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ABSTRACT 
 
Presented is an easy to use and broadly applicable method for tuning PID controllers for integrating 
processes. Details are presented on the requirements for collecting closed loop dynamic process test data 
near the design level of operation, the fitting of an integrating dynamic model form to this test data and 
correlations for computing controller tuning values based on the parameters from the resulting model fit.  
  
The method presented is applicable to PID control algorithms in both the interacting and non-interacting 
derivative forms. The work builds on the work of Chien and Fruehauf [8] and their use of the internal 
model control (IMC) structure to derive tuning correlations for integrating processes. One novel 
contribution of this work is the extension of the tuning correlations to include the PID with derivative 
filter forms. 
 
The design and tuning method is demonstrated on process simulations for both set point tracking and 
disturbance rejection. Results show that the methods described here compare favorably with other more 
computationally intensive approaches.  

 
 

INTRODUCTION 
 
Self-regulating processes seek a natural steady state operating level in open loop if the manipulated and 
disturbance variables are held constant for a sufficient period of time. It is not uncommon for some 
temperature, level, pressure and other measured process variables to move in an unbounded manner 
when perturbed in open loop by a manipulated or disturbance variable. Such behavior is characteristic of 
integrating (non-self regulating) processes. 
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Integrating processes are surprisingly challenging to control. They can move to extreme and even 
dangerous levels if left unregulated, so it is often necessary to tune controllers on such processes in 
closed loop. An additional challenge is that the tuning correlations proven for self regulating processes 
can yield poor performance when applied to integrating processes. 
 
The design and tuning of controllers for both self regulating and integrating processes follows a simple 
three step procedure: collect closed loop dynamic process data, fit the data with a simple linear model, 
and use the model parameters in correlations to obtain PID tuning parameter values. This procedure is 
detailed and demonstrated in the remainder of this paper.  
 
 

FORMS OF THE PID CONTROL ALGORITHM 
 

Vendors offer different forms of the PID algorithm. The two most popular forms are explored here. Both 
forms are identical in capability but require slightly different correlations for tuning. One form is referred to 
under a variety of names including the ideal, non-interacting and ISA algorithm [1-3]. In this work it will 
be referred to as the ideal form. The ideal PID transfer function is expressed: 
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The other PID form is interchangeably referred to as the interacting, series and industrial form [4]. In this 
work it will be referred to as the interacting form. The interacting PID algorithm is expressed: 
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The PID controller has well-known difficulties when there is noise in the measured process variable y(t) 
[5]. Specifically, derivative action causes measurement noise to be amplified and reflected in the 
controller output signal u(t). This is because a noisy signal produces conflicting derivatives as the 
measurement slope appears to dramatically alternate direction at every sample. The measurement derivative 
can alternate between a large increasing slope followed by a large decreasing slope, sample after sample. 
The result is a series of alternating and compensating controller actions that can cause performance to 
degrade and in some cases lead to controller instabilities. 
 
To improve performance when there is noise or random error in the measured process variable, the PID 
algorithm is modified with a derivative filter. This filter limits large control moves by subtracting some 
fraction of the derivative of the control action from the calculated controller output. A large control 
move has a large derivative, and it is this undesirable action that is dampened by the filter. The extent of 
filtering is regulated by the filter constant, α.   
 
The ideal PID with derivative filter [6] has the transfer function: 
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The interacting PID with derivative filter form [2,3,7,8] is expressed: 
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CONTROLLER DESIGN AND IMC TUNING 
  
Designing any controller from the family of PID algorithms entails:  
 - collecting dynamic process data as near as practical to the design level of operation,  
 - fitting a simple linear model to the process data, and  
 - using the resulting model parameters in correlations to obtain initial controller tuning values.  
 
For integrating processes, dynamic test data is often collected in closed loop to maintain stability. In the 
examples presented here, the process is under P-Only control and controller tuning has been tweaked 
enough to maintain a reasonably steady operation. The set point is then stepped far enough such that the 
resulting controller output change forces a clear response in the measured process variable. The process 
data is recorded during this transient event. 
 
The next step is to fit this dynamic test data with a simple linear model. For non-self regulating 
processes, the appropriate model is the first order plus dead time integrator (FOPDT Integrator) form, 
expressed: 
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Where  Kp
* is the integral process gain and has units of [y(t)/(u(t)·t)] 

 θp is dead time and has units of time, t. 
 
