This is a collection of basic information and techniques for using MATLAB to explore matrix
properties, manipulations, and identities. These only address “numerical” (x is a particular number
or vector of numbers or matrix of numbers) rather than “symbolic” (x is a variable without any
particular value) functions of MATLAB.

Using MATLAB for Linear Algebra

1. Overview: General Things to Know

a. 7 is pi and y/—1 is either i or j.

b. MATLAB versions of common functions (these are applied element-by-element if the

argument is a vector or matrix):

Function MATLAB Example
x™ X n r? — x.72
e” exp (x) e® — exp(-5)
Inx log(x) Inm — log(pi)

sinh z, cosh x sinh(x), cosh(x) sinh1 — sinh(1)

sinx, cos sin(x), cos(x) cosm — cos(pi)

sin !z or arcsinz asin(x) arcsin(0.5 — asin(0.5)

N sqrt (x) V2.5 — sqrt(2.5)

There are matrix versions of exp, log, sqrt called expm, logm, sqrtm, see below.

. You can use the T and | keys to move back and forth through the list of past commands
(“history”). If you bring back a previous command, you can change it (use the < and
— keys to move to parts you want to delete or replace or add something) and rerun the

commands (by pressing “Enter”).

. Getting help: To find help for any function (e.g., exp), type help exp (or whatever the
function is) at the >> command prompt. Or, bring up the “Help Browser” using F1 (or
“MATLAB Help” under the “Help” menu in the main MATLAB window).

. Use the clear statement to set all variables to zero (to avoid conflicts with previous

definitions).

2. Complex Numbers

a. Cartesian form. You can use either i or j for y/—1 (since we're in a physics class,

we’ll use i exclusively). If i appears in a numerical expression, MATLAB will simply
interpret the number as a complex number. For example, if we want to set z equal to
3 4 44, simply type it in this way:

>> z = 3 + 4xi
We could even omit the * in this case, but it is best to leave it in, since we need it if we

are using a variable such as y:

>> x = 1/sqrt(2);
-1/sqrt(3);

>> z = x + ixy

>> y

We can use any of the standard functions (e.g., exponentials or trigonometric functions)

directly. For example,

>> sin(1-sqrt(2)*i)
ans = 1.8329 - 1.04551

Note that the answer comes back in standard x + yi form with decimals (as opposed to
fractions or explicit 7’s).

0

b. Polar form. If we want to enter a number in the form re?, we just use the exp function:

> 1 = 1;

>> theta = pi/6;

>> z = rxexp(i*theta)
z = 0.8660 + 0.50001

Note that the answer comes back in Cartesian form.

c. Arithmetic with complex numbers. All of the standard operations (+ - * /) will

work as expected (i.e., correctly) with complex numbers.

d. Complex conjugate. The function conj takes the complex conjugate:
>> conj(2-3%1i)
ans = 2.0000 + 3.00001i

e. Real and imaginary parts. The functions real and imag do the trick:

>z =1 +1)/(2 - 1i);

>> real(z)

ans = 0.2000
>> imag(z)
ans = 0.6000

Note that you always end up with the decimal version of numbers.

f. Modulus and angle. You can find r and 6 using the abs and angle functions:

>> z = 2 * exp(i*pi/4)

z = 1.4142 + 1.4142i

>> abs(z)

ans = 2

>> angle(z) 7% answer should be pi/5 = 0.7854
ans = 0.7854

3. Creating Vectors and Matrices and Accessing Elements

Both vectors and matrices are specified by entries between [1’s with semicolons ; used to

separate rows. So

-2 1 3
A=| 2 -5 4 B=| 4 C=(3 4 5)
1 3 -2 5

are entered as

> A =1[1-21; 2 -5 4; -1 3 -2]

A =
-2 1

2 -5 4

-1 3 -2

To get the “ij” matrix element of A, use A(i,j). So

>> A(1,2)
ans = -2
>> A(2,2)

ans = -5

The n*® row is A(n, :) and the m'™ column is A(:,m). So the 2nd row and 3rd columns are:

