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Introduction 3 

Introduction 

The function named in the title of this book is originated from 
the e:riled Romanian mathematician Florentin Smaranda.che, who 
has significant contributions not only in mathematics, but also in 
li~ratuIe. He is the father of The Paradorut Literary Movement 
and is the author of many stories, novels, dramas, poems. 

The Sma.randache function,~y S, is & numerical. function de­
fined such that for every positive integer n, its image Sen) is the 
smallest positive integer wh06e factorial is divisible by n. 

The results already obtained on this function contain some 
surprises. Such a surprise is the fact tha.~ \0 expresae ::;ty"') lone 
exponent cr is written in a. (genera.li.eed) numeric.al ecale, ea.y [PJ, 
and is "read" in another (usual) scale, say (P) (eq. 1.21). More 
details on this subject may be found in section 1.2. 

Another surprise is that "the complement until the identity" 
(equation 1.34) of S(pa) may be expressed in a. dual manner 
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with the exponent of the prime p in the expression of n!, given 
by Legendre's formula (eq. 1.15 and eq. 1.36). 

Finally) we mention that the Smarandache function may be 
generalised. in various ways, one of these generalisations, the 
Smaranda.che function attached to a strong diY~ibility sequence 
(eq. 2.59), and particulary to Fibonacci sequence, has a dual 
property with the strong divisibility (theorem 2.4.7). 

Of course, all these pleasant surprises are "attractors" for us, 
the mathematicians, tha.t we are in a perma.nent sea.rch for new 
wonderful re8ults. 

But "the attraction" itself on the initial concept, started by 
Florentin Smarandache, permitted to obtain the interesting re­
sults mentioned above. Indeed, many mat.hematicians a.re al­
ready inquired about this subject and have obtained these a.nd 
other results, permitting the publication of the present book. 
Among these we mention here Ch. Asbacher, 1. Balacenoiu, P. 
ErdOs, H. Ibstedt, P. Gronas, T. Tomita.. 

We mentione also two of the most interesting problems, st.ill 
unsolved: 

1) Find a formula expres~ing S(n) by means of n itself and 
not using the decomposition of the number into primes. 

2) Solve the equation S(n) = S(n + 1). 
The (positive) answer to first of these problems will permet 

to have more important information on the distribution of the 
prime numbers. 

Let the future permit to reach the knowledge until these, a.nd 
oLter, exciting results. 

THE AUTHORS 



Chapter 1 

The SIllarandache 
Function 

1.1 Generalised Numerical Scale 

5 

It is said tha.t every positive integer T", strictly gre~r than 1, 
determine a numerical scale. Thai. is, given T", every positive 
integer n may be written under the form: 

n = CmT"tn + Cm_IT"m-1 + ... + CIT" + CO (1.1) 

where m and CO are non-negative integers and 0 ~ CO :::; T"-1, em =F 
o. 

We can attach a symbol to each number from the sequence 
0,1,2, ... ,1"-1. These are the d£g£!.$ of the scale, and the equality 
( 1. ]) may be writ kn M: 

( 1.2) 

where" is the digit symbolising the number co. 
In this manner every integer may be uniquely written in a 

numerical scale (1") and if we note eli = 1"', one observe that the 
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sequence (ao)':EN satisfies the recurrence relation 

a.;+l = ra.; (1.3) 

and (1.1) becomes 

n = Cmllm. + Cm-Illm.-l + ... + Cial + eollo (104) 

The equality (1.4) ma.y be genera.lised in the following way. 
Let (b,)iEN be an arbitrary increasing sequence. Then the non­
negative integer n may be uniquely written under the form: 

n = ch.h + Ch.-lbh-l + ... + c1b l + cobo (1.5) 

But. t.he conditions satisfied by the digits in this case are not. 
80 simple as those from (1.3), sa.tisfied for the scale determined 
by the sequence (£li )'eN . 

For instance Fibonacci sequence, determined by the condi­
tions: 

(1.6) 

may be considered as a generali3ed numerical scale, in the senae 
described a.bove. 

From the inequality 

it results the advantage that the corresponding digits are only 
o and 1, as for the standard scale determined by r = 2. 

So, umng the generalised scale determined by Fibonacci se­

quence for representing the numbers in the memory of computers 
we may utilise only two sta.tes of the circuits (as when the scale 
(2) is used) but we need a few memory working with Fibonacci 
scale, because the digits axe less in this case. 
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Another generalised scale, which we shall use in the following, 
is the scale determined by the sequence 

. p' - 1 
ao(P) =-­

p-l 

where p > 1 is a prime number. 
Let us denote this scale by (Pl. So we have: 

(1.7) 

[Pl: 1, <l2(P), a3(P), .... , ao(P),... (1.8) 

and the corresponding recurrence relation is: 

Cli+l(P) = pao(p) + 1 (1.9) 

This is a relatively simple recurrence, but it is different. from 
the classical recurrence relat.ion (1.3). 

Of course, every positive integer may be written as: 

(1.10) 

so it. may be written in the scale [Pl. 
To determine the conditions satisfied by the digits CO in this 

case we prove the following lemme: 
1.1.1 Lemme. Let n be an arbitrary positive integer. Then 

for every integer p > 1 t.he number n may be wriiten uniquely 
as: 

n = tr~l (P) + h~(P) + ... + t'~I(P) 
with nl > 1't2 > ... > 17.{ > 0 and 

1 ~ tj ~ P - 1 for j = 1,2, ... , l- 1, 1 ~ tc ~ P 

(1.11) 

(1.12) 
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Proof. From the recurrence relation satisfied by the sequence 
( ai (P) )n€N. it results: 

So, because 

it results 

Then for every n E N· it exists uniquely nl ~ 1 such that 
n E [a..1 (P), a..1 +1(P» and we have 

n = [a..~(p)l a..1 (P) + rl 

where [x] denote the integer part of x. 
II we note 

it results 

n = t1a..1 (P) + rl with rl < a..! (P) 

If rl = 0, from the inequalities 

a..1 (P) < n ~ a..1+1(P) - 1 

it results 1 ~ tl ~ p. 
II rl =F 0, it exists uniquely ~ E N· such that 

(1.13) 
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and because lln.\ (P) > r1it results nl > n:2. 

Also, because 

from (1.13) it results 1 ~ tl ~ P - 1. Now, it exists uniquely 
n-z such that 

and SO one. After a finite number of steps we obtain: 

rl-l = tllln.1 (p) + rl with rl = 0 

and nl < 7ll-1, 1 :::; tl :::; p, 80 the lemme is proved. 
Let us observe tha.t in (1.11) unlike from (1.10) an the digits t, 

are greater than zero. Consequently all the digits Ci from (1.10) 
are between zero and p - 1, except t.he last non-nul digit, which 
can take also the value p. 

If we note by (p) the standard scale determined by the prime 
number p: 

(1.14) 

it results that the difference between the recurrence relations 
(1.3) and (1.9) induces essential differences for t.he calculus in 
the two scales (p) and [Pl. 

Indeed, as it is proved in [1] if 

m[5] = 442, n[s] = 412 and r[s] = 44 

then writing 
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m+n+r =442+ 
412 

_44_ 
dcba 

to determine the digits a, b, c, d we start the addition from the 
second column (the column corresponding to £l2(5». We have 

Now, using a unit from the first column it results: 

so (for the moment) b = 4. 
Continuing, we get: 

and using a new unit from the first column it results: 

so c = 4 and d = 1. 
Finally, adding the remainder digits: 

it results that the value of b must be modified, and a = O. So 
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1.2 A New Function in 
Number Theory 

11 

This function is the Smarandache function S : N· --+ N* de­
fined by the conditions: 

(31) Sen)! is divisible by n, 
(32) Sen) is t.he smallest. positive int.egerwit.h t.he property (3d 

Let P > 0 be a prime number. We start. by t.he const.ruction 
of the function 

such t.hat. 

(33) Sp(£li{P» = pi 
(84) If n E N" is written under the form given by (1.11) then 
Sp{n) = t1Sp{Cln1 (P» + t2 Sp{Cln, (P» + ... + tISp(CIn,{P» 

1.2.1 Lemme. For every n E N* the exponent of the prime 
p in t.he decomposition into primes of n! is greater or equal to n. 

Proof. From t.he properties of t.he integer part. we deduce: 

[a1 + ~ + ... + CIn] > [al] [~] [O-n.] 
b - b + b + ... + b 

for every £li) b E N*. 
A result does to Legendre assert that the exponent. of the 

prime p in the decomposition into primes of n! is: 

(1.15) 

Then if n has the decomposition (1.11) it results: 
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[ tl p"l +tH'~ + ... +tIP"I] ~ [tl f'] + [t/~"2] + ... + [tlr] = 
= t1P",I-l + t 2P,.,-1 + ... + t,pn.l-l 

[t' 1'''1 +t;p"2 + ... +tIP"I] > [~] + [~] + + [~] _ 
p'" - P'" p"l . . . p"l-

= t1pO + [t;~~ J + ... + [t~~;1 J 

andao 

[~1 + [~] + ... + [P'!I] > t1(p",t-1 + ~1-2 + ... + pO) + ... 
+tz(P'" -1 + p'" -2 + ... + pO = 
= t1ClnI (P) + t 2 lln,(p) + ... + t,ClnI(P) = n 

1.2.2 Theorem. The function Sp defined by the conditions 
( 33) and (34) from above satisfies: 

(1) Sp(n)! is divisible by p"' 
(2) Sp(n) is the smallest positive integer with the property (I). 

Proof. The propedy (1) results from the preceding lemme. 
To prove (2) let n E N* and p ~ 2 an arbitrary prime. Considering 
n written as in (1.11) we note 
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and we shall prove that the number z is the smallest positive 
integer with the property (1). 

Indeed, if t.here exists tL E N-, tL < z such t.hat tL! is divisible 
by p",then 

tL < z ===> tL ~ Z - 1 ===> (z - 1)! is divisible by p'" 

But 

z - 1 = t 1P"l + t:zp~ + ... + tIP'" - 1 

and nl > n:z > ... > nc ;::: 1. 
Because [k + a] = Ie + [a] for every integer Ie, it result8: 

[z; 1] = t I P"'I-1 + tlP~-l + ... + tcp".-1 - 1 
Analogously we ha.ve for instance 

~!;-ll] = t 1P",I-"'1 -1 + t:zprv:-n.1 -1 + ... + tl-1P"1 -1 -"'I -1+ 
+ [t;~7+?] = t 1P"I-n.I-l + ... tc_Ipnl _1-"'1-1 

because 0 < trp"'1 - 1 ~ P . p'" - 1 < p"l +1. 

AlBo, 

[ .1'-1 1 t"'1 -11.1 1 + t ° + [tI~"'-11 p-r=r = IP - ... I-IP p I _ 1 = 
= t1P"'t-"'I-l +tI_lPO 

The last equality of this kind is: 
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because 

o < t'lP1l.'J + ... + t,pn.1 ~ (p - 1)p71.2 + ... + (p - 1)pnl - 1+ 
p' pfL' _ 1 < (p - 1) E p' + pAl +1 - 1 < (p _ l)P:'~1 = 

'=71.1_1 P 

= pfL2+1 _ 1 < pnl - 1 < p"J 

Indeed, for the next power of P we have 

because 

From these equaJities it results that the exponent of p in the 
dcomposition into primes of (z - 1)! is 

[;;1] + [~] + ... + [;:n =t1(P"1-1+ p"1-l+ ... +pO)+ ... 
+t'-l (pnl - 1-1 + ... + pO) + t,(PfL' -1 + ... + pO) - n, = n - nc < n 

and the theorem is proved. 
Now we may construct the function S : N* -- N* having 

the properties (Sl) and (S'l) as follows: 

(i) S(1) = 1 
( .. ) F 011 012 a 'th > 1 tt. or every n = PI . P2 ... p~') WI 01, _ ) 

and p, primes, Pi i= Pi we define: 

(1.16) 
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1.2.3 Theorem. The function S defined by the conditions 
(i) and (ii) from above satisfies the properties (91) and (32). 

Proof. Let us suppose n =I 1. We shall noie by M(:z:) an 
arbitrary multiple of :z: and 

Of COUnle, 

Spio (Q!io)! = M(P:io) 

and beca.use Spi(ai)! = M(pri) for i = 1,3, it results: 

Spio (alo )! = M(p?i) for i = 1,8 

Moreover, because Pi 1\ P = 1 it results: 
d 

S ( )' - M(pa! Q2 Q,) Pia Olio . - 1 P2 ···P! 

and so (81) is proved. 

(1.17) 

To prove (82) let us observe tha.i for every u < Spio (Q!io) we 

have u! =I M(P:io), because Spio(aia) is the smallest positive 

integer with the property k! = M(P:"). So, 

ti! =F M( P'i! . pr ... p~') = M(n) 

and the property (82) is proved. 
1.2.4 Proposition. For every prime P the function Sp is 

increasing and surjective, but not injective. The function S is 
generaly increasing, in the sense that: 

(V) n E N· (3) kEN· S(k) ~ n 

and it is surjective but not injective. 
1.2.5 Consequences. 1) For every 01. E N* holds: 

(1.18) 
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2) For every n > 4 we, have: 

n is a prime -¢=> 5(n) = n 

Indeed, if n 2: 5 is a prime then Sen) = S",(I) = n. 
Conversely, if n > 4 is not a prime but Sen) = n , let n = 

p~l . p~2 ... p~' with s 2: 2, a, E N*, for i = 1, s. Then if SP" (aiJ,) 
is given by (1.17), from Legendre's formula (1.15) it results the 
contradiction: 

Sp;" (a,o) < a,op,o < n 

Also, if n = pa , wiih a 2: 2, it. resulis: 

Sen) = Sp(a) < p . a < pa = n 

and the theorem is proved. 
1.2.6 Examples. 1) If n = 231 • 327 • 713 we have: 

Sen) = max{S:l(31), 53 (27), S7(13)} (1.19) 

and to calculaie 52 (31) we consider the generalised numerical 
scale 

[2] : 1, 3, 7, 31, 63, ... 

Then 31 = 1· <15(2), so S2(31) = 1 . 25 = 32. 
For the calculus of 53 (27) we consider t.he scale 

[3]: I, 4, 13, 40, .... 

and we have 27 = 2 . 13 + 1 = 2<13(3) + ell (3) so 

53(27) = 53 (2<13(3) + <11(3» = 2S3(a3(3» + 53(a1 (3» = 
= 2 . 33 + 1 . 31 = 57 

Finally, to calculate 5 7(13) we consider t.he generalised scale 
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[7]: 1, 8, 57, .... 

and it ret5ults 

13 = ~(7) + 5a1(7), 80 S7(13) = 1 . S7(8) + 5 . S7(1) = 
= 1 . 72 + 5 . 7 = 84 

From (1.19) one deduces S(n) = 84. So 84 is the smallest 
positive integer whose factorial is divisible by 231 • 321 • 713 . 

2) Which are the numbers with t.he factorial ending in 1000 
zeros? 

To answer this question we observe that for n = 101000 it re­
sults Sen)! = M(101OOO ) and Sen) is the smallest positive integer 
whose factorial endsin 1000 zeros. 

We have Sen) = S(21OOO .51000
) = max{S:l(lOOO), S&(1000)} = 

S5(1000). 
Considering the generalised numerical scale 

[5] : I, 6, 31, 156, 781, ... 

it results: 

Ss(1000) = Ss(as(5) + ~(5) + 2a3(S) + a1(S» = 
= 55 + S4 + 2 . S3 + S = 400S 

The numbers 4006,4007,4008,4009 ha.ve also the required 
properly, but the factorial of 4010 ends in 1001 zeros. 

To calculate S(pO:) we need to writte the exponent O! in the 
generalised scale [Pl. For this we observe tha.t: 

am (P) ~ ex ¢=:::? (pm - 1) / (p - 1) ~ ex ¢=:::? 

pm ~ (p _ l)or + 1 ¢=:::? m ~ lo~((P - 1)a + 1) 
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and if 

is the expression of the exponent a in the scale [pJ, then v is the 
integer part of logp«(P - 1)a + 1) and the digit kv is obtained by 
the equality 

Using the same procedure for rv-l it results the next non-zero 
digit from (1.20) 

1.3 Some Formulae for 
the Calculus of S(n) 

From the properly (34) sa.tisfied by the fundion SPI one deduce: 

(1.21) 

that is the value of S(pQ) is obtained multiplying the prime p by 
the number obtained writing the exponent a in the generalised 
scale [P] and "reading" it in the usual scale (P). 

1.3.1 Example. To calculate 5(111000
) we consider first the 

generalised scale 

[11]: I, 12, 133, 1464, ... 

Using the considerations from the end of the preceding sec­
tion we get: 
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so S(111ooo) = 11(759)(11) = 11(7.112 +5.11 +9) = 10021. Con­
sequently 10021 is the smallest positive integer whose factorial 
is divisible by 111000

• 

The equality (1.21) prove the imporlance of the scales (P) 
and [PJ for the calculus of S(n). 

Lei now 

be the expression of the the exponent a in the two scales. It. 
results: 

" v 

(p - l)a = :~:::'~;pi - 2: kj 
j=1 j=1 

Then noting 

.. ., 
a(p)(Cl') =2: Ci, a(pI(a) =2: kj (1.23) 

oa:O ;=1 
" . 0-1 

and taking int.o acount. t.hat. J: kjpJ = p J: kjpi is exact.ly 
J=1 J=O 

p( Cl'(pI)(P), one obtain 

S(pa) = {p -1)<1'+ afpl(a) 

.~ Using t.he first. equality from (1.23) we get: 

u .. 

pa(p) =2: <;(Pi+l_ 1)+ 2: <; 
i=O i~ 

or 

p u 1 
--a =2: CilIi+l(P) + --a(p)(a) 
P-1. p-l ,=0 

(1.24) 
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consequently 

(1.25) 

where (~(P»[PI denote the number obtained writing the exponent 
~ in the scale (P) and reading it in the scale [Pl. 