The parameters from this model fit are then used in tuning correlations to obtain controller tuning 
values. The correlations used here are derived from the IMC block diagram [6,8,9], shown in Fig. 1: 
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FIG. 1 - IMC BLOCK DIAGRAM 
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The controller transfer function obtained from this block diagram is expressed: 
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Using the procedure outlined in Chien and Fruehuaf [8], tuning rules are derived for the entire family of 
PID controllers is listed in Table 2. The PID w/ filter correlations are a novel contribution of this work. 
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TABLE 2 – IMC TUNING CORRELATIONS FOR FOPDT INTEGRATOR PROCESSES 

 
The IMC method includes a closed loop time constant, τC, that is used to adjust controller performance. 
A larger τC provides for a slower, conservative response with a long settling time, while a smaller τC 
provides for a more rapid and aggressive response with a shorter settling time. Tyreus [10] suggests that 
τC can be computed from the process dead time as: 
 

10τC pθ=  (7) 

 
 

 IMPLEMENTATION EXAMPLES 
 
Controller performance can be evaluated in terms of set point tracking, disturbance rejection or both. 
The IMC tuning correlations offer reasonable tuning for any of these criteria. Good performance can be 
defined many ways. This work presents examples where a compromise is sought between settling time 
and overshoot while minimizing the “chatter” in the controller output. All examples in this work use the 
Control Station® software package (www.controlstation.com) for simulation, analysis and plotting. 
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EXAMPLE 1 
Figure 4 shows the pumped tank case study from Control Station. The measured process variable is 
liquid level. To maintain level, the controller manipulates liquid flow rate out of the bottom of the tank 
by adjusting a throttling valve at the discharge of a constant pressure pump. The disturbance variable is 
the flow rate of a secondary feed to the tank. The height of liquid in the tank does not impact the 
discharge flow rate. As a result, when the total flow rate into the tank is greater than the discharge flow 
rate, tank level will continue to rise until the tank is full, and when the total flow rate into the tank is less 
than the discharge flow rate, the tank level will fall until empty. Therefore, both the disturbance and 
manipulated variable have integrating effects on the process variable. 
 
 

 
 

FIG. 4 – THE PUMPED TANK INTEGRATING PROCESS 
 
 
Using the controller design procedure discussed in previously, tank level is stabilized with a P-Only 
controller. Dynamic process data is generated by stepping the set point around the design level of 
operation enough to see a clear response in the measured process variable. A dynamic FOPDT Integrator 
model is fit to the closed-loop response data.   
 
Inspection of the model fit in Fig 5 shows that the model fit reasonably describes the dynamic behavior 
of the process with an integral gain of -0.022 m/(%·min) and dead time of 1.1 min, or: 
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Using Eq. 7, the predicted closed loop time constant is:  
 

5.310 == pC θτ min (9) 
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FIG. 5 – FOPDT INTEGRATOR MODEL FIT FOR THE PUMPED TANK PROCESS 

 
 
 

Substituting this closed loop time constant and the above FOPDT Integrator model parameters into the 
correlations for the PID Ideal controller in table 2 yields the tuning values: 
 
 

        PID Ideal  KC  =  -22.9 %/m           τI  = 8.0 min τD  = 0.51 min 
        PID Ideal w. Filter KC  =  -19.5 %/m           τI  = 8.5 min τD  = 0.51 min           α = 0.64 
        PID Inter. w. Filter KC  =  -18.28 %/m         τI  = 8.0 min τD  = 0.55 min           α = 0.59 
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FIG. 6 – EFFECT OF NOISE ON THE DISTURBANCE REJECTION PERFORMANCE 
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Figure 6 shows the disturbance rejection performance for the Pumped Tank under PID control. The first 
disturbance rejection segment shows the performance of the ideal PID algorithm when process noise is 
set to zero. The second and third segment shows that the ideal and interacting PID w/ filter algorithms 
behave the same in the presence of noise. Note that controller tuning is different for the ideal and 
interacting forms as detailed in Table 2. Also note that the filtered algorithm in the presence of noise 
(segments 2 and 3) performs similar to the unfiltered algorithm with no noise (segment 1). The last 
segment shows that with no filter, the PID algorithm causes dramatic chatter in the controller output. 
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FIG. 7 – EFFECT OF NOISE ON SET POINT TRACKING PERFORMANCE 

 
Figure 7 shows set point tracking performance for the Pumped Tank. The first set point tracking 
segment shows the performance of the ideal PID algorithm with the process noise set to zero. The 
second segment shows that the ideal PID w/ filter in the presence of noise performs similar to the 
unfiltered algorithm with no noise (segment 1). The last segment again shows that with no filter, the PID 
algorithm causes dramatic chatter in the controller output. 
 
