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Introduction 3

Introduction

The function named in the title of this bookis onginated from
the exiled Romanian mathematician Florentin Smarandache, who
has significant contributions not only in mathematics, but also in
literature. He is the father of The Paradozist Literary Movement
and is the author of many stonies, novels, dramas, poems.

The Smarandache function,say S, is a numencal function de-
fined such that for every positive integer n, its image S(n) is the
smallest positive integer whose factonal is divimible by n.

The results already obtained on this function contain some
surpnses. Such a surprise is the fact that 1o expresse Sip) tne
exponent @ is writien in a (generalised) numencal scale, say [p],
and 18 "read” in another (usual) scale, say (p) (eq. 1.21). More
details on this subject may be found in section 1.2.

Another surprise 18 that "the complement until the tdentity”
(equation 1.34) of S{p=) may be expressed in a dual manner
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with the exponent of the prime p in the expression of n!, given
by Legendre’s formula {eq. 1.15 and eq. 1.36}.

Finally, we mention that the Smarandache function may be
generalised in various ways, one of these generalisaiions, the
Smarandache function attached to a strong divisibility sequence
(eq. 2.59), and particulary to Fibonaca sequence, has a dual
properiy with the strong divisibility (theorem 2.4.7).

Of course, all these pleasant surprises are "attractors” for us,
the mathematicians, that we are in a permanent search for new
wonderful results.

But ”the attraction” itself on the mmtial concept, started by
Florentin Smarandache, permitted to obtain the interesting re-
sults mentioned above. Indeed, many mathematicians are al-
ready inquired about this subject and have obtained these and
other results, permitting the publication of the present book.
Among these we mention here Ch. Asbacher, I. Balacenoiu, P.
Erdos, H. Ibstedt, P. Gronas, T. Tomita.

We mentione also two of the most interesting problems, still
unsolved:

1) Find a formula expressing S{n) by means of n itself and
not using the decomposition of the number into primes.

2) Sclve the equation S(n) = S(n +1).

The (positive) answer to first of these problems will permet
to have more important information on the distnnbution of the
prime numbers.

Let the future permit to reach the knowledge until these, and
otler, exciting results.

THE AUTHORS



Chapter 1

The Smarandache
Function

1.1 Generalised Numerical Scale

It is said that every positive integer r, strictly greater than 1,
determine a numerncal scale. That is, given r, every positive
integer n may be written under the form:

N=cCar™ + cmair™ L. +or+cg (1.1)
where m and ¢; are non-negativeintegers and 0 < ¢; < r—1,cn #
0.

We can attach a symbol to each number from the sequence
0,1,2,...,7r—1. These are the digiis of the scale, and the equality
(1.1) may be wrnitten as:

M) = FmTme1-- NP (1.2)

where ~; 18 the digit symbolising the number ;.
In this manner every integer may be uniquely written in a
numerical scale (r) and i we note a; = r*, one observe that the
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sequence (a;);ey satisfies the recurrence relation

Qi1 = T (1.3)

and (1.1) becomes

N = CmOm + Ca—18Gm—1 + ... + €181 + coag (1.4)

The equality (1.4) may be generalised in the following way.
Let (5;)ien be an arbitrary increasing sequence. Then the non-
negative integer n may be uniquely wntten under the form:

n=cpbn + cr_1bn_1 + ... + c1b; + cobg (1.5)

But the conditions satisfied by the digits in this case are not
so simple as those from (1.3), satisfied for the scale determined
by the sequence (a; )ien -

For instance Fibonaca sequence, determined by the condi-
tions:

=F=1 Fu,h=F,u+F (1.6)

may be considered as a generalised numerical scale, in the sense

described above.
From the inequality

2K > Fa

it results the advantage that the corresponding digits are omly
Oand 1, as for the standard scale determined by r = 2.

So, using the generalised scale determined by Fibonacci se-
quence for representing the numbers in the memory of computers
we may utilise only two states of the circuits (as when the scale
(2) is used) but we need a few memory working with Fibonacci
scale, because the digits are less in this case.
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Another generalised scale, which we shall use in the following,
is the scale determined by the sequence

. _ p; -1
a(p) = Py (1.7)

where p > 118 a prime number.
Let us denote this scale by [p]. So we have:

[pl: 1, afp), as(p), ..y ailp), .- (1.8)

and the corresponding recurrence relation is:

ai+1(p) = pai(p) + 1 (1.9)
This is a relatively simple recurrence, but it is different from

the classical recurrence relation (1.3).
Of course, every positive integer may be written as:

Nl = Em@m(P) + Cm-1@m-1(p) + ... + c1a1(p) (1.10)

80 it may be written in the scale [p].

To determine the conditions satisfied by the digits ¢; in this
case we prove the following lemme:

1.1.1 Lemme. Let n be an arbitrary positive integer. Then
for every integer p > 1 the number n may be written uniquely
as:

n = t1am, (p) + taan, {p) + ... + tian,(p) (1.11)
withn; > nz > ... > >0 and

1<tj<p—1forj=12,.,0—1 1<{<p  (1.12)
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Proof. From the recurrence relation satisfied by the sequence
(ai(p))nen- it results:

a1(p) =1, as(p) =1 +p, as(p) = 1 +p+p°...

So, because

[ai(p), ai+1(p)) N [ai+1(p), aiva(p)) =@
it results
N =y {&(), snlp) N7}

Then for every n € N* it exists uniquely n; > 1 such that
n € [an, (p), an, +1(p)) and we have

=[] =+
where [z] denote the integer part of z.
If we note
“= |
an, (p)
it results

n = tia,, (p) + r1 with r; < a,, (p)

If r; = 0, from the inequalities

Gn, (P) <n< am+1(p) -1 (1'13)

it results 1 <t; <p.
I r, #0, it exists uniquely n; € N* such that

r € [anz (p)a an2+1(p))
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and because a,, (p) > rit results n; > n;.
Also, because

t S am+1(p)— 1—1‘1 <p
an, (p)

from (1.13) it results 1 < t; < p — 1. Now, it exists uniquely
ng such that

r1 = taan,(p) + 12

and so one. After a finite number of steps we obtain:

ri-1 = tan (p)+r with =0

and ny < ny_3, 1 < < p, so the lemme is proved.

Let us observe that in (1.11) unlike from (1.10) all the digits ¢
are greater than zero. Consequently all the digits ¢; from (1.10)
are between zero and p — 1, except the last non-nul digit, which
can take also the value p.

H we note by (p) the standard scale determined by the prime
number p:

(»: L,p, %P D (1.14)

it results that the difference between the recurrence relations
(1.3) and (1.9) induces essential differences for the calculus in
the two scales (p) and [p].

Indeed, as it is proved in [1] if

mis] = 442, ngsp = 412 and g = 44

then writing
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m+n+r =442+
412
—44__
dcba
to determine the digits a,b, c,d we start the addition from the
second column (the column corresponding to a;(5)). We have

405(5) + a2(5) + 4a3(5) = 5a(5) + 4a2(5)

Now, using a unit from the first column it results:

5a,(5) + 4a,(5) = a3(5) + 4a;(5)

so (for the moment) b = 4.
Continuing, we get:

4(13(5) + 403 (5) + 03(5) = 503(5) + 463(5)

and using a new unit from the first column it results:

4a3(5) + 4a3(5) + a3(5) = ai(5) + 4as(5)

soc=4andd=1
Finally, adding the remainder digits:

4a,(5) + 2a:(5) = 561(5) + a1(5) = 5a:(5) + 1 = a,(5)

it results that the value of b must be modified, and a = 0. So

m+n+r = 1450
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1.2 A New Function in
Number Theory

This function is the Smarandache function S : N* — N* de-
fined by the conditions:

{s1) S(n)!is divisible by n,
(s2) S(n) is the smallest positive integerwith the property (s;)

Let p > 0 be a prime number. We start by the construction
of the function

Sp: N°*— N*
such that

(ss) Splailp)) = 7'
{s«) U n € N* is written under the form given by (1.11) then
Sp(n) = t15,(an, (p)) + t25,(an, (p)) + ... + 15, (an, ()

1.2.1 Lemme. For every n € N* the exponent of the prime
p in the decomposition into primes of n! is greater or equal to n.
Proof. From the properties of the integer part we deduce:

a1 +ag+..+an ay [0-2] [an}
> | —= S+ |
2 [ [ G

for every a;,b € N*.
A result does to Legendre assert that the exponent of the
prime p in the decomposition into primes of n! is:

n

ep(n) = [g-} + [;2-} Fo (1.15)

Then if n has the decomposition (1.11) it results:
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[tlp"l+t2p";+...+tm"l] > [tu;‘l] + [Ez%"}.] I [H‘;Lq] _
=t p™ -1+ tgp"”'”l + ...+ t{p"“—l

(aent e bobion | > [ugm] 4 fagm] 4 o [a2] =

=t pM ™ 4t p™ ™ 4 L+ 10

...........................................................................

[qp"x +tgp"1+...+tu7"‘] > [tlp"l] + [m} + o+ [M] -

T

and so

B+ 3]+ + [E] 20 o ) 4
+h{pm P +pi I+ L+ =

= t1an, (P) + t2am(.p) +..+ tza,"(p) =n

1.2.2 Theorem. The function S, defined by the conditions
(s3) and (s.) from above satisfies:

(1) Sp(n)! is divisible by p”
(2) Sp(n) is the smallest positive integer with the property (1).

Proof. The property (1) results from the preceding lemme.
To prove (2) let n € N* and p > 2 an arbitrary prime.Considering
n written as in (1.11) we note

z= tlp’“ + tgpm + ...t(pn'
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and we shall prove that the number z is the smallest positive -
integer with the property (1).

Indeed, if there exists u € N*, u < z such that u! is divisible
by p*,then

u<z=—=>u<z-—1=(z-1)! is divisible by p*

But

z—1=4p™ +tp™ + ...+ tp™ —1

andn; >ng>...>m > 1.
Because [k + o] = k + [] for every integer k, it results:

-1
{z p } =tp™ T ™ T L ™ -

Analogously we have for instance

—-1]
{zpm = 8p™ T g™ T b pM - TN " — )

[;ﬁ. P tlpm—m -1 +t2pm-—m -1 + ... +tl—1p"‘ -1 — —1+
+ [E;%-rl] = tlp"l"'l‘l + by pt 1T ™ -1

because 0 < tip™ —1<p-p™ -1 < pm +1,
Also,

] =+t [5851]
=tpM M- 4t p°

The last equality of this kind 1s:
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= t;p°

-1 tp™ + . tp™ — 1
o e
p"l
because
0 <tap™ + .. +tip™ < (p—1)p™ + ..+ (p— 1)p™ -1+
pp—1<(p=1) 3 papti-1<(p- )=
=Ny}

-_-pn2+1_1<pm__1<pm

Indeed, for the next power of p we have

0

{z - 1] _ [tlp’“ + tp™ + ... + i p™ _

pnx +1 pnl +1

because
0 <tip™ +tp™ + ... +pH—1<pm -1 pm??

From these equalities it results that the exponent of p in the
dcomposition into primes of (z — 1)! is

5 ¢ [52] 4.4 [59] =t e o) o

)
Ha{pm T+ L+ ) e T+ )y =n—n < n

and the theorem is proved.
Now we may construct the function S : N* — N* having
the properties (s;) and (s;) as follows:

() S(1)=1
(1z) Forevery n= pf' - p3*..p%, with o; > 1,
and p; primes, p; # p; we define:

S(n) = max.S,, (o) (1.18)
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1.2.3 Theorem. The function S defined by the conditions
(2) and (i?) from above satisfies the properties (s;) and (s.).

Proof. Let us suppose n # 1. We shall note by M(z) an
arbitrary multiple of z and

Sp.’o {0s,) = max Sy, (o) (1.17)

Of course,

Sy (o)l = M0
and because Sp,(o;)! = M(p) for : = 1, 3, it results:

Sy ()l = M(p) for i = T3

Moreover, because p; {‘\ p =1 it results:

Spy (@)l = M(p{' p3*...05")
and so (s;) is proved.
To prove (s3) let us observe that for every u < Sy, (4, ) we
have u! # M(p:*), because S, (,) is the smallest positive
integer with the property k! = M(p;.*). So,

ul # M( pi" - p3*...p5") = M(n)
and the property (s;) is proved.
1.2.4 Proposition. For every prime p the function S, is
increasing and surjective, but not injective. The function S is
generaly increasing, in the sense that:

V)ne N () ke N* Sk) >n

and it is surjective but not injective.
1.2.5 Consequences. 1) For every « € N* holds:

S,(a) = S(p%) (1.18)
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2) For every n > 4 we have:

nis a prime <= S(n)=n

Indeed, if n > 5 is a prime then S(n) = S.(1) = n.

Conversely, if » > 4 is not a prime but S(n) = n,let n =
Py p3t..pe with s > 2, o; € N*, for i =1,'s. Thenif Sp_ (i, )
is given by (1.17), from Legendre’s formula (1.15) it results the
contradiction:

Spig (i) < igPi <11
Also, if n = p=, with o > 2, 1t resultas:

S(n)=S(a)<p-a<p®=n

and the theorem is proved.
1.2.6 Examples. 1) If n = 231 . 3%7. 713 we have:

S(n) = max{Ss(31), S3(27), S:(13)} (1.19)

and to calculate S;(31) we consider the generalised numerical
scale

[2]: 1,3,7,31,63,..

Then 31 = 1- a5(2), so S;(31)=1-2° = 32.
For the calculus of S;{27)} we consider the scale

(3]: 1,4, 13, 490, ...

and we have 27 = 2- 13+ 1 = 2a3(3) + a1(3) s0

53(27) = 53(263(3) + 01(3)) = 253((13(3)) + 53((11(3)) =
=2-3%+1.-3" =57

Finally, to calculate S,(13) we consider the generalised scale
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71: 1, 8,57, ...
and 1t results

13 = a3(7) + 5a,(7), 80 S7(13) =1- S7(8) +5- S7(1) =
=1.T°4+5.7=84

From (1.19) one deduces S(n) = 84. So 84 is the smallest
positive integer whose factorial is divisible by 23! . 327 . 713,

2) Which are the numbers with the factorial ending in 1000
zeros?

To answer this question we observe that for n = 10'°°it re-
sults S(n)! = M(101%%) and S(n) is the smallest positive integer
whose factorial endsin 1000 zeros.

We have S(n) = S(21°%00.51%00) = max{S5,;(1000), S5(1000)} =
S5{1000).

Considering the generalised numerical scale

1000

[5]: 1, 6, 31, 156, 781,...
it results:

55(1000) = 55(0.5(5) + 614(5) + 203(5) + 61(5)) =
=5 +5*+2-5+5=4005

The numbers 4006, 4007, 4008, 4009 have also the required
property, but the factonal of 4010 ends in 1001 zeros.

To calculate S{p*) we need to writte the exponent o in the
generalised scale [p]. For this we observe that:

tm(p) Sa = (" -1)/(p-1)Sa=
" <(p-Na+1=>m<log,((p—1)a+1)
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and if

O.’[p] = k,,a,,(p) + /c,,_la.,,_l(p) +...+ klal(p) = kvz,,_l...zl (120)

is the expression of the exponent « in the scale [p], then v is the
integer part of log,((p — 1)a + 1) and the digit k, is obtained by
the equality

a = kyGy(p) + ro—1

Using the same procedure for r,_; it results the next non-zero
digit from (1.20)

1.3 Some Formulae for
the Calculus of S(n)

From the property (s4) satisfied by the function S,, one deduce:

S(p*) = plopp) (1.21)

that is the value of S(p*) is obtained multiplying the prime p by
the number obtained writing the exponent o in the generalised
scale [p] and "reading” it in the usual scale (p).

1.3.1 Example. To calculate S(11'%°) we consider first the
generalised scale

[11]: 1, 12, 133, 1464, ...

Using the considerations from the end of the preceding sec-
tion we get:

1000 = 7a5(11) + 5a5(11) + 9a,(11) = 758y
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so S(11'9%%) = 11(759)(y;) = 11(7-112+5-114+9) = 10021. Con-
sequently 10021 is the smallest positive integer whose factorial
is divisible by 11199,

The equality (1.21) prove the importance of the scales (p)
and [p] for the calculus of S(n).

Let now

o =Y cirt, agy = Z k;a;(p) Z k (1.22)

1:0

be the expression of the the exponent o in the two scales. It
results:

(p— l)a =Z kj}?i— Z k;
j=1 =1

Then noting

o(@) =3 &, (@) =3 &; (1.23)

s=0 =1

o—1

and taking into acount that E kipP = p E k;p’ is exactly
p(am)(y), one obtain

S6%) = (o er+ op(e) (129
® Using the first equality from (1.23) we get:

u

page) =3 (Pt = 1)+ Z e

1=0
or

———a —Z cair1(p) +5

p— 1=0

O’(p) (cx)
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consequently

p—1 1
@ =—=(0w1 + ;7w () (1.25)

where ((;))(;] denote the number obtained writing the exponent

« in the scale (p) and reading it in the scale [p].
Replacing this expression of o in (1.24) we get:

S(p*) = t: _p 1)2(%))[;:1 + p; - apy(@) +op{e)  (1.26)

One may obtain also a connection between S{p®) and the
exponent e,(«) defined by Legendre’s formula (1.15). It is said
that e,{a) may be expressed also as:

e,(a) = %{%(E-)- (1.27)
so using (1.25) one get:

ep(@) = (o) )1 — @ (1.28)

An other formula for e,(a) may be obtained as follows: if «
given by the first equality from (1.22) is:

Op) = CuP® + Cam1D® Tt + ..+ 1P+ o (1.29)

then because

(@)= [5] + [3]+ -+ [3] = Ccr +amp T r et
+{cup + Cum1) + Cu

we get:

ep{@) = ({a — co))) = ({ {%} )ee))iel (1.30)
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where o,y = €,5,—1...Co 18 the expression of « in the scale (p).
From (1.26) and (1.28) it results:

567 = E ey (e) + 0 4+ Eo o) 4 ongfe) (121

Using the equalities (1.21) and (1.26) one deduce a connection
between the following two numbers:

((s))s} = the number o written in the scale (p) and readed
in the scale [p]

(ogp1)(p) = the number « written in the scale [p] and readed
in the scale(p)

pamely:

P (@) = (P = 1(@6)e1 = popi(@) + (P — Dopy(e) (132)
To obtain other expressions for S(p®} let us observe that from
Legendre’s formula (1.15) it results:

a—1

S(%) = pla— i(a) with 0<4() <[22 (139)
Then using for S(p>) the notation S,(«) one obtain:
1 .
;Sp(a) +1(a) =« (1.34)
and so, for each function 5, there exists a function iysuch that
the hinear combination (1.34), to obtain the identity, holds.