Replacing this expression of Ct in (1.24) we get: 

S(pOl) = (p - 1)2 (Ct(p)[P] + P - 1 O"(p)(~) + O"[PI(~) (1.26) 
p p 

One may obtain also a connection between S(par) and the 
exponent ep(~) defined by Legendre's formula. (1.15). It is said 
that ep ( a) may be expressed also as: 

(1.27) 

so using (1.25) one get: 

(1.28) 

An other formula for ep(~) may be obtained as follows: if Ct 

given by the first equality from (1.22) is: 

then beca.use 

ep(Ct) = [;] + (ffi-J + ... + [pOI .. ] = (Cup .. -l + C._lP"-:Z + ... + Cl)+ 
+( c",p + Cu-l) + c", 

we get: 
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where a(p) = ~Cu-l ... Co is the expression of a in the scale (p). 
From (1.26) and (1.28) it results: 

Using the equalities (1.21) IUld (1.26) one deduce a connection 
between the following two numbers: 

(a(p»{pJ = the number a written in the scale (P) and readed 
in the scale [P] 
(afpl)(p) = the number a written in the scale fp] and readed 
in the scale(p) 

namely: 

To obtain other expressions for Scpo:) let us observe that from 
Legendre's formula (1.15) it. results: 

S(pO:) = pea - ~(a)) with 0 ~ ~(a) ~ (l! - 1] (1.33) 
p 

Then using for S(pO:) the notation Sp(Ol) one obtain: 

(1.34) 

and so, for each function Sp there exists a function ipsuch that. 
the linear combination (1.34), to obtain the identity, holds. 

To obtain expressions of ip let us observe that from (1.27) it 
results: 
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Ct = (p - 1)ep(a) + O"(p)(Ct) 

and from (1.24) it results O! = (Sp(O!) - O"(p](O!»j(p - 1),80 

(p _ l)ep(O!) + 0"(p)(0!) = Sp(O!~ -=- ~[pJ(0!) 
or 

Let us return now to the function ip and observe that from 
(1.24) and (1.34) it results: 

• ( ) _ O! - O"[pj(O!) 
~p O! -

P 
(1.36) 

consequently we can say that there exists a duality hetw(*ln the 
expression of ep(Ct) in (1.27) and the above expression of ip(Ct). 

One may obtain other connections between ip and ep.For in­
stance from (1.27) and (1.36) it results: 

(1.37) 

Also,from 

a(p] = kvlcu-1 ... lc1 = kf)(p,,-l + pu-2 + ... + 1) + le,,_I(P,,-2+ 
p0-3 + ... + p + 1) + .... + k2 (p + 1) + leI 

one obtain 

O! = (leupO-l + ~_IPu-'l + ... + lezp + led + le,,(po-'l+ 
+pl1-3 + ... + 1) + ~_1(P"-3 + p,,--l + ... + 1) + ... 

+le3 (P + 1) + le2 = (c¥(pJ)(p) + [;] - [UXplp(a)] 
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that because 

[;] = ku(pu-2 + po-3 + ... + P + 1) + ~ + ku_l(p°-3+ 
+pt1~ + ... + P + 1) + .r.~_l + .... + k3 (p + 1)+ 

+~+k2+~+~ 
p p p 

and [n + x] = n + [x]. 
One obtain 

23 

a = (a[p])(p) + [;]- [O"[p~a)] (1.38) 

and we can writte: 

S(pQ) = p( a - ([;]_ [O"W; a)])) (1.39) 

and from 1.36) and (1.39) we dededuce 

(1.40) 

This equality results a.1ao directly, from (1.36), \&king inio 
acount that 

consequently 

a - :[p] ( a) = [;]_ [O"(p]; a ) ] 

An other expression of £,,(a) is obtained from (1.21) and 
(1.36) or from (1.38) and (1.40). Na.mely 

(1.41) 
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From the definition of the function S it results: 

Sp(ep(Q!») = p [: 1 = Q! - Q!p 

where Q!p iB the remainder of Q! modulo p, and also: 

(1.42) 

so 

Using (1.24) it. results that. Sp(Q!) is t.he unique solution of 
the system: 

O'(p)(x) < O'IPI(Q!) < O'(p){x - 1) + 1 (1.43) 

At. the end of this section we return to the function 1p, to 
find an Mimpt.hotic beha.viour for t.hiB "complement. unt.il the 
identit.y" of t.he function Sp. 

From the conditions satisfied by this function in (1.33) it. 
results for 

[
0' - 1] f1(Q!,p) = -p- - i,.(Cl!) 

tha.t f1( Cl!, p) ~ O. 
To find an expression for this function we observe that: 

(1.44) 

and supposing t.hat. Cl! E [hp+ I, hp+p-1] it results [a;l] = [;J) 
so: 
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~(a,p) =- [a; 1]- ip(a) = [u[p];a)] (1.45) 

Also, if a = hp, it results 

80 (1.44) becomes: 

~(a,p)= [(Tfp~a)]_l (1.46) 

Analogously, if a = hp + p, one obtains 

[a;l] = [h+1-~] =h 
and [il ~ h + 1, so (1.44) has the form (1.46). 

It results tha.t for every a for which ~(a, p) has the form 
(1.45) or (1.46), the value of ~(a,p) is maximum if (T(P!(a) is 
maximum, so for a = aM. where 

aM = (P-l)(P-l) ... (p-l)p 
.. • [P1 

u terms 

We have then 

am = (p - l)au(P) + (p - l)au-l(P) + .. -+ (p - 1)~(P) + p = 
(p - 1)(~-=-11 + P::~l + ... + ~11) + p = 

(pu + p,,-l + ... + p2 + p) _ (v - 1) = pau(p) - (v - 1) 

It results tha.t aM is not divisible by p if and only if u - 1 is 
not divisible by p. In this case 

(T(pj(aM) = (u - 1)(P - 1) + p = pv - u + 1 
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and 

"'( )_[<7(Pl(CtM)]_[ V-l]_ [V-ll
J 

uCtM,P- -v----v---
P P P 

So, 

that is 

so 

4,(CtU) E [[ Ctu
p
- 1]- v, [CtM

p
- 1]1 

If v - 1 E (hp, hp + p) it results [1.1;1] = h, and 

h(P - 1) + 1 < b.(CtUIP) < h(P - 1) + p+ 1 

lim n(CtM,p)=CO 
OIJtI~OO 

We also observe t.hat. 

p.,+l - 1 [v - 1] Ifp+l - 1 r/'"P+p+l - 1· 
= - - E [ - h, - hJ 

p-1 p p-l p-l 

So, if Ctu --+- 00 as;r then b.(Ctu, p) --+- 00 as x. 
Also, from 

it results 
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1.4 Connections with Some Classical· 
Numerical Functions 

In this section we shall present some connections of Smarandache 
function wii.h Euller's iotient function, von Mangoli's function, 
Riemann's function and the function fl(x) denoting the number 
of primes not greater than z. 

1.4.1 Definition. The function of von Mangolt is: 

A(n) = { In n ~ n = pm 
o If n ::j; pm 

(1.47) 

This function is not a multiplicative function, that is from 
d • 

n V m = 1 does not result A(n· m) = A(n) ·A(m). For IDstance, 
ifn = 3 and m = 5 we have A(n) = ln3,A(m) = ln5 and 
1\(m· n) = 1\(15) = O. 

We remember the fonowing re:rolts: 
1.4.2 Theorem. The fonowing equalities hold: 

(i) 2: A(d) = In n 
dIn. 

(ii) A(n) =2: ,u(ci)ln j 
dIn. 

where ,u is Mobiu.s ju.nction, defined by: 

,u(n) = { ~ 
( -l)lc 

ifn=l 
if n is divisible by a square 

if n - Pl . P7. .... ·Plc 
(1.48) 
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1.4.3 Definition. The function W : R -- R is defined by: 

(1.49) 

From the properlie8 of this function we mention only t.he 
following two: 

1.4.4 The function q; satisfies: 

(i) lJt(x) = E A(n) 
n<z 

(ii) q;(x) = In[I,2,3, ... , [x]] 

where [1, 2, 3, ... , [xll denotes the lowest. common multiple of 1,2,3, ... , [xl. 
It is said that on the set N* of the positive integers one may 

consider two laUiceal structures: 

where 

d 
.No = (N", A, V) and .Nd = (N-, A, V) 

J. 

A = min, V = max 
A= the grea.test common divisor 
d 

-6= the lowest common multiple 

(1.50) 

C£ 
We shall note also n A m = (n, m) and n V m = [n, m]. 

d 
The order in the lattice No is noted by :$ and the order from 

Nd is noted by <. It is said that: 
1" 

nl ~ n~ ~ nJ divides n2 ~ nd n-; (1.51) 
'" 

and we also observe that the Smarandache function is not a 
monotonoU3 function: 

nl ::; nz does not implique S(nl)::; S(nz) 

But, taking into account that 
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(1.52) 

we can consider t.he function S as a function defined on the lattice 
Jid with values in the latt.ice No: 

(1.53) . 

In this way the Smarandache function becomes an order pre­
serving function, in the sense that: 

nl ~ Tl2 ~ S(nl) ~ S(n2) 
d 

(1.54) 

It is said [31} that if (V, A, v) is a finite lattice, V = {Xl, Xl, ... , X,,}, 
with the induced order -<, then for every function f : V --+ R, 
the corresponding generating function is defined by: 

F(n) =L: fey) (1.55) 

Now we may return to von Mangoit's function. Let us observe 
that to every function: 

f: N* --N* (1.56) 

one may attach t.wo generating functions, namely t.he generat.ing 
functions Fa. and FO determined by t.he lat.tices Jid and JIo. 

Then, by t.he theorem (1.4.2), for f ( x) = A (x) it results: 

and a.lso 

r(n) =2: A(k) = Inn 
Jc~" 

d 

FO(n) = I: A(k) = If(n) = In[l, 2, ... ) n] 
k~" 

(1.57) 
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Then it results the following diagram: 

1\ 

(Ll) 

lFd(n) = 2: A(k) = In n 
k<n. 

d 

}/d }/o 

(2.2) , (H) 

woe n) = 2: In k = In n! 
"~n. 

It results a. strong connection between the definition of the 
Smaranda.che function S and the equalities (1.1) and (2.2) from 
t.his diagra.m. 

Let f from (1.56) be the fundion of von Mangolt's. Then 

[1,2, ... , n] = e.P'(n.) = e!(l). e!(2) ... eJ(n.) = e·(n.) 

n! = eFCn.) = eFd(l) . eF d(2) ..• eFd(n.) 

and so, using the definition of S, we are conducted to consider 
functions of the form: 



Connecti.ons with Classical Functi.ons 31 

'Y(n) = min {m / n:5 [1,2, ... m}} 
d 

(1.58) 

We sha.llstudy this kind of functions in the section 2.2 ofthe 
following chapter. 

Returning now to the idea of finding connections between the. 
Smarandache function and some classical numerical functions, 
we present such a connection, with Euller's function cpo Let us 
reme"ber that if p is a prime number then: 

(1.59) 

and for a ~ 2 we have 

pa-l = (p _ l)<la-l(P) + 1 so O"[pl(pa-l) = p 

U sing the equality (1.24) it results: 

(1.60) 

1.4.5 Definition. Let C be the set of all complex num­
bers. Then the Dirichlet aeries attached to a function 

18 

f:N·~C 

(1.61) 

For some z = x + iy this series may be convergent or not. 
The simplest Dirichlet series is: 

00 1 
((z) = '""' -

.L.J n" 
n=l 
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named the function of Riemann or zeta function. This function 
converges for Re(z) > 1. 

It is said that the Diriclet series attached to Mobius function 
f.L 18: 

1 
Dp.(z) = «z) for Re(z) > 1 

and the Diriclet series attached to Euller's function rp is: 

D ( ) = «z - 1) f, Re() 
rp z « z ) or z > 2 

We also have: 

Dr(z) = ('l(z) for Re(z) > 1 

where T(n) is the number of ciivi30rs of n, including land n. 
More general, 

Da'I4(z) = (z)· «z - k) for Re(z) > k + 1 

where a.r.{n) is the sum of Jctlt._ powers of the divisors of n. 
In the sequel we shall writte O"(n) instead of O"l(n) and T(n) 

instead of 0"0 (n). We also suppose that z = X, so z is a real 
number. 

1.4.6 Theorem. IT 

t.. a' 
n =U p,-" 

0=1 

is the decomposition of n into primes then t.he Smarandache 
function and Riemann's function are linked by the following 
equality: 

(1.62) 
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Proof. We have seen that between the functions tp and ( 
there exists a connection given by: 

((x - 1) = L tp(n) 
(x) "~l n= 

(1.63) 

Moreover, 

and replacing this expression of ip( n) in (1.63) it results the 
equality (1.62). 

The Dirichlet series corresponding to the function S is: 

and noting by Dpd the Dirichlet. series attached to the generating 
s 

function F~ it results: 
1.4.1 Theorem. For every x > 2 we have: 

(i) (x) :5 Ds(x) :5 C(x - 1) 
(ii) (:l(x) :5 Dp;(x) :5 (x) . (x - 1) 

Proof. The inequalities (i) result from the fact tha.t. 

1 :5 Sen) < n for every n E N* 

(ii) We have: 

(1.64) 

(x)· Ds(x) = (f b)( f ~:» = S91) + S(l};'SC:l)+ 
k:::l k=l 

+ S(1)+5{3) + S(l)+S('l)+S(!) + - D () 
3" ~. .. ... - F~ x 

and the inequalities results using (i). 
One observe t.hat (ii) is equivalent. with 
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D ... (x) < DF1 (x) ~ D,r(x) 

This equality ma.y be also deduced observing tha.t from (1.64) 
it results: 

and consequently: 

E 1 ~E S(k) ~E Ie 
k<n. 

d 

r(n) S Fi(n) S IT(n) 

In [19] has been proved for F: even that: 

T(n) ~ Fj(n) ~ n +4 

(1.65) 

To prove other inequalities satisfied by the Dirichlet series D 5 

we remember first that if f and 9 are two unbounded functions 
defined on the set R of real numbers satisfying g( z) > 0, and if 
there exist the constants Gl , Cl. such that 

/I(x)/ < G1g(x) for every x> G'), 

then the functions f and 9 are said to be of the same order of 
magnitude and one note 

f(x) = O(g(x» 

Parlicularly, is noted by 0(1) any function which is bounded 
for z > C'l.' 

The fact tha.t it exists 

is noted by 
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I(x) = o(g(x» 

Particularly is noted by 0(1) any function tending to zero 
when x tends to infinity and evidently we have: 

I(x) = o(g(x» ~ f(x) = O(g(x» 

It is said that Rieman's function satisfies the properties given 
bellow: 

1.4.8 Theorem. For all complex number z we have: 

(i) (z) + 6:1 + 0(1) 
(ii) In (z) = In .. :1 + O(z -1) 
(iii) (f(Z) = -("~1)l + 0(1) 

Using the theorems (1.4.7) and (1.4.8) now we obtain: 
1.4.9 Theorem. The Dirichlet series Ds attached to the 

Smarandache fundion S and biB derivative D's sa\isfy: 

(i) ;1;:1 + 0(1) 5 Ds(x) 5 ;1;':2 + 0(1) 
(ii) - (Z~l):1 + 0(1) 5 Ds(x) 5 -(:-=1)1 + 0(1) 

The number of primes Dot exceeding a given number x is 
usually denoted by ll(x). In [391 is given a connection between 
the Smarandache function S and the function ll. 

Starling from the fact that S( n) ::; n for every n and that., 
for n > 4 we have Sen) = n if and only if n is a prime, it is 
obtained the equality: 

TI(x) = f [S(k)j_ 1. 
Tc='2 k 
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1.5 The Smarandache Function as 
Generating Function 

It is said that Mobius inversion formula permet to obtain any 
numerical function f from his generating function Fd. Namely, 

f ( n) = 2: J.L( d.) Fd ( ~) 
dIn. 

(1.66) 

if 
pi(n) =2:: f(d.) 

dIn. 

So, we can consider every numerical function f in two distinct 
positions: one is that. in which we are interested \0 consider its 
generating function, a.nd in the second we consider the function 
f itself as a generating function, for some numerical function g. 

g(n) =2: J.L(d)f(~) -ClJ-- pd(n} =2: fed) 
dIn dIn 

(1.67) 

For instance if fen) = n is the identity map of N· we get: 

g(n) =2: J.L(d)J = fP(n) ; F(n) =2: d = a(d) 
dIn dIn 

(1.68) 

In the case when f is the Sma.n.ndache function S, it is dif­
ficult to calculate for any positive integer n the value of F#(n). 
That because : 

F~(n) =2: S(d.) =2: ma.x(S(8r') (1.69) 
din. din. 

where 8, are t.he prime factors of d. 
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However, there are two situations in which the explicite forme 
of F~(n) may be obtained easily. These are for n = pa and for 
n a square free number. 

In the first case we have 

(1.70) 

Let consider n = PI . PZ ..... Plc a square free number, where 
PI < P2 < ... < PTc are the prime factors of n. It results: 

Sen) = PTc and 
Fi(1) = S(l) = 1 

F1(Pl) = S(I) + S~) = 1 + PI 
Fi(PI . P2) = S(I) + S(pd + S([J2) + S(PI . P2) = 1 + PI + 2P2 

Fi(P1 . P7. . P3) = 1 + PI + 2P2 + 2JP3 + F1(PI . P7.) + 2JP3 

and also: 

Then 

,. 
F#(n) = 1+ L 2,-lpi (1.71) 

One observe that because S(n) = Pl., replacing the values of 
F;(t) given by (1.71) in 

S(n) = L ~(r)F#(t) (1.72) 
r.t=n 

apparently we get an expre5sion of the prime number PTc by means 
of the preceding primes PI,PZ, ... plc-l. In reality (1.72) is an 
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identity in which ,after the reduction of all similar terms, the 
prime numbers P' has the coefficient equal to zero. 

In [19} it is solved the equation 

Fs(n) = n (1.73) 

under the hypothesis 

5(1) = 0 (1.74) 

a.nd it is found the following result.: 
1.5.1 Proposition. The equation (1.73) has as solutions 

only: all the prime numbers n and the composit numbers n = 
9,16,24. 

Proof. Because 

(1.75) 

under the hypothesis (1.74) one observe tha.t every prime is a 
solution of OUT equation. Let now suppose n > 4 be a composit 
number: 

where the primes Pi. and the exponents rj, are ranged such tha.t 

(Cl) Plrl ~ Pir, for every i E {I, 2, ... , k} 
(C2) Pi < Pi+! for i E {2, 3, ... , k - I} whenever k 2: 3 

Let us suppose first k = 1 and rl ~ 2. From the inequality 

it results 
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pil = n = F;(n) = F;(Pil) = E S(prl ) ~ t PISI = PIr1(r; + 1) 
"1=0 "1=0 

so 
(1.76) 

This inequality is noi veri£ed for PI ?: 5 and rl ?: 2, so we 
must ha.ve PI < 5. Tha.i is PI E {2,3}. 

