of alternatively scaling the rows and
columns of A. A necessary and sufficient condition for the convergence
was also given by the author.

When the Sinkhorn algorithm converges, it produces a matrix B with
the predefined row sums r and column sums c. It was shown in [71]
that, among matrices with the predefined row sums r and column sums
c, B is the closest to A with respect to the generalized Kullback-Leibler
divergence:

D(B‖A) = ∑
ij

[
Bij log

Bij

Aij
− Bij + Aij

]
, (5.1)

where by convention, we put 0
0 = 0 and 0log0 = 0. Moreover, given a

matrix A and vectors r and c, B is unique.
The Kullback-Leibler divergence [78] is well-known in probability

theory and information theory. It is also known as information divergence,
information gain or relative entropy, that measures the difference between
two probability distributions. Its generalized version above measures
the difference between two nonnegative vectors, which is an instance
of the Bregman divergences, see for example [91]. These divergences
are similar to a distance but do not satisfy the triangle inequality nor
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symmetry, except for Euclidean Distance, an important element of the
class.

We will show that, when using this measure to approximate a non-
negative matrix, the row and column sums of the input matrix will be
retained in the low-rank approximation. Note that the use of the general-
ized Kullback-Leibler divergence in the diagonal scaling problem above
and the problem in the next section are different. For the earlier, the in-
put matrix is the second parameter of the divergence, i.e. D(.‖A). While
it is the second parameter, i.e. D(A‖.), in the nonnegative matrix factor-
ization with the generalized Kullback-Leibler divergence, described in
this chapter.

5.2 Generalized KL divergence in NMF

In this section, we focus on the use of the generalized Kullback-Leibler
(KL) divergence in the problem of nonnegative matrix factorization. We
will show that when using the generalized KL divergence as the cost
function for NMF, row sums and column sums of the original matrix are
preserved in the approximation. We will use this special characteristic
in several approximation problems.

It is known that the generalized Kullback-Leibler divergence (5.1)
is always nonnegative and zero if and only if B = A, [91]. It is not
symmetric, i.e. D(A‖B) 6= D(B‖A) and does not satisfy the triangle
equation. Figures 5.1 and 5.2 show the level sets of two measures
D(x‖(2, 5)) and D((2, 5)‖x).

5.2.1 Row and column sums preserving approximation

The choice of cost function F of course affects the solution of the mini-
mization problem. The nonnegative matrix factorization problem with
the generalized Kullback-Leibler divergence as the new cost function is

min
U+∈Rm×r V+∈Rn×r

D(A‖UVT) (5.2)
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Figure 5.2: D(x|y) where y =
(2, 5)

where A ≥ 0 and r is the reduced inner rank. For this divergence,the
gradients are easy to construct (see [80, 81]) :

∇Uij D(A‖UVT) = −∑
k

Aik

[UVT]ik
Vkj −Vkj, (5.3)

∇Vij D(A‖UVT) = −∑
k

Aki

[UVT]ki
Ukj −Ukj. (5.4)

The Karush-Kuhn-Tucker (KKT) optimality conditions (see Section
1.2.3) can be established for Problem (5.2):

U ≥ 0 , V ≥ 0, (5.5)
∇U D(A‖UVT) ≥ 0 , ∇V D(A‖UVT) ≥ 0, (5.6)

U ◦ ∇U D(A‖UVT) = 0 , V ◦ ∇V D(A‖UVT) = 0. (5.7)

Remark: Although by using two conventions 0
0 = 0 and 0log0 = 0,

the generalized KL divergence (5.1) and its gradients (5.3) (5.4) are
extended continuously to points where Aij = 0 for some (i, j), these
functions are still not defined when Aij > 0 and [UVT]ij = 0. However,
even when UVT > 0 at a stationary point, Uij and Vij do not have to be
restricted to only strictly positive values. This implies that nonnegativity
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constraints on Uij and Vij can be active and the above KKT conditions
are still available.

It is important to note that the cost function D(A|UVT) is convex
in each of the factors U and V, but it is not convex in the two factors
at the same time, hence the problem can have many local minima. A
simple iteration proposed by Lee and Seung [80] is similar to that for
the Euclidean distance:

V ← [V]
[1m×nU]

◦
( [

AT]
[VUT]

U

)
, U ← [U]

[1n×mV]
◦
(

[A]
[UVT]

V

)
. (5.8)

The convergence of these update rules are investigated in [42] and
[85]. In the next section, we will investigate the row sums and the
column sums of the stationary points.

5.2.2 Stationary points

In this section, we use the optimality conditions (5.5) and (5.7) to show a
particular property of the stationary points of NMF using the general-
ized KL divergence.

Theorem 5.2. Let Am×n a non-negative matrix. Then every stationary point
(U, V) of the cost function in (5.2) preserves the column sums of A (11×m A =
11×m(UVT)), the row sums of A (A1n×1 = (UVT)1n×1) and the matrix sum
of A (11×m A1n×1 = 11×m(UVT)1n×1).

Proof. At a stationary point, from (5.7), the matrix V must satisfy the
following optimality condition

Vij ∑
k

Aki

[UVT]ki
Ukj = Vij ∑

k
Ukj , ∀i, j.

Calculating the sum over j of the left-hand side matrix gives:

∑
j

Vij ∑
k

Aki

[UVT]ki
Ukj = ∑

k
(∑

j
VijUkj)

Aki

[UVT]ki
= ∑

k
Aki,

and the sum over j of the right-hand side matrix gives:

∑
j

Vij ∑
k

Ukj = ∑
k

∑
j

VijUkj = ∑
k

[UVT]ki.
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This implies that ∑k Aki = ∑k [UVT]ki or 11×m A = 11×m(UVT). For the
row sums, one can easily prove the equality by the same development
using the optimality condition of V. The matrix sum is preserved as a
consequence of the preservation of column sums or row sums.

Using the above theorem, one obtains the following standard form for
every stationary point of the KL divergence iteration.

Corollary 5.3. Let Am×n be a non-negative matrix. Every stationary point
(Um×r, Vn×r) of the KL minimization problem has the form

UVT = Pm×rDr×rQT
n×r,

where P, Q are column stochastic, D is diagonal non-negative, and ∑i Dii =
∑ij Aij. Furthermore, if A is column stochastic (or row stochastic) then the
matrix DQT (or PD) are also column stochastic (or row stochastic).

Proof. Define the normalization factors DU and DV as the column sums
of U and V respectively. Then there exist column stochastic matrices P
and Q such that PDU = U, QDV = V. These matrices are obtained by
dividing the respective columns by their non-zero column sums, and by
choosing an arbitrary stochastic column in P or Q if the corresponding
column sum in U or V was zero. Define D = DU DV , then ∑i Dii =
∑ij Aij follows since P and Q are column stochastic. Moreover, PDQT is
easily shown to preserve the matrix sum of A.

It is straightforward then that the column sums of DQT and row
sums of PD are those of A, which also proves the last assertion for
stochastic matrices.

Furthermore, if there exists a zero column in U (or V), one can
remove that zero column in U (or V) and the corresponding column in
V (or U) without changing the product UVT. This amounts to saying
that one can also obtain a reduced rank factorization of the same type, in
which the diagonal elements of D are restricted to be all strictly positive.
By writing the stationary point in this form, one can compare this with
the Singular Value Decomposition (SVD) of a matrix A = UΣVT where
the orthogonal matrices U and V are replaced by column stochastic
matrices P and Q.
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In particular, if the reduced rank k is 1, it follows from Theorem 5.2
that we can have a unique global minimizer:

Â = σuvt (5.9)

where σ = ∑i,j Aij, uj = ∑j Aij/σ and vi = ∑i Aij/σ. And if the rank k is
equal to min(m, n) we have a trivial solution which is (U = A, V = In)
or (U = Im, V = AT).

If we consider Problem (5.2) for a non-negative matrix with unit
element sum (i.e. ∑i,j Aij = 1) then the stationary points are in fact solu-
tions of the Probabilistic Latent Semantic Analysis (pLSA) [65] which is
used in document classification. The link between pLSA and Problem
(5.2) was first pointed out in [64]. The pLSA problem is then to find
a low-rank joint-probability matrix that approximates a full rank or
higher rank joint-probability matrix A/(∑i,j Aij) using the generalized
Kullback-Leibler divergence.

5.2.3 Initialization and normalization

We can prove that the scaling α that minimizes D(a, αb), where a, b
are 2 positive vectors, is ‖a‖1/‖b‖1 or, equivalently, when ‖αb‖1 =
‖a‖1. This implies that all the normalizations that make the row sums
and/or the column sums of the approximation equal to those of the
target matrix improve the approximation. When an approximation
has the row and column sums of the target matrix, it is called sum
compatible. Furthermore, the column and row sums of the input matrix
are preserved at the stationary points as shown in the previous section.
Therefore, it would be natural to start any algorithm with an initial sum
compatible approximation. One could randomly choose two matrices U0
and V0, then apply the Sinkhorn or faster algorithms, for example in [75],
to prescale the product U0VT

0 to be sum compatible. Additional scaling
could be also carried out after each update of variables. This seems to
improve the convergence rate, if we ignore the computation load for the
scaling, but that may be very expensive. An affordable alternative is to
perform one scaling step after each main iteration. Indeed, this is what
the multiplicative update rules (5.8) do.

We will show that each update rule for U or V (5.8) scales automati-
cally the row sums or column sums of the new approximation to those
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of the target matrix.

Lemma 5.4. The update rule

V̄ ← [V]
[1m×nU]

◦
( [

AT]
[VUT]

U

)

scales the column sums of UV̄T to the column sums of A.

Proof. We rewrite the update as

V̄ ◦ 1m×nU ← V ◦
( [

AT]
[VUT]

U

)
or

V̄ij ∑
k

Ukj ← Vij ∑
k

AT
ik

[VUT]ik
Ukj.

Summing over j from the two sides

∑
j

V̄ij ∑ kUkj ←∑
j

Vij ∑
k

AT
ik

[VUT]ik
Ukj

and rearranging the summations

∑
k

∑
j

V̄ijUkj ←∑
j

∑
k

VijUkj
AT

ik
[VUT]ik

gives

∑
k

[V̄UT]ik ←∑
k

[VUT]ik
AT

ik
[VUT]ik

= ∑
k

AT
ik.