To obtain expressions of i, let us observe that from (1.27) it
results:
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@ = (5= 1)ey(0) + o)(0)
and from (1.24} it results o = (Sp{a) — opp())/(p — 1), s0

Sp(a) — ag{a)
p—1

(p = ep(a) + 9gp(@) =

or

S(p*) = (0 — 1ep(@) + (p — Dogy(e) + opi(a)  (1.35)

Let us return now to the function t, and observe that from
(1.24) and (1.34) it results:

(o) = 200 (1.36)
P
consequently we can say that there exists a duality between the
expression of e,(a) in (1.27) and the above expression of i,(a).
One may obtain other connections between ¢, and e,.For in-
stance from (1.27) and (1.36) it results:

(o) = (p — ep(a) +;<p)(0f) ~ (@)

(1.37)
Also, from
a[p] = m - kv(P”—l +Pv—2 +...+ 1) + ko—l(po_2+
P+ +p+ D)+t h(p+ )+ ks
one obtain

o= ([Copo_l + ky1p® 2+ .+ kop+ kl) + ko(p"—g-&-
49T (e )

+hs(p + 1)+ k2 = (o) + (2] — 222
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that because

o] = k(e 42 + b p+ 1) + Rl (0734
oA )+ Es(p+ 1)+
+8 kR A

b4

and [n +z] =n+[z]
One obtain

o = (o)) + [%} - [ﬂdﬁﬂ} (1.38)

and we can wrtte:

S(p*) = p(a - (H - [Eﬂz@})) (1.39)
and from 1.36) and (1.39) we dededuce
p(a) = [-ﬂ - [ﬂdﬁi)] (1.40)

This equality results also directly, from (1.36), taking into

acount that

sy mze [o] [
p P p p

consequently

== -1

An other expression of i,(x) i8 obtained from (1.21) and
(1.36) or from (1.38) and (1.40). Namely

i,,(oz) =a-— (Q{PI)(P) (1.41)
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From the defimition of the function S it results:

&

st =5 [2] =a-o,

where o, is the remainder of « modulo p, and also:

o(So(@) 2 o e(Sple) = <a  (142)

Spla) — 0,y (Sp(e)) S o Spla) =1 — 0, (Sp(a) ~ 1) <
p—1 - p—1

Using (1.24) it results that S,(«) i8 the unique solution of
the system:

?

opy(z) € apila) S o)z —1) +1 (1.43)

At the end of this section we return to the function i, to
- find an asimpthotic behaviour for this "complement until the
identity” of the function S,.

From the conditions satisfied by this function in (1.33) it

results for

e 4

Mar) = |2 - i@

that A(ae,p) > 0. B
To find an expression for this function we observe that:

o5 ]

and supposing that o € [Ap+1, hp+p—1] it results ["—;‘l] = [‘pl],
§0:
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M = |2 p@ = |2

Also, if o = Ap, it results

=2 [ e e [

p p p
so {1.44) becomes:

Ala,p) = [3@1}@} -1 (1.46)

Analogously, if « = hp + p, one obtains

g
p p
and [2] = A+ 1, 50 (1.44) has the form (1.46).

It results that for every o for which A(w,p) has the form
(1.45) or (1.46), the value of A(w, p) is maximum I opj(e) is
maximum, so for & = oy, where

O ar =£p -1)p—-1)..(p— l)‘p
v il

v terms

We have then

am = (p =~ Day(p) + (p — Davalp) + .- + (p— Vaa(p) +p =
(_p—])(L-}-&}:—--r +E)4p=
(" +p" '+ ..+’ +p) - (v = 1) = pas(p) — (v — 1)

It results that our 18 not divisible by p if and only if v — 1 18
not divisible by p. In this case

ol =(v-Dp-1)+p=pv—v+1
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and
=[] [
p p p
So,
ip(aar) > Otup— 1} - v
that is

o] 22

p
I v—1€ (hp, hp+ p) it results [2=L] = A, and

hp—1)+1< Alaa,p) < hlp—1)+p+1

bm A{oy,p)=c

gy — 0O

We also obeerve that

] o 5 -

p p

o+l __ _ +1 __ o+l _ 7
s L= sty Rty
p—1 p—1

So, if ayr — oo as p* then Aoy, p) — ooas z.
Also, from

o) __aulp) =
2=l g (p) — [22

]-1

it results
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ip{a) -

A T

p

1

1.4 Connections with Some Classical
Numerical Functions

In this section we shall present some connections of Smarandache
function with Euller’s totient function, von Mangolt’s function,
Riemann’s function and the function II(z) denoting the number

of primes not greater than z.
1.4.1 Definition. The function of von Mangolt is:

_Jlnn dn=p™
Aln) = { 0 ifndtpm (1.47)
This function is not a multiplicative function, that is from

nV m = 1 does not result A(n-m) = A(n)- A(m). For instance,
fn=23and m =5 we have A(n) = In3,A(m) = In5 and
A(m-n) = A(15) = 0.

We remember the following results:

1.4.2 Theorem. The following equalities hold:

() JZ/;; Ady=hn
(9 AR) = w3

where p i8 Mobius function, defined by:

1 fn=1
p(n) = 0 i n is divisible by a square (1.48)
(—1)* fn—p - poe...pi
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1.4.3 Definition. The function ¥ : R — R is defined by:

¥(z)=3) lp

(1.49)
Pz

From the properties of this function we mention only the
following two:

1.4.4 The function ¥ satisfies:

() ¥(z) = 3 A
(&) ¥(z) =1n[1,2,3, ..., [z]]
where (1, 2, 3, ..., [z]] denotes the lowest common multiple of 1,2, 3, ..., [z]

It is said that on the set N* of the positive integers one may
consider two latticeal structures:

No=(N"AV) and Na=(N"AY)  (150)

where

A = mn, V = max

A= the greatest common divisor
d
V=

the lowest common multiple

We shall notea.lsoan:(n,m) and ném:[n,m}.

The order in the lattice A, is noted by < and the order from
N is noted by %_ It 18 said that:

n < n. <= n, divides n, <= nl/ﬂ.'; (151)
a

and we also observe that the Smarandache function is not a
monotonous function:

n1 < ny does not implique S(n;1) < S(ng)
But, taking into account that
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d
S{n1 V ny) = S(ni) vV S(ng) (1.52)
we can consider the function .S as a function defined on the lattice
Ny with values in the lattice N,:
S:Nyg— N, (1.53)
In this way the Smarandache function becomes an order pre-
serving function, in the sense that.:

ny % ng => S(n;) < S(na) (1.54)

Itis said [31] that if (V, A, V) is a finite lattice, V = {z1, 23, ..., Zo},
with the induced order <, then for every function f: V — R,
the corresponding generating function is defined by:

F(n)=3_ f(v) (1.55)

y<n

Now we may return to von Mangolt’s function. Let us observe
that to every function:

f:N*— N* (1.56)

one may attach two generating functions, namely the generating
functions F¢ and F° determined by the lattices Ay and N,

Then, by the theorem (1.4.2), for f(z) = A(z) it results:

Fin)=Y A(k)=Inn (1.57)

k<n
4
and also

Fo(n) =) A(k) =¥(n) =[1,2,...,n]

k<n
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Then it results the following diagram:

L A 1
/ \
Ny N,
(1.1) '/ \' (1.2)
Fm) =3 A(F)=Innd F) =3 AR =9(n)
k<n k<n
Ny N, Na N,
- y  (2.2) (2.4)
Fo(n) =Y, nk=InnY Wo(n)=3% ¥(k)
k<n k<n
(3.1) (3) e
L d(n) =kz<:,-. In & Pi(n) =k§n U(k)

[ A

.........................................................................................

It results a strong connection between the definition of the
Smarandache function S and the equalities (1.1) and (2.2) from
this diagram.

Let f from {1.56) be the function of von Mangolt’s. Then

[1,2,..., 7] = eF(®) = (V) . ofD () = (¥()
nl = eF(7) = eF 1) . (FU2)_FUm)

and so, using the definition of S, we are conducted to consider
functions of the form:
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1(n) = min{m / n < [1,2,..m]} (1.58)

We shall study this kind of functions in the section 2.2 of the
following chapter.

Returning now to the idea of finding connections between the
Smarandache function and some classical numerical functions,
we present such a connection, with Euller’s funcfion ¢. Let us
remeber that if p is a prime number then:

p(p®) = p* — p*7* (1.59)

and for o > 2 we have

P"=(p-Dasalp) +1 so op(p* ) =p
Using the equality (1.24) it results:

Se@* N =(p ="+ oo ) = p(p*) +p  (1.60)

1.4.5 Definition. Let C be the set of all complex num-
bers. Then the Dinchlet sernies attached to a function

f:N*—C
is
Dy(z) =§: Ir%:_)'z (1.61)

For some z = z + 1y this series may be convergent or not.
The simplest Dirichlet series is:

() =% =

n=1
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pamed the function of Riemann or zete function. This function
converges for Re(z) > 1.

It is said that the Diriclet series attached to Mabius function
4 18:

Du(z) = C( 3 for Re(z) > 1

and the Diriclet series attached to Euller’s function ¢ is:

D,(z) = C(z(;)l) for Re(z) > 2

We also have:

D.(z) =¢*(z) for Re(z)>1

where 7(n) is the number of divisors of n, including land n.
More general,

D, (z)={(z)-{(z— k) for Re(z)>Fk+1

where o4(n) is the sum of k*— powers of the divisors of n.

In the sequel we shall writte o(n) instead of ¢;(n) and 7(n)
instead of og(n). We also suppose that z = z, 80 z is a real
number.

1.4.6 Theorem. I

n= II pa"'

=1
18 the decomposition of n into primes then the Smarandache
function and Riemann’s function are linked by the following
equality:

N
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Proof. We have seen that between the functions ¢ and (
there exists a connection given by:

((z-1) »{n)
OB gjl (1.63)

Moreover,

¢ Nt o —
o(n) =1 op) =14 (Sp:(pi"") - p1)
and replacing this expression of ¢(n) in (1.63) it results the

equality (1.62).
The Dinichlet series corresponding to the function S is:

= S(n)

Ds =Y

n=1

ns

and noting by D Fg the Dirichlet series attached to the generating
function Fg it results:
1.4.7 Theorem. For every z > 2 we have:

(i) ¢(2) < Ds(z) < ¢z — 1)
(#) ¢*(z) < Dpg(z) < ¢(2) - ¢z — 1)

Proof. The inequalities (7} result from the fact that

1< S(n)<n forevery n€ N* (1.64)
(i) We have:

¢{z) - Ds(z)—(z ;—)(z By = §91) + LD 4
5(1)+5(3) + s(1)+5(2)+5(4) o = Dps(z)

and the inequalities results using (7).
One observe that (i) is equivalent with
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D.(2) < Dy (2) < Daf2)

This equality may be also deduced observing that from (1.64)
1t results:

2 1<) S(k) <)k
k<n kén k<n
4 &

and consequently:

7(n) < F§(n) < o(n) (1.65)
In [19] has been proved for F? even that:

7(n) < Fj(n) Sn+4

To prove other inequalities satisfied by the Dirichlet series Dy
we remember first that if f and g are two unbounded functions
defined on the set R of real numbers satisfying g(z) > 0, and if
there exist the comstants Cy, C; such that

/f(z)] < Cig(z) for every z > C;

then the functions f and g are said to be of the same order of
magnitude and one note

fz) = O(g(=))

Particularly, is noted by O(1) any fanction which is bounded
for z > Cj.
The fact that it exists

. f(=)
hm =
is noted by
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f(=) = o(g(=))

Particularly is noted by o{1) any function tending to zero
when z tends to infinity and evidently we have:

f(=z) = olg(z)) = f(=) = O(g(=))

It i8 said that Rieman’s function satisfies the properties given
bellow:
1.4.8 Theorem. For all complex number 2z we have:

(1) ¢z} + 5 +0(1)
(7)) m¢(z) =ln 5 +0(z-1)
(i) '(2) = FST +0(1)
Using the theorems (1.4.7) and (1.4.8) now we obtain:

1.4.9 Theorem. The Dirichlet series Ds attached to the
Smarandache function S and his derivative D satisfy:

() 2+ O(l) <Ds(z} < 5+ O(l)
(:z) =t o(1) < Ds(z) < _(leTf + O(1)

The number of primes not exceeding a given number z is
usually denoted by II(z). In [39] is given a connection between
the Smarandache function S and the function II.

Starting from the fact that S(n) < n for every n and that,
for n > 4 we have S(n) = n if and only if n is a prime, it is
obtained the equality:

I{z) = [zlj {SU‘)} 1.
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1.5 The Smarandache Function as
Generating Function

It 1s said that Mobius inversion formula permet to obtain any
numerical function f from his generating function FZ. Namely,

f(n) =3 wd)F4(5) (1.66)
dfn
if
Fi(n) =3 f(d)

dfn

So, we can consider every numerical function f in two distinct
positions: one is that in which we are interested to consder its
generating function, and in the second we consider the function
f itself as a generating function, for some numerical function g.

o(n) =3 WD (G) — @ — Fin) =3 f(d)  (167)

din djn

For instance  f(n) = n is the identity map of N* we get:

9(n) =X w(d)T = p(r) 5 Fé(n) =y d=o(d)  (168)

dfn dfn

In the case when [ is the Smarandache function S, it is dif-
ficult to calculate for any positive integer n the value of Fg(n).
That because :

Fi(n) =% S(d) =¥ max(S(&) (1.69)

din djn

where 6; are the prime factors of d.
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However, there are two situations in which the exphcite forme
of F4(n) may be obtained easily. These are for n = p= and for
n a square free number.

In the first case we have

Fé(p) = £ () =E (= 1 +o30)) =

. (1.70)
= (- DEF 3 o)

Let consider n = p; - py.....px a square free number, where
p1 < p2 < ... < px are the prnime factors of n. It results:

S(n) = px and
Fi1)=5(1)=1
Fép1) =51} +S(m) =1+p
Fé(p1-p2) = S(1) + S(p1) + S(p2) + S(pr - p2) = 1+ 11 + 2p2
Fé(p1-pa-ps) =1+ pr+2p2+2°ps + FE(p1 - p2) + 2°ps

and also:

Fi(n) =1+ Fé(p, - pae-....pay) + 2 pp
Then

k
Fi(n) = 1+ Z 2~ (1.71)

One observe that because S(n) = p;, replacing the values of
F2(t) given by {(1.71) in

S(n) = Z p(rYFE(t) (1.72)

r.i=n
apparently we get an expression of the prime number p; by means
of the preceding primes p, ps,...0x—1. In reality (1.72) is an
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identity in which ,after the reduction of all similar terms, the
prime numbers p; has the coefficient equal to zero.
In [19] it is solved the equation

Fin)=n (1.73)
under the hypothesis

S(1) =0 (1.74)

and it is found the following result:
1.5.1 Propoeition. The equation (1.73) has as solutions

only: all the prime numbers n and the composit numbers n =
9,16, 24.
Proof. Because

R =3 5 (1.75)

under the hypothesis (1.74) one observe that every prime is a
solution of our equation. Let now suppose n > 4 be a composit
number:

ko
n=1 p*

s=1

where the primes p; and the exponents r; are ranged such that
(c1) pir1 > piri forevery t € {1,2,...,k}
{(c2) pi < piy1 for 1€ {2,3,..,k— 1} whenever k> 2
Let us suppose first £ = 1 and r; > 2. From the inequality

S(pi') < gy
it results
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. o r +1
PU =n=Fi(n) = FiG0) = 3 S61) <3 proy = RO
21=0 51 =0
S0
200t < r(r+1) f M >2 (1.76)

This inequality 18 not verified for p; > 5 and r, > 2, s0 we
must have p; < 5. That is p; € {2,3}.

By means of (1.76) we can find a supremum for r,. This
supremum depends on the value of p;.

If py = 2 it results for r; only the values 2, 3,4, and forp; = 3
it results r, = 2.

So, for n = p]' there are at most four solutions of the equation
(1.73), namely n. € {4, 8,9,16}. In each of these cases calculating
the value of F4(n) we obtain:

F$(4) = 6, F§(8) =10, F§(9) =9, F§(16) = 16
Consequently the solutions are n = 9 and n = 16.