 
EXAMPLE 2 
A widely published example of an integrating process used for PID tuning comparisons [10-15] is: 
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The process transfer function GP(s) of Eq. 10 is implemented in Control Station with normally 
distributed random error to approximate noise in the measured process variable. The disturbance transfer 
function GD(s) of Eq. 10 is the disturbance model used for the disturbance rejection scenarios. 
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Rather than simply plugging the known process model parameters into the tuning correlations, the 
design procedure described earlier is followed here. Hence, the transfer function process is stabilized 
with a P-Only controller and dynamic process data is generated by stepping the set point at the design 
level of operation. A FOPDT Integrator model is fit to the data as shown in Fig. 8. 
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FIG. 8 - FOPDT INTEGRATOR FIT OF CLOSED LOOP DATA 

 
Visual inspection of the FOPDT Integrator model fit in Fig. 8 shows a reasonable description of the 
dynamic process behavior of Kp

* = 0.053 and θp = 6.0. Using these model parameters in the IMC tuning 
rules of Table 2, PID w/ Filter tuning parameters are computed and listed in Table 9, along with tuning 
values published using different methods proposed by other researchers.  
 

 IMC Luyben Wang/Cluett Z-N 
Kc 1.5 2.4 2.0 3.0 
τI 47 52.5 31.2 12 
τD 2.8 3.8 1.6 3 
α 0.64 0.1 .16 0.1 

 
TABLE 9 - PID WITH FILTER TUNINGS COMPUTED BY DIFFERENT METHODS 

 
Luyben [12] in Table 9 uses the classical frequency-response method where the favored maximum 
closed-loop log modulus is specified. Wang and Cluett [13] use the desired control signal trajectory as a 
performance specification to solve for the PID controller parameters in the frequency domain.   The 
Ziegler Nichols [12] brings the process to the brink of stability to determine the ultimate gain and 
ultimate period, and calculate their parameters based off of these values. 
 
Figure 10 shows the set point tracking capabilities of the PID w/ filter controller using the four sets of 
tuning parameters in Table 9. As shown, the IMC method provides equal performance in set point 
tracking and superior filtering of excessive controller action when compared to the other methods. It is 
important to recognize that simply increasing the filter constant for the other methods will not provide 
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improved filtering while maintaining identical performance. All the tuning parameters work together 
and if the filter constant is increased, the other values must be adjusted to prevent the controller from 
becoming too sluggish.  
 
The larger gain present in the Ziegler Nichols tunings produces a larger overshoot in the set point 
tracking control objective, but is faster to recover from a disturbance introduced to the system.  As 
evident by this result, there is a definite tradeoff between the set point tracking and disturbance rejection 
scenarios. The larger gain helps the disturbance rejection, but increases the amount of overshot in the set 
point tracking. 
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FIG. 10 - SET POINT TRACKING PERFORMANCE FOR THE EQ. 10 PROCESS 

 
Figure 11 shows the disturbance rejection performance for the Eq. 10 process using the tuning values 
listed in Table 9. Again, the IMC tuning parameters provide superior filtering capability. 
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FIG. 11 - DISTURBANCE REJECTION PERFORMANCE FOR THE EQ. 10 PROCESS 
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Figure 11 shows that the IMC disturbance rejection performance has a larger maximum deviation 
compared with the other methods, though the settling time is comparable with that of Luyben and Wang 
and Cluett. Interestingly, Ziegler Nichols provides the best performance while exhibiting the largest 
chatter in the controller signal. Beyond that, the concept of bringing process to the brink of stability as 
required by the Ziegler Nichols method is not the preferred method by operations personnel. 
 

CONCLUSION 
An easy to use and broadly applicable method for tuning PID controllers for integrating processes has 
been detailed and demonstrated. The method, based on IMC, entails collecting closed loop dynamic 
process test data near the design level of operation, fitting an integrating dynamic model to this test data 
and using the resulting model parameters in correlations to compute controller tuning values. 
  
Tuning correlations for PID with interacting and non-interacting derivative forms and PID with 
derivative filter are presented. Demonstrations of set point tracking and disturbance rejection show that 
the method compares favorably with other more computationally intensive approaches.  
 

NOMENCLATURE 
Kp   =  process gain [y/u] 
Kp

*   =  integral gain [y/(u·time)] 
θp  = dead time [time] 
Kc  = controller gain [u /(y·time)] 
τD  = derivative time [time] 
α  = derivative filter constant 
τC  = closed loop time constant [time] 
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