A similar lemma for the update of U shows that the updated ap-
proximation ŪVT has the row sums of A. Alternatively iterating the
update of U and V, the procedure somehow does Sinkhorn scalings
while minimizing the generalized Kullback-Leibler divergence. Another
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Figure 5.3: Multiplicative updates: Error of row sums ‖A1n×1 −UVT1n×1‖ vs.
Error of column sums ‖AT1m×1 −VUT1m×1‖.
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Figure 5.4: Multiplicative updates. (a): approximation error and (b): maximum
between error of row sums and error of column sums at each iterations.

consequence is that, in fact, the generalized Kullback-Leibler divergence
can be reduced to

∑
ij

Aij log
Aij

[UVT]ij

since after each update from (5.8) ∑ij Aij = ∑ij [UVT]ij. The results of
above lemma is illustrated in Figure Figure 5.3 and Figure 5.4, where
a random matrix is approximated using the multiplicative updates.
Figure 5.3 shows the evolution of the error of row sums ‖A1n×1 −
UVT1n×1‖ and column sums ‖AT1m×1 −VUT1m×1‖. Since the updates
alternatively minimize one of the error (row sums or column sums), the
other error (column sums or row sums) will be higher. The maximum
between them at each iteration is shown in Figure 5.4b. We see that as
the algorithm converges (see Figure 5.4a), the sums also converge.
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5.3 Application: stochastic matrix approximation

If the input matrix A is stochastic, the stochastic matrix UVT that min-
imizes the generalized KL divergence is called a low-rank stochastic
approximation of A. Theorem 5.2 shows that if the input matrix A is
column stochastic (or row stochastic or doubly stochastic), the stationary
points UVT are actually column stochastic (or row stochastic or doubly
stochastic). In other words, the stochasticity of the original matrix is
naturally preserved in the approximation.

Using the iterative algorithm in [81], one can numerically obtain
a solution for the stochastic matrix approximation problem. Here are
some examples of stationary points that are candidates for a solution:

• column stochastic matrix

A =

 1
2 0 1

2
1
2 0 0
0 1 1

2

 ≈ PDQT =

 0 2
3

0 1
3

1 0

 [ 3
2 0
0 3

2

] [
0 2

3
1
3

2
3 0 1

3

]
,

(5.10)

• row stochastic matrix

A =

 1
2 0 1

2
0 1

2
1
2

2
3

1
3 0

 ≈ PDQT (5.11)

=

 0 3
5

3
4 0
1
4

2
5

 [ 4
3 0
0 5

3

] [
0 5

8
3
8

7
10 0 3

10

]
,

• and doubly stochastic

A =

 3
8

1
4

3
8

1
4

1
2

1
4

3
8

1
4

3
8

 = PDQT = PDPT (5.12)

=

 1
2

1
4

0 1
2

1
2

1
4

 [ 1 0
0 2

] [ 1
2 0 1

2
1
4

1
2

1
4

]
.
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In the above examples, the approximations are written in the form
presented in Corollary 5.3. Especially, in the third example of a doubly
stochastic matrix, we have an exact and symmetric factorization of
the form PDPT. In general, it is not easy to find such a symmetric
approximation.

Furthermore, instead of considering the ordinary sum of a vector,
we can consider the weighted sum of a vector x, defined as

sw(x) = ∑
i

wixi = xTw (5.13)

where w is a positive weight vector. One can find an approximation that
preserves the weighted column sums and row sums of the original ma-
trix. In fact, suppose wr and wc are weight vectors with respect to which
we want to find a low rank approximation ŨṼT of A that preserves the
weighted row sums and the weighted column sums respectively, i.e.

ŨṼTwr = Awr wT
c ŨṼT = wT

c A, (5.14)

we can use the following procedure

1. Create Â = Dwr ADwc ,

2. find a low rank non-negative approximation UVT of Â by using
NMF algorithm for generalized KL divergence,

3. and create the desired approximation ŨṼT where Ũ = D−1
wc

U and
Ṽ = D−1

wr
V.

Applying Theorem 5.2, one can easily check that (5.14) does hold for
the newly created matrix ŨṼT.

The preservation of weighted column sums and row sums implies
that we can use the same procedure to construct a low rank non-negative
approximation that preserve the left and right principal eigenvectors of
a square non-negative matrix. The technique is then simply to use the
left and right principal eigenvectors of the original matrix as the weight
vectors described above to construct the desired approximation.
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WEIGHTS IN NONNEGATIVE MATRIX
FACTORIZATION

A data matrix often comes from a data acquisition process. These pro-
cesses are sometimes susceptible to the loss of precision or even to the
absence of some data. Therefore, when approximating such a matrix,
more reliable elements should receive more attention. The reliability can
be simply a 0/1 representing the absence/presence of the data. But it is
usually coded as a nonnegative number called the weight. The bigger
the weight is, the more important the element is.

In this chapter, we will investigate the problem of Weighted Nonnega-
tive Matrix Factorization (WNMF) which minimize the Weighted Euclidean
Distance:

1
2
‖A−UVT‖2

W :=
1
2 ∑

ij
[W ◦ (A−UVT) ◦ (A−UVT)]ij (6.1)

where W = {Wij} ≥ 0 is a nonnegative weight matrix. Clearly, we can
consider the unweighted version as a particular case of the weighted
one where all the elements of the weight matrix are equal to 1.

While extending the Euclidean Distance to the weighted case is
rather straightforward, the weighted approximation problem is much
more difficult. Even when the nonnegativity constraints are omitted,
an analytical solution no longer exists, except when the all-one weight
matrix is used. Numerical algorithms usually produce local minima
[111].

The problem of Weighted Nonnegative Matrix Factorization was first
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stated in [96] for the Weighted Euclidean Distance (6.1). Recently [53], a
particular type of weighting was proposed for the generalized Kullback-
Leibler divergence as a cost function, in order to vary the importance of
each column of the matrix A in the approximation UVD ≈ AD, where
D is a nonnegative diagonal scaling matrix. One can easily see that this
nonnegative weight matrix is equivalent to a rank-one weighting matrix
W in our weighted formulation.

An approach that allows to use weight matrices in a more general
context is given in [111], where an Expectation-Maximization algorithm
is used in an iterative scheme that produces an unweighted low-rank
approximation of a weighted combination of a previously computed
approximation :

(Uk+1, Vk+1) = LowRank(W ◦ A + (1−W) ◦ (UkVk)). (6.2)

Here there are no constraints of non-negativity, but the same idea can
also be used to incorporate weights in an algorithm for nonnegative
matrix factorizations. This implies that one has to solve an unweighted
low-rank nonnegative approximation at each step of the iteration, and
this can become quite inefficient in terms of complexity.

The chapter begins with the gradient information of the weight Eu-
clidean distance that every standard gradient method can use. Then we
will extend two particular methods: the multiplicative rules and Rank-
one Residue Iteration to take into account the weight matrix. This is
followed by a discussion about an interesting link between the weighted
Euclidean distance and the weighted generalized Kullback-Leibler di-
vergence in which the weighted multiplicative rules for the latter are
also derived. We will see next how the weight matrix can also be added
into some existing NMF variants such as: Nonnegative Tensor Factor-
ization, Nonnegative Matrix Factorization with Sparseness constraint,
etc. The chapter will end with some numerical experiment on the image
data of human faces where weights are used to emphasize meaningful
features. Let us start with the gradient information.

6.1 Gradient information

We restate here the problem of Weighted Nonnegative Matrix Factoriza-
tion:
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Problem 6.1 (WNMF).

min
U∈Rm×r

+ V∈Rn×r
+

1
2
‖A−UVT‖2

W .

The gradient of the weighted cost function can be easily calculated:

∇U
1
2
‖A−UVT‖2

W =
(

W ◦ (UVT − A)
)

V

∇V
1
2
‖A−UVT‖2

W =
(

WT ◦ (VUT − AT)
)

U

and the KKT optimality conditions can also be derived:

U ≥ 0 , V ≥ 0, (6.3)
∇U ≥ 0 , ∇V ≥ 0, (6.4)

U ◦ ∇U = 0 , V ◦ ∇V = 0. (6.5)

Using this gradient information, one can apply the gradient based
methods presented in Chapter 3: the projected gradient with line search
and the projected first-order approximation to solve Problem 6.1. Fur-
thermore, in the following sections, weights will be also added in the
multiplicative rules and the rank-one residue approximation scheme, as
we will see in the next two sections.

6.2 Methods

We choose to extend two methods: the multiplicative rules and the rank-
one residue iteration to the weighted case because the former will help
us to discover an surprising link, as we will see, and the latter is a very
flexible, which can be extended to many problems. Furthermore, the
rank-one residue iteration outperforms the other ones in the numerical
experiments carried out in Chapter 4. We begin with the already popular
one, the multiplicative rules.

6.2.1 Weighted multiplicative updates

The multiplicative updates [80] are simple algorithms for NMF problem.
Although there convergence are not fully understood, they still can be
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generalized to the weighted case. We first need the following simple
lemma:

Lemma 6.2. Let A be a symmetric nonnegative matrix and v be a positive

vector, then the matrix Â = diag
( [Av]

[v]

)
− A is positive semi-definite.

Proof. It is easy to see that diag
( [Av]

[v]

)
= D−1

v DAv. The scaled version

Âs := Dv ÂDv of Â satisfies Âs = DAvDv − Dv ADv and is a diagonally
dominant matrix since Âs1m = (Av) ◦ v − v ◦ (Av) = 0 and its off-
diagonal elements are negative. Therefore, the matrix Âs is positive
semi-definite, and so is Â.

The following theorem gives the multiplicative update rules for the
Problem 6.1.

Theorem 6.3. The weighted Euclidean distance 1
2‖A−UVT‖2

W is non-increa-
sing under the updating rules:

V ← V ◦ [(W ◦ A)TU]
[(W ◦ (UVT))TU]

, U ← U ◦ [(W ◦ A)V]
[(W ◦ (UVT))V]

. (6.6)

The weighted Euclidean distance 1
2‖A−UVT‖2

W is invariant iff the conditions
(6.3) and (6.5) hold.

Proof. We only treat the updating rule for V since that of U can be proved
in a similar fashion. First, we point out that the cost F(A, UVT) splits in
n independent problems related to each column of the error matrix. We
can therefore consider the partial cost function for a single column of A
and W, which we denote by a and w, respectively:

F(v) = Fw(a, Uv) =
1
2 ∑

i
(wi(ai − [Uv]i)2) (6.7)

=
1
2
(a−Uv)TDw(a−Uv) (6.8)

where Dw = diag(w) and v is the transpose of the corresponding row
of V. Let vk be the current approximation of the minimizer of F(v) then
one can rewrite F(v) as the following quadratic form:

F(v) = F(vk) + (v− vk)T∇vF(vk) +
1
2
(v− vk)TUTDwU(v− vk) (6.9)
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where ∇vF(vk) is explicitly given by

∇vF(vk) = −UTDw(a−Uvk). (6.10)

Next, we approximate F(v) by a simpler quadratic model:

G(v, vk) = F(vk) + (v− vk)T∇vF(vk) +
1
2
(v− vk)TD(vk)(v− vk)

(6.11)
where G(vk, vk) = F(vk) and D(vk) is a diagonal matrix chosen to make
D(vk)−UTDwU positive semi-definite implying that G(v, vk)− F(v) ≥
0, ∀v. The choice for D(vk) is similar to that proposed by Lee and Seung:

D(vk) = diag

(
[UTDwUvk]

[vk]

)
. (6.12)

Lemma 6.2 assures the positive semi-definiteness of D(vk)−UTDwU.
As a result, we have

F(vk) = G(vk, vk) ≥ min
v

G(v, vk) = G(vk+1, vk) ≥ F(vk+1) (6.13)

where vk+1 is found by solving ∂G(v,vk)
∂v = 0 :

vk+1 = vk − D(vk)−1∇F(vk) (6.14)

= vk + diag

(
[vk]

[UTDwUvk]

)
UTDw(a−Uvk) (6.15)

= vk + vk ◦
[
UTDw(a−Uvk)

]
[UTDwUvk]

(6.16)

= vk ◦
[
UTDwa

]
[UTDwUvk]

(6.17)

= vk ◦
[
UT(w ◦ a)

]
[UT(w ◦ (Uvk))]

. (6.18)

Transposing the two sides of this gives the update rule for each row
of V.