By means of (1.76) we can find a supremum for ri' This 
supremum depends on the value of Pl. 

U PI = 2 it results for_ rl only the values 2,3,4, and for PI = 3 
it results rl = 2. 

So, for n = pi' there are at most four solutions of the equation 
(1.73), namely n E {4, 8, 9, I6}. In each ofthese cases calcula.ting 
the value of F:(n) we obtain: 

Fg(4) = 6, J1(8) = 10, J1(9) = 9, F:(16) = 16 

Consequently the solutions are n = 9 a.nd n = 16. 
Let now suppose k ?: 2. Writing in the equa.tion (1.73) the 

decomposition into primes of n we get: 



40 The Smarandache Fu.nction 

Consequently, the inequality: 

holds, and we are then conducted to study the functions: 

a:& 
f(x) = -- and 

x+l 

where a, b :2: 2. 

( ) 
_ x(x + 1) 

9 x - b~-l 

The derivatives of these functions are: 

for x ~ 0 

(1.77) 

Because (x + 1) In a-I ~ (1 + 1) In 2 - 1 = 2In 2 - 1 > 0 
it results fl( x) > 0 for x:2: 1. In addition the maximum of this 
function is obtained for x = max{l, x}, where 

A _ 2-Inb+.j(1nb)2+4 
x - 2lnb 

and we deduce .j (In b)2 + 4 < In b + 2, for b2: 2, so 

x < (2 - In b) + (In b + 2) = 2. < 2. 3 
2Inb Inb -ln2 < 

We also ha.ve lim f(x) = lim g(x) = 00, and t.hen p~l /(rl+ 
%---f> 00 s--+ 00 

1) increa8e from PI/2 to infinity, when rl E N·. Moreover, be-
cause 

~ > 12 if > 2 
PI - 11 P1 -

it results 
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rl(rl + 1) < {2 ~ 12} = {2 ~} < 3 
"I 1 - max , '...2 max, -

PI PI f'1 PI 

Using (1.77) we obtain: 

for rl E N*, and so 

k p' 
II ~ < 3 

i=2 2 

But we have also 

Ii Pi > ~ . ~ . ~ = 15 > 3 
.=2 2 - 2 2 2 4 

and then it results k ~ 3. 
For k = 2, using (1.77) and (1.78) it results: 

so P2 < 6. 

p~ < 3 
2 

IT we suppose r:z ~ 3, it results 

and then 

6 
PI . P2 ~ 2 . 3 = 6 or P2 > -

Pl 

41 

(1.78) 

p~ p;'"J rl(rl + 1) 6 
- ~ < fl 1 ~ max{2, -} ~ max{2,P2} = P2 
4 r2 + 1 PI Pl 

so it results the contradiction ~ < 4, and we have P1. E {2, 3, 5}, 
r2 E {I, 2}. Moreover, from 
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1 < P7. < p;l < rl(rl + 1) < rl(rl + 1) 
- 2 - r7, + 1 pil -1 - 21'1 -1 

it results rl ~ 6. 
Then, for fixed values of P2 and r1, the inequalities 

rl(r1 + 1) p;l 
'1-1 > + l' Pl

r
l > P'J r '}, PI r'}, 

give us iformations for finding an upper bound of rl, for every 
value of Pl' It results r1 < 7 and the conclusions are given in the 
ta.ble bellow. 

P2 r2 PI rl n = p~lp;l F:(n) 
a) 2 1 3 1 ~ r1 ~ 3 2·3rt 2 + 3r1(r1 + 1) 
b) 2 1 5 1 < r1 ~ 2 2·51'1 2 + 5rl(rl + 1) 
c) 2 1 PI 2: 7 1 2· PI 2+2P1 
cl) 2 2 3 2 36 34 
e) 2 2 PI 2: 5 1 4Pl 3PI + 6 
f) 3 1 2 2 ~ rl ~ 5 3·Tl 2rr - 2r1 + 12 
g) 3 1 PI 2: 5 1 3P1 2PI + 3 
h) 3 1 2 3 40 30 

If F~(n) = n 
then 

a) 3 divides 2 
b) 5 divides 2 

GoncltL3ions: 
c) 0=2 
cl) 34 = 36 
e) PI = 6 
j) 1"1 = 3 
g) PI = 3 
h) 30 = 40 
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Ii results that we must. have 

so n = 3.23 = 24. That is for k = 2 the equation (1.73) has as 
solution only n = 24. 

Finally, supposing k = 3 , from 

P'J P'J -·-<3 
2 2 

it results P2 . P3 < 12, so P2 = 2 a.nd P3 E {3,5}. 
Using (1.78) from 

it results P'l. = 3. 

r1(r1 + 1) < r1(r1 + 1) < 2 
p~\ -1 - 3r \ -1 -

Also, from (1.78) a.nd (1.79) we obtain 

2r1 3r3 

--. <2 
"2 + 1 r3 + 1 

(1.79) 

and because the left hand side of this inequality is the product 
of two increasing functions on [0,00), it results for r2 a.nd r3 only 
the values "2 = r3 = 1. 

With these values in (1.77) one obtain: 

~ < r1(r1 + 1) < rl(r1 + 1) 
2 p~1 -1 - 5q - 1 

and so "1 = 1. Consequently, the equa.tion (1.73) is satisfied only 
for n = 2 . 3 . PI = 6p1. 

But 

6P1 = F~(6p1) = S(1) + S(2) + S(3) + S(6)+ 
1 1 .. 1 1 .. 

+ L L 5(2' .3J . PI) = 8+ I: I: max{5(2t
• 31),pt} = 8 + 4Pl 

i=Oj=o i=Oj=o 
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because 5(2· . Ji) S 3 < Pl for i, j E {O, I}, and so it results the 
contradiction Pl = 4. 

Then for k = 3 the equation has no solution and the theorem 
is proved. 

1.5.2 Consequence. The solutions of the inequation 

(1.80) 

result from the fact that this inequation implies (1. 77). So, 

~(n) > n {:=::> n E {8, 12, 18,20} or n = 2p, with p a. prime 

We deduce also that 

~(n) S n + 4, for every n E N-

Moreover, because we have the solutions of the inequation 

F;(n) ~ n 

we may deduce the solutions of the inequation F;(n) < n. 
In [40] is st.udied the limit of the sequence 

~ ~ 1 
T(n) = 1 -In I1(n)+ t;{; F~W) 

which contains the generating function. It is proved that 

lim T(n) = -00 
n.-co 

In the sequel we focus the attent.ion on the left side of (1.67), 
na.mely we sha.ll regard the Smarandache function as a generating 
function of a certain numerical function s. 

By definition we have 

n 
sen) = L p.(d)S( J) 

dIn. . 
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If the decompQlition into primes of the number n is 

it results 

sen) = L 

Let us consider tha.t 

Sen) = ma.x{S(pfi) = S(p:io) 

We have the following cases: 

(ad There exists io E {I, 2, ... , t} such that: 

S(p:lo -1) 2:: S(Pfi) for i i= io 

45 

(1.81) 

The divisors d of n for which J.L( d) i= 0 are of the form: d = 1 
or d = Pi) . Pil .... Pi,.. 

A divisor of the aecond kind may contains Plo or not. Using 
(ref 1510), with the notation et = "!(tt~II)" it results: 

s(n) = S(p:'o)(l- 01-1 +0;-1 + ... + (-1)t- 1ei=p+ 
S(p:'o -1)(_1 + eLl - 0;-1 + ... + (-l)tC;:{) 

and so, we have: 

s(n) = { 0 
p.o 

if t 2: 2 or S(p:lo) = S(p:io -1) 
otherwi3e 

(~) There exists jo E {I, 2, ... , t} such that we have: 
S(p:lo -1) < S(Pj/") and S(p~io -1) > S(Pfi) for i ~ {io, jo} 

In this case, supposing in addition that 
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one obtain: 

sen) = S(p:io)(l - ct-1 + C;_l - ... + (-l)t-lCi-=i)+ 
+S(p;!O)( -1 + CI_ 2 - C;_2 + ... + (-1)t-1C;-=D+ 
+S(Pj;o -1)(1_ CL2 + C't-2 - ... + (-1)t-2C;-=D 

and it results: 

sen) = { 0 
- Pio 

if t ~ 3 or S(pj/O -1) = S(PjjO) 
otherwise 

Consequently, to obtain sen) we construct, as above, a max­
imal sequence iI, i2, ... , ile , such that 

Sen) = S(P~il) S(p~il -1) < S(P~~) ... S(p':"" -1 -1) < S(p~i. 
'1' 'I '1 " • 4 - 1 '1 

and it results: 

Now, beca.use 

if t ~ k + 1 or S(p~:·) = S(p~;1& -1) 
otherwise 

s(pt:.) = S(pOl-l) ~ (p - l)a + CT(pJ(a) = (p - l)(a - 1)+ 
+CT(pl(a - 1) ~ CT(pJ(a - 1) - CT[pJ(a) = p - 1 

and 

it results 

if t~k+lor 
CT[Plll (ale - 1) - CT[P.I ( ale) = PTc - 1 

otherwise 



Generating Ftmction3 47 

1.5.3 Consequence. It is said [31} that if (V, 1\, v) is a finit 
lattice with the induced order -<, then considering a function 
f : V - R as well as it.s generating function F, defined by the 
equality 1.55), and noting 

it results 

det(gij) = f(xl)' f(xl)···f(xn.) 

In [31} it is proved a generalisation of this result to a.n arbi­
t.rary partial ordered set, namely, defining the function gij by: 

go; = L f{x) 

Using these results and noting ~(r) = det(S(i 1\ j», for 
,J 

i,j = 1, r, we get: 

~(r) = 3(1)· 3(2) ... 3(r) 

so, for sufficiently large r (in fact for r ~ 8) we have ~(r) = 
O. Moreover, for every n E N· there exists a sufficiently large 
r E N" such thai noting ~(n, k) = det S«(n + i) 1\ (n + j», for 

d 
i, j = 1, k, we have ~(n, k) = 0 for k ~ r. Indeed, this assertion 
is valid because 

~(n, k) =.ft sen + i) 
,=1 

Ending this section we consider the Dirichlet series D.f at­
tached to the function s to prove the following result: 

1.5.4 Theorem. The Dirichlet series D.f of the function 3, 

given by 
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sa.tisfies: 

The Smarandache Function 

(i) 1 < D~(x) < D'P(x) for x > 2 
(ii) 1::; D.(x) ::; eA(;':l) 

for some positive constant. A. 
Proof. (i) Using the multiplica.tion of Dirichlet series we 

obtain: 

and the afirmaiion result.s using t.he inequalities (i) from t.he 
theorem (1.4.7). The inequalities (ii) also results using the same 
theorem. 

1.6 Numerical Series Containing 
the Function S 

It is difficult to study the va.riation of the function S on the set 
N· of all positive integers, beca.use this function is not monotonous 
in the usual sense. Then the study of some numerical series in­
volving ilriB function ma.y be an useful inst.rument. to obt.ain new 
informations about the function. 

In this section we add to the study begun by the Dirichlet 
series, the study of some new series, which shall give us informa­
tion a.bout the order of a.verage of the Smarandache function. 
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1.6.1 Theorem. The series 

t S(k) 
Tc=2 (k + 1)! 

converges. If {J, is its sum, then {J E (e - ~,~). 
Proof. Let us Dot.e 

1 1 1 
E", = 1 + I" + - + ... +-

1. 2! n! 
Then we shall prove the mequality 

3 '" S(k) 1 
En. + 1 - "2 <~ (k + 1 )! < "2 

Indeed, we have 

'" n. '" n. 2: Tc -2: e - 1 ) -2: 1_ 2: 1 -
Ie=l ~ - Ie=l k! ~ - Ie=1 k! 10=1 ~ -

_ 1 1 
- :l - ( ... +1)1 

and from S(k) :5 k it results: 

t S(k) <t k = ! _ 1 < ! 
k=1 (k + I)! -le=1 (k + 1)! 2 (k -I)! 2 
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(1.82) 

(1.83) 

On the other hend, for k 2: 2 we ha.ve S(k) > 1 and con8e­
quently 

... S(k) n. 1 1 1 1 3 E (k + 1)! > E (k + 1)! = 2! + 3! + ... + (n + 1)! = E"'+1 - 2 

1.6.2 Proposition. The series 

(i) t. (kS~k~)!, with r E N* and (ii) E (kSlk;)! I with r E N 
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converges. 
Proof. We have 

and it. results: 

" S(k) E (k - r)! < rE,,_r + E,,-r-l 

so the series from (i) is convergent. Analogously one may prove 
t.he convergence of second series. 

1.6.3 Remark. Because if n ~ 3 and m = ~! we have: 

m .. ! 1 
---,-_ - ...1.. - _ 
SCm)! n! 2 

it results the divergence of the series: 

ex> k 
L-
k=l S(k)! 

We may consider the series: 

For 

00 S(k) Ie 

fs(z) = E (k + l)!z 

S(k) 
ak =(k+l)! 

it results ale + dale ---+ O. Indeed, 

ale+l = S(k+l) < k+l < _1_ 
ale (k + 2)S(k) - (k + 2)S(k) - S(k) 

(1.84) 

(1.85) 
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and so the series 1.85 converges, for all z E C. 
1.6.4 Propoisition. The function Is from (1.85) satisfies: 

/ fs(z)/ :5 fJz on the unit disc u(O, 1) = { z / / z/ < 1 }, where 
f3 is the sum of the series (1.82). 

Proof. A lemme does to Schwarz assert that if a function 
I is holomorphic on the unit disc u(O, 1) and satisfies 1(0) = 
0, 1f'(z)1 < 1 on this disc, then II(z)1 :5 z on u(O, 1) and 
11(0)1 :5 1. 

For Is it results 

1 f s( z) < f3 if 1 z / < 1 

so the function (1/ (3)fs satisfies the conditions of Schwan's lemme. 
The connection bet ween the function S and the factorial jus­

tifies to consider the complement of a number until the most 
appropriate factorial. 

So, let us consider the func1.ion: 

b:N·~N· 

defined by the condition that 

ben) = S(n)! (1.86) 
n 

1.6.5 Proposition. The sequences (b( n) )nEN* and (b( n) / nlc)nEN*, 

for k > 0, are divergent. 
Proof. Of course, ben!) = 1, and if (Pn.)n.EN. is the sequence 

of all the primes, we have 

Noting 

b(pn.) = S(pn.)! = p,,! = (Pn. - 1)! 
Pn p" 

b(n) 
x", =-­

n lc 
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for fixed k > 0 it results: 

and so 

S(n)! 
x =-­
~ n lc +1 

~
!! ~! 

Xn! = = ( 1)1 + j --+ 0 n. ~. 

X - p,.! - (p"i'l)! > pl·pa···P,,-1 > 
p" - CP .. ) +1 - p.. p! pn 

because it is sa.id [33] that for fixed k and sufficiently large n we 
have 

"+2 Pl' Pz···P ... -1 > P~ 

1.6.6 Proposition. The sequence 

n 1 
T(n) = 1+ ~ b(n) -In ben) 

has no limit. 

( 1.87) 

Proof. Let us suppose that lim T(n) = I < 00. From (1.84) 
~-oo 

it results 

00 1 
1:-=00 
n=J b(n) 

and then by the hypothesis, using (1.87) it results 

lim In ben) = 00 
n-oo 

If we suppose lim T(n) = -00, using the expression of ben) 
"-00 

from (1.87) it alBo results lim In ben) = 00. 
"'_00 

We can't have lim T(n) = 00, beca.use T(n) < 0 for in-
n-oo 

finitely many n.Indeed, from i $ SCi)!, it results 



Numerical Series 53 

5(£)! ~ 1 for i > 2 

so 

T(Pn) = 1 + 5(;)1 + 5(~)! + ... + ~ -In((Pn - I)!) < 
1 + (pn - 1) -In((Pn - 1)!) = Pn -In((P,, - 1)!) 

But for sufficiently large k we have elc < (k - 1)!, and con­
sequently there exists mEN such t.hat Pn < In((Pn - I)!) for 
n 2: m, and t.he proposition is proved. 

Let us consider now the {unction 

(1.88) 

1.6.7 Proposition. The series 

(1.89) 

converges. 
Proof. The sequence (b(2) + b(3) = ... b(n»,,~z st.rictly in­

crease to innnit.y and 

5(2)! 5(3)! 5(2)! 
--+-->--

2 3 2 

5(2)! + 5(3)! + 5(4)! > 5(3)! 
2 3 4 3 

5(2)! + 5{3)! + 5( 4)! + 5{5)! > 5(5)! 
2 3 4 5 5 

5(2)! 5(3)! 5(4)! 5(5)! 5(6)! 5(5)! 
--+--+--+--+--> --

2 3 4 5 6 5 
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5(2)! + ~ + ~ + ~ + ~ + ~ > 5(7)! 
2 3 4 5 6 1 7 

80 it results: 

But (Pn. - 1)! > PI . P2 ... pn. for n ~ 4 and 80 

where 

ale = Pk(P" + 1 - Pk) = (Ple+l - p,,) < Ple+l - P" < P"+l 
Ple! (p" - 1)! Pl' P2 .. ·pk Pl . pz .. ·prc 

Because for sufficient.ly large Ie we have PI . P2 .. ·pic > pi + 11 it 
result.s: 

P1c+l 1 aTc<--=--n+1 n+l 
and then the convergence of the series (1.89) results from the 
convergence of the series 

L _1_ 

1c~Tco IJt+ 1 

We shall give now an elementary proof of the series 



Numerical Series 55 

IX> 1 
L: ' with O! > 1 
lc=2 (S(k)a)/S(k)! 

(1.90) 

and using this convergence we shall prove t.he convergence of the 
senes 

00 1 
L:-
1c=2 S(k)! 

(1.91) 

1.6.8 Proposition. The series (1.90) converges, for all Cl > 
1. 

Proof. We have succesively: 

00 

L 1 - 1 + 1 + 1 + 1+ 
1c=2 (S(lc)"')JS(lc)! - 2G1 V'2f 3 .. $1 .aJ;! .sa$! 

