
Using MATLAB for Linear Algebra

This is a collection of basic information and techniques for using MATLAB to explore matrix

properties, manipulations, and identities. These only address “numerical” (x is a particular number

or vector of numbers or matrix of numbers) rather than “symbolic” (x is a variable without any

particular value) functions of MATLAB.

1. Overview: General Things to Know

a. π is pi and
√
−1 is either i or j.

b. MATLAB versions of common functions (these are applied element-by-element if the

argument is a vector or matrix):

Function MATLAB Example

xn x^n x2 −→ x.^2

ex exp(x) e−5 −→ exp(-5)

ln x log(x) lnπ −→ log(pi)

sinhx, cosh x sinh(x), cosh(x) sinh 1 −→ sinh(1)

sinx, cos x sin(x), cos(x) cos π −→ cos(pi)

sin−1 x or arcsin x asin(x) arcsin 0.5 −→ asin(0.5)
√

x sqrt(x)
√

2.5 −→ sqrt(2.5)

There are matrix versions of exp, log, sqrt called expm, logm, sqrtm, see below.

c. You can use the ↑ and ↓ keys to move back and forth through the list of past commands

(“history”). If you bring back a previous command, you can change it (use the ← and

→ keys to move to parts you want to delete or replace or add something) and rerun the

commands (by pressing “Enter”).

d. Getting help: To find help for any function (e.g., exp), type help exp (or whatever the

function is) at the >> command prompt. Or, bring up the “Help Browser” using F1 (or

“MATLAB Help” under the “Help” menu in the main MATLAB window).

e. Use the clear statement to set all variables to zero (to avoid conflicts with previous

definitions).

2. Complex Numbers

a. Cartesian form. You can use either i or j for
√
−1 (since we’re in a physics class,

we’ll use i exclusively). If i appears in a numerical expression, MATLAB will simply

interpret the number as a complex number. For example, if we want to set z equal to

3 + 4i, simply type it in this way:

>> z = 3 + 4*i

We could even omit the * in this case, but it is best to leave it in, since we need it if we

are using a variable such as y:

1

>> x = 1/sqrt(2);

>> y = -1/sqrt(3);

>> z = x + i*y

We can use any of the standard functions (e.g., exponentials or trigonometric functions)

directly. For example,

>> sin(1-sqrt(2)*i)

ans = 1.8329 - 1.0455i

Note that the answer comes back in standard x + yi form with decimals (as opposed to

fractions or explicit π’s).

b. Polar form. If we want to enter a number in the form reiθ, we just use the exp function:

>> r = 1;

>> theta = pi/6;

>> z = r*exp(i*theta)

z = 0.8660 + 0.5000i

Note that the answer comes back in Cartesian form.

c. Arithmetic with complex numbers. All of the standard operations (+ - * /) will

work as expected (i.e., correctly) with complex numbers.

d. Complex conjugate. The function conj takes the complex conjugate:

>> conj(2-3*i)

ans = 2.0000 + 3.0000i

e. Real and imaginary parts. The functions real and imag do the trick:

>> z = (1 + i)/(2 - i);

>> real(z)

ans = 0.2000

>> imag(z)

ans = 0.6000

Note that you always end up with the decimal version of numbers.

f. Modulus and angle. You can find r and θ using the abs and angle functions:

>> z = 2 * exp(i*pi/4)

z = 1.4142 + 1.4142i

>> abs(z)

ans = 2

>> angle(z) % answer should be pi/5 = 0.7854

ans = 0.7854

2

3. Creating Vectors and Matrices and Accessing Elements

Both vectors and matrices are specified by entries between []’s with semicolons ; used to

separate rows. So

A =









1 −2 1

2 −5 4

−1 3 −2









B =









3

4

5









C =
(

3 4 5
)

are entered as

>> A = [1 -2 1; 2 -5 4; -1 3 -2]

A =

1 -2 1

2 -5 4

-1 3 -2

>> B = [3; 4; 5]

B =

3

4

5

>> C = [3 4 5]