Let now suppose £ > 2. Writing in the equation (1.73) the
decomposition into primes of n we get:

LI k 0ok
A P = F(lL ) =3 S(d) = £ 2 sl =

51=0 33=0 =
L] Ty
=% .8 ot (S(E), (52 ST <
n= v = .
=3 ... i max {p151, P29z, ...Pxsk} <
511=0 :g-O
1
=3 ... E max {p171, psr2, ---PaTR} =
51=0 =0

=3 ... Z’: pir < pirs H {(ri+ 1)

1= s3=0
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Consequently, the inequality:

ﬁ 25 P1T'1(7'1 + 1) ri{r1+ 1)

ry—1

=2 r; + 1 2% 1

(1.77)

holds, and we are then conducted to study the functions:

z{z +1)

f(z) = merl)

and g{z) = forz>0

where a,b > 2.
The dentvatives of these functions are:

fi(z) = == iz +1)na—1] and
' (— in 6)::2 +(2—Inb)z+1
g'(z) = =

Because (z + 1)lna - 1> (1+1)n2-1=2l2-1>0
it results f/(z) > 0 for x> 1. In addition the maximum of this
function is obtained for z = max {1, 2}, where

2—Inb+,/(nb)? +4

2Inb
and we deduce \/(Inb)2 + 4 < lnb + 2, for b> 2, so

(2-lb)+@b+2) _ 2 _ 2
== <5
2Inb s Sipe <3

We also have Bm f(z) = g{(z) = oo, and then p7' /{r1+

1) increase from D1 /2 to mﬁmty, when r1 € N*. Moreover, be-
cause

z=

EZ ifp 22
)41

Rl 5

it results
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Aot cmaxin 2 2y = mariz Sy <9

Using (1.77) we obtain:

pi’ < ri{ri+1) 7‘1(7'1 +1)

<3 78)
=2 ri+1 pix—l — 9r; —1 = (1 )

and then it results £ < 3.
For k = 2, using (1.77) and {1.78) it results:

Paz < 7'1(7'1 + l) and 83

<
7'2+1 p;‘_l 2 3

80 p; < 6.
If we suppose r; > 3, it results

6
p1p2223=6 or py > —
n

and then

3 rq

P2 _ P2 ri{ri+1) 6
= = < < 2, —}< 2, =

4 "+l 0 ppt < maxi ’pl}—m“{ P2} =p2

so 1t results the contradiction p2 < 4, and we have p; € {2, 3,5},
r2 € {1, 2}. Moreover, from
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1< P2 P2 ri(ri +1) < ri{ri +1)
_— 2 _— r2+1 p;l—l 271—1

1t results r, < 6.
Then, for fixed values of p; and r;, the inequalities

ri{ry + 1) > 7

ry—1

)58 ra+1

y P11 > pars

give us iformations for finding an upper bound of r;, for every
value of p;. It results r; < 7 and the conclusions are given in the

table bellow.

P2 T2 p1 1 n = pi'py F é(n)
a) 2 1 3 1<rn<3 23" 243r(ri+1)
B 2 1 5 1<m<2 2-51  2+45m(ri+1)
c) 2 1 pp2>7 1 2-p 2+2p
d 2 2 3 2 36 34
e) 2 2 pb2>5 1 4p; 3p1+6
£l 31 2 2<m<5 37 2P-2m 412
) 3 1 pp2>5 1 3p 2p; +3
R 3 1 2 3 40 30
If Fé¢(n) =n
then
a) 3 divides 2
b) 5 divides 2
. c) =2
Conclustons: d) 14 = 36
e) p1=6
f) ri=3
g) p1=3

R) 30 = 40
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It results that we must have
n=3-2" or r =3

so n = 3-2% = 24. That is for £ = 2 the equation (1.73) has as
solution only n = 24.
Finally, supposing £ = 3 , from

&.&(3

2 2
it results p; - p3 < 12, so p; = 2 and p; € {3, 5}.
Using (1.78) from

rl(rl + l) < 7‘1(7'1 + 1)

rp—1 - -1
p: 3n

<2 (1.79)

it results po = 3.
Also, from (1.78) and (1.79) we obtain

2 3
ra+1 ra+1
and because the left hand side of this inequality is the product
of two increasing functions on {0, 0o), it results for r; and r3 only

the values r, = ry = 1.
With these values in (1.77) one obtain:

<2

ri(r1 + 1) < ri(ri +1)

5 p;l—l - Bri—-1

and so r; = 1. Consequently, the equation (1.73) is satisfied only
forn=2-3-p; = 6p;.
But
6p1 Fd(Spl) = 5(1) + 5(2) + S(3) + S(6)+
+ E E S(2-3 -p) =8+ E E max{S(2*- ¥),p1} = 8+ 4p,

1=0 =0 $=0 y=0



44 The Smarandache Function

because S(2*- 3) < 3 < p, for {,; € {0, 1}, and so it results the
contradiction p; = 4.

Then for £ = 3 the equation has no solution and the theorem
is proved.

1.5.2 Consequence. The solutions of the inequation

Fi(n)>n | (1.80)
result from the fact that this inequation implies (1.77). So,

Fi(n) > n<=>n € {8,12,18,20} or n = 2p, with p a prime
We deduce also that
Fi(n)<n+4, foreveryne N”

Moreover, because we have the solutions of the inequation

Fg(n) >n

we may deduce the solutions of the inequation F2(n) < n.
In [40] is studied the limit of the sequence

T(n) =1-1n Fg(n)+ );g F—gE@T)

which contains the generating function. It is proved that

Jim T(n) = —co

In the sequel we focus the attention on the left side of (1.67),
namely we shall regard the Smarandache function as a generating
function of a certain numerical function s.

By definition we have

3(n) =% WdS(3)

dln
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If the decomposition into primes of the number n is

n=p{"-p’*...pp"
it results

siny= Y (=17 S5(——"—)

Piy Pig-+-Piy pupir--p{,.

Let us comnsider that

§{n) = max{S{p{*) = S(p,°) (1.81)
We have the following cases:
(a1) There exists iy € {1,2, ...,t} such that:
S(ps° ") 2 S(p¥) for i # i
The divisors d of n for which u{d) # Oare of the form: d =1
or d = p;, - Diyeee-Pi, -

A divisor of the aecond kind may conta.ins Pi, or not. Using
(ref 1510), with the notation CF = m it results:

s(n) = S(Pa' )(l—ctl—l+C?—1+"'+(_1)t_lctt:11)+
S(e® =14 Cl, =GPy + .. + (1) CiT))

and so, we have:

s(n)z{ 0 ift>2or S(p,° )—S(p"‘*’"l)

Dip otherwise

(az) There exists jo € {1,2,...,t} such that we have:
S(pie ™) < S(p3®) and S(p“m‘l) > S(p) for i ¢ {is, j0}

In this case, supposing in addition that

S(pse) = max{S(p}’) / S(pi> ") < S(p¥) }
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one obtain:

s(n) = S(p;'.")(l -_ C'g‘_1 + C?_l -+ (—1)‘"102:11)4-
+S(p2 (=14 Cl_, = C?_,+ ...+ (1)t~ 1Ci )+
+5(p3* "Y1 - Cly+ Gy — .+ (-1)73CECE

Jo
and it results:

s(n) - { 0 if t>3or S(p;j" _1) = S(p;’“’)

— Djs otherwise

Consequently, to obtain s(n) we construct, as above, a max-
imal sequence 13, 13, ..., %, such that

a; x;, — a; a1 @;
S(n) = S(pi1), S(pir 7Y < S(pEA), ., STt ) < S(pii
and it results:

S(n)={ ( 0 ift2k+1 or Spir) =S

—1)*+1p;. otherwise

Now, because

S(p*) = S(p*~1) <> (p — o+ o) = (p — N{a— 1)+
+op{a = 1) <= ap{a — 1) = op{a) = p— 1

and

S(p*) # S(p*~1) = O’[P](CY -1)- om(oe) = -1
it results

if t>k+1lor

0
s(n) = Tipa](ax — 1) — opp{on) =pr — 1
(—1)*+'py otherwise
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1.5.3 Consequence. It is said [31] that if (V, A, V) is a finit
lattice with the induced order <, then considering a function
f:V — R as well as its generating function F', defined by the
equality 1.55), and noting

gij = Fz; A zy)

it results
det(g;;) = f(z1)- f(z2).--f(zn)

In {31] it is proved a generalisation of this result to an arbi-
trary partial ordered set, namely, defining the function g;; by:

gi= 3, f=)
T <z
<z
Using these resulis and noting A(r) = det(S(: A 7)), for

i,7=1,r, we get:

Afr) = 5(1) - 3(2)...s(r)
so, for sufficiently large r (in fact for r > 8) we have A(r) =
0. Moreover, for every n € N* there exists a sufficiently large
r € N* such that noting A(n, k) = det S((n + 1) N (n+ 7)), for
i, ] = 1,k, we have A(n, k) = 0 for £ > r. Indeed, this assertion
18 vahd because

Aln, k) =11 s(n+1)

Ending this section we consider the Dirichlet series D, at-
tached to the function s to prove the following result:

1.5.4 Theorem. The Dinchlet series D, of the function s,
given by
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D)=y, &
n=1
satisfies:
(1) 1< Dy(z) < Dy(z) forz>2
() 1< D(e) < ooty

for some positive constant A.
Proof. (i) Using the multiplication of Dirichlet series we
obtain:

OIL (z)“(E ‘%—1)(2 %) = p(1)5(1) + LA
+p(1)s(3)+,43)sm R i

R EL

.....

and the afirmation results using the inequalities (i) from the
theorem (1.4.7). The inequalities (it) also results using the same
theorem.

1.6 Numerical Series Containing
the Function S

It is difficult to study the vanation of the function S on the set
N* of all positive integers, because this function is not monotonous
in the usual sense. Then the study of some numerical series in-
volving this fanction may be an useful instrument to obtain new
informations about the function.

In this section we add to the study begun by the Dirichlet
senes, the study of some new series, which shall give us informa-
tion about the order of average of the Smarandache function.
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1.6.1 Theorem. The series

Z _i(k_)__ (1.82)
k=2 (k + 1)!
converges. If f, is its sum, then S € (e — 3, 7).
Proof. Let us pote
1 1
E, —1+1'+2,+ +
Then we shall prove the inequality
3 & Sk 1
E. <= 1.83
T k1) 2 (1.83)

Indeed, we have
fgl “flj' =AZ=:1 (2 - g =2 8- E iy =

and from S{k) < k it results:
= Sk _Q 1 1 1
Z ¢ (k + 1) _Z (k+1)' RPN

On the other hend, for k > 2 we have S(k) > 1 and conse-
quently

~Sk) & 1 N
& Z(k+1)"a+a+'"+m“"3““

1.6.2 Proposition. The series

L & S(k) e N and (i) B SR
(L);(k—r)" withre N d()}:(k+ g withr e N
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converges.

Proof. We have

E (i.—r)v ; =F+5t+..+" ,.3,‘)2 =

—r(o,+1.+ +(;-,7)+(—;+2.+ iy =
rn—r"l"En—r—l

and it results:

Z;@T,-_)r'< o S N

so the series from (1) is convergent. Analogously one may prove
the convergence of second series.
1.6.3 Remark. Because if n > 3 and m = % we have:
m "7' 1

S(m) —n! 2
1t results the divergence of the series:

2k
— (1.84)
% S
We may consider the series:

59 =3 g (1.85)

For
_ _Stk)
S PR
it results a 4+1/ax — 0. Indeed,

ey Stk+1) _ k+1 1
a  (k+2)S(k) ~ (k+2)S(k) = S(k)
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and so the series 1.85 converges, for all z € C.

1.6.4 Propoisition. The function fs from (1.85) satisfies:
/ fs(z)/ < Bz on the unit disc u(0,1) = {z / /z/ < 1}, where
£ 15 the sum of the series (1.82).

Proof. A lemme does to Schwars assert that if a function
f is holomorphic on the unit disc u(0,1)and satisfies f(0) =
0, /f'(z}/ < 1 on this disc, then /f(z)/ < z on u(0,1) and
/FO)/ < 1.

For fs it results

[fs(z) < H [z/ <1

so the function (1/8) fs satisfies the conditions of Schwarz’s lemme.
The connection between the function S and the factorial jus-
tifies to consider the complement of a number until the most

appropriate factorial.
So, let us consider the function:
b:N*— N*
defined by the condition that
S(n)!

n

b(n) = (1.86)
1.6.5 Proposition. The sequences (5(n))nex- and (b(n)/n*)aen-,
for k > 0, are divergent.
Proof. Of course, b(n!) = 1, and if (pn)nen- 18 the sequence
of all the primes, we have

! !
b(p) = Sa)t _pal _ () _ 1)
Noting .
2y = A7)
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for fixed k£ > 0 it results:

and so
%'—z%%—r’w—’“
= (E_:“_l)l>EL23_12&_L>p“

because it is said [33] that for fixed k£ and sufficiently large n we
have

*D2.-Pr-1 > pi+2

1.6.6 Propositlon. The sequence

T(n) = 1+ Z Z(—)' —Inb(n) (1.87)

has no limt.
Proof. Let us suppose that Jbim T(rn) =1 < oo. From (1.84)
it results

21
L=

and then by the hypothesis, using (1.87) it results

[im Inb(n) =

H we suppose lim T(n) = —co, using the expression of 5(n)
from (1.87) it also results lim Inb(n) =

We can’t have lim T(n) = oo, because T(n) < 0 for n-
finitely many n.Indeed, from i < S(i)!, it results
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: .
—_—< >
S0 <1fori2>2

T(pa) =1+ gy + 583y + - + 582y — In(pn — 1)}) <
1+ (pn — 1) =In((ps — 1)!) = pn — In{(pa — 1)!)

But for sufficiently large k we have e* < (k — 1)!, and con-
sequently there exists m € N such that p, < In{(p, — 1)!) for
n > m, and the proposition is proved.

Let us consider now the function

H(z)= > b(n) (1.88)

2<n<a

1.6.7 Proposition. The series

S Hyi(n) (1.89)

n=2
converges. v
Proof. The sequence (b(2) + &(3) = ...5(n))n»q strictly in-
crease to infinity and

S@2) . SE) _ S(2)
7 T3 7 3
S@2)  S@3)  S@) _ S(3)
7 Tyt T3
S@) . S@) . S@)  SG) _ SG)!
T3t TT5 >

S@)t  S@) . S@)  S(5) . S(6) _ S(5)
2 + 3 + 4 + 5 + 6 > 5
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S(2)! 3) 4)t 5)! )t Y o S(7)
2 L SEY St SO SN SCY S, ()

.......................................................

so 1t results:

22561(") Tx + mm bt sy e <
<—§$_2__+§§:+§QE+ .+ £ ..+ <

<1+>:M&¢LTL2—1+ +§+Zﬂﬁﬂ¢~+—ﬂ

But (p, — 1)! > py - p2...p, for n > 4 and =0

ZHITI(”)< +Zak

n=1 k=4
where
_ pr{pr+1 — px) _ (Pk+1—Pk) Pk+1 — Pk Pk +1
ag = = < <
P! (pk—1)! pr-p2pr P1-P2--Pk

Because for sufficiently large k£ we have py - ps...px > pi .4, it
results:

Prer _ 1

Pisr PRy

and then the convergence of the series (1.89) results from the
convergence of the series

ag <

1

k>ko Dhs1

We shall give now an elementary proof of the series
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E with o > 1 (1.90)
= S(k)a)\/S(k)'

and using this convergence we shall prove the convergence of the

series

3 5(3;)—, (191)

k=2
1.6.8 Proposition. The series (1.90) converges, for all >

1.
Proof. We have succesively:

= 1 1 1 1 1
k§2 (3(1;)«); 75(1‘)! T 2a /2 + 3@ /3t + 4= 8! + 5 \/5_!+
1 1 1 -
tevEtemtem T =L vV

where m; 18 the cardinal of the set

Mg—‘-{k/S(k):ﬁ}:

= {k / k divides t! and does not divide (¢t — 1)! } (1.92)

It results that M, C {k / k divides ¢! }, so m; is lowest than the
number of divisors of t!. So we have

me < (1)

But it is said that 7(n) < 2,/n, for every poditive integer n,
consequently

i ™ <i 2V i 1
i () VB (D () Vil 2
and the proposition is proved.
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1.6.9 Consequence.From the convergence of the series (1.90)
it results the convergence of the series (1.91). To prove this we
shall use the following result:

1.6.10 Proposition. For o > 0let us note

= [eh+l]

Then the inequality t= v/#! < ¢! holds for every ¢ > t*.
Proof. We have

(t°) VT < 8! = (£2)t! < (2)? <= 2 < ¢!
On the other hand
< (4 = (et < () = () < () =
= e & (f;)“"’
But
t> el = (L)i=2a 5 (L2 yi-3a o
(cza)t -3 s, (eza) 3°'+’—2a

Now, for z > 0 we have ¢* > 1+ z, and so, taking z = 2o+ 1
and t > 2o + 1, it results

t
()= 5 ete 5 g2
e
Then for t > ¢* we get
2 L \te—2a 2a Ly
< (=) =t <(;) < t!
e

It results t2@ < t!if t > t*.
Using this result we may writte:

for t>t*

(t“)\/g<t? i )\/_
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and from the proposition (1.89) it results the convergence of the
series

27
and of course we have
Z;z S(k)' ,.z:g t!

1.6.9 Theorem. Let f : N* — R be a function which
satisfies the condition

fey < ta(d(t!) — d({t — 1))

for t € N* and the constants @ > 1,c > 0. Then the series

2 F(S(RY)

is convergent.
Proof. For M, given by (1.92) we have M, = d(¢!)—d((t—1)")
and

g F(S(R)) =ki_'i M.f(2)

Then becaunse M;- f(t) < M;- B = it resultsthe convergence
of the sernes.
1.6.10 Proposition. If (z,).en- i8 any strict increasing
sequence of positive integers, then the series
i Znyl — Zn
n=1 S(zn)

is divergent.
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Proof. Let consider the function

f:[zn9zn+11 - R) f(.’t) =lnlnz

From the theorem of Lagrange it results that there exists c, €

(Zn, Zn+1) such that

bnz,4; —lnlnz, =

1
. In Cn(zn-l»l - In)

and because z, < ¢, < Zp4;, We have

Tntl Tnyy — T
——"——-———<1nlnx,,+1-—lnlnz,, —"—IIT—"
zn+llnzn+1 Tnil Ty

for every n € N*.Then for n > 1
S(n) (ﬂ) 1
n

<1 )
e < "'lnn.