>> A(2,:)
ans =
2 -5 4
>> A(:,3)
ans =
1
4
-2

4. Special Matrices
a. For a 3 x 3 unit matrix, use eye(3) while for N x N use eye(N).

b. zeros(N) is an N x N matrix of zeros while zeros (1,N) is an N-dimensional row vector

of zeros and zeros (N, 1) is an N-dimensional column vector of zeros.

c. ones(N) is an N x N matrix of ones while ones(1,N) is an N-dimensional row vector

of ones and ones(N,1) is an N-dimensional column vector of ones.

d. Random matrices. Use rand(N) to generate an N x N matrix whose entries are

random numbers uniformly distributed between 0 and 1. E.g.,

>> M = rand(3)
M =
0.1239 0.4238 0.0785
0.7745 0.1592 0.7084
0.1123 0.2949 0.0181
The numbers are really “pseudo-random” numbers. See help rand for more info. To
generate a uniform distribution of random numbers on a specified interval [a,b], multiply
the output of rand by (b-a), then add a. For example, to generate a 5-by-5 array of

uniformly distributed random numbers on the interval [10,50],

>> a = 10; b = 50;
>> x = a + (b-a) * rand(5);
e. Random complex matrix. We can combine a real and an imaginary random matrix

to get a complex one:

>> C = rand(3) + i * rand(3)

Cc =
0.8189 + 0.3162i 0.2035 + 0.37001i 0.3652 + 0.0847i
0.4283 + 0.5119i 0.5217 + 0.2280i 0.9393 + 0.6571i
0.3677 + 0.33551 0.6054 + 0.9477i 0.4161 + 0.5234i

f. Normally distributed random matrices. Use randn (N) to generate an N x N matrix
whose entries are random numbers distributed according to a normal distribution (i.e.,

a bell-shaped curve) with mean zero and standard deviation one. E.g.,

>> M = randn(3)

M =
-0.0956 -1.3362 -0.6918
-0.8323 0.7143 0.8580
0.2944 1.6236 1.2540

5. Matrix Operations

a.

Matrix multiplication. Ordinary matrix multiplication is performed by using *. In
contrast, .* is used for element-by-element operations (e.g., A*B is matrix multiplication

while A.*B multiplies each element in A by the corresponding one in B).

Inverse of a matrix. The inverse of the square matrix A is designated A~! and is
defined by AA™! = A='A = I, where [is the identity matrix. We can find the inverse of

a matrix either by raising A to the —1 power, i.e., A~ (-1), or with the inv(A) function.

Determinant of a matrix. The det function returns the determinant of a square
matrix. That is, det (A) gives the determinant of the matrix A.

Exponential of a matrix. The expm function returns the exponential of a matrix,
as defined by its Taylor series. So expm(A) gives e. [Note: if you use exp(A) by
mistake (no m at the end of the name), you'll get a matrix whose elements are each the

exponential of the corresponding matrix element in A.]

General matrix functions. To calculate the cosine, sine, or logarithm or a matrix A,

use funm(A,’cos’), funm(A,’sin’), or funm(A,’log’).
Trace of a matrix. The sum of the diagonal matrix element of matrix A is trace(4).

Adjoint and transpose of a matrix. The adjoint of matrix A (designated AT),
which is the complex conjugate of the transpose, is found from A’ or the function
ctranspose (A). If you want just the transpose A” of A and not the complex conju-

gate, use A.’ or transpose(A).

Eigenvalues and eigenvectors of a matrix. E = eig(A) gives a vector with the
eigenvalues of the matrix A. [V,D] = eig(A) gives a diagonal matrix D of eigenvalues
and a matrix V whose columns are the corresponding eigenvectors.

The n'* row of M is M(n,:) and the m'™ column is M(:,m). So the eigenvector v; and

eigenvalue \; are (using random normally distributed matrix M from above.)