C =

3 4 5

To get the “ij” matrix element of A, use A(i,j). So

>> A(1,2)

ans = -2

>> A(2,2)

ans = -5

The nth row is A(n,:) and the mth column is A(:,m). So the 2nd row and 3rd columns are:

>> A(2,:)

ans =

2 -5 4

>> A(:,3)

ans =

1

4

-2

3

4. Special Matrices

a. For a 3× 3 unit matrix, use eye(3) while for N ×N use eye(N).

b. zeros(N) is an N×N matrix of zeros while zeros(1,N) is an N -dimensional row vector

of zeros and zeros(N,1) is an N -dimensional column vector of zeros.

c. ones(N) is an N ×N matrix of ones while ones(1,N) is an N -dimensional row vector

of ones and ones(N,1) is an N -dimensional column vector of ones.

d. Random matrices. Use rand(N) to generate an N × N matrix whose entries are

random numbers uniformly distributed between 0 and 1. E.g.,

>> M = rand(3)

M =

0.1239 0.4238 0.0785

0.7745 0.1592 0.7084

0.1123 0.2949 0.0181

The numbers are really “pseudo-random” numbers. See help rand for more info. To

generate a uniform distribution of random numbers on a specified interval [a,b], multiply

the output of rand by (b-a), then add a. For example, to generate a 5-by-5 array of

uniformly distributed random numbers on the interval [10,50],

>> a = 10; b = 50;

>> x = a + (b-a) * rand(5);

e. Random complex matrix. We can combine a real and an imaginary random matrix

to get a complex one:

>> C = rand(3) + i * rand(3)

C =

0.8189 + 0.3162i 0.2035 + 0.3700i 0.3652 + 0.0847i

0.4283 + 0.5119i 0.5217 + 0.2280i 0.9393 + 0.6571i

0.3677 + 0.3355i 0.6054 + 0.9477i 0.4161 + 0.5234i

f. Normally distributed random matrices. Use randn(N) to generate an N×N matrix

whose entries are random numbers distributed according to a normal distribution (i.e.,

a bell-shaped curve) with mean zero and standard deviation one. E.g.,

>> M = randn(3)

M =

-0.0956 -1.3362 -0.6918

-0.8323 0.7143 0.8580

0.2944 1.6236 1.2540

4

5. Matrix Operations

a. Matrix multiplication. Ordinary matrix multiplication is performed by using *. In

contrast, .* is used for element-by-element operations (e.g., A*B is matrix multiplication

while A.*B multiplies each element in A by the corresponding one in B).

b. Inverse of a matrix. The inverse of the square matrix A is designated A−1 and is

defined by AA−1 = A−1A = I, where I is the identity matrix. We can find the inverse of

a matrix either by raising A to the −1 power, i.e., A^(-1), or with the inv(A) function.

c. Determinant of a matrix. The det function returns the determinant of a square

matrix. That is, det(A) gives the determinant of the matrix A.

d. Exponential of a matrix. The expm function returns the exponential of a matrix,

as defined by its Taylor series. So expm(A) gives eA. [Note: if you use exp(A) by

mistake (no m at the end of the name), you’ll get a matrix whose elements are each the

exponential of the corresponding matrix element in A.]

e. General matrix functions. To calculate the cosine, sine, or logarithm or a matrix A,

use funm(A,’cos’), funm(A,’sin’), or funm(A,’log’).

f. Trace of a matrix. The sum of the diagonal matrix element of matrix A is trace(A).

g. Adjoint and transpose of a matrix. The adjoint of matrix A (designated A†),

which is the complex conjugate of the transpose, is found from A’ or the function

ctranspose(A). If you want just the transpose AT of A and not the complex conju-

gate, use A.’ or transpose(A).

h. Eigenvalues and eigenvectors of a matrix. E = eig(A) gives a vector with the

eigenvalues of the matrix A. [V,D] = eig(A) gives a diagonal matrix D of eigenvalues

and a matrix V whose columns are the corresponding eigenvectors.

The nth row of M is M(n,:) and the mth column is M(:,m). So the eigenvector v1 and

eigenvalue λ1 are (using random normally distributed matrix M from above.)