That is

S(n) _

n—wonlnn

and hence for every n € N* there exists k£ > 0 such that m“]:n

ornlnn> %l Then

1 < k
z.Imz,  S(z.)

Introducing (1.94) in (1.93) we obtain

n — ZTn
lnlnzn+1—lnln$n<ki%](.;:)—-—

for every n > 1. Summing it results

(1.93)

< k,

(1.94)
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)y &T;%—)“ (hh:,m —lnlnz,)
n=1 Zn

and the divergence of the series results from the fact that Inln z,.
tends to infinity.

Consequences. 1) For z, = n it results the divergence of
the senes

= 1

2 5y

n=l

2) If z, = p. (the n—th prime), it results the divergence of
the series

Z Pn+1 Dn

n=1

3) If (z,)nen+ is an arithmetical progression of positive inte-
gers then the series

ko 1
ngl S(z,)

18 divergent.

1.6.11 Proposition. The series

Z 5(1)5(2) S(n)

i8 convergent to a number s € (1.71,2.01).
Proof. From the definition of the Smarandache function it
results the inequality

SEEEN

S(n) ~

3|

and summing we get
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60
[+ ] o0 1
! —=e—2

>
L. ST09502).5() 22 A
On the other hand the product S{1)S(2)...5(n) is greater
than the product of primes from the set {1,2,...n}, because
S(:) =i i iis a prime. Therefore
1
o < Tk
I 5() O p
=1 =1
where pj i1s the greatest prime number not exceeding n. Then

S ‘:4:‘1 S()S(2)...5(n) —(-;511 + TO5E) + .+
+m+ <1+1+223+§__§?+
+ 2":!:1—2 +

4
2-3-5.7 + . P1P2.--Ph

and using the inequality pip;...px > pi,, for every k > 5 (see

1

[33]) it results:
1 1 1 2 1 1 1
s<ltstot ottt St o+ (195)
105 p¢ 1} P§+1

2 3
let us note P = R—-*— ;lg-—f- and observe that P < 3r+ o3 +

T+
It results
12 1 1 1
beca.use-"g-zl—{»—%;—{»-glr-%-zl,-}-....
Introducing in (1.95) we obtain
2 1 1 4o+ 1
122

1 1 2
1 il X _
8 <1+ = +3+15 105+ 1+ = +3
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Estimating with an approximation of order not more than

1072 it results s € (1.71, 2.01).
1.6.12 Proposition. For every o > 1, the series

oo na

2 5(1)5(2)...5(n)

n=1

converges.
Proof. I (pr)ren- 1s the sequence of primes, we can wrntte:

2)53) pim2
4o 4> P
522;5335524; < nps < np3
5 < 2
pPipIpy

5a
S2)5CISESE) < mpims

6 < 8= . _Pf
5(2)5(3)5(4)5(5)5(6) ™~ pipaps Pipaps

nc
<
P1P3.--PE Pip2...Px

TGS <
where p; < nfor : = 1,k , and pryy > n.

Therefore
= « ~1; 2 (Prr-ma)ry,,
ngl 5(1)5(,’12}3(755 <1427+ El P1P3---Pa <
-1 2 Pﬁ!tl‘
< 1 + O + n§1 PLP3...Pa

Because it exists kg € N* such that for any £ > ky we have

o+3 one have

P1P2---Pk > Py
0 na ko—1 pa+1 ) 1
<1+ 2a—l+ k+1
. S03502). 50 Dy V=

and so our series 18 convergents.
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Consequences. 1) There exists ng € N* such that $(1)5(2)5(3)...5(n) >
n® for every n > ng. Indeed,

n* n®

W SMSRSE)-50) - SDSR)SE).S0)

2) It exists ng € N* such that

<lforn>ng

S5(1)+ S(2) + SB3) + ... + 5(n) > n™=" for n > ng
Indeed, we have:

S(1) + 5(2) + ... + S(n) > n{f5(1)S(2)...5(n) > n- n% = n*F

for n > ny,.

1.7 Diophantine Equations Involving
the Smarandache Function

The formula (1.21) may be used to solve certain diophantine
equations involving the Smarandache function.
1) The equation

S(z - y) = S(z) + S(y) (1.96)

has an infinity of solutions.
Indeed, from (1.16) it results that if z; and y, are solutions
of the above equation then z, {1\ yo # 1. That because

d
S(zo - yo) — S{zo V yo) = max{S(zo), S{vo) }
Let now z = p*A, y = p®B be such that
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S(z) = S(p*), S(v) = S(°)
Then S(z - y) = S(p**®) and the equation becomes p((a +
Otk = Plage)p) + bty or

{(a + By = (ap)p) + (Bl)is) (1.97)

There are infinitely many values of a and b satisfying this
equality. For instance, a = a3(p) = 100y, b = az(p) = 10y, , for
which (1.97) becomes:

(1101 )p) = (100 1)) + (1051}
2) The equation

Sz - y) = 5(z) - S(v) (1.98)
has no solutions z,y > 2.
Indeed, let us note m = S(z) and n = S(y). It is sufficient
to prove that S(z - y) # m - n. But it is said that m!. n! divides
{(m+n), so

‘)l < '<mt-nl<z-
(m n)g(m-{»-n)?m nl<z-y

and consequently S(z - y) < m - n. This is a strict inequahty if
m-n>m+n,soit 8 form,n> 2.

Consequently the equation (1.98) has as solutions only the
numbers z,y < 2.

3 The equation:

z {1\ y = S(z) Q S(y) (1.99)

also has infinitely many solutions.
Indeed, because z > S(z), and the equality holds if and only
if z is a prime or z = 4, it results that the equation (1.99) has
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as solution every paire of prime numbers, as well as every paire
of square free numbers.
Let now z a.ndybesuchthatz{}yzd>l and

5{(z) = plag))ey S) = elbga)
Because p /d\ ¢ = 1, noting a; = (ap])p) and by = (b)), I
we have p Q by =a Q g = 1, the equation becomes: g; Q by =d.

This equality is satisfied for many values of a and 5. For instance,
fz=2-3%and y = 2 5% it results d = 2 and we have

(agp)) 4 () =2
for many vralues of a and b.
4) Let now consider the equation:

2V y=S(z) V S(y)

Every pair of primes is a solution of this equation, and if z, y
are composite numbers, we observe that if we note

S{z) = S(p¥*); S(y) = S(p;’ ), with p; # p;

it results that the pair (z,y) is not a solution of the equation,
because:

zVy>p -py 2 S(z)- S(y) > S9z) Y, S(y)
Finally, f z = p®A4, y = p®B, with S(z) = S(p*) and S(y) =

S(pb). it results
d d \ d
Sz} v S{y) = plap) V plope) = PU{ap)e) V (Gpley

d d .
and z V y = p™{*4(4 v B), consequently the equation als
has many other solutions, which are not relatively prime.
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5) The equation

S(z)+y=z+ S(y) (1.100)
bas as solution every pair of prime numbers, but also every com-
posit numbers z = y are solution. It may be found other kind of
composit numbers as solution for this equation. For instance, if
p and ¢ are consecutive primes and we note

g—p=h (1.101)
taking ¢ = pA,y = ¢B, the equation becomes:

y—z=5(@y) - S(z) (1.102)

Considering the diophantine equation ¢B —pA = h, it results
from (1.100) that Aq = By = 1 is a particular solution for this
equation, and then the general solution is

A=14+rq, B=1+rp, forarbitraryre N

Taking r = 11t results z = p(1 + q),y = ¢(1 + p), and
y — z = h. In addition, because p and ¢ are consecutive primes,
of course p+ 1 and ¢ + 1 are composite numbers and then
S(z) =D S(y) =49, S(y) - S(z) =h

so the equation (1.102) is verified.
6) To solve the equation

S(m-z)=m-S(z) (1.103)

let us observe that S(m - z) < S(z) + m. This fact results from
the equahty

(S(z) + m)! = S(z)(S(z) + 1).....(S(z) + m)
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talang mnto account that S{z)! is divisible by = and the product
of m consecutive integers is divisible by m.

If 7 is a solution of the equation it results m. S{z) < S(z)+m,
so

(m—1)(5(z) - 1) <1 | (1.104)

Then we have to analyse the following cases:

{a) If m = i,the equation becomes S{z} = z and has as
solution every positive integer.

{6} H m = 2, it results we can have S(z) € {1, 2}, and then
r € 4{1,2}.

{c) f m > 3, we must have 5(z) = 1,soz = 1.

7) For the equation

Siz¥) = v* {1.105)

let us observe that S{z¥) < y-z, because (yz)! = 1-2....z....(2z).... (yz).
Then, i the pair {z,y) s a solution for the equaiion, we must
have 4* < yz. That is

YLz (1.1086)

If z = 1, the above condition is satisfied, and the equation
becomes S(1) = 5. Counsequently, the pair (1,1) is a solution of
the equation.

For z > 2, only the pair (2, 2) verifies the inequaliiy {1.106),
80 1t 18 a solution of the equation.

Indeed, for z > 3 wehavez < 2*° ! <= Inz < (z — 1}In 2,
and considering the function

fzy=(z—-1)In2-Inz

it results f'(z) =(zln2—1}/z,s0 fiz)=0<=z=1/In2.
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Forz > [1/In2]+1, hence for z > 2, this function is increas-
ing, and in addition f(2) = 0. Then for z > 3 the inequality is
strict.

Let us now consider the equation

-SEI—"’) =k (1.107)

where k& € (0, 1]is a rational number. In [48] there are answered
the following questions:

(q1) Forevery k € (0, 1] there exists solutions of the equation
(1.107) ?

{(¢2) Find the values of k for which the equation has infinitely
many solutions 1n N*.

The answer to (g;) is negative, and the values of k for which
the equation has an infinity of solutions are the following:

k=} with » € N* and
ke@n(01 k=% withpge N*, 0<g<p, pAg=1

Indeed, if n is a solution of our equation, let

S(n) _»p
n q
and let d = n A S5{n). Then, from the definition of d and

from the fact that p and g are relatively prime, it results that
S(n) = gd, n = pd and we have

S(pd) = ¢d (1.108)
Using the definition of S it results (¢d)! = M(pd) and

- p= 2L M) _ MG

qd q
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Because p and ¢ are relatively prime, it results that (¢d — 1)! is
divisible by p and consequently

S(p) < qd -1
Let us prove also that S{(p) > (g — 1)d.
But, if the inequality S(p) < (¢ — 1)d holds, it results ({q —
1)d — 1)! divisible by p. Then from d < (g — 1)d, it results
a

pd% ({g — 1)d), and so S(pd) < (g — 1)d. This inequality is a

contradiction of the fact that S{pd) = ¢d > (¢ — 1)d.
So, we have

(g—1)d < S(p) < gd -1 (1.109)

Taking ¢ > 2, from the first of the above inequalities, it
results d < S(p)/(g — 1), and from the second it results that
(S(p+1)/9) < d, hence

Sp+1) <d< Sk) (1.110)
q g-—1
For¢ > 2 and k£ = p/q it results a necessary condition for the
existence of at least a solution of the equation (1.107), namely
the existence of an integer between S(p+1)/q and S(p)/{(¢—1).
But this condition is not a sufficient condition, as we can see
from the examples listed bellow.
Examples. 1) For k = 4/5 we have S(p + 1)/q = 3/2 and
S(p)/{g — 1) = 5/3, so the equation has no solution.
2) For k = 3/10 we have S{p + 1)/¢ = 11/3 and S(p)/(g —
1) = 5/2, with the same conclusion as in the preceding example.
3) For £ =3/29 it results S(p+1)/g=>5/3 and S(p)/(g —
1) = 14.5, so between S(p + 1}/¢ and S(p)/(g — 1) there exist

more than one integer. However, the equation
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has no solutions. Indeed, the number of the solutions equals the
number of values of d for which (1.110) and then (1.108) holds.
But it does not exist any integer between 2 and 14 satisfying these
conditions.

Let us study now the equation (1.107) for £ = 1/p, with p
€ N*. We shall provein this case that the equation has infinitely
many solutions. :

Indeed, let py be a prime number greater than p and let
n = ppo. It results S(n) = S{ppo) = po, and S(n)/n=1/p=k.

In [48] it is also answered the following question, posed by F.
Smarandache:

(¢3) There exists infinitely many positive integers z such that

0((1){5( )} @ {S(z)

} (1.111)

where {z} =z — {z}?

The system (1.111) of inequations has only ome solution,
namely z = 9. To prove this we shall prove first that the in-
equation

{5( )} {S(z)} (1.112)

has infinitely many solutions.
The inequality holds for z = 9, because

9 L _ (9, _1 5'(9)
{gzgj}—{g}—*z' and {—= }-‘

At the same time one observe that any prime p is not a
solution of the inequation.
Let now z be of the form:

z=pf - pt..pft, witht > 2
We have



70 The Smarandache Function

S(z) = max S(py*)

1< k<t

and let us put S(z) = S(p), where p* is one of p{**, for i = 1 %.
Then if z is a solution for (1.112) the number {3{;)-} may take
one of the following values:

1 2 S(z) -1
S(z)’ S(z)’7  S(z)

For such an z we have

5(=z) 1 2
> « a .
. _S(z),so(S(p)) >z>p (1.113)
It is said that from Legendre’s formula (1.15) it results S(p*) <
op. Then using (1.112) we deduce o?p? > p=, s0

a? > p*? (1.114)

If p > 2 then the last inequality holds only for integers o <
aq.

Indeed, we have p* =2 > 2°~2 and 2°~2 > o holds for & > 8
(the functlon f{e) = 2%~2% — o? 15 increasing and f(8) = 0)

We have to prove only that for « € {1,2,...,7} the system
(1.111) has no solutions.

(a) If « = 1 it results S(z) = S(p) = p, and because p
divides z we have z/p € Z, first of the considered inequalities 1s
not satisfied.

Let us observe that there exist solutions for the second in-
equahty.Indeed, noting p = p:, the number z i8 of the formx

— a3 o
T=py-py..P¢ , 80

{5} = {2} = (s 5302} = 0 and

{ﬂ_l} {—H:—UT} -u'r'—p'r>0
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Example. For z =23 - 2. 3%, we have S{z) = 23 and

{_S%}z{zm.f}:o; {S(:)}=2191.39

(6) For o« = 2 let us note z = p=-z;. Then S(z) = S(p*) = 2p

and

(st =15 eto3)
8o we must have

pri, 1 S(z), 2

{—2—} =3< {T} = o

and it results pz; < 4, that is p € {2,3}.

Ifp =2 1t results zy = 1 and so z = 4, which is not a
solution for the inequation (1) from (1.111) because S(4) =

Hp=3,itresults also z; = 1,s0 z = p*> = 9.

Lfet us observe that the second inequation from (1.111) has
also solutions. Indeed, with the notation p = p; we have:

p2? - p3’...o¢" 5(3) 2
{S(x)} { 2 Fand A }— - p3...p

consequently the inequation is verified for z > 2 even number.
Example. For z = 2°- 37 112 we have S(z) = 19 and

z 25.37.112

1
OIS ISY

{ 24.37.11

p=o (22 =

(c) Let now be o = 3. We have seen that in this case if
S(z) = S(p*), it results p < 7.
If p =2 it results S(z) = S(2°) = 4 and then
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(st =152 ez

consequently the inequation (1) from (1.111) has no solutions.
However, there exist solutions of the second inequation. Indeed,
considering for instance z of the form

z=2%.3".5.74 (1.115)

with a,b,¢c,d € N*such that d = a,(7) = (7 - 1)/(7T— 1) and
S(z) = S(7?) it results S(z) = 7 and so z/S(z) is an integer.
If p= 3, we have S(z) = S(3%) = 9 and also

5@

The inequation (2) has solutions in this case too. For in-

}ez (1.116)

stance z = 33 z, are solutions, because

(22 2y

33z, 3:::

H p =5, we have S(z) = S(5°) = 15 and (1.111) becomes:

0<{5 Ty

} < { }, with z A5 =1
From the first of these mequa.hties it results:

5.7.'1

S

so we must have 1/3 < 3/(52.7:1). That is 5%z, < 9, which is an
imnposibility.

If p=7, it results S(z) = S(7°) = 21 and
7’2$1 3

0 < { }<72z1
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(T2yed}

Analogously it results the contradiction 3/(7%z;) > 1/3.

If @ = 4one obtain p € {2,3}. For p = 2 it results S(z) =
S(2*) = 6 and because z = 2%z,, with 2 Az =1, the system
(1.111) becomes:

From the condition 3/(8z:) > 1/3it results z, = 1,50 z = 16.
But for this value of z we have

}__>§__ S(z)

For p = 3, we have S(z) = S(3*) = 9 and one arrive at the
condition (1.115).

For @ € {5,6,7} we get only p = 2 satisfying the condition
(1.114), s0o z = 2*z;and because 5(2°) = 5(26) = S(27) it results
for all the cases S{z) = 8. The condition (1.116)is verified again
and the system has no solutions.

1.8 Seolved and Unsolved Problems

In the sequel we indicate by a star (*) the unsolved problems.
For the solutions of solved problems see the collection of Smaran-
dache Function Journal and 1ts extension The Smarandache No-
tion Journal

1"} Find a formula for the calculus of S(n), containing in-
stead of prime divisors of n the number n himself.

2) Prove that S(p?*) = p?

3) Inddicate the number of solutions of the equation
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S{z) = n!.

4) Prove that the equation S(z) = p, where p is a given
prime, has exactly d{(p — 1)!) solutions, all of them between p
and p!, where d(z) is the number of divisors of z. (4. Stuparu)

Generalisation: The number of solutions of the equation
S(z) =nis d(n!) — d((n — 1)!).