>> [V D] = eig(M)

V =
0.5736 0.4791 -0.4836
0.6074 -0.5096 0.5685

-0.5495 0.7147 0.6655

D =

-0.8479 0 0
0 0.2937 0
0 0 2.4269

> vl = V(:,1)

vl =
0.5736

0.6074

-0.5495
>> lambdal = D(1,1)
lambdal = -0.8479
We can verify that Mv; = Ajvq:

>> Mxvil

ans =
-0.4863
-0.5150
0.4660

>> lambdal*vl

ans =
-0.4863
-0.5150
0.4660

i. Powers of Matrices. To get A3, just use A~3, and so on.

j. Bra’s and ket’s. We associate the “ket” |V) (or |1) or whatever) with a column vector.
The “bra” (V| is the adjoint of |V, i.e., (V| = (]V))T. Then (V|W) is simply the inner
product, which is a generalized dot product. Note that (W |V) = (V|IW)*. Examples:

>> Vket = [2; 3i]
Vket =
2.0000
0 + 3.00001
>> Vbra = Vket’ % note that the i’s change sign
Vbra =
2.0000 0 - 3.0000i
>> Wket = [i; -1]
Wket =
0 + 1.0000i
-1.0000
>> VbraxWket % just row vector times column vector
ans = 0 + 5.00001
>> Wket’*Vket % in this order, we get the complex conjugate
ans = 0 - 5.00001
k. Unit Vectors. Given |V), its magnitude is \/(V[V), so the unit vector is [V)/1/(V]V).
In MATLAB, we can use the norm function for the magnitude. E.g.,

>> Vket_unit = Vket/sqrt(Vbra*Vket) % the basic definition
Vket_unit =

0.5547
0 + 0.83211
>> Vket_unit = Vket/norm(Vket) % an easier way
Vket_unit =
0.5547
0 + 0.83211

l. Isolating the Diagonal Elements. If M is a square matrix, then diag(M) is a vector
with the matrix elements on the main diagonal. E.g., for the normally distributed

random matrix M:

>> diag(M)
ans =
-0.0956
0.7143
1.2540
To cube each diagonal element, use diag(M) .3 (note the “.” before the ~). To get
a square matrix of the same size as M but with just it’s diagonal elements and zeros

elsewere, use diag(diag(M)).

m. Random Hermitian matrices. Generate a random complex matrix A and then a
random hermitian matrix by H = (A + AT)/2.

n. Random Unitary matrices. Generate a random Hermitian matrix H as above and
then U = ¢ is unitary (so UUT = I). Use the MATLAB matrix exponentiation

function expm.

6. Timing Matrix Operations

The functions tic and toc can be used to time one or more MATLAB operations (not just
matrix functions). A stopwatch is started with tic and stopped with toc, which then displays
the elapsed time. For example, to time how long it takes to calculate the determinant of a
100 x 100 matrix:

>> M = rand(100);
>> tic; det(M); toc
Elapsed time is 0.130749 seconds.

7. Condition Number

To find the condition number of a matrix, use cond(M). A number near one is good; if the
number is large the matrix is ill-conditioned. See the help for svd and gsvd to learn about

(generalized) singular value decomposition.

8. Solving Matrix Equations
Suppose we want to solve the simultaneous equations
3r—2y = 17
or+3y = 3

We write this in the form M X = B, with M a matrix and B a column vector, then find the
desired column vector X from X = M !B using the MATLAB inv function:

>> M = [3 -2; 5 3] Y separate the rows of the matrix with ;’s
M =
-2
3
>> B = [17; 3] % note the ; to make it a column vector (two rows)
B =
17
3
>> X = inv(M)*B % regular matrix multiplication uses * (not .*)
X =
3.0000
-4.0000

That’s the answer: x = 3 and y = —4. Note: If you had defined the vector B as a row vector

instead of a column vector, you would have received an error like this:

>> B_row = [17 3] % there is no ";" so this is a row vector
B_row =
17 3
>> X = inv(M)*B_row
??? Error using ==> mtimes

Inner matrix dimensions must agree.

