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Why now?
Machine Learning

Gartner predicts that by 2017, 20% of all market 
leaders will lose their number one position to a  

company founded after the year 2000 due to a lack of 
digital business advantage.
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An effort to focus ML resources on Campus
Machine Learning @ GT Center

A joint effort of Computing, Engineering, and Sciences on GT Campus. 

‣ Effort to unify and focus Machine Learning expertise on GT campus

‣ Brings together 50 - 80 faculty on campus involved in Machine Learning, Analytics, and Data

‣ Facilitate interaction of industry and other outside entities with ML @ GT

‣ Catalyst to define our leadership in Machine Learning

‣ Strong focus on combining Computing, Engineering, and Sciences

‣ Application focus areas: Aerospace, Manufacturing, Logistics/Supply Chains, Mechanical Eng, 
Industrial and Systems Engineering, …

‣ Strong focus on collaborations with industry and government to translate innovation

‣ Leadership.

‣ Irfan Essa, College of Computing (Director) 

‣ Sebastian Pokutta, College of Engineering (Associate Director for Research)

‣ Justin Romberg, College of Engineering (Co-Associate Director for Academics)

‣ Karim Lounici, College of Sciences (Co-Associate Director for Academics)
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Convergence of three key enablers
Data Science, Machine Learning, and Analytics

Three major factors accelerated Machine Learning. 

‣ Advances in Computing (Hardware)

‣ Extreme performance via GPU computing

‣ Very small and cheap

‣ Advances in Algorithms (Software)

‣ New generation of Machine Learning algorithms

‣ Deep Learning and Reinforcement Learning 

‣ Advances in Sensor Technology (Data)

‣ High-performance and cheap sensors

‣ Large amounts of data

Disposable,	in-situ	
sensing	and	computing

Access

Price
Size

Parallela Board.
18 cores, 1 GB RAM

$149.00



Feedback Loop: Measure, Learn, Optimize
Data Science, Machine Learning, and Analytics

Learn

OptimizeMeasure

Machine Learning = Gaining insight from Data using Computers



Feedback Loop: Measure, Learn, Optimize
Data Science, Machine Learning, and Analytics

Learn

OptimizeMeasure

reducing cost 

big data 
forecasting 

just-in-time market design  

data center 

material flow 

predictions 

online learning 

scheduling 

dispatching 

pricing scenario analysis 

stress testing 

virtual factory 

model calibration 

design optimization 
revenue management 

algorithmic marketing 

routing 
mechanisms 

data mining 

customer segmentation 
regression 

dynamic systems  

Machine Learning = Gaining insight from Data using Computers



Data-driven discovery
Data Analysis and Learning

  

“If it is real it is in the data”  

Usual  
Suspects

Cognos

Excel

OrangeSPSS

Oracle

R SAS

Rapid Miner

extracted trend

‣ Data analysis and curation is the basis for all 
other quantitative methods
‣ Data consistency throughout company is key 

(master scales, data warehouses, etc.)

‣ Typically, weakest link: industry is not collecting 
the right data which inhibits use of analytics

‣ Recent trends from description to learning
‣ machine learning at several large companies

The machine learns



  

“Given current and future operating constraints what are the optimal decisions” 

Usual  
Suspects

CPLEX

Gurobi

GLPKGAMS

SAP APS

Solver Mosek

Bonmin

optimal solution

‣ A lot of production-ready methods available
‣ black-box solvers that get a standardized 

problem file  

‣ Very efficient for real-world problems (up to 
millions of decision variables)  

‣ Dispatching/scheduling-heavy industries (e.g., 
airlines) rely on optimization

The machine decides

Optimal decisions
Decision Making and Optimization



  

“Complex systems typically do not admit closed-form solutions” 

Usual  
Suspects

Simio

Stella

DynamoNumerix

Simulink

Plant Simulation PowerSim

Modelica

The machine explores

‣ Scenario analysis is a basic form simulation

‣ Simulation plays key role to model material 
flow through facilities

‣ Allows for exploring responses of dynamic 
systems to changing parameters

‣ Standard tool in Engineering (FEM), Banking 
(Pricing and Risk Management), and Supply 
Chain Management (Material Flow)

flow through network

Exploring complex systems
Scenario Analysis and Simulation
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Industry 4.0, Industrial Internet, and Internet of Things
Cyber-Physical Systems



Autonomous Vehicles
Cyber-Physical Systems

Cyber-Physical Systems = Machine + Sensors + Computing  

‣ Robotics and Intelligent machines (self-driving cars, drones, material handling, …)
‣ Motivation: create truly intelligent machines 

‣ Autonomous vehicle are a prime example of the fusion of physical and digital
‣ Most technical challenges considered to be solved

‣ Many companies work on a car. 



In-Situ Machine Learning
Cyber-Physical Systems

Parallela Board.
18 cores, 1 GB RAM. $149.00

NVIDIA Jetson TX1
256 cores, 4 GB RAM. $300.00 (est)

Ultra-smart embedded systems.

‣ Process signals and data right where the sensors capture it

‣ Low energy consumption and price point

‣ Very high performance 

‣ Jetson TX1
‣ embedded GPU enabled for deep learning
‣ 256 cores and 4 GB RAM
‣ up to 1 TFLOP/s GPU performance @ 10 W energy cons.

‣ Parallela board
‣ 18 cores and 1 GB RAM
‣ up to 32 GFLOP/s @ 5W energy cons.