5) Prove that max{ i(fl / n > 4is a composite number} = 2.
(T. Yau)

6) Let g be a prime number and & be an exponent such that
S(¢*) = n!. Let p1,ps,...p, be the list of primes less than q.
Then the number of solutions of the equation S(z) = n!, where
z contains exactly k instance of the prime g, is at least (£ +1)".
(Ch. Asbacher)

7) For every prime p and &£ > 1 prove that

k+1
Sp(ik) > Sg:‘“ ) (Ch. Asbacher)

8) Is the number r = 0.1234574651..., where the digits are
the values of S(n) for n > 1, an irational number ? (F. Smaran-
dache)

9) Find the largest siricily increasing series of integers for
which the Smarandache function is strictly decreasing. (J. Ro-
driguez)

10) Find a sirictly increasing series of integer numbers such
that for any consecutive three of them the Smarandache function
18 neither increasing nor decreasing. (J. Rodriguez)

11) Are the points p(n) = —Slr:—‘)- uniformly distributed in the
mterval (0,1]7?

12) Prove that

R

£ =——t00 p"
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where p; < p; < ...px... 18 the sequence of prime numbers. (P.
Melendez)

13) For every composite integer n > 48, between S(n) and n
there exist at least ﬁve prime numbers (L Seagull)

14*) Calculate ): opp(t) using E g (2).

15) If we note

T(n) = 1—In S(n)+ Zl 5( 3

prove that
hm T(n) =
16) If (pn)nen+ denote the sequence of all the prime numbers

then the sequence {E'f;',._TllS} is unbounded. (M. Popescu. P.

Popescu)
17) For every k € N there exists a sequence n; < np < ...n5...
of positive integers such that

hm >k (Th. Martin
n——vooS( ) ( )

18*} Solve the following equations:

(1) S(a1') - 5(z*)....5(z2) = S(z33%

(i) S(z7)- 5(z2*)...5(z2,) = S(z=) (Bencze)

19) Solve the equations:

z52) = §(z)*
250 = S(y)* (L. Tutescu, E. Burton)
5= + S(2)S(z)* + =

20} For all positive integers m, n, r, s holds:
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(z) S(mn) < mS(n)

(i) S(mn) > max{S(m), S(n)}

(21) max{S(m), S(n)} < mS(n) (S. Jozsef)
() m < n=> iLl > M

(v) S(mn) + S(rs) > ma.x{S(m) + S(r), S(n) + S(s)}
Consequence. For all composite numbers m, n > 4 holds
S{mn) S(m) + S(n)

mn m-+n

21*) Find n such that the sum

; (S. Jozsef)

1500 4 2500 L (n— 1)50D) 4 g

is divisible by n. (M. Bencze)
22*) May be written every positive integer n as

n=(S(z))’ +2(S(y))* +3(S(z))*? (M. Bencze)

23*) Prove that

ad 1
kzz:l (S{k))? — S(k) +1
18 irrational. (M. Bencze)

24*) Solve the equation S(z) = S(z + 1).
25) Prove that

- ()

2 o

n=1

18 convergent, for every p > 1.



Chapter 2

Generalisations of
Smarandache Function

2.1 Extension to the Set Q of
Rational Nnumbers

To obtain such a generalisation we shall define first a dual func-
tion for the Smarandache function.

In [15] and [17] it is make evident a duality principle by means
of which, starting from a given lattice on the unit interval {0, 1],
there may be constructed some other lattices on the same inter-
val. We mention that the results of these papers have been used
to construct a kind of bitopological spaces and to introduce a
new point of view in the study of fuzzy sets.

In {16] the method to construct new lattices on the unit inter-
val, proposed in [17] has been extended to a general latiice. But
the main ideas from these papers may be used in varnous domains
of mathematics. We shall use here to construct a generalisation
of Smarandache function to the set Q of all rational numbers.

In the sequel we adopt a method from [16] permitting to

77
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construct all the functions linked, in a certain sens of duality,
with the Smarandache function.
One observe that if we note

Rd(n)z{m/ném!}, ﬁg:{m/m!%n}
Rin)={m [n<ml}, L{n)={m/m!<n}

we can say that the Smarandache function is defined by means
of the triplet (A, €, R;), because one can write:

S(n) = A{m / m € Ra(n)}

We may also create all the functions defined using the triplets
{a, b, c), where:

- a 18 one of the symbols: Vv, A, {{\, and V

- b is one of the symbols: € and ¢

- ¢ 18 one of the sets: Ru(n), Ls(n), R(n), L(n) defined
above

Not all of these functions are not-trivial. As we have already
seen the triplet (A, €, Ry) defines the function S;(n) = S(n), but
the triplet (A, €, £;) defines the function

Syny = A{m [ m! é n}

which 18 the identity.

Many of the functions obtained using this method are step
functions. For nstance if we note by Sy the function obtained
from the triplet {A, €, R), we have:

Sy(n) ={m [/ n<m!}

so Ss(n) = m if and only if n € [(m — 1)1 + 1, m!].
In the following we focus the attention on the function S,
defined by the triplet (v, €, £;):
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- Si(n) =v{m [ m! % r} (2.1)
which 1s, in a certain sease, a dual of Smarandache function.
2.1.1 Proposition. The function S, satisfies:
54(721 Q 7’2.2) = 54(711) A 54(712) (22)
so is a morphisme from (N*, :;\) to (N*, A}.
Proof. If p1,pa, .-y i, ...38 the increasing sequence of all the
primes and
ny=1p, ng=Ipf with a;, fi€ N

only a fimite number of o; and £; being non-nulls, we get:

mATg = Tpfne. #)

If we note Si(ny,n2) = m, Se(n) = my, for i = 1,2 ,and
supposing m; < g, 1t results that the right hand side of (2.2)
18 My A ma.

From the definition of S, we get for the exponent e, (m) of
the prime p; in the factorisation of m! the following inequality:

ey, {m) < min(e,, §;) fori>1

and at the same time it exists ;7 > 1 such that

ep; (m + 1) > min{e;, £;)
Then it results:
o 2> ep. (m), Bi>2ep(m) fori>1

We also have:
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€pi (ml) S Oy, Ep; (mg) S o

and in addition 1t exists 2 and & such that:

epn (M1 + 1) > an, €5, (M2 +1) >

So, because m, < my, it results

min(cy.-, ﬂt) 2 min(ep.' (ml)w €p; (mz)) = €p (ml)

and then m; < m. If we suppose the inequality is stnicte, it
results m! < ny, so it exisis ~ such that e,, (m) > o), and we get
the contradiction:

epy ()} > min(ay, Br)

Remark. For many positive integers n we have Sy(rn) = 1.
For instance, S¢(2n+ 1) = 1 for all n € ¥ and S¢(n} > 1if and
only i n 15 an even number.

2.1.2 Proposition. Let py,ps,...,p, ... the sequence of all
consecufive primes and

n=p& - pP.pit - gf g gf

the decomposition into primes of a given number n € N*, such
that the first part of the decomposition is formed by the {even-
tually) first consecutive primes. If we note:

1o e, (S(M)) > o

Sk -
1S )b pi—1 if en () = o (23)

54(7?.) mm {tl,fz, ...,f}‘,pk+1 -1 } (24)
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Proof. H e, (S{r¥*)) > «, from the definition of Smaran-
dache function we deduce that S(p>: ) — 1 is the greatest positive
integer m such that e, (m) < a. Also, if ¢, (S(p™) =
then S{p{*) + pi — 1 is the greatest positive integer m such that
epa(m) = &.

It results the number min {t,¢3, ..., tx, pr 41— 1} is the great-
est positive integer m for which e, (m) < oy foralli =1,2,... k.

2.1.3 Proposition. The function S, satisfies:

d
54(1'),1 + ng) N S.Q(T’?.]_ A\ ng) = 54(1'7,1) A 54(712)

for every ny,n; € N*.
Proof. The equality results from (2.2) taking into account
that:

d
(n1+rv~>){£\(n1Vng)=n1Qn2

Before to construct the extension of the Smarandache func-
tion to the set Q. of all positive rationals we shall make evi-
dent some morphism properties of any functions defined by the
triplets (a, 5, c).

2.1.4 Proposition. (i) The function S; : N* — N*
where

Ss(n) :\d/{m/mlén}

satisfies:

55(77.1 {i\ 77.2) = 55(1’7.1) Q 55(77'2) = Ss(nl) A 55(77.2) (25)

(i1} The function Sg : N* — N*, defined by:
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Se{n) =V {m/n<ml}

satisfies:

d d
Ss(nl \% ng) = Ss(ng) \" 56(77'2) ‘ (26)
{17¢) The function Sy : N* — N*, defined by:

S7(n) =V {m [/ m!<n} (2.7)

satisfies:

Sz{n1 A ng) = Sz{n1) A Sr{ng), Se(ny v ng) = S7(ny) V Sr(ng)

(2.8)
Proof. (1) Let

A={a,-/a,-!§n1}, B:{bj/bjzéﬂq}, C={ck/'c;.§n1&\ng}
Then we have A C B or B C A. Indeed, let

A= {G]_, az, ...,a;,,}, B = {bl,bz, ceey b,}

be the elements of A and B writen in increasing order. That
18a; <aiygand b <bjyyfort=1A—1andj=1,r— 1. Then
i gy < b, it Tesults a; < b, for i = 1,4, so a! _§ b,!é na.
Consequently A C B.

Analogously, i b, < a,it results B C A, and of course we
have C = AN B. So,f A C B it results

d d
55 7y /d\ ng) =V =Va = Ss(nl) =
min{S5(n}, Ss(nz)} = Ss(n) g\ Ss(nz)
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Considering the function Ss defined on the lattice Ay, from
(1.100) it results that it is order preserving. But if we consider
this function defined on the latiice A, it is not order preserving,
because

m! <m!i+1 but Ssim!)={1,2,..,m] and Ss(m!+1)=1

(iz) Let us observe that

Ss(n) =V {m [/ (3)i €71,t such that ¢,, (m) < o}
If we note a = V{m / n% m!} then n < {a + 1)! and
at+1= /\{m/n% mi} = S(n)
30

Se(n) =(1,2,..,5(n) — 1]

and then

4 d
Ss{ni Vng) =[1,2,...,5(n1 V na)—1] = Sz{n1Vnz) = Sr(n2)VSz(ny)

Also, we have:
d - -
Se(n1) V Se(nz) = {[1,2,..., S{ny) — 1},(1,2,..., S(m2) — 1]] =
1,2,...,5(n1) VS(ny) — 1]

(12¢) The equalities results from the fact that if m is given by
(2.7) then

Sin)=[1,2,..,ml<=nem, (m+1)! -1]
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Let us now define the extension of the Smarandache function
to the set Q. of positive rationals.

It is said [25] that every positive rational a may be written
under the form

a =]} p>P (2.9)

with p a prime, o, € Z and only a finite number of the exponents
are non-nulls. Taking into account this equality one may define
the divisibility of rational numbers as follows:

2.1.5 Definition. The rational number a :Ig p>» divides

the rational number b =11 p?» if o, < B, for all prime p.

P
The equality (2.9) implies that the multiplication of rational

numbers is reduced to the addition of some exponents. Con-

sequenily the problems on the divisibility of these numbers are

reduced to order problems between exponents.

. The greatest common divisor d and the smallest common

multiple ¢ for rational numbers are defined [25] by:

d=(a,b,..) =I pmirlor o} o =g b, . ] =] p™x{as-for)
4 14

(2.10)

Moreover, between the greatest common divisor d and the

smallest common multiple of any rational numbers there exists
the relation:

ab,.]= — (2.11)

:, T )
Of course, every positive rational a2 may be written under the
form:

a= - with n€N,n €N*, and (n,n) =1

ny
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2.1.6 Definition. The extension S : Q7 — @% of the
Smarandache function to the positive rationals is:

)= S; l(n)
n 54(711)

A consequence of this definition is that i n; and n, are pos-
itive integers then:

5( (2.12)

141 1 1 -
S(n—1 v r—z;) = S(E) \ S(E) (2.13)
Indeed,

S V)= (m/\m\ = b«GuAM) = SEAS) =
=5ty V 3y = 5( )VS(L)

For two arbitrary positive rationals we have:

SV 2y = (St v Sem) - (S(%) v 5(;%” (2.14)

This formula generalise the equality (1.16).
2.1.7 Definition. The function S : Q5 — Q7 defined by:

S(a) = (2.15)

5()

i called the dual of Smarandache function.
2.1.8 Proposition. The dual S of the function S satisfies:

(2) S(n A ng) = S(m) A S(ra)
(u)i'f(l A m)=5(E)AS5(E)

for all positive integers n; and n;. Moreover, we also have
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~ N m ~ = =01 =~ 1
SZ 2= (5w A S B A5

The proof is evident.

Remarks. 1) The restriction of the function S to the set of
the positive integers coincide with the function S,.

2) The extension of the function S : QL — Q7 to the set
Q*of all non-nulls rationals may be made for instance by the
equality:

S(~a) = S(a) forall a € Q%

2.2 Numerical Functions Inspired
from the Definition of
Smarandache Function

In this section we shall utilise the equalities (2.1} and (1.58) to
define, by analogy, other numerical functions.

Let us observe that if n is any positive integer then n! is the
product of all positive integers not greater than n in the lattice
L. Analogously the product p,, of all divisors of a given m,
including 1 and m, is the product of all positive integers not
greater than m in the lattice £;. So we can consider functions
of the form:

o) = A{m [ n < olm)}

It is said that f

— Tl z3 xz
m=p; Py ..pP¢
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15 the decomposition into primes of a given number m, then the
product of all the divisors of m is

p(m) = Vmr(m) (2.16)

where 7(m) = (2, +1)(z2+1)...(z¢ + 1) is the number of divisors
of m.
If n has the decomposition

n = p{' - p3?..p (2.17)
then the inequality n% p(m) is equivalent with:

gl(Z) = 31(31 + l)(.&":g + 1) - 2&’1 2 0
goz) = zalz1 + 1)z +1) = 20,2 0

gt(z) = :ct(:z:l + 1)(1‘3 4 1) - 20’5 Z 0

(2.18)

So, 6( n) may be deduced solving the foﬂowmg non-hnear
programiming problem:

(min) f(z) = g (2.19)
under the resirictions (2.18).

The solution of this problem may be obtained applying for
instance the algorithm SUMT (Sequential Unconstrained Min-
imisation Techniques) does to Fiacco and Mc. Cormick [18].

Examples. 1) For n = 3*.5'2 the equalities (2.18) and
{2.19) become:

(min) f(z) = 3 - 57

with the restnictions

{ gifz) =21z + 1) (22 +1) > 8
g2(z) = 2oz + V(22 + 1) > 24
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Using the algorithm SUMT we consider the function

u(z,n) = f(z) —r zj: In g;(z}

and the system

Ju 0
{ L2 (2.20)

In [18] it is shown that if the solution z,(r), z{r) of this
system can’t be found explicitely from the system, we can take
r — 0. Then the system becomes:

{ zi{zy + 1)(z2+1) =8
zo{zy + 1)z + 1) =24

and has the solution z; = 1, z2 = 3. So we have:
min{m / 3*-52 < p(m)} =my =3-5°

Indeed, p(TnO) = ms (me) — m?) = 3% .52 =n,
2) For n = 3% - 57, from (2.20) it results for z; the equation

223 + 922+ 7z, — 98 =10

with a real solution in the interval (2, 3). It results z, € (4/7,5/7).
Considering z, = 1 we observe that for z; = 2 the pair
{(z1,72) is not an admisible solution of the problem, but z; = 3
give 6(32 - 57) = 3*. 512,
3) In general, for n = pf!" - p7? it results from the sysiem
{(2.20) the equation:

3 2 2 __
a2y + (o + ag)zd + gz ~ 205 =0

with the solution given by the formula of Cartan.
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Remark. Using "the method of triplets” we may attache to
the function ¢ defined above many other functions.

Starting from the function v, given by (1.58), we may also
obtain numenical functions by the same method.

In the following we shall study the analogous of Smarandache
function and its dual in this second case.

2.2.1 Propesition. If n has the decomposition (2.17) then:

() v(n) =max pf, () v(ny 6 na) = v{n,) Vv{ny)

Proof. (i) Let be p2* = maxp?®. Then p¥ < p2* for all
1 =1,t, 50
o <[, p00]

But (pf,p;’) = 1 for i # j and then

n % n,2,..,p2

If for some m < p3* we have n < [1,2,...m], it results the con-
4
tradiction
poe < [1,2,..m]
F;
() If
m =1p*, ng =P

then
ny \i ng = Hpm“{alhpp}

d
so v(n; V ng) = maxp™**sf} = max{maxp*>, maxpPr}and
the property is proved.
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Of course, we can say that the function v; = v is defined by
the triplet (A, €, Rig), where

Rg={m/n % (1,2,..,mj}

Its dual, in the sense defined in the preceding section, is the
function defined by the triplet (v, €, Lrg)), where -

L[d.] = {m / [1, 2, ceny m]% 77.}.
Let us note by v, this function:
v(n)=v{m [ [1,2,..,m] % n}
Then v,(n) is the greatest positive integer having the prop-
erty that all positive integers m < v,(n) divide n.

Let us observe now that a necessary and sufficient condition
to have v(n) > 1 is the existence of m > 1 such that every

prumes p < m divide n.
From the definition of v, it also results
va{n} = m <= n is divisible by every 7 < m,but not by m + 1

2.2.2 Proposition. The function v, satisfies:

va(ny /;\ na) = vg(ni) A ve(ng)
Proof. Let us note

n=n1§\n«;, m,(n)zm, va(ri) = my for:=1,2

If mi = m; A mg, we prove that m =m,. Indeed, from the
definition of v, it results:
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ve(rs) = mi =
<= {(V)1 £ m; = n is divisible by n; but not by m; + 1 }

If we have m < m;, then m+1 < m; < my, so m+1 divides
n1 and ng, and so m + 1 divides n.