(vk+1)T = (vk)T ◦
[
(w ◦ a)TU

]
[(w ◦ (Uvk))TU]

.
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Putting together the updating rules for all the rows of V yields
the desired result for the whole matrix V in (6.6). The relation (6.13)
shows that the weighted Euclidean distance is non-increasing under
the updating rule for V, and (6.14) show that vk+1 = vk if and only
if vk ◦ ∇F(vk) = 0. Finally, the non-negativity of vk is automatically
satisfied.

Similar to the original version of the multiplicative update rules,
the above update rules suffer the same problem when approaching the
boundary of the nonnegative orthant. When using this, one should start
the iteration from the interior of the nonnegative orthant and be cautious
when zeros appear in U and V.

6.2.2 Weighted Rank-one Residue Iteration

In Chapter 4, employing the rank partition of the NMF problem offers
a simple coordinate descent algorithm for the NMF problem. Here,
we will modify that algorithm to incorporate the weight matrix in the
cost function. The Weighted Nonnegative Matrix Factorization can be
restated as below:

Problem 6.4 (WNMF).

min
ui≥0 vi≥0

1
2
‖A−

r

∑
i=1

uivT
i ‖2

W

where W is a nonnegative weight matrix.

To construct the update for vt, t = 1, 2, . . . , r, we fix all variables
except vt. Again, we create the residue matrix:

Rt = A−∑
i 6=t

uivT
i

to restrict Problem 6.4 only to the variable ut

min
v≥0

1
2
‖Rt − utvT‖2

W . (6.19)
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We have

‖Rt − utvT‖2
W = ∑

ij
Wij([Rt]ij − [ut]ivj)2

= ∑
ij

Wij

(
[Rt]2ij − 2[Rt]ij[ut]ivj + ([ut]ivj)2

)
= ‖Rt‖2

W − 2 ∑
j

vj

(
∑

i
Wij[Rt]ij[ut]i

)

+ ∑
j

v2
j

(
∑

i
Wiju2

i

)
= ‖Rt‖2

W − 2vT(W ◦ Rt)Tut + (v ◦ v)TWT(ut ◦ ut).

From this formulation, one now can derive the following similar
lemma to the one in Chapter 4.

Lemma 6.5. If [(W ◦ Rt)Tut]+ 6= 0 and WT(ut ◦ ut) > 0, then

v∗ :=
[(W ◦ Rt)Tut]+

WT(ut ◦ ut)

is the unique global minimizer of (6.19) and the value of the cost function equals

1
2
‖Rt−utv∗T‖2

W =
1
2

‖Rt‖2
W −

(
[(W ◦ Rt)Tut]+

WT(ut ◦ ut)

)T

[(W ◦ Rt)Tut]+

 .

Proof. Let us permute the elements of the vectors x := (W ◦ Rt)Tut,
y := WT(ut ◦ ut) and v such that

Px =
(

x1
x2

)
, Py =

(
y1
y2

)
and Pv =

(
v1
v2

)
with x1 ≥ 0, x2 < 0 and P is the permutation matrix. Then

‖Rt − utvT‖2
W = ‖Rt‖2

W − 2vT
1 x1 − 2vT

2 x2 + (vT
1 Dy1 v1 + vT

2 Dy2 v2).

Since x2 < 0, v2 ≥ 0 and y > 0, it is obvious that ‖Rt − utvT‖2
F can only

be minimal if v2 = 0. Our assumption implies that x+ is nonempty and



 WEIGHTS IN NONNEGATIVE MATRIX FACTORIZATION

x1 ≥ 0. One can then find the optimal v1 by minimizing the remaining
quadratic function

‖Rt‖2
F − 2vT

1 x1 + vT
1 Dy1 v1

which yields the solution v1 = [x1]
[y1]

. Putting the two components together

yields the result

v∗ =
[x+]
[y]

and ‖Rt − utvT
∗ ‖2

W = ‖Rt‖2
W −

(
[x+]
[y]

)T

x+.

Remark 1: The above lemma has of course a dual form, where one
fixes vt but solves for the optimal u to minimize ‖Rt − uvT

t ‖2
W . These

lemmas would yield the updating rules

vt ←
[(W ◦ Rt)Tut]+

WT(ut ◦ ut)
and ut ←

[(W ◦ Rt)vt]+
W(vt ◦ vt)

(6.20)

which can be used to recursively update approximations ∑r
i=1 uivT

i by
modifying each rank-one matrix utvT

t in a cyclic manner. We call this
method the Weighted Rank-one Residue Iteration (WRRI), which is shown
in Algorithm 10.

Remark 2: In the case where [(W ◦ Rt)Tut]+ = 0, we have a trivial
solution for v = 0 that is not covered by Lemma 6.5. This solution is
unique only when ut 6= 0. This will result in a rank-deficient approxima-
tion. To avoid that, one can replace utvT

t by any rank-one approximation
that reduces the ‖.‖W norm of the error matrix, such as

u∗ = [(Rt ◦W)i∗ :]+ v∗ = ei∗

where i∗ = argmaxi ‖[(Rt ◦W)i:]+‖.
Remark 3: If [WT(ut ◦ ut)]i = 0 for some i and because W ≥ 0 and

ut ≥ 0, one can conclude that [(W ◦ Rt)Tut]i = 0. This means that the
cost function is unchanged irrespective of the value of v∗i . We can simply
set those elements of v∗ to zero to minimize ‖v∗‖2.
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Algorithm 10 (WRRI)

1: Initialize ui’s, vi’s, for i = 1 to r
2: repeat
3: for i = 1 to r do
4: Ri = A−∑j 6=i ujvT

j
5:
6: for j = 1 to n do
7: if [WT(ui ◦ ui)]j > 0 then

8: [vi]j ←
([(W◦Ri)Tui ]+)j

[WT(ui◦ui)]j

9: else
10: [vi]j ← 0
11: end if
12: end for
13:
14: for j = 1 to m do
15: if [W(vi ◦ vi)]j > 0 then

16: [ui]j ←
([(W◦Ri)vi ]+)j

[W(vi◦vi)]j

17: else
18: [ui]j ← 0
19: end if
20: end for
21: end for
22: until Stopping condition

In practice, an extra normalization step can be applied as in Algo-
rithm 9 to avoid some numerically unstable situations. In out experi-
ments, the WRRI method outlined in Algorithm 10 always converges.
But the convergence proof is not trivial due to the uniqueness problems
described in Remarks 2 and 3. We reuse the damping technique, first
used in Chapter 4, to yield a damped WRRI method which is shown in
Algorithm 11.

The following result guarantees the convergence to a stationary point
of Algorithm 11.

Theorem 6.6. Every limit point of Algorithm 11 is a stationary point of
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Algorithm 11 (Damped WRRI)

1: Initialize ui’s, vi’s, for i = 1 to r
2: repeat
3: for i = 1 to r do
4: Ri = A−∑j 6=i ujvT

j

5: vi ←
[(W◦Ri)Tui + ψvi ]+
WT(ui◦ui) + ψ1m×1

6: ui ←
[(W◦Ri)vi + ψui ]+
W(vi◦vi) + ψ1n×1

7: end for
8: until Stopping condition

Problem 6.4.

Proof. Reusing the argument in Theorem 4.7 from Chapter 4 yields the
desired result.

In Algorithm 11, when a zero component appears, one could replace
utvT

t by any rank-one approximation that reduces the weighted norm of
the error matrix. Patches described above should be applied only in a
finite number of times to guarantee the convergence of the algorithm.

Having a sound convergence property is a major advantage of the
damped WRRI method over the weighted multiplicative rules presented
in the preceding section. But by studying these multiplicative rules, we
will show an interesting link between the two different measures, as
presented in the next section.

6.3 Toward the weighted KL divergence

In the previous chapter, when talking about the problem of Nonnegative
Matrix Factorization with fixed column and row sums, the generalized
Kullback-Leibler divergence was introduced. Looking at one of the KKT
optimality conditions for the two measures: the weighted Euclidean
distance

V ◦ ((W1 ◦ (UVT − A))TU) = 0 (6.21)
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and the weighted KL divergence

V ◦ ((W2 ◦ (1m×n −
[A]

[UVT]
))TU) = 0, (6.22)

it is easy to see that if W1 = [W2]
[UVT ]

, these two conditions are identical,

where an additional assumption UVT > 0 has to be inserted. This means
that, any stationary point given by an algorithm for weighted Euclidean
distance is a stationary point of a corresponding weighted generalized
KL divergence. This can also be seen when extending the multiplicative
updating rules [80] for the generalized KL divergence to the weighted
case. For the sake of completeness, we will include following theorem
introducing the multiplicative rules for the weighted generalized KL
divergence.

Theorem 6.7. The weighted divergence DW(A‖UV) is non-increasing under
the updating rules :

V ← [V]
[WTU]

◦
([

WT ◦ AT]
[VUT]

U

)
, U ← [U]

[WV]
◦
(

[W ◦ A]
[UVT]

V

)
.

(6.23)
The weighted divergence DW(A‖UV) is invariant under these updates iff the
conditions (5.5) and (5.7) hold.

Proof. Again, we prove the theorem only for V and we also split the
divergence into partial divergences corresponding to one column of W
and A, denoted by w and a.

F(v) = Dw(a‖Uv) (6.24)

= ∑
i

wi

(
ai log ai − ai + ∑

j
Uijvj − ai log ∑

j
Uijvj

)
,

where v is the transpose of the corresponding row of V. This partial
divergence is approximated by the following auxiliary function:

G(v, vk) = ∑
i

(
wi

(
ai log ai − ai + ∑

j
Uijvj (6.25)

− ai ∑
j

Uijvk
j

∑l Uilvk
l

(
log Uijvj − log

Uijvk
j

∑l Uilvk
l

)))
.
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Because of the convexity of the function−log(x) and since ∑j
Uijvk

j

∑l Uilvk
l

= 1,

we have

− ai log ∑
j

Uijvj = −ai log

(
∑

j

Uijvk
j

∑l Uilvk
l
Uijvj

∑l Uilvk
l

Uijvk
j

)

≤ −ai ∑
j

Uijvk
j

∑l Uilvk
l

log

(
Uijvj

∑l Uilvk
l

Uijvk
j

)

≤ −ai ∑
j

Uijvk
j

∑l Uilvk
l

(
log Uijvj − log

Uijvk
j

∑l Uilvk
l

)

implying G(v, vk) ≥ F(v), ∀v. Moreover G(vk, vk) = F(vk), so we
obtain:

F(vk) = G(vk, vk) ≥ min
v

G(v, vk) = G(vk+1, vk) ≥ F(vk+1) . (6.26)

To obtain the updating rule, it is sufficient to construct the minimizer of
G with respect to v, given by:

∂G(v, vk)
∂vj

= ∑
i

wiUij −
vk

j

vj
∑

i
wiai

Uij

∑l Uilvk
l

= 0. (6.27)

Then the minimizer of G(v, vk) is chosen as the next value of v:

vk+1 =
[
vk]

[UTw]
◦
(

UT [a ◦ w]
[Uvk]

)
. (6.28)

Transposing the two sides of this gives the update rule for each row of
V.