00 

+ 3"~! + 7 .. J7! + 4"~ + ... =t~ t .. ~ 

where Tnt is the ca.rdinal of t.he set 

M t = {k / S(k) = t} = 
= {k / k divides t! and does not divide (t - 1)! } 

(1.92) 

It results that Mt C {k / k divides t! }, so Tnt is lowest than the 
number of divisors of t!. So we ha.ve 

174 < ret!) 

But it is said that r(n) < 2...jn, for every positive integer n, 
consequenUy 

00 Tnt 00 2Vt! 00 1 
2: <2: -2L-
lc=2 (ta ) v'tf .'&=2 (ta ) vir - lc=2 ta 

and the proposition is proved. 
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1.6.9 Consequence.From the convergence of the series (1.90) 
it results the convergence of the series (1.91). To prove thl:s we 
shall use the following result.: 

1.6.10 Proposition. For a > 0 let us note 

t· = [e2a + 1] 

Then the inequality t a v0 < t! holds for every t > t-. 
Proof. We ha.ve 

(t~) v0. < t! {=:> (t2a)t! < (t!)2 {=:> t2a < t! 

On the other hand 

t2a < (Dt -¢=> (e~)2a < (~)t -¢=> e2a H)2a < (~)t -¢=> 

-¢::::=> e'2a < (~y - '2a 

But. 
t> e2a + 1 ~ (~)t-2a > (el"e+

1 )t-2a = 
= (e2a )t-2a > (e2a y:2ar+l_2a 

Now, for x > 0 we ha.ve e:t; > 1 + x, and so, talcing x = 2a + 1 
and t > 2a + 1, it results 

t (_)t-2a > e~ > e2a 
e 

Then for t > t- we get 

+ t e2a < (.: )t-2a -¢=> t2a < (_)t < t! 
e e 

It results t2a < t! if t > t·. 
Using this result we ma.y writte: 
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and from the proposition (1.89) it results the convergence of the 
senes 

00l'nt 

L:-
t=2 t! 

and of course we have 

00 I 00 171.t 
L-=L-
fo=2 S(k)! 10=2 t! 

1.6.9 Theorem. Let I : N* --+ R be a function which 
satisfies the condition 

I(t) S ta(d(t!) _ Cd«t _ I)!) 

for t E N* and the constants a > 1, c > o. Then the series 

00 

L I(S(k» 
k=l 

is convergent. 
Proof. For M t given by (1.92) we ha.ve M t = d(t!)-d«t-1)!) 

and 

00 00 

L I(S(k» = L Mtf(t) 
k=l 10=1 

Then beca.use M t · I(t) s M t · t"~1 = t .. it resultsthe convergence 
of the series. 

1.6.10 Proposition. H (X~)"eN. is any strict increasing 
sequence of positive integers, then the series 

is divergent. 
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Proof. Let consider the function 

From the theorem of Lagrange it results that there exists ; E 
(xn" xn,+l) such tha.t 

1 
In In Xn+l - In In Xn, = In (xn,+l - Xn) 

en, ; 

and because x ... < ; < X ... +l, we have 

Xn,+l - x" In In In In Xn+l - x" ----- < Xn,+l - x" < ----
Xn+lIn Xn,+l xn,ln X" 

(1.93) 

for every n E N*.Then for n > 1 

S(n) < 1 => 0 < S(n) < _1_ 
n - nIn n - In n 

That is 

lim Sen) = 0 
"'-00 nInn 

and heuce for every n E N* there exists k > 0 such that ~l" < fe, n. n n, 

or nlnn > ¥. Then 

1 Ie --:--- <-­
Xn In Xn S( x,,) 

Introducing (1.94) in (1.93) we obtain 

In In In fe X,,+l - x" 
X"+l - In Xn. < S(xn.) 

for every n > 1. Summing it results 

(1.94) 
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;:... X.,..+l - x.,.. 1 
~ S(xn) > k"(1nln X m+1 -lnIn Xl) 

and the divergence of the series results from the fact that In In Xm. 

tends to infinit.y. 
Consequences. 1) For Xn = n it results the divergence of 

the series 

00 I 

E Sen) 

2) H x .. = p.,.. (the n-th prime), it results the divergence of 
the series 

00 l: Pn.+1 - P .. 

11.=1 P .. 

3) If (Xn)nEN- is an arithmetical progression of positive int~ 
gers t.hen t.he series 

00 I 
L-

n.=1 S(x .. ) 

is divergent. 
1.6.11 Proposition. The series 

00 1 
l:~~..,..--~ 
.,..=1 S(1)S(2) .. .s(n) 

is convergent to a number s E (1.71,2.01). 
Proof. From the definit.ion of the Smarandache function it 

results t.he inequalit.y 

and summing we get 

I 1 
-->­Sen) - n 



60 The Smarandache Function 

00 1 00 1 
2: >2: -=e-2 
n=1 S(1)S(2) ... S(n) - n=1 n! 

On the other hand the product S(1)S(2) ... S(n) is greater 
than the product of primes from the set {I, 2, ... n}, because 
S( i) = i if i is a prime. Therefore 

1 1 
n < -le-

.II S( i) II p. 
&=1 &=1 

where Pic is the greatest prime number not exceeding n. Then 

00 

S = n~l S(1)S(;) ... S(") = S(~) + S(1)1S('J) + ... + 
+ s(l)s(h .. s(k) + ... < 1 + ~ + 2~3 + 2.;.5 + 

.. + + pH! -Pit + "357 ... ... -' . . PI Pl· .. PII 

and using the inequality PIP2"'PIc > pi+! for every k ~ 5 (see 
[331) it results: 

111211 1 
s < 1 + - + - + - + - + ,.2 + '2 + ... + :z- +... (1.95) 

2 3 15 105 }J6 P7 n.+! 

let us note P = PI + '* + ... and observe that P < rh- + ~ + 
~+ ... 

It results 

~2 1 1 1 
P < - - (1 + - 4- - ~ ... + -f 22 I 32 . 122 

be ~_1+1+1 I 1+ ca.use 6' - ~ j1' T 4" ... 
Introducing in (1.95) we obtain: 

111 2 ~ 11 1 
8 < 1 + - + - + - + -+ - - (1 + - + - + ... +-

2 3 15 105 6 22 32 122 
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Esiimating with an approximation of order not more than 
10-2 it results s E (1.71,2.01). 

1.6.12 Proposition. For every a ~ 1, the series 

00 n a 

L~:-=-:--:---::-:-7 
,,=1 S(I)S(2) ... S(n) 

converges. 
Proof. If (plo)lcEN. is the sequence of primes, we can writte: 

"co < ... co < Pitl 
5(2)5(3) ... 5(",) PIPl··.plo PlPl· .. Plt 

where Pi ~ n for i = 1, k , and Pic+! > n. 
Therefore 

Because it exists leo E N· such that for any k ~ leo we have 
01+3 h PIPZ"'Plc > Pk+l' one ave 

00 nO. leo-I pa +1 00 1 
L < 1+201

-
1+ L lc+l + L -2-

7\=1 S(1)S(2) ... S(n) k=l PIp-z·"plc lc=lco PHI 

and so our series is convergents. 
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Consequences. 1) There exists ~ EN'" such that S(1)S(2)S(3) ... S(n) > 
nQ for every n 2: ~. Indeed, 

nQ nQ 

!\~OO S(1)S(2)S(3) ... S(n) = 0 ==> S(1)S(2)S(3) ... S(n) < 1 for n 2: ~ 

2) It exists ~ E N'" such that 

S(1) + S(2) + S(3) + ... + Sen) > n7 for n ~ ~ 

Indeed, we have: 

S(I) + S(2) + ... + Sen) > ni S(1)S(2) ... S(n) > n· n! = n~ 

for n 2:~. 

1.7 Diophantine Equations Involving 
the Smarandache Function 

The formula (1.21) may be used to solve certain diophantine 
equations involving t.he Smarandache function. 

1) The equation 

S(x· y) = Sex) +S(y) (1.96) 

has a.n infinity of solutions. 
Indeed, from (1.16) it results that. if Xo and Yo are solut.ions 

of the above equation then Xo 1\ Yo -I 1. Thai because 
d 

d 
S(xo . Yo) - S(xo V Yo) = max{S(xo), S(Yo)} 

Let. now x = p<a A, y = pb B be such that. 
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Sex) = S(pG), S(y) = S(i') 

Then Sex . y) = S(pa.+b) and the equation becomes p«a + 
b )(p])(p) = p(Cl[pj)(p) + p(b(p])(p), or 

(1.97) 

There are infinitely many values of a and b satiBfying this 
equality. For instance, a = a3(p) = lOO[p], b = 1l:l(P) = l0[pl ' for 
which (1.97) becomes: 

( 11 O[pI)(P) = (1 OO[p])(P) + (1 0[pI)(P) 

2) The equation 

Sex . 1/) = Sex) . S(y) 

has no solutions x, y > 2. 

(1.98) 

Indeed, lei us note m = Sex) and n = S(y). It is sufficient 
to prove that S( x . y) i= m . n. But it is said that m! . n! divides 
(m + n)!, so 

(m . n)! ~ (m + n)! ~ m! . n! ~ x . Y 
d d d 

and consequently Sex . y) ~ m· n. This is a strid. inequality if 
m . n > m + n, so it is for m, n > 2. 

Consequently the equation (1.98) has as solutions only the 
numbers x, 1/ ~ 2. 

3 The equation: 

x 1\ Y = Sex) 1\ S(y) 
d d 

(1.99) 

also has infinitely many solutions. 
Indeed, because x > S( x), and the equality holds if and only 

if x is a prime or x = 4, it results that the equation (1.99) has 
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as solution every paire of prime numbers, as well as every paire 
of square free numbers. 

Let now x and y be such that x " y = d > 1 and 
d 

S(x) = p(Clfpl)(P); S(y) = q(b[q])(q) 

Because p 1\ q = 1, noting <11 = (<1[P])(p) and b1 = (b[qI)(q), if 
d 

we have p 1\ b1 = <11 1\ q = 1, the equation becomes: <11 1\ b1 = d. 
d d d 

This equality is satisfied for many values of a and b. For instance, 
if x = 2 . 3" and y = 2 . Sb it results d = 2 and we have 

for many vralues of <1 and b. 
4) Let now consider the equation: 

d d 
x V y = Sex) V S(y) 

Every pair of pnme8 iB a. solution of tbiB equa.tion, and if X, Y 
are composite numbers, we observe that. if we note 

Sex) = S(pii) ; S(y) = S(pji), with Pi =F Pi 

it results that. t.he pair (x, y) is not. a solution of the equation, 
because: 

x ~ y > p~i . p~j ~ Sex) . S(y) ~ S9x) ~ S(y) 

Finally, if X = paA, y = pbB, wit.h Sex) = S(pa) and S(y) = 
S(Pb). it results 

and x ~ y = zrn&X{a,b}(A ~ B), consequently the equation a.lf 
has many other solut.ions, which are not. relatively prime. 
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5) The equation 

S(x)+y=x+S(y) (1.100) 

hM as solution every pair of prime numbers, but also every com­

posit numbers x = y are solution. It may be found other kind of 
composit numbers as solution for this equation. For instance, if 
p and q are consecutive primes and we note 

q-p=h (1.101) 

taking x = pA, y = qB, the equation becomes: 

y -:z: = S(y) - Sex) (1.102) 

Considering the diophantine equa.tion qB - pA = h, it results 
from (1.100) tha.t Ao = Bo = 1 is 8 pa.rticular solution for this 
equation, and then the general solution is 

A = 1 + rq, B = 1 + rp, for a.rbitrary r EN 

Taking r = 1 it results x = pel + q), y = q(l + p), and 
y - x = h. In addition, because p and q are consecutive primes, 
of course p + 1 and q + 1 are composite numbers and then 

Sex) = p, S(y) = q, S(y) - Sex) = h 

so the equation (1.102) is verified. 
6) To solve the equation 

S(m·x)=m.S(x) (1.103) 

let us observe that S(m. x) S Sex) + m. This fact results from 
the equality 

(S(x) + m)! = S(x)!(S(x) + l) ..... (S(x) + m) 
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talcing into account tha.t S(x)! is di .... isible by x and the product 
of m consecutive integers is divisible by m. 

IJ:r. is a Sohlt.ion ofthe eqnation it. results m.. 5(x) ~ S( x )-+-m, 

BO 

(m - 1)(5(x) - 1) ~ 1 (1.104) 

Then we have to analyse the following cases: 
( \ If ~ I' t' b Sf ~ d h \aJ Tn = .1,~lle equa lon ecomes tXJ = x an ad ad 

solution every pOb;tive integer. 
(b) If m = 2, it results we ca.n have S(x) E {1, 2}, and then 

xE{1,2}. 
(c) If m. 2: 3, we mm'lt have S(x) = 1,so x = 1. 
7) For the equation 

( 1.105) 

leiusobservethatS(x~) ~ y'X, because (yx)! = 1·2 .... x .... (2x) .... (yx). 
Then, if ~he pair (x, y) is a soluLioll for the equation, we must. 
ha.ve yJ: S yx. Tha.t is 

.,:-1 < ". 
1I _ - (1.106) 

If x = 1, the above condition is satisfied, and the equation 
Ol'C.omes 5(1) = 1). Conseqllently, the pair (1,1) is a. solnt.ion of 
t.he equation. 

For x 2: 2, only the pair (2,2) verifies the inequalit.y (1.106), 
80 it is a solution of the equation. 

Indeed, for x 2: 3 we ha.ve x < 2:1:-1 ¢::::::;.lnx < (x -1)ln2, 
a.nd considering the function 

f(x) = (x -1)ln2-lnx 

it results f'( x) = (x In 2 - II/X so f'( x) = 0 -¢=> x = l/ln 2. 
J\/ \ /' \ . 
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For x > [If In 2] + 1, hence for x > 2, this function is increas­
ing, and in addition f(2) = O. Then for x ~ 3 the inequality is 
strict. 

Let us now consider the equation 

Sen) = Ie 
n 

(1.107) 

where Ie E (0, l]ia a rational number. In [48] there are answered 
the following questiOIlB: 

(ql) For every Ie E (0,1] there exists solutions of the equation 
(1.107) ? 

(q2) Find the values of Ie for which the equa.tion has infinitely 
many solutions in N·. 

The answer to (ql) is nega.tive, and the values of Ie for which 
the equation has an infinity of solutions are the fonowing: 

Ie = 1 with r E N" a.nd 
T 

Ie E Q n (0, Il, Ie = ~, with p, q E N·, 0 < q < p, p ~ q = 1 

Indeed, if n is a. solution of our equation, let 

S(n) = E 
n q 

and let d = n A S( n). Then, from the definition of d and 
,J. 

from the fad t.hat p and q are relatively prime, it results t.hat 
S( n) = qd, n = pd and we have 

S(pd) = qd (1.108) 

Using the definition of S it results (qd)! = M(Pd) and 

(qd _ 1)! = (qd)! = M(Pd) = M(P) 
qd qd q 
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Because p and q are relatively prime, it results that (qd - I)! is 
divisible by p and consequently 

S(P) S qd-1 

Lei us prove also that S(P) 2: (q - 1 )d. 
But, if the inequality S(P) < (q - l)d holds, it results «( q -

l)d - I)! divisible by p. Then from d S (q - 1 )d, it results 
d 

pd S «(q - l)d)!, and SO S(Pd) < (q - l)d. This inequality is a 
d 

cont.radiction of the fact. that S(p<f) = qd> (q - l)d. 
So, we have 

(q - l)d S S(P) < qd - 1 (1.109) 

Taking q ~ 2, from the first of the above inequalities, it 
results d S S(p)/(q - 1), and from the second it results that 
(S(P + l)/q) ~ d, hence 

S(p+ 1) < d< S(P) 
q - -q-1 

(1.110) 

For q ~ 2 and k = p / q it. result.s a. necessary condit.ion for t.he 
existence of at least a solution of the equation (1.107), namely 
the existence oIan integer between S(p+l)/q and S(P)/(q-l). 

But this condition is not a sufficient condition, as we can see 
from t.he examples lisied bellow. 

Examples. 1) For Ie = 4/5 we ha.ve S(p + 1)/q = 3/2 and 
S(P)/(q - 1) = 5/3, so the equation has no solution. 

2) For k = 3/10 we have S(p + 1)/q = 11/3 and S(P)/(q-
1) = 5/2) with the same conclusion as in the preceding example. 

3) For k = 3/29 it results S(p + l)/q = 5/3 and S(P)/(q-
1) = 14.5) so between S(p + l)/q and S(p)/(q - 1) t.here exist 
more than one integer. However, the equation 

Sen) _ ~ 
n 29 
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has no solutions. Indeed, the number of the solutions equals the 
number of values of d for which (1.110) and then (1.108) holds. 
But it does not exist any integer between 2 and14 satisfying these 
conditions. 

Let us study now the equation (1.107) for k = lip, with p 
E N*. We shall prove in this case that the equation has infinitely 
many solutions. 

Indeed, let Po be a prime number greater than p and let 
n = PPo. It results Sen) = S(Ppo) = Po, and S(n)/n = lip = k. 

In [48} it is also answered the following question, posed by F. 
Smarandache: 

(q3) There exists infinitely many positive integers x such that 

0(1) {_x_} (:2) {Sex)} 
< Sex) < x 

(1.111) 

where {x} = x - {x}? 
The system (1.111) of inequations has only one solution, 

namely x = 9. To prove this we shall prove first t.hat t.he in­
equation 

{_x_} < {Sex)} 
Sex) x 

has infinitely many solutions. 
The inequality holds for x = 9, because 

991 
{-}={-}=- and 
S(9) 6 2 

(1.112) 

At the same time one observe tha\ any prime p is not. a 

solution of the inequation. 
Let now x be of the form: 

- Of! ell Oft • th t > 2 x - PI . P2 ... Pt ,WI _ 

We have 
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Sex) = max S(P~Io) 
IS Jc st 

and let us put Sex) = S(pa), where pOI is one of pi') for i = 1, t. 
Then if x is a solution for (1.112) the number {~} may take 
one of the following values: 

1 2 Sex) - 1 
sex)' sex)' ... ) Sex) 

For such an x we have 

S(x) > 1 (S(pa»2 > X > pOI 
-x- - SeX) , so (1.113) 

It is said t.hat from Legendre's formula (1.15) it results S(Pa) ~ 
Cip. Then using (1.112) we deduce Ci'l.p'l > pOI, so 

(1.114) 

If p 2: 2 then the last inequality holds only for int.egers Ci ~ 
CiO· 

Indeed, we have pOI - '1. 2: 201 
-

2 and 201 
- '1. 2: o? holds for Ci 2: 8 

(the function f(Ci) = 201
-

2 - Ci2 is increasing and f(8) = 0) 
We have to prove only that for Q! E {I, 2, ... , 7} the system 

(]. ] 1]) has no solutions. 
(a) If Q' = 1 it results Sex) = S(P) = p, and because p 

divides x we have xlp E Z, first of the considered inequalities is 
not satisfied. 