An alternative way to using inv to solve the equation is:

>> X = M\B % The "\" means "matrix left division"

which is actually preferred because it solves the problem much more efficiently.

9. Scripts and Functions in MATLAB

Here is a very brief introduction to scripts and functions using the my_area.m script and the
circle_area.m function as examples. They are run by typing the name (without the .m

ending) at the command prompt, e.g., >> my_area will run my_area.m.

a. % is used to mark a comment to help explain what the program is doing (or supposed to
do!). Everything on a line after a % is ignored. Examples:
% This is a comment line only; no MATLAB instructions.

height = 5 J This comment might say that height is in meters

b. A semicolon ; is used at the end of a line to suppress extra output from MATLAB,
which might be distracting.

c. input is used to get a value from the user for a variable. The general form is:
variable_name = input(’message to be displayed’)
For example,

radius = input(’Enter the radius of a circle: ’);

d. disp is used for output of a message (in the form of text enclosed in single quotes) or
the value of a variable. For example,
disp(’The area is: ’)

disp(area)

e. A MATLAB function is like a script but it starts with a function declaration with a
list of outputs between []’s, then an =, then the name of the function (same as the
filename), then the list of inputs in ()’s. Example:

function [areal] = circle_area (radius)

which takes radius as input and returns area.

10. Numerical Two-Dimensional Plotting

Here we outline how to make two-dimensional graphs using plot, line, and loglog, which

take arrays of numerical values as input.

a. To plot sinz from —7 to +m, we first define a set of points to plot, in the form of a
vector (which is considered a 1 x N matrix by MATLAB). We can specify a set of evenly
spaced points with spacing 0.1 by:
x = -pi:0.1:pi

To avoid seeing this vector printed out, add a semicolon to the end:
x = -pi:0.1:pi;

If instead we want a specified number of points (say 100), then
x = linspace(-pi,pi,100);

will do (“linspace” is short for “linear space”).

b. Then we give the x vector and the function to plot as the y vector to the plot command:

plot(x,sin(x))

which should pop up a figure window or make a new plot in an existing window (which

may be hidden by other windows). This function makes a regular linear-linear plot.

c. To add a second curve to the same graph (e.g., of cosz in the same range), use:

line(x,cos(x))

d. To make a log-log plot instead, we will typically want to space the points logarithmically
rather than linearly. To set x equal to 150 points from 107° to 102, we can use
x = logspace(-5,2,150);
To plot 22e™* from 10719 to 10" with 200 points:
x = logspace(-10,1,200);
loglog(x,x."2.*exp(-x))
Note that we use .~ and . * rather than ~ rather than *. The “.” means to exponentiate
or multiply (or divide, etc.) each term in the vector z, rather than trying to operate on

W

entire vectors or matrices. If you forget the you’ll get an error message.

11. Plotting Complex Functions

We can use plotting commands with functions of a complex variable z if we take the modulus
of the function using the abs command. For example, suppose we want to plot the function
f(2) =1/(2* +1) in the complex plane for the real and imaginary parts of z varying from —2

to +2. Here’s an excerpt from an M-file to do this.

% Set a grid X Y with the desired range (and 20 points on each axis)
[X Y] = meshgrid(linspace(-2,2,20), linspace(-2,2,20));

% Define z = x + i*y for each point in the grid
Z = X + i¥Y;

% Evaluate the function we want to study.
% Note the use of "." before operations like """ and "/".
f =abs(1 ./ (Z.74 + 1)); Y% use "abs" to take the modulus

figure(1); % figure 1 will be a surface plot
surf (X,Y,f); colorbar; % make the plot and add a color bar

xlabel(’x-axis’); ylabel(’y-axis’); % add labels x and y axes

figure(2); % figure 2 will be a contour plot
num_contours = 10; % use num_contours contour lines
contourf (X,Y,f,num_contours); colorbar; Y% make the plot and add a color bar

xlabel(’x-axis’); ylabel(’y-axis’); % add labels

10