>> [V D] = eig(M)

V =

0.5736 0.4791 -0.4836

0.6074 -0.5096 0.5685

-0.5495 0.7147 0.6655

D =

-0.8479 0 0

0 0.2937 0

0 0 2.4269

>> v1 = V(:,1)

v1 =

0.5736

5

0.6074

-0.5495

>> lambda1 = D(1,1)

lambda1 = -0.8479

We can verify that Mv1 = λ1v1:

>> M*v1

ans =

-0.4863

-0.5150

0.4660

>> lambda1*v1

ans =

-0.4863

-0.5150

0.4660

i. Powers of Matrices. To get A3, just use A^3, and so on.

j. Bra’s and ket’s. We associate the “ket” |V 〉 (or |1〉 or whatever) with a column vector.

The “bra” 〈V | is the adjoint of |V 〉, i.e., 〈V | = (|V 〉)†. Then 〈V |W 〉 is simply the inner

product, which is a generalized dot product. Note that 〈W |V 〉 = 〈V |W 〉∗. Examples:

>> Vket = [2; 3i]

Vket =

2.0000

0 + 3.0000i

>> Vbra = Vket’ % note that the i’s change sign

Vbra =

2.0000 0 - 3.0000i

>> Wket = [i; -1]

Wket =

0 + 1.0000i

-1.0000

>> Vbra*Wket % just row vector times column vector

ans = 0 + 5.0000i

>> Wket’*Vket % in this order, we get the complex conjugate

ans = 0 - 5.0000i

k. Unit Vectors. Given |V 〉, its magnitude is
√

〈V |V 〉, so the unit vector is |V 〉/
√

〈V |V 〉.
In MATLAB, we can use the norm function for the magnitude. E.g.,

>> Vket_unit = Vket/sqrt(Vbra*Vket) % the basic definition

Vket_unit =

6

0.5547

0 + 0.8321i

>> Vket_unit = Vket/norm(Vket) % an easier way

Vket_unit =

0.5547

0 + 0.8321i

l. Isolating the Diagonal Elements. If M is a square matrix, then diag(M) is a vector

with the matrix elements on the main diagonal. E.g., for the normally distributed

random matrix M :

>> diag(M)

ans =

-0.0956

0.7143

1.2540

To cube each diagonal element, use diag(M).^3 (note the “.” before the ^). To get

a square matrix of the same size as M but with just it’s diagonal elements and zeros

elsewere, use diag(diag(M)).

m. Random Hermitian matrices. Generate a random complex matrix A and then a

random hermitian matrix by H = (A + A†)/2.

n. Random Unitary matrices. Generate a random Hermitian matrix H as above and

then U = eiH is unitary (so UU † = I). Use the MATLAB matrix exponentiation

function expm.

6. Timing Matrix Operations

The functions tic and toc can be used to time one or more MATLAB operations (not just

matrix functions). A stopwatch is started with tic and stopped with toc, which then displays

the elapsed time. For example, to time how long it takes to calculate the determinant of a

100 × 100 matrix:

>> M = rand(100);

>> tic; det(M); toc

Elapsed time is 0.130749 seconds.

7. Condition Number

To find the condition number of a matrix, use cond(M). A number near one is good; if the

number is large the matrix is ill-conditioned. See the help for svd and gsvd to learn about

(generalized) singular value decomposition.

7

8. Solving Matrix Equations

Suppose we want to solve the simultaneous equations

3x− 2y = 17

5x + 3y = 3

We write this in the form MX = B, with M a matrix and B a column vector, then find the

desired column vector X from X = M−1B using the MATLAB inv function:

>> M = [3 -2; 5 3] % separate the rows of the matrix with ;’s

M =

3 -2

5 3

>> B = [17; 3] % note the ; to make it a column vector (two rows)

B =

17

3

>> X = inv(M)*B % regular matrix multiplication uses * (not .*)

X =

3.0000

-4.0000

That’s the answer: x = 3 and y = −4. Note: If you had defined the vector B as a row vector

instead of a column vector, you would have received an error like this:

>> B_row = [17 3] % there is no ";" so this is a row vector

B_row =

17 3

>> X = inv(M)*B_row

??? Error using ==> mtimes

Inner matrix dimensions must agree.