Let us observe that there exist solutions for the second in­
equality.Indeed, noting P = PI, the number x is of the forn: 
x = Pl· p~'.·.pr' , so 
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Example. For x = 23 . 219 .39 , we have Sex) = 23 and 

{_x_} = {219 . 39} = 0; {sex)} = 1 
S( x ) X 219 . 39 

(b) For a = 2 let us note x = pa'Xl' Then Sex) = S(P2) = 2p 
and 

so we must have 

{pXl} = ~ < {Sex)} = ~ 
2 2 X PXl 

and it results PXl < 4, thai is p E {2, 3}. 
If P = 2, it results Xl = 1 and so X = 4, which is noi a 

solution for the inequation (1) from (1.111) because 5(4) = 4. 
If p = 3, it results also Xl = 1, so x = p2 = 9. 
Lfet us observe that the second inequation from (1.111) has 

also solutions. Indeed, wit.h the notation P = PI we have: 

a1 aJ al S( ) 2 
{_x_} = {P2 . P3 .. ·Pt } and {_x_} = a:l al a, 

S(x) 2 X P2 . P3 · .. Pt 

consequent.ly t.he inequat.ion is verified for X > 2 even number. 
Example. For x = 2S 

• 31 .112 we have Sex) = 19 and 

{ 
X }_{~.31'112}_O' {S(x)}_ 1 

Sex) - 2·11 -, -x- -2~·31·11 

(c) Let now be ex = 3. We have seen that in this case if 
Sex) = S(pa), it results p ~ 7. 

If P = 2 it results Sex) = 5(23
) = 4 and then 
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{S(x)} = {23 ~Xl} E Z 

consequently the inequation (1) from (1.111) has no solutions. 
However, t.here exist solut.ions of the second inequation. Indeed, 
considering for instance x of t.he form 

(1.115) 

with a, b, c, dE N* such that d = CZn(7) = (7" - 1)/(7 - 1) and 
Sex) = S(7d ) it results Sex) = 7n and so x/sex) is an integer. 

If p = 3, we have Sex) = S(33
) = 9 and also 

(1.116) 

The inequation (2) has solutions in this case too. For in­
stance x = 33 . Xl are solutions, beca.use 

{Sex)} = {_9_} =_1 
x 33xl 3Xl 

If p = 5, we ha.ve Sex) = S(53
) = 15 and (1.111) becomes: 

5
2
x1} {3} . o < {-- < -- , WIt.h Xl 1\ 5 = 1 
3 52 x1 d 

From the first of these inequalities it results: 

{ 5
2
xl} {!~} 
3 E 3' 3 

so we must have 1/3 < 3/(5'2X1 ). Tha.t is 5'2Zl < 9, which is an 
imposibility. 

If p = 7, it results Sex) = 5(73
) = 21 and 
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so 

{~:l} E {~,~} 
Analogously it results the contradiction 3/(~Xl) > 1/3. 

If a = 4 one obtain p E {2,3}. For p = 2 it results Sex) = 
S{2-i) = 6 and because x = 2~XI' with 2 1\ Xl = 1, the system 

tL 
(1.111) becomes: 

O { 
8X1} 3 < - <-

3 8X1 

From the condition 3/(8x1) > 1/3 it results Xl = 1, so X = 16. 
But for this value of X we have 

{_X_} = ~ > ~ = {Sex)} 
Sex) 3 8 :z: 

For p = 3, we have S(x) = S(3~) = 9 and one arrive at the 
condition (1.115). 

For a E {5, 6, 7} we get only p = 2 satisfying the condition 
(1.114), so x = 2ll<xland because S(25 ) = 5(26

) = S(27) it results 
for all the cases Sex) = 8. The condit.ion (1.116) is verified again 
and the system has no solutions. 

1.8 Solved and Unsolved Problems 

In the sequel we indicate by a star (*) the unsolved problems. 
For the solutions of solved problems see the collection of Smaran­
dache Function Journal and its extension The Smarandache No­
tion JournaL 

1*) Find a formula for the calculus of Sen), containing in­
stead of prime divisors of n the number n himself. 

2) Prove that S(pP+1) = p'2. 
3) Inddicate the number of solutions of the equation 
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Sex) = n!. 

4) Prove that the equation Sex) = p, where p is a given 
prime, has exactly deep - I)!) solutions, all of them between p 
and p!, where d(x) is the number of divisors of x. (A. Stu.paru) 

Generali.3ation: The number of solutions of the equation 
Sex) = n is den!) - d(n - 1)!). 

5) Prove that ma.x{ S(~n) / n 2: 4 is a composite number} = ~. 
(T. Yau) 

6) Let q be a prime number and k be an exponent such that 
S(r/') = n!. Let Pl,P2, ... p .. be the list of primes less than q. 
Then the number of solutions of the equa.tion Sex) = n!, where 
x contains exactly k instance of the prime q, is at least (k + 1)' . 
(Ck. Asbacker) 

7) For every prime p and k 2: 1 prove that 

SI-1c) S(plcH) 
_v-'_ > (Ok. Asbacher) 

pic - rJc+l 
8) Is the number r = 0.1234574651 ... , where the digits are 

the values of Sen) for n > 1, an ira.nonal number? (F. Smaran­
dache) 

9) Find the largest. strictly increasing series of iniegers for 
which the Smaranda.che function is strictly dec rea3 ing. (J. Ro­
driguez) 

10) Find a strictly increa.cring series of integer numbers such 
that for any consecutive three of them the Smarandache function 
is neither increasing nor decreasing. (J. Rodriguez) 

11) Are the points pen) = S(n") uniformly distribut.ed in t.he 
interval (0,1] ? 

12) Prove that 
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where PI < P2 < .··P;.··· is the sequence of prime numbers. (P. 
Melendez) 

13) For every composite integer n ~ 48, between Sen) and n 
there exist a.t least five prime numbers. (L. Seagu.10 

n n 
14*) Calcula.te .2:: O"[p](i) using .2:: O"(p)(i). 

,=1 ,=1 
15) If we note 

n 1 
T(n) = l-In S(n)+ ~ SCi) 

prove thai 

.lim T(n) = 00 
'--+00 

16) If (Pn)nEN. denote the sequence of a.ll the prime numbers 
then the sequence {sG::.-!l)} is unbounded. (M. Popescu.. P. 
Popescu) 

17) For every kEN t.here exists a sequence n1 < ~ < ... 11,: ... 

of positive integers such that 

lim S(Tli) > k (Th. Martin) 
n-oo ~ 

18*) Solve the following equat.ions: 

(i) S(Xfl). S(X~l) ... .s(X!") = S(X:+il) 
(ii) S(X~l}. Sex;' }",S(X::l) = S(X~l) 

19) Solve the equations: 

xS(z) = S(x)z 

(Bencze) 

xS(~) = S(yy~ (1. Tutescu, E. Burton) 
xS(z) + S(x)S(x)z + x 

20) For all positive integers m, n, r, s holds: 
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(i) S(mn) ~ mS(n) 
(ii) S(mn) ~ max{S(m), S(n)} 
(iii) max{S(m),S(n)} ~ mS(n) (S. Jozsef) 
(it) m ~ n ~ .st:) ~ S(nn) 

d 

(t) S(mn) + S(rs) ~ max{S(m) + S(r), Sen) + S(s)} 

Consequence. For all composite numbers m, n > 4 holds 

S(mn) < SCm) + Sen) < ~ (5. Jozse/) 
mn - m+n - 3 

21*) Find n such tha.t the sum 

1S(n-1) + 2S(n-1) + ... + (n - 1)S(n.-1) + 1 

is divisible by n. (M. Bencze) 
22*) Ma.y be written every positive integer n as 

n = (S(x»3 + 2(S(y»3 + 3(S(z»3 ? (M. Bencze) 

23") Prove tha.t 

00 I 

E (S(k»)2 - S(k) + 1 

is irrational. (M. Bencze) 
24") Solve the equation S( x) = S( x + 1). 
25) Prove tha.t 

f Sen) 
n=l n]>+l 

is convergent, for every p > 1. 



Chapter 2 

Generalisations of 
Smarandache Function 

2.1 Extension to the Set Q of 
Rational Nnumbers 

To obt.ain such a generaJisation we shall define first a dual func­
tion for the Smarandache function. 

In [15] and [17] it is make evident a duality principle by means 
of which, starting from a given lattice on the unit. interval [0, I], 
there may be constructed some other lattices on the same inter­
val. We mention that the results of these papers have been used 
to const.ruct a kind of bitopological spaces and to introduce a 
new point of view in the st.udy of fuzzy seta. 

In [16] the method. to construct new lattices on the unit inter­
val, proposed in [17] has been extended to a generallatt.ice.But 
the main ideas from these papers may be used in various domains 
of mathematics. We sha.ll use here to construct a. generalisation 
of Smara.nda.che function to the set Q of all rational numbers. 

In the sequel we adopt a. method from [16J permitting to 

77 
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construct all the functions linked, in a certain sens of duality, 
with the Smarandache function. 

One observe that if we note 

'Rd(n) = {m / n ~ m!}, .cd = {m / m! ~ n} 
d d 

·R(n) = {m / n::; m!}, .c(n) = {m / m! ~ n} 

we can say that the Smarandache funciion is defined by means 
of the triplet (1\, E, 1(,d), because one can write: 

Sen) = I\{m / mE R.in)} 

We may also create all the functions defined using the triplets 
(a, b, c), where: 

- a is one of the symbols: V, 1\, 1\, and {, 
d 

- b is one of the symbols: E and ~ 
- c is one of the sel~: Rin), Ld(n), n(n), L(n) defined 

above 
Not all of t.hese functions are not.-trivial. As we have already 

seen the triplet (1\, E, 'R...i.) defines the function 51 (n) = 5(n), but 
the triplet (1\, E, £d) defines the function 

which is t.he ident.ity. 
Many of the functions obtained using this method are step 

functions. For instance if we note by 53 the function obtained 
from the triplet (1\, E, 'R.), we have: 

S3(n) = {m / n ::; m!} 

so 5'j(n) = m if and only if n E [em - 1)! + 1, mIl. 
In the following we focus the attention on the function 5.." 

defined by the triplet (v, E, .cd) : 
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S~(n) = V{m / m! ~ n} 
d 

19 

(2.1) 

which is, in a certain sense, a dual of Smara.nda.che function. 
2.1.1 Proposition. The function S~ satisfies: 

(2.2) 

so is a morphisme from (N*, ,,) toO (N·, "). 
J. 

Prooj. If PI, P2, ... , pi, ... is the increasing sequence of a.ll the 
primes and 

nl = Up?i, n2 = Upfi with ai, fJi EN 

only a. finite number of (\Ii a.nd fJi being non-nulls, we get: 

IT mln(Ct" 1'1.) 
nl 1\ n2 = p; ,.r. 

d . 

If we note S.~(nl' n2) = 171., S-i(ni) = mi, for i = 1,2 ,and 
supposing ffil ~ m2, it results that the right hand side of (2.2) 
is ml 1\ m2. 

From the definition of Sir: we get for the exponent el'i (m) of 
the prime Pi in the factorisation of m! the following inequality: 

epi (m) ~ min(O!., fl.) for i ~ 1 

and at the same time it exists j 2: 1 such tha.t 

Then it results: 

O!i ~ ep, (m), fJ. ~ ep, (m) for i 2: 1 

We also have: 
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epi (ml) < a., epi (m2) ~ a,: 

and in addition it exists hand k such that: 

So, because ml ~ ~, it results 

and then ml ~ m. If we suppose the inequality is stride, it 
results m! ~ ni. so it exiBis h such that eph (m) > all. and we get 
the contradiction: 

eph (m) > min(ak,,Bh) 

Remark. For many positive integers n we have St{n) = 1. 
For instance, 5t (2n + 1) = 1 for all n E N a.nd 5t (n) > 1 if and 
only if n til an even number. 

2.1.2 Proposition. Let PI, Yl, ... , Pi, ... the sequence of all 
consecutive primes and 

_ LlIJ '-"'3 Uta..J11 ..J1l ..Dr n - PI . P2 .. ·PI. . VI . CJ2 ••• !j~ 

the decomposition into primes of a given number n E N", such 
that the first part of the decomposition til formed. by the (even­
tually) first consecutive primes. If we note: 

ti = 
S(P?' ) - 1 if ep , (S(P?' » > a. 

SC'C(' ) + Pi - 1 if epi (S(Pf'» = ai 
(2.3) 

then 
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Proof. If epi (S(pf')) > Ct., from the definition of Smaran­
da.che function we deduce that 5fyf- ) - ] is the greatest positive 
integer m such that epi (m) ~ Ct.. Also, if epi (5(pi') = Ct, 

then 5(pii) + Pi - 1 iH the great~t ~itive integer m such that 

~,(m) = Cti. 

lt results the number min {ti, t 2 , .•• , t;., p;.+ 1 -1} is the great­
est positive integer m for which ep.(m) ~ elf for all i = 1,2, ... , k. 

2.1.3 Proposition. The fund.ion 5 .. satisfies: 

for every nl, n2 E N*. 
Prooj. The equality results from (2.2) ta.king into account 

that: 

J. 
(nl +~) ~ (nl V n2) = nl 'i n2 

Before to c:onstruct the extension of the Smarandacbe func­
tion to the set Q + of all positive ra.tionals we shall ma.ke evi­
dent some morphism properties of a.ny functions defined by the 
triplets (a, b, c). 

2.1.4 Proposition. (£) The function 55 : N* ~ N* , 
where 

satisfies: 

d 
5s(n) =v { m / m! ~ n} 

J. 

(ii) The function 56 : N* ~ N*, defined by: 
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J 
S6(n) =v {m / n ::; m!} 

d 

satisfies: 

d cl 
SS(nl V n2) = S6(n2) V 56(~) (2.6) 

(iii) The function 57 : N'" -+ N"', defined by: 

(2.7) 

sal.jsfies: 

S1(nl I\~) = S1(nl) 1\ 51(~), S1(nl V~) = S1(n2) V S1(~) 
(2.8) 

Proof. (i) Let 

Then we have A C B or B C A. Indeed, let 

A = {al,a2, ... ,ah.}, B= {b1,b2, ... ,b,} 

be the elementB of A and B writ en in increasing order. That 
is eli < ai+l and bj < bj +1 for i = 1, h - 1 and j = I, r - 1. Then 
if a" ::; b" it results Cl.i ::; b, for i = I, h, so Cl.i! ::; b,.!.::; n2. 

,J, d 

Consequently A C B. 
ADalogou81y, if b, ::; ah,ii. results B C A, and of course we 

have C = A n B. So, if A C B it results 
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Considering the function 56 defined on the lattice }.fJ., from 
(1.100) it results that it is order preserving. But if we consider 
this function defined on the lattice }.fo it is not order preserving, 
because 

m! < m! + 1 but Ss(m!) = [1,2, ... , m] and Ss(m! + 1) = 1 

so 

(ii) Let us observe that 

S,,(n) =~ {m / (3) i ED such that epi (m) < Ct.} 

II we note a = V{m / n < m!} then n ~ (a + I)! and 
d IS 

a + 1 = I\{ m /17. < m!} = Sen) 
""1 

Ss(n) = [1,2, ... , S(n) - 1] 

and then 

Also, we have: 

S6(nl) -\} S6(n2) = [[1,2, ... , S(nl) - IJ, [1, 2, ... , S(~) - 1]] = 
[1,2, ... , S(nl) V 5("-l) - 1J 

(iii) The equalities results from the fact that if m is given by 
(2.7) then 

57(n) = [1,2, ... ) m] ¢::=> 17. E [m!, (m + I)! - 11 
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Let us now define the extension of the Smarandache function 
to the set Q + of positive rationals. 

It is said [25] t.hat every positive rational a may be written 
under the form 

(2.9) 

with p a prime, cxp E Z and only a finite number of the exponents 
a.re non-nulls. Ta.lcing into account this equality one ma.y define 
the divi.sibility of ra.tional numbers as follows: 

2.1.5 Definition. The rational number a =il pap divides 
p 

the rational number b = n pPp if cxp ~ {3p for all prime p. 
p 

The equality (2.9) implies that the multiplication of rational 
numbers is reduced to the addition of some exponents. Con­
sequently the problems on the divisibility of these numbers are 
reduced to order problems bet.ween exponeni.s. 

The greatest common divisor d and the smallest common 
multiple e for rational numbers are defined [25] by: 

d - (~b ) -II pmin{crp 'PI""'} e - ra b j' =II pma.x{a p ,PI' , ... } - .... , ,... - , - L , , ••• 
p p 

(2.10) 
Moreover, between the greatest common divisor d and t.he 

smallest common multiple of any rational numbers there exists 
the relation: 

1 
[a, b, ... ] = (l 1 ) 

a' b"" 

(2.11) 

Of course, every positive rational a may be written under the 
form: 

n 
a = - with n E N, nl E N*, and (n, nl) = 1 

nl 
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2.1.6 Definition. The extension S : Q~ --t Q~ of the 
Smarandache function to the positive rationals is: 

(2.12) 

A consequence of this definition is that if nl and T12 are pos­
itive integers then: 

1 d 1 1 1 
S(- V -) = S(-) V S(-) 

nl n~ r7.1 ~ 
(2.13) 

Indeed, 

For two arbitrary positive rationals we have: 

n d mIl 
S(- V -) = (S(n) V S(m» . (S(-) V S(-» 

nl ml nl ml 
(2.14) 

This formula generalise the equality (1.16). 
2.1.7 Definition. The function S: Q+ --t Q+ defined by: 

- 1 
5(a) = 5(~) (2.15) 

is called the du.al of Smarandache fu.nction. 
2.1.8 Proposition. The dual S of the function S sa.tisfies: 

for all positive integers nl and nz. Moreover, we also have 
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-n m - - -1-1 
S(- 1\ -) = (S(n) 1\ S(m»· (5(-) 1\ S(-)) 

nl d ml T1.1 ml 

The proof is evident. 
Remarks. 1) The restriction of the function S to the set of 

the positive integers coincide with the function S..,. 
2) The extension of the function S : Q~ - Q~ to the set 

Q·of all non-nulls rationals may be made for instance by the 
equality: 

S( -a) = S(a) for a.ll a E Q~ 

2.2 Numerical Functions Inspired 
from the Definition of 
Smarandache Function 

In this section we shall utilise the equalities (2.1) a.nd (1.58) to 
define, by analogy, other numerical functions. 