(vk+1)T =
[
(vk)T]
[wTU]

◦
( [

aT ◦ wT]
[(vk)TUT]

U

)
. (6.29)

Putting together the updating rules for all the rows of V gives the
desired updating rule for the whole matrix V as in (6.23). The relation
(6.26) shows that the weighted divergence is non increasing under the
updating rule for V. Using (6.29) and the fact that

∇F(vk) = UTw−UT [a ◦ w]
[Uvk]

(6.30)
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we can easily see that that vk+1 = vk if and only if vk ◦ ∇F(vk) = 0.
Finally, the non-negativity of vk is automatically satisfied.

Having the updating rules for V for the weighted generalized KL
divergence, one can rewrite them as follows:

V ← [V]
[WTU]

◦
([

WT ◦ AT]
[VUT]

U

)
= V ◦


[
[WT◦AT]

[VUT ] U
]

[ [WT◦(VUT)]
[VUT ] U

]


= V ◦
( [

(WUVT ◦ A)TU
]

[(WUVT ◦ (UVT))TU]

)
,

where WUVT = [W]
[UVT ]

. This shows that each update in the weighted

generalized KL divergence is equivalent to an update in the weighted
Euclidean distance with the weight matrix WUVT . This is an adaptive
weighting since the weights change after each update. And at the station-
ary point of this minimization, V and U converge to the minimizer of
the weighted Euclidean distance for which the weight matrix is exactly
WUVT .

Conversely, one can see that each update in the weighted Euclidean
distance with the weight matrix W is equivalent to an update in the
weighted generalized KL divergence with the weight matrix WUVT =
W ◦ (UVT). And again, at the stationary point of this minimization,
U and V converge to the minimizer of the weighted generalized KL
divergence for which the weight matrix is exactly WUVT .

We summarize all the updating rules and the link between the two
minimizations in Table 6.1. In the unweighted case, the matrix 1m×n is
included to make it easier to compare it with the matrices W1 and W2
of the weighted case. With our updating rules for the weighted case,
we have thus shown that even though the two cost functions are very
different, their minimizations are closely related. While the convergence
of the multiplicative rules still needs further investigations, we can
conclude this section by raising this question: which algorithms for
weighted Euclidean distance (or weighted generalized KL divergence)
converge to a stationary point when we add the adaptive weights as
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Euclidean Distance Generalized KL Divergence
(ED) (KLD)

NMF V ← V ◦ [(1m×n◦A)TU]
[(1m×n◦(UVT))TU]

V ← V ◦

[(
[(1m×n◦A)T]

[VUT ] U

)]
[1n×mU]

WNMF V ← V ◦ [(W1◦A)TU]
[(W1◦(VUT))TU]

V ← V ◦

[(
[(W2◦A)T]

[VUT ] U

)]
[W2

TU]

ED
m W1 = [W2]

[UVT ]
KLD

Table 6.1: Multiplicative rules for Weighted Nonnegative Matrix Factorization

described above? Clearly, if there is one, it will be a common algorithm
for both measures.

6.4 Adding weights to existing NMF variants

The Nonnegative Matrix Factorization with Sparseness Constraint in [68]
imposes sparseness constraints on the matrices U and V. The algorithm
uses two separate steps to achieve this: a gradient-descent step and a
sparseness control step. Weights can be easily added in the gradient-
descent step by setting the cost function to be the weighted Euclidean
distance instead of the unweighted one. The sparseness control step is
kept unchanged. The fixed sparsity variant presented in Chapter 4 can
also be generalized to incorporate the weight matrix.

For other NMF methods like Fisher Nonnegative Matrix Factoriza-
tion [122], Localized Nonnegative Matrix Factorization [83] etc., weighted
version of iterative algorithms can also easily be obtained.

Weights can also added into the Rank-one Residue Iteration for the
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Nonnegative Tensor Factorization by the same manner.

6.5 Application: feature extraction of face images

In [80] Lee and Seung argued that there is a link between human per-
ception and nonnegative data representation. The intuition behind this
is that perception is based on a representation that is additive and tends
to expose parts of the data. Since then, many researchers have tried
to use nonnegative representations of data – such as NMF – in many
application areas.

One of the major application of NMF is the representation of human
faces. In this section, we show the results of two numerical experiments
on human faces. These experiments also illustrate the effect of weights
on the obtained approximation.

6.5.1 Experiment settings

Again, we use the Cambridge ORL face database as the input data for
the following experiments. Ten randomly chosen images are shown in
the first row of Figure 6.1.

Figure 6.1: Original faces (first row), their image-centered weights W2 (second
row) and their face-centered weights W3 (last row)

We used three weight matrices of the same size of A (ie. 10304× 400).

• Uniform weight W1: a matrix with all elements equal to 1 (i.e. the
unweighted case).
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• Image-centered weight W2: a nonnegative matrix whose colum-
ns are identical, i.e. the same weights are applied to every images.

For each image, the weight of each pixel is given by wd = e−
d2

σ2

where σ = 30 and d is the distance of the pixel to the center of the
image (56.5, 46.5). This weight matrix has rank one. Ten columns
of this matrix are shown in the second row of Figure 6.1.

• Face-centered weight W3: a nonnegative matrix whose columns
are not identical, i.e. different weights are applied to different
images. For each image, the weight of each pixel is given by

wd = e−
d2

σ2 where σ = 30 and d is the distance of the pixel to the
center of the face in that image, which is manually determined on
the tip of the nose. The rank of this matrix is not restricted to one.
Ten columns of this matrix are shown in the last row of Figure 6.1.

Next, the matrix A is approximated by nonnegative matrices U and
V. The rank chosen for the factorization is 49, the matrices U and V will
thus be of dimension 10304× 49 and 400× 49 respectively. Each column
of U is considered as a nonnegative basis vector. The storing space for
the approximation will be (10304 + 400)× 49 which is much smaller
than 10304× 400 for the data matrix A.

6.5.2 NMF versus Weighted NMF

In this experiment, all three weight matrices W1, W2 and W3 are used.
For each weight matrix, 49 nonnegative bases, i.e. columns of U, are
calculated and shown in Figure 6.2.

Each image in the database can be reconstructed as a weighted sum
of these nonnegative bases with nonnegative weights determined by the
corresponding row of V. In Figure 6.3, ten selected images are compared
with the reconstructed images from the three experiments. The pixel-
wise error averages from the three experiments are shown in Figure
6.4.

It can be seen from the results that more important pixels (i.e. those
with higher weight, at the center of images or at the center of faces in
our example) are better reconstructed than less important ones. This
improvement can be seen in both reconstructed images and the pixel-



6.5 APPLICATION: FEATURE EXTRACTION OF FACE IMAGES 

Figure 6.2: Weighted NMF Bases when using: uniform weights (left), image-
centered weights (middle) and face-centered weights (right)

Figure 6.3: Original and reconstructed faces: original (top), using uniform
weights (second line), using image-centered weights (third line) and using face-
centered weights (bottom)
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Figure 6.4: Pixel-wise average divergence: unweighted (left), image-centered
(middle) and face-centered (right). Brighter colors represent larger errors.

wise average divergence of all the images. In figure 6.4, all the images
are shifted to have a common face center. The darker colors correspond
to larger errors, which means that the algorithm pays more attention to
the center of the images (or to the center of the faces) and that the details
at the center areas are privileged in the approximation. More details
can be seen on the reconstructed faces when face-centered weights are
applied, especially when the center of a face is further away from the
center of the image.

The results for weight matrix W3 also show that our algorithms can
deal with weight matrices without rank restriction. And weights can be
adapted to each data vector in order to yield better approximations.

6.5.3 NMF versus Weighted NMF with Sparseness Constraint

This second experiment shows the effect of adding weights into the NMF
with Sparseness Constraint. Figure 6.5 shows two sets of 49 nonnegative
bases obtained by the NMF with Sparseness Constraint with uniform
weight W1 (left) and with face-centered weight W3 (right).

The NMF with Sparseness Constraint is often used to extract local
and independent features on faces. As weights are more centered, more
features at the center of faces are retained as we can see in Figure 6.6.
This allows us to tune the NMF with Sparseness Constraint algorithm
to more relevant parts to give more useful information about the data.



6.5 APPLICATION: FEATURE EXTRACTION OF FACE IMAGES 

Figure 6.5: Bases of NMF with Sparseness Constraint: unweighted (left) and
face-centered (right)

Figure 6.6: Overlapped bases of NMF with Sparseness Constraint: unweighted
(left) and image-centered (right). Each pixel in the overlapped image corresponds
to the maximum value of all pixels at the same position in all 49 base vectors.
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7

SYMMETRY IN NONNEGATIVE MATRIX
FACTORIZATION

Many data matrices are symmetric. This is the case for the adjacency ma-
trix of an undirected graph, the matrix of geometric distances between
points, correlation matrices, etc. We will investigate in this chapter
the symmetry constraint in the Nonnegative Matrix Factorization prob-
lem. This leads to two new problems: Symmetric Nonnegative Matrix
Factorization and Semi-Symmetric Nonnegative Matrix Factorization.

With the first problem, our objective is not only to obtain the sym-
metry of the approximation but also a symmetric structure of the cor-
responding factorization. While the NMF helps to find the UVT ap-
proximation of a nonnegative matrix, its symmetric version tries to find
approximations where U = V. This allows us to link to other currently
open problems related to the completely positive matrices [10]. Since many
important questions about this topic are still very challenging, it is be-
lieved that there is no efficient method for the problem SNMF. Until one
is found, we will try to solve the problem by looking for good approxi-
mations rather than doing exhaustive search for the global optimum.

The second problem can be considered as a relaxed version of the
Symmetric Nonnegative Matrix Factorization. As we will see, the addi-
tional degrees of freedom in the Semi-Symmetric Nonnegative Matrix
Factorization guarantees at least an exact approximation with finite in-
ner rank of a arbitrary square nonnegative matrix, which is in general
impossible with the Symmetric Nonnegative Matrix Factorization.

The chapter begins with a formal definition of the problem. Com-
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pletely positive matrices are also discussed in the second part. Then
a method to find good approximations is proposed. We mention some
applications of this special factorization including Graph Clustering and
Approximation of Correlation Matrix.

7.1 Symmetric approximations

We will define two NMF problems in which some symmetries are im-
posed on the factors. But first, we will discuss which structures of the
approximation are considered.