An alternative way to using inv to solve the equation is:

>> X = M\B % The "\" means "matrix left division"

which is actually preferred because it solves the problem much more efficiently.

9. Scripts and Functions in MATLAB

Here is a very brief introduction to scripts and functions using the my area.m script and the

circle area.m function as examples. They are run by typing the name (without the .m

ending) at the command prompt, e.g., >> my_area will run my area.m.

8

a. % is used to mark a comment to help explain what the program is doing (or supposed to

do!). Everything on a line after a % is ignored. Examples:

% This is a comment line only; no MATLAB instructions.

height = 5 % This comment might say that height is in meters

b. A semicolon ; is used at the end of a line to suppress extra output from MATLAB,

which might be distracting.

c. input is used to get a value from the user for a variable. The general form is:

variable_name = input(’message to be displayed’)

For example,

radius = input(’Enter the radius of a circle: ’);

d. disp is used for output of a message (in the form of text enclosed in single quotes) or

the value of a variable. For example,

disp(’The area is: ’)

disp(area)

e. A MATLAB function is like a script but it starts with a function declaration with a

list of outputs between []’s, then an =, then the name of the function (same as the

filename), then the list of inputs in ()’s. Example:

function [area] = circle_area (radius)

which takes radius as input and returns area.

10. Numerical Two-Dimensional Plotting

Here we outline how to make two-dimensional graphs using plot, line, and loglog, which

take arrays of numerical values as input.

a. To plot sin x from −π to +π, we first define a set of points to plot, in the form of a

vector (which is considered a 1×N matrix by MATLAB). We can specify a set of evenly

spaced points with spacing 0.1 by:

x = -pi:0.1:pi

To avoid seeing this vector printed out, add a semicolon to the end:

x = -pi:0.1:pi;

If instead we want a specified number of points (say 100), then

x = linspace(-pi,pi,100);

will do (“linspace” is short for “linear space”).

b. Then we give the x vector and the function to plot as the y vector to the plot command:

plot(x,sin(x))

which should pop up a figure window or make a new plot in an existing window (which

may be hidden by other windows). This function makes a regular linear-linear plot.

c. To add a second curve to the same graph (e.g., of cos x in the same range), use:

line(x,cos(x))

9

d. To make a log-log plot instead, we will typically want to space the points logarithmically

rather than linearly. To set x equal to 150 points from 10−5 to 102, we can use

x = logspace(-5,2,150);

To plot x2e−x from 10−10 to 101 with 200 points:

x = logspace(-10,1,200);

loglog(x,x.^2.*exp(-x))

Note that we use .^ and .* rather than ^ rather than *. The “.” means to exponentiate

or multiply (or divide, etc.) each term in the vector x, rather than trying to operate on

entire vectors or matrices. If you forget the “.” you’ll get an error message.

11. Plotting Complex Functions

We can use plotting commands with functions of a complex variable z if we take the modulus

of the function using the abs command. For example, suppose we want to plot the function

f(z) = 1/(z4 +1) in the complex plane for the real and imaginary parts of z varying from −2

to +2. Here’s an excerpt from an M-file to do this.

% Set a grid X Y with the desired range (and 20 points on each axis)

[X Y] = meshgrid(linspace(-2,2,20), linspace(-2,2,20));

% Define z = x + i*y for each point in the grid

Z = X + i*Y;

% Evaluate the function we want to study.

% Note the use of "." before operations like "^" and "/".

f = abs(1 ./ (Z.^4 + 1)); % use "abs" to take the modulus

figure(1); % figure 1 will be a surface plot

surf(X,Y,f); colorbar; % make the plot and add a color bar

xlabel(’x-axis’); ylabel(’y-axis’); % add labels x and y axes

figure(2); % figure 2 will be a contour plot

num_contours = 10; % use num_contours contour lines

contourf(X,Y,f,num_contours); colorbar; % make the plot and add a color bar

xlabel(’x-axis’); ylabel(’y-axis’); % add labels

10