If m > my, then m; +1 < m, so m; + 1 divides n.

But n divides n;, so m; 4+ 1 divides n,;, and the proposition
is proved.

Let us observe that if we note

to = max{t / j < {=> n is divisible by j}

then 14(n) may be obtained solving the linear programming
problem

to
(max)f(z) =Z_31 z;In p;;
i
zi<a; fori=1,tg; 30 zilnpi <lnpyyy
=1

I f; 18 the maximum of f from this problem, then v(n) =
efo.

For instance 1,4(2°-3%2-5-11) = 6.

Of course, the function v may be extended to the set of all
rational numbers by the same method as Smarandache function.

2.3 Smarandache Functions of First,
Second and Third Kind

Let X be an arbitrary nonvoid set, r C X x X an equivalence
relation, X the corresponding quotient set and (I, <) a total
ordered set.
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2.3.1 Definition. If g : X — I is an arbitrary injective
function then the function

f:X — 1, defined by f(z) = ¢(z) (2.21)

i3 said to be a standardisation. About the set X we shall say in
this case that it is (r, (I, <), f) standardised. ,

2.3.2 Definition. If r, and r, are two equivalence relation
on X, the relation r = r; A r; is given by:

zry<zrjy and zry (2.22)

Of course, r defined as above is an equivalence relation.
2.3.3Definition. The functions f;: X — I, 1 =1, s are of
the same monotonicity if for every z,y € X we have:

M) S fily) = filz) < fily) for kj=T1s  (223)

2.3.4 Theorem. If the standardisations f; : X — I, corre-
sponding to the equivalence relations r; (for i = 1, s) are of the
same monotonicity then the function

f = max f;

s a standardisation, corresponding to r =‘/_’\1 ri, and it 18 of the
same monotonicity as the functions f;.

Proof. We give here the proof when s = 2. For an arbitrary
value of s the assertion results then by induction.

Let Z,,, Z,, and Z, be the classes of equivalence of z corre-
sponding to the relations r,r,and r=r Ar. HX, X, X,
denote the quotient sets induced by these relations then:

fi(z) = gi{Z,,),for i=1,2 where g;: j{\',‘ :— I are injective
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The function g : X, — I defined by ¢(z,) = max({¢,(3,, ), galz,,))
is injective. Indeed, if Z} # %2 and

max(g1(Z;, ), 92(2},)) = max{g1(22 ), g2(22))

then from the injectivity of g; and g, it results for instance:

max(g1(Z}, ), 92(Z},)) = 91(Z}, ) = 92(22) = max(g1(32 ), 92(22))

and we have a contradiction, because

h(=?) = g1(22) < n(3},) = falz")
fa(z") = 92(32,) < 92(37,) = falz?)

That is f; and f; are not of the same monotonicity.
From the injectivity of g it results that the function

f: X — 1T f(z) =9(3,)

is a standardisation. Moreover, we have:

f(=1) < f(=*) <= 9(2]) < 9(37) <= max(g1(Z], ), 92(27,)) <
< max(g1(87, ), 92(27,)) <= max(fi(z?), fo(z')) <
< max(fi(z?), fa(2?)) <= fiz') € f1(2?) and fofz?) < ful<?)

because f; and f; are of the same monotonicity.

Let us now consider two algebraic lows T and L on X re
spectively on I.

2.3.5 Definition. The standardisation f : X — I is said
to be L-compatible with the lows T and L d for every z,y € X,
the triplet (f(z), f(y), f(zTy)) satisfies the condition . In
this case we shall also say that the function f Y-standardise the
structure (X, T )on the structure (I, <, 1).

Example. If the function f is the Smarandache function S :
N* — N~, one can make evident the following standardisations:
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(a) The function S, ¥;-standardise (N*, ) on (N*, <, +) be-

cause we have:

(%) : S(a-b) < 5(a) + S()
(6) The function S also satisfies:

(X2) : max{S(a), S(b)) < S(a - b) < S(a), S(b)
so this function ¥;-standardise the structure (N*, -} on the struc-
ture (N*, <, ).

Now we may define the Smarandache function of first kind.
We have already seen (section 1.2) that the Smarandache func-
tion 18 defined by means of the functions 5,. We remember that
for every prime number p the function S, : N* — N* is defined
by the conditions:

1) S;(n)! is divisible by p~,

2) Sy(n) is the smallest positive integer with the property 1).

Using the definition of a standardisation in [2] there are given
three generalisations of the functions 5,.

To present these generalisations let us note by M(n) any
multiple of the integer n.

2.3.6 Definition. The relation r, C N* x N*is defined for
every n € N* by the conditions:

(:) Hn=1*, with u =1 or u = p (a prime) and ¢,a,b € N*,
then:

ar,b<=> (3) K € N*, such that k! = M(u*), k' = M(x*)
and k is the smallest positive integer with this property.
(z2) If

n=pj - p7.of (2.24)

is the decomposition of n onto primes, then:
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Ta =T g Ar g AL AP,
n P;l p;Q P:’

2.3.7 Definition. For every n € N* the Smarandache func-
tion of first kind is the function 5, : N* — N* satisfying the
conditions:

() f n = v, with u = 1 or u = p, then S,(a) is the smallest
positive integer k& having the property k! = M(u'). »

(1) I n=p} - p2.p' then

5.(0) = max (5,5 ()

1<i<s

Remarks. 1. The functions S, are standardisations corre-
sponding to equivalence relations r, defined above. f n = 1, it
results Z,, = N*, for every z € N*, and Si(n) = 1 for every
ne N~

2. If n = pis a prime nurmber then S, is just the function S5,
defined by F. Smarandache.

3. All the functions S, are increasing and so are of the same
monotonicity, in the sense of definition 2.3.3.

2.3.8 Theorem. The functions S, have the properties that
¥,-standardise (N*, +) on (N*, <, +) by the relation:

(£1) : max(Sn(a), Sa(b)) < Sala +b) < Safa) + Sa(b)

forevery a,b € N*, and also ¥,-standardise the structure (N*, +)
on the structure (N*, <, ) by:

(Z2) : max(Sa(a), Sa(b)) < Sala +b) < Sa(a) - Sa(b)
for every a,6 € N*.

Proof. Let p be a prime and n = p*, with : € N*. Let also
be a* = S,i{a) , 6" = S,: (b) , k = S,:(a +b). Then from the
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definition of S, it results that a*,5* and k are the the smallest
positive integers satisfying the properties:
*

o'l = M(p™), "t = M(p®), kl = M(p"**?)

From k! = M(p**) = M(p*) it results a* < k and b* < k, so
max{a®, b*) < k and the first inequality from (21) as from (E;)
i8 proved.

Because

(a*+8 Y =a"l(a* +1)...(a" + &) = M(a"1b™!) = M(p‘(“+b))

it results £ < a* 4 6%, so (L) is satisfied.
If n = py1, - p}...p% , taking into account the above consider-
ations we get:

(El) : m&x(S ij (a), S 85 (b)) S S i (a+ b) S S i (CL) + S i; (b)
Py Pj Pj Pj Pj
for 7 =1, 3 and consequently:
max({max; S ;; (a), max; S ; (b)) < max; 5 s (a+8) <
< max; S (a) + max; S (b)
for 1, s ,80

max(Sa(a), Sa(8)) < Sala +8) < Sala) + Sa(b)

To prove the second inequality from (¥;) we remember that
{(a+ b)! < (ab)! if and only if @ > 1 and & > 1. Our inequality s
satisfied for n = 1, because

Si{a+b)=S(a) =51{b) =1
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Let now be n > 1. It results for a* = S,(a) that a* > 1.
Indeed, if n has the decomposition (2.24) then:

@ =1<«= S.(a) = maxSpjj {a) =1

and that imphes py =p;=...=p,=1,s0n=1.
Consequently for every n > 1 we have

Sn{a) =a” >1 and S,(b) =6">1
Then (a* + 6*)! < (a* - 5*)! and we get:

Sa(a +5) < Su(a) + Su(8) < Sala) - 5.(0)

In the sequel we present some results on the monotonicity of
Smarandache functions of the first kind.

2.3.9 Propeosition. Forevery positive integer n the Smaran-
dache fanction of first kand is increasing.

Proof. If nis a prime and k; < k3 from (S, (k2))! = M(n*2) =
M(nk) it results S,(k1) < Sal(ks).

If n is an arbitrary positive integer let

Spm (tmb1) = maxicjck Sp; (i7k1) = Sa(kr)
S?‘ (i*kz) = max;gi<r Sp;‘ (ijkﬁ) = Sn(ka)

From

Spm{tmk1)} < Spu(imka) < Sp,(itka)

it results S,(k;) < S.(k;) and the proposition is proved.
2.3.10 Proposition. The sequence of functions (S,:);en- is
monotonously increasing, for every prime number p.
Proof. For every 13,13 € N* , with 1; < 1; and for every
n € N* we have:

Spir (n) = Spt1 - 1) < Stz - n) = Sy (1)
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80 S,q < S,4 and the proposition is proved.
2.3.11 Proposition. Let p and ¢ be two given primes. Then:

p < q=>S5,(k) < S,(k) forevery k€ N*

Proof. The arbitrary integer £ € N* may be written in the
scale [p] as:

k=tya,{p) + t22,_1(p) + ... + t,a1(p) (2.25)

It is said that 0 < t; < p— 1for : = 1, s and the last non-null
digit may also be p.

Passing from k& to k& + 1 in {2.25) we can make evident the
following algonthm:

() t, increases with unit.

(11) o t, can’t increase with unit, then t,_, increase with an
umt and ¢, take the value zero.

(i7) ‘i neither ¢, nor ¢,_; can increase with an unit then
t.-2 increase and t, as well as £, _ ;become zero.

The processus is continued until we get the expression of k+1.

Noting

Ar(Sp) = Sp(k + 1) — Sy(k) (2.26)

the increment of function S, when we pass from &k to k + 1,
following the above algorithm one obtain:

- if (z) holds then Ai(S,) = p,

- if (31) holds then A(S,) =0,

- if (147) holds then Ax(S,) = 0.

and it results
SP("‘) =E Ak(Sp) + Sp(l)
k=1

Analogously:
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§4() =§ AK(S) + 5,(1)

Taking into account that Sp(1) = p < ¢ = S,(1) and using
the algorithm mentioned above it results that the number of
mcrements of value zero of the function S, is greatest than the
number of increments of value zero for the function S,, and the
increments with value p of S, are smaller than the increments of

value ¢ of 5;. So:

n

Y A(S) +S,(1) <Y AS)+5,(1)  (227)
k

k=1 =1

and then S,(n) < Sy(n) for every n € N*.
Example. The values of S; and Sy are histed bellow.

k 12345 6 7 8 9 10
increment 202 2 0 0 2 2 0
Siky 2 446 8 8 8 10 12 12
increment 330 3 3 3 ¢ 3 3
Ss(k) 3 6 9 9 12 15 18 18 21 24
k 11 12 13 14 15 16 17 18 19 20

increment 2 2 0 0 0 2 0 2 2 2
S3(k) 14 16 16 16 16 18 18 20 22 24
increment 3 0 0 3 3 3 0 3 3 3
.5'3(k) 27 27 27 30 33 36 36 39 42 45

and one observe that S;(k) < Ss(k), for k =T, 20.
Remark. For every increasing sequence

PL<p2<..<p,<..
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of prime numbers it results:

51< 8, <8, <...<5,, < ...

and if n = (p; - p3...p;)* with p; < p; < ... < p;, then
Salk) = max S,; (k) = Sy (k) = S (ik)
2.3.12 Proposition. If p and ¢ are prime numbers and
p-t<g, then S,; <5,
Proof. From p- 7 < g it results:
Spi(1) S pi < g =S5,(1) and S, (k) = S,(ik) < iS,(k) (2.28)
Passing from & to &£ + 1, from (2.28) one deduce:

AK(S,:) < A(S,) (2.29)

The proposition (2.311) and the equality (2.29) imply that
passing from k& to £ + 1 we get:

A(Sy) S AWS) Sip<g, i Y AS,) <3 AulS,) (2:30)

k=1 k=1

Because we have

S (1) = S (1) 32 Au(S,) < S () +1 3 A(S,)

and

Si(m) = S, 1+ 3 Au(S)
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from (2.28) and (2.30) 1t results S,: (n) < S,(n) foreveryn € N*,
and the property is proved.

2.3.13 Proposition. If p is a prime number, then S, < S,
for every n < p.

Proof. i nis a pnme, from n < p and the proposition (2.3.11)
it results S,(k) < S,(k) for every k € N*. I

n=p} - pF..p}
15 a composit number then:

Sa(k) = max S ;; (k) = S, (k)

1< P

and from n < p it results p* < p. So, using the preceding
proposition and the inequality p, < p!* < p, one obtain

Spir (K) < S,(k)

That is S,(k) < S,(k) for every k € N*.

We shall present now the Smarandache function of second
kind, defined in [2].

2.3.14 Definition. The Smarandache functions of second
kind are the functions

S*: N* — N*, defined by S*(n) = S,(k)

for every fixed £ € N*, where S, is a Smarandache function of
first kind.

From this definition it results that for £ = 1, S* is just the
function S. Indeed, for n > 1 we have

$'(n) = Sa(1) = max 5., (1) = max,, (i) = S(n)
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2.3.15 Theorem. Every Smarandache functions of second
kind ¥s-standardise the structure (N*,-) on the structure (N*, <
,+) by:

(D5) : max(S*(a), S*(8)) < §*(a - b) < S*(a) + S*()

for every a,b € N*. At the same time these functions X,-
standardise the structure (N*,-) on (N*, <, "} by:

£.): max(5*(a), S*(8)) < 5*(a-b) < 5*(a) - S*(0)

for every a,0 € N*.
Proof. The equivalence relation r* corresponding to S* is
defined by:

arkb & (I)a* € N* a*! = M(a*), a"! = M(bF) (2.31)

and a” is the smallest positive integer satisfying (2.31). Conse-
quently we may say that S* is a standardisation attached to the
equivalence relation r*.

Let us observe that the Smarandache functions of second kind
are not of the same monotonicity, because, for instance, 5%(a) <
52(b) <= S{a®) < 5($%) and from this it does not result S*{a) <
St{b).

For every a,b € N* let us note a* = S*(a), b = S*(b),
c* = S*(a-b). Then a*, b, ¢ are the smallest positive integers
with the properties:

a*l = M{d*), 6"t = M(b"), ! = M(d* - b%)

and so c*! = M(a*) = M(b*). It results o~ < ¢*, b* < ¢, and
then max{a®, b*) < c¢*. That 1s:
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max{S5*(a), S*(6)) < S*(a - b) (2.32)
But from (a* + b*) = M{a*!b*!) = M(a*b*), it results c* <
a* +b*, so
S*(a-b) < S*(a) + S*(b) (2.33)
From (2.32) and (2.33) one obtain:

max(S*(a), *(3)) < 5*(a) + S*(5)
50 (X3} is verified.
Finaly, because (a*6*)! = M(a*!6*!), we have also:
S*(a - b) < S*(a) - S*(b)
and (X,) is proved.
2.3.16 Proposition. For every k,n € N* we have
S¥ny <n-k (2.34)

Proof. Let us consider n = p} - p...p}* and

S(n) = Pgaé(bp; {i;) = S(ph')

Then because
S*(n) = S(n*) = maxicj<: Sp; (3 - k) = S(oir %) < kS(pir) <
<kS(pim ) = kS(n)

and S(n) < n, it results (2.34).
2.3.17 Theorem. Every prime number p > 5 is a local
maximum for the functions S*, and

S*(p) = plk — 5,(k))
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where i, are the functions defined by the equality (1.33).
Proof. If p > 51is a prime, the first part of the theorem results
from the inequalities

Sp-1(k) < Sp(k) and S, 11(k) < Sp(%)

satisfied by the Smarandache function of first kind.
The second part of the theorem results from the definition of
functions S*:

S*(p) = Sp(k) = plk — 5(k))

and the theorem is proved.

Remark. For p > k we have S*(p) = pk.

2.3.18 Theorem. All the numbers kp, with p a prime and
p > k are fixed points for the function S*.

Proof. Let m = p7* - p3*...p¢" be the decomposition of a given
. into primes and p > 4 be a prime number. Then p;-o; < p* <
p for : = 1,¢, s0 we have

§*(mp) = S((mp)*) = max(S,; (a), Sp(k)) = Sy(k) = kp

For m = k it results S*(kp) = kp, s0 kp s a fixed point for
S~

2.3.19 Theorem. The Smarandache function of second kind
has the properties:

(1) S*(n) = o{n**<) for everye >0
(12) Jm sup i‘?l =k
Proof. We have

k
0< hm 20 _

— n—o0 nl+e T p—o nl+e
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and (1) 1s proved.
Also,

k k k
bm sup ) = i sup S o SPR) _
n n—co

n—00 7 n——C0 pn

where (p.)nen+ 18 the increasing sequence of all the primes.
2.3.20 Theorem. The Smarandache functions of second
kind are generaly increasing, in the sense that

(V) n € N* (3) mg € N* (V) m >o=> S*(m) > S*(n)

Proof. It is said [44] that the Smarandache function is gen-
erally increasing, in the following sense

V) teEN" @) ro€ N* (V) r> ro=> S(r) > S(t)  (2.35)

Let t = n* and ro be such that S{r} > S(n*), for every r > r.
Let also mg = [/ro] + 1. Of course, mg > ¥/rq <> mk > r,
and m > mg <> m* > mk.

From m* > mf > ry, it results S(m*) > S(n*), so S*(m) >
Sk(n).

Then we have:

(V) n € N* (3) mo = [¢/7a] +1 (V) m 2 mg = S*(m) 2 $¥(n)

where ro = ro(n¥) is given by (2.35).