7.1.1 Symmetry of the approximation

As pointed out earlier, only the product of a factored approximation such
as those in the NMF problem can be considered as an approximation,
since for a matrix B, there might be two different factorizations B =
U1VT

1 and B = U2VT
2 where (U1, V1) and (U2, V2) are different. The first

natural question to ask is: given a symmetric nonnegative matrix, when
will the NMF approximation also be symmetric? This question is partially
answered in [25] through the two following theorems:

Theorem 7.1. Let A = QDQT be a non-negative symmetric matrix of rank
t, t ≤ n, where Q ∈ Rn×n is orthogonal and D = diag(d1, ..., dt, 0..0),
with di 6= −dj, for i, j ∈ {1, .., t}, i 6= j. Let (U, V) be a solution to the
NNMF problem (Euclidean Distance version) with∇U‖A−UVT‖2

F = 0 and
∇V‖A−UVT‖2

F = 0. Then the product UV is (also) symmetric.

Theorem 7.2. Let A = QDQT be a non-negative symmetric matrix of rank
t, t ≤ n, where Q ∈ Rn×n is orthogonal and D = diag(d1, ..., dt, 0..0),
with di 6= dj, for i, j ∈ {1, .., t}, i 6= j. Let (U, V) be a solution to the
NNMF problem (Euclidean Distance version) with ∇U‖A −UVT‖2

F = 0
and ∇V‖A−UVT‖2

F = 0. Assume rank(UV) = k ≤ t. Then the product
UV is symmetric if and only if it is of the form UVT = QXQT where X =
diag(x1, ..., xt, 0, ..., 0) with xi = 0 for all but k values of i1, ..., ik with xij =
dij , j = 1, .., k.

These results are derived for NMF problem but only applied to the
cases where∇U‖A−UVT‖2

F = 0 and∇V‖A−UVT‖2
F = 0. This, in fact,
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targets only the unconstrained low-rank approximation problem and
therefore can be easily derived from Theorem 1.13 for both symmetric
and non-symmetric matrices.

Notice that we can always construct a symmetric approximation
of the same complexity (probably with higher rank) from a known
asymmetric approximation UVT. Indeed, taking

Â =
UVT + VUT

2

yields a symmetric approximation of A. Furthermore, it is a better
approximation since∥∥∥∥A− UVT + VUT

2

∥∥∥∥ ≤ ‖A−UVT‖+ ‖A−UVT‖
2

= ‖A−UVT‖

from the convexity of ‖.‖ and the symmetry of A.
Because of that, we are interested in the problem where UVT is not

only symmetric but also U = V. In other words, we search for the
UUT approximations where U is elementwise nonnegative. As we can
see in the following sections, this problem is more difficult to solve
but has more practical applications. A slightly different problem is to
approximate a square nonnegative matrix by the product USUT where
U and S are elementwise nonnegative [120]. With its special structure,
the latter can be also applied to square non-symmetric matrices.

7.1.2 The problems

In this section, the two problems of interest are Symmetric Nonnegative
Matrix Factorization and Semi-symmetric Nonnegative Matrix Factor-
ization. The formal definition as well as some properties of these two
problems will be presented in preparation for the section of methods.

Symmetric Nonnegative Matrix Factorization

The following problem is referred to as the Symmetric Nonnegative Matrix
Factorization:
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Problem 7.3 (SNMF).

min
U∈Rn×r

+

1
2
‖A−UUT‖2

F

where A is a n× n symmetric matrix and r is an integer.

As an usual optimization problem, we calculate the gradient of the
objective function on the factor U:

∇U
1
2
‖A−UUT‖2

F = UUTU − AU.

The KKT conditions are:

U ≥ 0 (7.1)
UUTU − AU ≥ 0 (7.2)

U ◦ (UUTU − AU) = 0 (7.3)

It is known that the optimal nonnegative rank-one approximation is
given by the Perron vectors. This remains true for the rank-one symmet-
ric nonnegative factorization. But for the higher rank, the factorization
is no longer easy. This is, indeed, related to the well-known class of
completely positive matrices.

Every nonnegative matrix B that can be represented as UUT where
U is nonnegative is a completely positive (cp) matrix [10]. The above
problem is equivalent to find the nearest completely positive matrix
with rank r to the input matrix A. One important notion about the
cp matrices is the completely positive rank (cp-rank) that is defined as
the minimum number of column of U such that B = UUT. We use
rank+

UUT (A) to denote the cp-rank of the matrix A. If A is not a cp matrix,
we conventionally denote rank+

UUT (A) = +∞.
The well-known problem of determining cp-rank of a symmetric

matrix A has been a subject many researches. Knowing a lower bound
of this number, which is the ordinary rank of the matrix k = rank(A),
the true general upper bound is still unknown. The best proved bound
is k(k+1)

2 − 1 [7]. Two fundamental problems are:

• Deciding whether a matrix is a cp matrix.
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• Determining the cp-rank of a cp matrix.

They were open until recently, the application of Renegar algorithm
[9] yields a finite method to compute the cp-rank of a matrix if it exists.
But the complexity bound of this method is still non-polynomial. See
[9] or Section 2.3 to derive this bound.

One of the necessary conditions for A symmetric to be completely
positive is that it must be positive semidefinite. When A is not, surely we
can not have an exact Symmetric Nonnegative Matrix Factorization for
finite rank. Knowing that the SNMF can not do better than the nearest
semidefinite positive matrix, the following results give a lower bound
of the error function of SNMF approximation:

Theorem 7.4. Let A is be symmetric matrix. Then

min
rank(B)=r

B�0

‖A− B‖2
F ≥ ∑

λi(A)<0
(λi(A))2.

This is the simplified version of a theorem found in [57]. This result
implies that when approximating a symmetric matrix by a semidefinite
positive matrix, one should only take into account the semidefinite
positive part A�0 of the original matrix A. And applying the Eckart-
Young theorem (Theorem 1.12) to the matrix A�0 allows us to construct
the optimal approximation for the unconstrained problem.

A very simple example is the following matrix with its eigenvalue
decomposition:

A =

 0 1 1
1 0 0
1 0 0

 =
√

2u1uT
1 −
√

2u2uT
2 .

where u1 = (
√

2
2

1
2

1
2 ) and u2 = (−

√
2

2
1
2

1
2 ). Applying Theorem 7.4,

the best semidefinite positive approximation is the rank-one matrix
Â = A�0 =

√
2u1uT

1 . Observe that this approximation is also the
optimal SNMF approximation and therefore it is impossible to create a
better SNMF approximation even with higher ranks. This impossibility
can be overcome if one uses a more flexible ’symmetric’ approximation
introduced by the second problem.
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Semi-Symmetric Nonnegative Matrix Factorization

The following were first mentioned in [37, 120]. We refer to it as the
Semi-Symmetric Nonnegative Matrix Factorization (SSNMF) problem:

Problem 7.5 (SSNMF).

min
U∈Rn×r

+ S∈Rr×r
‖A−USUT‖2

F

where A is a n× n nonnegative matrix and r is an integer.

For the symmetric matrix A, the matrix S is a way to absorb all the
nonnegative eigenvalues. This is why the lower bound of the error
for this type of approximation is exactly zero. The symmetry of A
also allows us to assume further the symmetry of S. Since if S is not
symmetric, S∗ = S+ST

2 yields a better approximation∥∥∥∥A−U
(

S + ST

2

)
UT
∥∥∥∥ ≤ ‖A−USUT‖+ ‖A−USTUT‖

2

= ‖A−USUT‖.

Consider again the above example. We have already seen that it is
impossible to create an exact UUT NMF approximation, but there exists
an exact USUT approximation with r = 2:

A =

 0 1 1
1 0 0
1 0 0

 =

 0 1
1 0
1 0

( 0 1
1 0

)(
0 1 1
1 0 0

)
.

In fact, every nonnegative matrix admits at least one such exact
approximation (A = USUT) trivially given by U = I and S = A.
And it is not limited to only symmetric nonnegative matrix but can
be also applied to an arbitrary square nonnegative matrix. We call
the minimum value of r that yields an exact approximation the Semi-
Symmetric Nonnegative Rank denoted by rank+

USUT (A). Because it is
bounded from above by n, the size of the original matrix, there is a finite
algorithm to compute this number using Renegar algorithm (crf. Section
2.3).

The following result can be established to relate the different ranks
of nonnegative factorizations presented in this thesis.
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Lemma 7.6. For every n× n square nonnegative matrix A, we have

rank(A) ≤ rank+
UVT (A) ≤ rank+

USUT (A) ≤ n

and
rank+

USUT (A) ≤ rank+
UUT (A).

Proof. Trivial. Since the rank of every exact factorization of a rank− k
matrix can not have a smaller rank than k and we can create a UVT

factorization from USUT and USUT from UUT. The upper bound
rank+

USUT (A) ≤ n is given by the trivial factorization U = I and S =
A.

With the same argument used in the above Lemma, we can establish,
in the following lemma, a similar relation of minimum error between
different approximations of the same reduced rank r.

Lemma 7.7. For every n× n square nonnegative matrix A and r = 1, 2, . . .

min
U,V∈Rn×r

‖A−UVT‖2
F ≤ min

U,V∈Rn×r
+

‖A−UVT‖2
F

≤ min
U∈Rn×r

+ S∈Rr×r
‖A−USUT‖2

F

≤ min
U∈Rn×r

+

‖A−UUT‖2
F.

7.2 Methods

In this section, we provide some directions that one can follow to solve
the two above problems. Since it is not realistic to solve them optimally,
we investigate some algorithms that can produce good approximations
for the above problems.

7.2.1 Direct methods

Since the error function is differential, the gradient informations are
always available. Therefore, all gradient methods presented in Chapter
3 can be reused for these problems.
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7.2.2 Penalty methods

Our strategy is to guide the NMF algorithm to converge to a fixed point
of SNMF if possible. We start the NNMF algorithm with an asymmetric
starting point (i.e. U0VT

0 ), and then force the two factors (i.e. Uk and Vk)
to be equal by minimizing their normed difference. One way to do is to
use the following modified cost function for a symmetric matrix A:

Fs(A, UVT) =
1
2
‖A−UVT‖2

F +
α

2
‖U −V‖2

F, α > 0 (7.4)

where the earlier part ( 1
2‖A−UVT‖2

F) is called the approximation
error and the latter part ( 1

2‖U −V‖2
F) is called the asymmetry penalty.

We will derive two methods based on the Multiplicative Rules and
the Rank-one Residue Iteration scheme for solving the following prob-
lem:

Problem 7.8.
min

U∈Rn×r
+ V∈Rn×r

+

Fs(A, UVT).

Regularized multiplicative rules

Incorporating additional linear or quadratic costs with the Euclidean
Distance does not change significantly the updating rules. Using the
same reasoning for constructing the multiplicative updating rules, one
can obtain Algorithm 12 for the SNMF problem.