Let us observe that if n is any positive integer then n! is the 
product of all positive integers not greater than n in the lattice 
c. Analogously the product Pm of all divisors of a given m, 
including 1 and m, is the product of a.ll positive integers not 
greater than m in the lattice Cd.. So we can consider functions 
of the form: 

e(n) = 1\ { m / n < p(m)} 
d 

It is said that if 
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is the decomposition into primes of a given number m, then the 
product of all the divisors of m is 

(2.16) 

where rem) = (Xl + 1)(X2 + l) ... (Xt + 1) is the number of divisors 
ofm. 

If n has the decomposition 

n - pal. pal pat 
- 1 2 .•• t 

then the inequa.lity n < p(m) is equiva.lent with: 
? 

gl(X) = XI(XI + l) ... (xt + 1) - 2al ~ 0 
g2(X) = X2(Xl + 1) ... (Xt + 1) - 2a2 ~ 0 

gt(X) = Xt(Xl + 1) ... (xt + 1) - 2at ~ 0 

(2.17) 

(2.18) 

So, e( n) may be deduced solving the following non-linea.r 
programming problem: 

(2.19) 

under the restrictions (2.18). 
The solution of this problem may be obtained applying for 

instance the algorithm SU MT (Sequential Unconstrained Min­
imisation Techniques) does to Fiacco and Me. Cormick [18]. 

Examples. 1) For n = 3~ . 512 the equa.lities (2.18) and 
(2.19) become: 

(min)f(x) = 3~1 ·5Zl 

with the restrictions 

{ 
gl(X) = Xl(Xl + 1)(x2 + 1) ~ 8 
g2(X) = X2(Xl + 1)(x2 + 1) ~ 24 
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Using the algorithm SU lJT we consider the function 

and the system 

t 

u(x, n) = j(x) - r L In g,;(x) 
,=1 

{
au. = 0 
~ 
aU. - 0 e;;-

(2.20) 

In [181 it is shown that. if t.he solution xl(r),x2(r) of this 
system can't be found explicitely from the system, we can take 
r --+ O. Then the system becomes: 

a.nd has the solution Xl = 1, X2 = 3. So we have: 

min{ m / 34 • 512 ~ p(m)} = mo = 3 . 53 

Indeed, perno) = Jm~ ("'0) = m~ = 34 .512 = n. 
2) For n = 31 .57 , from (2.20) it results for Xz the equation 

2x~ + 9x~ + 7 X2 - 98 = 0 

with a real solution in the interval (2,3). It results Xl E (4/7,5/7). 
Considering Xl = 1 we observe that for Xl = 2 the pair 

(Xl, xz) is not an adnllsible solution of the problem, but X2 = 3 
give 0(32 • 57) = 34 • 512. 

3) In general, for n = p~l' . p~l it results from the system 
(2.20) the equat.ion: 

alX~ + (a1 + al)x~ + Q'lXl - 2Q'~ = 0 

with the solution given by the formula of Caftan. 
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Remark. Using "the method of triplets" we ma.y attache to 
the function e defined above many other functions. 

Starting from the function v, given by (1.58), we may also 
obtain numerical functions by the same md-hod. 

In the following we shall study the analogous of Smarandache 
function and its dual in this second case. 

2.2.1 Proposition. If n has the decomposition (2.17) then: 

Proof. (i) Let be p~" = maxpii. Then pi' ~ p~ .. for all 
i = I, t, so 

pi' < [1,2, ... ,p:"] 
-;[ 

But (pi', pji) = 1 for i =f:. j a.nd then 

n < [1,2, ... , p~a] 
d 

If for some m < P~" we have n < [1,2, ... m], it results the con­
ti. 

tradiction 

p~ .. ~ [1,2, ... m] 
J. 

(ii) If 

then 

d 
so v(nl V n2) = maxpmax{ap,Pp} = max{maxpal',maxppl'}and 

the property is proved. 
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Of course, we can say that the function Vl = v is defined by 
the triplet (1\, E, 'R(dJ), where 

'RtdJ = {m / n ~ [1,2, ... , m]} 
d 

Its dual, in the sense defined in the preceding section, is the 
function defined by the triplet (v, E, .l1dJ)' where 

L(d} = {m / [1,2, ... , mJ ~ n}. 
" 

Let us note by 1/", this function: 

v{(n) = V{m/ [1,2, ... ,m] < n} 
7 

Then Lli(n) is the greatest positive integer having the prop­
erty that all positive integers m ~ vi(n) divide n. 

Let us observe now that a necessary and sufficient condition 
to have Vie n) > 1 is the existence of m > 1 such that every 
primes p ~ m divide n. 

From the definition of Vi- it also results 

v+(n) = m ~ n is divisible by every i ~ m,but not by m + 1 

2.2.2 Proposition. The function Vi satisfies: 

Proof. Let us note 

n = nl /\~, v+(n) = m, v+(n;) = T71i for i = 1,2 
d 

If ml = ml 1\ m2, we prove that m = "ml. Indeed, from the 
definition of V4: it results: 
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Vi(r .. ) = Tnt <==> 
~ {(V) i ~ m, ~ n. is divisible by mi but not by m, + 1 } 

II we have m < Tn!) then m + 1 ~ mi ~ ffi..z, so m + 1 divides 
nl and n:l, and so m + 1 divides n. 

If m > ml, then mi + 1 < m, 80 mi + 1 divides n. 
But n divides nl, so ml + 1 divides nl, and the proposition 

is proved. 
Let. us observe that if we note 

to = max{ i / j ~ i => n is divisible by j} 

then vi(n) may be obtained solving the linear programming 
problem 

to 
(max)f(x) =2: x,lnp,; 

i=l __ to 
x, ~ a, for i = 1, to; 2: x,lnPi < lnPto+1 

.=1 
If fo is the maximum of f from this problem, then v{(n) = 

efo . 

For instance vi(23 . 32 . 5·11) = 6. 
Of course, the function v may be extended to the set of all 

rational numbers by the same method as Smarandache function. 

2.3 Smarandache Functions of First, 
Second and Third Kind 

Let X be an arbitrary nonvoid set, reX X X an equivalence 
relation, X the corresponding quotient set and (I,~) a total 
ordered set. 
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2.3.1 Definition. If 9 : X - I is an arbitrary injective 
function then the function 

f: X - I) defined by f(x} = g(x) (2.21) 

is said to be a standardisation. About the set X we shall say in 
this case that it is (r, (I, ~), f) standardised. 

2.3.2 Definition. If rl and r2 are two equivalence relation 
on X, the relation r = rl /\ r2 is given by: 

(2.22) 

Of course, r defined as above is an equivalence relation. 
2.3.3Definition. The functions 1;. : X - I, i = 1, s are of 

the same monotonicity if for every x, y E X we ha.ve: 

A(;;:) ~ fk(Y) {::=:> fAx) ~ Ji(y) for k,j = 1, s (2.23) 

2.3.4 Theorem. If the standardisations Ii. : X - I, corre­
sponding to the equivalence rela.tions r, (for i = 1, s) are of the 
same monotonicity then the function 

f = maxf. 

is a standardisation, corresponding to r =.A ri, and it is of the 
.=1 

same monotonicity as the functions Ii. 
Proof. We give here the proof when s = 2. For an arbitrary 

value of s the assertion results then by induction. 
Let i.1 , X'-l and i,- be the classes of equivalence of x corre­

sponding to the rela.tions rl, r2 a.nd r = rl /\ r2' If X rll X r1 , Xr 
denote the quotient BetB induced by these relations then: 

fit;;:) = gi(Xr .) ,for i = 1,2, where gi: X r • :- I are injective 
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Thefundion 9 : X,. ---+ I defined by g(X,.) = ma.x(gl(X,.\ ), g:l(X"l» 
is injective. Indeed\ if x; =F x; and 

max(gl(x;l ),gz(x;J) = max(gl(x;1 ),9Z(X;l)) 

then from the injectivity of 91 and 92 it results for instance: 

and we have a contradiction, because 

f1(X2) = gl(X;J < 91(X;J = fl(x1) 
fz(x 1

) = g2(X;J < 92(X;]) = h(x2
) 

That is /1 and fz are not of the same monotonicit y. 
From the injectivity of g it results that the function 

is a standardisation. Moreover, we have: 

f(xl) :::; f(x2) -¢:::::> 9(x;) :::; g(x;) -¢:::::> max(91(x;1 ),9z(x;J) :::; 
:::; max(gl (X;l ), 92(X;l» -¢:::::> ma.x(!t (xl), f2( xl» :::; 

:::; ma.x(/t(x2), h(x2» -¢:::::> 11(x1) ~ 11(x2) and 12(x1) :::; 12(x2) 

because 11 and h are of the same mODotonicity. 
Let us now consider two algebraic lows T and .1. on X re­

spectively on I. 
2.3.5 Definition. The standardisation I : X ---+ I is said 

to be ~-compatible with the lows T and .1 if for every x, y EX) 
the triplet (1(x), f(y), l(xTy» satisfies the condition~. In 
~his case we shall also say that ~he function f &-standardliH! the 
structure (X, T)on the structure (I, :::;, .i). 

Example. If the function f is the Smaranda.che function 5 : 
N· ---+ N·, one can make evident the following standardisations: 
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(a) The function S, ~l-standarclise (N*,·) on (N*,~, +) be­
cause we have: 

(~1) : S(a· b) ~ S(a) + S(b) 

(b) The function S also satisfies: 

(E2): max(S(a),S(b»:$ S(a· b):$ S(a),S(b) 

so this function ~2-standarclise the structure (N* , .) on the struc­
ture (N"',:$, .). 

Now we may define the Smarandache function of first kind. 
We have already seen (section 1.2) tha.t the Smara.nda.che func­
tion is defined by means of the functions Sp' We remember that 
for every prime number p the function S1' : N* ---i- N* is defined 
by the conditions: 

1) S1'(n)! is divisible by p", 
2) Sp(n) is the smallest positive integer with the property 1). 
Using the definition of a standardisa.tion in (2] there are given 

three generalisations of the functions S1" 
To present these generalisations let us note by M(n) any 

multiple of the integer n. 
2.3.6 Definition. The rda.tion rn C N* x N*iB defined for 

every n E N* by the condit.ions: 
(i) If n = ut., with u = 1 or u = p (a prime) and i, a, b E N*, 

then: 

arnb -<===> (3)K E N*, such that k! = M(tL':~), k! = M(,.P) 

and Ie is the smallest positive integer with this property. 
(ii) If 

n - pil . pil pi. 
- 1 2'" s 

is the decomposition of n onto primes, then: 

(2.24) 
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r", = r ;1 "r ~ " ... " r i, p\ Pl P, 

2.3.7 Definition. For every n E N* the Sma.randache func­
tion of fin!t kind is the function S ... : N· --+ N· satisfying the 
conditions: 

(i) If n = ui , with u = 1 or u. = p, then S ... (a) is the smallest 
positive integer k having the property k! = M(u. i4 ). 

(ii) If n = p~\ . p~'J ... p:' then 

S,,(a) = miU (S ij (a» 
l~.~. Pj 

Remarks. 1. The functions S" are standardisations corre­
sponding La equivalence relations r" defined a.bove. If n = 1, it 
results xr \ = N'", for every x E N'", and Sl(n) = 1 for every 
nEN·. 

2. If n = p is a prime nuwber then Sn is just the function Sp 
defined by F. Smarandache. 

3. All the functions S ... are increasing and 80 are of the same 
monotonicity, in the sense of definition 2.3.3. 

2.3.8 Theorem. The functions 5", have the properties that 
~l-standardise (N., +) on (N"',~, +) by the rela.tion: 

for every a, bEN-, and also &z-standardise the structure (N-, +) 
on the structure (N"',~,·) by: 

(~2): ma.x(5,.(a), 5,,(b» S 5,,(a + b) ~ 5",(a) . 5,,(b) 

for every a, bEN-. 
Proof. Let p be a prime a.nd n = pi, with i E N*. Let also 

be a: = Spi (a) , b* = Spi (b) , k = Spi (a + b). Then from the 
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definition of S"" it results that a*, b* and k are the the smallest 
positive in tegers satisfying the properties: 

a*! = M(pUl), b*! = M(pib), k! = M(pj(a+b) 

From k! = M(p,a) = .Al(pib) it results a* ~ k and b* < k, so 
max(a*, b*) ~ k and the first inequality from (El)' as from (E:z), 
is proved. 

Because 

(a* + b*)! = a*!(a* + 1) ... (a* + b*) = M(a*!b*!) = M(pi(a+b» 

it results Ie ~ a· + b*, so (Ed is satisfied. 
If n = Pl £1 . p;2 ... p~. , taking into account the above consider­

a.tions we get: 

(El): max(5 Ij (a), 5 Ij (b» < 5 'j (a + b) ::; 5 'j (a) + 5 ij (b) 
Pj Pi Pi Pi Pj 

for j = 1, s and consequently: 

for 1, s ,so 

max(S",,(a), S .. (b» ~ S .. (a + b) ~ 5,,(a) + S .. (b) 

To prove the second inequality from (~) we remember that 
(a + b)! ~ (ab)! if and only if a > 1 and b > 1. Our inequality is 
satisfied for n = 1, because 
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Let now be n > 1. It results for a· = S~(a) tha.t a* > 1-
Indeed, if n has the decomposition (2.24) then: 

a* = 1 ~ S,,(a) = maxSp') (a) = 1 
J 

a.nd that implies PI = p-:z = ... = Ps = 1, so n = 1. 
Consequently for every n > 1 we have 

S,.(a) = a* > 1 and 5,,(b) = b* > 1 

Then (a· + b·)! < (a· . b·)! a.nd we get: 

In the sequel we present some results on the monotonicityof 
Smarandache functions of the first kind. 

2.3.9 Proposition. For every positive integer n the Smaran­
dache function of first. kind ie increasing. 

Proof. If n is a. prime and kI < k2 from (5,,(k2»! = .i\l(nk1 ) = 
M(nTeI ) it results 5 .. (k1 ) ~ S,.(kz). 

If n is an arbitrary positive integer let 

From 

Sp". (imk1 ) = maxl~$lc SPi (ijk l ) = S,,(kl ) 

SPt (itk:l) = maxl:0~" SPi (ijk2) = S,.(k:l) 

Spm(imkl ) ~ Sp".Ci,.,.k2 ) ~ SptCit k2 ) 

it results Sn.(k1 ) ~ S,.(k2) and the proposition is proved. 
2.3.10 Proposition. The sequence of functions (Sp')iEN. is 

monotonously increasing, for every prime number p. 
Proof. For every ill £2 E N* I with i l < i2 and for every 

n E N* we ha.ve: 
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SO Spi1 ~ Spi-J and the proposition is proved. 
2.3.11 Proposition. Let p and q be two given primes. Then: 

p < q => Sp(k) < Sq(k) for every k E N* 

Proof. The arbitrary integer k E N* may be written in the 
scale (P] as: 

(2.25) 

If. is said tha.t 0 ~ ti. ~ P - 1 for i = 1, s and the last non-null 
digit may also be p. 

Passing from k to k + 1 in (2.25) we can make evident the 
following algorithm: 

(i) t3 increases with unit. 
(ii) if t 3 can't increase with unit, then t 3 -1 increase with a.n 

unit and t J take the value zero. 
( iii) if neither t 3 nor t ~ -1 can increase with an unit then 

t6-Z increase and t6 as well as t 6 _ 1becomezero. 
The processus is continued until we get the expression of k+ 1. 
Noting 

(2.26) 

the increment of function S1' when we pass from k to k + 1, 
following the above algorithm one obtain: 

- if (i) holds then ~k(Sp) = p, 
- if (ii) holds then ~1c(Sp) = 0, 
- if (iii) holds then ~k(Sp) = o. 
and it results 

n. 

S1'(n) = 'E ~k(Sp) + S1'(l) 
,1:=1 

Analogously: 
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n 

Sq(n) = 2: ~k(Sq) + Sq(l) 
k=l 

Ta.king int.o account. tha.t Sp(l) = P < q = Sq(l) and using 
the algorithm mentioned above it. results that. t.he number of 
increments of value zero of the function Sp is greatest than the 
number of increments of value zero for the function Sq, and the 
increment.8 with value P of Sp are sma.ller than the increments of 
value q of Sq. So: 

n n 

2: ~lc(Sp) + 5p(1) <2: ~k(Sq) + 5q(1) (2.27) 
k=1 k=l 

a.nd t.hen Sp(n) < Sq{n) for every n EN·. 
Example. The values of S2 and S3 are listed bellow. 

k ] 2 3 4 5 6 7 8 9 ]0 
increment 2 0 2 2 0 0 2 2 0 

S2(k) 2 4 4 6 8 8 8 10 12 12 
increment 3 3 0 3 3 3 0 3 3 

S3(k) 3 6 9 9 12 15 18 18 21 24 

k 11 12 13 14 15 16 17 18 19 
increment 2 2 0 0 0 2 0 2 2 

S2(k) 14 16 16 16 16 18 18 20 22 
increment 3 0 0 3 3 3 0 3 3 

S3(k) 27 27 27 30 33 36 36 39 42 

and one observe that S2(k) < S3(k), for Ie = 1,20. 
Remark. For every increasing sequence 

PI < P2 < ... < Pn. < ... 