2.3.21 Theorem. I p > max(3, k) is any prime number,
then n = p! is a local minimum for S*.

Proof. Let p! = pi' - p...pi~ . p the factorisation of p!, such
that 2 = p; < p2 < ..., pm < p. Because p! is divisible by p?, it
results S(p7 ) < p = S(p) forevery j =1, m.
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Of course,

S*(e!) = S((@!)*) = max (S ), 5(6*))
and . ‘

S(pf" ") < S(p¥ ) < kS(p) = kp = S(p¥)
for k < p. Consequently,

Sk = S(p*) =kp fork<p (2.36)
If the decomposition of p! — 1 into primes is

pl—-1= qi‘ . q;’...qz‘

then we have g; > p for j =1, ¢.
It results:

| S — ' — fm
with ¢, > p, and because S{¢i= ) > S(p) = S(p!) it also results

S(pt —1) > S(p!)

Analogously it can be proved that S(p!) + 1 > S(p!).
Of course,

S*p! = 1) = S((p! — 1)*) > S(¢k*) > S(¢&) > S(p*) = kp
(2.37)
and

S*(pt + 1) = S((p' + 1)*) > kp (2.38)

From (2.36), (2.37) and (2.38) it results the assertion.
Now we present the Smarandache function of third kind [2].
Let us consider two sequences:
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(a): 1=2@a1,a2,...,Cx, ...
(6) : 1 =1by,bq...,5,,...
satisfying the properties:

Qh.n = Qf * Qy, b],.,,, = b;. . 5,, (239) :

Of course there exist infinitely many such sequences, because
chosing an arbitrary value for a;, the next terms of the sequence
(a) are determined by the recurrence relation (2.39).

Let now be the function

fb: N* — N* defined by fb(n) = S, (bn)

where S, is the Smarandache function of first kind.
One observe easily that ‘

(:):ifa, =1, and b, =n forevery n € N*, then fr=5
(i) : fa, =n and b, =1forevery n € N*, then f2=25'
(2.40)

2.3.22 Definition. The Smarandache functions of third
kind are the functions defined by any sequences (a) and (b),
different from those of (2.40), such that:

Se= 1

2.3.23 Theorem. All function f,°, Is - standardise the
structure (N*,-) on the structure (N*, <, +,-) by:

(Zs): max(£2(k), £.2(n) < f(k-n) <baf0(k) + S, (n)

Proof. Let us note
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fab(k) = San (bk) = k‘) fab(n) = Sén(bﬂ) =n’,
fab(nfc) = Sa‘..,.(bk-n.) =t

Then k”, n* and ¢* are the smallest positive integers for which

Fl=M(at), n't= Mal), 1= M%) = M((an-an) )
SO

max{k*, n*) < ¢* (2.41)
Moreover, because (bx-n*)! = M((n*1)), (bo-k*)! = M((k*1)or)

and

(bg - n* + b, - Y= M((b n* (b, - E*)!) =
= () (1)) = M((a ) - (6 ) = M((a - an)r)
it results
£* < bo k" +by-n (2.42)
From (2.41) and (2.42) one obtain:

max{(k*, n*) < t* < b, -k* +bg-n* (2.43)

From the last inequality it results (¥s), so any Smarandache
function of third kind satisfies:

(Ze) : max(S2(k), SHn)) < SP(kn) < 6,55(k) + bxS5(n)

for every k,n € N*.
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Example. If the sequences (a) and (b) are determined by
the condition a, = b, = n, for n € N*, then the Smarandache

function of third kind 1s:
52:N*— N*, 52(n) = Sa(n)
and (X¢) becomes:

max(Sk(k), Su(n)) < Sk.n(k - n) < nSk(k) + £S.(n)

for every n € N*. This relation is equivalent with the following
relation, writien using the Smarandache function:

max(S(E*), S(n*)) < S((kn)*") < nS(k*) + £S(n")

2.4 Connections with
Fibonacci Sequence

In the Introduction of the Proceedings of the Conferences "Ap-
plications of Fibonacci numbers ” [3],[36],[38], it is mentioned
that the sequence:

1, 1,2 3,5, 8,13, 21, 55, 89, .......o.. (2.44)

known as the Fibonacci sequence, was named by the nineteenth-
century French mathematician Edouard Lucas, after Leonard Fi-
bonacci of Pisa, one of the best mathematicians of the Middle
Ages, who referred to him in this book Liber Abaci (1202) in

connection with his rabbit problem.
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TheGerman astronomer Johann Kepler rediscovered Fibonacci
numbers, independently, and since then several renowned math-
ematicians, as J. Binet, B. Lamé and E. Cartan, have dealt with
them.

Edouard Lucas studied Fibonacci numbers extensively, and
the simple generalisation:

2,1, 3,4, 7, 11, 18, 29, 47, 76, 123, ...... (2.45)

bears his name.
It said that there exists a strong connection between the Fi-
bonacci sequence and the gold number:

1+v5

2

For instance noting by F(n) the n — th term of Fibonacci
sequence (2.44) one has:

d =

F(n+1)

tim . (2.46)

o " F(n)

and so,

Jm JF(n) =2

Let us now remember some of the properties of Fibonaca
sequence.

It 1s said that Fibonacci sequence satisfies the recurrence re-
lation

Fin+2)= F(n+1)+ F(n), with F(1)=F(2) =1 (2.47)

and also the properties:
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(pr) F(n) = Z{(HE) — (58)]

(p2) FO)+ F2)+..+ F(n) = F(n+2)-1

(p3) FQQ)+ F(3)+...+ F(2n - 1) = F(2n)

(ps) F()+F(4)+...+ F(2n)=F(2n+1)-1
(ps)F(2)— F(3) + F(4) — ... + (-1)*F(n) = (-=1)"F(n — 1)
(00) FX(1)+ F*(2) + ..+ Fo(m) = F(n) - F(n+1)

(pr) F(n)- F(n+2) = F(n-+ 1)+ (—1)*+1

{ps) F(2n) = F3*(n)+ F*(n—1)

(ps) F(2n+1)=F*(n)+ F*(n+1)

(ew(F(n = 1) F(n+1)— F{n) = (=1)°

(on) Fin—2)- F(n+2)— F¥(n) = =1+

(p12) Fin—1)-F(n+1) = F*(n—2)- F(n+2) =2(-1)"

T. Yau {50] has posed first a problem concerning a connec-
t1on between Fibonaccl sequence and the Smarandache function.
Namely, for whath triplets (n — 2,n — 1, n) of positive integers
the Smarandache function vertfies a Fibonacci-hke equahity:

S(n—2)+ S(n—1)= S(n) (2.48)

Calculating the values of S{n) for the first 1200 positive inte-
gers he found twosuch triplets, namely (9, 10, 11) and (119, 120, 121).
Indeed, we have:

S(9) + S(10) = S(11), and S(119) + S(120) = S(121)
More recently H. Ibstedt [26] showed that the following num-

bers generating such tnplets are:

n=4,902;n = 26,245, n = 32,112; n = 64, 010;
n = 368,140; n = 415, 664
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and proved the existence of infinitely many positive integers sat-
isfying the equality (2.43).

Indeed, excepting the triplet generated by n = 26,245 the
other tniplets {S(n—2), S5{n—1), S{(n)) satisfy the properiy that
oue of terms is the duble of a primne number, and the other two
are pnme numbers. For instance taking n = 4902 =2-3.19. 43
we haven—1=4901=132.29, n—2 = 4900 = 22.52.72 and the
equality (2.48) becomes 2- 7 + 29 = 43. Also, for n = 32,112 =
2%. 3 2231t resulis n— 1 =32, 111 = 183-198, n—2 = 32,110 =
2-3-13%-19, s0 (2. 43) beccmes 2- 134+ 197 = 223.

Usmg t}.us remark, H. Ibstedt proposed [26] the following
algonthm:

Let us comsider the triplets (n — 2,n — 1, n) satisfying the
relations:

n==z-p* with a<pand S{zj<a-p (2.49)
n—1=y.¢° with b<gand S(y) < bg {2.50)
n—2=zr° with c<rand S{(z)<c-r (2.51)
where p, g, » are prime numbers. In these conditions it results:

S(n)za'p)s(n—1):b'q,5(n—2):c.r

Substracting {2.50) from (2.49), and (2.51) from (2.50) we
get the system:

z-pP—y-¢°=1 (2.52)

y-gf—z-r°=1 (2.53)
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a-p=b-g+c-r (2.54)

Every solution of the equation (2.54) generate an infinity of
solutions for (2.53) which may be written under the form

z=z0+¢t, y=y—p*-t (2.55)

where ¢ 18 an integer parameter and (zo, yo) is a particular
solution (such a solution may be found by means of the algorithm
of Euclid).

The solutions (2.55) are then introduced in the equality

_y -1
7 =
rC
for obtaining integer values of z.
H. Ibstedt in [26] give a very large list of triplets (n —2,n —
1, n) for which (2.48) is verified. These solutions have been gen-
erated for

(a,b,c)=1(2,1,1), (a,b,c) =(1,2,1) and (e,b,c})=(1,1,2)

with the parameter ¢ restrained only to the interval -9 < ¢ < 10.
To make now in evidence an other connection between the
Smarandachr function and Fibonacci sequence we return to the
twoo latticeal siructures defined on the set N* of positive inte-
gers.
We have already seen that the Smarandache function etab-
Lishe a connection of these lattices by the equality:

S(n ¥ n2) = S(ny) V S(m)

and so we are conducted to consider S : N — N,
2.4.1 Definition. The sequence o : N, — Ny is said to be

multiplicatively convergent to zero (m.c.z) if:
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(V)nGN'(B)WEN"(V)ern,;——":»a(m)%n (2.56)

In [10] a sequence ¢ : N — N satisfying (2.56) is named
multiplicatively convergent to infinity. We prefered the above
definition which is in connection with the fact that zero is the
last element in the lattice A/j.

The {m.c.z) sequences having also the property of monotonic-
ity are used in {10] to obtain a generalisation of p— adic numbers.

The set Z, of p — adic numbers may be considered as an
inverse limit (see [10] ) of the rings E, = Z/p*Z of integers
"modulo p™”, where p is a prime number.

Considering, mstead of the sequence (p™).ey an arbitrary
(m.c.z) and monotonous sequence {o(n))nen there are obtained
the sets E, = Z/a{(n)Z whose inverse limit is a generalisation of
p — ad:c numbers.

Let us observe that the monotonicity for a sequence o :
N, — N is expressed by the condition

(mod) n < m =>a(n) % a(m)

The sequence o{n) = nlis a {m.c.z)sequence and for every
fixed n € N* the smallest m,, given by (2.56) is exactly the value
S(n) of the Smarandache function. So, we can pose the problem
of generalisation of Smarandache function in the following sense:

To each (m.c.z) sequence o : N, — N one may attach a
function

fr: N*— N, f.(n) = the smallest m, given by (2.56)

and we observe that if n = p' - pJ*...pf" i1s the decomposition
of n € N* into primes then:
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fo(n) = max f,(p}*) (2.57)

This formula generalise the formula (1.16) of the calculus
of S(n). But the efective calculus of f,(p?') depends on the
particular expression of the sequence ¢.

We have also the properties:

(f1) fo(m 6 ng) = fo{ma) V fo{na)
(f2) ™ % ng = fo(n1) < fr(n2)

which entitle us to consader

fa:Nd"‘_'No

Now, we may also consider the sequence

Soc: N, — N,

or, more general, if ¢ and § are two (m.c.z) sequences, then there
exist the sequences:

fo08 N, — N, faoa: N,— N,

fof,  Ng— Njagofy: Ng— Ny

2.4.2 Proposition. If the sequences 0,0 : N, — N

are monotonous, then the sequences defined by (2.58) are also
monotonous, in N, and N respectively.

Proof. For an arbitrary n € N* one has 6(n) % 6(n + 1) and

f. satisfies (f3), so:

(2.58)

(fo08)(n) = fo(8(n)) < fo(0(n + 1)) = (fo 0 B)(n + 1)
For the second kind of sequences let n,; % na. Then f,(n;) <

fs(n2) and so
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(8 0 fo)(r) = 6(f+(n1)) < 6(fo(na)) = (6 @ f)(na)

The two latticeal structures considered on N* justify the con-
sideration of the following kind of sequences:

(1) (o,0)sequences: g, : N, — N,
(z7) (0, d)sequences: o.q: N, — Ny
(112)  (d,0)sequences: o4 : Ny — N,
(v)  (d,d)sequences: caq: Ny — Ny
For each of these sequences one may adapt the definition of

monotonicity and of the limit. We have so the following situa-
tions:

1) For an {0,0) sequence o,, the condition of monotonicity
(moo) (V) ny, Ny € N‘; ny S ng = U'oo(nl) S opoo(n‘l)
an this sequence tends to infinity if:

(coo) MrneN" (T)m, e N* (V) m>m, =>00(m)>n

2) The (o, d) sequence o,; 1s monotonous if:

(Mmod) (¥) n1,ng € N*, ny < ng = g,4(r1) < odl(n2)



Connetions with Fibonacci Sequence 117

and 1t 1s (multiphcatively) convergent to zero if

(Cod) (V)nEN‘(E)mEN'(V)mZmnz:va'od(m)%n

3) I o4, 18 a (d, 0) sequence, it is monotonous if

(ma) (¥)ny,np € N*,ny é_ ng => 040(n1) < oaslry)

and tends to infinity if

{cao) (V)nEN‘(3)m,.€N‘(V)m%m,.=>crdo(m)2n

From the properties of the Smarandache function it results
that the sequence (S(n))en- 18 a (d, o) sequence, satisfying the
conditions {mg,) and (cg).

4) The condition of monotonicity for a (d, d) sequence g44 is

(ma) (M)ny,na € N*,ny % ng => ogi{m1) % caa(ra)

N. Jensen in [5] named divisibility sequence a sequence satis-
fying the condition {mgs). This concept has been introduced by
M. Waxd [51], [52].

Moreover, the sequence o44 1s said to be strong divisibility
sequence { shortly (sds), see [5] pg. 181) if the equality

oad(m Q ny) = oggfny) Q oadlng) (2.59)

holds for every n,,n, € N*.

The term of (sds) has been used first in [28]. It is easely to see
that if a sequence is {sds) then it is also a divisibility sequence
(shortly, (ds)).
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It is proved [12] that the Fibonacci sequence is (sds).
On the sequence 5z; we shall say that it is (multiplicatively)
convergent to zero if:

(cad) (V)€ V" (3) me € N* (V) 12 3 70 = 03o(m) >

To each sequence o;,, with 1,5 € {o, d}, satisfying the con-
ditions (mi;) and (c;) we may attach a sequence f;; defined
by:

fij{r) = min{m, / m, is defined by (c;;)} (2.60)

2.4.3 Proposition. Each function f,, defined by (2.60) bas
the properties:

(t) foo satisfies the condition (m,,) of monotonicity
(”) fao(’nl v n2) = foo(nl) \Y foo(n’Q)
UU.) foo(nl A nﬂ) = foo(nl) A foo(n’l)

Proof. (1) We have:

fOO(nl) = mm{ My [ (V) m 2 My, = Gw(m) > nl}
Joo(nz) = min{ mn, / (¥} m > mp, => goo{m) > ny }

so, for every m> foo(ns) it results: coo(m) > ny > ny.
The assertions (ii) and (iit) are consequences of (3).
2.4.4 Proposition. Each function f,g has the properties:

(iv) foa satisfies the condition (m.4) of monotonicity

(v) foalm {1/77,2) > fodlr1) V foa(na)
(“’:) fod(nl Q ﬂz) < fod(nl) A fod(nz)
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Proof. (iv) Let be n; % nz. Then from

foa(ni) = min{ mn;/‘(v)mzmmﬁood(m)§n¢ for:=1,2

it results o,4(rmn) > ny % ny, for m > foi(na). So, foa{ru) <
d

f ad(nZ)-
The properties (v) and (v7) result from (zv).
2.4.5 Proposition. Every function fy, has the properties:

(vif) is (only) (o, 0) monotonc.;ms
(vitd) faolma Vo) S faolm) V fao(ma)
(1z) fio(ni Ang) % fao(n1) Q fao(na)

Proof. (vit) I n; < ny then for every m > m,, we have
d

Tao{m) > ng > ny, and 80 fi,(n1) < fao{ma).
{vin) For ¢ = 1,2 one has:

fanlr) = min{ o, ] (¥) m 2 o, =5 0anfm) 2

Let us suppose n; < ng, so n; Vng = ny and fg.(n Vng) =
fao{n2). Then if we note

d
Mo = fao(m) V fao(nz)
for m > my it results og(m) > ny, for £ = 1,2, so gg{m) >
d
ni V ny and so

Faolra V) = faolrna) < fao(m) V fao(na)

Consequences. From (vit) it result the following properties:
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faoln1 V n2) = fao{r1) V fao(rz)
fao(ny Ana) = fao(n1) A faolna)

and so:

fao{r) A fao(r2) € faolr1) A faolna) = fao{ri Ang) <
< faolm) V fao(ra) = Fao(rn V m2) € Faolrna) ¥ faolria)

2.4.6 Proposition. The functions fyy satisfie:

(2) faslm ¥V ra) € farlra) ¥ fualm)
(i) Hny < ngorng <n;then fuln {{’ ng) =

= fulr) V Faa(ra)
(zi2) faa(ma A n2) < faa(ni) A faa(ng)

Proof. Tt 18 aha.logous with the proof of above propositions.
2.4.7 Theorem. I the sequence cyq 18 (sds)and satisfies
the condition (cq4), then:

(@) faslra V 12) = faalr) V fualra)
(6) m % ne = faa(ny) .§ faa(ne2)

Proof. {c) It is sufficient to prove the inequality

faa(n:) % faa{na v ng) for 1=1,2 (2.61)

If, for instance, this inequality does not hold for ny, it results:

Fadra) A faalms ¥ ma) = do < fas(m)

and we have



Connetions with Fibonacci Sequence 121

gaafdo) = oaa( Faalm) A faa(ma ¥ m)) =

= 044l faa(r1)) A aadl faa(r: v )2 An,=n
d d

d d
because ol faa(r1)) % n; and n; % n VvV ong % caa{faa(ni V-

n3)). So, one obtain the contradiction fi(n;) < dy < faa(ny).
(6) This condition is the (d, d) monotonicity. If n; < n, then
d

d
ny = ny V n,, and using the property (a) it results:

fas(ra) = Faalr ¥ ma) = faa(r) ¥ fualmz)
so fani) % faalnz).