Different from the original algorithm, the regularized version needs
the following balancing step after each update of U (step 4) or V (step
5). These consist in balancing the norm of each column of U and that of
the corresponding column of V

Dii =
√
‖V:,i‖√
‖U:,i‖

U = UD V = VD−1. (7.5)

Regularized rank-one residue iteration

We modify the algorithm presented in Chapter 4 by taking into account
the regularized cost function. The elementary Rank-one problem be-
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Algorithm 12 Multiplicative Rules

(U∗, V∗) = argmin
U≥0 V≥0

1
2
‖A−UVT‖2

F +
α

2
‖U −V‖2

F

1: Initialize U0 = V0 and k = 0
2: repeat

3: Uk+1 = Uk ◦ [AVk+α(Uk−Vk)]+
[Uk(Vk)T(Vk)]

4: Balancing Uk+1 and Vk

5: Vk+1 = Vk ◦ [ATUk+1+α(Vk−Uk+1)]+
[Vk(Uk+1)T(Uk+1)]

6: Balancing Uk+1 and Vk+1

7: k = k + 1
8: until Stopping condition

comes:

Problem 7.9.
min
v≥0

Fs(v)

where Fs(v) = 1
2

(
‖Rt − utvT‖2

F + α‖ut − v‖2
F
)

with Rt = A−∑i 6=t utvT
t .

From this formulation, one now can derive the following similar
lemma to the one in Chapter 4.

Lemma 7.10. If [RT
t ut + αut]+ 6= 0, then

v∗ :=
[RT

t ut + αut]+
uT

t ut + α

is the unique global minimizer of Problem 7.8 and the value of the modified cost
function equals

Fs(v∗) = ‖Rt‖2
F + αuT

t ut −
∥∥[RT

t ut + αut]+
∥∥2

uT
t ut + α

.

Proof. Rearranging the cost function gives:

Fs(v) = 1
2

(
‖Rt − utvT‖2

F + α‖ut − v‖2
F
)

= 1
2

(
trace[(Rt − utvT)T(Rt − utvT)] + α(ut − v)T(ut − v)

)
= 1

2

(
‖Rt‖2

F − 2vT(RT
t ut + αut) + vTv(uT

t ut + α) + αuT
t ut
)

= 1
2

(
‖Rt‖2

F + αuT
t ut − 2vTx + CvTv

)
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where x := RT
t ut + αut and C := uT

t ut + α.
Let us permute the elements of the vectors x and v such that

Px =
(

x1
x2

)
and Pv =

(
v1
v2

)
with x1 ≥ 0, x2 < 0 and P is the permutation matrix. Then

Fs(v) = ‖Rt‖2 + αuT
t ut − 2vT

1 x1 − 2vT
2 x2 + C(vT

1 v1 + vT
2 v2).

Since x2 < 0, v2 ≥ 0 and C ≥ 0, it is obvious that the modified cost
function can only be minimal if v2 = 0. Our assumption implies that x+
is nonempty and x1 ≥ 0. One can then find the optimal v1 by minimizing
the remaining quadratic function

‖Rt‖2
F + αuT

t ut − 2vT
1 x1 + CvT

1 v1

which yields the solution v1 = x1
C . Putting the two components together

yields the result

v∗ =
x+

C
and Fs(v∗) = ‖Rt‖2

F + αuT
t ut −

‖x+‖2

C
.

In the case where [RT
t ut + αut]+ = 0, we have a unique optimal

solution: v∗ = 0 that is not covered by Lemma 7.10. This solution is
unique even when ut = 0. But this will result in a zero component in
the approximation.

An update for ut can be similarly formulated. Using these to iterate
through all the ui’s and vi’s yields Algorithm 13 for the modified cost
function.

In Algorithm 13, balancing steps (7) and (11) are added after each
update. This does not increase the approximation error ‖A−UVT‖2

F
but decreases the asymmetry penalty ‖U − V‖2

F, hence yields a more
balanced factorization that helps the algorithm to converge to the sym-
metric fixed point. This is also a way to restrict all variables inside some
compact sets and it is hence easy to show that every limit point is a
stationary point.
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Algorithm 13 Rank-one Residue Iteration for SNMF

1: Initialize ui’s, vi = ui
2: repeat
3: for t = 1 to r do
4: Rt = A−∑i 6=t uivT

i

5: vt ← [RT
t ut+αut]+
uT

t ui+α

6: if ‖ut‖2 > 0 and ‖vt‖2 > 0 then
7: d =

√
‖vt‖/‖ut‖, ut = dut and vt = (1/d)vt

8: end if
9: ut ← [Rtvt+αvt]+

vT
t vt+α

10: if ‖ut‖2 > 0 and ‖vt‖2 > 0 then
11: d =

√
‖vt‖/‖ut‖, ut = dut and vt = (1/d)vt

12: end if
13: end for
14: until Stopping condition

Theorem 7.11. Every limit point of Algorithm 13 is a stationary point of the
problem 7.8.

Proof. The additional asymmetry penalty term make the optimal so-
lution of the subproblems always unique. Note also that each of the
variables ui and vi (i = 1, . . . , r) can be bounded to stay in a closed
convex set. Applying Theorem 1.11 proves the desired result.

In Algorithm 13, when a zero component appear, one could replace
utvT

t by any rank-one approximation that reduces the modified norm of
the error matrix. Note that when adding the asymmetry penalty term,
the replacing rank-one matrix is not as easy as for the general NMF case
in Chapter 4.

For symmetric substitution, one very simple possibility is to choose
the largest element on the diagonal of Rt, for example [Rt]kk. If it is
positive, then we can use [Rt]kkekeT

k (i.e. ut = vt =
√

[Rt]kkek) as an
alternative.

Asymmetric patch to the rank-deficient can also be used unless
this makes the cost function increase. For example, any element [Rt]kl
such that [Rt]kl < 2α gives an approximation ut =

√
[Rt]klek and vt =
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√
[Rt]klel . Random restart of ut and/or vt may also be used when it can

make an improvement over the trivial solution v∗ = 0.
These patches should be applied only in a finite number of times to

guarantee the convergence of the algorithm. In practice, only a few are
needed. And in many cases, it is not easy to find such a patch. Therefore,
we have to accept zero components in the final approximation.

Semi-symmetric nonnegative matrix factorization

We modify the algorithm presented in Chapter 4 by taking into account
the asymmetry penalty. The problem to solve is the following:

Problem 7.12.
min

U∈Rn×r
+ V∈Rn×r

+
S∈Rr×r

+

FSS(A, USVT).

where

Fss(A, USVT) =
1
2
‖A−USVT‖2

F +
α

2
‖U −V‖2

F.

Let W = US and wt is the tth column of W. To derive an update for
the column vt of V, we look at the following partial problem:

Problem 7.13.
min
v≥0

Fss(v)

where Fss(v) = 1
2

(
‖Rt − wtvT‖2

F + α‖ut − v‖2
F
)

with Rt = A−∑i 6=t wivT
i .

The following lemma gives the optimal update of vt:

Lemma 7.14. If [RT
t wi + αut]+ 6= 0, then

v∗ :=
[RT

t wt + αut]+
wT

t wt + α

is the unique global minimizer of Problem 7.8 and the value of the modified
cost function equals

Fss(v∗) = ‖Rt‖2
F + αuT

t ut −
∥∥[RT

t wt + αut]+
∥∥2

wT
t wt + α

.
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Remark: when [RT
t wt + αut]+ = 0, which is not covered by Lemma

7.14, the unique optimal update is v∗ = 0, even when ut = 0.
The proof of this lemma is similar to Lemma 7.10 and is skipped. A

similar development yields the update for ut:

u∗ :=
[Qtyt + αvt]+

yT
t yt + α

where yt is the tth column of Y = VST and Qt = A−∑i 6=t uiyT
i .

Now, we need to update S given U and V. We choose to update each
element of S separately. We can rewrite the approximation error as:

‖A−USVT‖2
F = ‖A−∑

ij
SijuivT

j ‖2
F

= ‖(A− ∑
(i,j) 6=(k,l)

SijuivT
j )− SklukvT

l ‖2
F

= ‖Pkl − SklukvT
l ‖2

F

where Pkl is the residue matrix A − ∑(i,j) 6=(k,l) SijuivT
j . This is a very

simple scaling problem. But the optimal solution is only unique if
‖uk‖2 > 0 and ‖vl‖ > 0:

S∗kl = max

(
uT

k Pklvl

uT
k ukvT

l vl
, 0

)
.

Since the uniqueness is needed for the convergence, therefore, one can
again use the damping method described in Section 4.3 for the variable
S. This is done by introducing a dummy variable T and a small positive
constant ψ and adding the terms ψ

2 ‖S− T‖2
F to the cost function. Using

the same development in Section 4.3, we have the following update for
Skl :

S∗kl = max

(
uT

k Pklvl + ψSkl

uT
k ukvT

l vl + ψ
, 0

)
.

Putting all together yields Algorithm 14.
The normalization step (18) in Algorithm 14 consists of finding two

positive diagonal matrix DU and DV and updating:

U = UDU , V = VDV and S = D−1
U SD−1

V ,
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Algorithm 14 Rank-one Residue Iteration for SSNMF

1: Initialize S, ui’s, vi = ui
2: repeat
3: for t = 1 to r do
4: W = US
5: Rt = A−∑i 6=t wivT

i

6: vt ← [RT
t wt+αut]+
wT

t wt+α

7: Y = VST

8: Qt = A−∑i 6=t uiyT
i

9: ut ← [Qtyt+αvt]+
yT

t yt+α

10: end for
11:
12: for k = 1 to r do
13: for l = 1 to r do
14: Pkl = A−∑(i,j) 6=(k,l) SijuivT

j

15: Skl ← max
(

uT
k Pklvl + ψSkl

uT
k ukvT

l vl + ψ
, 0
)

16: end for
17: end for
18: Normalization
19: until Stopping condition

such that every non-zero vector ui and vi have unit norm. This makes
the variables stay in a bounded set and hence is easy to show that every
limit point of Algorithm 14 is a stationary point. Indeed, each update is
the unique optimal solution of a simple convex problem (cfr. Theorem
4.5).

Theorem 7.15. Every limit point of Algorithm 14 is a stationary point of the
problem 7.12.

Proof. Reusing the argument for the dummy variable T in Theorem 4.7
from Section 4.3 together with the uniqueness of the optimal solution of
ui and vi yield the desired result.

Again, if one wants to avoid zero components in the approximation,
patches can be applied. But in general, it is more difficult to do that here
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than in the previous section. But one can always take a random vector
for the corresponding column of S. It must be done with care because
this may increase the cost function. If we can not find an acceptable fix,
then we should accept the solution v∗ = 0 and wait for the next sweep.
If found, the patches should be applied in only a finite number of times
to guarantee the convergence of the algorithm.

Regularizing constant

The parameter α appears in the two previous formulations as the trade-
off between the approximation error and the asymmetry penalty of
the fixed point. The right choices of α can lead the search direction
toward the symmetric fixed points. Overestimating α could lead to a
symmetric factorization without taking into account the approximation
error. And α = 0 means that the penalty is absent, hence becomes the
NMF Algorithm 7.

An appropriate value of α is believed to depend on the best possible
approximation error, but this error is not known in general. Experiments
show that the range of possible values of α is quite large, so that, one
can restart the algorithm with a better value of α determined from the
previous results of the algorithm.

It is also useful to note that, after all, the results might not be in the
desired form in which U = V. But by having forced the symmetry, one
can expect that the errors ‖A −UUT‖2

F (or ‖A −USUT‖2
F) and ‖A −

VVT‖2
F (or ‖A−VSVT‖2

F) are not too far from the real approximation
error ‖A−UVT‖2

F (or ‖A−UVT‖2
F). One could even used U∗ = U+V

2
as a solution.