‣ Fathom Neural Compute Stick
‣ VPU for Embedded Neural Networks
‣ up to 150 GOPS/s @ < 1W energy cons.
‣ USB plug-and-learn

Fathom Neural Compute Stick
VPU, 512 MB RAM. $99.00 (est)



A revolution in Machine Learning
Deep Learning

2012 2014

“off-the-shelf”“custom-made”

High-accuracy real-time image recognition: cats vs. dogs 

‣ GPU based machine learning is a huge trend
‣ cheaper and extreme performance
‣ 1.2m training images
‣ 2 weeks training time = 25 exaflops to train system
‣ Impossible 5 years back



AlphaGo's victory was a major milestone in artificial intelligence research. 

‣ Go is extremely complex and cannot be solved via enumeration (unlike Chess)

‣ Compared to Deep Blue or Watson,  AlphaGo's underlying algorithms are more general-purpose 
=>  potential evidence for progress toward artificial general intelligence

‣ Go was believed to be outside of the realm of current technology by most experts

A revolution in Machine Learning
Deep Learning

“Go is a complex board game that requires intuition, 
creative and strategic thinking. […] Many in the field of 

artificial intelligence consider Go to require more 
elements that mimic human thought than chess.” 

Mathematician I. J. Good in 1965



Huge trend: Dedicated Machine Learning Hardware for Deep Learning applications 

‣ Extreme performance: 170 TFLOP/s @ 3200W in 3U unit
‣ 24 x faster than Titan X (state of the art GPU, 7 TFLOP/s)
‣ 250 x faster than standard x86 server (two-socket Intel Xeon E5-2697 v3)

‣ All production capacity of NVIDIA has been absorbed by hyper-scalers up to end of 2017
‣ Huge strategic advantage for these companies
‣ Ability to solve problems that are inaccessible to other approaches 

 
‣ Machine Learning Arms Race has started

A revolution in Machine Learning
Deep Learning

NVIDIA DGX-1
170 TFLOP/s, $130,000 
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Overview
Applications of Machine Learning

Source: TATA Consultancy Services



From reactive to proactive
Predictive and Prescriptive Maintenance

Three evolutionary stages of maintenance.

‣ Reactive maintenance 

‣ Mostly done today

‣ Predictive maintenance 

‣ Monitor system and predict imminent failure
‣ Mostly predictive but no optimal decisions

‣ Prescriptive maintenance 

‣ Fully-integrated maintenance planning including spare parts logistics and workforce scheduling
‣ Integrates machine learning and decision making 

‣ Differentiator and strong value proposition

E-Commerce System Printing presses Gas turbines



From reactive to proactive
Predictive and Prescriptive Maintenance

‣ Goal: Minimize operational cost of assets and improve asset availability

‣ Preemptive Maintenance to reduce risk of unexpected failure

Typical setup.

‣ Starting point is a population-based statistical model of the failure time distribution

‣ Model derived from historical data

‣ Sensors collect data about asset condition 

‣ Challenges arrive from fusing data from thousands of sensors

‣ Collected data is used to update the model 

‣ Traditionally, Bayesian approaches to update models

‣ More recently, Recurrent Neural Networks (RNNs) to handle learning and updating



From reactive to proactive
Predictive and Prescriptive Maintenance

The next generation.

‣ Strong combination with online decision making

‣ Dynamically adjust performance parameters and operational envelope as function of asset state

‣ In-situ learning and processing of data

‣ Can handle higher data bandwidth in-situ

‣ Sent-off preprocessed data for ex-situ analysis

‣ Derivation of high-dimensional failure mode features from neural networks

‣ Provide compact representations for ex-situ processing

‣ Can be fed into other statistical approaches as input



Automatic Exploration and Optimization of Design Space
Real-time Manufacturing Optimization

Example: Floating Catalyst Synthesis Process for Carbon Nanotubes (CNT)

‣ More than 20 design parameters (continuous and discrete) govern the synthesis process

‣ Parameters can be adjusted throughout the process

‣ Various surrogate models have to be learned throughout the experimentation process

‣ Physics-based models have to incorporated as priors of varying strength

Goal: Maximize yield given constraints on purity, alignment, etc. (scale-up manufacturing)



Automatic Exploration and Optimization of Design Space
Real-time Manufacturing Optimization

Two tasks that have to executed simultaneously

‣ Learn a model of the synthesis process

‣ Predict effect of varying a parameter

‣ Critical, as otherwise the whole design space has to be probed 

‣ Determine optimal process parameters and parameter change

‣ Optimize e.g., purity, alignment, yield

‣ Given various synthesis constraints

‣ Two types of feedback provided

‣ Actual outcome of synthesis process

‣ In-line measurements, such as, Raman, x-ray, ccd, tension, furnace temperature



Automatic Exploration and Optimization of Design Space
Real-time Manufacturing Optimization

The next generation.

‣ Integration of Deep Learning techniques

‣ Deep Reinforcement Learning for process control and integrated learning and optimization

‣ Convolutional Neural Network (CNN) approaches for image analysis (CCD)

‣ Temporal modeling via Recurrent Neural Networks (RNN)

‣ In-situ learning and processing of data

‣ Deploy integrated system GPUs (e.g., Jetson TX-1) directly in the experimentation system

‣ Shorter Feedback loops



Thank you  
for your attention!

Sebastian Pokutta
David M. McKenney Family Early Career Professor 
Associate Director for Research, Center for Machine Learning @ GT 
Director, Laboratory for Interactive Optimization and Learning 

Georgia Institute of Technology