Remarks. 1) Even if 044 is {(sds), does not result the sur-
jectivity of fuq, in general. Indeed, the function fu; attached
to Fibonacci sequence is not surjective, because, for instance,
fz'(2) = 8. We also remember that the Smarandache function is
the function f,4 corresponding to the (o, d) sequence o,4(n) = n!,
and it is surjective.

2) One of the most interesting diophantine equations associ-
ated to a function f;;, for ¢,; € {1,2}, is that giving its fixed
points:

fij{lz) == (2.62)

The function f;; atiached to Fibonacci sequence has n = 5

and n = 12 as fixed points, but the problem of finding the gen-

eral solution of the equation (2.62) corresponding to this famous
sequence 1s an open problem,until now.

In the section 1.6 there has been studied the convergence of

some numerical series involving the Smarandache function. Such
kind of series may be attached to all (generalised) sequences f;;.
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In the sequel we focus the attention on the analogous of the
series

g %)‘ 2nd ES(K)a-\/S(k)z

m the case when the function S is replaced by an arbitrary func-
tion fy,, corresponding to a (m.c.z) sequence.

2.4.8 Theorem. If ¢ is a (m.c.z) sequence satisfying the
condition (m,q), let us denote by f, the corresponding f.4 se-
quence and by g, the sequence o o f,. Then for every o > 1 the
series

are convergent.

Proof. To prove these assertions we use the same method as
for the series (1.90) and (1.91).

(z) We have:

(s fc))a-\/gavc) ) ?zlge(k)

oo 1 oo

_ k3
5 G (ol i o

where m, = card{k / f,(k) =t}. But

k é o(t) = m, < d(o(t))

where d(n) is the number of divisors of n.
From the inequality d{o(t)) < 2,/o(t) it results

s °°20t
m {t)

©
Etu\/a(t) ;tﬂ\/;(? ; >

(11) If we note g{n + 1)/o(n) = k, 41, it results successively:
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S 1 & ”Qm_ =1
2 R R R D R My

and putting z; = 1/c(t), it results z; 4 1/z¢ = 1//Eey1-
As m; = 0 & = 1, it results that when m; # 0 we have

k; > 1, so the senes E (1/:/c(t)) is convergent, as well as the
t=1
series (it). '
Example.Let the sequence ¢ be defined in the following way:
o{t) = k! fand only f &! <t < (k+ 1)
It results that ¢ is a (m.c.z) sequence satisfying the condition
(moqd) and we have:

(1) =1,0(2) =2,0(3) = o(4) =3, 0(5) = ... = ¢(10) = 4!
c{11) = c(12) = ... = 0(26) = 5!, ...
Then
fd(l) =1, fv(z) = 2, f¢(3) =3, f0(4) =5, fa(s) =11,
f-(8)=3, f(T)=T1, f,98) == 5, ...
and so

1

=l L1 1. 1
wR o Tt T Tt

+;<155 + R%F + =t§1 %
From the fact that

18

o
1

mi=0mg=my=..=mp=0mpp=m;3=..mp=

1t results:
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Es=aeayeardint e s
S R S T RS
< d=2% 4
= ¢ Elw

which is a convergent series.
Remark. As one can see from the above example, the func-
tions f, are, in general, neither one-to-one, nor onto.

d

2.5 Solved and Unsolved Problems

As in the section 1.8 we note by a star (*) the unsolved problems.
By p1 < p2 < ... < px... is denoted the increasing sequence of all
the prime numbers. For the solutions of solved problems see the
collection of Smarandache Function Journal

1) Prove that the Smarandache function does not verify the
Liepschitz condition

(HM>0(M)ym,ne N° = [S(m)—S(n)/ < M/m—n/

2) The functions S(V) and S(?) defined by:

1 S(n)
1) - - .2 — 2\
SOr) = g 5(n) = 2
verify the Liepschitz condition, but the function S®)(n) = 7
does not verify this condition. (M. Popescu. P. Popescu)

3) I
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os(z) =dz<:z 5(d), and

T(ny=1—Inos(n)+ f: i ZlGﬂ

t=1k=1
then bm, ., T(n) = —oo.
4) If Ti{z) = card{p / p is a prime, p < z}, prove that the
following numerical functions: '

(z)
(i) Fs: N*— N, Fs(z) = xS,
(i) 6: N* — N, 6(z) =T S(p?),

pLlz
- d
(iii) 6: N* — N, 6(z) = > S(pt)
pilz
pi not divides z

which involve the Smarandache function, do not verify the Liep-
schitz condition. (M. Popescu,P. Popescu, V. Seleacu)
5) Let a : N* —> N* be the function defined by:

a{n) = k <= k is the smallest positive integer such that
nk is a perfect square.

Prove that: (z) If n has the factonisation n = ¢! - ¢3*...¢2,
then a(n) = ¢ - ¢&*...¢%", with
g = 1 if o; i1s odd number
*7 1 0 i ois even number

(x2) The function ais multiplicative, that is a(zy) = a(z)a(y)
for all z,y € N*such that =z Q y=1

(i1)) The series T %) diverges.(I. Balacenoiu, M. Popescu,
n>1
V. Seleacu)
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6) For the function a defined in the preceding problem prove
that: (i) if z,y > 1 are not perfect squares and z Q y = 1, then

the diophantine equation a(z) = a(y) has no solution.

(22) a(zy®) = a(z), for z,y > 1.

(zt1) a(z”) = 1 if n is even and a(z™) = a(z) i n is odd.

(v) for every perfect square m € N* the equation za(z) = m
has 2* different solutions, where k is the number of prime factors
of m.

(v) solve the equations:

ml(Z) + yla(y) = Iza(ZL

5G] ¥ ) = =)
Aa(z) + Ba(y) + Ca(z) =0, Aa(z) + Ba(y)=C

(1. Balacenoiu, M. Popescu, V. Seleacu)

7) For the same function a defined above prove that if F¢
denote the generating function associated to this function by
means of the lattice A, then:

) ity _ ) Hg+1)=1 daiseven
o e ={ FaT 00 LY S

() Film) =1 (H(o)lg + 1) + HG

where n = g7 -¢3*...¢%" 18 the decomposition of n into primes and
H{a) = card{z [ z < @, z 15 odd}.(I Balacenoiu, M. Popescu,
V. Seleacu)

8) The Smarandache no-square digits sequence is defined as
follows: 2, 3,5,6,7,8,2,3,5,6, 7,8, 2,2, 22, 23, 2, 25, 26, 27,
28, 2, 3, 3, 32, 33, 3, 35, 36, 37, 38, ... (take out all square digits
of n). It is any number that occurs infinitely many time in this
sequence 7

9*) Let n be a positive integer with not all digits the same,
and let n’ its digital reverse. Then let ny = /n— '/, and n] its



Solved and Unsolved Problems 127

digital reverse. Again, let n; = /n; — n!/, and n be its digital
reverse. After a finite number of steps one finds an n; which
18 equal to a previous n;, therefore the sequence is perodical
{(because if n has, say, k digits, all other integers n; following it
will have k& digits or less, hence their number is limited and one
apphes the Dinichlet’s box principle).

Find the length of the period (with its corresponding num-
bers) and the length of the sequence’till the first repetition oc-
curs for the integers of three digits and the integers of four digits.
Generahlisation. {M. R. Popov)

10) Let o: N — N be a second order recurrence sequence,

defined by:

o{n) = Ac(n — 1) + Bo(n — 2)

where A and B are fixed non-zero coprime integers and o(1) =
1,0(2) = A. We shall denote the roots of the characteristic
polynomual

P(z)=z>+Az+ B
by o and §. Prove that:
() if the sequence is non-degenerate (that is AB # 0, A2+
48 # 0 and § is not a root of unity) then the terms o(n} can be
expressed as:

a™ — g
a—p
for all n € N*, and if p 18 a prime such that.p{‘\ B = 1 then there

of{n) =

are terms in the sequence o divisible by p. (The least positive
index of these terms 18 called the rank of appantion of p in the
sequence and it is denoted by r(p). Thusr(p) =n i p % a(n)

holds, but p < (n + 1) does not hald).
d
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(zz) there is no term of the sequence o, divisible by the prime

pﬁpdivideBandAQB:l.
(121) if p does not divides B and we note: D = A? + 4B and
{D/p) = the Legendre symbol, with (D/p) = 0if p % D, then
1) re) < (o= (D/)
‘2)p§o’(n) @r(p)%n

11*) Find a formula for the calculus of Smarandache gener-
ahsed function f, corresponding to Fibonacci sequence.



Bibliography

(1]

,
(7]

M. Andrei, C. Dumitrescu, V. Seleacu,L. Tutescu, St. Zan-
fir: Some remarks on the Smarandache function (Smaran-

dache Function Journal, V. 4-5, No. 1, (1994), 1-5).

I. Balacenoiu: Smarandache numerical functions (Smaran-
dache Function Journal, V. 4-5, No. 1, (1994), 6-13).

E. Burton: On some series involving the Smarandache func-
tion (Smarandache Function Journal, V. 6, No. 1, (1995),
13-15).

1. Balacenoiu, V. Seleacu: Some properties of Smarandache
function of type I (Smarandache Function Journal, V. 6,
No. 1, (1995), 16-20).

I. Balacenoiu, C. Dumitrescu: Smarandache functions of
second kind (Smarandache Function Journal, V. 6, No. 1,
(1935), 55—58).

G. E. Bergum, A. N. Philipou, A. F. Horadam, ed: Apph-
cations of Fibonaccl numbers (Proc. of the third Interna-
tional Conference on Fibonacei numbers and their applica-
tions, July 25-29, Pisa, Italy, 1988).

E. Burton: On Some Convergent Series (Smarandache No-
tion Journal, V. 7, No. 1-2-3, (1996), 7-9).

129



130 The Smarandache Function

9] R. D. Carmichael: A note on Euler’s ¢ function (Bull
Amer. Math. Soc. 28, (1922), 109-110).

[10] G. Christol: p-Adic numbers and ultrametricity (From
Number Theory to Physics, edited by M. Waldschmidt et
all, Springer- Verlag, 1992).

{12] I. Cucurezeanu: Probleme de aritmetica si teoria numerelor
(Ed. Tehnica, Bucuresti, 1966).

[8] R. D. Carmichael: On the numerical factors of the arith-
metic forms o™ + 1 = f™ (Ann. Math. 2-nd. ser. V. 15,
(1913-14),30-70).

[11] I Cojocaru, S. Cojocaru: The Third and the Fourth Con-
stant of Smarandache (Smarandache Notion Journel, V. 7,
No. 1-2-3, (1996), 121-126).

(14] H. Donelly: On a problem concerning Euler’s phi-function
(Amer. Math. Monthly 80 (1973), 1029-1031).

{15] C. Dumitrescu: Treillis sur des ensembles flous (Rev. Roum.

Math. Pures Appl.,31,(1986),667-675).

(16] C. Dumitrescu: Treillis duals. Applications aux ensembles
flous (Math.-Rev. d’Anal. Numer. set Theor. de I'Approz.,
15, (1986), 111-116).

{17] C. Dumitrescu: Dual Structures in the fuzzy sets theory and
in group theory (Itinerant Sem. on Functional Egquations,
Aproz. and Converity, Cluj-Napoca, Romania, (1983), 23-

40.).

[13] Lejeune- Dirichlet: Vorlesungen iiber Zahlentheorie (4 te
Auflange, Braunschweig, 1894).



The Bibliography 131

[18] Fiacco, Mc. Cormik:Nonhnear Programming. Sequential
Unconstrained Minimization Technique (New York J. Wi-
ley, 1968).

[20] E. Grosswald: Contnbutions to the theory of Euler’s func-
tion p(z) (Bull. Amer. Math. Soc. 79, (1973), 337-341).

[21] R. K. Guy: Monthly research problems 1969-73 (Amer.
Math. Monthly 80, (1973), 1120-1128).

[23] R. K. Guy: Monthly unsolved problems: (Amer. Math.
Monthly 90, (1983), 683-630).

[22] R. K. Guy: Unsolved problems in number theory (Springer-
verlag, 1981, problem B39, 53).

[19] P. Gronas: The solution of the diophantine equation
a1{n) = n (Smarendache Function J. | V. 4-5, No. I,
(1994). 14-16).

[24] G. H. Hardy, E. M. Wright: An introduction to the theory
of numbers (Claredon Press, 1984).

[25] H. Hasse: Number Theory (Akademik-Verlag, Berlin,
1979).

[26] H. Ibstedt: Base Solution (Smarandache Function J. V. 7,
No. 1-2-3, (1996), 86-95).

271 S. Jozsef: On Certain Inequalities Involving The Smaran-
dache Function (Smarandache Notion Journal, V. 7, No.
1-2-3, (1996), 3-6).

[29] V. L. Klee: On a conjecture of Carmichael (Bull. Amer.
Math. Soc. 53, (1947), 1183-1186).



132 The Smarandache Function

[30] V.L.Klee: Is there an n for which ¢(z) = n has an unique
Solution 7 (Amer. Math. Monthly 76, (1969), 288-289).

(28] C. Kimberling: Strong Divisibility Sequences with Nonzero
Initial Term (The Fibonacci Quarterly, V. 16, (1978), 541-
544).

(31] L. Lovasz: Combinatorial Problems and Exercices (Akad.
Kiado, Budapest, 1979).

[32] P. Masai, A. Valette: A lower bound for a counter exam-
ple to Carmichael’s conjecture (Boll. Unione Mat. ltal. (6),
A1,(1982),313-316).

(33] L. Panaitopol: Asupra unor inegalitati ale lui Bonse (G. M.
Ser. A, Vol. LXXVI, No. 3, (1971), 100-101).

[35] A. N. Philippou, G. E. Bergum, A. F. Horadam (rditors):
Fibonacci Numbers and Their Applications (Proc. of First
International Conference on Fibonacci Numbers and Their
Applications, Univ. of Patras, Greece, 1984 ).

(36] A. N. Phiippou, A. F. Horadam, G. E. Bergum, (rditors):
Apphcations of Fibonacci Numbers (Proc. of Second Inter-
national Conference on Fibonacci Numbers and Their Ap-
plications, San Jose State Univ., 1986).

[37] V. Popa: Asupra unor genera.lizaﬁ ale teoremei lui Clement
(St. Cerc. Mat. Vol 24, No. 9, (1972), 1435-1440).

[34] S. Patrizio: Generalizzatione del teorema di Wilson alle
terne prime (Enseignement Math.,, V. 22(2), No. $-4,
(1976), 175-184).

[38] P. Radovici-Marculescu: Probleme de teoria elementara a
numerelor (Ed. Tehnica, Bucuresti, 1986).



The Bibliography 133

41] W. Sierpinski: Elementary Theory of Numbers (Warszava,
1964 ).

[40] W. Sierpinski: Ce stim si ce nu stim despre numerele prime
(Ed. Stiintifica, Bucuresti, 1966).

[42] F. Smarandache: O generalizare a teoremei lni Euler refer-
itoare la congruente (Bul. Univ. Brasov, Ser. C, V. XXIII,
(1981), 7-12).

f46] F. Smarandache: Généralisations et Généralités (Ed. Nou-
velle, Fés, Maroco, (1984), 9-13).

[43] F. Smarandache: A Function in Number Theory (An. Univ.
Timisoara, Ser. St. Mat., Vol XVIII, Fasc. 1, (1980), 79-
88).

(45] F. Smarandache: Probléms avec et sams... problémes !
(Somipress, Fés, Maroco, 1983).

[47] F. Smarandache: On Carmichael’s Conjecture (asov, XXIV,
Anul VIII 1986).

[39] L. Seagul: An Important Formula to Calculate theNumber
of Primes Less than z (Smarandache Function J., V. 6, No.
1, (1995), 72).

[40] V. Seleacu, N. Vazlan: On a limit of a sequence for a nu-
merical function (Smarandache Function J., V. 6, No. I,
(1995), 11-12).

(48] T. F. Tomita: Some Remarks Concerning the Distribution
of Smarandache Function (Smarandache Function J. V. 6,

No. 1, (1995), 44-49).



134 The Smarandache Function

[49] L. Tutescu, E. Burton: On Some Diophantine Equations
(Smarandache Notion Journal, V. 7, No. 1-2-3, (1996), 10-
11).

{50 T. Yau: Problem on the Smarandache Function (Math.
Spectr., V. 26, No. 3, (1993/94), 84-85).

[51] M. Ward: Note on Divisibility Sequences (Bull. Amer.
Math. Soc., V. 42, (1936}, 843-845).

[52] M. Ward: Arithmetical Functions on Rings (Ann. of Math.,
V. 38, (1937), 725-732).



The function named in the title of this book is oniginated from
the exiled Romanian mathematician Florentin Smarandache, who
has significant contributions not only in mathematics, but also in
literature. He is the father of The Paradozist Literary Movement
and is the avthor of many stories, novels, dramas, poems.

The Smarandache function,say S, is a numerical function de-
fined such that for every positive inieger n, its image S(n) is the
smallest positive integer whose factorial is divisible by n.

The results already obtained on this function contain some
Surprses. . ’

THE AUTHORS

$ 17.95