In practice, the symmetry regularization does not only force the fac-
tors to be equal, but it can also lead to a better approximation. There are
examples where the symmetric approximation is better than the asym-
metric one. But applying the general algorithms for NMF problem may
have difficulty to converge to a symmetric approximation. An example
is when we applied NMF method to the well-known iris flower data
[43]. It consists of a 150× 4 matrix X whose rows contain 4 measures
of a flower: the sepal length, the sepal width, the petal length and the
petal width. There are 3 species in the dataset (1− 50: setosa, 51− 100:
versicolor and 101− 150: virginica). We construct the similarity matrix
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between the flowers S = XXT. We apply Algorithm 13 to the similarity
matrix S with three different values of α = 0, 1 and 50 and with the
reduced rank r = 3. Note again that, α = 0 removes the penalty from the
cost function. We present here the plot of 4 functions for each iteration
of the Rank-one Residue Iteration algorithm:

• the full cost function: f α
1 (Uk, Vk) = 1

2‖A−UkVT
k ‖2

F + α
2‖Uk−Vk‖2

F,

• the asymmetry error: f2(Uk, Vk) = 1
2‖Uk −Vk‖2

F,

• the approximation error of UVT: f3(Uk, Vk) = ‖A−UUT‖2
F

• the approximation error of UUT: f4(Uk) = ‖A−UUT‖2
F

• and the approximation error of VVT: f5(Vk) = ‖A−VVT‖2
F.

Figure 7.1: Full cost function for different values of α

Figure 7.1 shows that the asymmetric algorithm (α = 0) can not converge
to the lower error approximation. It was trapped in an asymmetric local
minimum, which yields a large approximation error. The asymmetry
error function ( f2) shows that the approximation is totally not symmetric.
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Figure 7.2: Asymmetry error for different values of α

Figure 7.3: Approximation error of UVT for different values of α
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Figure 7.4: Approximation error of UUT for different values of α

Figure 7.5: Approximation error of VVT for different values of α
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The approximation errors produced by UUT and VVT stay high. For
α = 1, there is an improvement in all measures. But the convergence
is still very slow. When we increase α to 50, Algorithm 13 produces a
symmetric approximation with a lower error than the asymmetric one.
Furthermore, it converges much faster. In fact, in this example, it is very
likely that the best approximation is symmetric (i.e. UUT) because the
input matrix S is cp by construction.

In general, when approximating a matrix, if we know that the best
approximation is symmetric, we can add the described regularization to
guide the algorithm eventually to the global minimizer. In this case, the
symmetry plays a role of prior knowledge of the problem that one can
provide to the algorithm.

For the Semi-Symmetric Nonnegative Matrix Factorization, we ob-
served the same phenomena.

Sparse approximation

The factor U in the two symmetric problems plays a central role in their
clustering applications where the sparsity of U is required. We can there-
fore modify the above algorithms to create sparser approximation. A
simple technique is to add extra regularization term β(∑i ‖ui‖1 + ‖vi‖1)
to the cost function (7.4), as suggested in [21]. This will slightly modify
the update for U and V but a sparser approximation can be obtained.

The modified updates are:

• Symmetric Nonnegative Matrix Factorization:

vt ←
[RT

t ut + αut − β1n×1]+
uT

t ut + α
and ut ←

[Rtvt + αvt − β1n×1]+
vT

t vt + α
.

• Semi-Symmetric Nonnegative Matrix Factorization:

vt ←
[RT

t wt + αut − β1n×1]+
wT

t wt + α
and ut ←

[Qtyt + αvt − β1n×1]+
yT

t yt + α
.
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7.3 Applications: graph clustering

Clustering is one of the central problems in data analysis and exploration.
Clustering amounts to finding out the structure of data by dividing
elements into groups while maximizing the similarity or the connectivity
between elements in the same group and at the same time, minimizing
these quantities between elements that are not in the same group.

The graph clustering is a particular case where vertices of a graph are
partitioned into different group so that inside each group, the connec-
tivity or similarity [18] is high, while the connectivity or the similarity
between different groups is low. We will see how the problem of a graph
clustering based on the connectivity of graph can be reformulated as a
problem of Symmetric Nonnegative Matrix Factorization.

In general, one can define the graph clustering problem as follows:
Given an integer k > 0 and a graph G = (V, E), where V (|V| = n) is the set
of vertices and E is the set of edges, find a partition of V: C = {C1, ..., Ck} that
maximizes a specified performance function f (G, C).

In this definition, each of the sets Ci is a cluster and C is called a
clustering.

For the connectivity case, the input graph is usually undirected or
made to be undirected, implying that if vertex i is connected to vertex j
(i.e. (i, j) ∈ E), then vertex j is also connected to vertex i (i.e. (j, i) ∈ E).
We further assume that each vertex of the graph is connected to itself
(i.e. (i, i) ∈ E).

The choice of f depends on each application and it will determine
the nature of the clusters. For the connectivity case, we use the following
connectivity performance function [22]:

cper f (G, C) =
# {(i, j) ∈ E| (i, j) ∈ C} + # {(i, j) /∈ E| (i, j) /∈ C}

n2 ,
(7.6)

where (i, j) ∈ C means that i and j belong to the same cluster in C or
in other words, the edge (i, j) is in the clustering C. The first value in the
numerator # {(i, j) ∈ E|(i, j) ∈ C} is the number of edges which are in
common to E and the clustering C. And the second value is the number
of edges which are not common to E and C. We see that the numerator
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is always less or equal to n2, so the value of cper f (G, C) varies between
0 and 1 and a higher value of cper f (G, C) implies a better clustering C.
In fact, we can rewrite cper f (G, C) as below:

cper f (G, C) = 1− # {(i, j) ∈ E| (i, j) /∈ C}+ # {(i, j) /∈ E| (i, j) ∈ C}
n2 ,

(7.7)
where the first value in the numerator # {(i, j) ∈ E | (i, j) /∈ C} is the

number of edges which are in E but not in C. And the second value is
the number of edges which are in C but not in E. We can call the sum of
these two values in the numerator, the clustering error.

Let A be the adjacency matrix of G (Aij = 1 if (i, j) ∈ E and Aij = 0
otherwise) and let XC ∈ {0, 1}n×k be the membership matrix correspond-
ing to the clustering C (Xir = 1 if i ∈ Cr and Xir = 0 if i /∈ Cr), then the
function cper f in (7.7) can be rewritten as:

cper f (G, C) = 1−
∑ij

(
Aij −∑k

r=1 XirXjr

)2

n2

= 1− ‖A− XXT‖2
F

n2 . (7.8)

As a result, the graph clustering problem that maximizes the func-
tion cper f is equivalent to the problem:

(GC) min
X∈{0,1}n×k , X1k×1=1n×1

‖A− XXT‖2
F.

Since this problem is is known to be NP-hard, we will relax its constraints
to obtain a simpler problem:

(SNNMF) min
X∈Rn×k

+

‖A− XXT‖2
F

that can be solved for a local minimum using the described algorithm
for the Symmetric Nonnegative Matrix Factorization.

For our experiment we take an example from the literature which is
called a geometric graph [41, 117] (see figure 7.6 left). Such a graph is
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Figure 7.6: Geometric graph: original (left) and reconstructed (right)

constructed as follows: first put randomly n vertices on a N × N grid
whose cells have unit size, then create an edge between every pair of
vertices of geometric distance less than d. In the above example, n = 150,
N = 20 and d =

√
8.

We run the algorithm 13 with k = 14 (the choice of k will be discussed
later) and we obtain a fixed point which is symmetric (i.e. U ≈ VT and
A ≈ UUT). Although the original graph is unweighted, the recon-
structed graph is weighted and is shown on the right of figure 7.6 with
different gray levels going from white (weight = 0) to black (weight = 1).
Despite this, the main features of the original graph are well maintained.

Figure 7.7 presents 14 component graphs, that are rank-one graphs
corresponding to each column of U. One can see that for this particular
fixed point, all the component graphs are quite local and independent,
reflecting a cluster structure for the given graph. Moreover, if we relabel
the vertices such that all the vertices in the same cluster have consec-
utive labels and make a plot of the nonzero elements of the permuted
adjacency matrix, we obtain a block structure reflecting the clusters as in
the figure 7.8.

In this example, we have chosen the number of clusters k = 14 in
order to compare the results with those given by Markov Clustering algo-
rithm (MCL) [117]. The idea of MCL is different from the one presented
here: instead of fixing the number of clusters in advance, it tries to find
a k which is referred to as the number of natural clusters in the given
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Figure 7.7: 14 component graph UiUT
i

graph, and, 14 was the number of clusters given by MCL for the above
geometric graph.

Using the same number of cluster k = 14 for NNGC, we do obtain
a slightly higher value of performance (cper f (G)NNGC = 0.9557) com-
pared to what is given by MCL (cper f (G)MCL = 0.95). The following is
a brief comparison between the two algorithms:

The pros and cons of MCL:

• Pros: the resulting matrix is very sparse; the number of cluster is
automatically determined by the algorithm; quadratic convergence
around the fixed point.
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Figure 7.8: Adjacency matrix (left) and its permuted version (right)

• Cons: although the resulting matrix is very sparse, the iteration
matrices can be dense; there is no convergence proof; there is no
optimal criterion, results are based only on experimental results.

The pros and cons of NNGC:

• Pros: the iterative matrices have fixed rank, hence the computa-
tion load and memory requirement are known; the number of
cluster can be chosen in advance; well-defined optimality criterion;
proved convergence to local minimizer.

• Cons: the best number of clusters must be chosen from different
possible values; linear convergence.

7.4 Application: correlation matrix approximation

The CreditRisk+ model [112] is one of the industry standards for esti-
mating the credit default risk for a portfolio of credit loans. The natural
parameterization of this model requires the default probability to be
apportioned using a number of (non-negative) factor loadings. How-
ever, in practice only default correlations are often available but not the
factor loadings. The standard Credit Risk+ model assumes that there
is only one factor. Increasing the number of factors in the CreditRisk+
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model is always tied to increasing the rank of the approximation for
the default correlation matrix. Ultimately, the use of as many factors
as credit exposures would allow to reproduce the correlation matrix
exactly. In principle, this would lead to the most accurate approxima-
tion. The following is a summary of the application of the Symmetric
Nonnegative Matrix Factorization to the CreditRisk+ model. For more
details, the interested reader is referred to [119].

In this context, the “Credit Portfolio Loss” is modeled by the follow-
ing random variable S, :

S =
n

∑
i=1

Ni ci, (7.9)

where we assume that ci’s are known. The multivariate distribution of
N =

[
N1 N2 . . . Nn

]T is defined with the assumption that there

exists a random vector Γ =
[

Γ1 . . . ΓK
]Trepresenting the “state of

the economy” such that the random variables Ni, conditioned by Γk =
γk, (k = 1, 2, ..., K), are mutually independent and Poisson distributed
with intensity:

Ri = qi

(
w0,i +

K

∑
k=1

wk,iγk

)
, (7.10)

where qi is the probability that the risk i leads to a failure.
The coefficient w0,i reflects the portion of idiosyncratic risk that can

be attributed to the i-th risk whereas wk,i reflects its affiliation to the k-th
common factor. It is important to note that in order to have positive
intensities in (7.10), the coefficients wk,i , k = 0, 1, ..., K will be constrained
to be non-negative.