20 
2 

24 
3 

45 
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of prime numbers it results: 

SI < SPI < SPl < ... < Sp .. < ... 

and if n = (PI' P7. ... Pt)' with PI < p:z < ... < Pt, then 

S .. (k) = m~x Sp~ (k) = Spa (k) = S?t (ile) 
l~~k} t 

2.3.12 Proposition. If P and q are prime numbers and 
p. i < q, then Spa < Sq. 

Proof. From p. i < q it results: 

Passing from Ie to k + 1, from (2.28) one deduce: 

(2.29) 

The proposition (2.311) aDd the equality (2.29) imply that 
passing from Ie to Ie + 1 we get: 

"' '" 
~fc(Sp') ::; ~fc(Sp) ::; i· p < q, i 2: ~lc(Sp) ::;2: ~;.(Sq) (2.30) 

.Ie=1 Tc=l 

Because we have 

"' n 

Sp' (n) = Spa (1)+ 2: ~k(Sp') ::; Spa (1) + i I: ~J.(Sp) 
k=1 lc=l 

a.nd 

n 

Sq(n) = Sq(l)+ L ~lc(Sq) 
;'=1 
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from (2.28) and (2.30) it results Spa (n) ~ Sq(n) for every n E N*, 
and the property is proved.. 

2.3.13 Proposition. If p is a prime number, then Sn. < Sp 
for every n < p. 

Proof. If n if! a prime, from n < p and the proposition (2.3.11) 
it results S .. (k) < Sp(k) for every k E N*. IT 

is a comp08it number then: 

Sn.(k) = max S 'j (Ie) = Sp'" (k) 
1~9 Pj ,. 

and from n < p it results p~,. < p. So, using the preceding 
proposition and the inequality Pr ~ p~,. < P, one obtain 

Sp~r (k) ~ Sp(k) 

That is Srr,(k) < Sp(k) for every k E N*. 
We shall present now the Smara.ndache fundion of second 

kind, defined in [2]. 
2.3.14 Definition. The Sma.randa.che functions of second 

lcind are the functions 

SIc : N* -+ N*, defined by Sre(n) = Sn.(k) 

for every fixed Ie E N*, where Sn. is a Smarandache function of 
first kind. 

From this definition it results that for Ie = 1) Sit is just the 
function S. Indeed, for n > 1 we have 
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2.3.15 Theorem. Every Smara.nda.che functions of second 
kind E3-standardise the structure (N·)·) on the st.ructure (N·, ~ 
,+) by: 

for every a, b E N*. At the same t.ime these functions E i -

standardise the structure (N·,·) on (N.,~,·) by: 

(Ei): ma.x(S'" (a), Sk(b» ~ S"'(a. b) ~ SIc(a)· SIc(b) 

for every a, b E N*. 
Proof. The equivalence relation rk corresponding to Sic is 

defined by: 

ark b -¢=:> (3) a* E N* a*' = M(a*), a*! = .LV(bk
) (2.31) 

and a* is the smallest positive integer satisfying (2.31). Conse­
queutly we may say that 5 k is a standardisation aHached to the 
equivalence relation rk. 

Let us observe that the Smarandache functions of second kind 
are not of the same monotonicity, because, for instance, pea) < 
9(b) ~ 5(a2 ) ~ 5(02 ) a.nd from this it does not result Sl(a) ~ 
Sl(b ). 

For every a, b E N* let us note a* = Sk(a), b* = Sk(b), 
c" = S"(a· b). Then a*, bOO, c ... are the smallest positive integers 
with the properties: 

a*' = .l.Y(ak), &*! = MO(bk), c*' = l\1(a'" . bk) 

and so c*! = .. ~(a·) = M(b*). It results a* ~ c*, b* ~ c*, and 
then ma.x{ a., b*) ~ c·. That is: 
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max{S'" (a), Sla(b» < Sk(a· b) (2.32) 

But from (a" + b'")! = M(a'"!b·!) = M(akbk ), it results c· ~ 
(1" + b", 80 

Sk(a . b) ~ Sk(a) + SIa(b) 

From (2.32) and (2.33) one obtain: 

max(Sk(a), Sk(b» ~ Sk(a) + Sk(b) 

so (B-3) is verified. 
Finaly, because (a'"b'")! = M(a*!b"!), we have also: 

and (B~) is proved. 
2.3.16 Proposition. For every k, n E N* we have 

. . . 

Proof. Let us consider n = p~1 . p;'1 ... p~1 and 

Sen) = max(Sp. (ij ) = S(p;;) 
19~t J • 

Then because 

and Sen) ~ n, it fesult8 (2.34). 

(2.33) 

(2.34) 

2.3.17 Theorem. Every prime number p ~ 5 is a local 
ma.x:imum for the functions Sf<, and 
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where ip are the functions defined by the equality (1.33). 
Proof. If p ~ 5 is a prime, the first part ofthe theorem results 

from the inequalities 

Sp_l(k) < Sp(k) and Sp+!(k) < Sp(k) 

satisfied by the Smarandache function of first kind. 
The second part of the theorem results from the definition of 

functions Sk: 

and the theorem is proved. 
Remark. For p ~ k we have STc(p) = pk. 
2.3.18 Theorem. All the numbers kp, with p a prime and 

p> Ie are fixed points for the function Sic. 
Proof. Let m = prt· . p~2 ., .pf' be the decomposition of a given 

m into primes and p > 4 be a prime number. Then Pi·ai < pr' < 
p for i = 1, t, 80 we ha.ve 

For m = k it results STc( kp) = lep, so kp is a fixed point for 
Sk. 

2.3.19 Theorem. The Smarandache function of second kind 
has the properties: 

(i) Si«n) = o(nl+"} for every E > 0 

( .. ) lim 5 1
( .. ) k 

1.t sup = 
n~co " 

Proof. We have 

o < lim SIc(n) = lim S(nk) < lim kS(n) = Ie lim S(n) = 0 
- n.-oo n1 + (; n.-oo n1 + e - n.--oo n1 + E 11.-00 n1 + e 
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and (i) is proved. 
Also, 

lim sup Sk(n) = lim sup S(n
k

) = lim S(P~) = k 
7l.-CO n n.-oo n n-co pn 

where (P ... )",EN. is the increasing sequence of all the primes. 
2.3.20 Theorem. The Smarandache functions of se{;ond 

kind are generaly increasing, in the sense that 

(Y) n E N* (3) mo E N* (V) m ~o~ Slc(m) 2: Sk(n) 

Proof. It is said [44] that the Smarandache function is gen­
erally increasing, in the following sense 

(V) t E N* (3) ro E N* (V) r ~ ro ~ S(r) 2: Set) (2.35) 

Let t = nlc and ro be such that S(r) ~ S(nk), for every r ~ roo 
Let also mo = [~ + 1. Of course, mo ~ ~ ¢=::> ~ ~ ro, 
and m > 172.0 {::=} m lc Z ~. 

From mlc ~ m~ Z ro, it reslllts SCm'") > S(n"'), so S'"(m) Z 
Slc(n). 

Then we have: 

(V) n E N* (3) 171.0 = [N + 1 (V) m > 171.0 ==> Sk(m) Z Sk(n) 

where ro = ro(nlc ) is given by (2.35). 
2.3.21 Theorem. H P Z max(3, k) is any prime number, 

then n = p! is a local minimum for Sic. 
Proof. Let p! = p~l . p~'l ... p;; . P the factorisation of p!, .sllch 

that 2 = PI < P2 < ... , Pm < p. Be{;3.use p! is divisible by P,/ I it 
results S(P)i) ::; P = S(P) for every j = 1, m. 
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Of course, 

a.nd 
S(pj' Ij ) < S(p~j ) < kS(P) = kp = S(pk) 

for k ~ p. Consequently, 

SIe(p!) = S(P") = kp for k ~ p (2.36) 

H the decomposition of p! - 1 into primes is 

PI - 1 - qil . qil qii . - 1 2 .,. t 

then we have qj > P for j = 1, t. 
Ii results: 

S(P! - 1) = max (S(q'} » = S(q'''' ) 
l~i~t 1 m 

with qm > p, a.nd beca.use S( q:';: ) > S(P) = S(p!) it a.lso results 

S(p! - 1) > S(P!) 

Analogously it can be proved that S(p!) + 1 > S(p!). 
Of course, 

STe(p! - 1) = Seep! - 1)"') ~ S(q~·i". ) 2: S(q~) > S(Pk) = kp 
(2.37) 

and 

Sk(P! + 1) = S((P! + 1)k) > kp (2.38) 

From (2.36), (2.37) and (2.38) it results the assertion. 
Now we present the Smarandache function of third kind [2]. 
Let us consider two sequences: 
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(a): 1 = al) a2, ... ) lln, ... 

(b): 1 = b1l b2 ) .•• , bTl.) ..• 

sa.tisfying the properties: 

aT..n. = aT. • lln, b",.n. = b,. . bn. 
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(2.39) . 

Of course there exist infinitely many such sequences, because 
chosing an arbitrary value for 112, the nen terms of the sequence 
(a) are determined by the recurrence relat.ion (2.39). 

Let now be the function 

where Sa. .. is the Smara.nda.che function of first kind. 
One observe easily t.hat 

(i) : if a... = 1, a.nd b .. = n for every n E N*, t.hen fOob = 51 
(ii) : if a,. = n and b,.. = 1 for every n E N*, then fa.b = Sl 

(2.40) 
2.3.22 Definition. The Smaranda.che functions of t.hird 

kind a.re the functions defined by any sequences (a) and (b), 
different. from those of (2.40), such t.hat.: 

ft.=f. b 
a. a. 

2.3.23 Theorem. All function 1'30'\ ~5 - standardise the 
structure (N.,·) on the structure (N*, ~, +,.) by: 

Proof. Let us note 
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fab(k) = 5a/& (bIc) = k\ fab(n) = S<4,.(b~) = n*, 
fab(nk) = S" •. ,.(blc •n ) = t* 

Then k*, n* and t* are the smallest positive integers for which 

max(k'", n*) :s t* (2.41) 

Moreover, because (hon*)! = kf((n .. !)b1 ), (bn·k*)! = M((k*!)b,.) 
and 

(bIc' n* + b,. . k*)! = M((bIc . n*)!(b,. 0 P)!) = 
= M((n*!)b t . (k .. !)bn ) = M((a~n )bil • (a~'" )bn ) = M((alc . a,.)bt ·b" ) 

it results 

t* ~ b.,. . k" + bIc . n" 

From (2.41) and (2.42) one obtain: 

(2.42) 

max(k*, n*) :s t* :s bn. . k* + h . n* (2.43) 

From the last inequality it. results (Es), 80 any Smaranda.che 
function of third kind satisfies: 

for every k, n E N·. 
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Example. If the sequences (a) and (b) are determined by 
the condition a,.. = bn = n, for n E N*, then the Smarandache 
funct.ion of third kind is: 

S:: N* ~ N*, S:(n) = Sn(n) 

and (E6) becomes: 

for every n E N*. This relation is equivalent with the following 
relation, written using the Smara.ndache function: 

2.4 Connections with 
Fibonacci Sequence 

In the Introduction of the Proceedings of the Conferences "Ap­
plications of Fibonacci numbers " [3]' [36], [38J, it is mentioned 
that the sequence: 

1, I, 2, 3, 5, 8, 13, 21, 55, 89, .......... . (2.44) 

known as t.he Fibonacci sequence, was na.med by the nineteenth­
century French mathema.tician Edouard Lucas, aft.er Leonard Fi­
bonacci of Pi..sa, one of the best ma.thematicians of the Middle 
Ages, who referred to him in this book Liber Abaci (1202) in 
connection with his rabbit problem. 
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TheGerman astronomer lohann Kepler rediscovered Fibonacci 
numbers, independently, and since then several renowned math­
ematicians, as J. Binet, B. Lame and E. Cartan, have dealt with 
them. 

Edouard Lucas studied Fibonacci numbers extensively, a.nd 
the simple generalisation: 

2, I, 3, 4, 7, 11, 18, 29, 47, 76, 123, ..... . (2.45) 

bears his name. 
It said tha.t there exists a. strong connection between the Fi­

bonacci sequence a.nd the gold number: 

~=1+v'5 
2 

For instance noting by F(n) the n - th term of Fibonacci 
sequence (2.44) one has: 

and so) 

lim F(n+l) =~ 
17.-00 F(n) 

lim dF(n) = ~ 
17.-00 

(2.46) 

Let us now remember some of the properties of Fibonacci 
sequence. 

It is said tha.t Fibonacci sequence sa.tisfies the recurrence re­

lation 

F(n + 2) = F(n + 1) + F(n), with F(l) = F(2) = 1 (2.47) 

and also the properties: 
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('PI) F(n) = Ts[(1+/'S)n - e-ll5")nJ 
('Pz) F(l) + F(2) + ... + F(n) = F(n + 2) - 1 
('P3) F(l) + F(3) + .,. + F(2n - 1) = F(2n) 
('P4) F(2) + F(4) + ... + F(2n) = F(2n + 1) - 1 
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('Ps)F(2) - F(3) + F(4) - ... + (-1)nF(n) = (-1)nF(n -1) 
('P6) pel) + P(2) + ... + Pen) = F(n) . F(n + 1) 
('P1) F(n) '.F(n + 2) = P(n + 1) + (_l)n+l 
('PIi) F(2n) = Fl(n) + Pen - 1) 
(<;09) F(2n + 1) = pen) + F(n + 1) 
(<;Olo(F(n - 1)· F(n + 1) - F2(n) = (-1)~ 
('Pu) F(n - 2)· F(n + 2) - F(n) = (_1)n+1 
('PIZ) F(n - 1)· F(n + 1) - F2(n - 2)· F(n + 2) = 2( _1)n 

T. Yau [50} has posed first a problem concerning a connec­
tion between Fibonacci sequence and the Smarandache function. 
Namely, for whath triplets (n - 2, n - 1, n) of posi,tive integers 
the Smarandache function verifies a Fibonacci-like equality: 

Sen - 2) + sen - 1) = Sen) (2.48) 

Calculating the values of Sen) for the first 1200 positive inte­
gers he found two such triplets, namely (9,10,11) and (119, 120, 121). 
Indeed, we have: 

S(9) + S(10) = S(l1), and S(119) + S(120) = S(121) 

More recently H. Ibstedt [26] showed tha.t the following num­
bers generating such triplets are: 

n= 4,902;n= 26,245;n= 32,112;n= 64,010; 
n = 368,140;n= 415,664 



112 u CneiaHJaL1,On 0 <J mara.n acn.e 7J.nct1.On ,'" "., f c: d r F . 

and proved the existence of infinitely many positive integers sat­
isfying the equality (2.48). 

Indeed, excepting the triplet generated by n = 26,245 the 
other triplets (S(n-2)\ S(n-1), S(n») satisfy the property that. 
oue of t.erlllS is the duble of a prime number, and the other t.wo 
are prime numbers. For instance taking n = 4902 = 2·3·19·43 
we haven-1 = 4901 = 132 .29 n-2 = 4900 = 22.52 .72 and the , 
equality (2.48) becomes 2·7 + 29 = 43. Also, for n = 32, ] 12 = 
24 ·3 ·223 it results n - 1 = 32, 111 = 163· 198, n - 2 = 32, 11 0 = 
2· 3 . 132

• 19, 80 (2.48) becomes 2· 13 + 197 = 223. 
Using this remark, H. Ibstedt proposed [26J the following 

algorithm: 
Let us consider t.he triplets (n - 2, n - 1, n) sati'3fying the 

relations: 

n=x·pc:., with a::;pandS(x)<a.p (2.49) 

11. - 1 = y. qb, with b::; q a.nd S(y) < bq (2.50) 

n - 2 = z . rC, with c ~ rand S(z) < c· r (2.51) 

where p, q, r a.re prime numbers. In these conditions it results: 

Sen) = a· p, Sen - 1) = b· q, Sen - 2) = c· r 

Substracting (2.50) from (2.49), and (2.51) from (2.50) we 
get the system: 

x . pc:. _ y . gO = 1 (2.52) 

(2.53) 
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a·p=b·q+c·r (2.54) 

Every solution of the equation (2.54) generate an infinity of 
solutions for (2.53) which may be written under the form 

x = Xo + l· t) Y = Yo - po.. t (2.55) 

where t ~ an integer parameter and (xo) Yo) is a particular 
solution (such a solution may be found by means of the algorithm 
of Euclid). 

The solutions (2.55) are then introduced in the equality 

y·r/-l 
z=---

for obtaining integer values of z. 
H. lbetedt in (26] give a. very la.rge liBt of tripleta (n - 2, n -

1, n) for which (2.48) is verified. These solutions have been gen­
erated for 

(a, b, c) = (2,1,1), (a, b, c) = (1,2,1) and (a, b, c) = (1,1,2) 

with the parameter t restrained only to the interval-9 ~ t ~ 10. 
To make now in evidence an other connection between the 

Smarandachr function and Fibonacci sequence we return to t.he 
twoo latticeal structures defined on the set N* of positive inte­
gers. 

We have already seen thai the Smarandache function etal:r 
lishe a connection of these lattices by the equality: 

tl 
S(nl V n2) = Send V S(~) 

and so we are conduded to consider S : Nd -- No. 
2.4.1 Definition. The sequence (j : No -- Nd is said to be 

multiplicatively convergent to zero (m.c.z) if: 
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(V) 11. E N'" (3) ffin E N'" (V) m ~ ffin ~ o-(m) ~ 11. (2.56) 
Ii 

In (10J a sequence 0- : N -- N sa.tisfying (2.56) is named 
multiplicatively convergent to infinity. We prefered the above 
definition which is in connection with the fact that zero is the 
last element in the lattice NJ,. 

The (m.c.z) sequences having a.lBo t.he property of monotonic­
ity are used in (101 to obtain a generalisa.t.ion of p- adic numbers. 

The set Zp of p - adic numbers may be considered as an 
inverse limit (see [10]) of the rings En = Z/pnz of integer3 
"m.odulo p"'", where p is a prime number. 

Considering, inst.ead of t.he sequence (pn. )nEN an arbit.rary 
(m.c.z) and monotonous sequence (cr(11.»"'EN there are obtained 
the sets En. = Z/cr(n)Z whose inverse limit is a generalisation of 
p - adic numbers. 

Let us observe that the monotonicity for a sequence 0- : 

No -- Nd is expressed by the condition 

(mod) 11. ~ m ==> cr(11.) ~ o-(m) 
d 

The sequence O'(n) = n! is a. (m.c.z) sequence and for every 
fixed n E N* the smallest ffin given by (2.56) is exactly the value 
Sen) of the Smarandache function. So, we can pose the problem 
of generalisation of Smarandache function in the following sense: 

To each (m.c.z) sequence cr : #a -- Nd one may attach a 
function 

JtT: N· -- N·, !(T(n) = t.he sma.llest mn given by (2.56) 

and we observe that if 11. = p~l . p~1 ... pr' is the decomparition 
of n E N+ into primes then: 
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(2.57) 

This formula generalise the formula (1.16) of the calculus 
of Sen). But the efedive calculus of f(1'(Pf') depends on the 
particular expression of the sequence a. 

