

Logistics

- * T-Th 5:15-6:35, WEB 2230
- * Instructor: Erik Brunvand
 - * Office: MEB 3142
 - * Office hours: After class and by appointment
- * TAs: Daniel Khoury and Sarvani Kunapareddy
 - * Office hours in the CADE lab
 - * Times and days TBA

Logistics

- * Canvas page will be course home page
- ***** Contact:
 - * We'll send messages / announcements through the Canvas interface
 - * To send email to the instructor and TAs, use

teach-6710@list.eng.utah.edu

Class Goal

- * To learn about modern Digital CMOS IC design
- * Class project teams will build moderate sized chip
 - * Each team will develop a cell library for their project
 - * We'll form teams in a few weeks
- * These chips can be fabricated through MOSIS
 - * Chip fabrication service for small-volume projects
 - * Educational program funded by MOSIS

Class CAD/EDA Tools

- * We'll use tools from Cadence and Synopsys
 - * These only run on Linux in the CADE lab, so you'll need a CADE account
 - * I also assume you know something about UNIX/Linux
 - * Lots of web tutorials if you need them...

Prerequisites

- * Digital design is required! (i.e. CS/ECE 3700)
 - * Boolean algebra
 - * Combinational circuit design and optimization
 - * K-map minimization, SOP, POS, DeMorgan, bubble-pushing, etc.
 - * Arithmetic circuits, 2's complement numbers
 - * Sequential Circuit design and optimization
 - * Latch/flip-flop design
 - * Finite state machine design/implementation
 - * Communicating FSMs
 - * Using FSMs to control datapaths

Recommendation

- * Computer Architecture experience is helpful
 - * Instruction set architecture (ISA)
 - * Assembly language execution model
 - * Instruction encoding
 - * Simple pipelining
- * I assume you've used some sort of CAD tools for digital circuits
 - * Schematic capture
 - * Simulation

Assignment #1: Review

- * On the Canvas page is a review assignment
 - If you can do these problems, you probably have the right background
 - * If you can't, you may struggle!!!!!
- * Please take this seriously! Give this exam a try and make sure you remember what you need to know!
 - * You also need to turn it in next week by Tuesday September 1st
 - * Must do this independently, it will be graded

Lab #1: Schematics

- * Cadence Composer tutorial
 - * Chapters 1-3 in the CAD manual
 - * Simple circuit design with simulation
 - * Learn basic Verilog for testbench
- * Available on the Canvas page

- * Due on Tuesday, September 8th, 5:00pm
 - * on-line submission on Canvas

START NOW!!!!!

Grading

- * Labs (cell designs) & Homework (40%)
- * Design review (5%)
- * Mid-term exam (15%)
- * Final Project (40%)
- * See the syllabus (Canvas page) for more details about grading breakdown

Cheating Policy

- * In a word: Don't!
- * School of Computing academic misconduct policy is in effect for this class
 - * Read the department policy! (linked to the Canvas page)
 - * If you haven't done so, fill out the form
 - * Short version: Don't turn in other people's work, or allow others to turn in your work as their own
 - * Default sanction for any academic misconduct is FAILING GRADE IN THE COURSE

Transistor History

- * 1958: First integrated circuit
 - * Flip-flop using two transistors
 - * Built by Jack Kilby at Texas Instruments
- * 2008: Intel Core2 Duo 291,000,000 transistors
- * 53% compound annual growth rate over 50 years
 - * No other technology has grown so fast so long
- * Driven by miniaturization of transistors
 - * Smaller is cheaper, faster, lower in power!
 - * Revolutionary effects on society

Transistor History

- * 1958: First integrated circuit
 - * Flip-flop using two transistors
 - * Built by Jack Kilby at Texas Instruments
- * 2012: NVIDIA GK110 (Kepler) ~7,000,000,000

transistors

Back to Intel Core2 Duo...

- * Even 291 million is a LOT of transistors
- * Where are they used?
 - * Mostly for memory!
 - * Intel Core2 Duo: 4MB shared L2 cache, 32K Icache 32K Dcache on each core
 - * $4*1024^2*8 + 2(64*1024*8) = 34,603,008$ bits
 - * Around 6 transistors per bit of memory
 - * ~35,000,000 bits * 6 = ~210,000,000 transistors

Intel Core2 Duo (2008)

* 65nm process, 75W, 144 mm² die

Historical Comparison

Core2 Duo

65nm devices (released in 2008) 144mm² die 291,000,000 transistors over 4MB (32Mbit) of on-chip storage 2200MHz

6502 (Apple II, Nintendo NES etc.)

6000nm devices (6 micron) (released in 1975) 22mm² die

3510 transistors (nmos only 56 total bits of state

1MHz

Transistor Revolution

- * Vacuum tubes ruled in first half of 20th century: large, expensive, power-hungry, unreliable
- * 1947: first point contact transistor
 - * William Shockley, John Bardeen, and Walter Brattain at Bell Labs
 - * Read Crystal Fire
 - * by Riordan, Hoddeson

Transistor Types

- * Bipolar transistors
 - * npn or pnp silicon structure
 - * Small current into very thin base layer controls large currents between emitter and collector
 - * Base currents limit integration density
- * Metal Oxide Semiconductor Field Effect Transistors (MOSFET)
 - * nMOS and pMOS FETs
 - * Voltage applied to insulated gate controls current between source and drain
 - * Low power allows very high integration

- * 1970's processes usually had only nMOS transistors
 - * Inexpensive, but idle current consumes power

Intel 1101 256-bit SRAM

Intel 4004 4-bit µProc

Moore's Law

- * 1965: Gordon Moore plotted transistors per chip
 - * Fit straight line on semilog scale
 - * Transistor counts have doubled every 26 months