The random variables Γi are assumed to be independent Gamma
distributed and the covariance matrix associated with the random vector
Γ is given by:

cov[Γ] = Σ :=

 σ2
1

. . .
σ2

K

 .

Since the random variable aΓk will be distributed like a Gamma random
variable for any k and a > 0, we can assume without loss of generality
that E[Γi] = 1.
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The modeled covariance matrix covM[N] associated with the random
vector N is then calculated as:

covM[N] = QWTΣWQ + Q (7.11)

where Q = diag(q1, q2, . . . , qn) and W = wik
m,k
i=1, k=1

On the other hand, we can calculate the covariance matrix from the
known default correlation matrix C:

covR[N] = [Q(I −Q)]1/2C[Q(I −Q)]1/2 + Q.

Equating the two covariance matrices covM[N] = covR[N], we have:

QWTΣWQ = [Q(I −Q)]1/2C[Q(I −Q)]1/2. (7.12)

Note again that, the matrix W ≥ 0 contains the parameter matrix
of the model that need to be found. From the relation (7.12), one can
therefore approximating the matrix Q−1/2(I −Q)1/2C(I −Q)1/2Q−1/2

by using one of the Symmetric Nonnegative Matrix Factorization algo-
rithms, for example RRISNMF (Algorithm 13). To have the matrices W
and Σ from the resulted approximation UUT, one needs only to choose
the appropriate positive weight matrix Σ and compute W = UΣ−1/2.

In [119], we carried out this idea to the real data matrix taken from
the default correlation data between clients of a Belgian bank. Because
it has millions of clients and the correlation matrix is in general not
sparse, the corresponding correlation matrix will be very large even
for storing, if we take into account all the clients. One preprocessing
step is performed to divide its clients into clusters and to compute only
the correlation information between these clusters. The current version
of this clustered correlation matrix has dimension 1513 which is quite
reasonable. All experiments in this section are carried out on this matrix.

In order to obtain a low-rank non-negative approximation of the
correlation matrix, the RRISNMF algorithm and the symmetric mul-
tiplicative rules (SMULT) have been used for increasing values of the
number of factor K of systematic risks. This number K is also equal
to the rank of the non-negative factorization of C. Figure 7.9, 7.10 and
7.11 present the behavior of both algorithms (RRISNMF and SMULT) in
calculating low-rank approximations (rank = 5, 20 and 50) of the correla-
tion matrix. It is easy to see that the RRISNMF algorithm converges in
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Figure 7.9: Rank-5 Approximation of the Correlation Matrix. (a) shows the
relative approximation error ‖C−UVT‖F/‖C‖F and (b) shows the asymmetry
penalty ‖U −V‖F.

Figure 7.10: Rank-20 Approximation of the Correlation Matrix. (a) shows the
relative approximation error ‖C−UVT‖F/‖C‖F and (b) shows the asymmetry
penalty ‖U −V‖F.
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Figure 7.11: Rank-50 Approximation of the Correlation Matrix. (a) shows the
relative approximation error ‖C−UVT‖F/‖C‖F and (b) shows the asymmetry
penalty ‖U −V‖F.

less iterations than the SMULT algorithm. Both the approximation error
‖C−UVT‖F and the asymmetry penalty ‖U−V‖F decrease faster with
the RRISNMF algorithm.

In Figure 7.12, the error between the approximated non-negative
factorization and C is compared with the error obtained without im-
posing the non-negativity of the factorization (i.e. by using the SVD
decomposition).

Given the approximation of successive ranks, one may ask whether
these approximations are coherent. We use the canonical angles be-
tween two subspaces to measure the coherence between the successive
approximation. Given two approximation UUT and U′U′T of C, we first
calculate their SVD:

UUT = EΣET and U′U′T = E′Σ′E′T

where E and E′ are orthonormal; Σ and Σ′ are diagonal. The canonical an-
gles θt between E and E′ are defined by cos(θt) = σt where σ1, σ2, . . . , σk
are the singular values of the matrix ETE′. The canonical angles are close
to 0 when the singular values are close to 1. We calculate the cosines of
the canonical angles between all successive approximations UiUT

i and
Ui+1UT

i+1 for all i = 1, 2, ..., 49 and plot them in Figure 7.13. For each pair
of approximations, i.e. UiUT

i and Ui+1UT
i+1, we connect all the cosines
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Figure 7.12: Low Rank Approximation of the Correlation Matrix

by a solid line. One can see that most of the angles are close to 0, which
shows some agreement between the successive spaces.

Note that, for each approximation, a new initial approximate factor-
ization is generated. One can use the rank-i approximation to create an
initial point for the rank-(i + 1) approximation by adding a random col-
umn to U. This will make approximations even more coherent between
the successive ranks.

As we can see, the RRISNMF algorithm performs very well in prac-
tice. With this approach, using 10 systematic risks instead of using a
single factor approach allowed to reduce the error on the correlations by
a factor 3, while still preserving the numerical tractability of the model.
We believe that this is a substantial improvement.

Note that the RRISNMF algorithm can be used in any problem where
the entries of the matrix C or any product of the type vTCv have to
be evaluated frequently, since the complexity for this is substantially
reduced when using the low rank approximation, while the accuracy is
still very good.
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Figure 7.13: Cosine of the canonical angles between successive approximations



CONCLUSION

Starting from some problems of data analysis in large graphs, the first
results of this research came from some large nonnegative matrices
representing the adjacency matrix of graphs. Many proposed methods
such as the Markov Graph Clustering (MCL) [117] work very well for
small problems. But applying these to large scale problems require
a large memory space and computational cost. This tells us that low
complexity should be one of the main criteria considered when choosing
a method.

A further study of clustering methods reveals that clustering algo-
rithms actually provide a way to reduce the complexity of the data by
exploiting the cluster structure. For example, the K−means method [72]
represents each group of data points by its centroid. The whole dataset
is then represented by the centroids only, which provide a great com-
plexity reduction. However, this yields a big approximation error. The
advantage of K−means methods is that the centroid is always situated
in the proximity of the data and reflects the physical interpretation of
the represented group.

Returning to large nonnegative matrices, our objective was set to find
approximation algorithms which can yield a small error while keeping
the physical representation of the data. Then the nonnegative matrix
factorization [80] was a perfect starting point. Algorithms proposed by
this paper possess a low complexity and produces nonnegative bases,
which matches our expectation. Studying this method, we came to the
following conclusions:

• The convergence of these algorithms requires more investigation.
One can obtain a non stationary point if zeros are not properly
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treated, as shown in Section 3.1.

• A nice property of the nonnegative matrix factorization can be es-
tablished when using the generalized Kullback-Leibler divergence
as the cost function. It can be seen in Chapter 5 that, the row and
column sums are preserved in the approximation.

• Multiplicative rules can be extended to the weighted cases. And
thanks to this, an interesting link is revealed between the mini-
mization of the weighted Euclidean distance and the generalized
Kullback-Leibler divergence. The use of weights is discussed in
Chapter 6.

• A special case where a symmetric factorization UUT is required
links the nonnegative matrix factorization to the class of com-
pletely positive matrices. While exact methods have exponential
complexity, approximative methods can be derived from the al-
gorithm of Lee and Seung. This proves useful when applied to
the problem of approximating correlation matrices and clustering
vertices of graphs as shown in Section 7.

While the convergence of the multiplicative rules remains unclear,
we seek for alternative methods. We remark that all methods are us-
ing the coordinate descent scheme, i.e. only some search directions
are allowed. This breaks down the problem into smaller ones that are
usually convex. The popular partition of variables allows us to create
some completely decoupled problems which sometimes can be solved
in parallel. But although the elementary problem is convex, the solution
of the inner loop can be very time consuming. Improvements are made
by replacing the optimal solution of the elementary problem by a subop-
timal solution. This does speed up the algorithms but the convergence
property is lost.

In the search for a new algorithm, we then propose another way to
partition the variables. The approximation matrix UVT is now parti-
tioned into a combination of rank-one nonnegative matrices uivT

i . Break-
ing the nonnegative matrix factorization problem into smaller problems
according to the sub-variables ui’s and vi’s allows us to formulate a
closed form solution for each of the elementary problems. Because the
problem is reduced to a problem of iteratively approximating a residue
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matrix by a rank-one nonnegative matrix, this method is called Rank-one
Residue Iteration. The development of the method is presented in Chapter
4, where a good convergence property is also established. Two other
independent reports [31] and [49] also proposed this algorithm.

The new algorithm is tested on some numerical experiments to show
that it converges faster than the existing algorithms. Without parameters,
it is ready to apply to any application. The algorithm requires at each
iteration only one matrix-vector multiplication, and therefore has a low
complexity. We summarize here some other issues around the Rank-one
Residue Iteration:

• It can be applied to other classes of nonnegative approximations
such as: discrete approximations, sparse approximations, etc. The
choice of constraints can be different from column to column of U
and V, cfr. Section 4.4.

• Algorithms can be derived for the multilayer nonnegative matrix
factorization (see Section 4.6.1) and the nonnegative tensor factor-
ization (cfr. Section 4.6.2). The numerical experiments at the end
of Chapter 4 suggest that the nonnegative tensor factorization can
provide comparable results with that of the SVD, given the same
compression rate.

• It can be adapted to take into account weights, see Section 6.2.2
and to construct the symmetric factorizations of type UUT and
USUT, cfr. Section 7.2.2 and Section 7.2.2.

There remains several open issues. The first one is the convergence of
the multiplicative rules. While the algorithm may return non stationary
points, it is still uncertain about whether this is solely due to the finite
precision of the computer. Section 3.1 points out that it is probably true
that starting from a positive point, with a clever treatment of the zeros,
one could improve the convergence of this elegant algorithm.

The second issue is about the existence of many local minima. When
representing the rank-k matrix by the product UVT with appropriate
sizes, too many degrees of freedom are added to the problem. This
creates many local minima. Current applications often take one of these
local minima ignoring the others. It is shown through an example in
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Section 7.2.2 that not every local minimum is good. While the use of
nonnegative matrix factorization generates an asymmetric approxima-
tion with large error, this is shown that by controlling the minimization
procedure to a symmetric factorization, the result is significantly im-
proved.

Studying these issues definitely opens many promising research
directions. Here are a number of issues that could bring many immediate
consequences:

• designing good and cheap techniques to initialize any nonnegative
matrix factorization algorithm,

• creating a heuristic of which constraints need to be imposed to
obtain a desired approximation,

• testing the block version of RRI algorithm. At the time of writing,
it is possible to create updates for two columns of U (or of V) at
the same time. We should then ask if it is possible to update even
more columns simultaneously and in which order,

• searching for direct methods for the symmetric and semi-symmetr-
ic nonnegative matrix factorization to avoid the use of regulariza-
tion,

• studying higher dimensional analysis such as the nonnegative
tensor factorization,

• and searching for methods with a algorithmic complexity bound.
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