We have also the properties: 

d 
Ud JIT(nl V 112) = J(1'(nl) V ft:r(~) 
(12) nl ~ 112 =? ft:r(nl) ~ f".(nz) t!. 

which entitle us to consider 

f". :Nd, -No 

Now) we may also consider the sequence 

SO(J:}/o--+No 
or, more general, if a and (J are two (m.c.z) sequences, then there 
exist the sequences: 

ftT 0 e : No - No) fq 0 a : No --+ No 
eo JoT: Nd - Na. 11 0 f9 : Nd -- Na. 

(2.58) 

2.4.2 Proposition. If the sequences (J, e : No --+ }/d, 
are monotonous, then the sequences defined by (2.58) are also 
monotonous, in No and Nt!. respectively. 

Proof. For an arbitrary n E N* one has e(n) < e(n + 1) and 
"'J 

ftT satisfies (J2), so: 

For the second kind of sequences let nl ::; nz. Then JtT(nl} ::; 
d 
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The two latticeal structures considered on N* justify t.he con­
sideration of the following kind of sequences: 

(i) (0,0 ).,equences: aoo : No ---+ No 

(ii) (0, cl)sequences: a oJ. : No ---+ Na.: 

(iii) (d, o)sequences: a~: Na. ---+ No 

(iv) (d, d)sequences: a dJ. : )fJ, ---+ )fa.: 

For each of these sequences one may ada.pt the definition of 
monotonicity a.nd of the limit. We have so the following situa.­
tions: 

1) For an (0,0) sequence aoe the condition of monotonicity 
IS: 

an this sequence tends to infinity if: 

2) The (0, d) sequence aoJ. is monotonous if: 
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and it is (multiplicatively) convergent to zero if 

:3) If (J do is a (d, 0) sequence, it is monotonous if 

and tends to infinity if 

(cJo) (V) n E N* (3) m... EN· (V) m ~ m.,.. ~ (JJo{m) ~ n 
d 

From the properties of the Smaranda.che function it results 
tha.t the sequence (S(n»EN- is a. (d, 0) sequence, sa.tisfying the 
cooditioo8 (mJo) and (Cdo). 

4) The condition of monotonicity for a (d, c£) sequence a,u is 

(meld) (V) nl, n2 EN", 17.1 < 17.2 ~ aeld(n1) < aeld(~) 
d d 

N. Jensen in [5] named divisibility sequence a sequence satis­
fying the condition (meld). This concept has been introduced by 
M. Ward [51], [52]. 

Moreover, the sequence add is said to be strong divisibility 
sequence ( shortly (sds), see [5] pg. 181) if the equality 

(2.59) 

holds for every n1, ~ E N*. 
The term of (sds) has been used first in [28]. It is easely to see 

that if a sequence is (sds) then it is also a divisibility sequence 
(shortly, (ds»). 
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It is proved [121 that the Fibonacci sequence is (SM). 
On the sequence cr.LI we shall say that it is (multiplicatively) 

convergent to zero if: 

(CdJ.) (V) n E N* (3) Tn... E N" (V) m ~ Tn... =* crdo(m) ~ n 
d d 

To each tiequeuce a'i> with i,j E {o,d}, satllifying the con­
ditions (mij) and (COj) we may attach a sequence lij defined 
by: 

fij(n) = min{Tnn / m... is defined by (Cij)} (2.60) 

2.4.3 Proposition. Each function foe defined by (2.60) has 
the properties: 

(i) foa satisfies the condition (moo) of monotonicity 
(ii) f(J.,(nl V n2) = !o<J(nl) V!.,.,(n2) 
(iii) !oo(nll\n:z) = !oo(nl) I\fo.,(n2) 

Proof. (i) We have: 

foo(nl) = mini Tnnl / (V) m ~ Tnnl =* O"oo(m) ~ nl } 
foo(n2) = mini ~ / (V) m ~ Tnn"l =* O"oo(m) ~ n:z } 

so, for every m~ foo(n2) it results: CToo(m) ~ nl > nl. 
The assertion8 (ii) and (iii) are consequences of (i). 
2.4.4 Proposition. Each fundion loJ. has the properties: 

(iv) f od satisfies the condition (mod) of mODotonicity 
d 

(v) jod( nl V n:z) ~ fod( nl) V fod( n2) 
(vi) fod(nl 'i ~) ~ fod(nr} 1\ lod(nz) 
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Proof. (iv) Let be nl ~ ~. Then from 
J. 
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it results aod(m) 2: ~ 2: nl, for m 2: fod(rVJ). So, fod(nd ~ 
d d 

Jod(n2). 
The properties (v) and (vi) result from (i v). 
2.4.5 Proposition. Every function fdo has the properties: 

(vii) is (only) (0,0) monotonous 

(viii) fdo(nl V~) ~ fdo(nl) .c, fdo(~) 
J. 

(ix) Jdc(nl/\ n2) ~ JJ.c(nd ? Jdo(n'l) 

Proof. (vii) H nl ~ n2 then for every m 2: m...., we have 
J. 

CTdo(m) 2: ~ ~ nl, and 80 [de(nl) ~ fdo(~). 
(viii) For i = 1,2 one has: 

Let us suppose nl :5 n2, so nl V n2 = n2 and f de( nl V 11:2) = 
f doe n2)' Then if we note 

J. 
rna = fdo(nl) V fdo(n:z) 

for m ~ mo it results ade(m) 2: no, for i = 1,2, so ade(m) 2: 
d. 

nl V~ and 80 

J. 
fdo(nl V n2) = fJ.o(~) :5 fdo(nd V fdo(n:z) 

Ii 

Consequences. From ( vii) it result the following properties: 
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fdo(nl V~) = fdo(nd V fdo(~) 
fdo(nl I\~) = fdo(nl) 1\ fttc(~) 

and so: 

!ttc(nl) ~ /do(~) ~ fdo(nl) 1\ fttc(nz) = Ijc,(nl I\~) ~ 
J. 

~ fttc(nl) V fttc(Tl.-J) = fttc(nl V 112) ~ fttc(nl) V !do(nz) 

2.4.6 Proposition. The functions f dd sa.tisfie: 

Proo j. H is analogous with the proof of above propositions. 
2.4.7 Theorem. If the sequence (J'dd is (sds) and satisfies 

the condition (Cdd), then: 

d d 
(a) !J.4(nl V n:l) = !J.4(nl) V !J.4(T'-2) 

(b) nl i nz ===> fdd(nd i fdd(nz) 

Proof. (a) It is sufficient to prove the inequality 

Ii . 
fdd(Tli) ~ fJd(nl V n2) for 1 = 1,2 (2.61) 

d 

If, for instance, this inequality does not hold for nl, it results: 

and we ha.ve 
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d 
O"dd(do) = O"dd(Jdd(nl) ~ fdd(nl V ~») = 

d 
= O"dd(Jdd(nl» ~ O"dd(fdd(nl V nz) ~ nl ~ nz = nl 

d d 
because (T.ld(f,u(nr) ~ nl and nl ~ nl V n:l ~ (T,u(f.ld(nl V 

d d d 
nz». So, one obtain the contradiction fdd(nd ~ do < [dd(nl)' 

(b) This condition is the (d, d) monotonicity. IT nl ~ 1lz then 
d 

tl. 
nz = nl V 1V2, and using t.he property (Cl) it. results: 

d d 
[dd(nz) = !dd(nl V f'l<l) = !dd(nd V!tu(nz) 

so fJd(nl) ~ !Jd(nz). 
d 

Remarks. 1) Even if O"dd is (sds), does not result. the 8ur-
jectivity of f dd, in general. Indeed, the function [dd attached 
to Fibonacci sequence is not surjective, because, for instance, 
fi/(2) = 0. We also remember that the Smarandacbefunction is 
the function [od corresponding to the (0, d) sequence O"od(n) = n!, 
and it is surjective. 

2) One of the most interesting diophantine equations associ­
ated to a function fi j, for i, j E {l, 2}, is that giving its fixed 
points: 

(2.62) 

The function /&j attached t9 Fibonacci sequence has n = 5 
and n = 12 as fixed points, but the problem of finding the gen­
eral ~lution of the equation (2.62) corresponding to t.his famous 
sequence is an open problem, until now. 

In the section 1.6 there has been studied the convergence of 
some numerical series involving the Smarandache function. Such 
kind of series may be attached to all (generalised) sequences [ij. 
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In the sequel we focus the a.ttention on the analogous of the 
senes 

00 1 E SU:)! and 

00 1 

E S(lc)a . VS(k)! 

in the case when the function 5 is replaced by an arbitrary func­
tion fda, corresponding to a (m.c.z) sequence. 

2.4.8 Theorem. If a is a (m.c.z) sequence satisfying the 
condition (mod), let us denote by f~ the corresponding fad se­
quence and by glT the sequence a 0 fIT' Then for every ~ > 1 the 
senes 

a.re convergent. 
Proof. To prove these assertions we use the same method as 

for the series (1.90) and (1.91). 
(i) We ha.ve: 

00 1 00 TTl.t 
L =L--= 
t=1 U<T(k»a. Vg<T(k) Jc=1 taJa(t) 

where mt = card{k J fAk) = t}. But 

k ~ aCt) ==> mt ~ d(a(t» 
d 

where den) is the number of divisors of n. 

From the inequality d(a(t» < 2Ja(t) it results 

00 Tnt 00 2Ja(t) 00 1 
L <2: =22:-
t;;;l taJa(t) -t=l taJa(t) t=l ta 

(ii) IT we note (T(n + l)Ja(n) = kn+l' it results successively: 
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00 1 00 Tnt 00 2;;;W 00 1 
I:-=L:-<L: =2I:~ 
t=l gCT(k) t=l G"(t) - t=l G"(t) t=l VG"(t) 

and putting XL = 1/(j(t), it results Xt+r/Xt = l/~. 
As Tnt = 0 if kt = 1, it results that when mt ::j:. 0 we have 

kt > I, so the series I: (1/ J G"( t)) is convergent, as well as the 
t=1 

serie8 (ii). 
Example.Let the sequence G" be defined in the following way: 

G"(t) = k! if and only if k! < t ~ (k + I)!. 
It results that G" is a (m.c.z) sequence satisfying the condition 

(mod) and we have: 

G"(l) = I, G"(2) = 2!, G"(3) = G"(4) = 3!, G"(5) = ... = G"(10) = 4! 
0-(11) = G"(12) = ... = G"(26) = 5!, .. . 

Then 

fCT(I) = I, fCT(2) = 2, fCT(3) = 3, ICT(4) = 5, fl1"(5) = 11, 
1c,.(6) = 3, fCT(7) = 71,1".98) == 5, ... 

and so 

00 

~ 1 _ 1 + 1 + 1 + 1 + 1 + 
t=1 9",(1.) - a{l) a(2) a(3) a(5) .,.(11) 

00 

+ "'{3) + ;zm + ..... =t~l ;m 
From the fact that 

m! = 0, 1'7'4; = m7 = ... = mlO = 0, m12 = m13 = ... ffi2s = 0 

it results: 
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00 

"..!!!:1...-~+~+~+~+~+ -t~ o-(t) - c:r(2) 0-(3) 0-(5) c:r(ll) 00{27) ..... -

= ~ + ~ + ~ + ~1! + ~r + ..... ~ 
IX) rTf .. t, 00 

<~~=2" 1 
- "-J t I LJ ---r.':tl 
t=l' t=l Vt! 

which is a convergent series. 
Remark. As one can see from the a.bove example, the func­

tions J:r are, in general, neither one-to-one, nor onto. 
d 

2.5 Solved and Unsolved Problems 

As in the section 1.8 we note by a. star (.) the unsolved problems. 
By PI < P2 < ... < pTc··· is denoted the increasing sequence of all 
the prime numbers. For the solutions of solved problems see the 
collection of Smarandache Function Journal. 

1) Prove that the Smarandache function does not verify the 
Liepschitz condition 

(3) M > 0 (V) m) n E N· ~ /5(m) - 5(n)/ < M/m- n/ 

2) The functions 5(1) and 5(2) defined by: 

5<l)(n) = _1_ ; 5<2)(n) = Sen) 
Sen) n 

verify the Liepschitz condition, but the function 5(3)(n) = 5(,1.) 

does not verify this condition. (M. Popescu. P. Popescu) 

3) If 
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CTs(x)=E S(d), and 
d<z 

d 

" " 
T(n) = 1 -In CTs(n)+ i;;1TC~l a"s(P}) 

then limn _ oo T(n) = -00. 
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4) If ll(x) = card{p / P iB l' prime, P ~ x}, prove thl't the 
following numerical functions: 

II(.o:) 

(i) Fs: N* - N, Fs(x) = L S(pf), 
i=l 

(ii) e: N* - N, e(x) = L S(Pf), 
~.z: 

rJ 

(iii) (j: N* - N, e(x) = S(pf) 
P· < x , -

Pi not divides x 

which involve the Smarandache function, do not verify the Liep­
schitz condition. (M. Popescu,P. Popescu, V. Seleacu) 

5) Let a: N* - N* be the function defined by: 

a(n) = k -¢=> k is the smallest positive integer such that 
nk is a perfect square. 

Prove tha.t: (i) If n has the fa.ctonsl'tion n = g'll . g~ ... if:" , 

then a( n) = ct.! . ct: ... q!", with 

p. _ {1 if Ct, is odd number 
,- 0 if Ct, is even Dumber 

(ii) The function a is multiplicative, that is a(xy) = a(x)a(y) 
for a.ll x, yEN· such that x A y = 1. 

d 

(iii) The series L ~n.) diverges.(l. Balacenoiu, M. Popescu, 
"2= 1 " 

V. Seleacu) 
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6) For the function a defined in the preceding problem prove 
that: (£) if x, y > 1 are not perfect squares and x 1\ y = 1, then 

d 
the diophan tine equation a( x) = a(y) has no solution. 

(ii) a(xll) = a(x), for x, Y ~ l. 
(iii) a(xn) = 1 if n is even and a(x") = a(x) if n is odd. 
(iT) for every perfect square m E N* the equat.ion xa( x) = m 

has 2k different solutions, where k is the number of prime factors 
ofm. 

( v) solve the equations: 

xa(x) + ya(y) = za(z), 
1 + 1 _ 1 

.:z:a(.:z:) i<i"G) - za(z) 

Aa(x) + Ba(y) + Ca(z) = 0, Aa(x) + Ba(y) = C 

(1. Balacenoiu, M. Popescu, V. Seleacu) 
7) For the same function a defined above prove that if F! 

denote the generating function associated to this function by 
means of the lattice NJ., then: 

( .) pl.( a) {~(q + 1) = 1 if 0/ is even 
t a q = ([~J + l)(q + 1) if Ct is odd 

(ii) F!(n) =.ll (H(O/j)(q + 1) + 1+(-;1)'"; 
J=1 

where n = qll . q21 
••• re'" is the decomposit.ion of n into primes and 

H(O/) = card{x / x ~ 0/, X is odd}.(l. Balacenoiu, M. Popescu, 
V. Seleacu) 

8) The Smarandache no-square digits sequence is defined as 
follows: 2, 3, 5, 6, 7, 8, 2, 3, 5, 6, 7, 8, 2, 2, 22, 23, 2, 25, 26, 27, 
28, 2, 3, 3, 32, 33, 3, 35, 36, 37, 38, ... (t.ake out all square digits 
of n). It is any number that occurs infinitely many time in this 
sequence ? 

9·) Let n be a positive integer with not all digits the same, 
and let n' its digital reverse. Then let nl = / n - n' /, and n~ its 
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digital reverse. Again, let ~ = Inl - nil, and ~ be its digit.al 
reverse. After a finite number of steps one finds an nj which 
is equal to a previous ni, therefore the sequence is periodical 
(because if n has, say, k digits, all other integers Tli following it 
will have k digits or less, hence their number is limited and one 
applies the Dirichlet's box principle). 

Find the length of the period (with its corresponding num­
bers) and the length of the sequence'till the first repetition oc­
curs for the integers of three digits and the integers of four digits. 
Generalisation. (M. R. Popov) 

10) Let a- : N - N be a second order recurrence sequence, 
defined by: 

O"(n) = AO"(n - 1) + B(]'(n - 2) 

where A and B are fixed non-zero coprime integers a.nd a-(1) = 
1, a-(2) = A. "Ve shall denote the roots of the characteristic 
polynomial 

P( x) = x7. + Ax + B 

by O! and fl. Prove that: 
(i) if the sequence is non-degenera.te (that is AB =F 0, A2 + 

4B =F 0 and 1 is not a root of unity) then the terms a-(n) can be 
expressed as: 

an. _p 
cr(n) = Ot - f3 

for all n E N·, and if p is a prime such that p 1\ B = 1 then there 
d 

are terms in the sequence 0" divisible by p. (The least positive 
index of these terms is called the rank of apparition of p in the 
sequence and it is denoted by r(p). ThuB r(p) = n if p ~ cr(n) 

d 

holds, but p ~ (n + 1) does not hold). 
d 
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(ii) there is no term of the sequence (j, divisible by the prime 
p if p divide B and A 1\ B = l. 

d 
(iii) if p does not divides B a.nd we note: D = A2 + 4B and 

(D/p) = the Legendre symbol, with (D/p) = 0 if p ~ D, then 
J 

1) r(p) ~ (p - (D/p») 
d 

2) P ~ a(n) ¢:=:> r(p) i n 

11·) Find a formula for the calculus of Smaranda.che gener­
a.lised function f<7 corresponding to Fibonacci sequence. 
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The function named in the title of this hook is originated from 
the exiled Romanian mathematician Florentin Smarandache, who 
has significant contributions not only in mathematics, but also in 
lnerature. He is the father of The ParadoNt Litera,., Movement 
and is the auihor of many Mries, novds, dramas, poems. 

The Smarandache function,say S, is a. numerical fUDdion d& 
fined such that for every positive integer n, its im. S(n) is the 
smallesi positive in~er whose faciorial is divisible by n. 

The results already obtained on this funciion contain some 
SUIPU;as ... 
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