Moore's Law

- * 1965: Gordon Moore plotted transistors per chip
 - * Fit straight line on semilog scale
 - * Transistor counts have doubled every 26 months


```
DL Description
                                                  // define combinational logic for
module moore (clk, clr, insig, outsig);
  input clk, clr, insig;
                                                  // next_state
                                                  always @(insig or state)
  output outsig;
                                                     case (state)
// define state encodings as parameters
                                                        s0: if (insig) next_state = s1;
  parameter [1:0] s0 = 2'b00,
                                                            else next_state = s0;
  s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;
                                                        s1: if (insig) next_state = s2;
                                                            else next_state = s1;
// define reg vars for state register
                                                        s2: if (insig) next_state = s3;
// and next_state logic
                                                            else next_state = s2;
  reg [1:0] state, next_state;
                                                        s3: if (insig) next_state = s1;
                                                            else next state = s0;
//define state register (with
                                                       endcase
//synchronous active-high clear)
  always @(posedge clk)
                                                  // assign outsig as continuous assign
       if (clr) state = s0;
                                                    assign outsig =
       else state = next_state;
                                                            ((state == s1) || (state == s3));
  end
                                                  endmodule
```

HDL Synthesis

- * Convert the Behavioral HDL into a set of logic gates
 - * This process is called "synthesis"
 - * Synthesis will target the cells (gates) in your library
 - * We'll use Design Compiler from Synopsys
- * Output from synthesis is a Structural HDL description

Structural HDL

Fabricate and Test Chip

- * We can fabricate the chips through MOSIS
 - * Educational program sponsored by MOSIS' commercial activities
 - * Chips are fabricated, packaged, and shipped back to us
- * Then we get to test them to see what they do, or don't do...
 - * CS/ECE 6712 in spring semester
 - * Test machine is Tektronix LV500 (or maybe not...)

What is "Design?"

- * What is a good design process?
- * What makes a good design?
- * What are the skills required?
- * This is part of what makes this fun!
 - * We'll discuss throughout the class

First Taste of Digital VLSI

- * This class is "soup to nuts"
 - * Entire process from start to finish
 - * Design and characterize a cell library
 - * Use that cell library to build a chip
- * But, there's lots more to learn!
 - * More modern issues
 - * Industry best practice
- * 6770 Advanced VLSI takes over where 5710/6710 leaves off!

VLSI at Utah

- * VLSI is a means to an end, not an end in itself...
 - * How to build ultra small and efficient systems
 - * Learn how, why, when, and where a VLSI implementation makes sense
- * Research at Utah has ties to VLSI
 - * SoC: Brunvand, Balasubramonian
 - * ECE: Stevens, Kalla, Walling, Walker, Gaillardon

VLSI in Industry

- * Varied skills needed
 - * Architecture, CAD, design, validation
 - * Software skills as critical as circuit skills!
- * If you're a CS student, don't be intimidated!
 - * Varied employment opportunities
 - * Large companies to small startups
- * Grad degrees highly valued here
 - * Especially for design side employment

Our Technology

- * We'll use the ON Semi 0.5u (500nm)
 3-level-metal CMOS process (very very old stuff!!!)
 - * We have technology files that define the process
 - * MOSIS Scalable CMOS Rev. 8 (SCMOS)
- * Tech files from NCSU CDK
 - * NCSU toolkit is designed for custom VLSI layout
 - * Design Rule Check (DRC) rules
 - * Layout vs. Schematic (LVS) rules

Possible Technology

- * Global Foundries 180nm process
 - * Formerly IBM 180nm 7RF process
- * Only very old, not very very old!
 - * But, quite a bit more complex!
- * We'll see if the TAs and I have the stamina to put together a cohesive design kit that we trust...

Course Overview

- * Start with transistors as switches
 - * Boolean gates
- * Study logical & electrical transistor behavior
- * Mask layout for the gates
 - * Design and characterize a set of gates (library)
- * Use that library to build a whole-chip project
- * Fabricate the chip and test in Spring 2016
 - * This is optional
 - * Rewarded with a fun 1-hour testing class (6712)

GROUP PORTION

Project Details

- * Standard Cell Library
 - * Each group will design a small, but useful, standard cell library
- * Use HDL synthesis with this library as a target
 - * Use Cadence EDI for place and route
- ***** Custom Datapath
 - * Use ICC router to connect HDL-Synthesized control to custom-designed datapath
- * It will be VERY helpful to have a mix of knowledge on your team

Tool Details

- * Multiple design views for your library cells:
 - * Start with Schematic, Verilog, Symbol, Layout views of each cell
 - * Complete design in Composer schematics, simulated with NC_Verilog
 - * Complete design layout in Virtuoso, detailed simulation using Spectre
 - * Validate they are the same with Diva LVS/DRC
 - * Characterize with Encounter Library Characterizer (ELC)
- * Synthesized controller using Synopsys Design Compiler or Cadence RTL Compiler
- * Place-Route with Encounter Digital Implementation System (EDI)
- * Final assembly back in Virtuoso and CCAR

Timetable

- * The project will be a race to the finish!
 - * There is no slack in this schedule!!!

Timetable

- * The project will be a race to the finish!
 - * There is no slack in this schedule!!!
- * VLSI design always takes longer than you think
 - * Even if you take that rule into account!

Timetable

- * The project will be a race to the finish!
 - * There is no slack in this schedule!!!
- * VLSI design always takes longer than you think
 - * Even if you take that rule into account!
- * After you have 90% finished, there's only 90% left...
 - * All team members will have to contribute!
 - * Team peer evaluations twice a semester

Summary

- * Learn about VLSI design
 - * Develop tool & layout skills independently
 - * Form a team develop a cell library
 - * Decide on a project architecture
 - * Then use your team's library to make a chip
- * Verilog / synthesis / place & route / chip-fab